1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/BinaryFormat/Dwarf.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83 STATISTIC(NumDeleted   , "Number of globals deleted");
84 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
85 STATISTIC(NumLocalized , "Number of globals localized");
86 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
87 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93 STATISTIC(NumInternalFunc, "Number of internal functions");
94 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 
96 static cl::opt<bool>
97     EnableColdCCStressTest("enable-coldcc-stress-test",
98                            cl::desc("Enable stress test of coldcc by adding "
99                                     "calling conv to all internal functions."),
100                            cl::init(false), cl::Hidden);
101 
102 static cl::opt<int> ColdCCRelFreq(
103     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
104     cl::desc(
105         "Maximum block frequency, expressed as a percentage of caller's "
106         "entry frequency, for a call site to be considered cold for enabling"
107         "coldcc"));
108 
109 /// Is this global variable possibly used by a leak checker as a root?  If so,
110 /// we might not really want to eliminate the stores to it.
111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112   // A global variable is a root if it is a pointer, or could plausibly contain
113   // a pointer.  There are two challenges; one is that we could have a struct
114   // the has an inner member which is a pointer.  We recurse through the type to
115   // detect these (up to a point).  The other is that we may actually be a union
116   // of a pointer and another type, and so our LLVM type is an integer which
117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118   // potentially contained here.
119 
120   if (GV->hasPrivateLinkage())
121     return false;
122 
123   SmallVector<Type *, 4> Types;
124   Types.push_back(GV->getValueType());
125 
126   unsigned Limit = 20;
127   do {
128     Type *Ty = Types.pop_back_val();
129     switch (Ty->getTypeID()) {
130       default: break;
131       case Type::PointerTyID:
132         return true;
133       case Type::VectorTyID:
134         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
135           return true;
136         break;
137       case Type::ArrayTyID:
138         Types.push_back(cast<ArrayType>(Ty)->getElementType());
139         break;
140       case Type::StructTyID: {
141         StructType *STy = cast<StructType>(Ty);
142         if (STy->isOpaque()) return true;
143         for (StructType::element_iterator I = STy->element_begin(),
144                  E = STy->element_end(); I != E; ++I) {
145           Type *InnerTy = *I;
146           if (isa<PointerType>(InnerTy)) return true;
147           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
148               isa<VectorType>(InnerTy))
149             Types.push_back(InnerTy);
150         }
151         break;
152       }
153     }
154     if (--Limit == 0) return true;
155   } while (!Types.empty());
156   return false;
157 }
158 
159 /// Given a value that is stored to a global but never read, determine whether
160 /// it's safe to remove the store and the chain of computation that feeds the
161 /// store.
162 static bool IsSafeComputationToRemove(
163     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
164   do {
165     if (isa<Constant>(V))
166       return true;
167     if (!V->hasOneUse())
168       return false;
169     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
170         isa<GlobalValue>(V))
171       return false;
172     if (isAllocationFn(V, GetTLI))
173       return true;
174 
175     Instruction *I = cast<Instruction>(V);
176     if (I->mayHaveSideEffects())
177       return false;
178     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
179       if (!GEP->hasAllConstantIndices())
180         return false;
181     } else if (I->getNumOperands() != 1) {
182       return false;
183     }
184 
185     V = I->getOperand(0);
186   } while (true);
187 }
188 
189 /// This GV is a pointer root.  Loop over all users of the global and clean up
190 /// any that obviously don't assign the global a value that isn't dynamically
191 /// allocated.
192 static bool
193 CleanupPointerRootUsers(GlobalVariable *GV,
194                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
195   // A brief explanation of leak checkers.  The goal is to find bugs where
196   // pointers are forgotten, causing an accumulating growth in memory
197   // usage over time.  The common strategy for leak checkers is to whitelist the
198   // memory pointed to by globals at exit.  This is popular because it also
199   // solves another problem where the main thread of a C++ program may shut down
200   // before other threads that are still expecting to use those globals.  To
201   // handle that case, we expect the program may create a singleton and never
202   // destroy it.
203 
204   bool Changed = false;
205 
206   // If Dead[n].first is the only use of a malloc result, we can delete its
207   // chain of computation and the store to the global in Dead[n].second.
208   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
209 
210   // Constants can't be pointers to dynamically allocated memory.
211   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
212        UI != E;) {
213     User *U = *UI++;
214     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
215       Value *V = SI->getValueOperand();
216       if (isa<Constant>(V)) {
217         Changed = true;
218         SI->eraseFromParent();
219       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
220         if (I->hasOneUse())
221           Dead.push_back(std::make_pair(I, SI));
222       }
223     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
224       if (isa<Constant>(MSI->getValue())) {
225         Changed = true;
226         MSI->eraseFromParent();
227       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
228         if (I->hasOneUse())
229           Dead.push_back(std::make_pair(I, MSI));
230       }
231     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
232       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
233       if (MemSrc && MemSrc->isConstant()) {
234         Changed = true;
235         MTI->eraseFromParent();
236       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
237         if (I->hasOneUse())
238           Dead.push_back(std::make_pair(I, MTI));
239       }
240     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
241       if (CE->use_empty()) {
242         CE->destroyConstant();
243         Changed = true;
244       }
245     } else if (Constant *C = dyn_cast<Constant>(U)) {
246       if (isSafeToDestroyConstant(C)) {
247         C->destroyConstant();
248         // This could have invalidated UI, start over from scratch.
249         Dead.clear();
250         CleanupPointerRootUsers(GV, GetTLI);
251         return true;
252       }
253     }
254   }
255 
256   for (int i = 0, e = Dead.size(); i != e; ++i) {
257     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
258       Dead[i].second->eraseFromParent();
259       Instruction *I = Dead[i].first;
260       do {
261         if (isAllocationFn(I, GetTLI))
262           break;
263         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
264         if (!J)
265           break;
266         I->eraseFromParent();
267         I = J;
268       } while (true);
269       I->eraseFromParent();
270     }
271   }
272 
273   return Changed;
274 }
275 
276 /// We just marked GV constant.  Loop over all users of the global, cleaning up
277 /// the obvious ones.  This is largely just a quick scan over the use list to
278 /// clean up the easy and obvious cruft.  This returns true if it made a change.
279 static bool CleanupConstantGlobalUsers(
280     Value *V, Constant *Init, const DataLayout &DL,
281     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
282   bool Changed = false;
283   // Note that we need to use a weak value handle for the worklist items. When
284   // we delete a constant array, we may also be holding pointer to one of its
285   // elements (or an element of one of its elements if we're dealing with an
286   // array of arrays) in the worklist.
287   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
288   while (!WorkList.empty()) {
289     Value *UV = WorkList.pop_back_val();
290     if (!UV)
291       continue;
292 
293     User *U = cast<User>(UV);
294 
295     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
296       if (Init) {
297         // Replace the load with the initializer.
298         LI->replaceAllUsesWith(Init);
299         LI->eraseFromParent();
300         Changed = true;
301       }
302     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
303       // Store must be unreachable or storing Init into the global.
304       SI->eraseFromParent();
305       Changed = true;
306     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
307       if (CE->getOpcode() == Instruction::GetElementPtr) {
308         Constant *SubInit = nullptr;
309         if (Init)
310           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
311         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
312       } else if ((CE->getOpcode() == Instruction::BitCast &&
313                   CE->getType()->isPointerTy()) ||
314                  CE->getOpcode() == Instruction::AddrSpaceCast) {
315         // Pointer cast, delete any stores and memsets to the global.
316         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
317       }
318 
319       if (CE->use_empty()) {
320         CE->destroyConstant();
321         Changed = true;
322       }
323     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
324       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
325       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
326       // and will invalidate our notion of what Init is.
327       Constant *SubInit = nullptr;
328       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
329         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
330             ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
331         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
332           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
333 
334         // If the initializer is an all-null value and we have an inbounds GEP,
335         // we already know what the result of any load from that GEP is.
336         // TODO: Handle splats.
337         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
338           SubInit = Constant::getNullValue(GEP->getResultElementType());
339       }
340       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
341 
342       if (GEP->use_empty()) {
343         GEP->eraseFromParent();
344         Changed = true;
345       }
346     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
347       if (MI->getRawDest() == V) {
348         MI->eraseFromParent();
349         Changed = true;
350       }
351 
352     } else if (Constant *C = dyn_cast<Constant>(U)) {
353       // If we have a chain of dead constantexprs or other things dangling from
354       // us, and if they are all dead, nuke them without remorse.
355       if (isSafeToDestroyConstant(C)) {
356         C->destroyConstant();
357         CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
358         return true;
359       }
360     }
361   }
362   return Changed;
363 }
364 
365 static bool isSafeSROAElementUse(Value *V);
366 
367 /// Return true if the specified GEP is a safe user of a derived
368 /// expression from a global that we want to SROA.
369 static bool isSafeSROAGEP(User *U) {
370   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
371   // don't like < 3 operand CE's, and we don't like non-constant integer
372   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
373   // value of C.
374   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
375       !cast<Constant>(U->getOperand(1))->isNullValue())
376     return false;
377 
378   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
379   ++GEPI; // Skip over the pointer index.
380 
381   // For all other level we require that the indices are constant and inrange.
382   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
383   // invalid things like allowing i to index an out-of-range subscript that
384   // accesses A[1]. This can also happen between different members of a struct
385   // in llvm IR.
386   for (; GEPI != E; ++GEPI) {
387     if (GEPI.isStruct())
388       continue;
389 
390     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
391     if (!IdxVal || (GEPI.isBoundedSequential() &&
392                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
393       return false;
394   }
395 
396   return llvm::all_of(U->users(),
397                       [](User *UU) { return isSafeSROAElementUse(UU); });
398 }
399 
400 /// Return true if the specified instruction is a safe user of a derived
401 /// expression from a global that we want to SROA.
402 static bool isSafeSROAElementUse(Value *V) {
403   // We might have a dead and dangling constant hanging off of here.
404   if (Constant *C = dyn_cast<Constant>(V))
405     return isSafeToDestroyConstant(C);
406 
407   Instruction *I = dyn_cast<Instruction>(V);
408   if (!I) return false;
409 
410   // Loads are ok.
411   if (isa<LoadInst>(I)) return true;
412 
413   // Stores *to* the pointer are ok.
414   if (StoreInst *SI = dyn_cast<StoreInst>(I))
415     return SI->getOperand(0) != V;
416 
417   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
418   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
419 }
420 
421 /// Look at all uses of the global and decide whether it is safe for us to
422 /// perform this transformation.
423 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
424   for (User *U : GV->users()) {
425     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
426     if (!isa<GetElementPtrInst>(U) &&
427         (!isa<ConstantExpr>(U) ||
428         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
429       return false;
430 
431     // Check the gep and it's users are safe to SRA
432     if (!isSafeSROAGEP(U))
433       return false;
434   }
435 
436   return true;
437 }
438 
439 static bool IsSRASequential(Type *T) {
440   return isa<ArrayType>(T) || isa<VectorType>(T);
441 }
442 static uint64_t GetSRASequentialNumElements(Type *T) {
443   if (ArrayType *AT = dyn_cast<ArrayType>(T))
444     return AT->getNumElements();
445   return cast<VectorType>(T)->getNumElements();
446 }
447 static Type *GetSRASequentialElementType(Type *T) {
448   if (ArrayType *AT = dyn_cast<ArrayType>(T))
449     return AT->getElementType();
450   return cast<VectorType>(T)->getElementType();
451 }
452 static bool CanDoGlobalSRA(GlobalVariable *GV) {
453   Constant *Init = GV->getInitializer();
454 
455   if (isa<StructType>(Init->getType())) {
456     // nothing to check
457   } else if (IsSRASequential(Init->getType())) {
458     if (GetSRASequentialNumElements(Init->getType()) > 16 &&
459         GV->hasNUsesOrMore(16))
460       return false; // It's not worth it.
