1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/BlockFrequencyInfo.h" 33 #include "llvm/Analysis/BranchProbabilityInfo.h" 34 #include "llvm/Analysis/CFG.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/Analysis/PostDominators.h" 37 #include "llvm/Analysis/ProfileSummaryInfo.h" 38 #include "llvm/Analysis/TargetTransformInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/CallSite.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Use.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/BlockFrequency.h" 58 #include "llvm/Support/BranchProbability.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/IPO.h" 62 #include "llvm/Transforms/IPO/HotColdSplitting.h" 63 #include "llvm/Transforms/Scalar.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Cloning.h" 66 #include "llvm/Transforms/Utils/CodeExtractor.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/ValueMapper.h" 69 #include <algorithm> 70 #include <cassert> 71 72 #define DEBUG_TYPE "hotcoldsplit" 73 74 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 75 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 76 77 using namespace llvm; 78 79 static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis", 80 cl::init(true), cl::Hidden); 81 82 static cl::opt<int> 83 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 84 cl::desc("Base penalty for splitting cold code (as a " 85 "multiple of TCC_Basic)")); 86 87 namespace { 88 89 /// A sequence of basic blocks. 90 /// 91 /// A 0-sized SmallVector is slightly cheaper to move than a std::vector. 92 using BlockSequence = SmallVector<BasicBlock *, 0>; 93 94 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 95 // this function unless you modify the MBB version as well. 96 // 97 /// A no successor, non-return block probably ends in unreachable and is cold. 98 /// Also consider a block that ends in an indirect branch to be a return block, 99 /// since many targets use plain indirect branches to return. 100 bool blockEndsInUnreachable(const BasicBlock &BB) { 101 if (!succ_empty(&BB)) 102 return false; 103 if (BB.empty()) 104 return true; 105 const Instruction *I = BB.getTerminator(); 106 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 107 } 108 109 bool unlikelyExecuted(BasicBlock &BB) { 110 // Exception handling blocks are unlikely executed. 111 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 112 return true; 113 114 // The block is cold if it calls/invokes a cold function. 115 for (Instruction &I : BB) 116 if (auto CS = CallSite(&I)) 117 if (CS.hasFnAttr(Attribute::Cold)) 118 return true; 119 120 // The block is cold if it has an unreachable terminator, unless it's 121 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). 122 if (blockEndsInUnreachable(BB)) { 123 if (auto *CI = 124 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 125 if (CI->hasFnAttr(Attribute::NoReturn)) 126 return false; 127 return true; 128 } 129 130 return false; 131 } 132 133 /// Check whether it's safe to outline \p BB. 134 static bool mayExtractBlock(const BasicBlock &BB) { 135 // EH pads are unsafe to outline because doing so breaks EH type tables. It 136 // follows that invoke instructions cannot be extracted, because CodeExtractor 137 // requires unwind destinations to be within the extraction region. 138 // 139 // Resumes that are not reachable from a cleanup landing pad are considered to 140 // be unreachable. It’s not safe to split them out either. 141 auto Term = BB.getTerminator(); 142 return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) && 143 !isa<ResumeInst>(Term); 144 } 145 146 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 147 /// If \p UpdateEntryCount is true (set when this is a new split function and 148 /// module has profile data), set entry count to 0 to ensure treated as cold. 149 /// Return true if the function is changed. 