1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Transforms/IPO/HotColdSplitting.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BlockFrequencyInfo.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/CFG.h" 36 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 37 #include "llvm/Analysis/PostDominators.h" 38 #include "llvm/Analysis/ProfileSummaryInfo.h" 39 #include "llvm/Analysis/TargetTransformInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Use.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/BlockFrequency.h" 59 #include "llvm/Support/BranchProbability.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/IPO.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 #include "llvm/Transforms/Utils/CodeExtractor.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <string> 73 74 #define DEBUG_TYPE "hotcoldsplit" 75 #define PASS_NAME "Hot Cold Splitting" 76 77 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 78 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 79 80 using namespace llvm; 81 82 static cl::opt<bool> EnableStaticAnalysis("hot-cold-static-analysis", 83 cl::init(true), cl::Hidden); 84 85 static cl::opt<int> 86 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 87 cl::desc("Base penalty for splitting cold code (as a " 88 "multiple of TCC_Basic)")); 89 90 static cl::opt<bool> EnableColdSection( 91 "enable-cold-section", cl::init(false), cl::Hidden, 92 cl::desc("Enable placement of extracted cold functions" 93 " into a separate section after hot-cold splitting.")); 94 95 static cl::opt<std::string> 96 ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"), 97 cl::Hidden, 98 cl::desc("Name for the section containing cold functions " 99 "extracted by hot-cold splitting.")); 100 101 namespace { 102 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 103 // this function unless you modify the MBB version as well. 104 // 105 /// A no successor, non-return block probably ends in unreachable and is cold. 106 /// Also consider a block that ends in an indirect branch to be a return block, 107 /// since many targets use plain indirect branches to return. 108 bool blockEndsInUnreachable(const BasicBlock &BB) { 109 if (!succ_empty(&BB)) 110 return false; 111 if (BB.empty()) 112 return true; 113 const Instruction *I = BB.getTerminator(); 114 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 115 } 116 117 bool unlikelyExecuted(BasicBlock &BB) { 118 // Exception handling blocks are unlikely executed. 119 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 120 return true; 121 122 // The block is cold if it calls/invokes a cold function. However, do not 123 // mark sanitizer traps as cold. 124 for (Instruction &I : BB) 125 if (auto *CB = dyn_cast<CallBase>(&I)) 126 if (CB->hasFnAttr(Attribute::Cold) && !CB->getMetadata("nosanitize")) 127 return true; 128 129 // The block is cold if it has an unreachable terminator, unless it's 130 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). 131 if (blockEndsInUnreachable(BB)) { 132 if (auto *CI = 133 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 134 if (CI->hasFnAttr(Attribute::NoReturn)) 135 return false; 136 return true; 137 } 138 139 return false; 140 } 141 142 /// Check whether it's safe to outline \p BB. 143 static bool mayExtractBlock(const BasicBlock &BB) { 144 // EH pads are unsafe to outline because doing so breaks EH type tables. It 145 // follows that invoke instructions cannot be extracted, because CodeExtractor 146 // requires unwind destinations to be within the extraction region. 147 // 148 // Resumes that are not reachable from a cleanup landing pad are considered to 149 // be unreachable. It’s not safe to split them out either. 150 auto Term = BB.getTerminator(); 151 return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) && 152 !isa<ResumeInst>(Term); 153 } 154 155 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 156 /// If \p UpdateEntryCount is true (set when this is a new split function and 157 /// module has profile data), set entry count to 0 to ensure treated as cold. 158 /// Return true if the function is changed. 159 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { 160 assert(!F.hasOptNone() && "Can't mark this cold"); 161 bool Changed = false; 162 if (!F.hasFnAttribute(Attribute::Cold)) { 163 F.addFnAttr(Attribute::Cold); 164 Changed = true; 165 } 166 if (!F.hasFnAttribute(Attribute::MinSize)) { 167 F.addFnAttr(Attribute::MinSize); 168 Changed = true; 169 } 170 if (UpdateEntryCount) { 171 // Set the entry count to 0 to ensure it is placed in the unlikely text 172 // section when function sections are enabled. 