1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "globalopt" 17 #include "llvm/Transforms/IPO.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/CallSite.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GetElementPtrTypeIterator.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetLibraryInfo.h" 41 #include "llvm/Transforms/Utils/GlobalStatus.h" 42 #include "llvm/Transforms/Utils/ModuleUtils.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 STATISTIC(NumMarked , "Number of globals marked constant"); 47 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 48 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 49 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 50 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 51 STATISTIC(NumDeleted , "Number of globals deleted"); 52 STATISTIC(NumFnDeleted , "Number of functions deleted"); 53 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 54 STATISTIC(NumLocalized , "Number of globals localized"); 55 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 56 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 57 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 58 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 59 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 60 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 61 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 62 63 namespace { 64 struct GlobalOpt : public ModulePass { 65 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 66 AU.addRequired<TargetLibraryInfo>(); 67 } 68 static char ID; // Pass identification, replacement for typeid 69 GlobalOpt() : ModulePass(ID) { 70 initializeGlobalOptPass(*PassRegistry::getPassRegistry()); 71 } 72 73 bool runOnModule(Module &M); 74 75 private: 76 GlobalVariable *FindGlobalCtors(Module &M); 77 bool OptimizeFunctions(Module &M); 78 bool OptimizeGlobalVars(Module &M); 79 bool OptimizeGlobalAliases(Module &M); 80 bool OptimizeGlobalCtorsList(GlobalVariable *&GCL); 81 bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI); 82 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI, 83 const GlobalStatus &GS); 84 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn); 85 86 DataLayout *TD; 87 TargetLibraryInfo *TLI; 88 }; 89 } 90 91 char GlobalOpt::ID = 0; 92 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt", 93 "Global Variable Optimizer", false, false) 94 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 95 INITIALIZE_PASS_END(GlobalOpt, "globalopt", 96 "Global Variable Optimizer", false, false) 97 98 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } 99 100 /// isLeakCheckerRoot - Is this global variable possibly used by a leak checker 101 /// as a root? If so, we might not really want to eliminate the stores to it. 102 static bool isLeakCheckerRoot(GlobalVariable *GV) { 103 // A global variable is a root if it is a pointer, or could plausibly contain 104 // a pointer. There are two challenges; one is that we could have a struct 105 // the has an inner member which is a pointer. We recurse through the type to 106 // detect these (up to a point). The other is that we may actually be a union 107 // of a pointer and another type, and so our LLVM type is an integer which 108 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 109 // potentially contained here. 110 111 if (GV->hasPrivateLinkage()) 112 return false; 113 114 SmallVector<Type *, 4> Types; 115 Types.push_back(cast<PointerType>(GV->getType())->getElementType()); 116 117 unsigned Limit = 20; 118 do { 119 Type *Ty = Types.pop_back_val(); 120 switch (Ty->getTypeID()) { 121 default: break; 122 case Type::PointerTyID: return true; 123 case Type::ArrayTyID: 124 case Type::VectorTyID: { 125 SequentialType *STy = cast<SequentialType>(Ty); 126 Types.push_back(STy->getElementType()); 127 break; 128 } 129 case Type::StructTyID: { 130 StructType *STy = cast<StructType>(Ty); 131 if (STy->isOpaque()) return true; 132 for (StructType::element_iterator I = STy->element_begin(), 133 E = STy->element_end(); I != E; ++I) { 134 Type *InnerTy = *I; 135 if (isa<PointerType>(InnerTy)) return true; 136 if (isa<CompositeType>(InnerTy)) 137 Types.push_back(InnerTy); 138 } 139 break; 140 } 141 } 142 if (--Limit == 0) return true; 143 } while (!Types.empty()); 144 return false; 145 } 146 147 /// Given a value that is stored to a global but never read, determine whether 148 /// it's safe to remove the store and the chain of computation that feeds the 149 /// store. 150 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 151 do { 152 if (isa<Constant>(V)) 153 return true; 154 if (!V->hasOneUse()) 155 return false; 156 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 157 isa<GlobalValue>(V)) 158 return false; 159 if (isAllocationFn(V, TLI)) 160 return true; 161 162 Instruction *I = cast<Instruction>(V); 163 if (I->mayHaveSideEffects()) 164 return false; 165 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 166 if (!GEP->hasAllConstantIndices()) 167 return false; 168 } else if (I->getNumOperands() != 1) { 169 return false; 170 } 171 172 V = I->getOperand(0); 173 } while (1); 174 } 175 176 /// CleanupPointerRootUsers - This GV is a pointer root. Loop over all users 177 /// of the global and clean up any that obviously don't assign the global a 178 /// value that isn't dynamically allocated. 179 /// 180 static bool CleanupPointerRootUsers(GlobalVariable *GV, 181 const TargetLibraryInfo *TLI) { 182 // A brief explanation of leak checkers. The goal is to find bugs where 183 // pointers are forgotten, causing an accumulating growth in memory 184 // usage over time. The common strategy for leak checkers is to whitelist the 185 // memory pointed to by globals at exit. This is popular because it also 186 // solves another problem where the main thread of a C++ program may shut down 187 // before other threads that are still expecting to use those globals. To 188 // handle that case, we expect the program may create a singleton and never 189 // destroy it. 190 191 bool Changed = false; 192 193 // If Dead[n].first is the only use of a malloc result, we can delete its 194 // chain of computation and the store to the global in Dead[n].second. 195 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 196 197 // Constants can't be pointers to dynamically allocated memory. 198 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 199 UI != E;) { 200 User *U = *UI++; 201 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 202 Value *V = SI->getValueOperand(); 203 if (isa<Constant>(V)) { 204 Changed = true; 205 SI->eraseFromParent(); 206 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 207 if (I->hasOneUse()) 208 Dead.push_back(std::make_pair(I, SI)); 209 } 210 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 211 if (isa<Constant>(MSI->getValue())) { 212 Changed = true; 213 MSI->eraseFromParent(); 214 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 215 if (I->hasOneUse()) 216 Dead.push_back(std::make_pair(I, MSI)); 217 } 218 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 219 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 220 if (MemSrc && MemSrc->isConstant()) { 221 Changed = true; 222 MTI->eraseFromParent(); 223 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 224 if (I->hasOneUse()) 225 Dead.push_back(std::make_pair(I, MTI)); 226 } 227 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 228 if (CE->use_empty()) { 229 CE->destroyConstant(); 230 Changed = true; 231 } 232 } else if (Constant *C = dyn_cast<Constant>(U)) { 233 if (isSafeToDestroyConstant(C)) { 234 C->destroyConstant(); 235 // This could have invalidated UI, start over from scratch. 236 Dead.clear(); 237 CleanupPointerRootUsers(GV, TLI); 238 return true; 239 } 240 } 241 } 242 243 for (int i = 0, e = Dead.size(); i != e; ++i) { 244 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 245 Dead[i].second->eraseFromParent(); 246 Instruction *I = Dead[i].first; 247 do { 248 if (isAllocationFn(I, TLI)) 249 break; 250 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 251 if (!J) 252 break; 253 I->eraseFromParent(); 254 I = J; 255 } while (1); 256 I->eraseFromParent(); 257 } 258 } 259 260 return Changed; 261 } 262 263 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all 264 /// users of the global, cleaning up the obvious ones. This is largely just a 265 /// quick scan over the use list to clean up the easy and obvious cruft. This 266 /// returns true if it made a change. 267 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 268 DataLayout *TD, TargetLibraryInfo *TLI) { 269 bool Changed = false; 270 SmallVector<User*, 8> WorkList(V->use_begin(), V->use_end()); 271 while (!WorkList.empty()) { 272 User *U = WorkList.pop_back_val(); 273 274 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 275 if (Init) { 276 // Replace the load with the initializer. 277 LI->replaceAllUsesWith(Init); 278 LI->eraseFromParent(); 279 Changed = true; 280 } 281 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 282 // Store must be unreachable or storing Init into the global. 283 SI->eraseFromParent(); 284 Changed = true; 285 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 286 if (CE->getOpcode() == Instruction::GetElementPtr) { 287 Constant *SubInit = 0; 288 if (Init) 289 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 290 Changed |= CleanupConstantGlobalUsers(CE, SubInit, TD, TLI); 291 } else if (CE->getOpcode() == Instruction::BitCast && 292 CE->getType()->isPointerTy()) { 293 // Pointer cast, delete any stores and memsets to the global. 294 Changed |= CleanupConstantGlobalUsers(CE, 0, TD, TLI); 295 } 296 297 if (CE->use_empty()) { 298 CE->destroyConstant(); 299 Changed = true; 300 } 301 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 302 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 303 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 304 // and will invalidate our notion of what Init is. 305 Constant *SubInit = 0; 306 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 307 ConstantExpr *CE = 308 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, TD, TLI)); 309 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 310 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 311 312 // If the initializer is an all-null value and we have an inbounds GEP, 313 // we already know what the result of any load from that GEP is. 314 // TODO: Handle splats. 315 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 316 SubInit = Constant::getNullValue(GEP->getType()->getElementType()); 317 } 318 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, TD, TLI); 319 320 if (GEP->use_empty()) { 321 GEP->eraseFromParent(); 322 Changed = true; 323 } 324 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 325 if (MI->getRawDest() == V) { 326 MI->eraseFromParent(); 327 Changed = true; 328 } 329 330 } else if (Constant *C = dyn_cast<Constant>(U)) { 331 // If we have a chain of dead constantexprs or other things dangling from 332 // us, and if they are all dead, nuke them without remorse. 333 if (isSafeToDestroyConstant(C)) { 334 C->destroyConstant(); 335 CleanupConstantGlobalUsers(V, Init, TD, TLI); 336 return true; 337 } 338 } 339 } 340 return Changed; 341 } 342 343 /// isSafeSROAElementUse - Return true if the specified instruction is a safe 344 /// user of a derived expression from a global that we want to SROA. 345 static bool isSafeSROAElementUse(Value *V) { 346 // We might have a dead and dangling constant hanging off of here. 347 if (Constant *C = dyn_cast<Constant>(V)) 348 return isSafeToDestroyConstant(C); 349 350 Instruction *I = dyn_cast<Instruction>(V); 351 if (!I) return false; 352 353 // Loads are ok. 354 if (isa<LoadInst>(I)) return true; 355 356 // Stores *to* the pointer are ok. 357 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 358 return SI->getOperand(0) != V; 359 360 // Otherwise, it must be a GEP. 361 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 362 if (GEPI == 0) return false; 363 364 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 365 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 366 return false; 367 368 for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end(); 369 I != E; ++I) 370 if (!isSafeSROAElementUse(*I)) 371 return false; 372 return true; 373 } 374 375 376 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value. 377 /// Look at it and its uses and decide whether it is safe to SROA this global. 378 /// 379 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 380 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 381 if (!isa<GetElementPtrInst>(U) && 382 (!isa<ConstantExpr>(U) || 383 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 384 return false; 385 386 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 387 // don't like < 3 operand CE's, and we don't like non-constant integer 388 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 389 // value of C. 390 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 391 !cast<Constant>(U->getOperand(1))->isNullValue() || 392 !isa<ConstantInt>(U->getOperand(2))) 393 return false; 394 395 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 396 ++GEPI; // Skip over the pointer index. 397 398 // If this is a use of an array allocation, do a bit more checking for sanity. 399 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 400 uint64_t NumElements = AT->getNumElements(); 401 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 402 403 // Check to make sure that index falls within the array. If not, 404 // something funny is going on, so we won't do the optimization. 405 // 406 if (Idx->getZExtValue() >= NumElements) 407 return false; 408 409 // We cannot scalar repl this level of the array unless any array 410 // sub-indices are in-range constants. In particular, consider: 411 // A[0][i]. We cannot know that the user isn't doing invalid things like 412 // allowing i to index an out-of-range subscript that accesses A[1]. 413 // 414 // Scalar replacing *just* the outer index of the array is probably not 415 // going to be a win anyway, so just give up. 416 for (++GEPI; // Skip array index. 