1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/GlobalOpt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/ADT/iterator_range.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/Utils/Local.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GetElementPtrTypeIterator.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/IntrinsicInst.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Operator.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Use.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueHandle.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/AtomicOrdering.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Transforms/IPO.h" 67 #include "llvm/Transforms/Utils/CtorUtils.h" 68 #include "llvm/Transforms/Utils/Evaluator.h" 69 #include "llvm/Transforms/Utils/GlobalStatus.h" 70 #include <cassert> 71 #include <cstdint> 72 #include <utility> 73 #include <vector> 74 75 using namespace llvm; 76 77 #define DEBUG_TYPE "globalopt" 78 79 STATISTIC(NumMarked , "Number of globals marked constant"); 80 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 81 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 82 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 83 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 84 STATISTIC(NumDeleted , "Number of globals deleted"); 85 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 86 STATISTIC(NumLocalized , "Number of globals localized"); 87 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 88 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 89 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 90 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 91 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 92 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 93 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 94 STATISTIC(NumInternalFunc, "Number of internal functions"); 95 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 96 97 static cl::opt<bool> 98 EnableColdCCStressTest("enable-coldcc-stress-test", 99 cl::desc("Enable stress test of coldcc by adding " 100 "calling conv to all internal functions."), 101 cl::init(false), cl::Hidden); 102 103 static cl::opt<int> ColdCCRelFreq( 104 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 105 cl::desc( 106 "Maximum block frequency, expressed as a percentage of caller's " 107 "entry frequency, for a call site to be considered cold for enabling" 108 "coldcc")); 109 110 /// Is this global variable possibly used by a leak checker as a root? If so, 111 /// we might not really want to eliminate the stores to it. 112 static bool isLeakCheckerRoot(GlobalVariable *GV) { 113 // A global variable is a root if it is a pointer, or could plausibly contain 114 // a pointer. There are two challenges; one is that we could have a struct 115 // the has an inner member which is a pointer. We recurse through the type to 116 // detect these (up to a point). The other is that we may actually be a union 117 // of a pointer and another type, and so our LLVM type is an integer which 118 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 119 // potentially contained here. 120 121 if (GV->hasPrivateLinkage()) 122 return false; 123 124 SmallVector<Type *, 4> Types; 125 Types.push_back(GV->getValueType()); 126 127 unsigned Limit = 20; 128 do { 129 Type *Ty = Types.pop_back_val(); 130 switch (Ty->getTypeID()) { 131 default: break; 132 case Type::PointerTyID: return true; 133 case Type::ArrayTyID: 134 case Type::VectorTyID: { 135 SequentialType *STy = cast<SequentialType>(Ty); 136 Types.push_back(STy->getElementType()); 137 break; 138 } 139 case Type::StructTyID: { 140 StructType *STy = cast<StructType>(Ty); 141 if (STy->isOpaque()) return true; 142 for (StructType::element_iterator I = STy->element_begin(), 143 E = STy->element_end(); I != E; ++I) { 144 Type *InnerTy = *I; 145 if (isa<PointerType>(InnerTy)) return true; 146 if (isa<CompositeType>(InnerTy)) 147 Types.push_back(InnerTy); 148 } 149 break; 150 } 151 } 152 if (--Limit == 0) return true; 153 } while (!Types.empty()); 154 return false; 155 } 156 157 /// Given a value that is stored to a global but never read, determine whether 158 /// it's safe to remove the store and the chain of computation that feeds the 159 /// store. 160 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 161 do { 162 if (isa<Constant>(V)) 163 return true; 164 if (!V->hasOneUse()) 165 return false; 166 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 167 isa<GlobalValue>(V)) 168 return false; 169 if (isAllocationFn(V, TLI)) 170 return true; 171 172 Instruction *I = cast<Instruction>(V); 173 if (I->mayHaveSideEffects()) 174 return false; 175 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 176 if (!GEP->hasAllConstantIndices()) 177 return false; 178 } else if (I->getNumOperands() != 1) { 179 return false; 180 } 181 182 V = I->getOperand(0); 183 } while (true); 184 } 185 186 /// This GV is a pointer root. Loop over all users of the global and clean up 187 /// any that obviously don't assign the global a value that isn't dynamically 188 /// allocated. 