173 F.setEntryCount(0); 174 Changed = true; 175 } 176 177 return Changed; 178 } 179 180 class HotColdSplittingLegacyPass : public ModulePass { 181 public: 182 static char ID; 183 HotColdSplittingLegacyPass() : ModulePass(ID) { 184 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 185 } 186 187 void getAnalysisUsage(AnalysisUsage &AU) const override { 188 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 189 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 190 AU.addRequired<TargetTransformInfoWrapperPass>(); 191 AU.addUsedIfAvailable<AssumptionCacheTracker>(); 192 } 193 194 bool runOnModule(Module &M) override; 195 196 StringRef getPassName() const override { return PASS_NAME; } 197 }; 198 199 } // end anonymous namespace 200 201 /// Check whether \p F is inherently cold. 202 bool HotColdSplitting::isFunctionCold(const Function &F) const { 203 if (F.hasFnAttribute(Attribute::Cold)) 204 return true; 205 206 if (F.getCallingConv() == CallingConv::Cold) 207 return true; 208 209 if (PSI->isFunctionEntryCold(&F)) 210 return true; 211 212 return false; 213 } 214 215 // Returns false if the function should not be considered for hot-cold split 216 // optimization. 217 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 218 if (!F.hasFnAttribute(getHotColdSplittingAttrKind())) 219 return false; 220 221 if (F.hasFnAttribute(Attribute::AlwaysInline)) 222 return false; 223 224 if (F.hasFnAttribute(Attribute::NoInline)) 225 return false; 226 227 // A function marked `noreturn` may contain unreachable terminators: these 228 // should not be considered cold, as the function may be a trampoline. 229 if (F.hasFnAttribute(Attribute::NoReturn)) 230 return false; 231 232 if (F.hasFnAttribute(Attribute::SanitizeAddress) || 233 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 234 F.hasFnAttribute(Attribute::SanitizeThread) || 235 F.hasFnAttribute(Attribute::SanitizeMemory)) 236 return false; 237 238 return true; 239 } 240 241 /// Get the benefit score of outlining \p Region. 242 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region, 243 TargetTransformInfo &TTI) { 244 // Sum up the code size costs of non-terminator instructions. Tight coupling 245 // with \ref getOutliningPenalty is needed to model the costs of terminators. 246 int Benefit = 0; 247 for (BasicBlock *BB : Region) 248 for (Instruction &I : BB->instructionsWithoutDebug()) 249 if (&I != BB->getTerminator()) 250 Benefit += 251 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 252 253 return Benefit; 254 } 255 256 /// Get the penalty score for outlining \p Region. 257 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 258 unsigned NumInputs, unsigned NumOutputs) { 259 int Penalty = SplittingThreshold; 260 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 261 262 // If the splitting threshold is set at or below zero, skip the usual 263 // profitability check. 264 if (SplittingThreshold <= 0) 265 return Penalty; 266 267 // The typical code size cost for materializing an argument for the outlined 268 // call. 269 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n"); 270 const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic; 271 Penalty += CostForArgMaterialization * NumInputs; 272 273 // The typical code size cost for an output alloca, its associated store, and 274 // its associated reload. 275 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n"); 276 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 277 Penalty += CostForRegionOutput * NumOutputs; 278 279 // Find the number of distinct exit blocks for the region. Use a conservative 280 // check to determine whether control returns from the region. 281 bool NoBlocksReturn = true; 282 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 283 for (BasicBlock *BB : Region) { 284 // If a block has no successors, only assume it does not return if it's 285 // unreachable. 286 if (succ_empty(BB)) { 287 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 288 continue; 289 } 290 291 for (BasicBlock *SuccBB : successors(BB)) { 292 if (find(Region, SuccBB) == Region.end()) { 293 NoBlocksReturn = false; 294 SuccsOutsideRegion.insert(SuccBB); 295 } 296 } 297 } 298 299 // Apply a `noreturn` bonus. 300 if (NoBlocksReturn) { 301 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 302 << " non-returning terminators\n"); 303 Penalty -= Region.size(); 304 } 305 306 // Apply a penalty for having more than one successor outside of the region. 307 // This penalty accounts for the switch needed in the caller. 308 if (!SuccsOutsideRegion.empty()) { 309 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 310 << " non-region successors\n"); 311 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 312 } 313 314 return Penalty; 315 } 316 317 Function *HotColdSplitting::extractColdRegion( 318 const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC, 319 DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, 320 OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) { 321 assert(!Region.empty()); 322 323 // TODO: Pass BFI and BPI to update profile information. 324 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, 325 /* BPI */ nullptr, AC, /* AllowVarArgs */ false, 326 /* AllowAlloca */ false, 327 /* Suffix */ "cold." + std::to_string(Count)); 328 329 // Perform a simple cost/benefit analysis to decide whether or not to permit 330 // splitting. 