1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// The goal of hot/cold splitting is to improve the memory locality of code.
11 /// The splitting pass does this by identifying cold blocks and moving them into
12 /// separate functions.
13 ///
14 /// When the splitting pass finds a cold block (referred to as "the sink"), it
15 /// grows a maximal cold region around that block. The maximal region contains
16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
17 /// cold as the sink. Once a region is found, it's split out of the original
18 /// function provided it's profitable to do so.
19 ///
20 /// [*] In practice, there is some added complexity because some blocks are not
21 /// safe to extract.
22 ///
23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
24 /// TODO: Reorder outlined functions.
25 ///
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/Transforms/IPO/HotColdSplitting.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BlockFrequencyInfo.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/CFG.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/Analysis/PostDominators.h"
38 #include "llvm/Analysis/ProfileSummaryInfo.h"
39 #include "llvm/Analysis/TargetTransformInfo.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CFG.h"
42 #include "llvm/IR/CallSite.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/BranchProbability.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/CodeExtractor.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 
74 #define DEBUG_TYPE "hotcoldsplit"
75 
76 STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
77 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
78 
79 using namespace llvm;
80 
81 static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis",
82                               cl::init(true), cl::Hidden);
83 
84 static cl::opt<int>
85     SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
86                        cl::desc("Base penalty for splitting cold code (as a "
87                                 "multiple of TCC_Basic)"));
88 
89 namespace {
90 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
91 // this function unless you modify the MBB version as well.
92 //
93 /// A no successor, non-return block probably ends in unreachable and is cold.
94 /// Also consider a block that ends in an indirect branch to be a return block,
95 /// since many targets use plain indirect branches to return.
96 bool blockEndsInUnreachable(const BasicBlock &BB) {
97   if (!succ_empty(&BB))
98     return false;
99   if (BB.empty())
100     return true;
101   const Instruction *I = BB.getTerminator();
102   return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
103 }
104 
105 bool unlikelyExecuted(BasicBlock &BB) {
106   // Exception handling blocks are unlikely executed.
107   if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
108     return true;
109 
110   // The block is cold if it calls/invokes a cold function. However, do not
111   // mark sanitizer traps as cold.
112   for (Instruction &I : BB)
113     if (auto CS = CallSite(&I))
114       if (CS.hasFnAttr(Attribute::Cold) && !CS->getMetadata("nosanitize"))
115         return true;
116 
117   // The block is cold if it has an unreachable terminator, unless it's
118   // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
119   if (blockEndsInUnreachable(BB)) {
120     if (auto *CI =
121             dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
122       if (CI->hasFnAttr(Attribute::NoReturn))
123         return false;
124     return true;
125   }
126 
127   return false;
128 }
129 
130 /// Check whether it's safe to outline \p BB.
131 static bool mayExtractBlock(const BasicBlock &BB) {
132   // EH pads are unsafe to outline because doing so breaks EH type tables. It
133   // follows that invoke instructions cannot be extracted, because CodeExtractor
134   // requires unwind destinations to be within the extraction region.
135   //
136   // Resumes that are not reachable from a cleanup landing pad are considered to
137   // be unreachable. It’s not safe to split them out either.
138   auto Term = BB.getTerminator();
139   return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) &&
140          !isa<ResumeInst>(Term);
141 }
142 
143 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
144 /// If \p UpdateEntryCount is true (set when this is a new split function and
145 /// module has profile data), set entry count to 0 to ensure treated as cold.
146 /// Return true if the function is changed.
147 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
148   assert(!F.hasOptNone() && "Can't mark this cold");
149   bool Changed = false;
150   if (!F.hasFnAttribute(Attribute::Cold)) {
151     F.addFnAttr(Attribute::Cold);
152     Changed = true;
153   }
154   if (!F.hasFnAttribute(Attribute::MinSize)) {
155     F.addFnAttr(Attribute::MinSize);
156     Changed = true;
157   }
158   if (UpdateEntryCount) {
159     // Set the entry count to 0 to ensure it is placed in the unlikely text
160     // section when function sections are enabled.