189 static bool CleanupPointerRootUsers(GlobalVariable *GV, 190 const TargetLibraryInfo *TLI) { 191 // A brief explanation of leak checkers. The goal is to find bugs where 192 // pointers are forgotten, causing an accumulating growth in memory 193 // usage over time. The common strategy for leak checkers is to whitelist the 194 // memory pointed to by globals at exit. This is popular because it also 195 // solves another problem where the main thread of a C++ program may shut down 196 // before other threads that are still expecting to use those globals. To 197 // handle that case, we expect the program may create a singleton and never 198 // destroy it. 199 200 bool Changed = false; 201 202 // If Dead[n].first is the only use of a malloc result, we can delete its 203 // chain of computation and the store to the global in Dead[n].second. 204 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 205 206 // Constants can't be pointers to dynamically allocated memory. 207 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 208 UI != E;) { 209 User *U = *UI++; 210 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 211 Value *V = SI->getValueOperand(); 212 if (isa<Constant>(V)) { 213 Changed = true; 214 SI->eraseFromParent(); 215 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 216 if (I->hasOneUse()) 217 Dead.push_back(std::make_pair(I, SI)); 218 } 219 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 220 if (isa<Constant>(MSI->getValue())) { 221 Changed = true; 222 MSI->eraseFromParent(); 223 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 224 if (I->hasOneUse()) 225 Dead.push_back(std::make_pair(I, MSI)); 226 } 227 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 228 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 229 if (MemSrc && MemSrc->isConstant()) { 230 Changed = true; 231 MTI->eraseFromParent(); 232 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 233 if (I->hasOneUse()) 234 Dead.push_back(std::make_pair(I, MTI)); 235 } 236 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 237 if (CE->use_empty()) { 238 CE->destroyConstant(); 239 Changed = true; 240 } 241 } else if (Constant *C = dyn_cast<Constant>(U)) { 242 if (isSafeToDestroyConstant(C)) { 243 C->destroyConstant(); 244 // This could have invalidated UI, start over from scratch. 245 Dead.clear(); 246 CleanupPointerRootUsers(GV, TLI); 247 return true; 248 } 249 } 250 } 251 252 for (int i = 0, e = Dead.size(); i != e; ++i) { 253 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 254 Dead[i].second->eraseFromParent(); 255 Instruction *I = Dead[i].first; 256 do { 257 if (isAllocationFn(I, TLI)) 258 break; 259 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 260 if (!J) 261 break; 262 I->eraseFromParent(); 263 I = J; 264 } while (true); 265 I->eraseFromParent(); 266 } 267 } 268 269 return Changed; 270 } 271 272 /// We just marked GV constant. Loop over all users of the global, cleaning up 273 /// the obvious ones. This is largely just a quick scan over the use list to 274 /// clean up the easy and obvious cruft. This returns true if it made a change. 275 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 276 const DataLayout &DL, 277 TargetLibraryInfo *TLI) { 278 bool Changed = false; 279 // Note that we need to use a weak value handle for the worklist items. When 280 // we delete a constant array, we may also be holding pointer to one of its 281 // elements (or an element of one of its elements if we're dealing with an 282 // array of arrays) in the worklist. 283 SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end()); 284 while (!WorkList.empty()) { 285 Value *UV = WorkList.pop_back_val(); 286 if (!UV) 287 continue; 288 289 User *U = cast<User>(UV); 290 291 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 292 if (Init) { 293 // Replace the load with the initializer. 294 LI->replaceAllUsesWith(Init); 295 LI->eraseFromParent(); 296 Changed = true; 297 } 298 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 299 // Store must be unreachable or storing Init into the global. 300 SI->eraseFromParent(); 301 Changed = true; 302 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 303 if (CE->getOpcode() == Instruction::GetElementPtr) { 304 Constant *SubInit = nullptr; 305 if (Init) 306 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 307 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 308 } else if ((CE->getOpcode() == Instruction::BitCast && 309 CE->getType()->isPointerTy()) || 310 CE->getOpcode() == Instruction::AddrSpaceCast) { 311 // Pointer cast, delete any stores and memsets to the global. 312 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 313 } 314 315 if (CE->use_empty()) { 316 CE->destroyConstant(); 317 Changed = true; 318 } 319 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 320 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 321 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 322 // and will invalidate our notion of what Init is. 323 Constant *SubInit = nullptr; 324 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 325 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 326 ConstantFoldInstruction(GEP, DL, TLI)); 327 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 328 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 329 330 // If the initializer is an all-null value and we have an inbounds GEP, 331 // we already know what the result of any load from that GEP is. 332 // TODO: Handle splats. 