1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/BlockFrequencyInfo.h" 33 #include "llvm/Analysis/BranchProbabilityInfo.h" 34 #include "llvm/Analysis/CFG.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/Analysis/PostDominators.h" 37 #include "llvm/Analysis/ProfileSummaryInfo.h" 38 #include "llvm/Analysis/TargetTransformInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/CallSite.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Use.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/BlockFrequency.h" 58 #include "llvm/Support/BranchProbability.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/IPO/HotColdSplitting.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Cloning.h" 66 #include "llvm/Transforms/Utils/CodeExtractor.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/ValueMapper.h" 69 #include <algorithm> 70 #include <cassert> 71 72 #define DEBUG_TYPE "hotcoldsplit" 73 74 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 75 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 76 77 using namespace llvm; 78 79 static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis", 80 cl::init(true), cl::Hidden); 81 82 static cl::opt<int> 83 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 84 cl::desc("Base penalty for splitting cold code (as a " 85 "multiple of TCC_Basic)")); 86 87 namespace { 88 89 /// A sequence of basic blocks. 90 /// 91 /// A 0-sized SmallVector is slightly cheaper to move than a std::vector. 92 using BlockSequence = SmallVector<BasicBlock *, 0>; 93 94 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 95 // this function unless you modify the MBB version as well. 96 // 97 /// A no successor, non-return block probably ends in unreachable and is cold. 98 /// Also consider a block that ends in an indirect branch to be a return block, 99 /// since many targets use plain indirect branches to return. 100 bool blockEndsInUnreachable(const BasicBlock &BB) { 101 if (!succ_empty(&BB)) 102 return false; 103 if (BB.empty()) 104 return true; 105 const Instruction *I = BB.getTerminator(); 106 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 107 } 108 109 bool unlikelyExecuted(BasicBlock &BB) { 110 // Exception handling blocks are unlikely executed. 111 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 112 return true; 113 114 // The block is cold if it calls/invokes a cold function. 115 for (Instruction &I : BB) 116 if (auto CS = CallSite(&I)) 117 if (CS.hasFnAttr(Attribute::Cold)) 118 return true; 119 120 // The block is cold if it has an unreachable terminator, unless it's 121 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). 122 if (blockEndsInUnreachable(BB)) { 123 if (auto *CI = 124 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 125 if (CI->hasFnAttr(Attribute::NoReturn)) 126 return false; 127 return true; 128 } 129 130 return false; 131 } 132 133 /// Check whether it's safe to outline \p BB. 134 static bool mayExtractBlock(const BasicBlock &BB) { 135 // EH pads are unsafe to outline because doing so breaks EH type tables. It 136 // follows that invoke instructions cannot be extracted, because CodeExtractor 137 // requires unwind destinations to be within the extraction region. 138 return !BB.hasAddressTaken() && !BB.isEHPad() && 139 !isa<InvokeInst>(BB.getTerminator()); 140 } 141 142 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 143 /// Return true if the function is changed. 144 static bool markFunctionCold(Function &F) { 145 assert(!F.hasFnAttribute(Attribute::OptimizeNone) && "Can't mark this cold"); 146 bool Changed = false; 147 if (!F.hasFnAttribute(Attribute::Cold)) { 148 F.addFnAttr(Attribute::Cold); 149 Changed = true; 150 } 151 if (!F.hasFnAttribute(Attribute::MinSize)) { 152 F.addFnAttr(Attribute::MinSize); 153 Changed = true; 154 } 155 return Changed; 156 } 157 158 class HotColdSplitting { 159 public: 160 HotColdSplitting(ProfileSummaryInfo *ProfSI, 161 function_ref<BlockFrequencyInfo *(Function &)> GBFI, 162 function_ref<TargetTransformInfo &(Function &)> GTTI, 163 std::function<OptimizationRemarkEmitter &(Function &)> *GORE) 164 : PSI(ProfSI), GetBFI(GBFI), GetTTI(GTTI), GetORE(GORE) {} 165 bool run(Module &M); 166 167 private: 168 bool isFunctionCold(const Function &F) const; 169 bool shouldOutlineFrom(const Function &F) const; 170 bool outlineColdRegions(Function &F, bool HasProfileSummary); 171 Function *extractColdRegion(const BlockSequence &Region, DominatorTree &DT, 172 BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, 173 OptimizationRemarkEmitter &ORE, unsigned Count); 174 ProfileSummaryInfo *PSI; 175 function_ref<BlockFrequencyInfo *(Function &)> GetBFI; 176 function_ref<TargetTransformInfo &(Function &)> GetTTI; 177 