1 //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// The goal of hot/cold splitting is to improve the memory locality of code.
11 /// The splitting pass does this by identifying cold blocks and moving them into
12 /// separate functions.
13 ///
14 /// When the splitting pass finds a cold block (referred to as "the sink"), it
15 /// grows a maximal cold region around that block. The maximal region contains
16 /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
17 /// cold as the sink. Once a region is found, it's split out of the original
18 /// function provided it's profitable to do so.
19 ///
20 /// [*] In practice, there is some added complexity because some blocks are not
21 /// safe to extract.
22 ///
23 /// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
24 /// TODO: Reorder outlined functions.
25 ///
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/Transforms/IPO/HotColdSplitting.h"
29 #include "llvm/ADT/PostOrderIterator.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BlockFrequencyInfo.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/CFG.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/Analysis/PostDominators.h"
38 #include "llvm/Analysis/ProfileSummaryInfo.h"
39 #include "llvm/Analysis/TargetTransformInfo.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CFG.h"
42 #include "llvm/IR/CallSite.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/BranchProbability.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/IPO.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/CodeExtractor.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 
73 #define DEBUG_TYPE "hotcoldsplit"
74 
75 STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
76 STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
77 
78 using namespace llvm;
79 
80 static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis",
81                               cl::init(true), cl::Hidden);
82 
83 static cl::opt<int>
84     SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
85                        cl::desc("Base penalty for splitting cold code (as a "
86                                 "multiple of TCC_Basic)"));
87 
88 namespace {
89 // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
90 // this function unless you modify the MBB version as well.
91 //
92 /// A no successor, non-return block probably ends in unreachable and is cold.
93 /// Also consider a block that ends in an indirect branch to be a return block,
94 /// since many targets use plain indirect branches to return.
95 bool blockEndsInUnreachable(const BasicBlock &BB) {
96   if (!succ_empty(&BB))
97     return false;
98   if (BB.empty())
99     return true;
100   const Instruction *I = BB.getTerminator();
101   return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
102 }
103 
104 bool unlikelyExecuted(BasicBlock &BB) {
105   // Exception handling blocks are unlikely executed.
106   if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
107     return true;
108 
109   // The block is cold if it calls/invokes a cold function. However, do not
110   // mark sanitizer traps as cold.
111   for (Instruction &I : BB)
112     if (auto CS = CallSite(&I))
113       if (CS.hasFnAttr(Attribute::Cold) && !CS->getMetadata("nosanitize"))
114         return true;
115 
116   // The block is cold if it has an unreachable terminator, unless it's
117   // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
118   if (blockEndsInUnreachable(BB)) {
119     if (auto *CI =
120             dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
121       if (CI->hasFnAttr(Attribute::NoReturn))
122         return false;
123     return true;
124   }
125 
126   return false;
127 }
128 
129 /// Check whether it's safe to outline \p BB.
130 static bool mayExtractBlock(const BasicBlock &BB) {
131   // EH pads are unsafe to outline because doing so breaks EH type tables. It
132   // follows that invoke instructions cannot be extracted, because CodeExtractor
133   // requires unwind destinations to be within the extraction region.
134   //
135   // Resumes that are not reachable from a cleanup landing pad are considered to
136   // be unreachable. It’s not safe to split them out either.
137   auto Term = BB.getTerminator();
138   return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) &&
139          !isa<ResumeInst>(Term);
140 }
141 
142 /// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
143 /// If \p UpdateEntryCount is true (set when this is a new split function and
144 /// module has profile data), set entry count to 0 to ensure treated as cold.
145 /// Return true if the function is changed.
146 static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
147   assert(!F.hasOptNone() && "Can't mark this cold");
148   bool Changed = false;
149   if (!F.hasFnAttribute(Attribute::Cold)) {
150     F.addFnAttr(Attribute::Cold);
151     Changed = true;
152   }
153   if (!F.hasFnAttribute(Attribute::MinSize)) {
154     F.addFnAttr(Attribute::MinSize);
155     Changed = true;
156   }
157   if (UpdateEntryCount) {
158     // Set the entry count to 0 to ensure it is placed in the unlikely text
159     // section when function sections are enabled.