161     F.setEntryCount(0);
162     Changed = true;
163   }
164 
165   return Changed;
166 }
167 
168 class HotColdSplittingLegacyPass : public ModulePass {
169 public:
170   static char ID;
171   HotColdSplittingLegacyPass() : ModulePass(ID) {
172     initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
173   }
174 
175   void getAnalysisUsage(AnalysisUsage &AU) const override {
176     AU.addRequired<BlockFrequencyInfoWrapperPass>();
177     AU.addRequired<ProfileSummaryInfoWrapperPass>();
178     AU.addRequired<TargetTransformInfoWrapperPass>();
179     AU.addUsedIfAvailable<AssumptionCacheTracker>();
180   }
181 
182   bool runOnModule(Module &M) override;
183 };
184 
185 } // end anonymous namespace
186 
187 /// Check whether \p F is inherently cold.
188 bool HotColdSplitting::isFunctionCold(const Function &F) const {
189   if (F.hasFnAttribute(Attribute::Cold))
190     return true;
191 
192   if (F.getCallingConv() == CallingConv::Cold)
193     return true;
194 
195   if (PSI->isFunctionEntryCold(&F))
196     return true;
197 
198   return false;
199 }
200 
201 // Returns false if the function should not be considered for hot-cold split
202 // optimization.
203 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
204   if (F.hasFnAttribute(Attribute::AlwaysInline))
205     return false;
206 
207   if (F.hasFnAttribute(Attribute::NoInline))
208     return false;
209 
210   if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
211       F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
212       F.hasFnAttribute(Attribute::SanitizeThread) ||
213       F.hasFnAttribute(Attribute::SanitizeMemory))
214     return false;
215 
216   return true;
217 }
218 
219 /// Get the benefit score of outlining \p Region.
220 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region,
221                                TargetTransformInfo &TTI) {
222   // Sum up the code size costs of non-terminator instructions. Tight coupling
223   // with \ref getOutliningPenalty is needed to model the costs of terminators.
224   int Benefit = 0;
225   for (BasicBlock *BB : Region)
226     for (Instruction &I : BB->instructionsWithoutDebug())
227       if (&I != BB->getTerminator())
228         Benefit +=
229             TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
230 
231   return Benefit;
232 }
233 
234 /// Get the penalty score for outlining \p Region.
235 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
236                                unsigned NumInputs, unsigned NumOutputs) {
237   int Penalty = SplittingThreshold;
238   LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
239 
240   // If the splitting threshold is set at or below zero, skip the usual
241   // profitability check.
242   if (SplittingThreshold <= 0)
243     return Penalty;
244 
245   // The typical code size cost for materializing an argument for the outlined
246   // call.
247   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n");
248   const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic;
249   Penalty += CostForArgMaterialization * NumInputs;
250 
251   // The typical code size cost for an output alloca, its associated store, and
252   // its associated reload.
253   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n");
254   const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
255   Penalty += CostForRegionOutput * NumOutputs;
256 
257   // Find the number of distinct exit blocks for the region. Use a conservative
258   // check to determine whether control returns from the region.
259   bool NoBlocksReturn = true;
260   SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
261   for (BasicBlock *BB : Region) {
262     // If a block has no successors, only assume it does not return if it's
263     // unreachable.
264     if (succ_empty(BB)) {
265       NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
266       continue;
267     }
268 
269     for (BasicBlock *SuccBB : successors(BB)) {
270       if (find(Region, SuccBB) == Region.end()) {
271         NoBlocksReturn = false;
272         SuccsOutsideRegion.insert(SuccBB);
273       }
274     }
275   }
276 
277   // Apply a `noreturn` bonus.
