1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Transforms/IPO/HotColdSplitting.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BlockFrequencyInfo.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/CFG.h" 36 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 37 #include "llvm/Analysis/PostDominators.h" 38 #include "llvm/Analysis/ProfileSummaryInfo.h" 39 #include "llvm/Analysis/TargetTransformInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Use.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/BlockFrequency.h" 59 #include "llvm/Support/BranchProbability.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/IPO.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 #include "llvm/Transforms/Utils/CodeExtractor.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <string> 73 74 #define DEBUG_TYPE "hotcoldsplit" 75 76 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 77 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 78 79 using namespace llvm; 80 81 static cl::opt<bool> EnableStaticAnalysis("hot-cold-static-analysis", 82 cl::init(true), cl::Hidden); 83 84 static cl::opt<int> 85 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 86 cl::desc("Base penalty for splitting cold code (as a " 87 "multiple of TCC_Basic)")); 88 89 static cl::opt<bool> EnableColdSection( 90 "enable-cold-section", cl::init(false), cl::Hidden, 91 cl::desc("Enable placement of extracted cold functions" 92 " into a separate section after hot-cold splitting.")); 93 94 static cl::opt<std::string> 95 ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"), 96 cl::Hidden, 97 cl::desc("Name for the section containing cold functions " 98 "extracted by hot-cold splitting.")); 99 100 namespace { 101 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 102 // this function unless you modify the MBB version as well. 103 // 104 /// A no successor, non-return block probably ends in unreachable and is cold. 105 /// Also consider a block that ends in an indirect branch to be a return block, 106 /// since many targets use plain indirect branches to return. 107 bool blockEndsInUnreachable(const BasicBlock &BB) { 108 if (!succ_empty(&BB)) 109 return false; 110 if (BB.empty()) 111 return true; 112 const Instruction *I = BB.getTerminator(); 113 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 114 } 115 116 bool unlikelyExecuted(BasicBlock &BB, ProfileSummaryInfo *PSI, 117 BlockFrequencyInfo *BFI) { 118 // Exception handling blocks are unlikely executed. 119 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 120 return true; 121 122 // The block is cold if it calls/invokes a cold function. However, do not 123 // mark sanitizer traps as cold. 124 for (Instruction &I : BB) 125 if (auto *CB = dyn_cast<CallBase>(&I)) 126 if (CB->hasFnAttr(Attribute::Cold) && !CB->getMetadata("nosanitize")) 127 return true; 128 129 // The block is cold if it has an unreachable terminator, unless it's 130 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp); 131 // in the case of a longjmp, if the block is cold according to 132 // profile information, we mark it as unlikely to be executed as well. 133 if (blockEndsInUnreachable(BB)) { 134 if (auto *CI = 135 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 136 if (CI->hasFnAttr(Attribute::NoReturn)) { 137 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) 138 return (II->getIntrinsicID() != Intrinsic::eh_sjlj_longjmp) || 139 (BFI && PSI->isColdBlock(&BB, BFI)); 140 return !CI->getCalledFunction()->getName().contains("longjmp") || 141 (BFI && PSI->isColdBlock(&BB, BFI)); 142 } 143 return true; 144 } 145 146 return false; 147 } 148 149 /// Check whether it's safe to outline \p BB. 150 static bool mayExtractBlock(const BasicBlock &BB) { 151 // EH pads are unsafe to outline because doing so breaks EH type tables. It 152 // follows that invoke instructions cannot be extracted, because CodeExtractor 153 // requires unwind destinations to be within the extraction region. 154 // 155 // Resumes that are not reachable from a cleanup landing pad are considered to 156 // be unreachable. It’s not safe to split them out either. 