461   } else
462     return false;
463 
464   return GlobalUsersSafeToSRA(GV);
465 }
466 
467 /// Copy over the debug info for a variable to its SRA replacements.
468 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
469                                  uint64_t FragmentOffsetInBits,
470                                  uint64_t FragmentSizeInBits,
471                                  unsigned NumElements) {
472   SmallVector<DIGlobalVariableExpression *, 1> GVs;
473   GV->getDebugInfo(GVs);
474   for (auto *GVE : GVs) {
475     DIVariable *Var = GVE->getVariable();
476     DIExpression *Expr = GVE->getExpression();
477     if (NumElements > 1) {
478       if (auto E = DIExpression::createFragmentExpression(
479               Expr, FragmentOffsetInBits, FragmentSizeInBits))
480         Expr = *E;
481       else
482         return;
483     }
484     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
485     NGV->addDebugInfo(NGVE);
486   }
487 }
488 
489 /// Perform scalar replacement of aggregates on the specified global variable.
490 /// This opens the door for other optimizations by exposing the behavior of the
491 /// program in a more fine-grained way.  We have determined that this
492 /// transformation is safe already.  We return the first global variable we
493 /// insert so that the caller can reprocess it.
494 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
495   // Make sure this global only has simple uses that we can SRA.
496   if (!CanDoGlobalSRA(GV))
497     return nullptr;
498 
499   assert(GV->hasLocalLinkage());
500   Constant *Init = GV->getInitializer();
501   Type *Ty = Init->getType();
502 
503   std::map<unsigned, GlobalVariable *> NewGlobals;
504 
505   // Get the alignment of the global, either explicit or target-specific.
506   unsigned StartAlignment = GV->getAlignment();
507   if (StartAlignment == 0)
508     StartAlignment = DL.getABITypeAlignment(GV->getType());
509 
510   // Loop over all users and create replacement variables for used aggregate
511   // elements.
512   for (User *GEP : GV->users()) {
513     assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
514                                            Instruction::GetElementPtr) ||
515             isa<GetElementPtrInst>(GEP)) &&
516            "NonGEP CE's are not SRAable!");
517 
518     // Ignore the 1th operand, which has to be zero or else the program is quite
519     // broken (undefined).  Get the 2nd operand, which is the structure or array
520     // index.
521     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
522     if (NewGlobals.count(ElementIdx) == 1)
523       continue; // we`ve already created replacement variable
524     assert(NewGlobals.count(ElementIdx) == 0);
525 
526     Type *ElTy = nullptr;
527     if (StructType *STy = dyn_cast<StructType>(Ty))
528       ElTy = STy->getElementType(ElementIdx);
529     else
530       ElTy = GetSRASequentialElementType(Ty);
531     assert(ElTy);
532 
533     Constant *In = Init->getAggregateElement(ElementIdx);
534     assert(In && "Couldn't get element of initializer?");
535 
536     GlobalVariable *NGV = new GlobalVariable(
537         ElTy, false, GlobalVariable::InternalLinkage, In,
538         GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
539         GV->getType()->getAddressSpace());
540     NGV->setExternallyInitialized(GV->isExternallyInitialized());
541     NGV->copyAttributesFrom(GV);
542     NewGlobals.insert(std::make_pair(ElementIdx, NGV));
543 
544     if (StructType *STy = dyn_cast<StructType>(Ty)) {
545       const StructLayout &Layout = *DL.getStructLayout(STy);
546 
547       // Calculate the known alignment of the field.  If the original aggregate
548       // had 256 byte alignment for example, something might depend on that:
549       // propagate info to each field.
550       uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
551       Align NewAlign(MinAlign(StartAlignment, FieldOffset));
552       if (NewAlign >
553           Align(DL.getABITypeAlignment(STy->getElementType(ElementIdx))))
554         NGV->setAlignment(NewAlign);
555 
556       // Copy over the debug info for the variable.
557       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
558       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
559       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size,
560                            STy->getNumElements());
561     } else {
562       uint64_t EltSize = DL.getTypeAllocSize(ElTy);
563       Align EltAlign(DL.getABITypeAlignment(ElTy));
564       uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
565 
566       // Calculate the known alignment of the field.  If the original aggregate
567       // had 256 byte alignment for example, something might depend on that:
568       // propagate info to each field.
569       Align NewAlign(MinAlign(StartAlignment, EltSize * ElementIdx));
570       if (NewAlign > EltAlign)
571         NGV->setAlignment(NewAlign);
572       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
573                            FragmentSizeInBits, GetSRASequentialNumElements(Ty));
574     }
575   }
576 
577   if (NewGlobals.empty())
578     return nullptr;
579 
580   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
581   for (auto NewGlobalVar : NewGlobals)
582     Globals.push_back(NewGlobalVar.second);
583 
584   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
585 
586   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
587 
588   // Loop over all of the uses of the global, replacing the constantexpr geps,
589   // with smaller constantexpr geps or direct references.
590   while (!GV->use_empty()) {
591     User *GEP = GV->user_back();
592     assert(((isa<ConstantExpr>(GEP) &&
593              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
594             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
595 
596     // Ignore the 1th operand, which has to be zero or else the program is quite
597     // broken (undefined).  Get the 2nd operand, which is the structure or array
598     // index.
599     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
600     assert(NewGlobals.count(ElementIdx) == 1);
601 
602     Value *NewPtr = NewGlobals[ElementIdx];
603     Type *NewTy = NewGlobals[ElementIdx]->getValueType();
604 
605     // Form a shorter GEP if needed.
606     if (GEP->getNumOperands() > 3) {
607       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
608         SmallVector<Constant*, 8> Idxs;
609         Idxs.push_back(NullInt);
610         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
611           Idxs.push_back(CE->getOperand(i));
612         NewPtr =
613             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
614       } else {
615         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
616         SmallVector<Value*, 8> Idxs;
617         Idxs.push_back(NullInt);
618         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
619           Idxs.push_back(GEPI->getOperand(i));
620         NewPtr = GetElementPtrInst::Create(
621             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
622             GEPI);
623       }
624     }
625     GEP->replaceAllUsesWith(NewPtr);
626 
627     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
628       GEPI->eraseFromParent();
629     else
630       cast<ConstantExpr>(GEP)->destroyConstant();
631   }
632 
633   // Delete the old global, now that it is dead.
634   Globals.erase(GV);
635   ++NumSRA;
636 
637   assert(NewGlobals.size() > 0);
638   return NewGlobals.begin()->second;
639 }
640 
641 /// Return true if all users of the specified value will trap if the value is
642 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
643 /// reprocessing them.
644 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
645                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
646   for (const User *U : V->users()) {
647     if (const Instruction *I = dyn_cast<Instruction>(U)) {
648       // If null pointer is considered valid, then all uses are non-trapping.
649       // Non address-space 0 globals have already been pruned by the caller.
650       if (NullPointerIsDefined(I->getFunction()))
651         return false;
652     }
653     if (isa<LoadInst>(U)) {
654       // Will trap.
655     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
656       if (SI->getOperand(0) == V) {
657         //cerr << "NONTRAPPING USE: " << *U;
658         return false;  // Storing the value.
659       }
660     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
661       if (CI->getCalledValue() != V) {
662         //cerr << "NONTRAPPING USE: " << *U;
663         return false;  // Not calling the ptr
664       }
665     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
666       if (II->getCalledValue() != V) {
667         //cerr << "NONTRAPPING USE: " << *U;
668         return false;  // Not calling the ptr
669       }
670     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
671       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
672     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
673       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
674     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
675       // If we've already seen this phi node, ignore it, it has already been
676       // checked.
677       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
678         return false;
679     } else {
680       //cerr << "NONTRAPPING USE: " << *U;
681       return false;
682     }
683   }
684   return true;
685 }
686 
687 /// Return true if all uses of any loads from GV will trap if the loaded value
688 /// is null.  Note that this also permits comparisons of the loaded value
689 /// against null, as a special case.
690 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
691   for (const User *U : GV->users())
692     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
693       SmallPtrSet<const PHINode*, 8> PHIs;
694       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
695         return false;
696     } else if (isa<StoreInst>(U)) {
697       // Ignore stores to the global.
698     } else {
699       // We don't know or understand this user, bail out.
700       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
701       return false;
702     }
703   return true;
704 }
705 
706 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
707   bool Changed = false;
708   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
709     Instruction *I = cast<Instruction>(*UI++);
710     // Uses are non-trapping if null pointer is considered valid.
711     // Non address-space 0 globals are already pruned by the caller.
712     if (NullPointerIsDefined(I->getFunction()))
713       return false;
714     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
715       LI->setOperand(0, NewV);
716       Changed = true;
717     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
718       if (SI->getOperand(1) == V) {
719         SI->setOperand(1, NewV);
720         Changed = true;
721       }
722     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
723       CallSite CS(I);
724       if (CS.getCalledValue() == V) {
725         // Calling through the pointer!  Turn into a direct call, but be careful
726         // that the pointer is not also being passed as an argument.
727         CS.setCalledFunction(NewV);
728         Changed = true;
729         bool PassedAsArg = false;
730         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
731           if (CS.getArgument(i) == V) {
732             PassedAsArg = true;
733             CS.setArgument(i, NewV);
734           }
735 
736         if (PassedAsArg) {
737           // Being passed as an argument also.  Be careful to not invalidate UI!
738           UI = V->user_begin();
739         }
740       }
741     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
742       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
743                                 ConstantExpr::getCast(CI->getOpcode(),
744                                                       NewV, CI->getType()));
745       if (CI->use_empty()) {
746         Changed = true;
747         CI->eraseFromParent();
748       }
749     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
750       // Should handle GEP here.
751       SmallVector<Constant*, 8> Idxs;
752       Idxs.reserve(GEPI->getNumOperands()-1);
753       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
754            i != e; ++i)
755         if (Constant *C = dyn_cast<Constant>(*i))
756           Idxs.push_back(C);
757         else
758           break;
759       if (Idxs.size() == GEPI->getNumOperands()-1)
760         Changed |= OptimizeAwayTrappingUsesOfValue(
761             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
762                                                  NewV, Idxs));
763       if (GEPI->use_empty()) {
764         Changed = true;
765         GEPI->eraseFromParent();
766       }
767     }
768   }
769 
770   return Changed;
771 }
772 
773 /// The specified global has only one non-null value stored into it.  If there
774 /// are uses of the loaded value that would trap if the loaded value is
775 /// dynamically null, then we know that they cannot be reachable with a null
776 /// optimize away the load.
777 static bool OptimizeAwayTrappingUsesOfLoads(
778     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
779     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
780   bool Changed = false;
781 
782   // Keep track of whether we are able to remove all the uses of the global
783   // other than the store that defines it.
784   bool AllNonStoreUsesGone = true;
785 
786   // Replace all uses of loads with uses of uses of the stored value.
787   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
788     User *GlobalUser = *GUI++;
789     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
790       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
791       // If we were able to delete all uses of the loads
792       if (LI->use_empty()) {
793         LI->eraseFromParent();
794         Changed = true;
795       } else {
796         AllNonStoreUsesGone = false;
797       }
798     } else if (isa<StoreInst>(GlobalUser)) {
799       // Ignore the store that stores "LV" to the global.
800       assert(GlobalUser->getOperand(1) == GV &&
801              "Must be storing *to* the global");
802     } else {
803       AllNonStoreUsesGone = false;
804 
805       // If we get here we could have other crazy uses that are transitively
806       // loaded.
807       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
808               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
809               isa<BitCastInst>(GlobalUser) ||
810               isa<GetElementPtrInst>(GlobalUser)) &&
811              "Only expect load and stores!");
812     }
813   }
814 
815   if (Changed) {
816     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
817                       << "\n");
818     ++NumGlobUses;
819   }
820 
821   // If we nuked all of the loads, then none of the stores are needed either,
822   // nor is the global.
