1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Use.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
82 STATISTIC(NumDeleted   , "Number of globals deleted");
83 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
84 STATISTIC(NumLocalized , "Number of globals localized");
85 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
86 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
88 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
92 STATISTIC(NumInternalFunc, "Number of internal functions");
93 STATISTIC(NumColdCC, "Number of functions marked coldcc");
94 
95 static cl::opt<bool>
96     EnableColdCCStressTest("enable-coldcc-stress-test",
97                            cl::desc("Enable stress test of coldcc by adding "
98                                     "calling conv to all internal functions."),
99                            cl::init(false), cl::Hidden);
100 
101 static cl::opt<int> ColdCCRelFreq(
102     "coldcc-rel-freq", cl::Hidden, cl::init(2),
103     cl::desc(
104         "Maximum block frequency, expressed as a percentage of caller's "
105         "entry frequency, for a call site to be considered cold for enabling"
106         "coldcc"));
107 
108 /// Is this global variable possibly used by a leak checker as a root?  If so,
109 /// we might not really want to eliminate the stores to it.
110 static bool isLeakCheckerRoot(GlobalVariable *GV) {
111   // A global variable is a root if it is a pointer, or could plausibly contain
112   // a pointer.  There are two challenges; one is that we could have a struct
113   // the has an inner member which is a pointer.  We recurse through the type to
114   // detect these (up to a point).  The other is that we may actually be a union
115   // of a pointer and another type, and so our LLVM type is an integer which
116   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
117   // potentially contained here.
118 
119   if (GV->hasPrivateLinkage())
120     return false;
121 
122   SmallVector<Type *, 4> Types;
123   Types.push_back(GV->getValueType());
124 
125   unsigned Limit = 20;
126   do {
127     Type *Ty = Types.pop_back_val();
128     switch (Ty->getTypeID()) {
129       default: break;
130       case Type::PointerTyID:
131         return true;
132       case Type::FixedVectorTyID:
133       case Type::ScalableVectorTyID:
134         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
135           return true;
136         break;
137       case Type::ArrayTyID:
138         Types.push_back(cast<ArrayType>(Ty)->getElementType());
139         break;
140       case Type::StructTyID: {
141         StructType *STy = cast<StructType>(Ty);
142         if (STy->isOpaque()) return true;
143         for (StructType::element_iterator I = STy->element_begin(),
144                  E = STy->element_end(); I != E; ++I) {
145           Type *InnerTy = *I;
146           if (isa<PointerType>(InnerTy)) return true;
147           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
148               isa<VectorType>(InnerTy))
149             Types.push_back(InnerTy);
150         }
151         break;
152       }
153     }
154     if (--Limit == 0) return true;
155   } while (!Types.empty());
156   return false;
157 }
158 
159 /// Given a value that is stored to a global but never read, determine whether
160 /// it's safe to remove the store and the chain of computation that feeds the
161 /// store.
162 static bool IsSafeComputationToRemove(
163     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
164   do {
165     if (isa<Constant>(V))
166       return true;
167     if (!V->hasOneUse())
168       return false;
169     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
170         isa<GlobalValue>(V))
171       return false;
172     if (isAllocationFn(V, GetTLI))
173       return true;
174 
175     Instruction *I = cast<Instruction>(V);
176     if (I->mayHaveSideEffects())
177       return false;
178     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
179       if (!GEP->hasAllConstantIndices())
180         return false;
181     } else if (I->getNumOperands() != 1) {
182       return false;
183     }
184 
185     V = I->getOperand(0);
186   } while (true);
187 }
188 
189 /// This GV is a pointer root.  Loop over all users of the global and clean up
190 /// any that obviously don't assign the global a value that isn't dynamically
191 /// allocated.
192 static bool
193 CleanupPointerRootUsers(GlobalVariable *GV,
194                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
195   // A brief explanation of leak checkers.  The goal is to find bugs where
196   // pointers are forgotten, causing an accumulating growth in memory
197   // usage over time.  The common strategy for leak checkers is to explicitly
198   // allow the memory pointed to by globals at exit.  This is popular because it
199   // also solves another problem where the main thread of a C++ program may shut
200   // down before other threads that are still expecting to use those globals. To
201   // handle that case, we expect the program may create a singleton and never
202   // destroy it.
203 
204   bool Changed = false;
205 
206   // If Dead[n].first is the only use of a malloc result, we can delete its
207   // chain of computation and the store to the global in Dead[n].second.
208   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
209 
210   // Constants can't be pointers to dynamically allocated memory.
211   for (User *U : llvm::make_early_inc_range(GV->users())) {
212     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
213       Value *V = SI->getValueOperand();
214       if (isa<Constant>(V)) {
215         Changed = true;
216         SI->eraseFromParent();
217       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
218         if (I->hasOneUse())
219           Dead.push_back(std::make_pair(I, SI));
220       }
221     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
222       if (isa<Constant>(MSI->getValue())) {
223         Changed = true;
224         MSI->eraseFromParent();
225       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
226         if (I->hasOneUse())
227           Dead.push_back(std::make_pair(I, MSI));
228       }
229     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
230       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
231       if (MemSrc && MemSrc->isConstant()) {
232         Changed = true;
233         MTI->eraseFromParent();
234       } else if (Instruction *I = dyn_cast<Instruction>(MTI->getSource())) {
235         if (I->hasOneUse())
236           Dead.push_back(std::make_pair(I, MTI));
237       }
238     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
239       if (CE->use_empty()) {
240         CE->destroyConstant();
241         Changed = true;
242       }
243     } else if (Constant *C = dyn_cast<Constant>(U)) {
244       if (isSafeToDestroyConstant(C)) {
245         C->destroyConstant();
246         // This could have invalidated UI, start over from scratch.
247         Dead.clear();
248         CleanupPointerRootUsers(GV, GetTLI);
249         return true;
250       }
251     }
252   }
253 
254   for (int i = 0, e = Dead.size(); i != e; ++i) {
255     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
256       Dead[i].second->eraseFromParent();
257       Instruction *I = Dead[i].first;
258       do {
259         if (isAllocationFn(I, GetTLI))
260           break;
261         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
262         if (!J)
263           break;
264         I->eraseFromParent();
265         I = J;
266       } while (true);
267       I->eraseFromParent();
268       Changed = true;
269     }
270   }
271 
272   return Changed;
273 }
274 
275 /// We just marked GV constant.  Loop over all users of the global, cleaning up
276 /// the obvious ones.  This is largely just a quick scan over the use list to
277 /// clean up the easy and obvious cruft.  This returns true if it made a change.
278 static bool CleanupConstantGlobalUsers(GlobalVariable *GV,
279                                        const DataLayout &DL) {
280   Constant *Init = GV->getInitializer();
281   SmallVector<User *, 8> WorkList(GV->users());
282   SmallPtrSet<User *, 8> Visited;
283   bool Changed = false;
284 
285   SmallVector<WeakTrackingVH> MaybeDeadInsts;
286   auto EraseFromParent = [&](Instruction *I) {
287     for (Value *Op : I->operands())
288       if (auto *OpI = dyn_cast<Instruction>(Op))
289         MaybeDeadInsts.push_back(OpI);
290     I->eraseFromParent();
291     Changed = true;
292   };
293   while (!WorkList.empty()) {
294     User *U = WorkList.pop_back_val();
295     if (!Visited.insert(U).second)
296       continue;
297 
298     if (auto *BO = dyn_cast<BitCastOperator>(U))
299       append_range(WorkList, BO->users());
300     if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(U))
301       append_range(WorkList, ASC->users());
302     else if (auto *GEP = dyn_cast<GEPOperator>(U))
303       append_range(WorkList, GEP->users());
304     else if (auto *LI = dyn_cast<LoadInst>(U)) {
305       // A load from a uniform value is always the same, regardless of any
306       // applied offset.
307       Type *Ty = LI->getType();
308       if (Constant *Res = ConstantFoldLoadFromUniformValue(Init, Ty)) {
309         LI->replaceAllUsesWith(Res);
310         EraseFromParent(LI);
311         continue;
312       }
313 
314       Value *PtrOp = LI->getPointerOperand();
315       APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
316       PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
317           DL, Offset, /* AllowNonInbounds */ true);
318       if (PtrOp == GV) {
319         if (auto *Value = ConstantFoldLoadFromConst(Init, Ty, Offset, DL)) {
320           LI->replaceAllUsesWith(Value);
321           EraseFromParent(LI);
322         }
323       }
324     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
325       // Store must be unreachable or storing Init into the global.
326       EraseFromParent(SI);
327     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
328       if (getUnderlyingObject(MI->getRawDest()) == GV)
329         EraseFromParent(MI);
330     }
331   }
332 
333   Changed |=
334       RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts);
335   GV->removeDeadConstantUsers();
336   return Changed;
337 }
338 
339 /// Look at all uses of the global and determine which (offset, type) pairs it
340 /// can be split into.
341 static bool collectSRATypes(DenseMap<uint64_t, Type *> &Types, GlobalValue *GV,
342                             const DataLayout &DL) {
343   SmallVector<Use *, 16> Worklist;
344   SmallPtrSet<Use *, 16> Visited;
345   auto AppendUses = [&](Value *V) {
346     for (Use &U : V->uses())
347       if (Visited.insert(&U).second)
348         Worklist.push_back(&U);
349   };
350   AppendUses(GV);
351   while (!Worklist.empty()) {
352     Use *U = Worklist.pop_back_val();
353     User *V = U->getUser();
354 
355     auto *GEP = dyn_cast<GEPOperator>(V);
356     if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) ||
357         (GEP && GEP->hasAllConstantIndices())) {
358       AppendUses(V);
359       continue;
360     }
361 
362     if (Value *Ptr = getLoadStorePointerOperand(V)) {
363       // This is storing the global address into somewhere, not storing into
364       // the global.
365       if (isa<StoreInst>(V) && U->getOperandNo() == 0)
366         return false;
367 
368       APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
369       Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
370                                                    /* AllowNonInbounds */ true);
371       if (Ptr != GV || Offset.getActiveBits() >= 64)
372         return false;
373 
374       // TODO: We currently require that all accesses at a given offset must
375       // use the same type. This could be relaxed.
376       Type *Ty = getLoadStoreType(V);
377       auto It = Types.try_emplace(Offset.getZExtValue(), Ty).first;
378       if (Ty != It->second)
379         return false;
380       continue;
381     }
382 
383     // Ignore dead constant users.
384     if (auto *C = dyn_cast<Constant>(V)) {
385       if (!isSafeToDestroyConstant(C))
386         return false;
387       continue;
388     }
389 
390     // Unknown user.