331 SetVector<Value *> Inputs, Outputs, Sinks; 332 CE.findInputsOutputs(Inputs, Outputs, Sinks); 333 int OutliningBenefit = getOutliningBenefit(Region, TTI); 334 int OutliningPenalty = 335 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 336 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 337 << ", penalty = " << OutliningPenalty << "\n"); 338 if (OutliningBenefit <= OutliningPenalty) 339 return nullptr; 340 341 Function *OrigF = Region[0]->getParent(); 342 if (Function *OutF = CE.extractCodeRegion(CEAC)) { 343 User *U = *OutF->user_begin(); 344 CallInst *CI = cast<CallInst>(U); 345 NumColdRegionsOutlined++; 346 if (TTI.useColdCCForColdCall(*OutF)) { 347 OutF->setCallingConv(CallingConv::Cold); 348 CI->setCallingConv(CallingConv::Cold); 349 } 350 CI->setIsNoInline(); 351 352 if (EnableColdSection) 353 OutF->setSection(ColdSectionName); 354 else { 355 if (OrigF->hasSection()) 356 OutF->setSection(OrigF->getSection()); 357 } 358 359 markFunctionCold(*OutF, BFI != nullptr); 360 361 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 362 ORE.emit([&]() { 363 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 364 &*Region[0]->begin()) 365 << ore::NV("Original", OrigF) << " split cold code into " 366 << ore::NV("Split", OutF); 367 }); 368 return OutF; 369 } 370 371 ORE.emit([&]() { 372 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 373 &*Region[0]->begin()) 374 << "Failed to extract region at block " 375 << ore::NV("Block", Region.front()); 376 }); 377 return nullptr; 378 } 379 380 /// A pair of (basic block, score). 381 using BlockTy = std::pair<BasicBlock *, unsigned>; 382 383 namespace { 384 /// A maximal outlining region. This contains all blocks post-dominated by a 385 /// sink block, the sink block itself, and all blocks dominated by the sink. 386 /// If sink-predecessors and sink-successors cannot be extracted in one region, 387 /// the static constructor returns a list of suitable extraction regions. 388 class OutliningRegion { 389 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 390 /// viable sub-region entry point. Blocks with higher scores are better entry 391 /// points (i.e. they are more distant ancestors of the sink block). 392 SmallVector<BlockTy, 0> Blocks = {}; 393 394 /// The suggested entry point into the region. If the region has multiple 395 /// entry points, all blocks within the region may not be reachable from this 396 /// entry point. 397 BasicBlock *SuggestedEntryPoint = nullptr; 398 399 /// Whether the entire function is cold. 400 bool EntireFunctionCold = false; 401 402 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 403 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 404 return mayExtractBlock(BB) ? Score : 0; 405 } 406 407 /// These scores should be lower than the score for predecessor blocks, 408 /// because regions starting at predecessor blocks are typically larger. 409 static constexpr unsigned ScoreForSuccBlock = 1; 410 static constexpr unsigned ScoreForSinkBlock = 1; 411 412 OutliningRegion(const OutliningRegion &) = delete; 413 OutliningRegion &operator=(const OutliningRegion &) = delete; 414 415 public: 416 OutliningRegion() = default; 417 OutliningRegion(OutliningRegion &&) = default; 418 OutliningRegion &operator=(OutliningRegion &&) = default; 419 420 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 421 const DominatorTree &DT, 422 const PostDominatorTree &PDT) { 423 std::vector<OutliningRegion> Regions; 424 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 425 426 Regions.emplace_back(); 427 OutliningRegion *ColdRegion = &Regions.back(); 428 429 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 430 RegionBlocks.insert(BB); 431 ColdRegion->Blocks.emplace_back(BB, Score); 432 }; 433 434 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 435 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 436 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 437 unsigned BestScore = SinkScore; 438 439 // Visit SinkBB's ancestors using inverse DFS. 440 auto PredIt = ++idf_begin(&SinkBB); 441 auto PredEnd = idf_end(&SinkBB); 442 while (PredIt != PredEnd) { 443 BasicBlock &PredBB = **PredIt; 444 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 445 446 // If the predecessor is cold and has no predecessors, the entire 447 // function must be cold. 448 if (SinkPostDom && pred_empty(&PredBB)) { 449 ColdRegion->EntireFunctionCold = true; 450 return Regions; 451 } 452 453 // If SinkBB does not post-dominate a predecessor, do not mark the 454 // predecessor (or any of its predecessors) cold. 455 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 456 PredIt.skipChildren(); 457 continue; 458 } 459 460 // Keep track of the post-dominated ancestor farthest away from the sink. 461 // The path length is always >= 2, ensuring that predecessor blocks are 462 // considered as entry points before the sink block. 