278   if (NoBlocksReturn) {
279     LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
280                       << " non-returning terminators\n");
281     Penalty -= Region.size();
282   }
283 
284   // Apply a penalty for having more than one successor outside of the region.
285   // This penalty accounts for the switch needed in the caller.
286   if (!SuccsOutsideRegion.empty()) {
287     LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
288                       << " non-region successors\n");
289     Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
290   }
291 
292   return Penalty;
293 }
294 
295 Function *HotColdSplitting::extractColdRegion(
296     const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC,
297     DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
298     OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) {
299   assert(!Region.empty());
300 
301   // TODO: Pass BFI and BPI to update profile information.
302   CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
303                    /* BPI */ nullptr, AC, /* AllowVarArgs */ false,
304                    /* AllowAlloca */ false,
305                    /* Suffix */ "cold." + std::to_string(Count));
306 
307   // Perform a simple cost/benefit analysis to decide whether or not to permit
308   // splitting.
309   SetVector<Value *> Inputs, Outputs, Sinks;
310   CE.findInputsOutputs(Inputs, Outputs, Sinks);
311   int OutliningBenefit = getOutliningBenefit(Region, TTI);
312   int OutliningPenalty =
313       getOutliningPenalty(Region, Inputs.size(), Outputs.size());
314   LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
315                     << ", penalty = " << OutliningPenalty << "\n");
316   if (OutliningBenefit <= OutliningPenalty)
317     return nullptr;
318 
319   Function *OrigF = Region[0]->getParent();
320   if (Function *OutF = CE.extractCodeRegion(CEAC)) {
321     User *U = *OutF->user_begin();
322     CallInst *CI = cast<CallInst>(U);
323     CallSite CS(CI);
324     NumColdRegionsOutlined++;
325     if (TTI.useColdCCForColdCall(*OutF)) {
326       OutF->setCallingConv(CallingConv::Cold);
327       CS.setCallingConv(CallingConv::Cold);
328     }
329     CI->setIsNoInline();
330 
331     if (OrigF->hasSection())
332       OutF->setSection(OrigF->getSection());
333 
334     markFunctionCold(*OutF, BFI != nullptr);
335 
336     LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
337     ORE.emit([&]() {
338       return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
339                                 &*Region[0]->begin())
340              << ore::NV("Original", OrigF) << " split cold code into "
341              << ore::NV("Split", OutF);
342     });
343     return OutF;
344   }
345 
346   ORE.emit([&]() {
347     return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
348                                     &*Region[0]->begin())
349            << "Failed to extract region at block "
350            << ore::NV("Block", Region.front());
351   });
352   return nullptr;
353 }
354 
355 /// A pair of (basic block, score).
356 using BlockTy = std::pair<BasicBlock *, unsigned>;
357 
358 namespace {
359 /// A maximal outlining region. This contains all blocks post-dominated by a
360 /// sink block, the sink block itself, and all blocks dominated by the sink.
361 /// If sink-predecessors and sink-successors cannot be extracted in one region,
362 /// the static constructor returns a list of suitable extraction regions.
363 class OutliningRegion {
364   /// A list of (block, score) pairs. A block's score is non-zero iff it's a
365   /// viable sub-region entry point. Blocks with higher scores are better entry
366   /// points (i.e. they are more distant ancestors of the sink block).
367   SmallVector<BlockTy, 0> Blocks = {};
368 
369   /// The suggested entry point into the region. If the region has multiple
370   /// entry points, all blocks within the region may not be reachable from this
371   /// entry point.
372   BasicBlock *SuggestedEntryPoint = nullptr;
373 
374   /// Whether the entire function is cold.
375   bool EntireFunctionCold = false;
376 
377   /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
378   static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
379     return mayExtractBlock(BB) ? Score : 0;
380   }
381 
382   /// These scores should be lower than the score for predecessor blocks,
383   /// because regions starting at predecessor blocks are typically larger.