417 GEPI != E; 418 ++GEPI) { 419 uint64_t NumElements; 420 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 421 NumElements = SubArrayTy->getNumElements(); 422 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 423 NumElements = SubVectorTy->getNumElements(); 424 else { 425 assert((*GEPI)->isStructTy() && 426 "Indexed GEP type is not array, vector, or struct!"); 427 continue; 428 } 429 430 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 431 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 432 return false; 433 } 434 } 435 436 for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I) 437 if (!isSafeSROAElementUse(*I)) 438 return false; 439 return true; 440 } 441 442 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it 443 /// is safe for us to perform this transformation. 444 /// 445 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 446 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 447 UI != E; ++UI) { 448 if (!IsUserOfGlobalSafeForSRA(*UI, GV)) 449 return false; 450 } 451 return true; 452 } 453 454 455 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global 456 /// variable. This opens the door for other optimizations by exposing the 457 /// behavior of the program in a more fine-grained way. We have determined that 458 /// this transformation is safe already. We return the first global variable we 459 /// insert so that the caller can reprocess it. 460 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &TD) { 461 // Make sure this global only has simple uses that we can SRA. 462 if (!GlobalUsersSafeToSRA(GV)) 463 return 0; 464 465 assert(GV->hasLocalLinkage() && !GV->isConstant()); 466 Constant *Init = GV->getInitializer(); 467 Type *Ty = Init->getType(); 468 469 std::vector<GlobalVariable*> NewGlobals; 470 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 471 472 // Get the alignment of the global, either explicit or target-specific. 473 unsigned StartAlignment = GV->getAlignment(); 474 if (StartAlignment == 0) 475 StartAlignment = TD.getABITypeAlignment(GV->getType()); 476 477 if (StructType *STy = dyn_cast<StructType>(Ty)) { 478 NewGlobals.reserve(STy->getNumElements()); 479 const StructLayout &Layout = *TD.getStructLayout(STy); 480 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 481 Constant *In = Init->getAggregateElement(i); 482 assert(In && "Couldn't get element of initializer?"); 483 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 484 GlobalVariable::InternalLinkage, 485 In, GV->getName()+"."+Twine(i), 486 GV->getThreadLocalMode(), 487 GV->getType()->getAddressSpace()); 488 Globals.insert(GV, NGV); 489 NewGlobals.push_back(NGV); 490 491 // Calculate the known alignment of the field. If the original aggregate 492 // had 256 byte alignment for example, something might depend on that: 493 // propagate info to each field. 494 uint64_t FieldOffset = Layout.getElementOffset(i); 495 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 496 if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i))) 497 NGV->setAlignment(NewAlign); 498 } 499 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 500 unsigned NumElements = 0; 501 if (ArrayType *ATy = dyn_cast<ArrayType>(STy)) 502 NumElements = ATy->getNumElements(); 503 else 504 NumElements = cast<VectorType>(STy)->getNumElements(); 505 506 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 507 return 0; // It's not worth it. 508 NewGlobals.reserve(NumElements); 509 510 uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType()); 511 unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType()); 512 for (unsigned i = 0, e = NumElements; i != e; ++i) { 513 Constant *In = Init->getAggregateElement(i); 514 assert(In && "Couldn't get element of initializer?"); 515 516 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 517 GlobalVariable::InternalLinkage, 518 In, GV->getName()+"."+Twine(i), 519 GV->getThreadLocalMode(), 520 GV->getType()->getAddressSpace()); 521 Globals.insert(GV, NGV); 522 NewGlobals.push_back(NGV); 523 524 // Calculate the known alignment of the field. If the original aggregate 525 // had 256 byte alignment for example, something might depend on that: 526 // propagate info to each field. 527 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 528 if (NewAlign > EltAlign) 529 NGV->setAlignment(NewAlign); 530 } 531 } 532 533 if (NewGlobals.empty()) 534 return 0; 535 536 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV); 537 538 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 539 540 // Loop over all of the uses of the global, replacing the constantexpr geps, 541 // with smaller constantexpr geps or direct references. 542 while (!GV->use_empty()) { 543 User *GEP = GV->use_back(); 544 assert(((isa<ConstantExpr>(GEP) && 545 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 546 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 547 548 // Ignore the 1th operand, which has to be zero or else the program is quite 549 // broken (undefined). Get the 2nd operand, which is the structure or array 550 // index. 551 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 552 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 553 554 Value *NewPtr = NewGlobals[Val]; 555 556 // Form a shorter GEP if needed. 557 if (GEP->getNumOperands() > 3) { 558 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 559 SmallVector<Constant*, 8> Idxs; 560 Idxs.push_back(NullInt); 561 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 562 Idxs.push_back(CE->getOperand(i)); 563 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs); 564 } else { 565 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 566 SmallVector<Value*, 8> Idxs; 567 Idxs.push_back(NullInt); 568 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 569 Idxs.push_back(GEPI->getOperand(i)); 570 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs, 571 GEPI->getName()+"."+Twine(Val),GEPI); 572 } 573 } 574 GEP->replaceAllUsesWith(NewPtr); 575 576 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 577 GEPI->eraseFromParent(); 578 else 579 cast<ConstantExpr>(GEP)->destroyConstant(); 580 } 581 582 // Delete the old global, now that it is dead. 583 Globals.erase(GV); 584 ++NumSRA; 585 586 // Loop over the new globals array deleting any globals that are obviously 587 // dead. This can arise due to scalarization of a structure or an array that 588 // has elements that are dead. 589 unsigned FirstGlobal = 0; 590 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 591 if (NewGlobals[i]->use_empty()) { 592 Globals.erase(NewGlobals[i]); 593 if (FirstGlobal == i) ++FirstGlobal; 594 } 595 596 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0; 597 } 598 599 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified 600 /// value will trap if the value is dynamically null. PHIs keeps track of any 601 /// phi nodes we've seen to avoid reprocessing them. 602 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 603 SmallPtrSet<const PHINode*, 8> &PHIs) { 604 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 605 ++UI) { 606 const User *U = *UI; 607 608 if (isa<LoadInst>(U)) { 609 // Will trap. 610 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 611 if (SI->getOperand(0) == V) { 612 //cerr << "NONTRAPPING USE: " << *U; 613 return false; // Storing the value. 614 } 615 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 616 if (CI->getCalledValue() != V) { 617 //cerr << "NONTRAPPING USE: " << *U; 618 return false; // Not calling the ptr 619 } 620 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 621 if (II->getCalledValue() != V) { 622 //cerr << "NONTRAPPING USE: " << *U; 623 return false; // Not calling the ptr 624 } 625 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 626 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 627 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 628 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 629 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 630 // If we've already seen this phi node, ignore it, it has already been 631 // checked. 632 if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 633 return false; 634 } else if (isa<ICmpInst>(U) && 635 isa<ConstantPointerNull>(UI->getOperand(1))) { 636 // Ignore icmp X, null 637 } else { 638 //cerr << "NONTRAPPING USE: " << *U; 639 return false; 640 } 641 } 642 return true; 643 } 644 645 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads 646 /// from GV will trap if the loaded value is null. Note that this also permits 647 /// comparisons of the loaded value against null, as a special case. 648 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 649 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 650 UI != E; ++UI) { 651 const User *U = *UI; 652 653 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 654 SmallPtrSet<const PHINode*, 8> PHIs; 655 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 656 return false; 657 } else if (isa<StoreInst>(U)) { 658 // Ignore stores to the global. 659 } else { 660 // We don't know or understand this user, bail out. 661 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 662 return false; 663 } 664 } 665 return true; 666 } 667 668 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 669 bool Changed = false; 670 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) { 671 Instruction *I = cast<Instruction>(*UI++); 672 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 673 LI->setOperand(0, NewV); 674 Changed = true; 675 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 676 if (SI->getOperand(1) == V) { 677 SI->setOperand(1, NewV); 678 Changed = true; 679 } 680 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 681 CallSite CS(I); 682 if (CS.getCalledValue() == V) { 683 // Calling through the pointer! Turn into a direct call, but be careful 684 // that the pointer is not also being passed as an argument. 685 CS.setCalledFunction(NewV); 686 Changed = true; 687 bool PassedAsArg = false; 688 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 689 if (CS.getArgument(i) == V) { 690 PassedAsArg = true; 691 CS.setArgument(i, NewV); 692 } 693 694 if (PassedAsArg) { 695 // Being passed as an argument also. Be careful to not invalidate UI! 696 UI = V->use_begin(); 697 } 698 } 699 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 700 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 701 ConstantExpr::getCast(CI->getOpcode(), 702 NewV, CI->getType())); 703 if (CI->use_empty()) { 704 Changed = true; 705 CI->eraseFromParent(); 706 } 707 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 708 // Should handle GEP here. 709 SmallVector<Constant*, 8> Idxs; 710 Idxs.reserve(GEPI->getNumOperands()-1); 711 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 712 i != e; ++i) 713 if (Constant *C = dyn_cast<Constant>(*i)) 714 Idxs.push_back(C); 715 else 716 break; 717 if (Idxs.size() == GEPI->getNumOperands()-1) 718 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI, 719 ConstantExpr::getGetElementPtr(NewV, Idxs)); 720 if (GEPI->use_empty()) { 721 Changed = true; 722 GEPI->eraseFromParent(); 723 } 724 } 725 } 726 727 return Changed; 728 } 729 730 731 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null 732 /// value stored into it. If there are uses of the loaded value that would trap 733 /// if the loaded value is dynamically null, then we know that they cannot be 734 /// reachable with a null optimize away the load. 735 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 736 DataLayout *TD, 737 TargetLibraryInfo *TLI) { 738 bool Changed = false; 739 740 // Keep track of whether we are able to remove all the uses of the global 741 // other than the store that defines it. 742 bool AllNonStoreUsesGone = true; 743 744 // Replace all uses of loads with uses of uses of the stored value. 745 for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){ 746 User *GlobalUser = *GUI++; 747 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 748 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 749 // If we were able to delete all uses of the loads 750 if (LI->use_empty()) { 751 LI->eraseFromParent(); 752 Changed = true; 753 } else { 754 AllNonStoreUsesGone = false; 755 } 756 } else if (isa<StoreInst>(GlobalUser)) { 757 // Ignore the store that stores "LV" to the global. 758 assert(GlobalUser->getOperand(1) == GV && 759 "Must be storing *to* the global"); 760 } else { 761 AllNonStoreUsesGone = false; 762 763 // If we get here we could have other crazy uses that are transitively 764 // loaded. 765 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 766 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 767 isa<BitCastInst>(GlobalUser) || 768 isa<GetElementPtrInst>(GlobalUser)) && 769 "Only expect load and stores!"); 770 } 771 } 772 773 if (Changed) { 774 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV); 775 ++NumGlobUses; 776 } 777 778 // If we nuked all of the loads, then none of the stores are needed either, 779 // nor is the global. 780 if (AllNonStoreUsesGone) { 781 if (isLeakCheckerRoot(GV)) { 782 Changed |= CleanupPointerRootUsers(GV, TLI); 783 } else { 784 Changed = true; 785 CleanupConstantGlobalUsers(GV, 0, TD, TLI); 786 } 787 if (GV->use_empty()) { 788 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 789 Changed = true; 790 GV->eraseFromParent(); 791 ++NumDeleted; 792 } 793 } 794 return Changed; 795 } 796 797 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the 798 /// instructions that are foldable. 799 static void ConstantPropUsersOf(Value *V, 800 DataLayout *TD, TargetLibraryInfo *TLI) { 801 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) 802 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 803 if (Constant *NewC = ConstantFoldInstruction(I, TD, TLI)) { 804 I->replaceAllUsesWith(NewC); 805 806 // Advance UI to the next non-I use to avoid invalidating it! 807 // Instructions could multiply use V. 808 while (UI != E && *UI == I) 809 ++UI; 810 I->eraseFromParent(); 811 } 812 } 813 814 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global 815 /// variable, and transforms the program as if it always contained the result of 816 /// the specified malloc. Because it is always the result of the specified 817 /// malloc, there is no reason to actually DO the malloc. Instead, turn the 818 /// malloc into a global, and any loads of GV as uses of the new global. 819 static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, 820 CallInst *CI, 821 Type *AllocTy, 822 ConstantInt *NElements, 823 DataLayout *TD, 824 TargetLibraryInfo *TLI) { 825 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 826 827 Type *GlobalType; 828 if (NElements->getZExtValue() == 1) 829 GlobalType = AllocTy; 830 else 831 // If we have an array allocation, the global variable is of an array. 