160     F.setEntryCount(0);
161     Changed = true;
162   }
163 
164   return Changed;
165 }
166 
167 class HotColdSplittingLegacyPass : public ModulePass {
168 public:
169   static char ID;
170   HotColdSplittingLegacyPass() : ModulePass(ID) {
171     initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
172   }
173 
174   void getAnalysisUsage(AnalysisUsage &AU) const override {
175     AU.addRequired<BlockFrequencyInfoWrapperPass>();
176     AU.addRequired<ProfileSummaryInfoWrapperPass>();
177     AU.addRequired<TargetTransformInfoWrapperPass>();
178     AU.addUsedIfAvailable<AssumptionCacheTracker>();
179   }
180 
181   bool runOnModule(Module &M) override;
182 };
183 
184 } // end anonymous namespace
185 
186 /// Check whether \p F is inherently cold.
187 bool HotColdSplitting::isFunctionCold(const Function &F) const {
188   if (F.hasFnAttribute(Attribute::Cold))
189     return true;
190 
191   if (F.getCallingConv() == CallingConv::Cold)
192     return true;
193 
194   if (PSI->isFunctionEntryCold(&F))
195     return true;
196 
197   return false;
198 }
199 
200 // Returns false if the function should not be considered for hot-cold split
201 // optimization.
202 bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
203   if (F.hasFnAttribute(Attribute::AlwaysInline))
204     return false;
205 
206   if (F.hasFnAttribute(Attribute::NoInline))
207     return false;
208 
209   if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
210       F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
211       F.hasFnAttribute(Attribute::SanitizeThread) ||
212       F.hasFnAttribute(Attribute::SanitizeMemory))
213     return false;
214 
215   return true;
216 }
217 
218 /// Get the benefit score of outlining \p Region.
219 static int getOutliningBenefit(ArrayRef<BasicBlock *> Region,
220                                TargetTransformInfo &TTI) {
221   // Sum up the code size costs of non-terminator instructions. Tight coupling
222   // with \ref getOutliningPenalty is needed to model the costs of terminators.
223   int Benefit = 0;
224   for (BasicBlock *BB : Region)
225     for (Instruction &I : BB->instructionsWithoutDebug())
226       if (&I != BB->getTerminator())
227         Benefit +=
228             TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
229 
230   return Benefit;
231 }
232 
233 /// Get the penalty score for outlining \p Region.
234 static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
235                                unsigned NumInputs, unsigned NumOutputs) {
236   int Penalty = SplittingThreshold;
237   LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
238 
239   // If the splitting threshold is set at or below zero, skip the usual
240   // profitability check.
241   if (SplittingThreshold <= 0)
242     return Penalty;
243 
244   // The typical code size cost for materializing an argument for the outlined
245   // call.
246   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n");
247   const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic;
248   Penalty += CostForArgMaterialization * NumInputs;
249 
250   // The typical code size cost for an output alloca, its associated store, and
251   // its associated reload.
252   LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n");
253   const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
254   Penalty += CostForRegionOutput * NumOutputs;
255 
256   // Find the number of distinct exit blocks for the region. Use a conservative
257   // check to determine whether control returns from the region.
258   bool NoBlocksReturn = true;
259   SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
260   for (BasicBlock *BB : Region) {
261     // If a block has no successors, only assume it does not return if it's
262     // unreachable.
263     if (succ_empty(BB)) {
264       NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
265       continue;
266     }
267 
268     for (BasicBlock *SuccBB : successors(BB)) {
269       if (find(Region, SuccBB) == Region.end()) {
270         NoBlocksReturn = false;
271         SuccsOutsideRegion.insert(SuccBB);
272       }
273     }
274   }
275 
276   // Apply a `noreturn` bonus.