823   if (AllNonStoreUsesGone) {
824     if (isLeakCheckerRoot(GV)) {
825       Changed |= CleanupPointerRootUsers(GV, GetTLI);
826     } else {
827       Changed = true;
828       CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
829     }
830     if (GV->use_empty()) {
831       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
832       Changed = true;
833       GV->eraseFromParent();
834       ++NumDeleted;
835     }
836   }
837   return Changed;
838 }
839 
840 /// Walk the use list of V, constant folding all of the instructions that are
841 /// foldable.
842 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
843                                 TargetLibraryInfo *TLI) {
844   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
845     if (Instruction *I = dyn_cast<Instruction>(*UI++))
846       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
847         I->replaceAllUsesWith(NewC);
848 
849         // Advance UI to the next non-I use to avoid invalidating it!
850         // Instructions could multiply use V.
851         while (UI != E && *UI == I)
852           ++UI;
853         if (isInstructionTriviallyDead(I, TLI))
854           I->eraseFromParent();
855       }
856 }
857 
858 /// This function takes the specified global variable, and transforms the
859 /// program as if it always contained the result of the specified malloc.
860 /// Because it is always the result of the specified malloc, there is no reason
861 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
862 /// loads of GV as uses of the new global.
863 static GlobalVariable *
864 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
865                               ConstantInt *NElements, const DataLayout &DL,
866                               TargetLibraryInfo *TLI) {
867   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
868                     << '\n');
869 
870   Type *GlobalType;
871   if (NElements->getZExtValue() == 1)
872     GlobalType = AllocTy;
873   else
874     // If we have an array allocation, the global variable is of an array.
875     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
876 
877   // Create the new global variable.  The contents of the malloc'd memory is
878   // undefined, so initialize with an undef value.
879   GlobalVariable *NewGV = new GlobalVariable(
880       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
881       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
882       GV->getThreadLocalMode());
883 
884   // If there are bitcast users of the malloc (which is typical, usually we have
885   // a malloc + bitcast) then replace them with uses of the new global.  Update
886   // other users to use the global as well.
887   BitCastInst *TheBC = nullptr;
888   while (!CI->use_empty()) {
889     Instruction *User = cast<Instruction>(CI->user_back());
890     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
891       if (BCI->getType() == NewGV->getType()) {
892         BCI->replaceAllUsesWith(NewGV);
893         BCI->eraseFromParent();
894       } else {
895         BCI->setOperand(0, NewGV);
896       }
897     } else {
898       if (!TheBC)
899         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
900       User->replaceUsesOfWith(CI, TheBC);
901     }
902   }
903 
904   Constant *RepValue = NewGV;
905   if (NewGV->getType() != GV->getValueType())
906     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
907 
908   // If there is a comparison against null, we will insert a global bool to
909   // keep track of whether the global was initialized yet or not.
910   GlobalVariable *InitBool =
911     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
912                        GlobalValue::InternalLinkage,
913                        ConstantInt::getFalse(GV->getContext()),
914                        GV->getName()+".init", GV->getThreadLocalMode());
915   bool InitBoolUsed = false;
916 
917   // Loop over all uses of GV, processing them in turn.
918   while (!GV->use_empty()) {
919     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
920       // The global is initialized when the store to it occurs.
921       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false,
922                     Align(1), SI->getOrdering(), SI->getSyncScopeID(), SI);
923       SI->eraseFromParent();
924       continue;
925     }
926 
927     LoadInst *LI = cast<LoadInst>(GV->user_back());
928     while (!LI->use_empty()) {
929       Use &LoadUse = *LI->use_begin();
930       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
931       if (!ICI) {
932         LoadUse = RepValue;
933         continue;
934       }
935 
936       // Replace the cmp X, 0 with a use of the bool value.
937       // Sink the load to where the compare was, if atomic rules allow us to.
938       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
939                                InitBool->getName() + ".val", false, Align(1),
940                                LI->getOrdering(), LI->getSyncScopeID(),
941                                LI->isUnordered() ? (Instruction *)ICI : LI);
942       InitBoolUsed = true;
943       switch (ICI->getPredicate()) {
944       default: llvm_unreachable("Unknown ICmp Predicate!");
945       case ICmpInst::ICMP_ULT:
946       case ICmpInst::ICMP_SLT:   // X < null -> always false
947         LV = ConstantInt::getFalse(GV->getContext());
948         break;
949       case ICmpInst::ICMP_ULE:
950       case ICmpInst::ICMP_SLE:
951       case ICmpInst::ICMP_EQ:
952         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
953         break;
954       case ICmpInst::ICMP_NE:
955       case ICmpInst::ICMP_UGE:
956       case ICmpInst::ICMP_SGE:
957       case ICmpInst::ICMP_UGT:
958       case ICmpInst::ICMP_SGT:
959         break;  // no change.
960       }
961       ICI->replaceAllUsesWith(LV);
962       ICI->eraseFromParent();
963     }
964     LI->eraseFromParent();
965   }
966 
967   // If the initialization boolean was used, insert it, otherwise delete it.
968   if (!InitBoolUsed) {
969     while (!InitBool->use_empty())  // Delete initializations
970       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
971     delete InitBool;
972   } else
973     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
974 
975   // Now the GV is dead, nuke it and the malloc..
976   GV->eraseFromParent();
977   CI->eraseFromParent();
978 
979   // To further other optimizations, loop over all users of NewGV and try to
980   // constant prop them.  This will promote GEP instructions with constant
981   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
982   ConstantPropUsersOf(NewGV, DL, TLI);
983   if (RepValue != NewGV)
984     ConstantPropUsersOf(RepValue, DL, TLI);
985 
986   return NewGV;
987 }
988 
989 /// Scan the use-list of V checking to make sure that there are no complex uses
990 /// of V.  We permit simple things like dereferencing the pointer, but not
991 /// storing through the address, unless it is to the specified global.
992 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
993                                                       const GlobalVariable *GV,
994                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
995   for (const User *U : V->users()) {
996     const Instruction *Inst = cast<Instruction>(U);
997 
998     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
999       continue; // Fine, ignore.
1000     }
1001 
1002     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1003       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
1004         return false;  // Storing the pointer itself... bad.
1005       continue; // Otherwise, storing through it, or storing into GV... fine.
1006     }
1007 
1008     // Must index into the array and into the struct.
1009     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
1010       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
1011         return false;
1012       continue;
1013     }
1014 
1015     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1016       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1017       // cycles.
1018       if (PHIs.insert(PN).second)
1019         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1020           return false;
1021       continue;
1022     }
1023 
1024     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1025       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1026         return false;
1027       continue;
1028     }
1029 
1030     return false;
1031   }
1032   return true;
1033 }
1034 
1035 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1036 /// allocation into loads from the global and uses of the resultant pointer.
1037 /// Further, delete the store into GV.  This assumes that these value pass the
1038 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1039 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1040                                           GlobalVariable *GV) {
1041   while (!Alloc->use_empty()) {
1042     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1043     Instruction *InsertPt = U;
1044     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1045       // If this is the store of the allocation into the global, remove it.
1046       if (SI->getOperand(1) == GV) {
1047         SI->eraseFromParent();
1048         continue;
1049       }
1050     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1051       // Insert the load in the corresponding predecessor, not right before the
1052       // PHI.
1053       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1054     } else if (isa<BitCastInst>(U)) {
1055       // Must be bitcast between the malloc and store to initialize the global.
1056       ReplaceUsesOfMallocWithGlobal(U, GV);
1057       U->eraseFromParent();
1058       continue;
1059     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1060       // If this is a "GEP bitcast" and the user is a store to the global, then
1061       // just process it as a bitcast.
1062       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1063         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1064           if (SI->getOperand(1) == GV) {
1065             // Must be bitcast GEP between the malloc and store to initialize
1066             // the global.
1067             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1068             GEPI->eraseFromParent();
1069             continue;
1070           }
1071     }
1072 
1073     // Insert a load from the global, and use it instead of the malloc.
1074     Value *NL =
1075         new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt);
1076     U->replaceUsesOfWith(Alloc, NL);
1077   }
1078 }
1079 
1080 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1081 /// perform heap SRA on.  This permits GEP's that index through the array and
1082 /// struct field, icmps of null, and PHIs.
1083 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1084                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1085                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1086   // We permit two users of the load: setcc comparing against the null
1087   // pointer, and a getelementptr of a specific form.
1088   for (const User *U : V->users()) {
1089     const Instruction *UI = cast<Instruction>(U);
1090 
1091     // Comparison against null is ok.
1092     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1093       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1094         return false;
1095       continue;
1096     }
1097 
1098     // getelementptr is also ok, but only a simple form.
1099     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1100       // Must index into the array and into the struct.
1101       if (GEPI->getNumOperands() < 3)
1102         return false;
1103 
1104       // Otherwise the GEP is ok.
1105       continue;
1106     }
1107 
1108     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1109       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1110         // This means some phi nodes are dependent on each other.
1111         // Avoid infinite looping!
1112         return false;
1113       if (!LoadUsingPHIs.insert(PN).second)
1114         // If we have already analyzed this PHI, then it is safe.
1115         continue;
1116 
1117       // Make sure all uses of the PHI are simple enough to transform.
1118       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1119                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1120         return false;
1121 
1122       continue;
1123     }
1124 
1125     // Otherwise we don't know what this is, not ok.
1126     return false;
1127   }
1128 
1129   return true;
1130 }
1131 
1132 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1133 /// return true.
1134 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1135                                                     Instruction *StoredVal) {
1136   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1137   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1138   for (const User *U : GV->users())
1139     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1140       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1141                                           LoadUsingPHIsPerLoad))
1142         return false;
1143       LoadUsingPHIsPerLoad.clear();
1144     }
1145 
1146   // If we reach here, we know that all uses of the loads and transitive uses
1147   // (through PHI nodes) are simple enough to transform.  However, we don't know
1148   // that all inputs the to the PHI nodes are in the same equivalence sets.
1149   // Check to verify that all operands of the PHIs are either PHIS that can be
1150   // transformed, loads from GV, or MI itself.
1151   for (const PHINode *PN : LoadUsingPHIs) {
1152     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1153       Value *InVal = PN->getIncomingValue(op);
1154 
1155       // PHI of the stored value itself is ok.
1156       if (InVal == StoredVal) continue;
1157 
1158       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1159         // One of the PHIs in our set is (optimistically) ok.
1160         if (LoadUsingPHIs.count(InPN))
1161           continue;
1162         return false;
1163       }
1164 
1165       // Load from GV is ok.
1166       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1167         if (LI->getOperand(0) == GV)
1168           continue;
1169 
1170       // UNDEF? NULL?
1171 
1172       // Anything else is rejected.
1173       return false;
1174     }
1175   }
1176 
1177   return true;
1178 }
1179 
1180 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1181               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1182                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1183   std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1184 
1185   if (FieldNo >= FieldVals.size())
1186     FieldVals.resize(FieldNo+1);
1187 
1188   // If we already have this value, just reuse the previously scalarized
1189   // version.
1190   if (Value *FieldVal = FieldVals[FieldNo])
1191     return FieldVal;
1192 
1193   // Depending on what instruction this is, we have several cases.
1194   Value *Result;
1195   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1196     // This is a scalarized version of the load from the global.  Just create
1197     // a new Load of the scalarized global.
1198     Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo,
1199                                 InsertedScalarizedValues, PHIsToRewrite);
1200     Result = new LoadInst(V->getType()->getPointerElementType(), V,
1201                           LI->getName() + ".f" + Twine(FieldNo), LI);
1202   } else {
1203     PHINode *PN = cast<PHINode>(V);
1204     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1205     // field.
1206 
1207     PointerType *PTy = cast<PointerType>(PN->getType());
1208     StructType *ST = cast<StructType>(PTy->getElementType());
1209 
1210     unsigned AS = PTy->getAddressSpace();
1211     PHINode *NewPN =
1212       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1213                      PN->getNumIncomingValues(),
1214                      PN->getName()+".f"+Twine(FieldNo), PN);
1215     Result = NewPN;
1216     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1217   }
1218 
1219   return FieldVals[FieldNo] = Result;
1220 }
1221 
1222 /// Given a load instruction and a value derived from the load, rewrite the
1223 /// derived value to use the HeapSRoA'd load.