463 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 464 if (PredScore > BestScore) { 465 ColdRegion->SuggestedEntryPoint = &PredBB; 466 BestScore = PredScore; 467 } 468 469 addBlockToRegion(&PredBB, PredScore); 470 ++PredIt; 471 } 472 473 // If the sink can be added to the cold region, do so. It's considered as 474 // an entry point before any sink-successor blocks. 475 // 476 // Otherwise, split cold sink-successor blocks using a separate region. 477 // This satisfies the requirement that all extraction blocks other than the 478 // first have predecessors within the extraction region. 479 if (mayExtractBlock(SinkBB)) { 480 addBlockToRegion(&SinkBB, SinkScore); 481 if (pred_empty(&SinkBB)) { 482 ColdRegion->EntireFunctionCold = true; 483 return Regions; 484 } 485 } else { 486 Regions.emplace_back(); 487 ColdRegion = &Regions.back(); 488 BestScore = 0; 489 } 490 491 // Find all successors of SinkBB dominated by SinkBB using DFS. 492 auto SuccIt = ++df_begin(&SinkBB); 493 auto SuccEnd = df_end(&SinkBB); 494 while (SuccIt != SuccEnd) { 495 BasicBlock &SuccBB = **SuccIt; 496 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 497 498 // Don't allow the backwards & forwards DFSes to mark the same block. 499 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 500 501 // If SinkBB does not dominate a successor, do not mark the successor (or 502 // any of its successors) cold. 503 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 504 SuccIt.skipChildren(); 505 continue; 506 } 507 508 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 509 if (SuccScore > BestScore) { 510 ColdRegion->SuggestedEntryPoint = &SuccBB; 511 BestScore = SuccScore; 512 } 513 514 addBlockToRegion(&SuccBB, SuccScore); 515 ++SuccIt; 516 } 517 518 return Regions; 519 } 520 521 /// Whether this region has nothing to extract. 522 bool empty() const { return !SuggestedEntryPoint; } 523 524 /// The blocks in this region. 525 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 526 527 /// Whether the entire function containing this region is cold. 528 bool isEntireFunctionCold() const { return EntireFunctionCold; } 529 530 /// Remove a sub-region from this region and return it as a block sequence. 531 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 532 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 533 534 // Remove blocks dominated by the suggested entry point from this region. 535 // During the removal, identify the next best entry point into the region. 536 // Ensure that the first extracted block is the suggested entry point. 537 BlockSequence SubRegion = {SuggestedEntryPoint}; 538 BasicBlock *NextEntryPoint = nullptr; 539 unsigned NextScore = 0; 540 auto RegionEndIt = Blocks.end(); 541 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 542 BasicBlock *BB = Block.first; 543 unsigned Score = Block.second; 544 bool InSubRegion = 545 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 546 if (!InSubRegion && Score > NextScore) { 547 NextEntryPoint = BB; 548 NextScore = Score; 549 } 550 if (InSubRegion && BB != SuggestedEntryPoint) 551 SubRegion.push_back(BB); 552 return InSubRegion; 553 }); 554 Blocks.erase(RegionStartIt, RegionEndIt); 555 556 // Update the suggested entry point. 557 SuggestedEntryPoint = NextEntryPoint; 558 559 return SubRegion; 560 } 561 }; 562 } // namespace 563 564 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 565 bool Changed = false; 566 567 // The set of cold blocks. 568 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 569 570 // The worklist of non-intersecting regions left to outline. 571 SmallVector<OutliningRegion, 2> OutliningWorklist; 572 573 // Set up an RPO traversal. Experimentally, this performs better (outlines 574 // more) than a PO traversal, because we prevent region overlap by keeping 575 // the first region to contain a block. 576 ReversePostOrderTraversal<Function *> RPOT(&F); 577 578 // Calculate domtrees lazily. This reduces compile-time significantly. 579 std::unique_ptr<DominatorTree> DT; 580 std::unique_ptr<PostDominatorTree> PDT; 581 582 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 583 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 584 // be able to salvage its domtrees instead of recomputing them. 585 BlockFrequencyInfo *BFI = nullptr; 586 if (HasProfileSummary) 587 BFI = GetBFI(F); 588 589 TargetTransformInfo &TTI = GetTTI(F); 590 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 591 AssumptionCache *AC = LookupAC(F); 592 593 // Find all cold regions. 594 for (BasicBlock *BB : RPOT) { 595 // This block is already part of some outlining region. 596 if (ColdBlocks.count(BB)) 597 continue; 598 599 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || 600 (EnableStaticAnalysis && unlikelyExecuted(*BB)); 601 if (!Cold) 602 continue; 603 604 LLVM_DEBUG({ 605 dbgs() << "Found a cold block:\n"; 606 BB->dump(); 607 }); 608 609 if (!DT) 610 DT = std::make_unique<DominatorTree>(F); 611 if (!PDT) 612 PDT = std::make_unique<PostDominatorTree>(F); 613 614 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 615 for (OutliningRegion &Region : Regions) { 616 if (Region.empty()) 617 continue; 618 619 if (Region.isEntireFunctionCold()) { 620 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 621 return markFunctionCold(F); 622 } 623 624 // If this outlining region intersects with another, drop the new region. 