1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// The goal of hot/cold splitting is to improve the memory locality of code. 11 /// The splitting pass does this by identifying cold blocks and moving them into 12 /// separate functions. 13 /// 14 /// When the splitting pass finds a cold block (referred to as "the sink"), it 15 /// grows a maximal cold region around that block. The maximal region contains 16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as 17 /// cold as the sink. Once a region is found, it's split out of the original 18 /// function provided it's profitable to do so. 19 /// 20 /// [*] In practice, there is some added complexity because some blocks are not 21 /// safe to extract. 22 /// 23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. 24 /// TODO: Reorder outlined functions. 25 /// 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Transforms/IPO/HotColdSplitting.h" 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/BlockFrequencyInfo.h" 34 #include "llvm/Analysis/BranchProbabilityInfo.h" 35 #include "llvm/Analysis/CFG.h" 36 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 37 #include "llvm/Analysis/PostDominators.h" 38 #include "llvm/Analysis/ProfileSummaryInfo.h" 39 #include "llvm/Analysis/TargetTransformInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Use.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/BlockFrequency.h" 59 #include "llvm/Support/BranchProbability.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Transforms/IPO.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 #include "llvm/Transforms/Utils/CodeExtractor.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <string> 73 74 #define DEBUG_TYPE "hotcoldsplit" 75 76 STATISTIC(NumColdRegionsFound, "Number of cold regions found."); 77 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); 78 79 using namespace llvm; 80 81 static cl::opt<bool> EnableStaticAnalysis("hot-cold-static-analysis", 82 cl::init(true), cl::Hidden); 83 84 static cl::opt<int> 85 SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, 86 cl::desc("Base penalty for splitting cold code (as a " 87 "multiple of TCC_Basic)")); 88 89 static cl::opt<bool> EnableColdSection( 90 "enable-cold-section", cl::init(false), cl::Hidden, 91 cl::desc("Enable placement of extracted cold functions" 92 " into a separate section after hot-cold splitting.")); 93 94 static cl::opt<std::string> 95 ColdSectionName("hotcoldsplit-cold-section-name", cl::init("__llvm_cold"), 96 cl::Hidden, 97 cl::desc("Name for the section containing cold functions " 98 "extracted by hot-cold splitting.")); 99 100 namespace { 101 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify 102 // this function unless you modify the MBB version as well. 103 // 104 /// A no successor, non-return block probably ends in unreachable and is cold. 105 /// Also consider a block that ends in an indirect branch to be a return block, 106 /// since many targets use plain indirect branches to return. 107 bool blockEndsInUnreachable(const BasicBlock &BB) { 108 if (!succ_empty(&BB)) 109 return false; 110 if (BB.empty()) 111 return true; 112 const Instruction *I = BB.getTerminator(); 113 return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); 114 } 115 116 bool unlikelyExecuted(BasicBlock &BB) { 117 // Exception handling blocks are unlikely executed. 118 if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) 119 return true; 120 121 // The block is cold if it calls/invokes a cold function. However, do not 122 // mark sanitizer traps as cold. 123 for (Instruction &I : BB) 124 if (auto *CB = dyn_cast<CallBase>(&I)) 125 if (CB->hasFnAttr(Attribute::Cold) && !CB->getMetadata("nosanitize")) 126 return true; 127 128 // The block is cold if it has an unreachable terminator, unless it's 129 // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). 130 if (blockEndsInUnreachable(BB)) { 131 if (auto *CI = 132 dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) 133 if (CI->hasFnAttr(Attribute::NoReturn)) 134 return false; 135 return true; 136 } 137 138 return false; 139 } 140 141 /// Check whether it's safe to outline \p BB. 142 static bool mayExtractBlock(const BasicBlock &BB) { 143 // EH pads are unsafe to outline because doing so breaks EH type tables. It 144 // follows that invoke instructions cannot be extracted, because CodeExtractor 145 // requires unwind destinations to be within the extraction region. 