277   if (NoBlocksReturn) {
278     LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
279                       << " non-returning terminators\n");
280     Penalty -= Region.size();
281   }
282 
283   // Apply a penalty for having more than one successor outside of the region.
284   // This penalty accounts for the switch needed in the caller.
285   if (!SuccsOutsideRegion.empty()) {
286     LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
287                       << " non-region successors\n");
288     Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
289   }
290 
291   return Penalty;
292 }
293 
294 Function *HotColdSplitting::extractColdRegion(
295     const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC,
296     DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
297     OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) {
298   assert(!Region.empty());
299 
300   // TODO: Pass BFI and BPI to update profile information.
301   CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
302                    /* BPI */ nullptr, AC, /* AllowVarArgs */ false,
303                    /* AllowAlloca */ false,
304                    /* Suffix */ "cold." + std::to_string(Count));
305 
306   // Perform a simple cost/benefit analysis to decide whether or not to permit
307   // splitting.
308   SetVector<Value *> Inputs, Outputs, Sinks;
309   CE.findInputsOutputs(Inputs, Outputs, Sinks);
310   int OutliningBenefit = getOutliningBenefit(Region, TTI);
311   int OutliningPenalty =
312       getOutliningPenalty(Region, Inputs.size(), Outputs.size());
313   LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
314                     << ", penalty = " << OutliningPenalty << "\n");
315   if (OutliningBenefit <= OutliningPenalty)
316     return nullptr;
317 
318   Function *OrigF = Region[0]->getParent();
319   if (Function *OutF = CE.extractCodeRegion(CEAC)) {
320     User *U = *OutF->user_begin();
321     CallInst *CI = cast<CallInst>(U);
322     CallSite CS(CI);
323     NumColdRegionsOutlined++;
324     if (TTI.useColdCCForColdCall(*OutF)) {
325       OutF->setCallingConv(CallingConv::Cold);
326       CS.setCallingConv(CallingConv::Cold);
327     }
328     CI->setIsNoInline();
329 
330     markFunctionCold(*OutF, BFI != nullptr);
331 
332     LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
333     ORE.emit([&]() {
334       return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
335                                 &*Region[0]->begin())
336              << ore::NV("Original", OrigF) << " split cold code into "
337              << ore::NV("Split", OutF);
338     });
339     return OutF;
340   }
341 
342   ORE.emit([&]() {
343     return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
344                                     &*Region[0]->begin())
345            << "Failed to extract region at block "
346            << ore::NV("Block", Region.front());
347   });
348   return nullptr;
349 }
350 
351 /// A pair of (basic block, score).
352 using BlockTy = std::pair<BasicBlock *, unsigned>;
353 
354 namespace {
355 /// A maximal outlining region. This contains all blocks post-dominated by a
356 /// sink block, the sink block itself, and all blocks dominated by the sink.
357 /// If sink-predecessors and sink-successors cannot be extracted in one region,
358 /// the static constructor returns a list of suitable extraction regions.
359 class OutliningRegion {
360   /// A list of (block, score) pairs. A block's score is non-zero iff it's a
361   /// viable sub-region entry point. Blocks with higher scores are better entry
362   /// points (i.e. they are more distant ancestors of the sink block).
363   SmallVector<BlockTy, 0> Blocks = {};
364 
365   /// The suggested entry point into the region. If the region has multiple
366   /// entry points, all blocks within the region may not be reachable from this
367   /// entry point.
368   BasicBlock *SuggestedEntryPoint = nullptr;
369 
370   /// Whether the entire function is cold.
371   bool EntireFunctionCold = false;
372 
373   /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
374   static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
375     return mayExtractBlock(BB) ? Score : 0;
376   }
377 
378   /// These scores should be lower than the score for predecessor blocks,
379   /// because regions starting at predecessor blocks are typically larger.