157 auto Term = BB.getTerminator(); 158 return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) && 159 !isa<ResumeInst>(Term); 160 } 161 162 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 163 /// If \p UpdateEntryCount is true (set when this is a new split function and 164 /// module has profile data), set entry count to 0 to ensure treated as cold. 165 /// Return true if the function is changed. 166 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { 167 assert(!F.hasOptNone() && "Can't mark this cold"); 168 bool Changed = false; 169 if (!F.hasFnAttribute(Attribute::Cold)) { 170 F.addFnAttr(Attribute::Cold); 171 Changed = true; 172 } 173 if (!F.hasFnAttribute(Attribute::MinSize)) { 174 F.addFnAttr(Attribute::MinSize); 175 Changed = true; 176 } 177 if (UpdateEntryCount) { 178 // Set the entry count to 0 to ensure it is placed in the unlikely text 179 // section when function sections are enabled. 180 F.setEntryCount(0); 181 Changed = true; 182 } 183 184 return Changed; 185 } 186 187 class HotColdSplittingLegacyPass : public ModulePass { 188 public: 189 static char ID; 190 HotColdSplittingLegacyPass() : ModulePass(ID) { 191 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 192 } 193 194 void getAnalysisUsage(AnalysisUsage &AU) const override { 195 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 196 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 197 AU.addRequired<TargetTransformInfoWrapperPass>(); 198 AU.addUsedIfAvailable<AssumptionCacheTracker>(); 199 } 200 201 bool runOnModule(Module &M) override; 202 }; 203 204 } // end anonymous namespace 205 206 /// Check whether \p F is inherently cold. 207 bool HotColdSplitting::isFunctionCold(const Function &F) const { 208 if (F.hasFnAttribute(Attribute::Cold)) 209 return true; 210 211 if (F.getCallingConv() == CallingConv::Cold) 212 return true; 213 214 if (PSI->isFunctionEntryCold(&F)) 215 return true; 216 217 return false; 218 } 219 220 // Returns false if the function should not be considered for hot-cold split 221 // optimization. 222 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 223 if (F.hasFnAttribute(Attribute::AlwaysInline)) 224 return false; 225 226 if (F.hasFnAttribute(Attribute::NoInline)) 227 return false; 228 229 // A function marked `noreturn` may contain unreachable terminators: these 230 // should not be considered cold, as the function may be a trampoline. 231 if (F.hasFnAttribute(Attribute::NoReturn)) 232 return false; 233 234 if (F.hasFnAttribute(Attribute::SanitizeAddress) || 235 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 236 F.hasFnAttribute(Attribute::SanitizeThread) || 237 F.hasFnAttribute(Attribute::SanitizeMemory)) 238 return false; 239 240 return true; 241 } 242 243 /// Get the benefit score of outlining \p Region. 244 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region, 245 TargetTransformInfo &TTI) { 246 // Sum up the code size costs of non-terminator instructions. Tight coupling 247 // with \ref getOutliningPenalty is needed to model the costs of terminators. 248 int Benefit = 0; 249 for (BasicBlock *BB : Region) 250 for (Instruction &I : BB->instructionsWithoutDebug()) 251 if (&I != BB->getTerminator()) 252 Benefit += 253 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 254 255 return Benefit; 256 } 257 258 /// Get the penalty score for outlining \p Region. 259 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 260 unsigned NumInputs, unsigned NumOutputs) { 261 int Penalty = SplittingThreshold; 262 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 263 264 // If the splitting threshold is set at or below zero, skip the usual 265 // profitability check. 266 if (SplittingThreshold <= 0) 267 return Penalty; 268 269 // The typical code size cost for materializing an argument for the outlined 270 // call. 271 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n"); 272 const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic; 273 Penalty += CostForArgMaterialization * NumInputs; 274 275 // The typical code size cost for an output alloca, its associated store, and 276 // its associated reload. 