384   static constexpr unsigned ScoreForSuccBlock = 1;
385   static constexpr unsigned ScoreForSinkBlock = 1;
386 
387   OutliningRegion(const OutliningRegion &) = delete;
388   OutliningRegion &operator=(const OutliningRegion &) = delete;
389 
390 public:
391   OutliningRegion() = default;
392   OutliningRegion(OutliningRegion &&) = default;
393   OutliningRegion &operator=(OutliningRegion &&) = default;
394 
395   static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
396                                              const DominatorTree &DT,
397                                              const PostDominatorTree &PDT) {
398     std::vector<OutliningRegion> Regions;
399     SmallPtrSet<BasicBlock *, 4> RegionBlocks;
400 
401     Regions.emplace_back();
402     OutliningRegion *ColdRegion = &Regions.back();
403 
404     auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
405       RegionBlocks.insert(BB);
406       ColdRegion->Blocks.emplace_back(BB, Score);
407     };
408 
409     // The ancestor farthest-away from SinkBB, and also post-dominated by it.
410     unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
411     ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
412     unsigned BestScore = SinkScore;
413 
414     // Visit SinkBB's ancestors using inverse DFS.
415     auto PredIt = ++idf_begin(&SinkBB);
416     auto PredEnd = idf_end(&SinkBB);
417     while (PredIt != PredEnd) {
418       BasicBlock &PredBB = **PredIt;
419       bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
420 
421       // If the predecessor is cold and has no predecessors, the entire
422       // function must be cold.
423       if (SinkPostDom && pred_empty(&PredBB)) {
424         ColdRegion->EntireFunctionCold = true;
425         return Regions;
426       }
427 
428       // If SinkBB does not post-dominate a predecessor, do not mark the
429       // predecessor (or any of its predecessors) cold.
430       if (!SinkPostDom || !mayExtractBlock(PredBB)) {
431         PredIt.skipChildren();
432         continue;
433       }
434 
435       // Keep track of the post-dominated ancestor farthest away from the sink.
436       // The path length is always >= 2, ensuring that predecessor blocks are
437       // considered as entry points before the sink block.
438       unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
439       if (PredScore > BestScore) {
440         ColdRegion->SuggestedEntryPoint = &PredBB;
441         BestScore = PredScore;
442       }
443 
444       addBlockToRegion(&PredBB, PredScore);
445       ++PredIt;
446     }
447 
448     // If the sink can be added to the cold region, do so. It's considered as
449     // an entry point before any sink-successor blocks.
450     //
451     // Otherwise, split cold sink-successor blocks using a separate region.
452     // This satisfies the requirement that all extraction blocks other than the
453     // first have predecessors within the extraction region.
454     if (mayExtractBlock(SinkBB)) {
455       addBlockToRegion(&SinkBB, SinkScore);
456     } else {
457       Regions.emplace_back();
458       ColdRegion = &Regions.back();
459       BestScore = 0;
460     }
461 
462     // Find all successors of SinkBB dominated by SinkBB using DFS.
463     auto SuccIt = ++df_begin(&SinkBB);
464     auto SuccEnd = df_end(&SinkBB);
465     while (SuccIt != SuccEnd) {
466       BasicBlock &SuccBB = **SuccIt;
467       bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
468 
469       // Don't allow the backwards & forwards DFSes to mark the same block.
470       bool DuplicateBlock = RegionBlocks.count(&SuccBB);
471 
472       // If SinkBB does not dominate a successor, do not mark the successor (or
473       // any of its successors) cold.
474       if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
475         SuccIt.skipChildren();
476         continue;
477       }
478 
479       unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
480       if (SuccScore > BestScore) {
481         ColdRegion->SuggestedEntryPoint = &SuccBB;
482         BestScore = SuccScore;
483       }
484 
485       addBlockToRegion(&SuccBB, SuccScore);
486       ++SuccIt;
487     }
488 
489     return Regions;
490   }
491 
492   /// Whether this region has nothing to extract.