333 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 334 SubInit = Constant::getNullValue(GEP->getResultElementType()); 335 } 336 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 337 338 if (GEP->use_empty()) { 339 GEP->eraseFromParent(); 340 Changed = true; 341 } 342 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 343 if (MI->getRawDest() == V) { 344 MI->eraseFromParent(); 345 Changed = true; 346 } 347 348 } else if (Constant *C = dyn_cast<Constant>(U)) { 349 // If we have a chain of dead constantexprs or other things dangling from 350 // us, and if they are all dead, nuke them without remorse. 351 if (isSafeToDestroyConstant(C)) { 352 C->destroyConstant(); 353 CleanupConstantGlobalUsers(V, Init, DL, TLI); 354 return true; 355 } 356 } 357 } 358 return Changed; 359 } 360 361 /// Return true if the specified instruction is a safe user of a derived 362 /// expression from a global that we want to SROA. 363 static bool isSafeSROAElementUse(Value *V) { 364 // We might have a dead and dangling constant hanging off of here. 365 if (Constant *C = dyn_cast<Constant>(V)) 366 return isSafeToDestroyConstant(C); 367 368 Instruction *I = dyn_cast<Instruction>(V); 369 if (!I) return false; 370 371 // Loads are ok. 372 if (isa<LoadInst>(I)) return true; 373 374 // Stores *to* the pointer are ok. 375 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 376 return SI->getOperand(0) != V; 377 378 // Otherwise, it must be a GEP. 379 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 380 if (!GEPI) return false; 381 382 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 383 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 384 return false; 385 386 for (User *U : GEPI->users()) 387 if (!isSafeSROAElementUse(U)) 388 return false; 389 return true; 390 } 391 392 /// U is a direct user of the specified global value. Look at it and its uses 393 /// and decide whether it is safe to SROA this global. 394 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 395 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 396 if (!isa<GetElementPtrInst>(U) && 397 (!isa<ConstantExpr>(U) || 398 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 399 return false; 400 401 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 402 // don't like < 3 operand CE's, and we don't like non-constant integer 403 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 404 // value of C. 405 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 406 !cast<Constant>(U->getOperand(1))->isNullValue() || 407 !isa<ConstantInt>(U->getOperand(2))) 408 return false; 409 410 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 411 ++GEPI; // Skip over the pointer index. 412 413 // If this is a use of an array allocation, do a bit more checking for sanity. 414 if (GEPI.isSequential()) { 415 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 416 417 // Check to make sure that index falls within the array. If not, 418 // something funny is going on, so we won't do the optimization. 419 // 420 if (GEPI.isBoundedSequential() && 421 Idx->getZExtValue() >= GEPI.getSequentialNumElements()) 422 return false; 423 424 // We cannot scalar repl this level of the array unless any array 425 // sub-indices are in-range constants. In particular, consider: 426 // A[0][i]. We cannot know that the user isn't doing invalid things like 427 // allowing i to index an out-of-range subscript that accesses A[1]. 428 // 429 // Scalar replacing *just* the outer index of the array is probably not 430 // going to be a win anyway, so just give up. 431 for (++GEPI; // Skip array index. 432 GEPI != E; 433 ++GEPI) { 434 if (GEPI.isStruct()) 435 continue; 436 437 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 438 if (!IdxVal || 439 (GEPI.isBoundedSequential() && 440 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 441 return false; 442 } 443 } 444 445 return llvm::all_of(U->users(), 446 [](User *UU) { return isSafeSROAElementUse(UU); }); 447 } 448 449 /// Look at all uses of the global and decide whether it is safe for us to 450 /// perform this transformation. 451 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 452 for (User *U : GV->users()) 453 if (!IsUserOfGlobalSafeForSRA(U, GV)) 454 return false; 455 456 return true; 457 } 458 459 /// Copy over the debug info for a variable to its SRA replacements. 460 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 461 uint64_t FragmentOffsetInBits, 462 uint64_t FragmentSizeInBits, 463 unsigned NumElements) { 464 SmallVector<DIGlobalVariableExpression *, 1> GVs; 465 GV->getDebugInfo(GVs); 466 for (auto *GVE : GVs) { 467 DIVariable *Var = GVE->getVariable(); 468 DIExpression *Expr = GVE->getExpression(); 469 if (NumElements > 1) { 470 if (auto E = DIExpression::createFragmentExpression( 471 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 472 Expr = *E; 473 else 474 return; 475 } 476 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 477 NGV->addDebugInfo(NGVE); 478 } 479 } 480 481 /// Perform scalar replacement of aggregates on the specified global variable. 