277 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n"); 278 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 279 Penalty += CostForRegionOutput * NumOutputs; 280 281 // Find the number of distinct exit blocks for the region. Use a conservative 282 // check to determine whether control returns from the region. 283 bool NoBlocksReturn = true; 284 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 285 for (BasicBlock *BB : Region) { 286 // If a block has no successors, only assume it does not return if it's 287 // unreachable. 288 if (succ_empty(BB)) { 289 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 290 continue; 291 } 292 293 for (BasicBlock *SuccBB : successors(BB)) { 294 if (find(Region, SuccBB) == Region.end()) { 295 NoBlocksReturn = false; 296 SuccsOutsideRegion.insert(SuccBB); 297 } 298 } 299 } 300 301 // Apply a `noreturn` bonus. 302 if (NoBlocksReturn) { 303 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 304 << " non-returning terminators\n"); 305 Penalty -= Region.size(); 306 } 307 308 // Apply a penalty for having more than one successor outside of the region. 309 // This penalty accounts for the switch needed in the caller. 310 if (!SuccsOutsideRegion.empty()) { 311 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 312 << " non-region successors\n"); 313 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 314 } 315 316 return Penalty; 317 } 318 319 Function *HotColdSplitting::extractColdRegion( 320 const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC, 321 DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, 322 OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) { 323 assert(!Region.empty()); 324 325 // TODO: Pass BFI and BPI to update profile information. 326 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, 327 /* BPI */ nullptr, AC, /* AllowVarArgs */ false, 328 /* AllowAlloca */ false, 329 /* Suffix */ "cold." + std::to_string(Count)); 330 331 // Perform a simple cost/benefit analysis to decide whether or not to permit 332 // splitting. 333 SetVector<Value *> Inputs, Outputs, Sinks; 334 CE.findInputsOutputs(Inputs, Outputs, Sinks); 335 int OutliningBenefit = getOutliningBenefit(Region, TTI); 336 int OutliningPenalty = 337 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 338 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 339 << ", penalty = " << OutliningPenalty << "\n"); 340 if (OutliningBenefit <= OutliningPenalty) 341 return nullptr; 342 343 Function *OrigF = Region[0]->getParent(); 344 if (Function *OutF = CE.extractCodeRegion(CEAC)) { 345 User *U = *OutF->user_begin(); 346 CallInst *CI = cast<CallInst>(U); 347 NumColdRegionsOutlined++; 348 if (TTI.useColdCCForColdCall(*OutF)) { 349 OutF->setCallingConv(CallingConv::Cold); 350 CI->setCallingConv(CallingConv::Cold); 351 } 352 CI->setIsNoInline(); 353 354 if (EnableColdSection) 355 OutF->setSection(ColdSectionName); 356 else { 357 if (OrigF->hasSection()) 358 OutF->setSection(OrigF->getSection()); 359 } 360 361 markFunctionCold(*OutF, BFI != nullptr); 362 363 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 364 ORE.emit([&]() { 365 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 366 &*Region[0]->begin()) 367 << ore::NV("Original", OrigF) << " split cold code into " 368 << ore::NV("Split", OutF); 369 }); 370 return OutF; 371 } 372 373 ORE.emit([&]() { 374 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 375 &*Region[0]->begin()) 376 << "Failed to extract region at block " 377 << ore::NV("Block", Region.front()); 378 }); 379 return nullptr; 380 } 381 382 /// A pair of (basic block, score). 383 using BlockTy = std::pair<BasicBlock *, unsigned>; 384 385 namespace { 386 /// A maximal outlining region. This contains all blocks post-dominated by a 387 /// sink block, the sink block itself, and all blocks dominated by the sink. 388 /// If sink-predecessors and sink-successors cannot be extracted in one region, 389 /// the static constructor returns a list of suitable extraction regions. 390 class OutliningRegion { 391 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 392 /// viable sub-region entry point. Blocks with higher scores are better entry 393 /// points (i.e. they are more distant ancestors of the sink block). 