391     return false;
392   }
393 
394   return true;
395 }
396 
397 /// Copy over the debug info for a variable to its SRA replacements.
398 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
399                                  uint64_t FragmentOffsetInBits,
400                                  uint64_t FragmentSizeInBits,
401                                  uint64_t VarSize) {
402   SmallVector<DIGlobalVariableExpression *, 1> GVs;
403   GV->getDebugInfo(GVs);
404   for (auto *GVE : GVs) {
405     DIVariable *Var = GVE->getVariable();
406     DIExpression *Expr = GVE->getExpression();
407     int64_t CurVarOffsetInBytes = 0;
408     uint64_t CurVarOffsetInBits = 0;
409 
410     // Calculate the offset (Bytes), Continue if unknown.
411     if (!Expr->extractIfOffset(CurVarOffsetInBytes))
412       continue;
413 
414     // Ignore negative offset.
415     if (CurVarOffsetInBytes < 0)
416       continue;
417 
418     // Convert offset to bits.
419     CurVarOffsetInBits = CHAR_BIT * (uint64_t)CurVarOffsetInBytes;
420 
421     // Current var starts after the fragment, ignore.
422     if (CurVarOffsetInBits >= (FragmentOffsetInBits + FragmentSizeInBits))
423       continue;
424 
425     uint64_t CurVarSize = Var->getType()->getSizeInBits();
426     // Current variable ends before start of fragment, ignore.
427     if (CurVarSize != 0 &&
428         (CurVarOffsetInBits + CurVarSize) <= FragmentOffsetInBits)
429       continue;
430 
431     // Current variable fits in the fragment.
432     if (CurVarOffsetInBits == FragmentOffsetInBits &&
433         CurVarSize == FragmentSizeInBits)
434       Expr = DIExpression::get(Expr->getContext(), {});
435     // If the FragmentSize is smaller than the variable,
436     // emit a fragment expression.
437     else if (FragmentSizeInBits < VarSize) {
438       if (auto E = DIExpression::createFragmentExpression(
439               Expr, FragmentOffsetInBits, FragmentSizeInBits))
440         Expr = *E;
441       else
442         return;
443     }
444     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
445     NGV->addDebugInfo(NGVE);
446   }
447 }
448 
449 /// Perform scalar replacement of aggregates on the specified global variable.
450 /// This opens the door for other optimizations by exposing the behavior of the
451 /// program in a more fine-grained way.  We have determined that this
452 /// transformation is safe already.  We return the first global variable we
453 /// insert so that the caller can reprocess it.
454 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
455   assert(GV->hasLocalLinkage());
456 
457   // Collect types to split into.
458   DenseMap<uint64_t, Type *> Types;
459   if (!collectSRATypes(Types, GV, DL) || Types.empty())
460     return nullptr;
461 
462   // Make sure we don't SRA back to the same type.
463   if (Types.size() == 1 && Types.begin()->second == GV->getValueType())
464     return nullptr;
465 
466   // Don't perform SRA if we would have to split into many globals.
467   if (Types.size() > 16)
468     return nullptr;
469 
470   // Sort by offset.
471   SmallVector<std::pair<uint64_t, Type *>, 16> TypesVector;
472   append_range(TypesVector, Types);
473   sort(TypesVector,
474        [](const auto &A, const auto &B) { return A.first < B.first; });
475 
476   // Check that the types are non-overlapping.
477   uint64_t Offset = 0;
478   for (const auto &Pair : TypesVector) {
479     // Overlaps with previous type.
480     if (Pair.first < Offset)
481       return nullptr;
482 
483     Offset = Pair.first + DL.getTypeAllocSize(Pair.second);
484   }
485 
486   // Some accesses go beyond the end of the global, don't bother.
487   if (Offset > DL.getTypeAllocSize(GV->getValueType()))
488     return nullptr;
489 
490   // Collect initializers for new globals.
491   Constant *OrigInit = GV->getInitializer();
492   DenseMap<uint64_t, Constant *> Initializers;
493   for (const auto &Pair : Types) {
494     Constant *NewInit = ConstantFoldLoadFromConst(OrigInit, Pair.second,
495                                                   APInt(64, Pair.first), DL);
496     if (!NewInit) {
497       LLVM_DEBUG(dbgs() << "Global SRA: Failed to evaluate initializer of "
498                         << *GV << " with type " << *Pair.second << " at offset "
499                         << Pair.first << "\n");
500       return nullptr;
501     }
502     Initializers.insert({Pair.first, NewInit});
503   }
504 
505   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
506 
507   // Get the alignment of the global, either explicit or target-specific.
508   Align StartAlignment =
509       DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
510   uint64_t VarSize = DL.getTypeSizeInBits(GV->getValueType());
511 
512   // Create replacement globals.
513   DenseMap<uint64_t, GlobalVariable *> NewGlobals;
514   unsigned NameSuffix = 0;
515   for (auto &Pair : TypesVector) {
516     uint64_t Offset = Pair.first;
517     Type *Ty = Pair.second;
518     GlobalVariable *NGV = new GlobalVariable(
519         *GV->getParent(), Ty, false, GlobalVariable::InternalLinkage,
520         Initializers[Offset], GV->getName() + "." + Twine(NameSuffix++), GV,
521         GV->getThreadLocalMode(), GV->getAddressSpace());
522     NGV->copyAttributesFrom(GV);
523     NewGlobals.insert({Offset, NGV});
524 
525     // Calculate the known alignment of the field.  If the original aggregate
526     // had 256 byte alignment for example, something might depend on that:
527     // propagate info to each field.
528     Align NewAlign = commonAlignment(StartAlignment, Offset);
529     if (NewAlign > DL.getABITypeAlign(Ty))
530       NGV->setAlignment(NewAlign);
531 
532     // Copy over the debug info for the variable.
533     transferSRADebugInfo(GV, NGV, Offset * 8, DL.getTypeAllocSizeInBits(Ty),
534                          VarSize);
535   }
536 
537   // Replace uses of the original global with uses of the new global.
538   SmallVector<Value *, 16> Worklist;
539   SmallPtrSet<Value *, 16> Visited;
540   SmallVector<WeakTrackingVH, 16> DeadInsts;
541   auto AppendUsers = [&](Value *V) {
542     for (User *U : V->users())
543       if (Visited.insert(U).second)
544         Worklist.push_back(U);
545   };
546   AppendUsers(GV);
547   while (!Worklist.empty()) {
548     Value *V = Worklist.pop_back_val();
549     if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) ||
550         isa<GEPOperator>(V)) {
551       AppendUsers(V);
552       if (isa<Instruction>(V))
553         DeadInsts.push_back(V);
554       continue;
555     }
556 
557     if (Value *Ptr = getLoadStorePointerOperand(V)) {
558       APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
559       Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
560                                                    /* AllowNonInbounds */ true);
561       assert(Ptr == GV && "Load/store must be from/to global");
562       GlobalVariable *NGV = NewGlobals[Offset.getZExtValue()];
563       assert(NGV && "Must have replacement global for this offset");
564 
565       // Update the pointer operand and recalculate alignment.
566       Align PrefAlign = DL.getPrefTypeAlign(getLoadStoreType(V));
567       Align NewAlign =
568           getOrEnforceKnownAlignment(NGV, PrefAlign, DL, cast<Instruction>(V));
569 
570       if (auto *LI = dyn_cast<LoadInst>(V)) {
571         LI->setOperand(0, NGV);
572         LI->setAlignment(NewAlign);
573       } else {
574         auto *SI = cast<StoreInst>(V);
575         SI->setOperand(1, NGV);
576         SI->setAlignment(NewAlign);
577       }
578       continue;
579     }
580 
581     assert(isa<Constant>(V) && isSafeToDestroyConstant(cast<Constant>(V)) &&
582            "Other users can only be dead constants");
583   }
584 
585   // Delete old instructions and global.
586   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
587   GV->removeDeadConstantUsers();
588   GV->eraseFromParent();
589   ++NumSRA;
590 
591   assert(NewGlobals.size() > 0);
592   return NewGlobals.begin()->second;
593 }
594 
595 /// Return true if all users of the specified value will trap if the value is
596 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
597 /// reprocessing them.
598 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
599                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
600   for (const User *U : V->users()) {
601     if (const Instruction *I = dyn_cast<Instruction>(U)) {
602       // If null pointer is considered valid, then all uses are non-trapping.
603       // Non address-space 0 globals have already been pruned by the caller.
604       if (NullPointerIsDefined(I->getFunction()))
605         return false;
606     }
607     if (isa<LoadInst>(U)) {
608       // Will trap.
609     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
610       if (SI->getOperand(0) == V) {
611         return false;  // Storing the value.
612       }
613     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
614       if (CI->getCalledOperand() != V) {
615         return false;  // Not calling the ptr
616       }
617     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
618       if (II->getCalledOperand() != V) {
619         return false;  // Not calling the ptr
620       }
621     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
622       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
623     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
624       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
625     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
626       // If we've already seen this phi node, ignore it, it has already been
627       // checked.
628       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
629         return false;
630     } else if (isa<ICmpInst>(U) &&
631                !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) &&
632                isa<LoadInst>(U->getOperand(0)) &&
633                isa<ConstantPointerNull>(U->getOperand(1))) {
634       assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0))
635                                   ->getPointerOperand()
636                                   ->stripPointerCasts()) &&
637              "Should be GlobalVariable");
638       // This and only this kind of non-signed ICmpInst is to be replaced with
639       // the comparing of the value of the created global init bool later in
640       // optimizeGlobalAddressOfAllocation for the global variable.
641     } else {
642       return false;
643     }
644   }
645   return true;
646 }
647 
648 /// Return true if all uses of any loads from GV will trap if the loaded value
649 /// is null.  Note that this also permits comparisons of the loaded value
650 /// against null, as a special case.
651 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
652   SmallVector<const Value *, 4> Worklist;
653   Worklist.push_back(GV);
654   while (!Worklist.empty()) {
655     const Value *P = Worklist.pop_back_val();
656     for (auto *U : P->users()) {
657       if (auto *LI = dyn_cast<LoadInst>(U)) {
658         SmallPtrSet<const PHINode *, 8> PHIs;
659         if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
660           return false;
661       } else if (auto *SI = dyn_cast<StoreInst>(U)) {
662         // Ignore stores to the global.
663         if (SI->getPointerOperand() != P)
664           return false;
665       } else if (auto *CE = dyn_cast<ConstantExpr>(U)) {
666         if (CE->stripPointerCasts() != GV)
667           return false;
668         // Check further the ConstantExpr.
669         Worklist.push_back(CE);
670       } else {
671         // We don't know or understand this user, bail out.
672         return false;
673       }
674     }
675   }
676 
677   return true;
678 }
679 
680 /// Get all the loads/store uses for global variable \p GV.