482 /// This opens the door for other optimizations by exposing the behavior of the 483 /// program in a more fine-grained way. We have determined that this 484 /// transformation is safe already. We return the first global variable we 485 /// insert so that the caller can reprocess it. 486 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 487 // Make sure this global only has simple uses that we can SRA. 488 if (!GlobalUsersSafeToSRA(GV)) 489 return nullptr; 490 491 assert(GV->hasLocalLinkage()); 492 Constant *Init = GV->getInitializer(); 493 Type *Ty = Init->getType(); 494 495 std::vector<GlobalVariable *> NewGlobals; 496 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 497 498 // Get the alignment of the global, either explicit or target-specific. 499 unsigned StartAlignment = GV->getAlignment(); 500 if (StartAlignment == 0) 501 StartAlignment = DL.getABITypeAlignment(GV->getType()); 502 503 if (StructType *STy = dyn_cast<StructType>(Ty)) { 504 unsigned NumElements = STy->getNumElements(); 505 NewGlobals.reserve(NumElements); 506 const StructLayout &Layout = *DL.getStructLayout(STy); 507 for (unsigned i = 0, e = NumElements; i != e; ++i) { 508 Constant *In = Init->getAggregateElement(i); 509 assert(In && "Couldn't get element of initializer?"); 510 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 511 GlobalVariable::InternalLinkage, 512 In, GV->getName()+"."+Twine(i), 513 GV->getThreadLocalMode(), 514 GV->getType()->getAddressSpace()); 515 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 516 NGV->copyAttributesFrom(GV); 517 Globals.push_back(NGV); 518 NewGlobals.push_back(NGV); 519 520 // Calculate the known alignment of the field. If the original aggregate 521 // had 256 byte alignment for example, something might depend on that: 522 // propagate info to each field. 523 uint64_t FieldOffset = Layout.getElementOffset(i); 524 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 525 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 526 NGV->setAlignment(NewAlign); 527 528 // Copy over the debug info for the variable. 529 uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType()); 530 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i); 531 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements); 532 } 533 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 534 unsigned NumElements = STy->getNumElements(); 535 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 536 return nullptr; // It's not worth it. 537 NewGlobals.reserve(NumElements); 538 auto ElTy = STy->getElementType(); 539 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 540 unsigned EltAlign = DL.getABITypeAlignment(ElTy); 541 uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy); 542 for (unsigned i = 0, e = NumElements; i != e; ++i) { 543 Constant *In = Init->getAggregateElement(i); 544 assert(In && "Couldn't get element of initializer?"); 545 546 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 547 GlobalVariable::InternalLinkage, 548 In, GV->getName()+"."+Twine(i), 549 GV->getThreadLocalMode(), 550 GV->getType()->getAddressSpace()); 551 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 552 NGV->copyAttributesFrom(GV); 553 Globals.push_back(NGV); 554 NewGlobals.push_back(NGV); 555 556 // Calculate the known alignment of the field. If the original aggregate 557 // had 256 byte alignment for example, something might depend on that: 558 // propagate info to each field. 559 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 560 if (NewAlign > EltAlign) 561 NGV->setAlignment(NewAlign); 562 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits, 563 NumElements); 564 } 565 } 566 567 if (NewGlobals.empty()) 568 return nullptr; 569 570 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 571 572 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 573 574 // Loop over all of the uses of the global, replacing the constantexpr geps, 575 // with smaller constantexpr geps or direct references. 576 while (!GV->use_empty()) { 577 User *GEP = GV->user_back(); 578 assert(((isa<ConstantExpr>(GEP) && 579 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 580 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 581 582 // Ignore the 1th operand, which has to be zero or else the program is quite 583 // broken (undefined). Get the 2nd operand, which is the structure or array 584 // index. 585 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 586 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 587 588 Value *NewPtr = NewGlobals[Val]; 589 Type *NewTy = NewGlobals[Val]->getValueType(); 590 591 // Form a shorter GEP if needed. 