146 // 147 // Resumes that are not reachable from a cleanup landing pad are considered to 148 // be unreachable. It’s not safe to split them out either. 149 auto Term = BB.getTerminator(); 150 return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) && 151 !isa<ResumeInst>(Term); 152 } 153 154 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. 155 /// If \p UpdateEntryCount is true (set when this is a new split function and 156 /// module has profile data), set entry count to 0 to ensure treated as cold. 157 /// Return true if the function is changed. 158 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { 159 assert(!F.hasOptNone() && "Can't mark this cold"); 160 bool Changed = false; 161 if (!F.hasFnAttribute(Attribute::Cold)) { 162 F.addFnAttr(Attribute::Cold); 163 Changed = true; 164 } 165 if (!F.hasFnAttribute(Attribute::MinSize)) { 166 F.addFnAttr(Attribute::MinSize); 167 Changed = true; 168 } 169 if (UpdateEntryCount) { 170 // Set the entry count to 0 to ensure it is placed in the unlikely text 171 // section when function sections are enabled. 172 F.setEntryCount(0); 173 Changed = true; 174 } 175 176 return Changed; 177 } 178 179 class HotColdSplittingLegacyPass : public ModulePass { 180 public: 181 static char ID; 182 HotColdSplittingLegacyPass() : ModulePass(ID) { 183 initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); 184 } 185 186 void getAnalysisUsage(AnalysisUsage &AU) const override { 187 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 188 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 189 AU.addRequired<TargetTransformInfoWrapperPass>(); 190 AU.addUsedIfAvailable<AssumptionCacheTracker>(); 191 } 192 193 bool runOnModule(Module &M) override; 194 }; 195 196 } // end anonymous namespace 197 198 /// Check whether \p F is inherently cold. 199 bool HotColdSplitting::isFunctionCold(const Function &F) const { 200 if (F.hasFnAttribute(Attribute::Cold)) 201 return true; 202 203 if (F.getCallingConv() == CallingConv::Cold) 204 return true; 205 206 if (PSI->isFunctionEntryCold(&F)) 207 return true; 208 209 return false; 210 } 211 212 // Returns false if the function should not be considered for hot-cold split 213 // optimization. 214 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { 215 if (F.hasFnAttribute(Attribute::AlwaysInline)) 216 return false; 217 218 if (F.hasFnAttribute(Attribute::NoInline)) 219 return false; 220 221 // A function marked `noreturn` may contain unreachable terminators: these 222 // should not be considered cold, as the function may be a trampoline. 223 if (F.hasFnAttribute(Attribute::NoReturn)) 224 return false; 225 226 if (F.hasFnAttribute(Attribute::SanitizeAddress) || 227 F.hasFnAttribute(Attribute::SanitizeHWAddress) || 228 F.hasFnAttribute(Attribute::SanitizeThread) || 229 F.hasFnAttribute(Attribute::SanitizeMemory)) 230 return false; 231 232 return true; 233 } 234 235 /// Get the benefit score of outlining \p Region. 236 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region, 237 TargetTransformInfo &TTI) { 238 // Sum up the code size costs of non-terminator instructions. Tight coupling 239 // with \ref getOutliningPenalty is needed to model the costs of terminators. 240 int Benefit = 0; 241 for (BasicBlock *BB : Region) 242 for (Instruction &I : BB->instructionsWithoutDebug()) 243 if (&I != BB->getTerminator()) 244 Benefit += 245 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); 246 247 return Benefit; 248 } 249 250 /// Get the penalty score for outlining \p Region. 251 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, 252 unsigned NumInputs, unsigned NumOutputs) { 253 int Penalty = SplittingThreshold; 254 LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); 255 256 // If the splitting threshold is set at or below zero, skip the usual 257 // profitability check. 258 if (SplittingThreshold <= 0) 259 return Penalty; 260 261 // The typical code size cost for materializing an argument for the outlined 262 // call. 263 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n"); 264 const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic; 265 Penalty += CostForArgMaterialization * NumInputs; 266 267 // The typical code size cost for an output alloca, its associated store, and 268 // its associated reload. 