std::function<OptimizationRemarkEmitter &(Function &)> *GetORE; 178 }; 179 180 class HotColdSplittingLegacyPass : public ModulePass { 181 public: 182 static char ID; 183 HotColdSplittingLegacyPass() : ModulePass(ID) { 184 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 185 } 186 187 void getAnalysisUsage(AnalysisUsage &AU) const override { 188 AU.addRequired<AssumptionCacheTracker>(); 189 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 190 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 191 AU.addRequired<TargetTransformInfoWrapperPass>(); 192 } 193 194 bool runOnModule(Module &M) override; 195 }; 196 197 } // end anonymous namespace 198 199 /// Check whether \p F is inherently cold. 200 bool HotColdSplitting::isFunctionCold(const Function &F) const { 201 if (F.hasFnAttribute(Attribute::Cold)) 202 return true; 203 204 if (F.getCallingConv() == CallingConv::Cold) 205 return true; 206 207 if (PSI->isFunctionEntryCold(&F)) 208 return true; 209 210 return false; 211 } 212 213 // Returns false if the function should not be considered for hot-cold split 214 // optimization. 215 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 216 if (F.hasFnAttribute(Attribute::AlwaysInline)) 217 return false; 218 219 if (F.hasFnAttribute(Attribute::NoInline)) 220 return false; 221 222 return true; 223 } 224 225 /// Get the benefit score of outlining \p Region. 226 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region, 227 TargetTransformInfo &TTI) { 228 // Sum up the code size costs of non-terminator instructions. Tight coupling 229 // with \ref getOutliningPenalty is needed to model the costs of terminators. 230 int Benefit = 0; 231 for (BasicBlock *BB : Region) 232 for (Instruction &I : BB->instructionsWithoutDebug()) 233 if (&I != BB->getTerminator()) 234 Benefit += 235 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 236 237 return Benefit; 238 } 239 240 /// Get the penalty score for outlining \p Region. 241 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 242 unsigned NumInputs, unsigned NumOutputs) { 243 int Penalty = SplittingThreshold; 244 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 245 246 // If the splitting threshold is set at or below zero, skip the usual 247 // profitability check. 248 if (SplittingThreshold <= 0) 249 return Penalty; 250 251 // The typical code size cost for materializing an argument for the outlined 252 // call. 253 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n"); 254 const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic; 255 Penalty += CostForArgMaterialization * NumInputs; 256 257 // The typical code size cost for an output alloca, its associated store, and 258 // its associated reload. 259 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n"); 260 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 261 Penalty += CostForRegionOutput * NumOutputs; 262 263 // Find the number of distinct exit blocks for the region. Use a conservative 264 // check to determine whether control returns from the region. 265 bool NoBlocksReturn = true; 266 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 267 for (BasicBlock *BB : Region) { 268 // If a block has no successors, only assume it does not return if it's 269 // unreachable. 270 if (succ_empty(BB)) { 271 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 272 continue; 273 } 274 275 for (BasicBlock *SuccBB : successors(BB)) { 276 if (find(Region, SuccBB) == Region.end()) { 277 NoBlocksReturn = false; 278 SuccsOutsideRegion.insert(SuccBB); 279 } 280 } 281 } 282 283 // Apply a `noreturn` bonus. 284 if (NoBlocksReturn) { 285 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 286 << " non-returning terminators\n"); 287 Penalty -= Region.size(); 288 } 289 290 // Apply a penalty for having more than one successor outside of the region. 291 // This penalty accounts for the switch needed in the caller. 292 if (!SuccsOutsideRegion.empty()) { 293 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 294 << " non-region successors\n"); 295 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 296 } 297 298 return Penalty; 299 } 300 301 Function *HotColdSplitting::extractColdRegion(const BlockSequence &Region, 302 DominatorTree &DT, 303 BlockFrequencyInfo *BFI, 304 TargetTransformInfo &TTI, 305 OptimizationRemarkEmitter &ORE, 306 unsigned Count) { 307 assert(!Region.empty()); 308 309 // TODO: Pass BFI and BPI to update profile information. 310 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, 311 /* BPI */ nullptr, /* AllowVarArgs */ false, 312 /* AllowAlloca */ false, 313 /* Suffix */ "cold." + std::to_string(Count)); 314 315 // Perform a simple cost/benefit analysis to decide whether or not to permit 316 // splitting. 