380   static constexpr unsigned ScoreForSuccBlock = 1;
381   static constexpr unsigned ScoreForSinkBlock = 1;
382 
383   OutliningRegion(const OutliningRegion &) = delete;
384   OutliningRegion &operator=(const OutliningRegion &) = delete;
385 
386 public:
387   OutliningRegion() = default;
388   OutliningRegion(OutliningRegion &&) = default;
389   OutliningRegion &operator=(OutliningRegion &&) = default;
390 
391   static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
392                                              const DominatorTree &DT,
393                                              const PostDominatorTree &PDT) {
394     std::vector<OutliningRegion> Regions;
395     SmallPtrSet<BasicBlock *, 4> RegionBlocks;
396 
397     Regions.emplace_back();
398     OutliningRegion *ColdRegion = &Regions.back();
399 
400     auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
401       RegionBlocks.insert(BB);
402       ColdRegion->Blocks.emplace_back(BB, Score);
403     };
404 
405     // The ancestor farthest-away from SinkBB, and also post-dominated by it.
406     unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
407     ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
408     unsigned BestScore = SinkScore;
409 
410     // Visit SinkBB's ancestors using inverse DFS.
411     auto PredIt = ++idf_begin(&SinkBB);
412     auto PredEnd = idf_end(&SinkBB);
413     while (PredIt != PredEnd) {
414       BasicBlock &PredBB = **PredIt;
415       bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
416 
417       // If the predecessor is cold and has no predecessors, the entire
418       // function must be cold.
419       if (SinkPostDom && pred_empty(&PredBB)) {
420         ColdRegion->EntireFunctionCold = true;
421         return Regions;
422       }
423 
424       // If SinkBB does not post-dominate a predecessor, do not mark the
425       // predecessor (or any of its predecessors) cold.
426       if (!SinkPostDom || !mayExtractBlock(PredBB)) {
427         PredIt.skipChildren();
428         continue;
429       }
430 
431       // Keep track of the post-dominated ancestor farthest away from the sink.
432       // The path length is always >= 2, ensuring that predecessor blocks are
433       // considered as entry points before the sink block.
434       unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
435       if (PredScore > BestScore) {
436         ColdRegion->SuggestedEntryPoint = &PredBB;
437         BestScore = PredScore;
438       }
439 
440       addBlockToRegion(&PredBB, PredScore);
441       ++PredIt;
442     }
443 
444     // If the sink can be added to the cold region, do so. It's considered as
445     // an entry point before any sink-successor blocks.
446     //
447     // Otherwise, split cold sink-successor blocks using a separate region.
448     // This satisfies the requirement that all extraction blocks other than the
449     // first have predecessors within the extraction region.
450     if (mayExtractBlock(SinkBB)) {
451       addBlockToRegion(&SinkBB, SinkScore);
452     } else {
453       Regions.emplace_back();
454       ColdRegion = &Regions.back();
455       BestScore = 0;
456     }
457 
458     // Find all successors of SinkBB dominated by SinkBB using DFS.
459     auto SuccIt = ++df_begin(&SinkBB);
460     auto SuccEnd = df_end(&SinkBB);
461     while (SuccIt != SuccEnd) {
462       BasicBlock &SuccBB = **SuccIt;
463       bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
464 
465       // Don't allow the backwards & forwards DFSes to mark the same block.
466       bool DuplicateBlock = RegionBlocks.count(&SuccBB);
467 
468       // If SinkBB does not dominate a successor, do not mark the successor (or
469       // any of its successors) cold.
470       if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
471         SuccIt.skipChildren();
472         continue;
473       }
474 
475       unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
476       if (SuccScore > BestScore) {
477         ColdRegion->SuggestedEntryPoint = &SuccBB;
478         BestScore = SuccScore;
479       }
480 
481       addBlockToRegion(&SuccBB, SuccScore);
482       ++SuccIt;
483     }
484 
485     return Regions;
486   }
487 
488   /// Whether this region has nothing to extract.