269 LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n"); 270 const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; 271 Penalty += CostForRegionOutput * NumOutputs; 272 273 // Find the number of distinct exit blocks for the region. Use a conservative 274 // check to determine whether control returns from the region. 275 bool NoBlocksReturn = true; 276 SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; 277 for (BasicBlock *BB : Region) { 278 // If a block has no successors, only assume it does not return if it's 279 // unreachable. 280 if (succ_empty(BB)) { 281 NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); 282 continue; 283 } 284 285 for (BasicBlock *SuccBB : successors(BB)) { 286 if (find(Region, SuccBB) == Region.end()) { 287 NoBlocksReturn = false; 288 SuccsOutsideRegion.insert(SuccBB); 289 } 290 } 291 } 292 293 // Apply a `noreturn` bonus. 294 if (NoBlocksReturn) { 295 LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() 296 << " non-returning terminators\n"); 297 Penalty -= Region.size(); 298 } 299 300 // Apply a penalty for having more than one successor outside of the region. 301 // This penalty accounts for the switch needed in the caller. 302 if (!SuccsOutsideRegion.empty()) { 303 LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() 304 << " non-region successors\n"); 305 Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; 306 } 307 308 return Penalty; 309 } 310 311 Function *HotColdSplitting::extractColdRegion( 312 const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC, 313 DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, 314 OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) { 315 assert(!Region.empty()); 316 317 // TODO: Pass BFI and BPI to update profile information. 318 CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, 319 /* BPI */ nullptr, AC, /* AllowVarArgs */ false, 320 /* AllowAlloca */ false, 321 /* Suffix */ "cold." + std::to_string(Count)); 322 323 // Perform a simple cost/benefit analysis to decide whether or not to permit 324 // splitting. 325 SetVector<Value *> Inputs, Outputs, Sinks; 326 CE.findInputsOutputs(Inputs, Outputs, Sinks); 327 int OutliningBenefit = getOutliningBenefit(Region, TTI); 328 int OutliningPenalty = 329 getOutliningPenalty(Region, Inputs.size(), Outputs.size()); 330 LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit 331 << ", penalty = " << OutliningPenalty << "\n"); 332 if (OutliningBenefit <= OutliningPenalty) 333 return nullptr; 334 335 Function *OrigF = Region[0]->getParent(); 336 if (Function *OutF = CE.extractCodeRegion(CEAC)) { 337 User *U = *OutF->user_begin(); 338 CallInst *CI = cast<CallInst>(U); 339 NumColdRegionsOutlined++; 340 if (TTI.useColdCCForColdCall(*OutF)) { 341 OutF->setCallingConv(CallingConv::Cold); 342 CI->setCallingConv(CallingConv::Cold); 343 } 344 CI->setIsNoInline(); 345 346 if (EnableColdSection) 347 OutF->setSection(ColdSectionName); 348 else { 349 if (OrigF->hasSection()) 350 OutF->setSection(OrigF->getSection()); 351 } 352 353 markFunctionCold(*OutF, BFI != nullptr); 354 355 LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); 356 ORE.emit([&]() { 357 return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", 358 &*Region[0]->begin()) 359 << ore::NV("Original", OrigF) << " split cold code into " 360 << ore::NV("Split", OutF); 361 }); 362 return OutF; 363 } 364 365 ORE.emit([&]() { 366 return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", 367 &*Region[0]->begin()) 368 << "Failed to extract region at block " 369 << ore::NV("Block", Region.front()); 370 }); 371 return nullptr; 372 } 373 374 /// A pair of (basic block, score). 375 using BlockTy = std::pair<BasicBlock *, unsigned>; 376 377 namespace { 378 /// A maximal outlining region. This contains all blocks post-dominated by a 379 /// sink block, the sink block itself, and all blocks dominated by the sink. 380 /// If sink-predecessors and sink-successors cannot be extracted in one region, 381 /// the static constructor returns a list of suitable extraction regions. 