832 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 833 834 // Create the new global variable. The contents of the malloc'd memory is 835 // undefined, so initialize with an undef value. 836 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(), 837 GlobalType, false, 838 GlobalValue::InternalLinkage, 839 UndefValue::get(GlobalType), 840 GV->getName()+".body", 841 GV, 842 GV->getThreadLocalMode()); 843 844 // If there are bitcast users of the malloc (which is typical, usually we have 845 // a malloc + bitcast) then replace them with uses of the new global. Update 846 // other users to use the global as well. 847 BitCastInst *TheBC = 0; 848 while (!CI->use_empty()) { 849 Instruction *User = cast<Instruction>(CI->use_back()); 850 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 851 if (BCI->getType() == NewGV->getType()) { 852 BCI->replaceAllUsesWith(NewGV); 853 BCI->eraseFromParent(); 854 } else { 855 BCI->setOperand(0, NewGV); 856 } 857 } else { 858 if (TheBC == 0) 859 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 860 User->replaceUsesOfWith(CI, TheBC); 861 } 862 } 863 864 Constant *RepValue = NewGV; 865 if (NewGV->getType() != GV->getType()->getElementType()) 866 RepValue = ConstantExpr::getBitCast(RepValue, 867 GV->getType()->getElementType()); 868 869 // If there is a comparison against null, we will insert a global bool to 870 // keep track of whether the global was initialized yet or not. 871 GlobalVariable *InitBool = 872 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 873 GlobalValue::InternalLinkage, 874 ConstantInt::getFalse(GV->getContext()), 875 GV->getName()+".init", GV->getThreadLocalMode()); 876 bool InitBoolUsed = false; 877 878 // Loop over all uses of GV, processing them in turn. 879 while (!GV->use_empty()) { 880 if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) { 881 // The global is initialized when the store to it occurs. 882 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 883 SI->getOrdering(), SI->getSynchScope(), SI); 884 SI->eraseFromParent(); 885 continue; 886 } 887 888 LoadInst *LI = cast<LoadInst>(GV->use_back()); 889 while (!LI->use_empty()) { 890 Use &LoadUse = LI->use_begin().getUse(); 891 if (!isa<ICmpInst>(LoadUse.getUser())) { 892 LoadUse = RepValue; 893 continue; 894 } 895 896 ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser()); 897 // Replace the cmp X, 0 with a use of the bool value. 898 // Sink the load to where the compare was, if atomic rules allow us to. 899 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 900 LI->getOrdering(), LI->getSynchScope(), 901 LI->isUnordered() ? (Instruction*)ICI : LI); 902 InitBoolUsed = true; 903 switch (ICI->getPredicate()) { 904 default: llvm_unreachable("Unknown ICmp Predicate!"); 905 case ICmpInst::ICMP_ULT: 906 case ICmpInst::ICMP_SLT: // X < null -> always false 907 LV = ConstantInt::getFalse(GV->getContext()); 908 break; 909 case ICmpInst::ICMP_ULE: 910 case ICmpInst::ICMP_SLE: 911 case ICmpInst::ICMP_EQ: 912 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 913 break; 914 case ICmpInst::ICMP_NE: 915 case ICmpInst::ICMP_UGE: 916 case ICmpInst::ICMP_SGE: 917 case ICmpInst::ICMP_UGT: 918 case ICmpInst::ICMP_SGT: 919 break; // no change. 920 } 921 ICI->replaceAllUsesWith(LV); 922 ICI->eraseFromParent(); 923 } 924 LI->eraseFromParent(); 925 } 926 927 // If the initialization boolean was used, insert it, otherwise delete it. 928 if (!InitBoolUsed) { 929 while (!InitBool->use_empty()) // Delete initializations 930 cast<StoreInst>(InitBool->use_back())->eraseFromParent(); 931 delete InitBool; 932 } else 933 GV->getParent()->getGlobalList().insert(GV, InitBool); 934 935 // Now the GV is dead, nuke it and the malloc.. 936 GV->eraseFromParent(); 937 CI->eraseFromParent(); 938 939 // To further other optimizations, loop over all users of NewGV and try to 940 // constant prop them. This will promote GEP instructions with constant 941 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 942 ConstantPropUsersOf(NewGV, TD, TLI); 943 if (RepValue != NewGV) 944 ConstantPropUsersOf(RepValue, TD, TLI); 945 946 return NewGV; 947 } 948 949 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking 950 /// to make sure that there are no complex uses of V. We permit simple things 951 /// like dereferencing the pointer, but not storing through the address, unless 952 /// it is to the specified global. 953 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 954 const GlobalVariable *GV, 955 SmallPtrSet<const PHINode*, 8> &PHIs) { 956 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 957 UI != E; ++UI) { 958 const Instruction *Inst = cast<Instruction>(*UI); 959 960 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 961 continue; // Fine, ignore. 962 } 963 964 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 965 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 966 return false; // Storing the pointer itself... bad. 967 continue; // Otherwise, storing through it, or storing into GV... fine. 968 } 969 970 // Must index into the array and into the struct. 971 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 972 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 973 return false; 974 continue; 975 } 976 977 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 978 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 979 // cycles. 980 if (PHIs.insert(PN)) 981 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 982 return false; 983 continue; 984 } 985 986 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 987 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 988 return false; 989 continue; 990 } 991 992 return false; 993 } 994 return true; 995 } 996 997 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV 998 /// somewhere. Transform all uses of the allocation into loads from the 999 /// global and uses of the resultant pointer. Further, delete the store into 1000 /// GV. This assumes that these value pass the 1001 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1002 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1003 GlobalVariable *GV) { 1004 while (!Alloc->use_empty()) { 1005 Instruction *U = cast<Instruction>(*Alloc->use_begin()); 1006 Instruction *InsertPt = U; 1007 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1008 // If this is the store of the allocation into the global, remove it. 1009 if (SI->getOperand(1) == GV) { 1010 SI->eraseFromParent(); 1011 continue; 1012 } 1013 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1014 // Insert the load in the corresponding predecessor, not right before the 1015 // PHI. 1016 InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator(); 1017 } else if (isa<BitCastInst>(U)) { 1018 // Must be bitcast between the malloc and store to initialize the global. 1019 ReplaceUsesOfMallocWithGlobal(U, GV); 1020 U->eraseFromParent(); 1021 continue; 1022 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1023 // If this is a "GEP bitcast" and the user is a store to the global, then 1024 // just process it as a bitcast. 1025 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1026 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back())) 1027 if (SI->getOperand(1) == GV) { 1028 // Must be bitcast GEP between the malloc and store to initialize 1029 // the global. 1030 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1031 GEPI->eraseFromParent(); 1032 continue; 1033 } 1034 } 1035 1036 // Insert a load from the global, and use it instead of the malloc. 1037 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1038 U->replaceUsesOfWith(Alloc, NL); 1039 } 1040 } 1041 1042 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi 1043 /// of a load) are simple enough to perform heap SRA on. This permits GEP's 1044 /// that index through the array and struct field, icmps of null, and PHIs. 1045 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1046 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs, 1047 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) { 1048 // We permit two users of the load: setcc comparing against the null 1049 // pointer, and a getelementptr of a specific form. 1050 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 1051 ++UI) { 1052 const Instruction *User = cast<Instruction>(*UI); 1053 1054 // Comparison against null is ok. 1055 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) { 1056 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1057 return false; 1058 continue; 1059 } 1060 1061 // getelementptr is also ok, but only a simple form. 1062 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { 1063 // Must index into the array and into the struct. 1064 if (GEPI->getNumOperands() < 3) 1065 return false; 1066 1067 // Otherwise the GEP is ok. 1068 continue; 1069 } 1070 1071 if (const PHINode *PN = dyn_cast<PHINode>(User)) { 1072 if (!LoadUsingPHIsPerLoad.insert(PN)) 1073 // This means some phi nodes are dependent on each other. 1074 // Avoid infinite looping! 1075 return false; 1076 if (!LoadUsingPHIs.insert(PN)) 1077 // If we have already analyzed this PHI, then it is safe. 1078 continue; 1079 1080 // Make sure all uses of the PHI are simple enough to transform. 1081 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1082 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1083 return false; 1084 1085 continue; 1086 } 1087 1088 // Otherwise we don't know what this is, not ok. 1089 return false; 1090 } 1091 1092 return true; 1093 } 1094 1095 1096 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from 1097 /// GV are simple enough to perform HeapSRA, return true. 1098 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1099 Instruction *StoredVal) { 1100 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1101 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1102 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 1103 UI != E; ++UI) 1104 if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1105 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1106 LoadUsingPHIsPerLoad)) 1107 return false; 1108 LoadUsingPHIsPerLoad.clear(); 1109 } 1110 1111 // If we reach here, we know that all uses of the loads and transitive uses 1112 // (through PHI nodes) are simple enough to transform. However, we don't know 1113 // that all inputs the to the PHI nodes are in the same equivalence sets. 1114 // Check to verify that all operands of the PHIs are either PHIS that can be 1115 // transformed, loads from GV, or MI itself. 1116 for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin() 1117 , E = LoadUsingPHIs.end(); I != E; ++I) { 1118 const PHINode *PN = *I; 1119 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1120 Value *InVal = PN->getIncomingValue(op); 1121 1122 // PHI of the stored value itself is ok. 1123 if (InVal == StoredVal) continue; 1124 1125 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1126 // One of the PHIs in our set is (optimistically) ok. 1127 if (LoadUsingPHIs.count(InPN)) 1128 continue; 1129 return false; 1130 } 1131 1132 // Load from GV is ok. 1133 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1134 if (LI->getOperand(0) == GV) 1135 continue; 1136 1137 // UNDEF? NULL? 1138 1139 // Anything else is rejected. 1140 return false; 1141 } 1142 } 1143 1144 return true; 1145 } 1146 1147 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1148 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1149 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1150 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1151 1152 if (FieldNo >= FieldVals.size()) 1153 FieldVals.resize(FieldNo+1); 1154 1155 // If we already have this value, just reuse the previously scalarized 1156 // version. 1157 if (Value *FieldVal = FieldVals[FieldNo]) 1158 return FieldVal; 1159 1160 // Depending on what instruction this is, we have several cases. 1161 Value *Result; 1162 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1163 // This is a scalarized version of the load from the global. Just create 1164 // a new Load of the scalarized global. 1165 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1166 InsertedScalarizedValues, 1167 PHIsToRewrite), 1168 LI->getName()+".f"+Twine(FieldNo), LI); 1169 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1170 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1171 // field. 1172 StructType *ST = cast<StructType>(PN->getType()->getPointerElementType()); 1173 1174 PHINode *NewPN = 1175 PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)), 1176 PN->getNumIncomingValues(), 1177 PN->getName()+".f"+Twine(FieldNo), PN); 1178 Result = NewPN; 1179 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1180 } else { 1181 llvm_unreachable("Unknown usable value"); 1182 } 1183 1184 return FieldVals[FieldNo] = Result; 1185 } 1186 1187 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from 1188 /// the load, rewrite the derived value to use the HeapSRoA'd load. 1189 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1190 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1191 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1192 // If this is a comparison against null, handle it. 1193 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1194 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1195 // If we have a setcc of the loaded pointer, we can use a setcc of any 1196 // field. 1197 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1198 InsertedScalarizedValues, PHIsToRewrite); 1199 1200 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1201 Constant::getNullValue(NPtr->getType()), 1202 SCI->getName()); 1203 SCI->replaceAllUsesWith(New); 1204 SCI->eraseFromParent(); 1205 return; 1206 } 1207 1208 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1209 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1210 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1211 && "Unexpected GEPI!"); 1212 1213 // Load the pointer for this field. 1214 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1215 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1216 InsertedScalarizedValues, PHIsToRewrite); 1217 1218 // Create the new GEP idx vector. 