317 SetVector<Value *> Inputs, Outputs, Sinks; 318 CE.findInputsOutputs(Inputs, Outputs, Sinks); 319 int OutliningBenefit = getOutliningBenefit(Region, TTI); 320 int OutliningPenalty = 321 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 322 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 323 << ", penalty = " << OutliningPenalty << "\n"); 324 if (OutliningBenefit <= OutliningPenalty) 325 return nullptr; 326 327 Function *OrigF = Region[0]->getParent(); 328 if (Function *OutF = CE.extractCodeRegion()) { 329 User *U = *OutF->user_begin(); 330 CallInst *CI = cast<CallInst>(U); 331 CallSite CS(CI); 332 NumColdRegionsOutlined++; 333 if (TTI.useColdCCForColdCall(*OutF)) { 334 OutF->setCallingConv(CallingConv::Cold); 335 CS.setCallingConv(CallingConv::Cold); 336 } 337 CI->setIsNoInline(); 338 339 markFunctionCold(*OutF); 340 341 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 342 ORE.emit([&]() { 343 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 344 &*Region[0]->begin()) 345 << ore::NV("Original", OrigF) << " split cold code into " 346 << ore::NV("Split", OutF); 347 }); 348 return OutF; 349 } 350 351 ORE.emit([&]() { 352 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 353 &*Region[0]->begin()) 354 << "Failed to extract region at block " 355 << ore::NV("Block", Region.front()); 356 }); 357 return nullptr; 358 } 359 360 /// A pair of (basic block, score). 361 using BlockTy = std::pair<BasicBlock *, unsigned>; 362 363 namespace { 364 /// A maximal outlining region. This contains all blocks post-dominated by a 365 /// sink block, the sink block itself, and all blocks dominated by the sink. 366 /// If sink-predecessors and sink-successors cannot be extracted in one region, 367 /// the static constructor returns a list of suitable extraction regions. 368 class OutliningRegion { 369 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 370 /// viable sub-region entry point. Blocks with higher scores are better entry 371 /// points (i.e. they are more distant ancestors of the sink block). 372 SmallVector<BlockTy, 0> Blocks = {}; 373 374 /// The suggested entry point into the region. If the region has multiple 375 /// entry points, all blocks within the region may not be reachable from this 376 /// entry point. 377 BasicBlock *SuggestedEntryPoint = nullptr; 378 379 /// Whether the entire function is cold. 380 bool EntireFunctionCold = false; 381 382 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 383 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 384 return mayExtractBlock(BB) ? Score : 0; 385 } 386 387 /// These scores should be lower than the score for predecessor blocks, 388 /// because regions starting at predecessor blocks are typically larger. 389 static constexpr unsigned ScoreForSuccBlock = 1; 390 static constexpr unsigned ScoreForSinkBlock = 1; 391 392 OutliningRegion(const OutliningRegion &) = delete; 393 OutliningRegion &operator=(const OutliningRegion &) = delete; 394 395 public: 396 OutliningRegion() = default; 397 OutliningRegion(OutliningRegion &&) = default; 398 OutliningRegion &operator=(OutliningRegion &&) = default; 399 400 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 401 const DominatorTree &DT, 402 const PostDominatorTree &PDT) { 403 std::vector<OutliningRegion> Regions; 404 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 405 406 Regions.emplace_back(); 407 OutliningRegion *ColdRegion = &Regions.back(); 408 409 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 410 RegionBlocks.insert(BB); 411 ColdRegion->Blocks.emplace_back(BB, Score); 412 }; 413 414 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 415 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 416 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 417 unsigned BestScore = SinkScore; 418 419 // Visit SinkBB's ancestors using inverse DFS. 420 auto PredIt = ++idf_begin(&SinkBB); 421 auto PredEnd = idf_end(&SinkBB); 422 while (PredIt != PredEnd) { 423 BasicBlock &PredBB = **PredIt; 424 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 425 426 // If the predecessor is cold and has no predecessors, the entire 427 // function must be cold. 428 if (SinkPostDom && pred_empty(&PredBB)) { 429 ColdRegion->EntireFunctionCold = true; 430 return Regions; 431 } 432 433 // If SinkBB does not post-dominate a predecessor, do not mark the 434 // predecessor (or any of its predecessors) cold. 435 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 436 PredIt.skipChildren(); 437 continue; 438 } 439 440 // Keep track of the post-dominated ancestor farthest away from the sink. 441 // The path length is always >= 2, ensuring that predecessor blocks are 442 // considered as entry points before the sink block. 