489   bool empty() const { return !SuggestedEntryPoint; }
490 
491   /// The blocks in this region.
492   ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
493 
494   /// Whether the entire function containing this region is cold.
495   bool isEntireFunctionCold() const { return EntireFunctionCold; }
496 
497   /// Remove a sub-region from this region and return it as a block sequence.
498   BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
499     assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
500 
501     // Remove blocks dominated by the suggested entry point from this region.
502     // During the removal, identify the next best entry point into the region.
503     // Ensure that the first extracted block is the suggested entry point.
504     BlockSequence SubRegion = {SuggestedEntryPoint};
505     BasicBlock *NextEntryPoint = nullptr;
506     unsigned NextScore = 0;
507     auto RegionEndIt = Blocks.end();
508     auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
509       BasicBlock *BB = Block.first;
510       unsigned Score = Block.second;
511       bool InSubRegion =
512           BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
513       if (!InSubRegion && Score > NextScore) {
514         NextEntryPoint = BB;
515         NextScore = Score;
516       }
517       if (InSubRegion && BB != SuggestedEntryPoint)
518         SubRegion.push_back(BB);
519       return InSubRegion;
520     });
521     Blocks.erase(RegionStartIt, RegionEndIt);
522 
523     // Update the suggested entry point.
524     SuggestedEntryPoint = NextEntryPoint;
525 
526     return SubRegion;
527   }
528 };
529 } // namespace
530 
531 bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
532   bool Changed = false;
533 
534   // The set of cold blocks.
535   SmallPtrSet<BasicBlock *, 4> ColdBlocks;
536 
537   // The worklist of non-intersecting regions left to outline.
538   SmallVector<OutliningRegion, 2> OutliningWorklist;
539 
540   // Set up an RPO traversal. Experimentally, this performs better (outlines
541   // more) than a PO traversal, because we prevent region overlap by keeping
542   // the first region to contain a block.
543   ReversePostOrderTraversal<Function *> RPOT(&F);
544 
545   // Calculate domtrees lazily. This reduces compile-time significantly.
546   std::unique_ptr<DominatorTree> DT;
547   std::unique_ptr<PostDominatorTree> PDT;
548 
549   // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
550   // reduces compile-time significantly. TODO: When we *do* use BFI, we should
551   // be able to salvage its domtrees instead of recomputing them.
552   BlockFrequencyInfo *BFI = nullptr;
553   if (HasProfileSummary)
554     BFI = GetBFI(F);
555 
556   TargetTransformInfo &TTI = GetTTI(F);
557   OptimizationRemarkEmitter &ORE = (*GetORE)(F);
558   AssumptionCache *AC = LookupAC(F);
559 
560   // Find all cold regions.
561   for (BasicBlock *BB : RPOT) {
562     // This block is already part of some outlining region.
563     if (ColdBlocks.count(BB))
564       continue;
565 
566     bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) ||
567                 (EnableStaticAnalyis && unlikelyExecuted(*BB));
568     if (!Cold)
569       continue;
570 
571     LLVM_DEBUG({
572       dbgs() << "Found a cold block:\n";
573       BB->dump();
574     });
575 
576     if (!DT)
577       DT = std::make_unique<DominatorTree>(F);
578     if (!PDT)
579       PDT = std::make_unique<PostDominatorTree>(F);
580 
581     auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
582     for (OutliningRegion &Region : Regions) {
583       if (Region.empty())
584         continue;
585 
586       if (Region.isEntireFunctionCold()) {
587         LLVM_DEBUG(dbgs() << "Entire function is cold\n");
588         return markFunctionCold(F);
589       }
590 
591       // If this outlining region intersects with another, drop the new region.
592       //
593       // TODO: It's theoretically possible to outline more by only keeping the
594       // largest region which contains a block, but the extra bookkeeping to do
595       // this is tricky/expensive.