150 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { 151 assert(!F.hasFnAttribute(Attribute::OptimizeNone) && "Can't mark this cold"); 152 bool Changed = false; 153 if (!F.hasFnAttribute(Attribute::Cold)) { 154 F.addFnAttr(Attribute::Cold); 155 Changed = true; 156 } 157 if (!F.hasFnAttribute(Attribute::MinSize)) { 158 F.addFnAttr(Attribute::MinSize); 159 Changed = true; 160 } 161 if (UpdateEntryCount) { 162 // Set the entry count to 0 to ensure it is placed in the unlikely text 163 // section when function sections are enabled. 164 F.setEntryCount(0); 165 Changed = true; 166 } 167 168 return Changed; 169 } 170 171 class HotColdSplitting { 172 public: 173 HotColdSplitting(ProfileSummaryInfo *ProfSI, 174 function_ref<BlockFrequencyInfo *(Function &)> GBFI, 175 function_ref<TargetTransformInfo &(Function &)> GTTI, 176 std::function<OptimizationRemarkEmitter &(Function &)> *GORE, 177 function_ref<AssumptionCache *(Function &)> LAC) 178 : PSI(ProfSI), GetBFI(GBFI), GetTTI(GTTI), GetORE(GORE), LookupAC(LAC) {} 179 bool run(Module &M); 180 181 private: 182 bool isFunctionCold(const Function &F) const; 183 bool shouldOutlineFrom(const Function &F) const; 184 bool outlineColdRegions(Function &F, bool HasProfileSummary); 185 Function *extractColdRegion(const BlockSequence &Region, DominatorTree &DT, 186 BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, 187 OptimizationRemarkEmitter &ORE, 188 AssumptionCache *AC, unsigned Count); 189 ProfileSummaryInfo *PSI; 190 function_ref<BlockFrequencyInfo *(Function &)> GetBFI; 191 function_ref<TargetTransformInfo &(Function &)> GetTTI; 192 std::function<OptimizationRemarkEmitter &(Function &)> *GetORE; 193 function_ref<AssumptionCache *(Function &)> LookupAC; 194 }; 195 196 class HotColdSplittingLegacyPass : public ModulePass { 197 public: 198 static char ID; 199 HotColdSplittingLegacyPass() : ModulePass(ID) { 200 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 201 } 202 203 void getAnalysisUsage(AnalysisUsage &AU) const override { 204 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 205 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 206 AU.addRequired<TargetTransformInfoWrapperPass>(); 207 AU.addUsedIfAvailable<AssumptionCacheTracker>(); 208 } 209 210 bool runOnModule(Module &M) override; 211 }; 212 213 } // end anonymous namespace 214 215 /// Check whether \p F is inherently cold. 216 bool HotColdSplitting::isFunctionCold(const Function &F) const { 217 if (F.hasFnAttribute(Attribute::Cold)) 218 return true; 219 220 if (F.getCallingConv() == CallingConv::Cold) 221 return true; 222 223 if (PSI->isFunctionEntryCold(&F)) 224 return true; 225 226 return false; 227 } 228 229 // Returns false if the function should not be considered for hot-cold split 230 // optimization. 231 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 232 if (F.hasFnAttribute(Attribute::AlwaysInline)) 233 return false; 234 235 if (F.hasFnAttribute(Attribute::NoInline)) 236 return false; 237 238 return true; 239 } 240 241 /// Get the benefit score of outlining \p Region. 242 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region, 243 TargetTransformInfo &TTI) { 244 // Sum up the code size costs of non-terminator instructions. Tight coupling 245 // with \ref getOutliningPenalty is needed to model the costs of terminators. 246 int Benefit = 0; 247 for (BasicBlock *BB : Region) 248 for (Instruction &I : BB->instructionsWithoutDebug()) 249 if (&I != BB->getTerminator()) 250 Benefit += 251 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 252 253 return Benefit; 254 } 255 256 /// Get the penalty score for outlining \p Region. 257 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 258 unsigned NumInputs, unsigned NumOutputs) { 259 int Penalty = SplittingThreshold; 260 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 261 262 // If the splitting threshold is set at or below zero, skip the usual 263 // profitability check. 264 if (SplittingThreshold <= 0) 265 return Penalty; 266 267 // The typical code size cost for materializing an argument for the outlined 268 // call. 269 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n"); 270 const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic; 271 Penalty += CostForArgMaterialization * NumInputs; 272 273 // The typical code size cost for an output alloca, its associated store, and 274 // its associated reload. 