1219 SmallVector<Value*, 8> GEPIdx; 1220 GEPIdx.push_back(GEPI->getOperand(1)); 1221 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1222 1223 Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx, 1224 GEPI->getName(), GEPI); 1225 GEPI->replaceAllUsesWith(NGEPI); 1226 GEPI->eraseFromParent(); 1227 return; 1228 } 1229 1230 // Recursively transform the users of PHI nodes. This will lazily create the 1231 // PHIs that are needed for individual elements. Keep track of what PHIs we 1232 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1233 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1234 // already been seen first by another load, so its uses have already been 1235 // processed. 1236 PHINode *PN = cast<PHINode>(LoadUser); 1237 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1238 std::vector<Value*>())).second) 1239 return; 1240 1241 // If this is the first time we've seen this PHI, recursively process all 1242 // users. 1243 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) { 1244 Instruction *User = cast<Instruction>(*UI++); 1245 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1246 } 1247 } 1248 1249 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr 1250 /// is a value loaded from the global. Eliminate all uses of Ptr, making them 1251 /// use FieldGlobals instead. All uses of loaded values satisfy 1252 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1253 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1254 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1255 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1256 for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end(); 1257 UI != E; ) { 1258 Instruction *User = cast<Instruction>(*UI++); 1259 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1260 } 1261 1262 if (Load->use_empty()) { 1263 Load->eraseFromParent(); 1264 InsertedScalarizedValues.erase(Load); 1265 } 1266 } 1267 1268 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break 1269 /// it up into multiple allocations of arrays of the fields. 1270 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1271 Value *NElems, DataLayout *TD, 1272 const TargetLibraryInfo *TLI) { 1273 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1274 Type *MAT = getMallocAllocatedType(CI, TLI); 1275 StructType *STy = cast<StructType>(MAT); 1276 1277 // There is guaranteed to be at least one use of the malloc (storing 1278 // it into GV). If there are other uses, change them to be uses of 1279 // the global to simplify later code. This also deletes the store 1280 // into GV. 1281 ReplaceUsesOfMallocWithGlobal(CI, GV); 1282 1283 // Okay, at this point, there are no users of the malloc. Insert N 1284 // new mallocs at the same place as CI, and N globals. 1285 std::vector<Value*> FieldGlobals; 1286 std::vector<Value*> FieldMallocs; 1287 1288 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1289 Type *FieldTy = STy->getElementType(FieldNo); 1290 PointerType *PFieldTy = PointerType::getUnqual(FieldTy); 1291 1292 GlobalVariable *NGV = 1293 new GlobalVariable(*GV->getParent(), 1294 PFieldTy, false, GlobalValue::InternalLinkage, 1295 Constant::getNullValue(PFieldTy), 1296 GV->getName() + ".f" + Twine(FieldNo), GV, 1297 GV->getThreadLocalMode()); 1298 FieldGlobals.push_back(NGV); 1299 1300 unsigned TypeSize = TD->getTypeAllocSize(FieldTy); 1301 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1302 TypeSize = TD->getStructLayout(ST)->getSizeInBytes(); 1303 Type *IntPtrTy = TD->getIntPtrType(CI->getType()); 1304 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1305 ConstantInt::get(IntPtrTy, TypeSize), 1306 NElems, 0, 1307 CI->getName() + ".f" + Twine(FieldNo)); 1308 FieldMallocs.push_back(NMI); 1309 new StoreInst(NMI, NGV, CI); 1310 } 1311 1312 // The tricky aspect of this transformation is handling the case when malloc 1313 // fails. In the original code, malloc failing would set the result pointer 1314 // of malloc to null. In this case, some mallocs could succeed and others 1315 // could fail. As such, we emit code that looks like this: 1316 // F0 = malloc(field0) 1317 // F1 = malloc(field1) 1318 // F2 = malloc(field2) 1319 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1320 // if (F0) { free(F0); F0 = 0; } 1321 // if (F1) { free(F1); F1 = 0; } 1322 // if (F2) { free(F2); F2 = 0; } 1323 // } 1324 // The malloc can also fail if its argument is too large. 1325 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1326 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1327 ConstantZero, "isneg"); 1328 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1329 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1330 Constant::getNullValue(FieldMallocs[i]->getType()), 1331 "isnull"); 1332 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1333 } 1334 1335 // Split the basic block at the old malloc. 1336 BasicBlock *OrigBB = CI->getParent(); 1337 BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont"); 1338 1339 // Create the block to check the first condition. Put all these blocks at the 1340 // end of the function as they are unlikely to be executed. 1341 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1342 "malloc_ret_null", 1343 OrigBB->getParent()); 1344 1345 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1346 // branch on RunningOr. 1347 OrigBB->getTerminator()->eraseFromParent(); 1348 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1349 1350 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1351 // pointer, because some may be null while others are not. 1352 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1353 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1354 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1355 Constant::getNullValue(GVVal->getType())); 1356 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1357 OrigBB->getParent()); 1358 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1359 OrigBB->getParent()); 1360 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1361 Cmp, NullPtrBlock); 1362 1363 // Fill in FreeBlock. 1364 CallInst::CreateFree(GVVal, BI); 1365 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1366 FreeBlock); 1367 BranchInst::Create(NextBlock, FreeBlock); 1368 1369 NullPtrBlock = NextBlock; 1370 } 1371 1372 BranchInst::Create(ContBB, NullPtrBlock); 1373 1374 // CI is no longer needed, remove it. 1375 CI->eraseFromParent(); 1376 1377 /// InsertedScalarizedLoads - As we process loads, if we can't immediately 1378 /// update all uses of the load, keep track of what scalarized loads are 1379 /// inserted for a given load. 1380 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1381 InsertedScalarizedValues[GV] = FieldGlobals; 1382 1383 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1384 1385 // Okay, the malloc site is completely handled. All of the uses of GV are now 1386 // loads, and all uses of those loads are simple. Rewrite them to use loads 1387 // of the per-field globals instead. 1388 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) { 1389 Instruction *User = cast<Instruction>(*UI++); 1390 1391 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1392 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1393 continue; 1394 } 1395 1396 // Must be a store of null. 1397 StoreInst *SI = cast<StoreInst>(User); 1398 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1399 "Unexpected heap-sra user!"); 1400 1401 // Insert a store of null into each global. 1402 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1403 PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType()); 1404 Constant *Null = Constant::getNullValue(PT->getElementType()); 1405 new StoreInst(Null, FieldGlobals[i], SI); 1406 } 1407 // Erase the original store. 1408 SI->eraseFromParent(); 1409 } 1410 1411 // While we have PHIs that are interesting to rewrite, do it. 1412 while (!PHIsToRewrite.empty()) { 1413 PHINode *PN = PHIsToRewrite.back().first; 1414 unsigned FieldNo = PHIsToRewrite.back().second; 1415 PHIsToRewrite.pop_back(); 1416 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1417 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1418 1419 // Add all the incoming values. This can materialize more phis. 1420 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1421 Value *InVal = PN->getIncomingValue(i); 1422 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1423 PHIsToRewrite); 1424 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1425 } 1426 } 1427 1428 // Drop all inter-phi links and any loads that made it this far. 1429 for (DenseMap<Value*, std::vector<Value*> >::iterator 1430 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1431 I != E; ++I) { 1432 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1433 PN->dropAllReferences(); 1434 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1435 LI->dropAllReferences(); 1436 } 1437 1438 // Delete all the phis and loads now that inter-references are dead. 1439 for (DenseMap<Value*, std::vector<Value*> >::iterator 1440 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1441 I != E; ++I) { 1442 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1443 PN->eraseFromParent(); 1444 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1445 LI->eraseFromParent(); 1446 } 1447 1448 // The old global is now dead, remove it. 1449 GV->eraseFromParent(); 1450 1451 ++NumHeapSRA; 1452 return cast<GlobalVariable>(FieldGlobals[0]); 1453 } 1454 1455 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a 1456 /// pointer global variable with a single value stored it that is a malloc or 1457 /// cast of malloc. 1458 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, 1459 CallInst *CI, 1460 Type *AllocTy, 1461 AtomicOrdering Ordering, 1462 Module::global_iterator &GVI, 1463 DataLayout *TD, 1464 TargetLibraryInfo *TLI) { 1465 if (!TD) 1466 return false; 1467 1468 // If this is a malloc of an abstract type, don't touch it. 1469 if (!AllocTy->isSized()) 1470 return false; 1471 1472 // We can't optimize this global unless all uses of it are *known* to be 1473 // of the malloc value, not of the null initializer value (consider a use 1474 // that compares the global's value against zero to see if the malloc has 1475 // been reached). To do this, we check to see if all uses of the global 1476 // would trap if the global were null: this proves that they must all 1477 // happen after the malloc. 1478 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1479 return false; 1480 1481 // We can't optimize this if the malloc itself is used in a complex way, 1482 // for example, being stored into multiple globals. This allows the 1483 // malloc to be stored into the specified global, loaded icmp'd, and 1484 // GEP'd. These are all things we could transform to using the global 1485 // for. 1486 SmallPtrSet<const PHINode*, 8> PHIs; 1487 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1488 return false; 1489 1490 // If we have a global that is only initialized with a fixed size malloc, 1491 // transform the program to use global memory instead of malloc'd memory. 1492 // This eliminates dynamic allocation, avoids an indirection accessing the 1493 // data, and exposes the resultant global to further GlobalOpt. 1494 // We cannot optimize the malloc if we cannot determine malloc array size. 1495 Value *NElems = getMallocArraySize(CI, TD, TLI, true); 1496 if (!NElems) 1497 return false; 1498 1499 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1500 // Restrict this transformation to only working on small allocations 1501 // (2048 bytes currently), as we don't want to introduce a 16M global or 1502 // something. 1503 if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) { 1504 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD, TLI); 1505 return true; 1506 } 1507 1508 // If the allocation is an array of structures, consider transforming this 1509 // into multiple malloc'd arrays, one for each field. This is basically 1510 // SRoA for malloc'd memory. 1511 1512 if (Ordering != NotAtomic) 1513 return false; 1514 1515 // If this is an allocation of a fixed size array of structs, analyze as a 1516 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1517 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1518 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1519 AllocTy = AT->getElementType(); 1520 1521 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1522 if (!AllocSTy) 1523 return false; 1524 1525 // This the structure has an unreasonable number of fields, leave it 1526 // alone. 1527 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1528 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1529 1530 // If this is a fixed size array, transform the Malloc to be an alloc of 1531 // structs. malloc [100 x struct],1 -> malloc struct, 100 1532 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1533 Type *IntPtrTy = TD->getIntPtrType(CI->getType()); 1534 unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes(); 1535 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1536 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1537 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, 1538 AllocSize, NumElements, 1539 0, CI->getName()); 1540 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1541 CI->replaceAllUsesWith(Cast); 1542 CI->eraseFromParent(); 1543 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1544 CI = cast<CallInst>(BCI->getOperand(0)); 1545 else 1546 CI = cast<CallInst>(Malloc); 1547 } 1548 1549 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, TLI, true), 1550 TD, TLI); 1551 return true; 1552 } 1553 1554 return false; 1555 } 1556 1557 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge 1558 // that only one value (besides its initializer) is ever stored to the global. 1559 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1560 AtomicOrdering Ordering, 1561 Module::global_iterator &GVI, 1562 DataLayout *TD, TargetLibraryInfo *TLI) { 1563 // Ignore no-op GEPs and bitcasts. 1564 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1565 1566 // If we are dealing with a pointer global that is initialized to null and 1567 // only has one (non-null) value stored into it, then we can optimize any 1568 // users of the loaded value (often calls and loads) that would trap if the 1569 // value was null. 1570 if (GV->getInitializer()->getType()->isPointerTy() && 1571 GV->getInitializer()->isNullValue()) { 1572 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1573 if (GV->getInitializer()->getType() != SOVC->getType()) 1574 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1575 1576 // Optimize away any trapping uses of the loaded value. 