1224 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1225               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1226                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1227   // If this is a comparison against null, handle it.
1228   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1229     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1230     // If we have a setcc of the loaded pointer, we can use a setcc of any
1231     // field.
1232     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1233                                    InsertedScalarizedValues, PHIsToRewrite);
1234 
1235     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1236                               Constant::getNullValue(NPtr->getType()),
1237                               SCI->getName());
1238     SCI->replaceAllUsesWith(New);
1239     SCI->eraseFromParent();
1240     return;
1241   }
1242 
1243   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1244   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1245     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1246            && "Unexpected GEPI!");
1247 
1248     // Load the pointer for this field.
1249     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1250     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1251                                      InsertedScalarizedValues, PHIsToRewrite);
1252 
1253     // Create the new GEP idx vector.
1254     SmallVector<Value*, 8> GEPIdx;
1255     GEPIdx.push_back(GEPI->getOperand(1));
1256     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1257 
1258     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1259                                              GEPI->getName(), GEPI);
1260     GEPI->replaceAllUsesWith(NGEPI);
1261     GEPI->eraseFromParent();
1262     return;
1263   }
1264 
1265   // Recursively transform the users of PHI nodes.  This will lazily create the
1266   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1267   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1268   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1269   // already been seen first by another load, so its uses have already been
1270   // processed.
1271   PHINode *PN = cast<PHINode>(LoadUser);
1272   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1273                                               std::vector<Value *>())).second)
1274     return;
1275 
1276   // If this is the first time we've seen this PHI, recursively process all
1277   // users.
1278   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1279     Instruction *User = cast<Instruction>(*UI++);
1280     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1281   }
1282 }
1283 
1284 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1285 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1286 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1287 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1288               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1289                   std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1290   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1291     Instruction *User = cast<Instruction>(*UI++);
1292     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1293   }
1294 
1295   if (Load->use_empty()) {
1296     Load->eraseFromParent();
1297     InsertedScalarizedValues.erase(Load);
1298   }
1299 }
1300 
1301 /// CI is an allocation of an array of structures.  Break it up into multiple
1302 /// allocations of arrays of the fields.
1303 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1304                                             Value *NElems, const DataLayout &DL,
1305                                             const TargetLibraryInfo *TLI) {
1306   LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
1307                     << '\n');
1308   Type *MAT = getMallocAllocatedType(CI, TLI);
1309   StructType *STy = cast<StructType>(MAT);
1310 
1311   // There is guaranteed to be at least one use of the malloc (storing
1312   // it into GV).  If there are other uses, change them to be uses of
1313   // the global to simplify later code.  This also deletes the store
1314   // into GV.
1315   ReplaceUsesOfMallocWithGlobal(CI, GV);
1316 
1317   // Okay, at this point, there are no users of the malloc.  Insert N
1318   // new mallocs at the same place as CI, and N globals.
1319   std::vector<Value *> FieldGlobals;
1320   std::vector<Value *> FieldMallocs;
1321 
1322   SmallVector<OperandBundleDef, 1> OpBundles;
1323   CI->getOperandBundlesAsDefs(OpBundles);
1324 
1325   unsigned AS = GV->getType()->getPointerAddressSpace();
1326   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1327     Type *FieldTy = STy->getElementType(FieldNo);
1328     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1329 
1330     GlobalVariable *NGV = new GlobalVariable(
1331         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1332         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1333         nullptr, GV->getThreadLocalMode());
1334     NGV->copyAttributesFrom(GV);
1335     FieldGlobals.push_back(NGV);
1336 
1337     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1338     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1339       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1340     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1341     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1342                                         ConstantInt::get(IntPtrTy, TypeSize),
1343                                         NElems, OpBundles, nullptr,
1344                                         CI->getName() + ".f" + Twine(FieldNo));
1345     FieldMallocs.push_back(NMI);
1346     new StoreInst(NMI, NGV, CI);
1347   }
1348 
1349   // The tricky aspect of this transformation is handling the case when malloc
1350   // fails.  In the original code, malloc failing would set the result pointer
1351   // of malloc to null.  In this case, some mallocs could succeed and others
1352   // could fail.  As such, we emit code that looks like this:
1353   //    F0 = malloc(field0)
1354   //    F1 = malloc(field1)
1355   //    F2 = malloc(field2)
1356   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1357   //      if (F0) { free(F0); F0 = 0; }
1358   //      if (F1) { free(F1); F1 = 0; }
1359   //      if (F2) { free(F2); F2 = 0; }
1360   //    }
1361   // The malloc can also fail if its argument is too large.
1362   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1363   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1364                                   ConstantZero, "isneg");
1365   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1366     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1367                              Constant::getNullValue(FieldMallocs[i]->getType()),
1368                                "isnull");
1369     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1370   }
1371 
1372   // Split the basic block at the old malloc.
1373   BasicBlock *OrigBB = CI->getParent();
1374   BasicBlock *ContBB =
1375       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1376 
1377   // Create the block to check the first condition.  Put all these blocks at the
1378   // end of the function as they are unlikely to be executed.
1379   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1380                                                 "malloc_ret_null",
1381                                                 OrigBB->getParent());
1382 
1383   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1384   // branch on RunningOr.
1385   OrigBB->getTerminator()->eraseFromParent();
1386   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1387 
1388   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1389   // pointer, because some may be null while others are not.
1390   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1391     Value *GVVal =
1392         new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(),
1393                      FieldGlobals[i], "tmp", NullPtrBlock);
1394     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1395                               Constant::getNullValue(GVVal->getType()));
1396     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1397                                                OrigBB->getParent());
1398     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1399                                                OrigBB->getParent());
1400     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1401                                          Cmp, NullPtrBlock);
1402 
1403     // Fill in FreeBlock.
1404     CallInst::CreateFree(GVVal, OpBundles, BI);
1405     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1406                   FreeBlock);
1407     BranchInst::Create(NextBlock, FreeBlock);
1408 
1409     NullPtrBlock = NextBlock;
1410   }
1411 
1412   BranchInst::Create(ContBB, NullPtrBlock);
1413 
1414   // CI is no longer needed, remove it.
1415   CI->eraseFromParent();
1416 
1417   /// As we process loads, if we can't immediately update all uses of the load,
1418   /// keep track of what scalarized loads are inserted for a given load.
1419   DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1420   InsertedScalarizedValues[GV] = FieldGlobals;
1421 
1422   std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1423 
1424   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1425   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1426   // of the per-field globals instead.
1427   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1428     Instruction *User = cast<Instruction>(*UI++);
1429 
1430     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1431       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1432       continue;
1433     }
1434 
1435     // Must be a store of null.
1436     StoreInst *SI = cast<StoreInst>(User);
1437     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1438            "Unexpected heap-sra user!");
1439 
1440     // Insert a store of null into each global.
1441     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1442       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1443       Constant *Null = Constant::getNullValue(ValTy);
1444       new StoreInst(Null, FieldGlobals[i], SI);
1445     }
1446     // Erase the original store.
1447     SI->eraseFromParent();
1448   }
1449 
1450   // While we have PHIs that are interesting to rewrite, do it.
1451   while (!PHIsToRewrite.empty()) {
1452     PHINode *PN = PHIsToRewrite.back().first;
1453     unsigned FieldNo = PHIsToRewrite.back().second;
1454     PHIsToRewrite.pop_back();
1455     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1456     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1457 
1458     // Add all the incoming values.  This can materialize more phis.
1459     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1460       Value *InVal = PN->getIncomingValue(i);
1461       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1462                                PHIsToRewrite);
1463       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1464     }
1465   }
1466 
1467   // Drop all inter-phi links and any loads that made it this far.
1468   for (DenseMap<Value *, std::vector<Value *>>::iterator
1469        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1470        I != E; ++I) {
1471     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1472       PN->dropAllReferences();
1473     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1474       LI->dropAllReferences();
1475   }
1476 
1477   // Delete all the phis and loads now that inter-references are dead.
1478   for (DenseMap<Value *, std::vector<Value *>>::iterator
1479        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1480        I != E; ++I) {
1481     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1482       PN->eraseFromParent();
1483     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1484       LI->eraseFromParent();
1485   }
1486 
1487   // The old global is now dead, remove it.
1488   GV->eraseFromParent();
1489 
1490   ++NumHeapSRA;
1491   return cast<GlobalVariable>(FieldGlobals[0]);
1492 }
1493 
1494 /// This function is called when we see a pointer global variable with a single
1495 /// value stored it that is a malloc or cast of malloc.
1496 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1497                                                Type *AllocTy,
1498                                                AtomicOrdering Ordering,
1499                                                const DataLayout &DL,
1500                                                TargetLibraryInfo *TLI) {
1501   // If this is a malloc of an abstract type, don't touch it.
1502   if (!AllocTy->isSized())
1503     return false;
1504 
1505   // We can't optimize this global unless all uses of it are *known* to be
1506   // of the malloc value, not of the null initializer value (consider a use
1507   // that compares the global's value against zero to see if the malloc has
1508   // been reached).  To do this, we check to see if all uses of the global
1509   // would trap if the global were null: this proves that they must all
1510   // happen after the malloc.
1511   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1512     return false;
1513 
1514   // We can't optimize this if the malloc itself is used in a complex way,
1515   // for example, being stored into multiple globals.  This allows the
1516   // malloc to be stored into the specified global, loaded icmp'd, and
1517   // GEP'd.  These are all things we could transform to using the global
1518   // for.
1519   SmallPtrSet<const PHINode*, 8> PHIs;
1520   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1521     return false;
1522 
1523   // If we have a global that is only initialized with a fixed size malloc,
1524   // transform the program to use global memory instead of malloc'd memory.
1525   // This eliminates dynamic allocation, avoids an indirection accessing the
1526   // data, and exposes the resultant global to further GlobalOpt.
1527   // We cannot optimize the malloc if we cannot determine malloc array size.
1528   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1529   if (!NElems)
1530     return false;
1531 
1532   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1533     // Restrict this transformation to only working on small allocations
1534     // (2048 bytes currently), as we don't want to introduce a 16M global or
1535     // something.
1536     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1537       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1538       return true;
1539     }
1540 
1541   // If the allocation is an array of structures, consider transforming this
1542   // into multiple malloc'd arrays, one for each field.  This is basically
1543   // SRoA for malloc'd memory.
1544 
1545   if (Ordering != AtomicOrdering::NotAtomic)
1546     return false;
1547 
1548   // If this is an allocation of a fixed size array of structs, analyze as a
1549   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1550   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1551     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1552       AllocTy = AT->getElementType();
1553 
1554   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1555   if (!AllocSTy)
1556     return false;
1557 
1558   // This the structure has an unreasonable number of fields, leave it
1559   // alone.
1560   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1561       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1562 
1563     // If this is a fixed size array, transform the Malloc to be an alloc of
1564     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1565     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1566       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1567       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1568       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1569       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1570       SmallVector<OperandBundleDef, 1> OpBundles;
1571       CI->getOperandBundlesAsDefs(OpBundles);
1572       Instruction *Malloc =
1573           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1574                                  OpBundles, nullptr, CI->getName());
1575       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1576       CI->replaceAllUsesWith(Cast);
1577       CI->eraseFromParent();
1578       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1579         CI = cast<CallInst>(BCI->getOperand(0));
1580       else
1581         CI = cast<CallInst>(Malloc);
1582     }
1583 
1584     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1585                          TLI);
1586     return true;
1587   }
1588 
1589   return false;
1590 }
1591 
1592 // Try to optimize globals based on the knowledge that only one value (besides
1593 // its initializer) is ever stored to the global.