275 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n"); 276 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 277 Penalty += CostForRegionOutput * NumOutputs; 278 279 // Find the number of distinct exit blocks for the region. Use a conservative 280 // check to determine whether control returns from the region. 281 bool NoBlocksReturn = true; 282 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 283 for (BasicBlock *BB : Region) { 284 // If a block has no successors, only assume it does not return if it's 285 // unreachable. 286 if (succ_empty(BB)) { 287 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 288 continue; 289 } 290 291 for (BasicBlock *SuccBB : successors(BB)) { 292 if (find(Region, SuccBB) == Region.end()) { 293 NoBlocksReturn = false; 294 SuccsOutsideRegion.insert(SuccBB); 295 } 296 } 297 } 298 299 // Apply a `noreturn` bonus. 300 if (NoBlocksReturn) { 301 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 302 << " non-returning terminators\n"); 303 Penalty -= Region.size(); 304 } 305 306 // Apply a penalty for having more than one successor outside of the region. 307 // This penalty accounts for the switch needed in the caller. 308 if (!SuccsOutsideRegion.empty()) { 309 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 310 << " non-region successors\n"); 311 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 312 } 313 314 return Penalty; 315 } 316 317 Function *HotColdSplitting::extractColdRegion(const BlockSequence &Region, 318 DominatorTree &DT, 319 BlockFrequencyInfo *BFI, 320 TargetTransformInfo &TTI, 321 OptimizationRemarkEmitter &ORE, 322 AssumptionCache *AC, 323 unsigned Count) { 324 assert(!Region.empty()); 325 326 // TODO: Pass BFI and BPI to update profile information. 327 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, 328 /* BPI */ nullptr, AC, /* AllowVarArgs */ false, 329 /* AllowAlloca */ false, 330 /* Suffix */ "cold." + std::to_string(Count)); 331 332 // Perform a simple cost/benefit analysis to decide whether or not to permit 333 // splitting. 334 SetVector<Value *> Inputs, Outputs, Sinks; 335 CE.findInputsOutputs(Inputs, Outputs, Sinks); 336 int OutliningBenefit = getOutliningBenefit(Region, TTI); 337 int OutliningPenalty = 338 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 339 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 340 << ", penalty = " << OutliningPenalty << "\n"); 341 if (OutliningBenefit <= OutliningPenalty) 342 return nullptr; 343 344 Function *OrigF = Region[0]->getParent(); 345 if (Function *OutF = CE.extractCodeRegion()) { 346 User *U = *OutF->user_begin(); 347 CallInst *CI = cast<CallInst>(U); 348 CallSite CS(CI); 349 NumColdRegionsOutlined++; 350 if (TTI.useColdCCForColdCall(*OutF)) { 351 OutF->setCallingConv(CallingConv::Cold); 352 CS.setCallingConv(CallingConv::Cold); 353 } 354 CI->setIsNoInline(); 355 356 markFunctionCold(*OutF, BFI != nullptr); 357 358 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 359 ORE.emit([&]() { 360 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 361 &*Region[0]->begin()) 362 << ore::NV("Original", OrigF) << " split cold code into " 363 << ore::NV("Split", OutF); 364 }); 365 return OutF; 366 } 367 368 ORE.emit([&]() { 369 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 370 &*Region[0]->begin()) 371 << "Failed to extract region at block " 372 << ore::NV("Block", Region.front()); 373 }); 374 return nullptr; 375 } 376 377 /// A pair of (basic block, score). 378 using BlockTy = std::pair<BasicBlock *, unsigned>; 379 380 namespace { 381 /// A maximal outlining region. This contains all blocks post-dominated by a 382 /// sink block, the sink block itself, and all blocks dominated by the sink. 383 /// If sink-predecessors and sink-successors cannot be extracted in one region, 384 /// the static constructor returns a list of suitable extraction regions. 385 class OutliningRegion { 386 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 387 /// viable sub-region entry point. Blocks with higher scores are better entry 388 /// points (i.e. they are more distant ancestors of the sink block). 