394 SmallVector<BlockTy, 0> Blocks = {}; 395 396 /// The suggested entry point into the region. If the region has multiple 397 /// entry points, all blocks within the region may not be reachable from this 398 /// entry point. 399 BasicBlock *SuggestedEntryPoint = nullptr; 400 401 /// Whether the entire function is cold. 402 bool EntireFunctionCold = false; 403 404 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 405 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 406 return mayExtractBlock(BB) ? Score : 0; 407 } 408 409 /// These scores should be lower than the score for predecessor blocks, 410 /// because regions starting at predecessor blocks are typically larger. 411 static constexpr unsigned ScoreForSuccBlock = 1; 412 static constexpr unsigned ScoreForSinkBlock = 1; 413 414 OutliningRegion(const OutliningRegion &) = delete; 415 OutliningRegion &operator=(const OutliningRegion &) = delete; 416 417 public: 418 OutliningRegion() = default; 419 OutliningRegion(OutliningRegion &&) = default; 420 OutliningRegion &operator=(OutliningRegion &&) = default; 421 422 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 423 const DominatorTree &DT, 424 const PostDominatorTree &PDT) { 425 std::vector<OutliningRegion> Regions; 426 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 427 428 Regions.emplace_back(); 429 OutliningRegion *ColdRegion = &Regions.back(); 430 431 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 432 RegionBlocks.insert(BB); 433 ColdRegion->Blocks.emplace_back(BB, Score); 434 }; 435 436 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 437 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 438 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 439 unsigned BestScore = SinkScore; 440 441 // Visit SinkBB's ancestors using inverse DFS. 442 auto PredIt = ++idf_begin(&SinkBB); 443 auto PredEnd = idf_end(&SinkBB); 444 while (PredIt != PredEnd) { 445 BasicBlock &PredBB = **PredIt; 446 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 447 448 // If the predecessor is cold and has no predecessors, the entire 449 // function must be cold. 450 if (SinkPostDom && pred_empty(&PredBB)) { 451 ColdRegion->EntireFunctionCold = true; 452 return Regions; 453 } 454 455 // If SinkBB does not post-dominate a predecessor, do not mark the 456 // predecessor (or any of its predecessors) cold. 457 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 458 PredIt.skipChildren(); 459 continue; 460 } 461 462 // Keep track of the post-dominated ancestor farthest away from the sink. 463 // The path length is always >= 2, ensuring that predecessor blocks are 464 // considered as entry points before the sink block. 465 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 466 if (PredScore > BestScore) { 467 ColdRegion->SuggestedEntryPoint = &PredBB; 468 BestScore = PredScore; 469 } 470 471 addBlockToRegion(&PredBB, PredScore); 472 ++PredIt; 473 } 474 475 // If the sink can be added to the cold region, do so. It's considered as 476 // an entry point before any sink-successor blocks. 477 // 478 // Otherwise, split cold sink-successor blocks using a separate region. 479 // This satisfies the requirement that all extraction blocks other than the 480 // first have predecessors within the extraction region. 481 if (mayExtractBlock(SinkBB)) { 482 addBlockToRegion(&SinkBB, SinkScore); 483 if (pred_empty(&SinkBB)) { 484 ColdRegion->EntireFunctionCold = true; 485 return Regions; 486 } 487 } else { 488 Regions.emplace_back(); 489 ColdRegion = &Regions.back(); 490 BestScore = 0; 491 } 492 493 // Find all successors of SinkBB dominated by SinkBB using DFS. 494 auto SuccIt = ++df_begin(&SinkBB); 495 auto SuccEnd = df_end(&SinkBB); 496 while (SuccIt != SuccEnd) { 497 BasicBlock &SuccBB = **SuccIt; 498 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 499 500 // Don't allow the backwards & forwards DFSes to mark the same block. 501 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 502 503 // If SinkBB does not dominate a successor, do not mark the successor (or 504 // any of its successors) cold. 505 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 506 SuccIt.skipChildren(); 507 continue; 508 } 509 510 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 511 if (SuccScore > BestScore) { 512 ColdRegion->SuggestedEntryPoint = &SuccBB; 513 BestScore = SuccScore; 514 } 515 516 addBlockToRegion(&SuccBB, SuccScore); 517 ++SuccIt; 518 } 519 520 return Regions; 521 } 522 523 /// Whether this region has nothing to extract. 