1594 static bool
1595 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1596                          AtomicOrdering Ordering, const DataLayout &DL,
1597                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1598   // Ignore no-op GEPs and bitcasts.
1599   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1600 
1601   // If we are dealing with a pointer global that is initialized to null and
1602   // only has one (non-null) value stored into it, then we can optimize any
1603   // users of the loaded value (often calls and loads) that would trap if the
1604   // value was null.
1605   if (GV->getInitializer()->getType()->isPointerTy() &&
1606       GV->getInitializer()->isNullValue() &&
1607       !NullPointerIsDefined(
1608           nullptr /* F */,
1609           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1610     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1611       if (GV->getInitializer()->getType() != SOVC->getType())
1612         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1613 
1614       // Optimize away any trapping uses of the loaded value.
1615       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1616         return true;
1617     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1618       auto *TLI = &GetTLI(*CI->getFunction());
1619       Type *MallocType = getMallocAllocatedType(CI, TLI);
1620       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1621                                                            Ordering, DL, TLI))
1622         return true;
1623     }
1624   }
1625 
1626   return false;
1627 }
1628 
1629 /// At this point, we have learned that the only two values ever stored into GV
1630 /// are its initializer and OtherVal.  See if we can shrink the global into a
1631 /// boolean and select between the two values whenever it is used.  This exposes
1632 /// the values to other scalar optimizations.
1633 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1634   Type *GVElType = GV->getValueType();
1635 
1636   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1637   // an FP value, pointer or vector, don't do this optimization because a select
1638   // between them is very expensive and unlikely to lead to later
1639   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1640   // where v1 and v2 both require constant pool loads, a big loss.
1641   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1642       GVElType->isFloatingPointTy() ||
1643       GVElType->isPointerTy() || GVElType->isVectorTy())
1644     return false;
1645 
1646   // Walk the use list of the global seeing if all the uses are load or store.
1647   // If there is anything else, bail out.
1648   for (User *U : GV->users())
1649     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1650       return false;
1651 
1652   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1653 
1654   // Create the new global, initializing it to false.
1655   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1656                                              false,
1657                                              GlobalValue::InternalLinkage,
1658                                         ConstantInt::getFalse(GV->getContext()),
1659                                              GV->getName()+".b",
1660                                              GV->getThreadLocalMode(),
1661                                              GV->getType()->getAddressSpace());
1662   NewGV->copyAttributesFrom(GV);
1663   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1664 
1665   Constant *InitVal = GV->getInitializer();
1666   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1667          "No reason to shrink to bool!");
1668 
1669   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1670   GV->getDebugInfo(GVs);
1671 
1672   // If initialized to zero and storing one into the global, we can use a cast
1673   // instead of a select to synthesize the desired value.
1674   bool IsOneZero = false;
1675   bool EmitOneOrZero = true;
1676   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1677   if (CI && CI->getValue().getActiveBits() <= 64) {
1678     IsOneZero = InitVal->isNullValue() && CI->isOne();
1679 
1680     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1681     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1682       uint64_t ValInit = CIInit->getZExtValue();
1683       uint64_t ValOther = CI->getZExtValue();
1684       uint64_t ValMinus = ValOther - ValInit;
1685 
1686       for(auto *GVe : GVs){
1687         DIGlobalVariable *DGV = GVe->getVariable();
1688         DIExpression *E = GVe->getExpression();
1689         const DataLayout &DL = GV->getParent()->getDataLayout();
1690         unsigned SizeInOctets =
1691           DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8;
1692 
1693         // It is expected that the address of global optimized variable is on
1694         // top of the stack. After optimization, value of that variable will
1695         // be ether 0 for initial value or 1 for other value. The following
1696         // expression should return constant integer value depending on the
1697         // value at global object address:
1698         // val * (ValOther - ValInit) + ValInit:
1699         // DW_OP_deref DW_OP_constu <ValMinus>
1700         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1701         SmallVector<uint64_t, 12> Ops = {
1702             dwarf::DW_OP_deref_size, SizeInOctets,
1703             dwarf::DW_OP_constu, ValMinus,
1704             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1705             dwarf::DW_OP_plus};
1706         bool WithStackValue = true;
1707         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1708         DIGlobalVariableExpression *DGVE =
1709           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1710         NewGV->addDebugInfo(DGVE);
1711      }
1712      EmitOneOrZero = false;
1713     }
1714   }
1715 
1716   if (EmitOneOrZero) {
1717      // FIXME: This will only emit address for debugger on which will
1718      // be written only 0 or 1.
1719      for(auto *GV : GVs)
1720        NewGV->addDebugInfo(GV);
1721    }
1722 
1723   while (!GV->use_empty()) {
1724     Instruction *UI = cast<Instruction>(GV->user_back());
1725     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1726       // Change the store into a boolean store.
1727       bool StoringOther = SI->getOperand(0) == OtherVal;
1728       // Only do this if we weren't storing a loaded value.
1729       Value *StoreVal;
1730       if (StoringOther || SI->getOperand(0) == InitVal) {
1731         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1732                                     StoringOther);
1733       } else {
1734         // Otherwise, we are storing a previously loaded copy.  To do this,
1735         // change the copy from copying the original value to just copying the
1736         // bool.
1737         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1738 
1739         // If we've already replaced the input, StoredVal will be a cast or
1740         // select instruction.  If not, it will be a load of the original
1741         // global.
1742         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1743           assert(LI->getOperand(0) == GV && "Not a copy!");
1744           // Insert a new load, to preserve the saved value.
1745           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1746                                   LI->getName() + ".b", false, Align(1),
1747                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1748         } else {
1749           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1750                  "This is not a form that we understand!");
1751           StoreVal = StoredVal->getOperand(0);
1752           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1753         }
1754       }
1755       StoreInst *NSI =
1756           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1757                         SI->getSyncScopeID(), SI);
1758       NSI->setDebugLoc(SI->getDebugLoc());
1759     } else {
1760       // Change the load into a load of bool then a select.
1761       LoadInst *LI = cast<LoadInst>(UI);
1762       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1763                                    LI->getName() + ".b", false, Align(1),
1764                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1765       Instruction *NSI;
1766       if (IsOneZero)
1767         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1768       else
1769         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1770       NSI->takeName(LI);
1771       // Since LI is split into two instructions, NLI and NSI both inherit the
1772       // same DebugLoc
1773       NLI->setDebugLoc(LI->getDebugLoc());
1774       NSI->setDebugLoc(LI->getDebugLoc());
1775       LI->replaceAllUsesWith(NSI);
1776     }
1777     UI->eraseFromParent();
1778   }
1779 
1780   // Retain the name of the old global variable. People who are debugging their
1781   // programs may expect these variables to be named the same.
1782   NewGV->takeName(GV);
1783   GV->eraseFromParent();
1784   return true;
1785 }
1786 
1787 static bool deleteIfDead(
1788     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1789   GV.removeDeadConstantUsers();
1790 
1791   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1792     return false;
1793 
1794   if (const Comdat *C = GV.getComdat())
1795     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1796       return false;
1797 
1798   bool Dead;
1799   if (auto *F = dyn_cast<Function>(&GV))
1800     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1801   else
1802     Dead = GV.use_empty();
1803   if (!Dead)
1804     return false;
1805 
1806   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1807   GV.eraseFromParent();
1808   ++NumDeleted;
1809   return true;
1810 }
1811 
1812 static bool isPointerValueDeadOnEntryToFunction(
1813     const Function *F, GlobalValue *GV,
1814     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1815   // Find all uses of GV. We expect them all to be in F, and if we can't
1816   // identify any of the uses we bail out.
1817   //
1818   // On each of these uses, identify if the memory that GV points to is
1819   // used/required/live at the start of the function. If it is not, for example
1820   // if the first thing the function does is store to the GV, the GV can
1821   // possibly be demoted.
1822   //
1823   // We don't do an exhaustive search for memory operations - simply look
1824   // through bitcasts as they're quite common and benign.
1825   const DataLayout &DL = GV->getParent()->getDataLayout();
1826   SmallVector<LoadInst *, 4> Loads;
1827   SmallVector<StoreInst *, 4> Stores;
1828   for (auto *U : GV->users()) {
1829     if (Operator::getOpcode(U) == Instruction::BitCast) {
1830       for (auto *UU : U->users()) {
1831         if (auto *LI = dyn_cast<LoadInst>(UU))
1832           Loads.push_back(LI);
1833         else if (auto *SI = dyn_cast<StoreInst>(UU))
1834           Stores.push_back(SI);
1835         else
1836           return false;
1837       }
1838       continue;
1839     }
1840 
1841     Instruction *I = dyn_cast<Instruction>(U);
1842     if (!I)
1843       return false;
1844     assert(I->getParent()->getParent() == F);
1845 
1846     if (auto *LI = dyn_cast<LoadInst>(I))
1847       Loads.push_back(LI);
1848     else if (auto *SI = dyn_cast<StoreInst>(I))
1849       Stores.push_back(SI);
1850     else
1851       return false;
1852   }
1853 
1854   // We have identified all uses of GV into loads and stores. Now check if all
1855   // of them are known not to depend on the value of the global at the function
1856   // entry point. We do this by ensuring that every load is dominated by at
1857   // least one store.
1858   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1859 
1860   // The below check is quadratic. Check we're not going to do too many tests.
1861   // FIXME: Even though this will always have worst-case quadratic time, we
1862   // could put effort into minimizing the average time by putting stores that
1863   // have been shown to dominate at least one load at the beginning of the
1864   // Stores array, making subsequent dominance checks more likely to succeed
1865   // early.
1866   //
1867   // The threshold here is fairly large because global->local demotion is a
1868   // very powerful optimization should it fire.
1869   const unsigned Threshold = 100;
1870   if (Loads.size() * Stores.size() > Threshold)
1871     return false;
1872 
1873   for (auto *L : Loads) {
1874     auto *LTy = L->getType();
1875     if (none_of(Stores, [&](const StoreInst *S) {
1876           auto *STy = S->getValueOperand()->getType();
1877           // The load is only dominated by the store if DomTree says so
1878           // and the number of bits loaded in L is less than or equal to
1879           // the number of bits stored in S.
1880           return DT.dominates(S, L) &&
1881                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1882         }))
1883       return false;
1884   }
1885   // All loads have known dependences inside F, so the global can be localized.
1886   return true;
1887 }
1888 
1889 /// C may have non-instruction users. Can all of those users be turned into
1890 /// instructions?
1891 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1892   // We don't do this exhaustively. The most common pattern that we really need
1893   // to care about is a constant GEP or constant bitcast - so just looking
1894   // through one single ConstantExpr.
1895   //
1896   // The set of constants that this function returns true for must be able to be
1897   // handled by makeAllConstantUsesInstructions.
1898   for (auto *U : C->users()) {
1899     if (isa<Instruction>(U))
1900       continue;
1901     if (!isa<ConstantExpr>(U))
1902       // Non instruction, non-constantexpr user; cannot convert this.
1903       return false;
1904     for (auto *UU : U->users())
1905       if (!isa<Instruction>(UU))
1906         // A constantexpr used by another constant. We don't try and recurse any
1907         // further but just bail out at this point.
1908         return false;
1909   }
1910 
1911   return true;
1912 }
1913 
1914 /// C may have non-instruction users, and
1915 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1916 /// non-instruction users to instructions.
1917 static void makeAllConstantUsesInstructions(Constant *C) {
1918   SmallVector<ConstantExpr*,4> Users;
1919   for (auto *U : C->users()) {
1920     if (isa<ConstantExpr>(U))
1921       Users.push_back(cast<ConstantExpr>(U));
1922     else
1923       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1924       // should not have returned true for C.