681 static void allUsesOfLoadAndStores(GlobalVariable *GV,
682                                    SmallVector<Value *, 4> &Uses) {
683   SmallVector<Value *, 4> Worklist;
684   Worklist.push_back(GV);
685   while (!Worklist.empty()) {
686     auto *P = Worklist.pop_back_val();
687     for (auto *U : P->users()) {
688       if (auto *CE = dyn_cast<ConstantExpr>(U)) {
689         Worklist.push_back(CE);
690         continue;
691       }
692 
693       assert((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
694              "Expect only load or store instructions");
695       Uses.push_back(U);
696     }
697   }
698 }
699 
700 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
701   bool Changed = false;
702   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
703     Instruction *I = cast<Instruction>(*UI++);
704     // Uses are non-trapping if null pointer is considered valid.
705     // Non address-space 0 globals are already pruned by the caller.
706     if (NullPointerIsDefined(I->getFunction()))
707       return false;
708     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
709       LI->setOperand(0, NewV);
710       Changed = true;
711     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
712       if (SI->getOperand(1) == V) {
713         SI->setOperand(1, NewV);
714         Changed = true;
715       }
716     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
717       CallBase *CB = cast<CallBase>(I);
718       if (CB->getCalledOperand() == V) {
719         // Calling through the pointer!  Turn into a direct call, but be careful
720         // that the pointer is not also being passed as an argument.
721         CB->setCalledOperand(NewV);
722         Changed = true;
723         bool PassedAsArg = false;
724         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
725           if (CB->getArgOperand(i) == V) {
726             PassedAsArg = true;
727             CB->setArgOperand(i, NewV);
728           }
729 
730         if (PassedAsArg) {
731           // Being passed as an argument also.  Be careful to not invalidate UI!
732           UI = V->user_begin();
733         }
734       }
735     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
736       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
737                                 ConstantExpr::getCast(CI->getOpcode(),
738                                                       NewV, CI->getType()));
739       if (CI->use_empty()) {
740         Changed = true;
741         CI->eraseFromParent();
742       }
743     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
744       // Should handle GEP here.
745       SmallVector<Constant*, 8> Idxs;
746       Idxs.reserve(GEPI->getNumOperands()-1);
747       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
748            i != e; ++i)
749         if (Constant *C = dyn_cast<Constant>(*i))
750           Idxs.push_back(C);
751         else
752           break;
753       if (Idxs.size() == GEPI->getNumOperands()-1)
754         Changed |= OptimizeAwayTrappingUsesOfValue(
755             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
756                                                  NewV, Idxs));
757       if (GEPI->use_empty()) {
758         Changed = true;
759         GEPI->eraseFromParent();
760       }
761     }
762   }
763 
764   return Changed;
765 }
766 
767 /// The specified global has only one non-null value stored into it.  If there
768 /// are uses of the loaded value that would trap if the loaded value is
769 /// dynamically null, then we know that they cannot be reachable with a null
770 /// optimize away the load.
771 static bool OptimizeAwayTrappingUsesOfLoads(
772     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
773     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
774   bool Changed = false;
775 
776   // Keep track of whether we are able to remove all the uses of the global
777   // other than the store that defines it.
778   bool AllNonStoreUsesGone = true;
779 
780   // Replace all uses of loads with uses of uses of the stored value.
781   for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) {
782     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
783       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
784       // If we were able to delete all uses of the loads
785       if (LI->use_empty()) {
786         LI->eraseFromParent();
787         Changed = true;
788       } else {
789         AllNonStoreUsesGone = false;
790       }
791     } else if (isa<StoreInst>(GlobalUser)) {
792       // Ignore the store that stores "LV" to the global.
793       assert(GlobalUser->getOperand(1) == GV &&
794              "Must be storing *to* the global");
795     } else {
796       AllNonStoreUsesGone = false;
797 
798       // If we get here we could have other crazy uses that are transitively
799       // loaded.
800       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
801               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
802               isa<BitCastInst>(GlobalUser) ||
803               isa<GetElementPtrInst>(GlobalUser)) &&
804              "Only expect load and stores!");
805     }
806   }
807 
808   if (Changed) {
809     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
810                       << "\n");
811     ++NumGlobUses;
812   }
813 
814   // If we nuked all of the loads, then none of the stores are needed either,
815   // nor is the global.
816   if (AllNonStoreUsesGone) {
817     if (isLeakCheckerRoot(GV)) {
818       Changed |= CleanupPointerRootUsers(GV, GetTLI);
819     } else {
820       Changed = true;
821       CleanupConstantGlobalUsers(GV, DL);
822     }
823     if (GV->use_empty()) {
824       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
825       Changed = true;
826       GV->eraseFromParent();
827       ++NumDeleted;
828     }
829   }
830   return Changed;
831 }
832 
833 /// Walk the use list of V, constant folding all of the instructions that are
834 /// foldable.
835 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
836                                 TargetLibraryInfo *TLI) {
837   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
838     if (Instruction *I = dyn_cast<Instruction>(*UI++))
839       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
840         I->replaceAllUsesWith(NewC);
841 
842         // Advance UI to the next non-I use to avoid invalidating it!
843         // Instructions could multiply use V.
844         while (UI != E && *UI == I)
845           ++UI;
846         if (isInstructionTriviallyDead(I, TLI))
847           I->eraseFromParent();
848       }
849 }
850 
851 /// This function takes the specified global variable, and transforms the
852 /// program as if it always contained the result of the specified malloc.
853 /// Because it is always the result of the specified malloc, there is no reason
854 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
855 /// loads of GV as uses of the new global.
856 static GlobalVariable *
857 OptimizeGlobalAddressOfAllocation(GlobalVariable *GV, CallInst *CI,
858                                   uint64_t AllocSize, Constant *InitVal,
859                                   const DataLayout &DL,
860                                   TargetLibraryInfo *TLI) {
861   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
862                     << '\n');
863 
864   // Create global of type [AllocSize x i8].
865   Type *GlobalType = ArrayType::get(Type::getInt8Ty(GV->getContext()),
866                                     AllocSize);
867 
868   // Create the new global variable.  The contents of the allocated memory is
869   // undefined initially, so initialize with an undef value.
870   GlobalVariable *NewGV = new GlobalVariable(
871       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
872       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
873       GV->getThreadLocalMode());
874 
875   // Initialize the global at the point of the original call.  Note that this
876   // is a different point from the initialization referred to below for the
877   // nullability handling.  Sublety: We have not proven the original global was
878   // only initialized once.  As such, we can not fold this into the initializer
879   // of the new global as may need to re-init the storage multiple times.
880   if (!isa<UndefValue>(InitVal)) {
881     IRBuilder<> Builder(CI->getNextNode());
882     // TODO: Use alignment above if align!=1
883     Builder.CreateMemSet(NewGV, InitVal, AllocSize, None);
884   }
885 
886   // Update users of the allocation to use the new global instead.
887   BitCastInst *TheBC = nullptr;
888   while (!CI->use_empty()) {
889     Instruction *User = cast<Instruction>(CI->user_back());
890     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
891       if (BCI->getType() == NewGV->getType()) {
892         BCI->replaceAllUsesWith(NewGV);
893         BCI->eraseFromParent();
894       } else {
895         BCI->setOperand(0, NewGV);
896       }
897     } else {
898       if (!TheBC)
899         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
900       User->replaceUsesOfWith(CI, TheBC);
901     }
902   }
903 
904   SmallSetVector<Constant *, 1> RepValues;
905   RepValues.insert(NewGV);
906 
907   // If there is a comparison against null, we will insert a global bool to
908   // keep track of whether the global was initialized yet or not.
909   GlobalVariable *InitBool =
910     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
911                        GlobalValue::InternalLinkage,
912                        ConstantInt::getFalse(GV->getContext()),
913                        GV->getName()+".init", GV->getThreadLocalMode());
914   bool InitBoolUsed = false;
915 
916   // Loop over all instruction uses of GV, processing them in turn.
917   SmallVector<Value *, 4> Guses;
918   allUsesOfLoadAndStores(GV, Guses);
919   for (auto *U : Guses) {
920     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
921       // The global is initialized when the store to it occurs. If the stored
922       // value is null value, the global bool is set to false, otherwise true.
923       new StoreInst(ConstantInt::getBool(
924                         GV->getContext(),
925                         !isa<ConstantPointerNull>(SI->getValueOperand())),
926                     InitBool, false, Align(1), SI->getOrdering(),
927                     SI->getSyncScopeID(), SI);
928       SI->eraseFromParent();
929       continue;
930     }
931 
932     LoadInst *LI = cast<LoadInst>(U);
933     while (!LI->use_empty()) {
934       Use &LoadUse = *LI->use_begin();
935       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
936       if (!ICI) {
937         auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType());
938         RepValues.insert(CE);
939         LoadUse.set(CE);
940         continue;
941       }
942 
943       // Replace the cmp X, 0 with a use of the bool value.
944       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
945                                InitBool->getName() + ".val", false, Align(1),
946                                LI->getOrdering(), LI->getSyncScopeID(), LI);
947       InitBoolUsed = true;
948       switch (ICI->getPredicate()) {
949       default: llvm_unreachable("Unknown ICmp Predicate!");
950       case ICmpInst::ICMP_ULT: // X < null -> always false
951         LV = ConstantInt::getFalse(GV->getContext());
952         break;
953       case ICmpInst::ICMP_UGE: // X >= null -> always true
954         LV = ConstantInt::getTrue(GV->getContext());
955         break;
956       case ICmpInst::ICMP_ULE:
957       case ICmpInst::ICMP_EQ:
958         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
959         break;
960       case ICmpInst::ICMP_NE:
961       case ICmpInst::ICMP_UGT:
962         break;  // no change.
963       }
964       ICI->replaceAllUsesWith(LV);
965       ICI->eraseFromParent();
966     }
967     LI->eraseFromParent();
968   }
969 
970   // If the initialization boolean was used, insert it, otherwise delete it.
971   if (!InitBoolUsed) {
972     while (!InitBool->use_empty())  // Delete initializations
973       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
974     delete InitBool;
975   } else
976     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
977 
978   // Now the GV is dead, nuke it and the allocation..
979   GV->eraseFromParent();
980   CI->eraseFromParent();
981 
982   // To further other optimizations, loop over all users of NewGV and try to
983   // constant prop them.  This will promote GEP instructions with constant
984   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
985   for (auto *CE : RepValues)
986     ConstantPropUsersOf(CE, DL, TLI);
987 
988   return NewGV;
989 }
990 
991 /// Scan the use-list of GV checking to make sure that there are no complex uses
992 /// of GV.  We permit simple things like dereferencing the pointer, but not
993 /// storing through the address, unless it is to the specified global.