1577 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, TD, TLI)) 1578 return true; 1579 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1580 Type *MallocType = getMallocAllocatedType(CI, TLI); 1581 if (MallocType && 1582 TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI, 1583 TD, TLI)) 1584 return true; 1585 } 1586 } 1587 1588 return false; 1589 } 1590 1591 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only 1592 /// two values ever stored into GV are its initializer and OtherVal. See if we 1593 /// can shrink the global into a boolean and select between the two values 1594 /// whenever it is used. This exposes the values to other scalar optimizations. 1595 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1596 Type *GVElType = GV->getType()->getElementType(); 1597 1598 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1599 // an FP value, pointer or vector, don't do this optimization because a select 1600 // between them is very expensive and unlikely to lead to later 1601 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1602 // where v1 and v2 both require constant pool loads, a big loss. 1603 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1604 GVElType->isFloatingPointTy() || 1605 GVElType->isPointerTy() || GVElType->isVectorTy()) 1606 return false; 1607 1608 // Walk the use list of the global seeing if all the uses are load or store. 1609 // If there is anything else, bail out. 1610 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){ 1611 User *U = *I; 1612 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1613 return false; 1614 } 1615 1616 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV); 1617 1618 // Create the new global, initializing it to false. 1619 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1620 false, 1621 GlobalValue::InternalLinkage, 1622 ConstantInt::getFalse(GV->getContext()), 1623 GV->getName()+".b", 1624 GV->getThreadLocalMode(), 1625 GV->getType()->getAddressSpace()); 1626 GV->getParent()->getGlobalList().insert(GV, NewGV); 1627 1628 Constant *InitVal = GV->getInitializer(); 1629 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1630 "No reason to shrink to bool!"); 1631 1632 // If initialized to zero and storing one into the global, we can use a cast 1633 // instead of a select to synthesize the desired value. 1634 bool IsOneZero = false; 1635 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1636 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1637 1638 while (!GV->use_empty()) { 1639 Instruction *UI = cast<Instruction>(GV->use_back()); 1640 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1641 // Change the store into a boolean store. 1642 bool StoringOther = SI->getOperand(0) == OtherVal; 1643 // Only do this if we weren't storing a loaded value. 1644 Value *StoreVal; 1645 if (StoringOther || SI->getOperand(0) == InitVal) { 1646 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1647 StoringOther); 1648 } else { 1649 // Otherwise, we are storing a previously loaded copy. To do this, 1650 // change the copy from copying the original value to just copying the 1651 // bool. 1652 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1653 1654 // If we've already replaced the input, StoredVal will be a cast or 1655 // select instruction. If not, it will be a load of the original 1656 // global. 1657 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1658 assert(LI->getOperand(0) == GV && "Not a copy!"); 1659 // Insert a new load, to preserve the saved value. 1660 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1661 LI->getOrdering(), LI->getSynchScope(), LI); 1662 } else { 1663 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1664 "This is not a form that we understand!"); 1665 StoreVal = StoredVal->getOperand(0); 1666 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1667 } 1668 } 1669 new StoreInst(StoreVal, NewGV, false, 0, 1670 SI->getOrdering(), SI->getSynchScope(), SI); 1671 } else { 1672 // Change the load into a load of bool then a select. 1673 LoadInst *LI = cast<LoadInst>(UI); 1674 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1675 LI->getOrdering(), LI->getSynchScope(), LI); 1676 Value *NSI; 1677 if (IsOneZero) 1678 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1679 else 1680 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1681 NSI->takeName(LI); 1682 LI->replaceAllUsesWith(NSI); 1683 } 1684 UI->eraseFromParent(); 1685 } 1686 1687 // Retain the name of the old global variable. People who are debugging their 1688 // programs may expect these variables to be named the same. 1689 NewGV->takeName(GV); 1690 GV->eraseFromParent(); 1691 return true; 1692 } 1693 1694 1695 /// ProcessGlobal - Analyze the specified global variable and optimize it if 1696 /// possible. If we make a change, return true. 1697 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV, 1698 Module::global_iterator &GVI) { 1699 if (!GV->isDiscardableIfUnused()) 1700 return false; 1701 1702 // Do more involved optimizations if the global is internal. 1703 GV->removeDeadConstantUsers(); 1704 1705 if (GV->use_empty()) { 1706 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV); 1707 GV->eraseFromParent(); 1708 ++NumDeleted; 1709 return true; 1710 } 1711 1712 if (!GV->hasLocalLinkage()) 1713 return false; 1714 1715 GlobalStatus GS; 1716 1717 if (GlobalStatus::analyzeGlobal(GV, GS)) 1718 return false; 1719 1720 if (!GS.IsCompared && !GV->hasUnnamedAddr()) { 1721 GV->setUnnamedAddr(true); 1722 NumUnnamed++; 1723 } 1724 1725 if (GV->isConstant() || !GV->hasInitializer()) 1726 return false; 1727 1728 return ProcessInternalGlobal(GV, GVI, GS); 1729 } 1730 1731 /// ProcessInternalGlobal - Analyze the specified global variable and optimize 1732 /// it if possible. If we make a change, return true. 1733 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, 1734 Module::global_iterator &GVI, 1735 const GlobalStatus &GS) { 1736 // If this is a first class global and has only one accessing function 1737 // and this function is main (which we know is not recursive), we replace 1738 // the global with a local alloca in this function. 1739 // 1740 // NOTE: It doesn't make sense to promote non single-value types since we 1741 // are just replacing static memory to stack memory. 1742 // 1743 // If the global is in different address space, don't bring it to stack. 1744 if (!GS.HasMultipleAccessingFunctions && 1745 GS.AccessingFunction && !GS.HasNonInstructionUser && 1746 GV->getType()->getElementType()->isSingleValueType() && 1747 GS.AccessingFunction->getName() == "main" && 1748 GS.AccessingFunction->hasExternalLinkage() && 1749 GV->getType()->getAddressSpace() == 0) { 1750 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV); 1751 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1752 ->getEntryBlock().begin()); 1753 Type *ElemTy = GV->getType()->getElementType(); 1754 // FIXME: Pass Global's alignment when globals have alignment 1755 AllocaInst *Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI); 1756 if (!isa<UndefValue>(GV->getInitializer())) 1757 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1758 1759 GV->replaceAllUsesWith(Alloca); 1760 GV->eraseFromParent(); 1761 ++NumLocalized; 1762 return true; 1763 } 1764 1765 // If the global is never loaded (but may be stored to), it is dead. 1766 // Delete it now. 1767 if (!GS.IsLoaded) { 1768 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV); 1769 1770 bool Changed; 1771 if (isLeakCheckerRoot(GV)) { 1772 // Delete any constant stores to the global. 1773 Changed = CleanupPointerRootUsers(GV, TLI); 1774 } else { 1775 // Delete any stores we can find to the global. We may not be able to 1776 // make it completely dead though. 1777 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI); 1778 } 1779 1780 // If the global is dead now, delete it. 1781 if (GV->use_empty()) { 1782 GV->eraseFromParent(); 1783 ++NumDeleted; 1784 Changed = true; 1785 } 1786 return Changed; 1787 1788 } else if (GS.StoredType <= GlobalStatus::InitializerStored) { 1789 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1790 GV->setConstant(true); 1791 1792 // Clean up any obviously simplifiable users now. 1793 CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI); 1794 1795 // If the global is dead now, just nuke it. 1796 if (GV->use_empty()) { 1797 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1798 << "all users and delete global!\n"); 1799 GV->eraseFromParent(); 1800 ++NumDeleted; 1801 } 1802 1803 ++NumMarked; 1804 return true; 1805 } else if (!GV->getInitializer()->getType()->isSingleValueType()) { 1806 if (DataLayout *TD = getAnalysisIfAvailable<DataLayout>()) 1807 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) { 1808 GVI = FirstNewGV; // Don't skip the newly produced globals! 1809 return true; 1810 } 1811 } else if (GS.StoredType == GlobalStatus::StoredOnce) { 1812 // If the initial value for the global was an undef value, and if only 1813 // one other value was stored into it, we can just change the 1814 // initializer to be the stored value, then delete all stores to the 1815 // global. This allows us to mark it constant. 1816 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1817 if (isa<UndefValue>(GV->getInitializer())) { 1818 // Change the initial value here. 1819 GV->setInitializer(SOVConstant); 1820 1821 // Clean up any obviously simplifiable users now. 1822 CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI); 1823 1824 if (GV->use_empty()) { 1825 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1826 << "simplify all users and delete global!\n"); 1827 GV->eraseFromParent(); 1828 ++NumDeleted; 1829 } else { 1830 GVI = GV; 1831 } 1832 ++NumSubstitute; 1833 return true; 1834 } 1835 1836 // Try to optimize globals based on the knowledge that only one value 1837 // (besides its initializer) is ever stored to the global. 1838 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI, 1839 TD, TLI)) 1840 return true; 1841 1842 // Otherwise, if the global was not a boolean, we can shrink it to be a 1843 // boolean. 1844 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 1845 if (GS.Ordering == NotAtomic) { 1846 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1847 ++NumShrunkToBool; 1848 return true; 1849 } 1850 } 1851 } 1852 } 1853 1854 return false; 1855 } 1856 1857 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified 1858 /// function, changing them to FastCC. 1859 static void ChangeCalleesToFastCall(Function *F) { 1860 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 1861 if (isa<BlockAddress>(*UI)) 1862 continue; 1863 CallSite User(cast<Instruction>(*UI)); 1864 User.setCallingConv(CallingConv::Fast); 1865 } 1866 } 1867 1868 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) { 1869 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1870 unsigned Index = Attrs.getSlotIndex(i); 1871 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest)) 1872 continue; 1873 1874 // There can be only one. 1875 return Attrs.removeAttribute(C, Index, Attribute::Nest); 1876 } 1877 1878 return Attrs; 1879 } 1880 1881 static void RemoveNestAttribute(Function *F) { 1882 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 1883 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 1884 if (isa<BlockAddress>(*UI)) 1885 continue; 1886 CallSite User(cast<Instruction>(*UI)); 1887 User.setAttributes(StripNest(F->getContext(), User.getAttributes())); 1888 } 1889 } 1890 1891 bool GlobalOpt::OptimizeFunctions(Module &M) { 1892 bool Changed = false; 1893 // Optimize functions. 1894 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 1895 Function *F = FI++; 1896 // Functions without names cannot be referenced outside this module. 1897 if (!F->hasName() && !F->isDeclaration()) 1898 F->setLinkage(GlobalValue::InternalLinkage); 1899 F->removeDeadConstantUsers(); 1900 if (F->isDefTriviallyDead()) { 1901 F->eraseFromParent(); 1902 Changed = true; 1903 ++NumFnDeleted; 1904 } else if (F->hasLocalLinkage()) { 1905 if (F->getCallingConv() == CallingConv::C && !F->isVarArg() && 1906 !F->hasAddressTaken()) { 1907 // If this function has C calling conventions, is not a varargs 1908 // function, and is only called directly, promote it to use the Fast 1909 // calling convention. 1910 F->setCallingConv(CallingConv::Fast); 1911 ChangeCalleesToFastCall(F); 1912 ++NumFastCallFns; 1913 Changed = true; 1914 } 1915 1916 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 1917 !F->hasAddressTaken()) { 1918 // The function is not used by a trampoline intrinsic, so it is safe 1919 // to remove the 'nest' attribute. 1920 RemoveNestAttribute(F); 1921 ++NumNestRemoved; 1922 Changed = true; 1923 } 1924 } 1925 } 1926 return Changed; 1927 } 1928 1929 bool GlobalOpt::OptimizeGlobalVars(Module &M) { 1930 bool Changed = false; 1931 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 1932 GVI != E; ) { 1933 GlobalVariable *GV = GVI++; 1934 // Global variables without names cannot be referenced outside this module. 1935 if (!GV->hasName() && !GV->isDeclaration()) 1936 GV->setLinkage(GlobalValue::InternalLinkage); 1937 // Simplify the initializer. 1938 if (GV->hasInitializer()) 1939 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) { 1940 Constant *New = ConstantFoldConstantExpression(CE, TD, TLI); 1941 if (New && New != CE) 1942 GV->setInitializer(New); 1943 } 1944 1945 Changed |= ProcessGlobal(GV, GVI); 1946 } 1947 return Changed; 1948 } 1949 1950 /// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all 1951 /// initializers have an init priority of 65535. 1952 GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) { 1953 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1954 if (GV == 0) return 0; 1955 1956 // Verify that the initializer is simple enough for us to handle. We are 1957 // only allowed to optimize the initializer if it is unique. 1958 if (!GV->hasUniqueInitializer()) return 0; 1959 1960 if (isa<ConstantAggregateZero>(GV->getInitializer())) 1961 return GV; 1962 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 1963 1964 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) { 1965 if (isa<ConstantAggregateZero>(*i)) 1966 continue; 1967 ConstantStruct *CS = cast<ConstantStruct>(*i); 1968 if (isa<ConstantPointerNull>(CS->getOperand(1))) 1969 continue; 1970 1971 // Must have a function or null ptr. 1972 if (!isa<Function>(CS->getOperand(1))) 1973 return 0; 1974 1975 // Init priority must be standard. 