592 if (GEP->getNumOperands() > 3) { 593 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 594 SmallVector<Constant*, 8> Idxs; 595 Idxs.push_back(NullInt); 596 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 597 Idxs.push_back(CE->getOperand(i)); 598 NewPtr = 599 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 600 } else { 601 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 602 SmallVector<Value*, 8> Idxs; 603 Idxs.push_back(NullInt); 604 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 605 Idxs.push_back(GEPI->getOperand(i)); 606 NewPtr = GetElementPtrInst::Create( 607 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 608 } 609 } 610 GEP->replaceAllUsesWith(NewPtr); 611 612 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 613 GEPI->eraseFromParent(); 614 else 615 cast<ConstantExpr>(GEP)->destroyConstant(); 616 } 617 618 // Delete the old global, now that it is dead. 619 Globals.erase(GV); 620 ++NumSRA; 621 622 // Loop over the new globals array deleting any globals that are obviously 623 // dead. This can arise due to scalarization of a structure or an array that 624 // has elements that are dead. 625 unsigned FirstGlobal = 0; 626 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 627 if (NewGlobals[i]->use_empty()) { 628 Globals.erase(NewGlobals[i]); 629 if (FirstGlobal == i) ++FirstGlobal; 630 } 631 632 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 633 } 634 635 /// Return true if all users of the specified value will trap if the value is 636 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 637 /// reprocessing them. 638 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 639 SmallPtrSetImpl<const PHINode*> &PHIs) { 640 for (const User *U : V->users()) 641 if (isa<LoadInst>(U)) { 642 // Will trap. 643 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 644 if (SI->getOperand(0) == V) { 645 //cerr << "NONTRAPPING USE: " << *U; 646 return false; // Storing the value. 647 } 648 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 649 if (CI->getCalledValue() != V) { 650 //cerr << "NONTRAPPING USE: " << *U; 651 return false; // Not calling the ptr 652 } 653 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 654 if (II->getCalledValue() != V) { 655 //cerr << "NONTRAPPING USE: " << *U; 656 return false; // Not calling the ptr 657 } 658 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 659 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 660 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 661 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 662 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 663 // If we've already seen this phi node, ignore it, it has already been 664 // checked. 665 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 666 return false; 667 } else if (isa<ICmpInst>(U) && 668 isa<ConstantPointerNull>(U->getOperand(1))) { 669 // Ignore icmp X, null 670 } else { 671 //cerr << "NONTRAPPING USE: " << *U; 672 return false; 673 } 674 675 return true; 676 } 677 678 /// Return true if all uses of any loads from GV will trap if the loaded value 679 /// is null. Note that this also permits comparisons of the loaded value 680 /// against null, as a special case. 681 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 682 for (const User *U : GV->users()) 683 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 684 SmallPtrSet<const PHINode*, 8> PHIs; 685 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 686 return false; 687 } else if (isa<StoreInst>(U)) { 688 // Ignore stores to the global. 689 } else { 690 // We don't know or understand this user, bail out. 691 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 692 return false; 693 } 694 return true; 695 } 696 697 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 698 bool Changed = false; 699 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 700 Instruction *I = cast<Instruction>(*UI++); 701 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 702 LI->setOperand(0, NewV); 703 Changed = true; 704 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 705 if (SI->getOperand(1) == V) { 706 SI->setOperand(1, NewV); 707 Changed = true; 708 } 709 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 710 CallSite CS(I); 711 if (CS.getCalledValue() == V) { 712 // Calling through the pointer! Turn into a direct call, but be careful 713 // that the pointer is not also being passed as an argument. 714 CS.setCalledFunction(NewV); 715 Changed = true; 716 bool PassedAsArg = false; 717 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 718 if (CS.getArgument(i) == V) { 719 PassedAsArg = true; 720 CS.setArgument(i, NewV); 721 } 722 723 if (PassedAsArg) { 724 // Being passed as an argument also. Be careful to not invalidate UI! 725 UI = V->user_begin(); 726 } 727 } 728 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 729 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 730 ConstantExpr::getCast(CI->getOpcode(), 731 NewV, CI->getType())); 732 if (CI->use_empty()) { 733 Changed = true; 734 CI->eraseFromParent(); 735 } 736 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 737 // Should handle GEP here. 738 SmallVector<Constant*, 8> Idxs; 739 Idxs.reserve(GEPI->getNumOperands()-1); 740 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 741 i != e; ++i) 742 if (Constant *C = dyn_cast<Constant>(*i)) 743 Idxs.push_back(C); 744 else 745 break; 746 if (Idxs.size() == GEPI->getNumOperands()-1) 747 Changed |= OptimizeAwayTrappingUsesOfValue( 748 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 749 if (GEPI->use_empty()) { 750 Changed = true; 751 GEPI->eraseFromParent(); 752 } 753 } 754 } 755 756 return Changed; 757 } 758 759 /// The specified global has only one non-null value stored into it. If there 760 /// are uses of the loaded value that would trap if the loaded value is 761 /// dynamically null, then we know that they cannot be reachable with a null 762 /// optimize away the load. 763 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 764 const DataLayout &DL, 765 TargetLibraryInfo *TLI) { 766 bool Changed = false; 767 768 // Keep track of whether we are able to remove all the uses of the global 769 // other than the store that defines it. 770 bool AllNonStoreUsesGone = true; 771 772 // Replace all uses of loads with uses of uses of the stored value. 