493   bool empty() const { return !SuggestedEntryPoint; }
494 
495   /// The blocks in this region.
496   ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
497 
498   /// Whether the entire function containing this region is cold.
499   bool isEntireFunctionCold() const { return EntireFunctionCold; }
500 
501   /// Remove a sub-region from this region and return it as a block sequence.
502   BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
503     assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
504 
505     // Remove blocks dominated by the suggested entry point from this region.
506     // During the removal, identify the next best entry point into the region.
507     // Ensure that the first extracted block is the suggested entry point.
508     BlockSequence SubRegion = {SuggestedEntryPoint};
509     BasicBlock *NextEntryPoint = nullptr;
510     unsigned NextScore = 0;
511     auto RegionEndIt = Blocks.end();
512     auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
513       BasicBlock *BB = Block.first;
514       unsigned Score = Block.second;
515       bool InSubRegion =
516           BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
517       if (!InSubRegion && Score > NextScore) {
518         NextEntryPoint = BB;
519         NextScore = Score;
520       }
521       if (InSubRegion && BB != SuggestedEntryPoint)
522         SubRegion.push_back(BB);
523       return InSubRegion;
524     });
525     Blocks.erase(RegionStartIt, RegionEndIt);
526 
527     // Update the suggested entry point.
528     SuggestedEntryPoint = NextEntryPoint;
529 
530     return SubRegion;
531   }
532 };
533 } // namespace
534 
535 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
536   bool Changed = false;
537 
538   // The set of cold blocks.
539   SmallPtrSet<BasicBlock *, 4> ColdBlocks;
540 
541   // The worklist of non-intersecting regions left to outline.
542   SmallVector<OutliningRegion, 2> OutliningWorklist;
543 
544   // Set up an RPO traversal. Experimentally, this performs better (outlines
545   // more) than a PO traversal, because we prevent region overlap by keeping
546   // the first region to contain a block.
547   ReversePostOrderTraversal<Function *> RPOT(&F);
548 
549   // Calculate domtrees lazily. This reduces compile-time significantly.
550   std::unique_ptr<DominatorTree> DT;
551   std::unique_ptr<PostDominatorTree> PDT;
552 
553   // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
554   // reduces compile-time significantly. TODO: When we *do* use BFI, we should
555   // be able to salvage its domtrees instead of recomputing them.
556   BlockFrequencyInfo *BFI = nullptr;
557   if (HasProfileSummary)
558     BFI = GetBFI(F);
559 
560   TargetTransformInfo &TTI = GetTTI(F);
561   OptimizationRemarkEmitter &ORE = (*GetORE)(F);
562   AssumptionCache *AC = LookupAC(F);
563 
564   // Find all cold regions.
565   for (BasicBlock *BB : RPOT) {
566     // This block is already part of some outlining region.
567     if (ColdBlocks.count(BB))
568       continue;
569 
570     bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) ||
571                 (EnableStaticAnalyis && unlikelyExecuted(*BB));
572     if (!Cold)
573       continue;
574 
575     LLVM_DEBUG({
576       dbgs() << "Found a cold block:\n";
577       BB->dump();
578     });
579 
580     if (!DT)
581       DT = std::make_unique<DominatorTree>(F);
582     if (!PDT)
583       PDT = std::make_unique<PostDominatorTree>(F);
584 
585     auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
586     for (OutliningRegion &Region : Regions) {
587       if (Region.empty())
588         continue;
589 
590       if (Region.isEntireFunctionCold()) {
591         LLVM_DEBUG(dbgs() << "Entire function is cold\n");
592         return markFunctionCold(F);
593       }
594 
595       // If this outlining region intersects with another, drop the new region.
596       //
597       // TODO: It's theoretically possible to outline more by only keeping the
598       // largest region which contains a block, but the extra bookkeeping to do
599       // this is tricky/expensive.