1976 ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0)); 1977 if (CI->getZExtValue() != 65535) 1978 return 0; 1979 } 1980 1981 return GV; 1982 } 1983 1984 /// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand, 1985 /// return a list of the functions and null terminator as a vector. 1986 static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) { 1987 if (GV->getInitializer()->isNullValue()) 1988 return std::vector<Function*>(); 1989 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 1990 std::vector<Function*> Result; 1991 Result.reserve(CA->getNumOperands()); 1992 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) { 1993 ConstantStruct *CS = cast<ConstantStruct>(*i); 1994 Result.push_back(dyn_cast<Function>(CS->getOperand(1))); 1995 } 1996 return Result; 1997 } 1998 1999 /// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the 2000 /// specified array, returning the new global to use. 2001 static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL, 2002 const std::vector<Function*> &Ctors) { 2003 // If we made a change, reassemble the initializer list. 2004 Constant *CSVals[2]; 2005 CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535); 2006 CSVals[1] = 0; 2007 2008 StructType *StructTy = 2009 cast<StructType>(GCL->getType()->getElementType()->getArrayElementType()); 2010 2011 // Create the new init list. 2012 std::vector<Constant*> CAList; 2013 for (unsigned i = 0, e = Ctors.size(); i != e; ++i) { 2014 if (Ctors[i]) { 2015 CSVals[1] = Ctors[i]; 2016 } else { 2017 Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()), 2018 false); 2019 PointerType *PFTy = PointerType::getUnqual(FTy); 2020 CSVals[1] = Constant::getNullValue(PFTy); 2021 CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 2022 0x7fffffff); 2023 } 2024 CAList.push_back(ConstantStruct::get(StructTy, CSVals)); 2025 } 2026 2027 // Create the array initializer. 2028 Constant *CA = ConstantArray::get(ArrayType::get(StructTy, 2029 CAList.size()), CAList); 2030 2031 // If we didn't change the number of elements, don't create a new GV. 2032 if (CA->getType() == GCL->getInitializer()->getType()) { 2033 GCL->setInitializer(CA); 2034 return GCL; 2035 } 2036 2037 // Create the new global and insert it next to the existing list. 2038 GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(), 2039 GCL->getLinkage(), CA, "", 2040 GCL->getThreadLocalMode()); 2041 GCL->getParent()->getGlobalList().insert(GCL, NGV); 2042 NGV->takeName(GCL); 2043 2044 // Nuke the old list, replacing any uses with the new one. 2045 if (!GCL->use_empty()) { 2046 Constant *V = NGV; 2047 if (V->getType() != GCL->getType()) 2048 V = ConstantExpr::getBitCast(V, GCL->getType()); 2049 GCL->replaceAllUsesWith(V); 2050 } 2051 GCL->eraseFromParent(); 2052 2053 if (Ctors.size()) 2054 return NGV; 2055 else 2056 return 0; 2057 } 2058 2059 2060 static inline bool 2061 isSimpleEnoughValueToCommit(Constant *C, 2062 SmallPtrSet<Constant*, 8> &SimpleConstants, 2063 const DataLayout *TD); 2064 2065 2066 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be 2067 /// handled by the code generator. We don't want to generate something like: 2068 /// void *X = &X/42; 2069 /// because the code generator doesn't have a relocation that can handle that. 2070 /// 2071 /// This function should be called if C was not found (but just got inserted) 2072 /// in SimpleConstants to avoid having to rescan the same constants all the 2073 /// time. 2074 static bool isSimpleEnoughValueToCommitHelper(Constant *C, 2075 SmallPtrSet<Constant*, 8> &SimpleConstants, 2076 const DataLayout *TD) { 2077 // Simple integer, undef, constant aggregate zero, global addresses, etc are 2078 // all supported. 2079 if (C->getNumOperands() == 0 || isa<BlockAddress>(C) || 2080 isa<GlobalValue>(C)) 2081 return true; 2082 2083 // Aggregate values are safe if all their elements are. 2084 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2085 isa<ConstantVector>(C)) { 2086 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 2087 Constant *Op = cast<Constant>(C->getOperand(i)); 2088 if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, TD)) 2089 return false; 2090 } 2091 return true; 2092 } 2093 2094 // We don't know exactly what relocations are allowed in constant expressions, 2095 // so we allow &global+constantoffset, which is safe and uniformly supported 2096 // across targets. 2097 ConstantExpr *CE = cast<ConstantExpr>(C); 2098 switch (CE->getOpcode()) { 2099 case Instruction::BitCast: 2100 // Bitcast is fine if the casted value is fine. 2101 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2102 2103 case Instruction::IntToPtr: 2104 case Instruction::PtrToInt: 2105 // int <=> ptr is fine if the int type is the same size as the 2106 // pointer type. 2107 if (!TD || TD->getTypeSizeInBits(CE->getType()) != 2108 TD->getTypeSizeInBits(CE->getOperand(0)->getType())) 2109 return false; 2110 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2111 2112 // GEP is fine if it is simple + constant offset. 2113 case Instruction::GetElementPtr: 2114 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 2115 if (!isa<ConstantInt>(CE->getOperand(i))) 2116 return false; 2117 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2118 2119 case Instruction::Add: 2120 // We allow simple+cst. 2121 if (!isa<ConstantInt>(CE->getOperand(1))) 2122 return false; 2123 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2124 } 2125 return false; 2126 } 2127 2128 static inline bool 2129 isSimpleEnoughValueToCommit(Constant *C, 2130 SmallPtrSet<Constant*, 8> &SimpleConstants, 2131 const DataLayout *TD) { 2132 // If we already checked this constant, we win. 2133 if (!SimpleConstants.insert(C)) return true; 2134 // Check the constant. 2135 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, TD); 2136 } 2137 2138 2139 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple 2140 /// enough for us to understand. In particular, if it is a cast to anything 2141 /// other than from one pointer type to another pointer type, we punt. 2142 /// We basically just support direct accesses to globals and GEP's of 2143 /// globals. This should be kept up to date with CommitValueTo. 2144 static bool isSimpleEnoughPointerToCommit(Constant *C) { 2145 // Conservatively, avoid aggregate types. This is because we don't 2146 // want to worry about them partially overlapping other stores. 2147 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) 2148 return false; 2149 2150 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 2151 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2152 // external globals. 2153 return GV->hasUniqueInitializer(); 2154 2155 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2156 // Handle a constantexpr gep. 2157 if (CE->getOpcode() == Instruction::GetElementPtr && 2158 isa<GlobalVariable>(CE->getOperand(0)) && 2159 cast<GEPOperator>(CE)->isInBounds()) { 2160 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2161 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2162 // external globals. 2163 if (!GV->hasUniqueInitializer()) 2164 return false; 2165 2166 // The first index must be zero. 2167 ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin())); 2168 if (!CI || !CI->isZero()) return false; 2169 2170 // The remaining indices must be compile-time known integers within the 2171 // notional bounds of the corresponding static array types. 2172 if (!CE->isGEPWithNoNotionalOverIndexing()) 2173 return false; 2174 2175 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2176 2177 // A constantexpr bitcast from a pointer to another pointer is a no-op, 2178 // and we know how to evaluate it by moving the bitcast from the pointer 2179 // operand to the value operand. 2180 } else if (CE->getOpcode() == Instruction::BitCast && 2181 isa<GlobalVariable>(CE->getOperand(0))) { 2182 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2183 // external globals. 2184 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); 2185 } 2186 } 2187 2188 return false; 2189 } 2190 2191 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global 2192 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it. 2193 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into. 2194 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2195 ConstantExpr *Addr, unsigned OpNo) { 2196 // Base case of the recursion. 2197 if (OpNo == Addr->getNumOperands()) { 2198 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2199 return Val; 2200 } 2201 2202 SmallVector<Constant*, 32> Elts; 2203 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2204 // Break up the constant into its elements. 2205 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2206 Elts.push_back(Init->getAggregateElement(i)); 2207 2208 // Replace the element that we are supposed to. 2209 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2210 unsigned Idx = CU->getZExtValue(); 2211 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2212 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2213 2214 // Return the modified struct. 2215 return ConstantStruct::get(STy, Elts); 2216 } 2217 2218 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2219 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2220 2221 uint64_t NumElts; 2222 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy)) 2223 NumElts = ATy->getNumElements(); 2224 else 2225 NumElts = InitTy->getVectorNumElements(); 2226 2227 // Break up the array into elements. 2228 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2229 Elts.push_back(Init->getAggregateElement(i)); 2230 2231 assert(CI->getZExtValue() < NumElts); 2232 Elts[CI->getZExtValue()] = 2233 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2234 2235 if (Init->getType()->isArrayTy()) 2236 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2237 return ConstantVector::get(Elts); 2238 } 2239 2240 /// CommitValueTo - We have decided that Addr (which satisfies the predicate 2241 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2242 static void CommitValueTo(Constant *Val, Constant *Addr) { 2243 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2244 assert(GV->hasInitializer()); 2245 GV->setInitializer(Val); 2246 return; 2247 } 2248 2249 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2250 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2251 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2252 } 2253 2254 namespace { 2255 2256 /// Evaluator - This class evaluates LLVM IR, producing the Constant 2257 /// representing each SSA instruction. Changes to global variables are stored 2258 /// in a mapping that can be iterated over after the evaluation is complete. 2259 /// Once an evaluation call fails, the evaluation object should not be reused. 2260 class Evaluator { 2261 public: 2262 Evaluator(const DataLayout *TD, const TargetLibraryInfo *TLI) 2263 : TD(TD), TLI(TLI) { 2264 ValueStack.push_back(new DenseMap<Value*, Constant*>); 2265 } 2266 2267 ~Evaluator() { 2268 DeleteContainerPointers(ValueStack); 2269 while (!AllocaTmps.empty()) { 2270 GlobalVariable *Tmp = AllocaTmps.back(); 2271 AllocaTmps.pop_back(); 2272 2273 // If there are still users of the alloca, the program is doing something 2274 // silly, e.g. storing the address of the alloca somewhere and using it 2275 // later. Since this is undefined, we'll just make it be null. 2276 if (!Tmp->use_empty()) 2277 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType())); 2278 delete Tmp; 2279 } 2280 } 2281 2282 /// EvaluateFunction - Evaluate a call to function F, returning true if 2283 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2284 /// arguments for the function. 2285 bool EvaluateFunction(Function *F, Constant *&RetVal, 2286 const SmallVectorImpl<Constant*> &ActualArgs); 2287 2288 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2289 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2290 /// control flows into, or null upon return. 2291 bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB); 2292 2293 Constant *getVal(Value *V) { 2294 if (Constant *CV = dyn_cast<Constant>(V)) return CV; 2295 Constant *R = ValueStack.back()->lookup(V); 2296 assert(R && "Reference to an uncomputed value!"); 2297 return R; 2298 } 2299 2300 void setVal(Value *V, Constant *C) { 2301 ValueStack.back()->operator[](V) = C; 2302 } 2303 2304 const DenseMap<Constant*, Constant*> &getMutatedMemory() const { 2305 return MutatedMemory; 2306 } 2307 2308 const SmallPtrSet<GlobalVariable*, 8> &getInvariants() const { 2309 return Invariants; 2310 } 2311 2312 private: 2313 Constant *ComputeLoadResult(Constant *P); 2314 2315 /// ValueStack - As we compute SSA register values, we store their contents 2316 /// here. The back of the vector contains the current function and the stack 2317 /// contains the values in the calling frames. 2318 SmallVector<DenseMap<Value*, Constant*>*, 4> ValueStack; 2319 2320 /// CallStack - This is used to detect recursion. In pathological situations 2321 /// we could hit exponential behavior, but at least there is nothing 2322 /// unbounded. 2323 SmallVector<Function*, 4> CallStack; 2324 2325 /// MutatedMemory - For each store we execute, we update this map. Loads 2326 /// check this to get the most up-to-date value. If evaluation is successful, 2327 /// this state is committed to the process. 2328 DenseMap<Constant*, Constant*> MutatedMemory; 2329 2330 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable 2331 /// to represent its body. This vector is needed so we can delete the 2332 /// temporary globals when we are done. 2333 SmallVector<GlobalVariable*, 32> AllocaTmps; 2334 2335 /// Invariants - These global variables have been marked invariant by the 2336 /// static constructor. 2337 SmallPtrSet<GlobalVariable*, 8> Invariants; 2338 2339 /// SimpleConstants - These are constants we have checked and know to be 2340 /// simple enough to live in a static initializer of a global. 2341 SmallPtrSet<Constant*, 8> SimpleConstants; 2342 2343 const DataLayout *TD; 2344 const TargetLibraryInfo *TLI; 2345 }; 2346 2347 } // anonymous namespace 2348 2349 /// ComputeLoadResult - Return the value that would be computed by a load from 2350 /// P after the stores reflected by 'memory' have been performed. If we can't 2351 /// decide, return null. 2352 Constant *Evaluator::ComputeLoadResult(Constant *P) { 2353 // If this memory location has been recently stored, use the stored value: it 2354 // is the most up-to-date. 2355 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P); 2356 if (I != MutatedMemory.end()) return I->second; 2357 2358 // Access it. 2359 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 2360 if (GV->hasDefinitiveInitializer()) 2361 return GV->getInitializer(); 2362 return 0; 2363 } 2364 2365 // Handle a constantexpr getelementptr. 