773 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 774 User *GlobalUser = *GUI++; 775 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 776 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 777 // If we were able to delete all uses of the loads 778 if (LI->use_empty()) { 779 LI->eraseFromParent(); 780 Changed = true; 781 } else { 782 AllNonStoreUsesGone = false; 783 } 784 } else if (isa<StoreInst>(GlobalUser)) { 785 // Ignore the store that stores "LV" to the global. 786 assert(GlobalUser->getOperand(1) == GV && 787 "Must be storing *to* the global"); 788 } else { 789 AllNonStoreUsesGone = false; 790 791 // If we get here we could have other crazy uses that are transitively 792 // loaded. 793 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 794 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 795 isa<BitCastInst>(GlobalUser) || 796 isa<GetElementPtrInst>(GlobalUser)) && 797 "Only expect load and stores!"); 798 } 799 } 800 801 if (Changed) { 802 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n"); 803 ++NumGlobUses; 804 } 805 806 // If we nuked all of the loads, then none of the stores are needed either, 807 // nor is the global. 808 if (AllNonStoreUsesGone) { 809 if (isLeakCheckerRoot(GV)) { 810 Changed |= CleanupPointerRootUsers(GV, TLI); 811 } else { 812 Changed = true; 813 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 814 } 815 if (GV->use_empty()) { 816 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 817 Changed = true; 818 GV->eraseFromParent(); 819 ++NumDeleted; 820 } 821 } 822 return Changed; 823 } 824 825 /// Walk the use list of V, constant folding all of the instructions that are 826 /// foldable. 827 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 828 TargetLibraryInfo *TLI) { 829 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 830 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 831 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 832 I->replaceAllUsesWith(NewC); 833 834 // Advance UI to the next non-I use to avoid invalidating it! 835 // Instructions could multiply use V. 836 while (UI != E && *UI == I) 837 ++UI; 838 if (isInstructionTriviallyDead(I, TLI)) 839 I->eraseFromParent(); 840 } 841 } 842 843 /// This function takes the specified global variable, and transforms the 844 /// program as if it always contained the result of the specified malloc. 845 /// Because it is always the result of the specified malloc, there is no reason 846 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 847 /// loads of GV as uses of the new global. 848 static GlobalVariable * 849 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 850 ConstantInt *NElements, const DataLayout &DL, 851 TargetLibraryInfo *TLI) { 852 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 853 854 Type *GlobalType; 855 if (NElements->getZExtValue() == 1) 856 GlobalType = AllocTy; 857 else 858 // If we have an array allocation, the global variable is of an array. 859 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 860 861 // Create the new global variable. The contents of the malloc'd memory is 862 // undefined, so initialize with an undef value. 863 GlobalVariable *NewGV = new GlobalVariable( 864 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 865 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 866 GV->getThreadLocalMode()); 867 868 // If there are bitcast users of the malloc (which is typical, usually we have 869 // a malloc + bitcast) then replace them with uses of the new global. Update 870 // other users to use the global as well. 871 BitCastInst *TheBC = nullptr; 872 while (!CI->use_empty()) { 873 Instruction *User = cast<Instruction>(CI->user_back()); 874 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 875 if (BCI->getType() == NewGV->getType()) { 876 BCI->replaceAllUsesWith(NewGV); 877 BCI->eraseFromParent(); 878 } else { 879 BCI->setOperand(0, NewGV); 880 } 881 } else { 882 if (!TheBC) 883 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 884 User->replaceUsesOfWith(CI, TheBC); 885 } 886 } 887 888 Constant *RepValue = NewGV; 889 if (NewGV->getType() != GV->getValueType()) 890 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 891 892 // If there is a comparison against null, we will insert a global bool to 893 // keep track of whether the global was initialized yet or not. 894 GlobalVariable *InitBool = 895 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 896 GlobalValue::InternalLinkage, 897 ConstantInt::getFalse(GV->getContext()), 898 GV->getName()+".init", GV->getThreadLocalMode()); 899 bool InitBoolUsed = false; 900 901 // Loop over all uses of GV, processing them in turn. 902 while (!GV->use_empty()) { 903 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 904 // The global is initialized when the store to it occurs. 