994 static bool
995 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI,
996                                           const GlobalVariable *GV) {
997   SmallPtrSet<const Value *, 4> Visited;
998   SmallVector<const Value *, 4> Worklist;
999   Worklist.push_back(CI);
1000 
1001   while (!Worklist.empty()) {
1002     const Value *V = Worklist.pop_back_val();
1003     if (!Visited.insert(V).second)
1004       continue;
1005 
1006     for (const Use &VUse : V->uses()) {
1007       const User *U = VUse.getUser();
1008       if (isa<LoadInst>(U) || isa<CmpInst>(U))
1009         continue; // Fine, ignore.
1010 
1011       if (auto *SI = dyn_cast<StoreInst>(U)) {
1012         if (SI->getValueOperand() == V &&
1013             SI->getPointerOperand()->stripPointerCasts() != GV)
1014           return false; // Storing the pointer not into GV... bad.
1015         continue; // Otherwise, storing through it, or storing into GV... fine.
1016       }
1017 
1018       if (auto *BCI = dyn_cast<BitCastInst>(U)) {
1019         Worklist.push_back(BCI);
1020         continue;
1021       }
1022 
1023       if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1024         Worklist.push_back(GEPI);
1025         continue;
1026       }
1027 
1028       return false;
1029     }
1030   }
1031 
1032   return true;
1033 }
1034 
1035 /// If we have a global that is only initialized with a fixed size allocation
1036 /// try to transform the program to use global memory instead of heap
1037 /// allocated memory. This eliminates dynamic allocation, avoids an indirection
1038 /// accessing the data, and exposes the resultant global to further GlobalOpt.
1039 static bool tryToOptimizeStoreOfAllocationToGlobal(GlobalVariable *GV,
1040                                                    CallInst *CI,
1041                                                    AtomicOrdering Ordering,
1042                                                    const DataLayout &DL,
1043                                                    TargetLibraryInfo *TLI) {
1044   if (!isAllocRemovable(CI, TLI))
1045     // Must be able to remove the call when we get done..
1046     return false;
1047 
1048   Type *Int8Ty = Type::getInt8Ty(CI->getFunction()->getContext());
1049   Constant *InitVal = getInitialValueOfAllocation(CI, TLI, Int8Ty);
1050   if (!InitVal)
1051     // Must be able to emit a memset for initialization
1052     return false;
1053 
1054   uint64_t AllocSize;
1055   if (!getObjectSize(CI, AllocSize, DL, TLI, ObjectSizeOpts()))
1056     return false;
1057 
1058   // Restrict this transformation to only working on small allocations
1059   // (2048 bytes currently), as we don't want to introduce a 16M global or
1060   // something.
1061   if (AllocSize >= 2048)
1062     return false;
1063 
1064   // We can't optimize this global unless all uses of it are *known* to be
1065   // of the malloc value, not of the null initializer value (consider a use
1066   // that compares the global's value against zero to see if the malloc has
1067   // been reached).  To do this, we check to see if all uses of the global
1068   // would trap if the global were null: this proves that they must all
1069   // happen after the malloc.
1070   if (!allUsesOfLoadedValueWillTrapIfNull(GV))
1071     return false;
1072 
1073   // We can't optimize this if the malloc itself is used in a complex way,
1074   // for example, being stored into multiple globals.  This allows the
1075   // malloc to be stored into the specified global, loaded, gep, icmp'd.
1076   // These are all things we could transform to using the global for.
1077   if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV))
1078     return false;
1079 
1080   OptimizeGlobalAddressOfAllocation(GV, CI, AllocSize, InitVal, DL, TLI);
1081   return true;
1082 }
1083 
1084 // Try to optimize globals based on the knowledge that only one value (besides
1085 // its initializer) is ever stored to the global.
1086 static bool
1087 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1088                          AtomicOrdering Ordering, const DataLayout &DL,
1089                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1090   // Ignore no-op GEPs and bitcasts.
1091   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1092 
1093   // If we are dealing with a pointer global that is initialized to null and
1094   // only has one (non-null) value stored into it, then we can optimize any
1095   // users of the loaded value (often calls and loads) that would trap if the
1096   // value was null.
1097   if (GV->getInitializer()->getType()->isPointerTy() &&
1098       GV->getInitializer()->isNullValue() &&
1099       StoredOnceVal->getType()->isPointerTy() &&
1100       !NullPointerIsDefined(
1101           nullptr /* F */,
1102           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1103     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1104       if (GV->getInitializer()->getType() != SOVC->getType())
1105         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1106 
1107       // Optimize away any trapping uses of the loaded value.
1108       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1109         return true;
1110     } else if (isAllocationFn(StoredOnceVal, GetTLI)) {
1111       if (auto *CI = dyn_cast<CallInst>(StoredOnceVal)) {
1112         auto *TLI = &GetTLI(*CI->getFunction());
1113         if (tryToOptimizeStoreOfAllocationToGlobal(GV, CI, Ordering, DL, TLI))
1114           return true;
1115       }
1116     }
1117   }
1118 
1119   return false;
1120 }
1121 
1122 /// At this point, we have learned that the only two values ever stored into GV
1123 /// are its initializer and OtherVal.  See if we can shrink the global into a
1124 /// boolean and select between the two values whenever it is used.  This exposes
1125 /// the values to other scalar optimizations.
1126 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1127   Type *GVElType = GV->getValueType();
1128 
1129   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1130   // an FP value, pointer or vector, don't do this optimization because a select
1131   // between them is very expensive and unlikely to lead to later
1132   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1133   // where v1 and v2 both require constant pool loads, a big loss.
1134   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1135       GVElType->isFloatingPointTy() ||
1136       GVElType->isPointerTy() || GVElType->isVectorTy())
1137     return false;
1138 
1139   // Walk the use list of the global seeing if all the uses are load or store.
1140   // If there is anything else, bail out.
1141   for (User *U : GV->users()) {
1142     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1143       return false;
1144     if (getLoadStoreType(U) != GVElType)
1145       return false;
1146   }
1147 
1148   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1149 
1150   // Create the new global, initializing it to false.
1151   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1152                                              false,
1153                                              GlobalValue::InternalLinkage,
1154                                         ConstantInt::getFalse(GV->getContext()),
1155                                              GV->getName()+".b",
1156                                              GV->getThreadLocalMode(),
1157                                              GV->getType()->getAddressSpace());
1158   NewGV->copyAttributesFrom(GV);
1159   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1160 
1161   Constant *InitVal = GV->getInitializer();
1162   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1163          "No reason to shrink to bool!");
1164 
1165   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1166   GV->getDebugInfo(GVs);
1167 
1168   // If initialized to zero and storing one into the global, we can use a cast
1169   // instead of a select to synthesize the desired value.
1170   bool IsOneZero = false;
1171   bool EmitOneOrZero = true;
1172   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1173   if (CI && CI->getValue().getActiveBits() <= 64) {
1174     IsOneZero = InitVal->isNullValue() && CI->isOne();
1175 
1176     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1177     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1178       uint64_t ValInit = CIInit->getZExtValue();
1179       uint64_t ValOther = CI->getZExtValue();
1180       uint64_t ValMinus = ValOther - ValInit;
1181 
1182       for(auto *GVe : GVs){
1183         DIGlobalVariable *DGV = GVe->getVariable();
1184         DIExpression *E = GVe->getExpression();
1185         const DataLayout &DL = GV->getParent()->getDataLayout();
1186         unsigned SizeInOctets =
1187             DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8;
1188 
1189         // It is expected that the address of global optimized variable is on
1190         // top of the stack. After optimization, value of that variable will
1191         // be ether 0 for initial value or 1 for other value. The following
1192         // expression should return constant integer value depending on the
1193         // value at global object address:
1194         // val * (ValOther - ValInit) + ValInit:
1195         // DW_OP_deref DW_OP_constu <ValMinus>
1196         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1197         SmallVector<uint64_t, 12> Ops = {
1198             dwarf::DW_OP_deref_size, SizeInOctets,
1199             dwarf::DW_OP_constu, ValMinus,
1200             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1201             dwarf::DW_OP_plus};
1202         bool WithStackValue = true;
1203         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1204         DIGlobalVariableExpression *DGVE =
1205           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1206         NewGV->addDebugInfo(DGVE);
1207      }
1208      EmitOneOrZero = false;
1209     }
1210   }
1211 
1212   if (EmitOneOrZero) {
1213      // FIXME: This will only emit address for debugger on which will
1214      // be written only 0 or 1.
1215      for(auto *GV : GVs)
1216        NewGV->addDebugInfo(GV);
1217    }
1218 
1219   while (!GV->use_empty()) {
1220     Instruction *UI = cast<Instruction>(GV->user_back());
1221     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1222       // Change the store into a boolean store.
1223       bool StoringOther = SI->getOperand(0) == OtherVal;
1224       // Only do this if we weren't storing a loaded value.
1225       Value *StoreVal;
1226       if (StoringOther || SI->getOperand(0) == InitVal) {
1227         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1228                                     StoringOther);
1229       } else {
1230         // Otherwise, we are storing a previously loaded copy.  To do this,
1231         // change the copy from copying the original value to just copying the
1232         // bool.
1233         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1234 
1235         // If we've already replaced the input, StoredVal will be a cast or
1236         // select instruction.  If not, it will be a load of the original
1237         // global.
1238         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1239           assert(LI->getOperand(0) == GV && "Not a copy!");
1240           // Insert a new load, to preserve the saved value.
1241           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1242                                   LI->getName() + ".b", false, Align(1),
1243                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1244         } else {
1245           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1246                  "This is not a form that we understand!");
1247           StoreVal = StoredVal->getOperand(0);
1248           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1249         }
1250       }
1251       StoreInst *NSI =
1252           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1253                         SI->getSyncScopeID(), SI);
1254       NSI->setDebugLoc(SI->getDebugLoc());
1255     } else {
1256       // Change the load into a load of bool then a select.
1257       LoadInst *LI = cast<LoadInst>(UI);
1258       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1259                                    LI->getName() + ".b", false, Align(1),
1260                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1261       Instruction *NSI;
1262       if (IsOneZero)
1263         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1264       else
1265         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1266       NSI->takeName(LI);
1267       // Since LI is split into two instructions, NLI and NSI both inherit the
1268       // same DebugLoc
1269       NLI->setDebugLoc(LI->getDebugLoc());
1270       NSI->setDebugLoc(LI->getDebugLoc());
1271       LI->replaceAllUsesWith(NSI);
1272     }
1273     UI->eraseFromParent();
1274   }
1275 
1276   // Retain the name of the old global variable. People who are debugging their
1277   // programs may expect these variables to be named the same.