596       bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
597         return !ColdBlocks.insert(Block.first).second;
598       });
599       if (RegionsOverlap)
600         continue;
601 
602       OutliningWorklist.emplace_back(std::move(Region));
603       ++NumColdRegionsFound;
604     }
605   }
606 
607   if (OutliningWorklist.empty())
608     return Changed;
609 
610   // Outline single-entry cold regions, splitting up larger regions as needed.
611   unsigned OutlinedFunctionID = 1;
612   // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
613   CodeExtractorAnalysisCache CEAC(F);
614   do {
615     OutliningRegion Region = OutliningWorklist.pop_back_val();
616     assert(!Region.empty() && "Empty outlining region in worklist");
617     do {
618       BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
619       LLVM_DEBUG({
620         dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
621         for (BasicBlock *BB : SubRegion)
622           BB->dump();
623       });
624 
625       Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI,
626                                              ORE, AC, OutlinedFunctionID);
627       if (Outlined) {
628         ++OutlinedFunctionID;
629         Changed = true;
630       }
631     } while (!Region.empty());
632   } while (!OutliningWorklist.empty());
633 
634   return Changed;
635 }
636 
637 bool HotColdSplitting::run(Module &M) {
638   bool Changed = false;
639   bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
640   for (auto It = M.begin(), End = M.end(); It != End; ++It) {
641     Function &F = *It;
642 
643     // Do not touch declarations.
644     if (F.isDeclaration())
645       continue;
646 
647     // Do not modify `optnone` functions.
648     if (F.hasOptNone())
649       continue;
650 
651     // Detect inherently cold functions and mark them as such.
652     if (isFunctionCold(F)) {
653       Changed |= markFunctionCold(F);
654       continue;
655     }
656 
657     if (!shouldOutlineFrom(F)) {
658       LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
659       continue;
660     }
661 
662     LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
663     Changed |= outlineColdRegions(F, HasProfileSummary);
664   }
665   return Changed;
666 }
667 
668 bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
669   if (skipModule(M))
670     return false;
671   ProfileSummaryInfo *PSI =
672       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
673   auto GTTI = [this](Function &F) -> TargetTransformInfo & {
674     return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
675   };
676   auto GBFI = [this](Function &F) {
677     return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
678   };
679   std::unique_ptr<OptimizationRemarkEmitter> ORE;
680   std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
681       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
682     ORE.reset(new OptimizationRemarkEmitter(&F));
683     return *ORE.get();
684   };
685   auto LookupAC = [this](Function &F) -> AssumptionCache * {
686     if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
687       return ACT->lookupAssumptionCache(F);
688     return nullptr;
689   };
690 
691   return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M);
692 }
693 
694 PreservedAnalyses
695 HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
696   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
697 
698   auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
699     return FAM.getCachedResult<AssumptionAnalysis>(F);
700   };
701 
702   auto GBFI = [&FAM](Function &F) {
703     return &FAM.getResult<BlockFrequencyAnalysis>(F);
704   };
705 
706   std::function<TargetTransformInfo &(Function &)> GTTI =
707       [&FAM](Function &F) -> TargetTransformInfo & {
708     return FAM.getResult<TargetIRAnalysis>(F);
709   };
710 
711   std::unique_ptr<OptimizationRemarkEmitter> ORE;
712   std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
713       [&ORE](Function &F) -> OptimizationRemarkEmitter & {
714     ORE.reset(new OptimizationRemarkEmitter(&F));
715     return *ORE.get();
716   };
717 
718   ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
719 
720   if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
721     return PreservedAnalyses::none();
722   return PreservedAnalyses::all();
723 }
724 
725 char HotColdSplittingLegacyPass::ID = 0;
726 INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
727                       "Hot Cold Splitting", false, false)
728 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
729 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
730 INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
731                     "Hot Cold Splitting", false, false)
732 
733 ModulePass *llvm::createHotColdSplittingPass() {
734   return new HotColdSplittingLegacyPass();
735 }
736