905 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 906 SI->getOrdering(), SI->getSyncScopeID(), SI); 907 SI->eraseFromParent(); 908 continue; 909 } 910 911 LoadInst *LI = cast<LoadInst>(GV->user_back()); 912 while (!LI->use_empty()) { 913 Use &LoadUse = *LI->use_begin(); 914 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 915 if (!ICI) { 916 LoadUse = RepValue; 917 continue; 918 } 919 920 // Replace the cmp X, 0 with a use of the bool value. 921 // Sink the load to where the compare was, if atomic rules allow us to. 922 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 923 LI->getOrdering(), LI->getSyncScopeID(), 924 LI->isUnordered() ? (Instruction*)ICI : LI); 925 InitBoolUsed = true; 926 switch (ICI->getPredicate()) { 927 default: llvm_unreachable("Unknown ICmp Predicate!"); 928 case ICmpInst::ICMP_ULT: 929 case ICmpInst::ICMP_SLT: // X < null -> always false 930 LV = ConstantInt::getFalse(GV->getContext()); 931 break; 932 case ICmpInst::ICMP_ULE: 933 case ICmpInst::ICMP_SLE: 934 case ICmpInst::ICMP_EQ: 935 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 936 break; 937 case ICmpInst::ICMP_NE: 938 case ICmpInst::ICMP_UGE: 939 case ICmpInst::ICMP_SGE: 940 case ICmpInst::ICMP_UGT: 941 case ICmpInst::ICMP_SGT: 942 break; // no change. 943 } 944 ICI->replaceAllUsesWith(LV); 945 ICI->eraseFromParent(); 946 } 947 LI->eraseFromParent(); 948 } 949 950 // If the initialization boolean was used, insert it, otherwise delete it. 951 if (!InitBoolUsed) { 952 while (!InitBool->use_empty()) // Delete initializations 953 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 954 delete InitBool; 955 } else 956 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 957 958 // Now the GV is dead, nuke it and the malloc.. 959 GV->eraseFromParent(); 960 CI->eraseFromParent(); 961 962 // To further other optimizations, loop over all users of NewGV and try to 963 // constant prop them. This will promote GEP instructions with constant 964 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 965 ConstantPropUsersOf(NewGV, DL, TLI); 966 if (RepValue != NewGV) 967 ConstantPropUsersOf(RepValue, DL, TLI); 968 969 return NewGV; 970 } 971 972 /// Scan the use-list of V checking to make sure that there are no complex uses 973 /// of V. We permit simple things like dereferencing the pointer, but not 974 /// storing through the address, unless it is to the specified global. 975 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 976 const GlobalVariable *GV, 977 SmallPtrSetImpl<const PHINode*> &PHIs) { 978 for (const User *U : V->users()) { 979 const Instruction *Inst = cast<Instruction>(U); 980 981 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 982 continue; // Fine, ignore. 983 } 984 985 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 986 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 987 return false; // Storing the pointer itself... bad. 988 continue; // Otherwise, storing through it, or storing into GV... fine. 989 } 990 991 // Must index into the array and into the struct. 992 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 993 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 994 return false; 995 continue; 996 } 997 998 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 999 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 1000 // cycles. 1001 if (PHIs.insert(PN).second) 1002 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 1003 return false; 1004 continue; 1005 } 1006 1007 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 1008 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 1009 return false; 1010 continue; 1011 } 1012 1013 return false; 1014 } 1015 return true; 1016 } 1017 1018 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the 1019 /// allocation into loads from the global and uses of the resultant pointer. 1020 /// Further, delete the store into GV. This assumes that these value pass the 1021 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1022 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1023 GlobalVariable *GV) { 1024 while (!Alloc->use_empty()) { 1025 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 1026 Instruction *InsertPt = U; 1027 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1028 // If this is the store of the allocation into the global, remove it. 1029 if (SI->getOperand(1) == GV) { 1030 SI->eraseFromParent(); 1031 continue; 1032 } 1033 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1034 // Insert the load in the corresponding predecessor, not right before the 1035 // PHI. 1036 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 1037 } else if (isa<BitCastInst>(U)) { 1038 // Must be bitcast between the malloc and store to initialize the global. 1039 ReplaceUsesOfMallocWithGlobal(U, GV); 1040 U->eraseFromParent(); 1041 continue; 1042 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1043 // If this is a "GEP bitcast" and the user is a store to the global, then 1044 // just process it as a bitcast. 1045 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1046 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1047 if (SI->getOperand(1) == GV) { 1048 // Must be bitcast GEP between the malloc and store to initialize 1049 // the global. 1050 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1051 GEPI->eraseFromParent(); 1052 continue; 1053 } 1054 } 1055 1056 // Insert a load from the global, and use it instead of the malloc. 