625 // 626 // TODO: It's theoretically possible to outline more by only keeping the 627 // largest region which contains a block, but the extra bookkeeping to do 628 // this is tricky/expensive. 629 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { 630 return !ColdBlocks.insert(Block.first).second; 631 }); 632 if (RegionsOverlap) 633 continue; 634 635 OutliningWorklist.emplace_back(std::move(Region)); 636 ++NumColdRegionsFound; 637 } 638 } 639 640 if (OutliningWorklist.empty()) 641 return Changed; 642 643 // Outline single-entry cold regions, splitting up larger regions as needed. 644 unsigned OutlinedFunctionID = 1; 645 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 646 CodeExtractorAnalysisCache CEAC(F); 647 do { 648 OutliningRegion Region = OutliningWorklist.pop_back_val(); 649 assert(!Region.empty() && "Empty outlining region in worklist"); 650 do { 651 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 652 LLVM_DEBUG({ 653 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 654 for (BasicBlock *BB : SubRegion) 655 BB->dump(); 656 }); 657 658 Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI, 659 ORE, AC, OutlinedFunctionID); 660 if (Outlined) { 661 ++OutlinedFunctionID; 662 Changed = true; 663 } 664 } while (!Region.empty()); 665 } while (!OutliningWorklist.empty()); 666 667 return Changed; 668 } 669 670 bool HotColdSplitting::run(Module &M) { 671 bool Changed = false; 672 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); 673 for (auto It = M.begin(), End = M.end(); It != End; ++It) { 674 Function &F = *It; 675 676 // Do not touch declarations. 677 if (F.isDeclaration()) 678 continue; 679 680 // Do not modify `optnone` functions. 681 if (F.hasOptNone()) 682 continue; 683 684 // Detect inherently cold functions and mark them as such. 685 if (isFunctionCold(F)) { 686 Changed |= markFunctionCold(F); 687 continue; 688 } 689 690 if (!shouldOutlineFrom(F)) { 691 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 692 continue; 693 } 694 695 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 696 Changed |= outlineColdRegions(F, HasProfileSummary); 697 } 698 return Changed; 699 } 700 701 bool HotColdSplittingLegacyPass::runOnModule(Module &M) { 702 if (skipModule(M)) 703 return false; 704 ProfileSummaryInfo *PSI = 705 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 706 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 707 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 708 }; 709 auto GBFI = [this](Function &F) { 710 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 711 }; 712 std::unique_ptr<OptimizationRemarkEmitter> ORE; 713 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 714 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 715 ORE.reset(new OptimizationRemarkEmitter(&F)); 716 return *ORE.get(); 717 }; 718 auto LookupAC = [this](Function &F) -> AssumptionCache * { 719 if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>()) 720 return ACT->lookupAssumptionCache(F); 721 return nullptr; 722 }; 723 724 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M); 725 } 726 727 PreservedAnalyses 728 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 729 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 730 731 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { 732 return FAM.getCachedResult<AssumptionAnalysis>(F); 733 }; 734 735 auto GBFI = [&FAM](Function &F) { 736 return &FAM.getResult<BlockFrequencyAnalysis>(F); 737 }; 738 739 std::function<TargetTransformInfo &(Function &)> GTTI = 740 [&FAM](Function &F) -> TargetTransformInfo & { 741 return FAM.getResult<TargetIRAnalysis>(F); 742 }; 743 744 std::unique_ptr<OptimizationRemarkEmitter> ORE; 745 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 746 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 747 ORE.reset(new OptimizationRemarkEmitter(&F)); 748 return *ORE.get(); 749 }; 750 751 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 752 753 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) 754 return PreservedAnalyses::none(); 755 return PreservedAnalyses::all(); 756 } 757 758 char HotColdSplittingLegacyPass::ID = 0; 759 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit", PASS_NAME, 760 false, false) 761 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 762 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 763 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit", PASS_NAME, 764 false, false) 765 766 ModulePass *llvm::createHotColdSplittingPass() { 767 return new HotColdSplittingLegacyPass(); 768 } 769 770 StringRef llvm::getHotColdSplittingAttrKind() { 771 return "hot-cold-split"; 772 } 773