2366 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) 2367 if (CE->getOpcode() == Instruction::GetElementPtr && 2368 isa<GlobalVariable>(CE->getOperand(0))) { 2369 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2370 if (GV->hasDefinitiveInitializer()) 2371 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2372 } 2373 2374 return 0; // don't know how to evaluate. 2375 } 2376 2377 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2378 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2379 /// control flows into, or null upon return. 2380 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, 2381 BasicBlock *&NextBB) { 2382 // This is the main evaluation loop. 2383 while (1) { 2384 Constant *InstResult = 0; 2385 2386 DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); 2387 2388 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 2389 if (!SI->isSimple()) { 2390 DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n"); 2391 return false; // no volatile/atomic accesses. 2392 } 2393 Constant *Ptr = getVal(SI->getOperand(1)); 2394 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2395 DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); 2396 Ptr = ConstantFoldConstantExpression(CE, TD, TLI); 2397 DEBUG(dbgs() << "; To: " << *Ptr << "\n"); 2398 } 2399 if (!isSimpleEnoughPointerToCommit(Ptr)) { 2400 // If this is too complex for us to commit, reject it. 2401 DEBUG(dbgs() << "Pointer is too complex for us to evaluate store."); 2402 return false; 2403 } 2404 2405 Constant *Val = getVal(SI->getOperand(0)); 2406 2407 // If this might be too difficult for the backend to handle (e.g. the addr 2408 // of one global variable divided by another) then we can't commit it. 2409 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD)) { 2410 DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val 2411 << "\n"); 2412 return false; 2413 } 2414 2415 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2416 if (CE->getOpcode() == Instruction::BitCast) { 2417 DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n"); 2418 // If we're evaluating a store through a bitcast, then we need 2419 // to pull the bitcast off the pointer type and push it onto the 2420 // stored value. 2421 Ptr = CE->getOperand(0); 2422 2423 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType(); 2424 2425 // In order to push the bitcast onto the stored value, a bitcast 2426 // from NewTy to Val's type must be legal. If it's not, we can try 2427 // introspecting NewTy to find a legal conversion. 2428 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) { 2429 // If NewTy is a struct, we can convert the pointer to the struct 2430 // into a pointer to its first member. 2431 // FIXME: This could be extended to support arrays as well. 2432 if (StructType *STy = dyn_cast<StructType>(NewTy)) { 2433 NewTy = STy->getTypeAtIndex(0U); 2434 2435 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32); 2436 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); 2437 Constant * const IdxList[] = {IdxZero, IdxZero}; 2438 2439 Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList); 2440 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 2441 Ptr = ConstantFoldConstantExpression(CE, TD, TLI); 2442 2443 // If we can't improve the situation by introspecting NewTy, 2444 // we have to give up. 2445 } else { 2446 DEBUG(dbgs() << "Failed to bitcast constant ptr, can not " 2447 "evaluate.\n"); 2448 return false; 2449 } 2450 } 2451 2452 // If we found compatible types, go ahead and push the bitcast 2453 // onto the stored value. 2454 Val = ConstantExpr::getBitCast(Val, NewTy); 2455 2456 DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n"); 2457 } 2458 } 2459 2460 MutatedMemory[Ptr] = Val; 2461 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 2462 InstResult = ConstantExpr::get(BO->getOpcode(), 2463 getVal(BO->getOperand(0)), 2464 getVal(BO->getOperand(1))); 2465 DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult 2466 << "\n"); 2467 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 2468 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 2469 getVal(CI->getOperand(0)), 2470 getVal(CI->getOperand(1))); 2471 DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult 2472 << "\n"); 2473 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 2474 InstResult = ConstantExpr::getCast(CI->getOpcode(), 2475 getVal(CI->getOperand(0)), 2476 CI->getType()); 2477 DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult 2478 << "\n"); 2479 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 2480 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), 2481 getVal(SI->getOperand(1)), 2482 getVal(SI->getOperand(2))); 2483 DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult 2484 << "\n"); 2485 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 2486 Constant *P = getVal(GEP->getOperand(0)); 2487 SmallVector<Constant*, 8> GEPOps; 2488 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); 2489 i != e; ++i) 2490 GEPOps.push_back(getVal(*i)); 2491 InstResult = 2492 ConstantExpr::getGetElementPtr(P, GEPOps, 2493 cast<GEPOperator>(GEP)->isInBounds()); 2494 DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult 2495 << "\n"); 2496 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 2497 2498 if (!LI->isSimple()) { 2499 DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"); 2500 return false; // no volatile/atomic accesses. 2501 } 2502 2503 Constant *Ptr = getVal(LI->getOperand(0)); 2504 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2505 Ptr = ConstantFoldConstantExpression(CE, TD, TLI); 2506 DEBUG(dbgs() << "Found a constant pointer expression, constant " 2507 "folding: " << *Ptr << "\n"); 2508 } 2509 InstResult = ComputeLoadResult(Ptr); 2510 if (InstResult == 0) { 2511 DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load." 2512 "\n"); 2513 return false; // Could not evaluate load. 2514 } 2515 2516 DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); 2517 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 2518 if (AI->isArrayAllocation()) { 2519 DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); 2520 return false; // Cannot handle array allocs. 2521 } 2522 Type *Ty = AI->getType()->getElementType(); 2523 AllocaTmps.push_back(new GlobalVariable(Ty, false, 2524 GlobalValue::InternalLinkage, 2525 UndefValue::get(Ty), 2526 AI->getName())); 2527 InstResult = AllocaTmps.back(); 2528 DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); 2529 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { 2530 CallSite CS(CurInst); 2531 2532 // Debug info can safely be ignored here. 2533 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) { 2534 DEBUG(dbgs() << "Ignoring debug info.\n"); 2535 ++CurInst; 2536 continue; 2537 } 2538 2539 // Cannot handle inline asm. 2540 if (isa<InlineAsm>(CS.getCalledValue())) { 2541 DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); 2542 return false; 2543 } 2544 2545 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { 2546 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { 2547 if (MSI->isVolatile()) { 2548 DEBUG(dbgs() << "Can not optimize a volatile memset " << 2549 "intrinsic.\n"); 2550 return false; 2551 } 2552 Constant *Ptr = getVal(MSI->getDest()); 2553 Constant *Val = getVal(MSI->getValue()); 2554 Constant *DestVal = ComputeLoadResult(getVal(Ptr)); 2555 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { 2556 // This memset is a no-op. 2557 DEBUG(dbgs() << "Ignoring no-op memset.\n"); 2558 ++CurInst; 2559 continue; 2560 } 2561 } 2562 2563 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 2564 II->getIntrinsicID() == Intrinsic::lifetime_end) { 2565 DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); 2566 ++CurInst; 2567 continue; 2568 } 2569 2570 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2571 // We don't insert an entry into Values, as it doesn't have a 2572 // meaningful return value. 2573 if (!II->use_empty()) { 2574 DEBUG(dbgs() << "Found unused invariant_start. Cant evaluate.\n"); 2575 return false; 2576 } 2577 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); 2578 Value *PtrArg = getVal(II->getArgOperand(1)); 2579 Value *Ptr = PtrArg->stripPointerCasts(); 2580 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 2581 Type *ElemTy = cast<PointerType>(GV->getType())->getElementType(); 2582 if (TD && !Size->isAllOnesValue() && 2583 Size->getValue().getLimitedValue() >= 2584 TD->getTypeStoreSize(ElemTy)) { 2585 Invariants.insert(GV); 2586 DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV 2587 << "\n"); 2588 } else { 2589 DEBUG(dbgs() << "Found a global var, but can not treat it as an " 2590 "invariant.\n"); 2591 } 2592 } 2593 // Continue even if we do nothing. 2594 ++CurInst; 2595 continue; 2596 } 2597 2598 DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n"); 2599 return false; 2600 } 2601 2602 // Resolve function pointers. 2603 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue())); 2604 if (!Callee || Callee->mayBeOverridden()) { 2605 DEBUG(dbgs() << "Can not resolve function pointer.\n"); 2606 return false; // Cannot resolve. 2607 } 2608 2609 SmallVector<Constant*, 8> Formals; 2610 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) 2611 Formals.push_back(getVal(*i)); 2612 2613 if (Callee->isDeclaration()) { 2614 // If this is a function we can constant fold, do it. 2615 if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) { 2616 InstResult = C; 2617 DEBUG(dbgs() << "Constant folded function call. Result: " << 2618 *InstResult << "\n"); 2619 } else { 2620 DEBUG(dbgs() << "Can not constant fold function call.\n"); 2621 return false; 2622 } 2623 } else { 2624 if (Callee->getFunctionType()->isVarArg()) { 2625 DEBUG(dbgs() << "Can not constant fold vararg function call.\n"); 2626 return false; 2627 } 2628 2629 Constant *RetVal = 0; 2630 // Execute the call, if successful, use the return value. 2631 ValueStack.push_back(new DenseMap<Value*, Constant*>); 2632 if (!EvaluateFunction(Callee, RetVal, Formals)) { 2633 DEBUG(dbgs() << "Failed to evaluate function.\n"); 2634 return false; 2635 } 2636 delete ValueStack.pop_back_val(); 2637 InstResult = RetVal; 2638 2639 if (InstResult != NULL) { 2640 DEBUG(dbgs() << "Successfully evaluated function. Result: " << 2641 InstResult << "\n\n"); 2642 } else { 2643 DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n"); 2644 } 2645 } 2646 } else if (isa<TerminatorInst>(CurInst)) { 2647 DEBUG(dbgs() << "Found a terminator instruction.\n"); 2648 2649 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 2650 if (BI->isUnconditional()) { 2651 NextBB = BI->getSuccessor(0); 2652 } else { 2653 ConstantInt *Cond = 2654 dyn_cast<ConstantInt>(getVal(BI->getCondition())); 2655 if (!Cond) return false; // Cannot determine. 2656 2657 NextBB = BI->getSuccessor(!Cond->getZExtValue()); 2658 } 2659 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 2660 ConstantInt *Val = 2661 dyn_cast<ConstantInt>(getVal(SI->getCondition())); 2662 if (!Val) return false; // Cannot determine. 2663 NextBB = SI->findCaseValue(Val).getCaseSuccessor(); 2664 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 2665 Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); 2666 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 2667 NextBB = BA->getBasicBlock(); 2668 else 2669 return false; // Cannot determine. 2670 } else if (isa<ReturnInst>(CurInst)) { 2671 NextBB = 0; 2672 } else { 2673 // invoke, unwind, resume, unreachable. 2674 DEBUG(dbgs() << "Can not handle terminator."); 2675 return false; // Cannot handle this terminator. 2676 } 2677 2678 // We succeeded at evaluating this block! 2679 DEBUG(dbgs() << "Successfully evaluated block.\n"); 2680 return true; 2681 } else { 2682 // Did not know how to evaluate this! 2683 DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction." 2684 "\n"); 2685 return false; 2686 } 2687 2688 if (!CurInst->use_empty()) { 2689 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult)) 2690 InstResult = ConstantFoldConstantExpression(CE, TD, TLI); 2691 2692 setVal(CurInst, InstResult); 2693 } 2694 2695 // If we just processed an invoke, we finished evaluating the block. 2696 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { 2697 NextBB = II->getNormalDest(); 2698 DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); 2699 return true; 2700 } 2701 2702 // Advance program counter. 2703 ++CurInst; 2704 } 2705 } 2706 2707 /// EvaluateFunction - Evaluate a call to function F, returning true if 2708 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2709 /// arguments for the function. 2710 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, 2711 const SmallVectorImpl<Constant*> &ActualArgs) { 2712 // Check to see if this function is already executing (recursion). If so, 2713 // bail out. TODO: we might want to accept limited recursion. 2714 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end()) 2715 return false; 2716 2717 CallStack.push_back(F); 2718 2719 // Initialize arguments to the incoming values specified. 2720 unsigned ArgNo = 0; 2721 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 2722 ++AI, ++ArgNo) 2723 setVal(AI, ActualArgs[ArgNo]); 2724 2725 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 2726 // we can only evaluate any one basic block at most once. This set keeps 2727 // track of what we have executed so we can detect recursive cases etc. 2728 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 2729 2730 // CurBB - The current basic block we're evaluating. 2731 BasicBlock *CurBB = F->begin(); 2732 2733 BasicBlock::iterator CurInst = CurBB->begin(); 2734 2735 while (1) { 2736 BasicBlock *NextBB = 0; // Initialized to avoid compiler warnings. 2737 DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); 2738 2739 if (!EvaluateBlock(CurInst, NextBB)) 2740 return false; 2741 2742 if (NextBB == 0) { 2743 // Successfully running until there's no next block means that we found 2744 // the return. Fill it the return value and pop the call stack. 