1278   NewGV->takeName(GV);
1279   GV->eraseFromParent();
1280   return true;
1281 }
1282 
1283 static bool deleteIfDead(
1284     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1285   GV.removeDeadConstantUsers();
1286 
1287   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1288     return false;
1289 
1290   if (const Comdat *C = GV.getComdat())
1291     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1292       return false;
1293 
1294   bool Dead;
1295   if (auto *F = dyn_cast<Function>(&GV))
1296     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1297   else
1298     Dead = GV.use_empty();
1299   if (!Dead)
1300     return false;
1301 
1302   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1303   GV.eraseFromParent();
1304   ++NumDeleted;
1305   return true;
1306 }
1307 
1308 static bool isPointerValueDeadOnEntryToFunction(
1309     const Function *F, GlobalValue *GV,
1310     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1311   // Find all uses of GV. We expect them all to be in F, and if we can't
1312   // identify any of the uses we bail out.
1313   //
1314   // On each of these uses, identify if the memory that GV points to is
1315   // used/required/live at the start of the function. If it is not, for example
1316   // if the first thing the function does is store to the GV, the GV can
1317   // possibly be demoted.
1318   //
1319   // We don't do an exhaustive search for memory operations - simply look
1320   // through bitcasts as they're quite common and benign.
1321   const DataLayout &DL = GV->getParent()->getDataLayout();
1322   SmallVector<LoadInst *, 4> Loads;
1323   SmallVector<StoreInst *, 4> Stores;
1324   for (auto *U : GV->users()) {
1325     if (Operator::getOpcode(U) == Instruction::BitCast) {
1326       for (auto *UU : U->users()) {
1327         if (auto *LI = dyn_cast<LoadInst>(UU))
1328           Loads.push_back(LI);
1329         else if (auto *SI = dyn_cast<StoreInst>(UU))
1330           Stores.push_back(SI);
1331         else
1332           return false;
1333       }
1334       continue;
1335     }
1336 
1337     Instruction *I = dyn_cast<Instruction>(U);
1338     if (!I)
1339       return false;
1340     assert(I->getParent()->getParent() == F);
1341 
1342     if (auto *LI = dyn_cast<LoadInst>(I))
1343       Loads.push_back(LI);
1344     else if (auto *SI = dyn_cast<StoreInst>(I))
1345       Stores.push_back(SI);
1346     else
1347       return false;
1348   }
1349 
1350   // We have identified all uses of GV into loads and stores. Now check if all
1351   // of them are known not to depend on the value of the global at the function
1352   // entry point. We do this by ensuring that every load is dominated by at
1353   // least one store.
1354   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1355 
1356   // The below check is quadratic. Check we're not going to do too many tests.
1357   // FIXME: Even though this will always have worst-case quadratic time, we
1358   // could put effort into minimizing the average time by putting stores that
1359   // have been shown to dominate at least one load at the beginning of the
1360   // Stores array, making subsequent dominance checks more likely to succeed
1361   // early.
1362   //
1363   // The threshold here is fairly large because global->local demotion is a
1364   // very powerful optimization should it fire.
1365   const unsigned Threshold = 100;
1366   if (Loads.size() * Stores.size() > Threshold)
1367     return false;
1368 
1369   for (auto *L : Loads) {
1370     auto *LTy = L->getType();
1371     if (none_of(Stores, [&](const StoreInst *S) {
1372           auto *STy = S->getValueOperand()->getType();
1373           // The load is only dominated by the store if DomTree says so
1374           // and the number of bits loaded in L is less than or equal to
1375           // the number of bits stored in S.
1376           return DT.dominates(S, L) &&
1377                  DL.getTypeStoreSize(LTy).getFixedSize() <=
1378                      DL.getTypeStoreSize(STy).getFixedSize();
1379         }))
1380       return false;
1381   }
1382   // All loads have known dependences inside F, so the global can be localized.
1383   return true;
1384 }
1385 
1386 /// C may have non-instruction users. Can all of those users be turned into
1387 /// instructions?
1388 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1389   // We don't do this exhaustively. The most common pattern that we really need
1390   // to care about is a constant GEP or constant bitcast - so just looking
1391   // through one single ConstantExpr.
1392   //
1393   // The set of constants that this function returns true for must be able to be
1394   // handled by makeAllConstantUsesInstructions.
1395   for (auto *U : C->users()) {
1396     if (isa<Instruction>(U))
1397       continue;
1398     if (!isa<ConstantExpr>(U))
1399       // Non instruction, non-constantexpr user; cannot convert this.
1400       return false;
1401     for (auto *UU : U->users())
1402       if (!isa<Instruction>(UU))
1403         // A constantexpr used by another constant. We don't try and recurse any
1404         // further but just bail out at this point.
1405         return false;
1406   }
1407 
1408   return true;
1409 }
1410 
1411 /// C may have non-instruction users, and
1412 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1413 /// non-instruction users to instructions.
1414 static void makeAllConstantUsesInstructions(Constant *C) {
1415   SmallVector<ConstantExpr*,4> Users;
1416   for (auto *U : C->users()) {
1417     if (isa<ConstantExpr>(U))
1418       Users.push_back(cast<ConstantExpr>(U));
1419     else
1420       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1421       // should not have returned true for C.
1422       assert(
1423           isa<Instruction>(U) &&
1424           "Can't transform non-constantexpr non-instruction to instruction!");
1425   }
1426 
1427   SmallVector<Value*,4> UUsers;
1428   for (auto *U : Users) {
1429     UUsers.clear();
1430     append_range(UUsers, U->users());
1431     for (auto *UU : UUsers) {
1432       Instruction *UI = cast<Instruction>(UU);
1433       Instruction *NewU = U->getAsInstruction(UI);
1434       UI->replaceUsesOfWith(U, NewU);
1435     }
1436     // We've replaced all the uses, so destroy the constant. (destroyConstant
1437     // will update value handles and metadata.)
1438     U->destroyConstant();
1439   }
1440 }
1441 
1442 /// Analyze the specified global variable and optimize
1443 /// it if possible.  If we make a change, return true.
1444 static bool
1445 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1446                       function_ref<TargetTransformInfo &(Function &)> GetTTI,
1447                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1448                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1449   auto &DL = GV->getParent()->getDataLayout();
1450   // If this is a first class global and has only one accessing function and
1451   // this function is non-recursive, we replace the global with a local alloca
1452   // in this function.
1453   //
1454   // NOTE: It doesn't make sense to promote non-single-value types since we
1455   // are just replacing static memory to stack memory.
1456   //
1457   // If the global is in different address space, don't bring it to stack.
1458   if (!GS.HasMultipleAccessingFunctions &&
1459       GS.AccessingFunction &&
1460       GV->getValueType()->isSingleValueType() &&
1461       GV->getType()->getAddressSpace() == 0 &&
1462       !GV->isExternallyInitialized() &&
1463       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1464       GS.AccessingFunction->doesNotRecurse() &&
1465       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1466                                           LookupDomTree)) {
1467     const DataLayout &DL = GV->getParent()->getDataLayout();
1468 
1469     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1470     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1471                                                    ->getEntryBlock().begin());
1472     Type *ElemTy = GV->getValueType();
1473     // FIXME: Pass Global's alignment when globals have alignment
1474     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1475                                         GV->getName(), &FirstI);
1476     if (!isa<UndefValue>(GV->getInitializer()))
1477       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1478 
1479     makeAllConstantUsesInstructions(GV);
1480 
1481     GV->replaceAllUsesWith(Alloca);
1482     GV->eraseFromParent();
1483     ++NumLocalized;
1484     return true;
1485   }
1486 
1487   bool Changed = false;
1488 
1489   // If the global is never loaded (but may be stored to), it is dead.
1490   // Delete it now.
1491   if (!GS.IsLoaded) {
1492     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1493 
1494     if (isLeakCheckerRoot(GV)) {
1495       // Delete any constant stores to the global.
1496       Changed = CleanupPointerRootUsers(GV, GetTLI);
1497     } else {
1498       // Delete any stores we can find to the global.  We may not be able to
1499       // make it completely dead though.
1500       Changed = CleanupConstantGlobalUsers(GV, DL);
1501     }
1502 
1503     // If the global is dead now, delete it.
1504     if (GV->use_empty()) {
1505       GV->eraseFromParent();
1506       ++NumDeleted;
1507       Changed = true;
1508     }
1509     return Changed;
1510 
1511   }
1512   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1513     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1514 
1515     // Don't actually mark a global constant if it's atomic because atomic loads
1516     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1517     // requires write access to the variable even if it's not actually changed.
1518     if (GS.Ordering == AtomicOrdering::NotAtomic) {
1519       assert(!GV->isConstant() && "Expected a non-constant global");
1520       GV->setConstant(true);
1521       Changed = true;
1522     }
1523 
1524     // Clean up any obviously simplifiable users now.
1525     Changed |= CleanupConstantGlobalUsers(GV, DL);
1526 
1527     // If the global is dead now, just nuke it.
1528     if (GV->use_empty()) {
1529       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1530                         << "all users and delete global!\n");
1531       GV->eraseFromParent();
1532       ++NumDeleted;
1533       return true;
1534     }
1535 
1536     // Fall through to the next check; see if we can optimize further.
1537     ++NumMarked;
1538   }
1539   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1540     const DataLayout &DL = GV->getParent()->getDataLayout();
1541     if (SRAGlobal(GV, DL))
1542       return true;
1543   }
1544   Value *StoredOnceValue = GS.getStoredOnceValue();
1545   if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) {
1546     // Avoid speculating constant expressions that might trap (div/rem).
1547     auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue);
1548     if (SOVConstant && SOVConstant->canTrap())
1549       return Changed;
1550 
1551     Function &StoreFn =
1552         const_cast<Function &>(*GS.StoredOnceStore->getFunction());
1553     bool CanHaveNonUndefGlobalInitializer =
1554         GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace(
1555             GV->getType()->getAddressSpace());
1556     // If the initial value for the global was an undef value, and if only
1557     // one other value was stored into it, we can just change the
1558     // initializer to be the stored value, then delete all stores to the
1559     // global.  This allows us to mark it constant.
1560     // This is restricted to address spaces that allow globals to have
1561     // initializers. NVPTX, for example, does not support initializers for
1562     // shared memory (AS 3).
1563     if (SOVConstant && isa<UndefValue>(GV->getInitializer()) &&
1564         DL.getTypeAllocSize(SOVConstant->getType()) ==
1565             DL.getTypeAllocSize(GV->getValueType()) &&
1566         CanHaveNonUndefGlobalInitializer) {
1567       if (SOVConstant->getType() == GV->getValueType()) {
1568         // Change the initializer in place.