382 class OutliningRegion { 383 /// A list of (block, score) pairs. A block's score is non-zero iff it's a 384 /// viable sub-region entry point. Blocks with higher scores are better entry 385 /// points (i.e. they are more distant ancestors of the sink block). 386 SmallVector<BlockTy, 0> Blocks = {}; 387 388 /// The suggested entry point into the region. If the region has multiple 389 /// entry points, all blocks within the region may not be reachable from this 390 /// entry point. 391 BasicBlock *SuggestedEntryPoint = nullptr; 392 393 /// Whether the entire function is cold. 394 bool EntireFunctionCold = false; 395 396 /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. 397 static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { 398 return mayExtractBlock(BB) ? Score : 0; 399 } 400 401 /// These scores should be lower than the score for predecessor blocks, 402 /// because regions starting at predecessor blocks are typically larger. 403 static constexpr unsigned ScoreForSuccBlock = 1; 404 static constexpr unsigned ScoreForSinkBlock = 1; 405 406 OutliningRegion(const OutliningRegion &) = delete; 407 OutliningRegion &operator=(const OutliningRegion &) = delete; 408 409 public: 410 OutliningRegion() = default; 411 OutliningRegion(OutliningRegion &&) = default; 412 OutliningRegion &operator=(OutliningRegion &&) = default; 413 414 static std::vector<OutliningRegion> create(BasicBlock &SinkBB, 415 const DominatorTree &DT, 416 const PostDominatorTree &PDT) { 417 std::vector<OutliningRegion> Regions; 418 SmallPtrSet<BasicBlock *, 4> RegionBlocks; 419 420 Regions.emplace_back(); 421 OutliningRegion *ColdRegion = &Regions.back(); 422 423 auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { 424 RegionBlocks.insert(BB); 425 ColdRegion->Blocks.emplace_back(BB, Score); 426 }; 427 428 // The ancestor farthest-away from SinkBB, and also post-dominated by it. 429 unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); 430 ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; 431 unsigned BestScore = SinkScore; 432 433 // Visit SinkBB's ancestors using inverse DFS. 434 auto PredIt = ++idf_begin(&SinkBB); 435 auto PredEnd = idf_end(&SinkBB); 436 while (PredIt != PredEnd) { 437 BasicBlock &PredBB = **PredIt; 438 bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); 439 440 // If the predecessor is cold and has no predecessors, the entire 441 // function must be cold. 442 if (SinkPostDom && pred_empty(&PredBB)) { 443 ColdRegion->EntireFunctionCold = true; 444 return Regions; 445 } 446 447 // If SinkBB does not post-dominate a predecessor, do not mark the 448 // predecessor (or any of its predecessors) cold. 449 if (!SinkPostDom || !mayExtractBlock(PredBB)) { 450 PredIt.skipChildren(); 451 continue; 452 } 453 454 // Keep track of the post-dominated ancestor farthest away from the sink. 455 // The path length is always >= 2, ensuring that predecessor blocks are 456 // considered as entry points before the sink block. 457 unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); 458 if (PredScore > BestScore) { 459 ColdRegion->SuggestedEntryPoint = &PredBB; 460 BestScore = PredScore; 461 } 462 463 addBlockToRegion(&PredBB, PredScore); 464 ++PredIt; 465 } 466 467 // If the sink can be added to the cold region, do so. It's considered as 468 // an entry point before any sink-successor blocks. 469 // 470 // Otherwise, split cold sink-successor blocks using a separate region. 471 // This satisfies the requirement that all extraction blocks other than the 472 // first have predecessors within the extraction region. 473 if (mayExtractBlock(SinkBB)) { 474 addBlockToRegion(&SinkBB, SinkScore); 475 if (pred_empty(&SinkBB)) { 476 ColdRegion->EntireFunctionCold = true; 477 return Regions; 478 } 479 } else { 480 Regions.emplace_back(); 481 ColdRegion = &Regions.back(); 482 BestScore = 0; 483 } 484 485 // Find all successors of SinkBB dominated by SinkBB using DFS. 486 auto SuccIt = ++df_begin(&SinkBB); 487 auto SuccEnd = df_end(&SinkBB); 488 while (SuccIt != SuccEnd) { 489 BasicBlock &SuccBB = **SuccIt; 490 bool SinkDom = DT.dominates(&SinkBB, &SuccBB); 491 492 // Don't allow the backwards & forwards DFSes to mark the same block. 