389 SmallVector<BlockTy, 0> Blocks = {}; 390 391 /// The suggested entry point into the region. If the region has multiple 392 /// entry points, all blocks within the region may not be reachable from this 393 /// entry point. 394 BasicBlock *SuggestedEntryPoint = nullptr; 395 396 /// Whether the entire function is cold. 397 bool EntireFunctionCold = false; 398 399 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 400 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 401 return mayExtractBlock(BB) ? Score : 0; 402 } 403 404 /// These scores should be lower than the score for predecessor blocks, 405 /// because regions starting at predecessor blocks are typically larger. 406 static constexpr unsigned ScoreForSuccBlock = 1; 407 static constexpr unsigned ScoreForSinkBlock = 1; 408 409 OutliningRegion(const OutliningRegion &) = delete; 410 OutliningRegion &operator=(const OutliningRegion &) = delete; 411 412 public: 413 OutliningRegion() = default; 414 OutliningRegion(OutliningRegion &&) = default; 415 OutliningRegion &operator=(OutliningRegion &&) = default; 416 417 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 418 const DominatorTree &DT, 419 const PostDominatorTree &PDT) { 420 std::vector<OutliningRegion> Regions; 421 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 422 423 Regions.emplace_back(); 424 OutliningRegion *ColdRegion = &Regions.back(); 425 426 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 427 RegionBlocks.insert(BB); 428 ColdRegion->Blocks.emplace_back(BB, Score); 429 }; 430 431 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 432 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 433 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 434 unsigned BestScore = SinkScore; 435 436 // Visit SinkBB's ancestors using inverse DFS. 437 auto PredIt = ++idf_begin(&SinkBB); 438 auto PredEnd = idf_end(&SinkBB); 439 while (PredIt != PredEnd) { 440 BasicBlock &PredBB = **PredIt; 441 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 442 443 // If the predecessor is cold and has no predecessors, the entire 444 // function must be cold. 445 if (SinkPostDom && pred_empty(&PredBB)) { 446 ColdRegion->EntireFunctionCold = true; 447 return Regions; 448 } 449 450 // If SinkBB does not post-dominate a predecessor, do not mark the 451 // predecessor (or any of its predecessors) cold. 452 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 453 PredIt.skipChildren(); 454 continue; 455 } 456 457 // Keep track of the post-dominated ancestor farthest away from the sink. 458 // The path length is always >= 2, ensuring that predecessor blocks are 459 // considered as entry points before the sink block. 460 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 461 if (PredScore > BestScore) { 462 ColdRegion->SuggestedEntryPoint = &PredBB; 463 BestScore = PredScore; 464 } 465 466 addBlockToRegion(&PredBB, PredScore); 467 ++PredIt; 468 } 469 470 // If the sink can be added to the cold region, do so. It's considered as 471 // an entry point before any sink-successor blocks. 472 // 473 // Otherwise, split cold sink-successor blocks using a separate region. 474 // This satisfies the requirement that all extraction blocks other than the 475 // first have predecessors within the extraction region. 476 if (mayExtractBlock(SinkBB)) { 477 addBlockToRegion(&SinkBB, SinkScore); 478 } else { 479 Regions.emplace_back(); 480 ColdRegion = &Regions.back(); 481 BestScore = 0; 482 } 483 484 // Find all successors of SinkBB dominated by SinkBB using DFS. 485 auto SuccIt = ++df_begin(&SinkBB); 486 auto SuccEnd = df_end(&SinkBB); 487 while (SuccIt != SuccEnd) { 488 BasicBlock &SuccBB = **SuccIt; 489 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 490 491 // Don't allow the backwards & forwards DFSes to mark the same block. 492 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 493 494 // If SinkBB does not dominate a successor, do not mark the successor (or 495 // any of its successors) cold. 496 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 497 SuccIt.skipChildren(); 498 continue; 499 } 500 501 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 502 if (SuccScore > BestScore) { 503 ColdRegion->SuggestedEntryPoint = &SuccBB; 504 BestScore = SuccScore; 505 } 506 507 addBlockToRegion(&SuccBB, SuccScore); 508 ++SuccIt; 509 } 510 511 return Regions; 512 } 513 514 /// Whether this region has nothing to extract. 