1925       assert(
1926           isa<Instruction>(U) &&
1927           "Can't transform non-constantexpr non-instruction to instruction!");
1928   }
1929 
1930   SmallVector<Value*,4> UUsers;
1931   for (auto *U : Users) {
1932     UUsers.clear();
1933     for (auto *UU : U->users())
1934       UUsers.push_back(UU);
1935     for (auto *UU : UUsers) {
1936       Instruction *UI = cast<Instruction>(UU);
1937       Instruction *NewU = U->getAsInstruction();
1938       NewU->insertBefore(UI);
1939       UI->replaceUsesOfWith(U, NewU);
1940     }
1941     // We've replaced all the uses, so destroy the constant. (destroyConstant
1942     // will update value handles and metadata.)
1943     U->destroyConstant();
1944   }
1945 }
1946 
1947 /// Analyze the specified global variable and optimize
1948 /// it if possible.  If we make a change, return true.
1949 static bool
1950 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1951                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1952                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1953   auto &DL = GV->getParent()->getDataLayout();
1954   // If this is a first class global and has only one accessing function and
1955   // this function is non-recursive, we replace the global with a local alloca
1956   // in this function.
1957   //
1958   // NOTE: It doesn't make sense to promote non-single-value types since we
1959   // are just replacing static memory to stack memory.
1960   //
1961   // If the global is in different address space, don't bring it to stack.
1962   if (!GS.HasMultipleAccessingFunctions &&
1963       GS.AccessingFunction &&
1964       GV->getValueType()->isSingleValueType() &&
1965       GV->getType()->getAddressSpace() == 0 &&
1966       !GV->isExternallyInitialized() &&
1967       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1968       GS.AccessingFunction->doesNotRecurse() &&
1969       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1970                                           LookupDomTree)) {
1971     const DataLayout &DL = GV->getParent()->getDataLayout();
1972 
1973     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1974     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1975                                                    ->getEntryBlock().begin());
1976     Type *ElemTy = GV->getValueType();
1977     // FIXME: Pass Global's alignment when globals have alignment
1978     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1979                                         GV->getName(), &FirstI);
1980     if (!isa<UndefValue>(GV->getInitializer()))
1981       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1982 
1983     makeAllConstantUsesInstructions(GV);
1984 
1985     GV->replaceAllUsesWith(Alloca);
1986     GV->eraseFromParent();
1987     ++NumLocalized;
1988     return true;
1989   }
1990 
1991   // If the global is never loaded (but may be stored to), it is dead.
1992   // Delete it now.
1993   if (!GS.IsLoaded) {
1994     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1995 
1996     bool Changed;
1997     if (isLeakCheckerRoot(GV)) {
1998       // Delete any constant stores to the global.
1999       Changed = CleanupPointerRootUsers(GV, GetTLI);
2000     } else {
2001       // Delete any stores we can find to the global.  We may not be able to
2002       // make it completely dead though.
2003       Changed =
2004           CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2005     }
2006 
2007     // If the global is dead now, delete it.
2008     if (GV->use_empty()) {
2009       GV->eraseFromParent();
2010       ++NumDeleted;
2011       Changed = true;
2012     }
2013     return Changed;
2014 
2015   }
2016   if (GS.StoredType <= GlobalStatus::InitializerStored) {
2017     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
2018 
2019     // Don't actually mark a global constant if it's atomic because atomic loads
2020     // are implemented by a trivial cmpxchg in some edge-cases and that usually
2021     // requires write access to the variable even if it's not actually changed.
2022     if (GS.Ordering == AtomicOrdering::NotAtomic)
2023       GV->setConstant(true);
2024 
2025     // Clean up any obviously simplifiable users now.
2026     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2027 
2028     // If the global is dead now, just nuke it.
2029     if (GV->use_empty()) {
2030       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
2031                         << "all users and delete global!\n");
2032       GV->eraseFromParent();
2033       ++NumDeleted;
2034       return true;
2035     }
2036 
2037     // Fall through to the next check; see if we can optimize further.
2038     ++NumMarked;
2039   }
2040   if (!GV->getInitializer()->getType()->isSingleValueType()) {
2041     const DataLayout &DL = GV->getParent()->getDataLayout();
2042     if (SRAGlobal(GV, DL))
2043       return true;
2044   }
2045   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
2046     // If the initial value for the global was an undef value, and if only
2047     // one other value was stored into it, we can just change the
2048     // initializer to be the stored value, then delete all stores to the
2049     // global.  This allows us to mark it constant.
2050     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2051       if (isa<UndefValue>(GV->getInitializer())) {
2052         // Change the initial value here.
2053         GV->setInitializer(SOVConstant);
2054 
2055         // Clean up any obviously simplifiable users now.
2056         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2057 
2058         if (GV->use_empty()) {
2059           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2060                             << "simplify all users and delete global!\n");
2061           GV->eraseFromParent();
2062           ++NumDeleted;
2063         }
2064         ++NumSubstitute;
2065         return true;
2066       }
2067 
2068     // Try to optimize globals based on the knowledge that only one value
2069     // (besides its initializer) is ever stored to the global.
2070     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
2071                                  GetTLI))
2072       return true;
2073 
2074     // Otherwise, if the global was not a boolean, we can shrink it to be a
2075     // boolean.
2076     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2077       if (GS.Ordering == AtomicOrdering::NotAtomic) {
2078         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2079           ++NumShrunkToBool;
2080           return true;
2081         }
2082       }
2083     }
2084   }
2085 
2086   return false;
2087 }
2088 
2089 /// Analyze the specified global variable and optimize it if possible.  If we
2090 /// make a change, return true.
2091 static bool
2092 processGlobal(GlobalValue &GV,
2093               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2094               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2095   if (GV.getName().startswith("llvm."))
2096     return false;
2097 
2098   GlobalStatus GS;
2099 
2100   if (GlobalStatus::analyzeGlobal(&GV, GS))
2101     return false;
2102 
2103   bool Changed = false;
2104   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2105     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2106                                                : GlobalValue::UnnamedAddr::Local;
2107     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2108       GV.setUnnamedAddr(NewUnnamedAddr);
2109       NumUnnamed++;
2110       Changed = true;
2111     }
2112   }
2113 
2114   // Do more involved optimizations if the global is internal.
2115   if (!GV.hasLocalLinkage())
2116     return Changed;
2117 
2118   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2119   if (!GVar)
2120     return Changed;
2121 
2122   if (GVar->isConstant() || !GVar->hasInitializer())
2123     return Changed;
2124 
2125   return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
2126 }
2127 
2128 /// Walk all of the direct calls of the specified function, changing them to
2129 /// FastCC.
2130 static void ChangeCalleesToFastCall(Function *F) {
2131   for (User *U : F->users()) {
2132     if (isa<BlockAddress>(U))
2133       continue;
2134     CallSite CS(cast<Instruction>(U));
2135     CS.setCallingConv(CallingConv::Fast);
2136   }
2137 }
2138 
2139 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
2140                                Attribute::AttrKind A) {
2141   unsigned AttrIndex;
2142   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
2143     return Attrs.removeAttribute(C, AttrIndex, A);
2144   return Attrs;
2145 }
2146 
2147 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
2148   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
2149   for (User *U : F->users()) {
2150     if (isa<BlockAddress>(U))
2151       continue;
2152     CallSite CS(cast<Instruction>(U));
2153     CS.setAttributes(StripAttr(F->getContext(), CS.getAttributes(), A));
2154   }
2155 }
2156 
2157 /// Return true if this is a calling convention that we'd like to change.  The
2158 /// idea here is that we don't want to mess with the convention if the user
2159 /// explicitly requested something with performance implications like coldcc,
2160 /// GHC, or anyregcc.
2161 static bool hasChangeableCC(Function *F) {
2162   CallingConv::ID CC = F->getCallingConv();
2163 
2164   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2165   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2166     return false;
2167 
2168   // FIXME: Change CC for the whole chain of musttail calls when possible.
2169   //
2170   // Can't change CC of the function that either has musttail calls, or is a
2171   // musttail callee itself
2172   for (User *U : F->users()) {
2173     if (isa<BlockAddress>(U))
2174       continue;
2175     CallInst* CI = dyn_cast<CallInst>(U);
2176     if (!CI)
2177       continue;
2178 
2179     if (CI->isMustTailCall())
2180       return false;
2181   }
2182 
2183   for (BasicBlock &BB : *F)
2184     if (BB.getTerminatingMustTailCall())
2185       return false;
2186 
2187   return true;
2188 }
2189 
2190 /// Return true if the block containing the call site has a BlockFrequency of
2191 /// less than ColdCCRelFreq% of the entry block.
2192 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
2193   const BranchProbability ColdProb(ColdCCRelFreq, 100);
2194   auto CallSiteBB = CS.getInstruction()->getParent();
2195   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2196   auto CallerEntryFreq =
2197       CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
2198   return CallSiteFreq < CallerEntryFreq * ColdProb;
2199 }
2200 
2201 // This function checks if the input function F is cold at all call sites. It
2202 // also looks each call site's containing function, returning false if the
2203 // caller function contains other non cold calls. The input vector AllCallsCold
2204 // contains a list of functions that only have call sites in cold blocks.
2205 static bool
2206 isValidCandidateForColdCC(Function &F,
2207                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2208                           const std::vector<Function *> &AllCallsCold) {
2209 
2210   if (F.user_empty())
2211     return false;
2212 
2213   for (User *U : F.users()) {
2214     if (isa<BlockAddress>(U))
2215       continue;
2216 
2217     CallSite CS(cast<Instruction>(U));
2218     Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
2219     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2220     if (!isColdCallSite(CS, CallerBFI))
2221       return false;
2222     auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2223     if (It == AllCallsCold.end())
2224       return false;
2225   }
2226   return true;
2227 }
2228 
2229 static void changeCallSitesToColdCC(Function *F) {
2230   for (User *U : F->users()) {
2231     if (isa<BlockAddress>(U))
2232       continue;
2233     CallSite CS(cast<Instruction>(U));
2234     CS.setCallingConv(CallingConv::Cold);
2235   }
2236 }
2237 
2238 // This function iterates over all the call instructions in the input Function
2239 // and checks that all call sites are in cold blocks and are allowed to use the
2240 // coldcc calling convention.
2241 static bool
2242 hasOnlyColdCalls(Function &F,
2243                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2244   for (BasicBlock &BB : F) {
2245     for (Instruction &I : BB) {
2246       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2247         CallSite CS(cast<Instruction>(CI));
2248         // Skip over isline asm instructions since they aren't function calls.
2249         if (CI->isInlineAsm())
2250           continue;
2251         Function *CalledFn = CI->getCalledFunction();
2252         if (!CalledFn)
2253           return false;
2254         if (!CalledFn->hasLocalLinkage())
2255           return false;
2256         // Skip over instrinsics since they won't remain as function calls.
2257         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2258           continue;
2259         // Check if it's valid to use coldcc calling convention.
2260         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2261             CalledFn->hasAddressTaken())
2262           return false;
2263         BlockFrequencyInfo &CallerBFI = GetBFI(F);
2264         if (!isColdCallSite(CS, CallerBFI))
2265           return false;
2266       }
2267     }
2268   }
2269   return true;
2270 }
2271 
2272 static bool
2273 OptimizeFunctions(Module &M,
2274                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2275                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
2276                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2277                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2278                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2279 
2280   bool Changed = false;
2281 
2282   std::vector<Function *> AllCallsCold;
2283   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2284     Function *F = &*FI++;
2285     if (hasOnlyColdCalls(*F, GetBFI))
2286       AllCallsCold.push_back(F);
2287   }
2288 
2289   // Optimize functions.
2290   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2291     Function *F = &*FI++;
2292 
2293     // Don't perform global opt pass on naked functions; we don't want fast
2294     // calling conventions for naked functions.
2295     if (F->hasFnAttribute(Attribute::Naked))
2296       continue;
2297 
2298     // Functions without names cannot be referenced outside this module.
2299     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2300       F->setLinkage(GlobalValue::InternalLinkage);
2301 
2302     if (deleteIfDead(*F, NotDiscardableComdats)) {
2303       Changed = true;
2304       continue;
2305     }
2306 
2307     // LLVM's definition of dominance allows instructions that are cyclic
2308     // in unreachable blocks, e.g.:
2309     // %pat = select i1 %condition, @global, i16* %pat
2310     // because any instruction dominates an instruction in a block that's
2311     // not reachable from entry.