493 bool DuplicateBlock = RegionBlocks.count(&SuccBB); 494 495 // If SinkBB does not dominate a successor, do not mark the successor (or 496 // any of its successors) cold. 497 if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { 498 SuccIt.skipChildren(); 499 continue; 500 } 501 502 unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); 503 if (SuccScore > BestScore) { 504 ColdRegion->SuggestedEntryPoint = &SuccBB; 505 BestScore = SuccScore; 506 } 507 508 addBlockToRegion(&SuccBB, SuccScore); 509 ++SuccIt; 510 } 511 512 return Regions; 513 } 514 515 /// Whether this region has nothing to extract. 516 bool empty() const { return !SuggestedEntryPoint; } 517 518 /// The blocks in this region. 519 ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } 520 521 /// Whether the entire function containing this region is cold. 522 bool isEntireFunctionCold() const { return EntireFunctionCold; } 523 524 /// Remove a sub-region from this region and return it as a block sequence. 525 BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { 526 assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); 527 528 // Remove blocks dominated by the suggested entry point from this region. 529 // During the removal, identify the next best entry point into the region. 530 // Ensure that the first extracted block is the suggested entry point. 531 BlockSequence SubRegion = {SuggestedEntryPoint}; 532 BasicBlock *NextEntryPoint = nullptr; 533 unsigned NextScore = 0; 534 auto RegionEndIt = Blocks.end(); 535 auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { 536 BasicBlock *BB = Block.first; 537 unsigned Score = Block.second; 538 bool InSubRegion = 539 BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); 540 if (!InSubRegion && Score > NextScore) { 541 NextEntryPoint = BB; 542 NextScore = Score; 543 } 544 if (InSubRegion && BB != SuggestedEntryPoint) 545 SubRegion.push_back(BB); 546 return InSubRegion; 547 }); 548 Blocks.erase(RegionStartIt, RegionEndIt); 549 550 // Update the suggested entry point. 551 SuggestedEntryPoint = NextEntryPoint; 552 553 return SubRegion; 554 } 555 }; 556 } // namespace 557 558 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { 559 bool Changed = false; 560 561 // The set of cold blocks. 562 SmallPtrSet<BasicBlock *, 4> ColdBlocks; 563 564 // The worklist of non-intersecting regions left to outline. 565 SmallVector<OutliningRegion, 2> OutliningWorklist; 566 567 // Set up an RPO traversal. Experimentally, this performs better (outlines 568 // more) than a PO traversal, because we prevent region overlap by keeping 569 // the first region to contain a block. 570 ReversePostOrderTraversal<Function *> RPOT(&F); 571 572 // Calculate domtrees lazily. This reduces compile-time significantly. 573 std::unique_ptr<DominatorTree> DT; 574 std::unique_ptr<PostDominatorTree> PDT; 575 576 // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This 577 // reduces compile-time significantly. TODO: When we *do* use BFI, we should 578 // be able to salvage its domtrees instead of recomputing them. 579 BlockFrequencyInfo *BFI = nullptr; 580 if (HasProfileSummary) 581 BFI = GetBFI(F); 582 583 TargetTransformInfo &TTI = GetTTI(F); 584 OptimizationRemarkEmitter &ORE = (*GetORE)(F); 585 AssumptionCache *AC = LookupAC(F); 586 587 // Find all cold regions. 588 for (BasicBlock *BB : RPOT) { 589 // This block is already part of some outlining region. 590 if (ColdBlocks.count(BB)) 591 continue; 592 593 bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || 594 (EnableStaticAnalysis && unlikelyExecuted(*BB)); 595 if (!Cold) 596 continue; 597 598 LLVM_DEBUG({ 599 dbgs() << "Found a cold block:\n"; 600 BB->dump(); 601 }); 602 603 if (!DT) 604 DT = std::make_unique<DominatorTree>(F); 605 if (!PDT) 606 PDT = std::make_unique<PostDominatorTree>(F); 607 608 auto Regions = OutliningRegion::create(*BB, *DT, *PDT); 609 for (OutliningRegion &Region : Regions) { 610 if (Region.empty()) 611 continue; 612 613 if (Region.isEntireFunctionCold()) { 614 LLVM_DEBUG(dbgs() << "Entire function is cold\n"); 615 return markFunctionCold(F); 616 } 617 618 // If this outlining region intersects with another, drop the new region. 619 // 620 // TODO: It's theoretically possible to outline more by only keeping the 621 // largest region which contains a block, but the extra bookkeeping to do 622 // this is tricky/expensive. 