524 bool empty() const { return !SuggestedEntryPoint; } 525 526 /// The blocks in this region. 527 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 528 529 /// Whether the entire function containing this region is cold. 530 bool isEntireFunctionCold() const { return EntireFunctionCold; } 531 532 /// Remove a sub-region from this region and return it as a block sequence. 533 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 534 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 535 536 // Remove blocks dominated by the suggested entry point from this region. 537 // During the removal, identify the next best entry point into the region. 538 // Ensure that the first extracted block is the suggested entry point. 539 BlockSequence SubRegion = {SuggestedEntryPoint}; 540 BasicBlock *NextEntryPoint = nullptr; 541 unsigned NextScore = 0; 542 auto RegionEndIt = Blocks.end(); 543 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 544 BasicBlock *BB = Block.first; 545 unsigned Score = Block.second; 546 bool InSubRegion = 547 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 548 if (!InSubRegion && Score > NextScore) { 549 NextEntryPoint = BB; 550 NextScore = Score; 551 } 552 if (InSubRegion && BB != SuggestedEntryPoint) 553 SubRegion.push_back(BB); 554 return InSubRegion; 555 }); 556 Blocks.erase(RegionStartIt, RegionEndIt); 557 558 // Update the suggested entry point. 559 SuggestedEntryPoint = NextEntryPoint; 560 561 return SubRegion; 562 } 563 }; 564 } // namespace 565 566 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 567 bool Changed = false; 568 569 // The set of cold blocks. 570 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 571 572 // The worklist of non-intersecting regions left to outline. 573 SmallVector<OutliningRegion, 2> OutliningWorklist; 574 575 // Set up an RPO traversal. Experimentally, this performs better (outlines 576 // more) than a PO traversal, because we prevent region overlap by keeping 577 // the first region to contain a block. 578 ReversePostOrderTraversal<Function *> RPOT(&F); 579 580 // Calculate domtrees lazily. This reduces compile-time significantly. 581 std::unique_ptr<DominatorTree> DT; 582 std::unique_ptr<PostDominatorTree> PDT; 583 584 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 585 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 586 // be able to salvage its domtrees instead of recomputing them. 587 BlockFrequencyInfo *BFI = nullptr; 588 if (HasProfileSummary) 589 BFI = GetBFI(F); 590 591 TargetTransformInfo &TTI = GetTTI(F); 592 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 593 AssumptionCache *AC = LookupAC(F); 594 595 // Find all cold regions. 596 for (BasicBlock *BB : RPOT) { 597 // This block is already part of some outlining region. 598 if (ColdBlocks.count(BB)) 599 continue; 600 601 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || 602 (EnableStaticAnalysis && unlikelyExecuted(*BB, PSI, BFI)); 603 if (!Cold) 604 continue; 605 606 LLVM_DEBUG({ 607 dbgs() << "Found a cold block:\n"; 608 BB->dump(); 609 }); 610 611 if (!DT) 612 DT = std::make_unique<DominatorTree>(F); 613 if (!PDT) 614 PDT = std::make_unique<PostDominatorTree>(F); 615 616 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 617 for (OutliningRegion &Region : Regions) { 618 if (Region.empty()) 619 continue; 620 621 if (Region.isEntireFunctionCold()) { 622 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 623 return markFunctionCold(F); 624 } 625 626 // If this outlining region intersects with another, drop the new region. 627 // 628 // TODO: It's theoretically possible to outline more by only keeping the 629 // largest region which contains a block, but the extra bookkeeping to do 630 // this is tricky/expensive. 