515 bool empty() const { return !SuggestedEntryPoint; } 516 517 /// The blocks in this region. 518 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 519 520 /// Whether the entire function containing this region is cold. 521 bool isEntireFunctionCold() const { return EntireFunctionCold; } 522 523 /// Remove a sub-region from this region and return it as a block sequence. 524 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 525 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 526 527 // Remove blocks dominated by the suggested entry point from this region. 528 // During the removal, identify the next best entry point into the region. 529 // Ensure that the first extracted block is the suggested entry point. 530 BlockSequence SubRegion = {SuggestedEntryPoint}; 531 BasicBlock *NextEntryPoint = nullptr; 532 unsigned NextScore = 0; 533 auto RegionEndIt = Blocks.end(); 534 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 535 BasicBlock *BB = Block.first; 536 unsigned Score = Block.second; 537 bool InSubRegion = 538 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 539 if (!InSubRegion && Score > NextScore) { 540 NextEntryPoint = BB; 541 NextScore = Score; 542 } 543 if (InSubRegion && BB != SuggestedEntryPoint) 544 SubRegion.push_back(BB); 545 return InSubRegion; 546 }); 547 Blocks.erase(RegionStartIt, RegionEndIt); 548 549 // Update the suggested entry point. 550 SuggestedEntryPoint = NextEntryPoint; 551 552 return SubRegion; 553 } 554 }; 555 } // namespace 556 557 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 558 bool Changed = false; 559 560 // The set of cold blocks. 561 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 562 563 // The worklist of non-intersecting regions left to outline. 564 SmallVector<OutliningRegion, 2> OutliningWorklist; 565 566 // Set up an RPO traversal. Experimentally, this performs better (outlines 567 // more) than a PO traversal, because we prevent region overlap by keeping 568 // the first region to contain a block. 569 ReversePostOrderTraversal<Function *> RPOT(&F); 570 571 // Calculate domtrees lazily. This reduces compile-time significantly. 572 std::unique_ptr<DominatorTree> DT; 573 std::unique_ptr<PostDominatorTree> PDT; 574 575 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 576 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 577 // be able to salvage its domtrees instead of recomputing them. 578 BlockFrequencyInfo *BFI = nullptr; 579 if (HasProfileSummary) 580 BFI = GetBFI(F); 581 582 TargetTransformInfo &TTI = GetTTI(F); 583 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 584 AssumptionCache *AC = LookupAC(F); 585 586 // Find all cold regions. 587 for (BasicBlock *BB : RPOT) { 588 // This block is already part of some outlining region. 589 if (ColdBlocks.count(BB)) 590 continue; 591 592 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || 593 (EnableStaticAnalyis && unlikelyExecuted(*BB)); 594 if (!Cold) 595 continue; 596 597 LLVM_DEBUG({ 598 dbgs() << "Found a cold block:\n"; 599 BB->dump(); 600 }); 601 602 if (!DT) 603 DT = make_unique<DominatorTree>(F); 604 if (!PDT) 605 PDT = make_unique<PostDominatorTree>(F); 606 607 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 608 for (OutliningRegion &Region : Regions) { 609 if (Region.empty()) 610 continue; 611 612 if (Region.isEntireFunctionCold()) { 613 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 614 return markFunctionCold(F); 615 } 616 617 // If this outlining region intersects with another, drop the new region. 618 // 619 // TODO: It's theoretically possible to outline more by only keeping the 620 // largest region which contains a block, but the extra bookkeeping to do 621 // this is tricky/expensive. 