443 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 444 if (PredScore > BestScore) { 445 ColdRegion->SuggestedEntryPoint = &PredBB; 446 BestScore = PredScore; 447 } 448 449 addBlockToRegion(&PredBB, PredScore); 450 ++PredIt; 451 } 452 453 // If the sink can be added to the cold region, do so. It's considered as 454 // an entry point before any sink-successor blocks. 455 // 456 // Otherwise, split cold sink-successor blocks using a separate region. 457 // This satisfies the requirement that all extraction blocks other than the 458 // first have predecessors within the extraction region. 459 if (mayExtractBlock(SinkBB)) { 460 addBlockToRegion(&SinkBB, SinkScore); 461 } else { 462 Regions.emplace_back(); 463 ColdRegion = &Regions.back(); 464 BestScore = 0; 465 } 466 467 // Find all successors of SinkBB dominated by SinkBB using DFS. 468 auto SuccIt = ++df_begin(&SinkBB); 469 auto SuccEnd = df_end(&SinkBB); 470 while (SuccIt != SuccEnd) { 471 BasicBlock &SuccBB = **SuccIt; 472 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 473 474 // Don't allow the backwards & forwards DFSes to mark the same block. 475 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 476 477 // If SinkBB does not dominate a successor, do not mark the successor (or 478 // any of its successors) cold. 479 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 480 SuccIt.skipChildren(); 481 continue; 482 } 483 484 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 485 if (SuccScore > BestScore) { 486 ColdRegion->SuggestedEntryPoint = &SuccBB; 487 BestScore = SuccScore; 488 } 489 490 addBlockToRegion(&SuccBB, SuccScore); 491 ++SuccIt; 492 } 493 494 return Regions; 495 } 496 497 /// Whether this region has nothing to extract. 498 bool empty() const { return !SuggestedEntryPoint; } 499 500 /// The blocks in this region. 501 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 502 503 /// Whether the entire function containing this region is cold. 504 bool isEntireFunctionCold() const { return EntireFunctionCold; } 505 506 /// Remove a sub-region from this region and return it as a block sequence. 507 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 508 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 509 510 // Remove blocks dominated by the suggested entry point from this region. 511 // During the removal, identify the next best entry point into the region. 512 // Ensure that the first extracted block is the suggested entry point. 513 BlockSequence SubRegion = {SuggestedEntryPoint}; 514 BasicBlock *NextEntryPoint = nullptr; 515 unsigned NextScore = 0; 516 auto RegionEndIt = Blocks.end(); 517 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 518 BasicBlock *BB = Block.first; 519 unsigned Score = Block.second; 520 bool InSubRegion = 521 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 522 if (!InSubRegion && Score > NextScore) { 523 NextEntryPoint = BB; 524 NextScore = Score; 525 } 526 if (InSubRegion && BB != SuggestedEntryPoint) 527 SubRegion.push_back(BB); 528 return InSubRegion; 529 }); 530 Blocks.erase(RegionStartIt, RegionEndIt); 531 532 // Update the suggested entry point. 533 SuggestedEntryPoint = NextEntryPoint; 534 535 return SubRegion; 536 } 537 }; 538 } // namespace 539 540 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 541 bool Changed = false; 542 543 // The set of cold blocks. 544 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 545 546 // The worklist of non-intersecting regions left to outline. 547 SmallVector<OutliningRegion, 2> OutliningWorklist; 548 549 // Set up an RPO traversal. Experimentally, this performs better (outlines 550 // more) than a PO traversal, because we prevent region overlap by keeping 551 // the first region to contain a block. 552 ReversePostOrderTraversal<Function *> RPOT(&F); 553 554 // Calculate domtrees lazily. This reduces compile-time significantly. 555 std::unique_ptr<DominatorTree> DT; 556 std::unique_ptr<PostDominatorTree> PDT; 557 558 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 559 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 560 // be able to salvage its domtrees instead of recomputing them. 561 BlockFrequencyInfo *BFI = nullptr; 562 if (HasProfileSummary) 563 BFI = GetBFI(F); 564 565 TargetTransformInfo &TTI = GetTTI(F); 566 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 567 568 // Find all cold regions. 569 for (BasicBlock *BB : RPOT) { 570 // This block is already part of some outlining region. 