623 bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { 624 return !ColdBlocks.insert(Block.first).second; 625 }); 626 if (RegionsOverlap) 627 continue; 628 629 OutliningWorklist.emplace_back(std::move(Region)); 630 ++NumColdRegionsFound; 631 } 632 } 633 634 if (OutliningWorklist.empty()) 635 return Changed; 636 637 // Outline single-entry cold regions, splitting up larger regions as needed. 638 unsigned OutlinedFunctionID = 1; 639 // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. 640 CodeExtractorAnalysisCache CEAC(F); 641 do { 642 OutliningRegion Region = OutliningWorklist.pop_back_val(); 643 assert(!Region.empty() && "Empty outlining region in worklist"); 644 do { 645 BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); 646 LLVM_DEBUG({ 647 dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; 648 for (BasicBlock *BB : SubRegion) 649 BB->dump(); 650 }); 651 652 Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI, 653 ORE, AC, OutlinedFunctionID); 654 if (Outlined) { 655 ++OutlinedFunctionID; 656 Changed = true; 657 } 658 } while (!Region.empty()); 659 } while (!OutliningWorklist.empty()); 660 661 return Changed; 662 } 663 664 bool HotColdSplitting::run(Module &M) { 665 bool Changed = false; 666 bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); 667 for (auto It = M.begin(), End = M.end(); It != End; ++It) { 668 Function &F = *It; 669 670 // Do not touch declarations. 671 if (F.isDeclaration()) 672 continue; 673 674 // Do not modify `optnone` functions. 675 if (F.hasOptNone()) 676 continue; 677 678 // Detect inherently cold functions and mark them as such. 679 if (isFunctionCold(F)) { 680 Changed |= markFunctionCold(F); 681 continue; 682 } 683 684 if (!shouldOutlineFrom(F)) { 685 LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); 686 continue; 687 } 688 689 LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); 690 Changed |= outlineColdRegions(F, HasProfileSummary); 691 } 692 return Changed; 693 } 694 695 bool HotColdSplittingLegacyPass::runOnModule(Module &M) { 696 if (skipModule(M)) 697 return false; 698 ProfileSummaryInfo *PSI = 699 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 700 auto GTTI = [this](Function &F) -> TargetTransformInfo & { 701 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 702 }; 703 auto GBFI = [this](Function &F) { 704 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 705 }; 706 std::unique_ptr<OptimizationRemarkEmitter> ORE; 707 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 708 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 709 ORE.reset(new OptimizationRemarkEmitter(&F)); 710 return *ORE.get(); 711 }; 712 auto LookupAC = [this](Function &F) -> AssumptionCache * { 713 if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>()) 714 return ACT->lookupAssumptionCache(F); 715 return nullptr; 716 }; 717 718 return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M); 719 } 720 721 PreservedAnalyses 722 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { 723 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 724 725 auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { 726 return FAM.getCachedResult<AssumptionAnalysis>(F); 727 }; 728 729 auto GBFI = [&FAM](Function &F) { 730 return &FAM.getResult<BlockFrequencyAnalysis>(F); 731 }; 732 733 std::function<TargetTransformInfo &(Function &)> GTTI = 734 [&FAM](Function &F) -> TargetTransformInfo & { 735 return FAM.getResult<TargetIRAnalysis>(F); 736 }; 737 738 std::unique_ptr<OptimizationRemarkEmitter> ORE; 739 std::function<OptimizationRemarkEmitter &(Function &)> GetORE = 740 [&ORE](Function &F) -> OptimizationRemarkEmitter & { 741 ORE.reset(new OptimizationRemarkEmitter(&F)); 742 return *ORE.get(); 743 }; 744 745 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 746 747 if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) 748 return PreservedAnalyses::none(); 749 return PreservedAnalyses::all(); 750 } 751 752 char HotColdSplittingLegacyPass::ID = 0; 753 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit", 754 "Hot Cold Splitting", false, false) 755 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 756 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 757 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit", 758 "Hot Cold Splitting", false, false) 759 760 ModulePass *llvm::createHotColdSplittingPass() { 761 return new HotColdSplittingLegacyPass(); 762 } 763