622 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { 623 return !ColdBlocks.insert(Block.first).second; 624 }); 625 if (RegionsOverlap) 626 continue; 627 628 OutliningWorklist.emplace_back(std::move(Region)); 629 ++NumColdRegionsFound; 630 } 631 } 632 633 // Outline single-entry cold regions, splitting up larger regions as needed. 634 unsigned OutlinedFunctionID = 1; 635 while (!OutliningWorklist.empty()) { 636 OutliningRegion Region = OutliningWorklist.pop_back_val(); 637 assert(!Region.empty() && "Empty outlining region in worklist"); 638 do { 639 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 640 LLVM_DEBUG({ 641 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 642 for (BasicBlock *BB : SubRegion) 643 BB->dump(); 644 }); 645 646 Function *Outlined = extractColdRegion(SubRegion, *DT, BFI, TTI, ORE, AC, 647 OutlinedFunctionID); 648 if (Outlined) { 649 ++OutlinedFunctionID; 650 Changed = true; 651 } 652 } while (!Region.empty()); 653 } 654 655 return Changed; 656 } 657 658 bool HotColdSplitting::run(Module &M) { 659 bool Changed = false; 660 bool HasProfileSummary = M.getProfileSummary(); 661 for (auto It = M.begin(), End = M.end(); It != End; ++It) { 662 Function &F = *It; 663 664 // Do not touch declarations. 665 if (F.isDeclaration()) 666 continue; 667 668 // Do not modify `optnone` functions. 669 if (F.hasFnAttribute(Attribute::OptimizeNone)) 670 continue; 671 672 // Detect inherently cold functions and mark them as such. 673 if (isFunctionCold(F)) { 674 Changed |= markFunctionCold(F); 675 continue; 676 } 677 678 if (!shouldOutlineFrom(F)) { 679 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 680 continue; 681 } 682 683 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 684 Changed |= outlineColdRegions(F, HasProfileSummary); 685 } 686 return Changed; 687 } 688 689 bool HotColdSplittingLegacyPass::runOnModule(Module &M) { 690 if (skipModule(M)) 691 return false; 692 ProfileSummaryInfo *PSI = 693 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 694 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 695 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 696 }; 697 auto GBFI = [this](Function &F) { 698 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 699 }; 700 std::unique_ptr<OptimizationRemarkEmitter> ORE; 701 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 702 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 703 ORE.reset(new OptimizationRemarkEmitter(&F)); 704 return *ORE.get(); 705 }; 706 auto LookupAC = [this](Function &F) -> AssumptionCache * { 707 if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>()) 708 return ACT->lookupAssumptionCache(F); 709 return nullptr; 710 }; 711 712 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M); 713 } 714 715 PreservedAnalyses 716 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 717 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 718 719 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { 720 return FAM.getCachedResult<AssumptionAnalysis>(F); 721 }; 722 723 auto GBFI = [&FAM](Function &F) { 724 return &FAM.getResult<BlockFrequencyAnalysis>(F); 725 }; 726 727 std::function<TargetTransformInfo &(Function &)> GTTI = 728 [&FAM](Function &F) -> TargetTransformInfo & { 729 return FAM.getResult<TargetIRAnalysis>(F); 730 }; 731 732 std::unique_ptr<OptimizationRemarkEmitter> ORE; 733 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 734 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 735 ORE.reset(new OptimizationRemarkEmitter(&F)); 736 return *ORE.get(); 737 }; 738 739 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 740 741 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) 742 return PreservedAnalyses::none(); 743 return PreservedAnalyses::all(); 744 } 745 746 char HotColdSplittingLegacyPass::ID = 0; 747 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit", 748 "Hot Cold Splitting", false, false) 749 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 750 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 751 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit", 752 "Hot Cold Splitting", false, false) 753 754 ModulePass *llvm::createHotColdSplittingPass() { 755 return new HotColdSplittingLegacyPass(); 756 } 757