2312     // So, remove unreachable blocks from the function, because a) there's
2313     // no point in analyzing them and b) GlobalOpt should otherwise grow
2314     // some more complicated logic to break these cycles.
2315     // Removing unreachable blocks might invalidate the dominator so we
2316     // recalculate it.
2317     if (!F->isDeclaration()) {
2318       if (removeUnreachableBlocks(*F)) {
2319         auto &DT = LookupDomTree(*F);
2320         DT.recalculate(*F);
2321         Changed = true;
2322       }
2323     }
2324 
2325     Changed |= processGlobal(*F, GetTLI, LookupDomTree);
2326 
2327     if (!F->hasLocalLinkage())
2328       continue;
2329 
2330     // If we have an inalloca parameter that we can safely remove the
2331     // inalloca attribute from, do so. This unlocks optimizations that
2332     // wouldn't be safe in the presence of inalloca.
2333     // FIXME: We should also hoist alloca affected by this to the entry
2334     // block if possible.
2335     if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2336         !F->hasAddressTaken()) {
2337       RemoveAttribute(F, Attribute::InAlloca);
2338       Changed = true;
2339     }
2340 
2341     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2342       NumInternalFunc++;
2343       TargetTransformInfo &TTI = GetTTI(*F);
2344       // Change the calling convention to coldcc if either stress testing is
2345       // enabled or the target would like to use coldcc on functions which are
2346       // cold at all call sites and the callers contain no other non coldcc
2347       // calls.
2348       if (EnableColdCCStressTest ||
2349           (TTI.useColdCCForColdCall(*F) &&
2350            isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
2351         F->setCallingConv(CallingConv::Cold);
2352         changeCallSitesToColdCC(F);
2353         Changed = true;
2354         NumColdCC++;
2355       }
2356     }
2357 
2358     if (hasChangeableCC(F) && !F->isVarArg() &&
2359         !F->hasAddressTaken()) {
2360       // If this function has a calling convention worth changing, is not a
2361       // varargs function, and is only called directly, promote it to use the
2362       // Fast calling convention.
2363       F->setCallingConv(CallingConv::Fast);
2364       ChangeCalleesToFastCall(F);
2365       ++NumFastCallFns;
2366       Changed = true;
2367     }
2368 
2369     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2370         !F->hasAddressTaken()) {
2371       // The function is not used by a trampoline intrinsic, so it is safe
2372       // to remove the 'nest' attribute.
2373       RemoveAttribute(F, Attribute::Nest);
2374       ++NumNestRemoved;
2375       Changed = true;
2376     }
2377   }
2378   return Changed;
2379 }
2380 
2381 static bool
2382 OptimizeGlobalVars(Module &M,
2383                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2384                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2385                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2386   bool Changed = false;
2387 
2388   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2389        GVI != E; ) {
2390     GlobalVariable *GV = &*GVI++;
2391     // Global variables without names cannot be referenced outside this module.
2392     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2393       GV->setLinkage(GlobalValue::InternalLinkage);
2394     // Simplify the initializer.
2395     if (GV->hasInitializer())
2396       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2397         auto &DL = M.getDataLayout();
2398         // TLI is not used in the case of a Constant, so use default nullptr
2399         // for that optional parameter, since we don't have a Function to
2400         // provide GetTLI anyway.
2401         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2402         if (New != C)
2403           GV->setInitializer(New);
2404       }
2405 
2406     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2407       Changed = true;
2408       continue;
2409     }
2410 
2411     Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
2412   }
2413   return Changed;
2414 }
2415 
2416 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2417 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2418 /// GEP operands of Addr [0, OpNo) have been stepped into.
2419 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2420                                    ConstantExpr *Addr, unsigned OpNo) {
2421   // Base case of the recursion.
2422   if (OpNo == Addr->getNumOperands()) {
2423     assert(Val->getType() == Init->getType() && "Type mismatch!");
2424     return Val;
2425   }
2426 
2427   SmallVector<Constant*, 32> Elts;
2428   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2429     // Break up the constant into its elements.
2430     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2431       Elts.push_back(Init->getAggregateElement(i));
2432 
2433     // Replace the element that we are supposed to.
2434     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2435     unsigned Idx = CU->getZExtValue();
2436     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2437     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2438 
2439     // Return the modified struct.
2440     return ConstantStruct::get(STy, Elts);
2441   }
2442 
2443   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2444   uint64_t NumElts;
2445   if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType()))
2446     NumElts = ATy->getNumElements();
2447   else
2448     NumElts = cast<VectorType>(Init->getType())->getNumElements();
2449 
2450   // Break up the array into elements.
2451   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2452     Elts.push_back(Init->getAggregateElement(i));
2453 
2454   assert(CI->getZExtValue() < NumElts);
2455   Elts[CI->getZExtValue()] =
2456     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2457 
2458   if (Init->getType()->isArrayTy())
2459     return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts);
2460   return ConstantVector::get(Elts);
2461 }
2462 
2463 /// We have decided that Addr (which satisfies the predicate
2464 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2465 static void CommitValueTo(Constant *Val, Constant *Addr) {
2466   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2467     assert(GV->hasInitializer());
2468     GV->setInitializer(Val);
2469     return;
2470   }
2471 
2472   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2473   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2474   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2475 }
2476 
2477 /// Given a map of address -> value, where addresses are expected to be some form
2478 /// of either a global or a constant GEP, set the initializer for the address to
2479 /// be the value. This performs mostly the same function as CommitValueTo()
2480 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2481 /// case where the set of addresses are GEPs sharing the same underlying global,
2482 /// processing the GEPs in batches rather than individually.
2483 ///
2484 /// To give an example, consider the following C++ code adapted from the clang
2485 /// regression tests:
2486 /// struct S {
2487 ///  int n = 10;
2488 ///  int m = 2 * n;
2489 ///  S(int a) : n(a) {}
2490 /// };
2491 ///
2492 /// template<typename T>
2493 /// struct U {
2494 ///  T *r = &q;
2495 ///  T q = 42;
2496 ///  U *p = this;
2497 /// };
2498 ///
2499 /// U<S> e;
2500 ///
2501 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2502 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2503 /// members. This batch algorithm will simply use general CommitValueTo() method
2504 /// to handle the complex nested S struct initialization of 'q', before
2505 /// processing the outermost members in a single batch. Using CommitValueTo() to
2506 /// handle member in the outer struct is inefficient when the struct/array is
2507 /// very large as we end up creating and destroy constant arrays for each
2508 /// initialization.
2509 /// For the above case, we expect the following IR to be generated:
2510 ///
2511 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2512 /// %struct.S = type { i32, i32 }
2513 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2514 ///                                                  i64 0, i32 1),
2515 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2516 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2517 /// constant expression, while the other two elements of @e are "simple".
2518 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2519   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2520   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2521   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2522   SimpleCEs.reserve(Mem.size());
2523 
2524   for (const auto &I : Mem) {
2525     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2526       GVs.push_back(std::make_pair(GV, I.second));
2527     } else {
2528       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2529       // We don't handle the deeply recursive case using the batch method.
2530       if (GEP->getNumOperands() > 3)
2531         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2532       else
2533         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2534     }
2535   }
2536 
2537   // The algorithm below doesn't handle cases like nested structs, so use the
2538   // slower fully general method if we have to.
2539   for (auto ComplexCE : ComplexCEs)
2540     CommitValueTo(ComplexCE.second, ComplexCE.first);
2541 
2542   for (auto GVPair : GVs) {
2543     assert(GVPair.first->hasInitializer());
2544     GVPair.first->setInitializer(GVPair.second);
2545   }
2546 
2547   if (SimpleCEs.empty())
2548     return;
2549 
2550   // We cache a single global's initializer elements in the case where the
2551   // subsequent address/val pair uses the same one. This avoids throwing away and
2552   // rebuilding the constant struct/vector/array just because one element is
2553   // modified at a time.
2554   SmallVector<Constant *, 32> Elts;
2555   Elts.reserve(SimpleCEs.size());
2556   GlobalVariable *CurrentGV = nullptr;
2557 
2558   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2559     Constant *Init = GV->getInitializer();
2560     Type *Ty = Init->getType();
2561     if (Update) {
2562       if (CurrentGV) {
2563         assert(CurrentGV && "Expected a GV to commit to!");
2564         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2565         // We have a valid cache that needs to be committed.
2566         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2567           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2568         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2569           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2570         else
2571           CurrentGV->setInitializer(ConstantVector::get(Elts));
2572       }
2573       if (CurrentGV == GV)
2574         return;
2575       // Need to clear and set up cache for new initializer.
2576       CurrentGV = GV;
2577       Elts.clear();
2578       unsigned NumElts;
2579       if (auto *STy = dyn_cast<StructType>(Ty))
2580         NumElts = STy->getNumElements();
2581       else if (auto *ATy = dyn_cast<ArrayType>(Ty))
2582         NumElts = ATy->getNumElements();
2583       else
2584         NumElts = cast<VectorType>(Ty)->getNumElements();
2585       for (unsigned i = 0, e = NumElts; i != e; ++i)
2586         Elts.push_back(Init->getAggregateElement(i));
2587     }
2588   };
2589 
2590   for (auto CEPair : SimpleCEs) {
2591     ConstantExpr *GEP = CEPair.first;
2592     Constant *Val = CEPair.second;
2593 
2594     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2595     commitAndSetupCache(GV, GV != CurrentGV);
2596     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2597     Elts[CI->getZExtValue()] = Val;
2598   }
2599   // The last initializer in the list needs to be committed, others
2600   // will be committed on a new initializer being processed.
2601   commitAndSetupCache(CurrentGV, true);
2602 }
2603 
2604 /// Evaluate static constructors in the function, if we can.  Return true if we
2605 /// can, false otherwise.
2606 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2607                                       TargetLibraryInfo *TLI) {
2608   // Call the function.
2609   Evaluator Eval(DL, TLI);
2610   Constant *RetValDummy;
2611   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2612                                            SmallVector<Constant*, 0>());
2613 
2614   if (EvalSuccess) {
2615     ++NumCtorsEvaluated;
2616 
2617     // We succeeded at evaluation: commit the result.
2618     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2619                       << F->getName() << "' to "
2620                       << Eval.getMutatedMemory().size() << " stores.\n");
2621     BatchCommitValueTo(Eval.getMutatedMemory());
2622     for (GlobalVariable *GV : Eval.getInvariants())
2623       GV->setConstant(true);
2624   }
2625 
2626   return EvalSuccess;
2627 }
2628 
2629 static int compareNames(Constant *const *A, Constant *const *B) {
2630   Value *AStripped = (*A)->stripPointerCasts();
2631   Value *BStripped = (*B)->stripPointerCasts();
2632   return AStripped->getName().compare(BStripped->getName());
2633 }
2634 
2635 static void setUsedInitializer(GlobalVariable &V,
2636                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2637   if (Init.empty()) {
2638     V.eraseFromParent();
2639     return;
2640   }
2641 
2642   // Type of pointer to the array of pointers.
2643   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2644 
2645   SmallVector<Constant *, 8> UsedArray;
2646   for (GlobalValue *GV : Init) {
2647     Constant *Cast
2648       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2649     UsedArray.push_back(Cast);
2650   }
2651   // Sort to get deterministic order.
2652   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2653   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2654 
2655   Module *M = V.getParent();
2656   V.removeFromParent();
2657   GlobalVariable *NV =
2658       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2659                          ConstantArray::get(ATy, UsedArray), "");
2660   NV->takeName(&V);
2661   NV->setSection("llvm.metadata");
2662   delete &V;
2663 }
2664 
2665 namespace {
2666 
2667 /// An easy to access representation of llvm.used and llvm.compiler.used.