631 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { 632 return !ColdBlocks.insert(Block.first).second; 633 }); 634 if (RegionsOverlap) 635 continue; 636 637 OutliningWorklist.emplace_back(std::move(Region)); 638 ++NumColdRegionsFound; 639 } 640 } 641 642 if (OutliningWorklist.empty()) 643 return Changed; 644 645 // Outline single-entry cold regions, splitting up larger regions as needed. 646 unsigned OutlinedFunctionID = 1; 647 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 648 CodeExtractorAnalysisCache CEAC(F); 649 do { 650 OutliningRegion Region = OutliningWorklist.pop_back_val(); 651 assert(!Region.empty() && "Empty outlining region in worklist"); 652 do { 653 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 654 LLVM_DEBUG({ 655 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 656 for (BasicBlock *BB : SubRegion) 657 BB->dump(); 658 }); 659 660 Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI, 661 ORE, AC, OutlinedFunctionID); 662 if (Outlined) { 663 ++OutlinedFunctionID; 664 Changed = true; 665 } 666 } while (!Region.empty()); 667 } while (!OutliningWorklist.empty()); 668 669 return Changed; 670 } 671 672 bool HotColdSplitting::run(Module &M) { 673 bool Changed = false; 674 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); 675 for (auto It = M.begin(), End = M.end(); It != End; ++It) { 676 Function &F = *It; 677 678 // Do not touch declarations. 679 if (F.isDeclaration()) 680 continue; 681 682 // Do not modify `optnone` functions. 683 if (F.hasOptNone()) 684 continue; 685 686 // Detect inherently cold functions and mark them as such. 687 if (isFunctionCold(F)) { 688 Changed |= markFunctionCold(F); 689 continue; 690 } 691 692 if (!shouldOutlineFrom(F)) { 693 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 694 continue; 695 } 696 697 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 698 Changed |= outlineColdRegions(F, HasProfileSummary); 699 } 700 return Changed; 701 } 702 703 bool HotColdSplittingLegacyPass::runOnModule(Module &M) { 704 if (skipModule(M)) 705 return false; 706 ProfileSummaryInfo *PSI = 707 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 708 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 709 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 710 }; 711 auto GBFI = [this](Function &F) { 712 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 713 }; 714 std::unique_ptr<OptimizationRemarkEmitter> ORE; 715 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 716 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 717 ORE.reset(new OptimizationRemarkEmitter(&F)); 718 return *ORE.get(); 719 }; 720 auto LookupAC = [this](Function &F) -> AssumptionCache * { 721 if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>()) 722 return ACT->lookupAssumptionCache(F); 723 return nullptr; 724 }; 725 726 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M); 727 } 728 729 PreservedAnalyses 730 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 731 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 732 733 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { 734 return FAM.getCachedResult<AssumptionAnalysis>(F); 735 }; 736 737 auto GBFI = [&FAM](Function &F) { 738 return &FAM.getResult<BlockFrequencyAnalysis>(F); 739 }; 740 741 std::function<TargetTransformInfo &(Function &)> GTTI = 742 [&FAM](Function &F) -> TargetTransformInfo & { 743 return FAM.getResult<TargetIRAnalysis>(F); 744 }; 745 746 std::unique_ptr<OptimizationRemarkEmitter> ORE; 747 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 748 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 749 ORE.reset(new OptimizationRemarkEmitter(&F)); 750 return *ORE.get(); 751 }; 752 753 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 754 755 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) 756 return PreservedAnalyses::none(); 757 return PreservedAnalyses::all(); 758 } 759 760 char HotColdSplittingLegacyPass::ID = 0; 761 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit", 762 "Hot Cold Splitting", false, false) 763 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 764 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 765 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit", 766 "Hot Cold Splitting", false, false) 767 768 ModulePass *llvm::createHotColdSplittingPass() { 769 return new HotColdSplittingLegacyPass(); 770 } 771