1569         GV->setInitializer(SOVConstant);
1570       } else {
1571         // Create a new global with adjusted type.
1572         auto *NGV = new GlobalVariable(
1573             *GV->getParent(), SOVConstant->getType(), GV->isConstant(),
1574             GV->getLinkage(), SOVConstant, "", GV, GV->getThreadLocalMode(),
1575             GV->getAddressSpace());
1576         NGV->takeName(GV);
1577         NGV->copyAttributesFrom(GV);
1578         GV->replaceAllUsesWith(ConstantExpr::getBitCast(NGV, GV->getType()));
1579         GV->eraseFromParent();
1580         GV = NGV;
1581       }
1582 
1583       // Clean up any obviously simplifiable users now.
1584       CleanupConstantGlobalUsers(GV, DL);
1585 
1586       if (GV->use_empty()) {
1587         LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1588                           << "simplify all users and delete global!\n");
1589         GV->eraseFromParent();
1590         ++NumDeleted;
1591       }
1592       ++NumSubstitute;
1593       return true;
1594     }
1595 
1596     // Try to optimize globals based on the knowledge that only one value
1597     // (besides its initializer) is ever stored to the global.
1598     if (optimizeOnceStoredGlobal(GV, StoredOnceValue, GS.Ordering, DL, GetTLI))
1599       return true;
1600 
1601     // Otherwise, if the global was not a boolean, we can shrink it to be a
1602     // boolean. Skip this optimization for AS that doesn't allow an initializer.
1603     if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic &&
1604         (!isa<UndefValue>(GV->getInitializer()) ||
1605          CanHaveNonUndefGlobalInitializer)) {
1606       if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1607         ++NumShrunkToBool;
1608         return true;
1609       }
1610     }
1611   }
1612 
1613   return Changed;
1614 }
1615 
1616 /// Analyze the specified global variable and optimize it if possible.  If we
1617 /// make a change, return true.
1618 static bool
1619 processGlobal(GlobalValue &GV,
1620               function_ref<TargetTransformInfo &(Function &)> GetTTI,
1621               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1622               function_ref<DominatorTree &(Function &)> LookupDomTree) {
1623   if (GV.getName().startswith("llvm."))
1624     return false;
1625 
1626   GlobalStatus GS;
1627 
1628   if (GlobalStatus::analyzeGlobal(&GV, GS))
1629     return false;
1630 
1631   bool Changed = false;
1632   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1633     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1634                                                : GlobalValue::UnnamedAddr::Local;
1635     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1636       GV.setUnnamedAddr(NewUnnamedAddr);
1637       NumUnnamed++;
1638       Changed = true;
1639     }
1640   }
1641 
1642   // Do more involved optimizations if the global is internal.
1643   if (!GV.hasLocalLinkage())
1644     return Changed;
1645 
1646   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1647   if (!GVar)
1648     return Changed;
1649 
1650   if (GVar->isConstant() || !GVar->hasInitializer())
1651     return Changed;
1652 
1653   return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) ||
1654          Changed;
1655 }
1656 
1657 /// Walk all of the direct calls of the specified function, changing them to
1658 /// FastCC.
1659 static void ChangeCalleesToFastCall(Function *F) {
1660   for (User *U : F->users()) {
1661     if (isa<BlockAddress>(U))
1662       continue;
1663     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
1664   }
1665 }
1666 
1667 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
1668                                Attribute::AttrKind A) {
1669   unsigned AttrIndex;
1670   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
1671     return Attrs.removeAttributeAtIndex(C, AttrIndex, A);
1672   return Attrs;
1673 }
1674 
1675 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
1676   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
1677   for (User *U : F->users()) {
1678     if (isa<BlockAddress>(U))
1679       continue;
1680     CallBase *CB = cast<CallBase>(U);
1681     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
1682   }
1683 }
1684 
1685 /// Return true if this is a calling convention that we'd like to change.  The
1686 /// idea here is that we don't want to mess with the convention if the user
1687 /// explicitly requested something with performance implications like coldcc,
1688 /// GHC, or anyregcc.
1689 static bool hasChangeableCC(Function *F) {
1690   CallingConv::ID CC = F->getCallingConv();
1691 
1692   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1693   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
1694     return false;
1695 
1696   // FIXME: Change CC for the whole chain of musttail calls when possible.
1697   //
1698   // Can't change CC of the function that either has musttail calls, or is a
1699   // musttail callee itself
1700   for (User *U : F->users()) {
1701     if (isa<BlockAddress>(U))
1702       continue;
1703     CallInst* CI = dyn_cast<CallInst>(U);
1704     if (!CI)
1705       continue;
1706 
1707     if (CI->isMustTailCall())
1708       return false;
1709   }
1710 
1711   for (BasicBlock &BB : *F)
1712     if (BB.getTerminatingMustTailCall())
1713       return false;
1714 
1715   return true;
1716 }
1717 
1718 /// Return true if the block containing the call site has a BlockFrequency of
1719 /// less than ColdCCRelFreq% of the entry block.
1720 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
1721   const BranchProbability ColdProb(ColdCCRelFreq, 100);
1722   auto *CallSiteBB = CB.getParent();
1723   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
1724   auto CallerEntryFreq =
1725       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
1726   return CallSiteFreq < CallerEntryFreq * ColdProb;
1727 }
1728 
1729 // This function checks if the input function F is cold at all call sites. It
1730 // also looks each call site's containing function, returning false if the
1731 // caller function contains other non cold calls. The input vector AllCallsCold
1732 // contains a list of functions that only have call sites in cold blocks.
1733 static bool
1734 isValidCandidateForColdCC(Function &F,
1735                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1736                           const std::vector<Function *> &AllCallsCold) {
1737 
1738   if (F.user_empty())
1739     return false;
1740 
1741   for (User *U : F.users()) {
1742     if (isa<BlockAddress>(U))
1743       continue;
1744 
1745     CallBase &CB = cast<CallBase>(*U);
1746     Function *CallerFunc = CB.getParent()->getParent();
1747     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
1748     if (!isColdCallSite(CB, CallerBFI))
1749       return false;
1750     if (!llvm::is_contained(AllCallsCold, CallerFunc))
1751       return false;
1752   }
1753   return true;
1754 }
1755 
1756 static void changeCallSitesToColdCC(Function *F) {
1757   for (User *U : F->users()) {
1758     if (isa<BlockAddress>(U))
1759       continue;
1760     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
1761   }
1762 }
1763 
1764 // This function iterates over all the call instructions in the input Function
1765 // and checks that all call sites are in cold blocks and are allowed to use the
1766 // coldcc calling convention.
1767 static bool
1768 hasOnlyColdCalls(Function &F,
1769                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
1770   for (BasicBlock &BB : F) {
1771     for (Instruction &I : BB) {
1772       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1773         // Skip over isline asm instructions since they aren't function calls.
1774         if (CI->isInlineAsm())
1775           continue;
1776         Function *CalledFn = CI->getCalledFunction();
1777         if (!CalledFn)
1778           return false;
1779         if (!CalledFn->hasLocalLinkage())
1780           return false;
1781         // Skip over intrinsics since they won't remain as function calls.
1782         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
1783           continue;
1784         // Check if it's valid to use coldcc calling convention.
1785         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
1786             CalledFn->hasAddressTaken())
1787           return false;
1788         BlockFrequencyInfo &CallerBFI = GetBFI(F);
1789         if (!isColdCallSite(*CI, CallerBFI))
1790           return false;
1791       }
1792     }
1793   }
1794   return true;
1795 }
1796 
1797 static bool hasMustTailCallers(Function *F) {
1798   for (User *U : F->users()) {
1799     CallBase *CB = dyn_cast<CallBase>(U);
1800     if (!CB) {
1801       assert(isa<BlockAddress>(U) &&
1802              "Expected either CallBase or BlockAddress");
1803       continue;
1804     }
1805     if (CB->isMustTailCall())
1806       return true;
1807   }
1808   return false;
1809 }
1810 
1811 static bool hasInvokeCallers(Function *F) {
1812   for (User *U : F->users())
1813     if (isa<InvokeInst>(U))
1814       return true;
1815   return false;
1816 }
1817 
1818 static void RemovePreallocated(Function *F) {
1819   RemoveAttribute(F, Attribute::Preallocated);
1820 
1821   auto *M = F->getParent();
1822 
1823   IRBuilder<> Builder(M->getContext());
1824 
1825   // Cannot modify users() while iterating over it, so make a copy.
1826   SmallVector<User *, 4> PreallocatedCalls(F->users());
1827   for (User *U : PreallocatedCalls) {
1828     CallBase *CB = dyn_cast<CallBase>(U);
1829     if (!CB)
1830       continue;
1831 
1832     assert(
1833         !CB->isMustTailCall() &&
1834         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
1835     // Create copy of call without "preallocated" operand bundle.
1836     SmallVector<OperandBundleDef, 1> OpBundles;
1837     CB->getOperandBundlesAsDefs(OpBundles);
1838     CallBase *PreallocatedSetup = nullptr;
1839     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
1840       if (It->getTag() == "preallocated") {
1841         PreallocatedSetup = cast<CallBase>(*It->input_begin());
1842         OpBundles.erase(It);
1843         break;
1844       }
1845     }
1846     assert(PreallocatedSetup && "Did not find preallocated bundle");
1847     uint64_t ArgCount =
1848         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
1849 
1850     assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
1851            "Unknown indirect call type");
1852     CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
1853     CB->replaceAllUsesWith(NewCB);
1854     NewCB->takeName(CB);
1855     CB->eraseFromParent();
1856 
1857     Builder.SetInsertPoint(PreallocatedSetup);
1858     auto *StackSave =
1859         Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
1860 
1861     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
1862     Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
1863                        StackSave);
1864 
1865     // Replace @llvm.call.preallocated.arg() with alloca.
1866     // Cannot modify users() while iterating over it, so make a copy.
1867     // @llvm.call.preallocated.arg() can be called with the same index multiple
1868     // times. So for each @llvm.call.preallocated.arg(), we see if we have
1869     // already created a Value* for the index, and if not, create an alloca and
1870     // bitcast right after the @llvm.call.preallocated.setup() so that it
1871     // dominates all uses.