2668 class LLVMUsed {
2669   SmallPtrSet<GlobalValue *, 8> Used;
2670   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2671   GlobalVariable *UsedV;
2672   GlobalVariable *CompilerUsedV;
2673 
2674 public:
2675   LLVMUsed(Module &M) {
2676     UsedV = collectUsedGlobalVariables(M, Used, false);
2677     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2678   }
2679 
2680   using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2681   using used_iterator_range = iterator_range<iterator>;
2682 
2683   iterator usedBegin() { return Used.begin(); }
2684   iterator usedEnd() { return Used.end(); }
2685 
2686   used_iterator_range used() {
2687     return used_iterator_range(usedBegin(), usedEnd());
2688   }
2689 
2690   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2691   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2692 
2693   used_iterator_range compilerUsed() {
2694     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2695   }
2696 
2697   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2698 
2699   bool compilerUsedCount(GlobalValue *GV) const {
2700     return CompilerUsed.count(GV);
2701   }
2702 
2703   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2704   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2705   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2706 
2707   bool compilerUsedInsert(GlobalValue *GV) {
2708     return CompilerUsed.insert(GV).second;
2709   }
2710 
2711   void syncVariablesAndSets() {
2712     if (UsedV)
2713       setUsedInitializer(*UsedV, Used);
2714     if (CompilerUsedV)
2715       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2716   }
2717 };
2718 
2719 } // end anonymous namespace
2720 
2721 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2722   if (GA.use_empty()) // No use at all.
2723     return false;
2724 
2725   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2726          "We should have removed the duplicated "
2727          "element from llvm.compiler.used");
2728   if (!GA.hasOneUse())
2729     // Strictly more than one use. So at least one is not in llvm.used and
2730     // llvm.compiler.used.
2731     return true;
2732 
2733   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2734   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2735 }
2736 
2737 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2738                                                const LLVMUsed &U) {
2739   unsigned N = 2;
2740   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2741          "We should have removed the duplicated "
2742          "element from llvm.compiler.used");
2743   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2744     ++N;
2745   return V.hasNUsesOrMore(N);
2746 }
2747 
2748 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2749   if (!GA.hasLocalLinkage())
2750     return true;
2751 
2752   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2753 }
2754 
2755 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2756                              bool &RenameTarget) {
2757   RenameTarget = false;
2758   bool Ret = false;
2759   if (hasUseOtherThanLLVMUsed(GA, U))
2760     Ret = true;
2761 
2762   // If the alias is externally visible, we may still be able to simplify it.
2763   if (!mayHaveOtherReferences(GA, U))
2764     return Ret;
2765 
2766   // If the aliasee has internal linkage, give it the name and linkage
2767   // of the alias, and delete the alias.  This turns:
2768   //   define internal ... @f(...)
2769   //   @a = alias ... @f
2770   // into:
2771   //   define ... @a(...)
2772   Constant *Aliasee = GA.getAliasee();
2773   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2774   if (!Target->hasLocalLinkage())
2775     return Ret;
2776 
2777   // Do not perform the transform if multiple aliases potentially target the
2778   // aliasee. This check also ensures that it is safe to replace the section
2779   // and other attributes of the aliasee with those of the alias.
2780   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2781     return Ret;
2782 
2783   RenameTarget = true;
2784   return true;
2785 }
2786 
2787 static bool
2788 OptimizeGlobalAliases(Module &M,
2789                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2790   bool Changed = false;
2791   LLVMUsed Used(M);
2792 
2793   for (GlobalValue *GV : Used.used())
2794     Used.compilerUsedErase(GV);
2795 
2796   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2797        I != E;) {
2798     GlobalAlias *J = &*I++;
2799 
2800     // Aliases without names cannot be referenced outside this module.
2801     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2802       J->setLinkage(GlobalValue::InternalLinkage);
2803 
2804     if (deleteIfDead(*J, NotDiscardableComdats)) {
2805       Changed = true;
2806       continue;
2807     }
2808 
2809     // If the alias can change at link time, nothing can be done - bail out.
2810     if (J->isInterposable())
2811       continue;
2812 
2813     Constant *Aliasee = J->getAliasee();
2814     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2815     // We can't trivially replace the alias with the aliasee if the aliasee is
2816     // non-trivial in some way.
2817     // TODO: Try to handle non-zero GEPs of local aliasees.
2818     if (!Target)
2819       continue;
2820     Target->removeDeadConstantUsers();
2821 
2822     // Make all users of the alias use the aliasee instead.
2823     bool RenameTarget;
2824     if (!hasUsesToReplace(*J, Used, RenameTarget))
2825       continue;
2826 
2827     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2828     ++NumAliasesResolved;
2829     Changed = true;
2830 
2831     if (RenameTarget) {
2832       // Give the aliasee the name, linkage and other attributes of the alias.
2833       Target->takeName(&*J);
2834       Target->setLinkage(J->getLinkage());
2835       Target->setDSOLocal(J->isDSOLocal());
2836       Target->setVisibility(J->getVisibility());
2837       Target->setDLLStorageClass(J->getDLLStorageClass());
2838 
2839       if (Used.usedErase(&*J))
2840         Used.usedInsert(Target);
2841 
2842       if (Used.compilerUsedErase(&*J))
2843         Used.compilerUsedInsert(Target);
2844     } else if (mayHaveOtherReferences(*J, Used))
2845       continue;
2846 
2847     // Delete the alias.
2848     M.getAliasList().erase(J);
2849     ++NumAliasesRemoved;
2850     Changed = true;
2851   }
2852 
2853   Used.syncVariablesAndSets();
2854 
2855   return Changed;
2856 }
2857 
2858 static Function *
2859 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2860   // Hack to get a default TLI before we have actual Function.
2861   auto FuncIter = M.begin();
2862   if (FuncIter == M.end())
2863     return nullptr;
2864   auto *TLI = &GetTLI(*FuncIter);
2865 
2866   LibFunc F = LibFunc_cxa_atexit;
2867   if (!TLI->has(F))
2868     return nullptr;
2869 
2870   Function *Fn = M.getFunction(TLI->getName(F));
2871   if (!Fn)
2872     return nullptr;
2873 
2874   // Now get the actual TLI for Fn.
2875   TLI = &GetTLI(*Fn);
2876 
2877   // Make sure that the function has the correct prototype.
2878   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2879     return nullptr;
2880 
2881   return Fn;
2882 }
2883 
2884 /// Returns whether the given function is an empty C++ destructor and can
2885 /// therefore be eliminated.
2886 /// Note that we assume that other optimization passes have already simplified
2887 /// the code so we simply check for 'ret'.
2888 static bool cxxDtorIsEmpty(const Function &Fn) {
2889   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2890   // nounwind, but that doesn't seem worth doing.
2891   if (Fn.isDeclaration())
2892     return false;
2893 
2894   for (auto &I : Fn.getEntryBlock()) {
2895     if (isa<DbgInfoIntrinsic>(I))
2896       continue;
2897     if (isa<ReturnInst>(I))
2898       return true;
2899     break;
2900   }
2901   return false;
2902 }
2903 
2904 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2905   /// Itanium C++ ABI p3.3.5:
2906   ///
2907   ///   After constructing a global (or local static) object, that will require
2908   ///   destruction on exit, a termination function is registered as follows:
2909   ///
2910   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2911   ///
2912   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2913   ///   call f(p) when DSO d is unloaded, before all such termination calls
2914   ///   registered before this one. It returns zero if registration is
2915   ///   successful, nonzero on failure.
2916 
2917   // This pass will look for calls to __cxa_atexit where the function is trivial
2918   // and remove them.
2919   bool Changed = false;
2920 
2921   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2922        I != E;) {
2923     // We're only interested in calls. Theoretically, we could handle invoke
2924     // instructions as well, but neither llvm-gcc nor clang generate invokes
2925     // to __cxa_atexit.
2926     CallInst *CI = dyn_cast<CallInst>(*I++);
2927     if (!CI)
2928       continue;
2929 
2930     Function *DtorFn =
2931       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2932     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2933       continue;
2934 
2935     // Just remove the call.
2936     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2937     CI->eraseFromParent();
2938 
2939     ++NumCXXDtorsRemoved;
2940 
2941     Changed |= true;
2942   }
2943 
2944   return Changed;
2945 }
2946 
2947 static bool optimizeGlobalsInModule(
2948     Module &M, const DataLayout &DL,
2949     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2950     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2951     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2952     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2953   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2954   bool Changed = false;
2955   bool LocalChange = true;
2956   while (LocalChange) {
2957     LocalChange = false;
2958 
2959     NotDiscardableComdats.clear();
2960     for (const GlobalVariable &GV : M.globals())
2961       if (const Comdat *C = GV.getComdat())
2962         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2963           NotDiscardableComdats.insert(C);
2964     for (Function &F : M)
2965       if (const Comdat *C = F.getComdat())
2966         if (!F.isDefTriviallyDead())
2967           NotDiscardableComdats.insert(C);
2968     for (GlobalAlias &GA : M.aliases())
2969       if (const Comdat *C = GA.getComdat())
2970         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2971           NotDiscardableComdats.insert(C);
2972 
2973     // Delete functions that are trivially dead, ccc -> fastcc
2974     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2975                                      NotDiscardableComdats);
2976 
2977     // Optimize global_ctors list.
2978     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2979       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2980     });
2981 
2982     // Optimize non-address-taken globals.
2983     LocalChange |=
2984         OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);
2985 
2986     // Resolve aliases, when possible.
2987     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2988 
2989     // Try to remove trivial global destructors if they are not removed
2990     // already.
2991     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2992     if (CXAAtExitFn)
2993       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2994 
2995     Changed |= LocalChange;
2996   }
2997 
2998   // TODO: Move all global ctors functions to the end of the module for code
2999   // layout.
3000 
3001   return Changed;
3002 }
3003 
3004 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
3005     auto &DL = M.getDataLayout();
3006     auto &FAM =
3007         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3008     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
3009       return FAM.getResult<DominatorTreeAnalysis>(F);
3010     };
3011     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
3012       return FAM.getResult<TargetLibraryAnalysis>(F);
3013     };
3014     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
3015       return FAM.getResult<TargetIRAnalysis>(F);
3016     };
3017 
3018     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
3019       return FAM.getResult<BlockFrequencyAnalysis>(F);
3020     };
3021 
3022     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
3023       return PreservedAnalyses::all();
3024     return PreservedAnalyses::none();
3025 }
3026 
3027 namespace {
3028 
3029 struct GlobalOptLegacyPass : public ModulePass {
3030   static char ID; // Pass identification, replacement for typeid
3031 
3032   GlobalOptLegacyPass() : ModulePass(ID) {
3033     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
3034   }
3035 
3036   bool runOnModule(Module &M) override {
3037     if (skipModule(M))
3038       return false;
3039 
3040     auto &DL = M.getDataLayout();
3041     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
3042       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
3043     };
3044     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
3045       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3046     };
3047     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
3048       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3049     };
3050 
3051     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3052       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3053     };
3054 
3055     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
3056                                    LookupDomTree);
3057   }
3058 
3059   void getAnalysisUsage(AnalysisUsage &AU) const override {
3060     AU.addRequired<TargetLibraryInfoWrapperPass>();
3061     AU.addRequired<TargetTransformInfoWrapperPass>();
3062     AU.addRequired<DominatorTreeWrapperPass>();
3063     AU.addRequired<BlockFrequencyInfoWrapperPass>();
3064   }
3065 };
3066 
3067 } // end anonymous namespace
3068 
3069 char GlobalOptLegacyPass::ID = 0;
3070 
3071 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3072                       "Global Variable Optimizer", false, false)
3073 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3074 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3075 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3076 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3077 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3078                     "Global Variable Optimizer", false, false)
3079 
3080 ModulePass *llvm::createGlobalOptimizerPass() {
3081   return new GlobalOptLegacyPass();
3082 }
3083