600       bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
601         return !ColdBlocks.insert(Block.first).second;
602       });
603       if (RegionsOverlap)
604         continue;
605 
606       OutliningWorklist.emplace_back(std::move(Region));
607       ++NumColdRegionsFound;
608     }
609   }
610 
611   if (OutliningWorklist.empty())
612     return Changed;
613 
614   // Outline single-entry cold regions, splitting up larger regions as needed.
615   unsigned OutlinedFunctionID = 1;
616   // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
617   CodeExtractorAnalysisCache CEAC(F);
618   do {
619     OutliningRegion Region = OutliningWorklist.pop_back_val();
620     assert(!Region.empty() && "Empty outlining region in worklist");
621     do {
622       BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
623       LLVM_DEBUG({
624         dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
625         for (BasicBlock *BB : SubRegion)
626           BB->dump();
627       });
628 
629       Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI,
630                                              ORE, AC, OutlinedFunctionID);
631       if (Outlined) {
632         ++OutlinedFunctionID;
633         Changed = true;
634       }
635     } while (!Region.empty());
636   } while (!OutliningWorklist.empty());
637 
638   return Changed;
639 }
640 
641 bool HotColdSplitting::run(Module &M) {
642   bool Changed = false;
643   bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
644   for (auto It = M.begin(), End = M.end(); It != End; ++It) {
645     Function &F = *It;
646 
647     // Do not touch declarations.
648     if (F.isDeclaration())
649       continue;
650 
651     // Do not modify `optnone` functions.
652     if (F.hasOptNone())
653       continue;
654 
655     // Detect inherently cold functions and mark them as such.
656     if (isFunctionCold(F)) {
657       Changed |= markFunctionCold(F);
658       continue;
659     }
660 
661     if (!shouldOutlineFrom(F)) {
662       LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
663       continue;
664     }
665 
666     LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
667     Changed |= outlineColdRegions(F, HasProfileSummary);
668   }
669   return Changed;
670 }
671 
672 bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
673   if (skipModule(M))
674     return false;
675   ProfileSummaryInfo *PSI =
676       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
677   auto GTTI = [this](Function &F) -> TargetTransformInfo & {
678     return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
679   };
680   auto GBFI = [this](Function &F) {
681     return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
682   };
683   std::unique_ptr<OptimizationRemarkEmitter> ORE;
684   std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
685       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
686     ORE.reset(new OptimizationRemarkEmitter(&F));
687     return *ORE.get();
688   };
689   auto LookupAC = [this](Function &F) -> AssumptionCache * {
690     if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
691       return ACT->lookupAssumptionCache(F);
692     return nullptr;
693   };
694 
695   return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M);
696 }
697 
698 PreservedAnalyses
699 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
700   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
701 
702   auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
703     return FAM.getCachedResult<AssumptionAnalysis>(F);
704   };
705 
706   auto GBFI = [&FAM](Function &F) {
707     return &FAM.getResult<BlockFrequencyAnalysis>(F);
708   };
709 
710   std::function<TargetTransformInfo &(Function &)> GTTI =
711       [&FAM](Function &F) -> TargetTransformInfo & {
712     return FAM.getResult<TargetIRAnalysis>(F);
713   };
714 
715   std::unique_ptr<OptimizationRemarkEmitter> ORE;
716   std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
717       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
718     ORE.reset(new OptimizationRemarkEmitter(&F));
719     return *ORE.get();
720   };
721 
722   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
723 
724   if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
725     return PreservedAnalyses::none();
726   return PreservedAnalyses::all();
727 }
728 
729 char HotColdSplittingLegacyPass::ID = 0;
730 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
731                       "Hot Cold Splitting", false, false)
732 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
733 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
734 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
735                     "Hot Cold Splitting", false, false)
736 
737 ModulePass *llvm::createHotColdSplittingPass() {
738   return new HotColdSplittingLegacyPass();
739 }
740