1872     SmallVector<Value *, 2> ArgAllocas(ArgCount);
1873     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
1874     for (auto *User : PreallocatedArgs) {
1875       auto *UseCall = cast<CallBase>(User);
1876       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
1877                  Intrinsic::call_preallocated_arg &&
1878              "preallocated token use was not a llvm.call.preallocated.arg");
1879       uint64_t AllocArgIndex =
1880           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
1881       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
1882       if (!AllocaReplacement) {
1883         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
1884         auto *ArgType =
1885             UseCall->getFnAttr(Attribute::Preallocated).getValueAsType();
1886         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
1887         Builder.SetInsertPoint(InsertBefore);
1888         auto *Alloca =
1889             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
1890         auto *BitCast = Builder.CreateBitCast(
1891             Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
1892         ArgAllocas[AllocArgIndex] = BitCast;
1893         AllocaReplacement = BitCast;
1894       }
1895 
1896       UseCall->replaceAllUsesWith(AllocaReplacement);
1897       UseCall->eraseFromParent();
1898     }
1899     // Remove @llvm.call.preallocated.setup().
1900     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
1901   }
1902 }
1903 
1904 static bool
1905 OptimizeFunctions(Module &M,
1906                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1907                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
1908                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1909                   function_ref<DominatorTree &(Function &)> LookupDomTree,
1910                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1911 
1912   bool Changed = false;
1913 
1914   std::vector<Function *> AllCallsCold;
1915   for (Function &F : llvm::make_early_inc_range(M))
1916     if (hasOnlyColdCalls(F, GetBFI))
1917       AllCallsCold.push_back(&F);
1918 
1919   // Optimize functions.
1920   for (Function &F : llvm::make_early_inc_range(M)) {
1921     // Don't perform global opt pass on naked functions; we don't want fast
1922     // calling conventions for naked functions.
1923     if (F.hasFnAttribute(Attribute::Naked))
1924       continue;
1925 
1926     // Functions without names cannot be referenced outside this module.
1927     if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage())
1928       F.setLinkage(GlobalValue::InternalLinkage);
1929 
1930     if (deleteIfDead(F, NotDiscardableComdats)) {
1931       Changed = true;
1932       continue;
1933     }
1934 
1935     // LLVM's definition of dominance allows instructions that are cyclic
1936     // in unreachable blocks, e.g.:
1937     // %pat = select i1 %condition, @global, i16* %pat
1938     // because any instruction dominates an instruction in a block that's
1939     // not reachable from entry.
1940     // So, remove unreachable blocks from the function, because a) there's
1941     // no point in analyzing them and b) GlobalOpt should otherwise grow
1942     // some more complicated logic to break these cycles.
1943     // Removing unreachable blocks might invalidate the dominator so we
1944     // recalculate it.
1945     if (!F.isDeclaration()) {
1946       if (removeUnreachableBlocks(F)) {
1947         auto &DT = LookupDomTree(F);
1948         DT.recalculate(F);
1949         Changed = true;
1950       }
1951     }
1952 
1953     Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree);
1954 
1955     if (!F.hasLocalLinkage())
1956       continue;
1957 
1958     // If we have an inalloca parameter that we can safely remove the
1959     // inalloca attribute from, do so. This unlocks optimizations that
1960     // wouldn't be safe in the presence of inalloca.
1961     // FIXME: We should also hoist alloca affected by this to the entry
1962     // block if possible.
1963     if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
1964         !F.hasAddressTaken() && !hasMustTailCallers(&F)) {
1965       RemoveAttribute(&F, Attribute::InAlloca);
1966       Changed = true;
1967     }
1968 
1969     // FIXME: handle invokes
1970     // FIXME: handle musttail
1971     if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
1972       if (!F.hasAddressTaken() && !hasMustTailCallers(&F) &&
1973           !hasInvokeCallers(&F)) {
1974         RemovePreallocated(&F);
1975         Changed = true;
1976       }
1977       continue;
1978     }
1979 
1980     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
1981       NumInternalFunc++;
1982       TargetTransformInfo &TTI = GetTTI(F);
1983       // Change the calling convention to coldcc if either stress testing is
1984       // enabled or the target would like to use coldcc on functions which are
1985       // cold at all call sites and the callers contain no other non coldcc
1986       // calls.
1987       if (EnableColdCCStressTest ||
1988           (TTI.useColdCCForColdCall(F) &&
1989            isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) {
1990         F.setCallingConv(CallingConv::Cold);
1991         changeCallSitesToColdCC(&F);
1992         Changed = true;
1993         NumColdCC++;
1994       }
1995     }
1996 
1997     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
1998       // If this function has a calling convention worth changing, is not a
1999       // varargs function, and is only called directly, promote it to use the
2000       // Fast calling convention.
2001       F.setCallingConv(CallingConv::Fast);
2002       ChangeCalleesToFastCall(&F);
2003       ++NumFastCallFns;
2004       Changed = true;
2005     }
2006 
2007     if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2008         !F.hasAddressTaken()) {
2009       // The function is not used by a trampoline intrinsic, so it is safe
2010       // to remove the 'nest' attribute.
2011       RemoveAttribute(&F, Attribute::Nest);
2012       ++NumNestRemoved;
2013       Changed = true;
2014     }
2015   }
2016   return Changed;
2017 }
2018 
2019 static bool
2020 OptimizeGlobalVars(Module &M,
2021                    function_ref<TargetTransformInfo &(Function &)> GetTTI,
2022                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2023                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2024                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2025   bool Changed = false;
2026 
2027   for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) {
2028     // Global variables without names cannot be referenced outside this module.
2029     if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage())
2030       GV.setLinkage(GlobalValue::InternalLinkage);
2031     // Simplify the initializer.
2032     if (GV.hasInitializer())
2033       if (auto *C = dyn_cast<Constant>(GV.getInitializer())) {
2034         auto &DL = M.getDataLayout();
2035         // TLI is not used in the case of a Constant, so use default nullptr
2036         // for that optional parameter, since we don't have a Function to
2037         // provide GetTLI anyway.
2038         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2039         if (New != C)
2040           GV.setInitializer(New);
2041       }
2042 
2043     if (deleteIfDead(GV, NotDiscardableComdats)) {
2044       Changed = true;
2045       continue;
2046     }
2047 
2048     Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree);
2049   }
2050   return Changed;
2051 }
2052 
2053 /// Evaluate static constructors in the function, if we can.  Return true if we
2054 /// can, false otherwise.
2055 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2056                                       TargetLibraryInfo *TLI) {
2057   // Skip external functions.
2058   if (F->isDeclaration())
2059     return false;
2060   // Call the function.
2061   Evaluator Eval(DL, TLI);
2062   Constant *RetValDummy;
2063   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2064                                            SmallVector<Constant*, 0>());
2065 
2066   if (EvalSuccess) {
2067     ++NumCtorsEvaluated;
2068 
2069     // We succeeded at evaluation: commit the result.
2070     auto NewInitializers = Eval.getMutatedInitializers();
2071     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2072                       << F->getName() << "' to " << NewInitializers.size()
2073                       << " stores.\n");
2074     for (const auto &Pair : NewInitializers)
2075       Pair.first->setInitializer(Pair.second);
2076     for (GlobalVariable *GV : Eval.getInvariants())
2077       GV->setConstant(true);
2078   }
2079 
2080   return EvalSuccess;
2081 }
2082 
2083 static int compareNames(Constant *const *A, Constant *const *B) {
2084   Value *AStripped = (*A)->stripPointerCasts();
2085   Value *BStripped = (*B)->stripPointerCasts();
2086   return AStripped->getName().compare(BStripped->getName());
2087 }
2088 
2089 static void setUsedInitializer(GlobalVariable &V,
2090                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2091   if (Init.empty()) {
2092     V.eraseFromParent();
2093     return;
2094   }
2095 
2096   // Type of pointer to the array of pointers.
2097   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2098 
2099   SmallVector<Constant *, 8> UsedArray;
2100   for (GlobalValue *GV : Init) {
2101     Constant *Cast
2102       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2103     UsedArray.push_back(Cast);
2104   }
2105   // Sort to get deterministic order.
2106   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2107   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2108 
2109   Module *M = V.getParent();
2110   V.removeFromParent();
2111   GlobalVariable *NV =
2112       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2113                          ConstantArray::get(ATy, UsedArray), "");
2114   NV->takeName(&V);
2115   NV->setSection("llvm.metadata");
2116   delete &V;
2117 }
2118 
2119 namespace {
2120 
2121 /// An easy to access representation of llvm.used and llvm.compiler.used.
2122 class LLVMUsed {
2123   SmallPtrSet<GlobalValue *, 4> Used;
2124   SmallPtrSet<GlobalValue *, 4> CompilerUsed;
2125   GlobalVariable *UsedV;
2126   GlobalVariable *CompilerUsedV;
2127 
2128 public:
2129   LLVMUsed(Module &M) {
2130     SmallVector<GlobalValue *, 4> Vec;
2131     UsedV = collectUsedGlobalVariables(M, Vec, false);
2132     Used = {Vec.begin(), Vec.end()};
2133     Vec.clear();
2134     CompilerUsedV = collectUsedGlobalVariables(M, Vec, true);
2135     CompilerUsed = {Vec.begin(), Vec.end()};
2136   }
2137 
2138   using iterator = SmallPtrSet<GlobalValue *, 4>::iterator;
2139   using used_iterator_range = iterator_range<iterator>;
2140 
2141   iterator usedBegin() { return Used.begin(); }
2142   iterator usedEnd() { return Used.end(); }
2143 
2144   used_iterator_range used() {
2145     return used_iterator_range(usedBegin(), usedEnd());
2146   }
2147 
2148   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2149   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2150 
2151   used_iterator_range compilerUsed() {
2152     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2153   }
2154 
2155   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2156 
2157   bool compilerUsedCount(GlobalValue *GV) const {
2158     return CompilerUsed.count(GV);
2159   }
2160 
2161   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2162   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2163   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2164 
2165   bool compilerUsedInsert(GlobalValue *GV) {
2166     return CompilerUsed.insert(GV).second;
2167   }
2168 
2169   void syncVariablesAndSets() {
2170     if (UsedV)
2171       setUsedInitializer(*UsedV, Used);
2172     if (CompilerUsedV)
2173       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2174   }
2175 };
2176 
2177 } // end anonymous namespace
2178 
2179 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2180   if (GA.use_empty()) // No use at all.
2181     return false;
2182 
2183   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2184          "We should have removed the duplicated "
2185          "element from llvm.compiler.used");
2186   if (!GA.hasOneUse())
2187     // Strictly more than one use. So at least one is not in llvm.used and
2188     // llvm.compiler.used.
2189     return true;
2190 
2191   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2192   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2193 }
2194 
2195 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2196                                                const LLVMUsed &U) {
2197   unsigned N = 2;
2198   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2199          "We should have removed the duplicated "
2200          "element from llvm.compiler.used");
2201   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2202     ++N;
2203   return V.hasNUsesOrMore(N);
2204 }
2205 
2206 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2207   if (!GA.hasLocalLinkage())
2208     return true;
2209 
2210   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2211 }
2212 
2213 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2214                              bool &RenameTarget) {
2215   RenameTarget = false;
2216   bool Ret = false;
2217   if (hasUseOtherThanLLVMUsed(GA, U))
2218     Ret = true;
2219 
2220   // If the alias is externally visible, we may still be able to simplify it.