2745 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); 2746 if (RI->getNumOperands()) 2747 RetVal = getVal(RI->getOperand(0)); 2748 CallStack.pop_back(); 2749 return true; 2750 } 2751 2752 // Okay, we succeeded in evaluating this control flow. See if we have 2753 // executed the new block before. If so, we have a looping function, 2754 // which we cannot evaluate in reasonable time. 2755 if (!ExecutedBlocks.insert(NextBB)) 2756 return false; // looped! 2757 2758 // Okay, we have never been in this block before. Check to see if there 2759 // are any PHI nodes. If so, evaluate them with information about where 2760 // we came from. 2761 PHINode *PN = 0; 2762 for (CurInst = NextBB->begin(); 2763 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 2764 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); 2765 2766 // Advance to the next block. 2767 CurBB = NextBB; 2768 } 2769 } 2770 2771 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if 2772 /// we can. Return true if we can, false otherwise. 2773 static bool EvaluateStaticConstructor(Function *F, const DataLayout *TD, 2774 const TargetLibraryInfo *TLI) { 2775 // Call the function. 2776 Evaluator Eval(TD, TLI); 2777 Constant *RetValDummy; 2778 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2779 SmallVector<Constant*, 0>()); 2780 2781 if (EvalSuccess) { 2782 // We succeeded at evaluation: commit the result. 2783 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2784 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2785 << " stores.\n"); 2786 for (DenseMap<Constant*, Constant*>::const_iterator I = 2787 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end(); 2788 I != E; ++I) 2789 CommitValueTo(I->second, I->first); 2790 for (SmallPtrSet<GlobalVariable*, 8>::const_iterator I = 2791 Eval.getInvariants().begin(), E = Eval.getInvariants().end(); 2792 I != E; ++I) 2793 (*I)->setConstant(true); 2794 } 2795 2796 return EvalSuccess; 2797 } 2798 2799 /// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible. 2800 /// Return true if anything changed. 2801 bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) { 2802 std::vector<Function*> Ctors = ParseGlobalCtors(GCL); 2803 bool MadeChange = false; 2804 if (Ctors.empty()) return false; 2805 2806 // Loop over global ctors, optimizing them when we can. 2807 for (unsigned i = 0; i != Ctors.size(); ++i) { 2808 Function *F = Ctors[i]; 2809 // Found a null terminator in the middle of the list, prune off the rest of 2810 // the list. 2811 if (F == 0) { 2812 if (i != Ctors.size()-1) { 2813 Ctors.resize(i+1); 2814 MadeChange = true; 2815 } 2816 break; 2817 } 2818 DEBUG(dbgs() << "Optimizing Global Constructor: " << *F << "\n"); 2819 2820 // We cannot simplify external ctor functions. 2821 if (F->empty()) continue; 2822 2823 // If we can evaluate the ctor at compile time, do. 2824 if (EvaluateStaticConstructor(F, TD, TLI)) { 2825 Ctors.erase(Ctors.begin()+i); 2826 MadeChange = true; 2827 --i; 2828 ++NumCtorsEvaluated; 2829 continue; 2830 } 2831 } 2832 2833 if (!MadeChange) return false; 2834 2835 GCL = InstallGlobalCtors(GCL, Ctors); 2836 return true; 2837 } 2838 2839 static int compareNames(Constant *const *A, Constant *const *B) { 2840 return (*A)->getName().compare((*B)->getName()); 2841 } 2842 2843 static void setUsedInitializer(GlobalVariable &V, 2844 SmallPtrSet<GlobalValue *, 8> Init) { 2845 if (Init.empty()) { 2846 V.eraseFromParent(); 2847 return; 2848 } 2849 2850 SmallVector<llvm::Constant *, 8> UsedArray; 2851 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext()); 2852 2853 for (SmallPtrSet<GlobalValue *, 8>::iterator I = Init.begin(), E = Init.end(); 2854 I != E; ++I) { 2855 Constant *Cast = llvm::ConstantExpr::getBitCast(*I, Int8PtrTy); 2856 UsedArray.push_back(Cast); 2857 } 2858 // Sort to get deterministic order. 2859 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2860 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2861 2862 Module *M = V.getParent(); 2863 V.removeFromParent(); 2864 GlobalVariable *NV = 2865 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage, 2866 llvm::ConstantArray::get(ATy, UsedArray), ""); 2867 NV->takeName(&V); 2868 NV->setSection("llvm.metadata"); 2869 delete &V; 2870 } 2871 2872 namespace { 2873 /// \brief An easy to access representation of llvm.used and llvm.compiler.used. 2874 class LLVMUsed { 2875 SmallPtrSet<GlobalValue *, 8> Used; 2876 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2877 GlobalVariable *UsedV; 2878 GlobalVariable *CompilerUsedV; 2879 2880 public: 2881 LLVMUsed(Module &M) { 2882 UsedV = collectUsedGlobalVariables(M, Used, false); 2883 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2884 } 2885 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator; 2886 iterator usedBegin() { return Used.begin(); } 2887 iterator usedEnd() { return Used.end(); } 2888 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2889 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2890 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2891 bool compilerUsedCount(GlobalValue *GV) const { 2892 return CompilerUsed.count(GV); 2893 } 2894 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2895 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2896 bool usedInsert(GlobalValue *GV) { return Used.insert(GV); } 2897 bool compilerUsedInsert(GlobalValue *GV) { return CompilerUsed.insert(GV); } 2898 2899 void syncVariablesAndSets() { 2900 if (UsedV) 2901 setUsedInitializer(*UsedV, Used); 2902 if (CompilerUsedV) 2903 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2904 } 2905 }; 2906 } 2907 2908 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2909 if (GA.use_empty()) // No use at all. 2910 return false; 2911 2912 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2913 "We should have removed the duplicated " 2914 "element from llvm.compiler.used"); 2915 if (!GA.hasOneUse()) 2916 // Strictly more than one use. So at least one is not in llvm.used and 2917 // llvm.compiler.used. 2918 return true; 2919 2920 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2921 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2922 } 2923 2924 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2925 const LLVMUsed &U) { 2926 unsigned N = 2; 2927 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2928 "We should have removed the duplicated " 2929 "element from llvm.compiler.used"); 2930 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2931 ++N; 2932 return V.hasNUsesOrMore(N); 2933 } 2934 2935 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2936 if (!GA.hasLocalLinkage()) 2937 return true; 2938 2939 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2940 } 2941 2942 static bool hasUsesToReplace(GlobalAlias &GA, LLVMUsed &U, bool &RenameTarget) { 2943 RenameTarget = false; 2944 bool Ret = false; 2945 if (hasUseOtherThanLLVMUsed(GA, U)) 2946 Ret = true; 2947 2948 // If the alias is externally visible, we may still be able to simplify it. 2949 if (!mayHaveOtherReferences(GA, U)) 2950 return Ret; 2951 2952 // If the aliasee has internal linkage, give it the name and linkage 2953 // of the alias, and delete the alias. This turns: 2954 // define internal ... @f(...) 2955 // @a = alias ... @f 2956 // into: 2957 // define ... @a(...) 2958 Constant *Aliasee = GA.getAliasee(); 2959 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2960 if (!Target->hasLocalLinkage()) 2961 return Ret; 2962 2963 // Do not perform the transform if multiple aliases potentially target the 2964 // aliasee. This check also ensures that it is safe to replace the section 2965 // and other attributes of the aliasee with those of the alias. 2966 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2967 return Ret; 2968 2969 RenameTarget = true; 2970 return true; 2971 } 2972 2973 bool GlobalOpt::OptimizeGlobalAliases(Module &M) { 2974 bool Changed = false; 2975 LLVMUsed Used(M); 2976 2977 for (SmallPtrSet<GlobalValue *, 8>::iterator I = Used.usedBegin(), 2978 E = Used.usedEnd(); 2979 I != E; ++I) 2980 Used.compilerUsedErase(*I); 2981 2982 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2983 I != E;) { 2984 Module::alias_iterator J = I++; 2985 // Aliases without names cannot be referenced outside this module. 2986 if (!J->hasName() && !J->isDeclaration()) 2987 J->setLinkage(GlobalValue::InternalLinkage); 2988 // If the aliasee may change at link time, nothing can be done - bail out. 2989 if (J->mayBeOverridden()) 2990 continue; 2991 2992 Constant *Aliasee = J->getAliasee(); 2993 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2994 Target->removeDeadConstantUsers(); 2995 2996 // Make all users of the alias use the aliasee instead. 2997 bool RenameTarget; 2998 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2999 continue; 3000 3001 J->replaceAllUsesWith(Aliasee); 3002 ++NumAliasesResolved; 3003 Changed = true; 3004 3005 if (RenameTarget) { 3006 // Give the aliasee the name, linkage and other attributes of the alias. 3007 Target->takeName(J); 3008 Target->setLinkage(J->getLinkage()); 3009 Target->GlobalValue::copyAttributesFrom(J); 3010 3011 if (Used.usedErase(J)) 3012 Used.usedInsert(Target); 3013 3014 if (Used.compilerUsedErase(J)) 3015 Used.compilerUsedInsert(Target); 3016 } else if (mayHaveOtherReferences(*J, Used)) 3017 continue; 3018 3019 // Delete the alias. 3020 M.getAliasList().erase(J); 3021 ++NumAliasesRemoved; 3022 Changed = true; 3023 } 3024 3025 Used.syncVariablesAndSets(); 3026 3027 return Changed; 3028 } 3029 3030 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 3031 if (!TLI->has(LibFunc::cxa_atexit)) 3032 return 0; 3033 3034 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit)); 3035 3036 if (!Fn) 3037 return 0; 3038 3039 FunctionType *FTy = Fn->getFunctionType(); 3040 3041 // Checking that the function has the right return type, the right number of 3042 // parameters and that they all have pointer types should be enough. 3043 if (!FTy->getReturnType()->isIntegerTy() || 3044 FTy->getNumParams() != 3 || 3045 !FTy->getParamType(0)->isPointerTy() || 3046 !FTy->getParamType(1)->isPointerTy() || 3047 !FTy->getParamType(2)->isPointerTy()) 3048 return 0; 3049 3050 return Fn; 3051 } 3052 3053 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++ 3054 /// destructor and can therefore be eliminated. 3055 /// Note that we assume that other optimization passes have already simplified 3056 /// the code so we only look for a function with a single basic block, where 3057 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 3058 /// other side-effect free instructions. 3059 static bool cxxDtorIsEmpty(const Function &Fn, 3060 SmallPtrSet<const Function *, 8> &CalledFunctions) { 3061 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 3062 // nounwind, but that doesn't seem worth doing. 3063 if (Fn.isDeclaration()) 3064 return false; 3065 3066 if (++Fn.begin() != Fn.end()) 3067 return false; 3068 3069 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 3070 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 3071 I != E; ++I) { 3072 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 3073 // Ignore debug intrinsics. 3074 if (isa<DbgInfoIntrinsic>(CI)) 3075 continue; 3076 3077 const Function *CalledFn = CI->getCalledFunction(); 3078 3079 if (!CalledFn) 3080 return false; 3081 3082 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 3083 3084 // Don't treat recursive functions as empty. 3085 if (!NewCalledFunctions.insert(CalledFn)) 3086 return false; 3087 3088 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 3089 return false; 3090 } else if (isa<ReturnInst>(*I)) 3091 return true; // We're done. 3092 else if (I->mayHaveSideEffects()) 3093 return false; // Destructor with side effects, bail. 3094 } 3095 3096 return false; 3097 } 3098 3099 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 3100 /// Itanium C++ ABI p3.3.5: 3101 /// 3102 /// After constructing a global (or local static) object, that will require 3103 /// destruction on exit, a termination function is registered as follows: 3104 /// 3105 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 3106 /// 3107 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 3108 /// call f(p) when DSO d is unloaded, before all such termination calls 3109 /// registered before this one. It returns zero if registration is 3110 /// successful, nonzero on failure. 3111 3112 // This pass will look for calls to __cxa_atexit where the function is trivial 3113 // and remove them. 3114 bool Changed = false; 3115 3116 for (Function::use_iterator I = CXAAtExitFn->use_begin(), 3117 E = CXAAtExitFn->use_end(); I != E;) { 3118 // We're only interested in calls. Theoretically, we could handle invoke 3119 // instructions as well, but neither llvm-gcc nor clang generate invokes 3120 // to __cxa_atexit. 3121 CallInst *CI = dyn_cast<CallInst>(*I++); 3122 if (!CI) 3123 continue; 3124 3125 Function *DtorFn = 3126 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 3127 if (!DtorFn) 3128 continue; 3129 3130 SmallPtrSet<const Function *, 8> CalledFunctions; 3131 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 3132 continue; 3133 3134 // Just remove the call. 3135 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 3136 CI->eraseFromParent(); 3137 3138 ++NumCXXDtorsRemoved; 3139 3140 Changed |= true; 3141 } 3142 3143 return Changed; 3144 } 3145 3146 bool GlobalOpt::runOnModule(Module &M) { 3147 bool Changed = false; 3148 3149 TD = getAnalysisIfAvailable<DataLayout>(); 3150 TLI = &getAnalysis<TargetLibraryInfo>(); 3151 3152 // Try to find the llvm.globalctors list. 3153 GlobalVariable *GlobalCtors = FindGlobalCtors(M); 3154 3155 bool LocalChange = true; 3156 while (LocalChange) { 3157 LocalChange = false; 3158 3159 // Delete functions that are trivially dead, ccc -> fastcc 3160 LocalChange |= OptimizeFunctions(M); 3161 3162 // Optimize global_ctors list. 3163 if (GlobalCtors) 3164 LocalChange |= OptimizeGlobalCtorsList(GlobalCtors); 3165 3166 // Optimize non-address-taken globals. 3167 LocalChange |= OptimizeGlobalVars(M); 3168 3169 // Resolve aliases, when possible. 3170 LocalChange |= OptimizeGlobalAliases(M); 3171 3172 // Try to remove trivial global destructors if they are not removed 3173 // already. 3174 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 3175 if (CXAAtExitFn) 3176 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 3177 3178 Changed |= LocalChange; 3179 } 3180 3181 // TODO: Move all global ctors functions to the end of the module for code 3182 // layout. 3183 3184 return Changed; 3185 } 3186