571 if (ColdBlocks.count(BB)) 572 continue; 573 574 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || 575 (EnableStaticAnalyis && unlikelyExecuted(*BB)); 576 if (!Cold) 577 continue; 578 579 LLVM_DEBUG({ 580 dbgs() << "Found a cold block:\n"; 581 BB->dump(); 582 }); 583 584 if (!DT) 585 DT = make_unique<DominatorTree>(F); 586 if (!PDT) 587 PDT = make_unique<PostDominatorTree>(F); 588 589 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 590 for (OutliningRegion &Region : Regions) { 591 if (Region.empty()) 592 continue; 593 594 if (Region.isEntireFunctionCold()) { 595 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 596 return markFunctionCold(F); 597 } 598 599 // If this outlining region intersects with another, drop the new region. 600 // 601 // TODO: It's theoretically possible to outline more by only keeping the 602 // largest region which contains a block, but the extra bookkeeping to do 603 // this is tricky/expensive. 604 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { 605 return !ColdBlocks.insert(Block.first).second; 606 }); 607 if (RegionsOverlap) 608 continue; 609 610 OutliningWorklist.emplace_back(std::move(Region)); 611 ++NumColdRegionsFound; 612 } 613 } 614 615 // Outline single-entry cold regions, splitting up larger regions as needed. 616 unsigned OutlinedFunctionID = 1; 617 while (!OutliningWorklist.empty()) { 618 OutliningRegion Region = OutliningWorklist.pop_back_val(); 619 assert(!Region.empty() && "Empty outlining region in worklist"); 620 do { 621 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 622 LLVM_DEBUG({ 623 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 624 for (BasicBlock *BB : SubRegion) 625 BB->dump(); 626 }); 627 628 Function *Outlined = 629 extractColdRegion(SubRegion, *DT, BFI, TTI, ORE, OutlinedFunctionID); 630 if (Outlined) { 631 ++OutlinedFunctionID; 632 Changed = true; 633 } 634 } while (!Region.empty()); 635 } 636 637 return Changed; 638 } 639 640 bool HotColdSplitting::run(Module &M) { 641 bool Changed = false; 642 bool HasProfileSummary = M.getProfileSummary(); 643 for (auto It = M.begin(), End = M.end(); It != End; ++It) { 644 Function &F = *It; 645 646 // Do not touch declarations. 647 if (F.isDeclaration()) 648 continue; 649 650 // Do not modify `optnone` functions. 651 if (F.hasFnAttribute(Attribute::OptimizeNone)) 652 continue; 653 654 // Detect inherently cold functions and mark them as such. 655 if (isFunctionCold(F)) { 656 Changed |= markFunctionCold(F); 657 continue; 658 } 659 660 if (!shouldOutlineFrom(F)) { 661 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 662 continue; 663 } 664 665 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 666 Changed |= outlineColdRegions(F, HasProfileSummary); 667 } 668 return Changed; 669 } 670 671 bool HotColdSplittingLegacyPass::runOnModule(Module &M) { 672 if (skipModule(M)) 673 return false; 674 ProfileSummaryInfo *PSI = 675 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 676 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 677 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 678 }; 679 auto GBFI = [this](Function &F) { 680 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 681 }; 682 std::unique_ptr<OptimizationRemarkEmitter> ORE; 683 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 684 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 685 ORE.reset(new OptimizationRemarkEmitter(&F)); 686 return *ORE.get(); 687 }; 688 689 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE).run(M); 690 } 691 692 PreservedAnalyses 693 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 694 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 695 696 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 697 [&FAM](Function &F) -> AssumptionCache & { 698 return FAM.getResult<AssumptionAnalysis>(F); 699 }; 700 701 auto GBFI = [&FAM](Function &F) { 702 return &FAM.getResult<BlockFrequencyAnalysis>(F); 703 }; 704 705 std::function<TargetTransformInfo &(Function &)> GTTI = 706 [&FAM](Function &F) -> TargetTransformInfo & { 707 return FAM.getResult<TargetIRAnalysis>(F); 708 }; 709 710 std::unique_ptr<OptimizationRemarkEmitter> ORE; 711 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 712 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 713 ORE.reset(new OptimizationRemarkEmitter(&F)); 714 return *ORE.get(); 715 }; 716 717 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 718 719 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE).run(M)) 720 return PreservedAnalyses::none(); 721 return PreservedAnalyses::all(); 722 } 723 724 char HotColdSplittingLegacyPass::ID = 0; 725 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit", 726 "Hot Cold Splitting", false, false) 727 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 728 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 729 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit", 730 "Hot Cold Splitting", false, false) 731 732 ModulePass *llvm::createHotColdSplittingPass() { 733 return new HotColdSplittingLegacyPass(); 734 } 735