2221   if (!mayHaveOtherReferences(GA, U))
2222     return Ret;
2223 
2224   // If the aliasee has internal linkage, give it the name and linkage
2225   // of the alias, and delete the alias.  This turns:
2226   //   define internal ... @f(...)
2227   //   @a = alias ... @f
2228   // into:
2229   //   define ... @a(...)
2230   Constant *Aliasee = GA.getAliasee();
2231   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2232   if (!Target->hasLocalLinkage())
2233     return Ret;
2234 
2235   // Do not perform the transform if multiple aliases potentially target the
2236   // aliasee. This check also ensures that it is safe to replace the section
2237   // and other attributes of the aliasee with those of the alias.
2238   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2239     return Ret;
2240 
2241   RenameTarget = true;
2242   return true;
2243 }
2244 
2245 static bool
2246 OptimizeGlobalAliases(Module &M,
2247                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2248   bool Changed = false;
2249   LLVMUsed Used(M);
2250 
2251   for (GlobalValue *GV : Used.used())
2252     Used.compilerUsedErase(GV);
2253 
2254   // Return whether GV is explicitly or implicitly dso_local and not replaceable
2255   // by another definition in the current linkage unit.
2256   auto IsModuleLocal = [](GlobalValue &GV) {
2257     return !GlobalValue::isInterposableLinkage(GV.getLinkage()) &&
2258            (GV.isDSOLocal() || GV.isImplicitDSOLocal());
2259   };
2260 
2261   for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) {
2262     // Aliases without names cannot be referenced outside this module.
2263     if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage())
2264       J.setLinkage(GlobalValue::InternalLinkage);
2265 
2266     if (deleteIfDead(J, NotDiscardableComdats)) {
2267       Changed = true;
2268       continue;
2269     }
2270 
2271     // If the alias can change at link time, nothing can be done - bail out.
2272     if (!IsModuleLocal(J))
2273       continue;
2274 
2275     Constant *Aliasee = J.getAliasee();
2276     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2277     // We can't trivially replace the alias with the aliasee if the aliasee is
2278     // non-trivial in some way. We also can't replace the alias with the aliasee
2279     // if the aliasee may be preemptible at runtime. On ELF, a non-preemptible
2280     // alias can be used to access the definition as if preemption did not
2281     // happen.
2282     // TODO: Try to handle non-zero GEPs of local aliasees.
2283     if (!Target || !IsModuleLocal(*Target))
2284       continue;
2285 
2286     Target->removeDeadConstantUsers();
2287 
2288     // Make all users of the alias use the aliasee instead.
2289     bool RenameTarget;
2290     if (!hasUsesToReplace(J, Used, RenameTarget))
2291       continue;
2292 
2293     J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType()));
2294     ++NumAliasesResolved;
2295     Changed = true;
2296 
2297     if (RenameTarget) {
2298       // Give the aliasee the name, linkage and other attributes of the alias.
2299       Target->takeName(&J);
2300       Target->setLinkage(J.getLinkage());
2301       Target->setDSOLocal(J.isDSOLocal());
2302       Target->setVisibility(J.getVisibility());
2303       Target->setDLLStorageClass(J.getDLLStorageClass());
2304 
2305       if (Used.usedErase(&J))
2306         Used.usedInsert(Target);
2307 
2308       if (Used.compilerUsedErase(&J))
2309         Used.compilerUsedInsert(Target);
2310     } else if (mayHaveOtherReferences(J, Used))
2311       continue;
2312 
2313     // Delete the alias.
2314     M.getAliasList().erase(&J);
2315     ++NumAliasesRemoved;
2316     Changed = true;
2317   }
2318 
2319   Used.syncVariablesAndSets();
2320 
2321   return Changed;
2322 }
2323 
2324 static Function *
2325 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2326   // Hack to get a default TLI before we have actual Function.
2327   auto FuncIter = M.begin();
2328   if (FuncIter == M.end())
2329     return nullptr;
2330   auto *TLI = &GetTLI(*FuncIter);
2331 
2332   LibFunc F = LibFunc_cxa_atexit;
2333   if (!TLI->has(F))
2334     return nullptr;
2335 
2336   Function *Fn = M.getFunction(TLI->getName(F));
2337   if (!Fn)
2338     return nullptr;
2339 
2340   // Now get the actual TLI for Fn.
2341   TLI = &GetTLI(*Fn);
2342 
2343   // Make sure that the function has the correct prototype.
2344   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2345     return nullptr;
2346 
2347   return Fn;
2348 }
2349 
2350 /// Returns whether the given function is an empty C++ destructor and can
2351 /// therefore be eliminated.
2352 /// Note that we assume that other optimization passes have already simplified
2353 /// the code so we simply check for 'ret'.
2354 static bool cxxDtorIsEmpty(const Function &Fn) {
2355   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2356   // nounwind, but that doesn't seem worth doing.
2357   if (Fn.isDeclaration())
2358     return false;
2359 
2360   for (auto &I : Fn.getEntryBlock()) {
2361     if (I.isDebugOrPseudoInst())
2362       continue;
2363     if (isa<ReturnInst>(I))
2364       return true;
2365     break;
2366   }
2367   return false;
2368 }
2369 
2370 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2371   /// Itanium C++ ABI p3.3.5:
2372   ///
2373   ///   After constructing a global (or local static) object, that will require
2374   ///   destruction on exit, a termination function is registered as follows:
2375   ///
2376   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2377   ///
2378   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2379   ///   call f(p) when DSO d is unloaded, before all such termination calls
2380   ///   registered before this one. It returns zero if registration is
2381   ///   successful, nonzero on failure.
2382 
2383   // This pass will look for calls to __cxa_atexit where the function is trivial
2384   // and remove them.
2385   bool Changed = false;
2386 
2387   for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) {
2388     // We're only interested in calls. Theoretically, we could handle invoke
2389     // instructions as well, but neither llvm-gcc nor clang generate invokes
2390     // to __cxa_atexit.
2391     CallInst *CI = dyn_cast<CallInst>(U);
2392     if (!CI)
2393       continue;
2394 
2395     Function *DtorFn =
2396       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2397     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2398       continue;
2399 
2400     // Just remove the call.
2401     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2402     CI->eraseFromParent();
2403 
2404     ++NumCXXDtorsRemoved;
2405 
2406     Changed |= true;
2407   }
2408 
2409   return Changed;
2410 }
2411 
2412 static bool optimizeGlobalsInModule(
2413     Module &M, const DataLayout &DL,
2414     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2415     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2416     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2417     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2418   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2419   bool Changed = false;
2420   bool LocalChange = true;
2421   Optional<uint32_t> FirstNotFullyEvaluatedPriority;
2422 
2423   while (LocalChange) {
2424     LocalChange = false;
2425 
2426     NotDiscardableComdats.clear();
2427     for (const GlobalVariable &GV : M.globals())
2428       if (const Comdat *C = GV.getComdat())
2429         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2430           NotDiscardableComdats.insert(C);
2431     for (Function &F : M)
2432       if (const Comdat *C = F.getComdat())
2433         if (!F.isDefTriviallyDead())
2434           NotDiscardableComdats.insert(C);
2435     for (GlobalAlias &GA : M.aliases())
2436       if (const Comdat *C = GA.getComdat())
2437         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2438           NotDiscardableComdats.insert(C);
2439 
2440     // Delete functions that are trivially dead, ccc -> fastcc
2441     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2442                                      NotDiscardableComdats);
2443 
2444     // Optimize global_ctors list.
2445     LocalChange |=
2446         optimizeGlobalCtorsList(M, [&](uint32_t Priority, Function *F) {
2447           if (FirstNotFullyEvaluatedPriority &&
2448               *FirstNotFullyEvaluatedPriority != Priority)
2449             return false;
2450           bool Evaluated = EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2451           if (!Evaluated)
2452             FirstNotFullyEvaluatedPriority = Priority;
2453           return Evaluated;
2454         });
2455 
2456     // Optimize non-address-taken globals.
2457     LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree,
2458                                       NotDiscardableComdats);
2459 
2460     // Resolve aliases, when possible.
2461     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2462 
2463     // Try to remove trivial global destructors if they are not removed
2464     // already.
2465     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2466     if (CXAAtExitFn)
2467       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2468 
2469     Changed |= LocalChange;
2470   }
2471 
2472   // TODO: Move all global ctors functions to the end of the module for code
2473   // layout.
2474 
2475   return Changed;
2476 }
2477 
2478 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2479     auto &DL = M.getDataLayout();
2480     auto &FAM =
2481         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2482     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2483       return FAM.getResult<DominatorTreeAnalysis>(F);
2484     };
2485     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2486       return FAM.getResult<TargetLibraryAnalysis>(F);
2487     };
2488     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2489       return FAM.getResult<TargetIRAnalysis>(F);
2490     };
2491 
2492     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2493       return FAM.getResult<BlockFrequencyAnalysis>(F);
2494     };
2495 
2496     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
2497       return PreservedAnalyses::all();
2498     return PreservedAnalyses::none();
2499 }
2500 
2501 namespace {
2502 
2503 struct GlobalOptLegacyPass : public ModulePass {
2504   static char ID; // Pass identification, replacement for typeid
2505 
2506   GlobalOptLegacyPass() : ModulePass(ID) {
2507     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2508   }
2509 
2510   bool runOnModule(Module &M) override {
2511     if (skipModule(M))
2512       return false;
2513 
2514     auto &DL = M.getDataLayout();
2515     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2516       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2517     };
2518     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
2519       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2520     };
2521     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2522       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2523     };
2524 
2525     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
2526       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
2527     };
2528 
2529     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
2530                                    LookupDomTree);
2531   }
2532 
2533   void getAnalysisUsage(AnalysisUsage &AU) const override {
2534     AU.addRequired<TargetLibraryInfoWrapperPass>();
2535     AU.addRequired<TargetTransformInfoWrapperPass>();
2536     AU.addRequired<DominatorTreeWrapperPass>();
2537     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2538   }
2539 };
2540 
2541 } // end anonymous namespace
2542 
2543 char GlobalOptLegacyPass::ID = 0;
2544 
2545 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2546                       "Global Variable Optimizer", false, false)
2547 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2548 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2549 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
2550 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2551 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2552                     "Global Variable Optimizer", false, false)
2553 
2554 ModulePass *llvm::createGlobalOptimizerPass() {
2555   return new GlobalOptLegacyPass();
2556 }
2557