1057 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1058 U->replaceUsesOfWith(Alloc, NL); 1059 } 1060 } 1061 1062 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to 1063 /// perform heap SRA on. This permits GEP's that index through the array and 1064 /// struct field, icmps of null, and PHIs. 1065 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1066 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1067 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1068 // We permit two users of the load: setcc comparing against the null 1069 // pointer, and a getelementptr of a specific form. 1070 for (const User *U : V->users()) { 1071 const Instruction *UI = cast<Instruction>(U); 1072 1073 // Comparison against null is ok. 1074 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1075 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1076 return false; 1077 continue; 1078 } 1079 1080 // getelementptr is also ok, but only a simple form. 1081 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1082 // Must index into the array and into the struct. 1083 if (GEPI->getNumOperands() < 3) 1084 return false; 1085 1086 // Otherwise the GEP is ok. 1087 continue; 1088 } 1089 1090 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1091 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1092 // This means some phi nodes are dependent on each other. 1093 // Avoid infinite looping! 1094 return false; 1095 if (!LoadUsingPHIs.insert(PN).second) 1096 // If we have already analyzed this PHI, then it is safe. 1097 continue; 1098 1099 // Make sure all uses of the PHI are simple enough to transform. 1100 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1101 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1102 return false; 1103 1104 continue; 1105 } 1106 1107 // Otherwise we don't know what this is, not ok. 1108 return false; 1109 } 1110 1111 return true; 1112 } 1113 1114 /// If all users of values loaded from GV are simple enough to perform HeapSRA, 1115 /// return true. 1116 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1117 Instruction *StoredVal) { 1118 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1119 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1120 for (const User *U : GV->users()) 1121 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1122 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1123 LoadUsingPHIsPerLoad)) 1124 return false; 1125 LoadUsingPHIsPerLoad.clear(); 1126 } 1127 1128 // If we reach here, we know that all uses of the loads and transitive uses 1129 // (through PHI nodes) are simple enough to transform. However, we don't know 1130 // that all inputs the to the PHI nodes are in the same equivalence sets. 1131 // Check to verify that all operands of the PHIs are either PHIS that can be 1132 // transformed, loads from GV, or MI itself. 1133 for (const PHINode *PN : LoadUsingPHIs) { 1134 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1135 Value *InVal = PN->getIncomingValue(op); 1136 1137 // PHI of the stored value itself is ok. 1138 if (InVal == StoredVal) continue; 1139 1140 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1141 // One of the PHIs in our set is (optimistically) ok. 1142 if (LoadUsingPHIs.count(InPN)) 1143 continue; 1144 return false; 1145 } 1146 1147 // Load from GV is ok. 1148 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1149 if (LI->getOperand(0) == GV) 1150 continue; 1151 1152 // UNDEF? NULL? 1153 1154 // Anything else is rejected. 1155 return false; 1156 } 1157 } 1158 1159 return true; 1160 } 1161 1162 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1163 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1164 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1165 std::vector<Value *> &FieldVals = InsertedScalarizedValues[V]; 1166 1167 if (FieldNo >= FieldVals.size()) 1168 FieldVals.resize(FieldNo+1); 1169 1170 // If we already have this value, just reuse the previously scalarized 1171 // version. 1172 if (Value *FieldVal = FieldVals[FieldNo]) 1173 return FieldVal; 1174 1175 // Depending on what instruction this is, we have several cases. 1176 Value *Result; 1177 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1178 // This is a scalarized version of the load from the global. Just create 1179 // a new Load of the scalarized global. 1180 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1181 InsertedScalarizedValues, 1182 PHIsToRewrite), 1183 LI->getName()+".f"+Twine(FieldNo), LI); 1184 } else { 1185 PHINode *PN = cast<PHINode>(V); 1186 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1187 // field. 1188 1189 PointerType *PTy = cast<PointerType>(PN->getType()); 1190 StructType *ST = cast<StructType>(PTy->getElementType()); 1191 1192 unsigned AS = PTy->getAddressSpace(); 1193 PHINode *NewPN = 1194 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1195 PN->getNumIncomingValues(), 1196 PN->getName()+".f"+Twine(FieldNo), PN); 1197 Result = NewPN; 1198 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1199 } 1200 1201 return FieldVals[FieldNo] = Result; 1202 } 1203 1204 /// Given a load instruction and a value derived from the load, rewrite the 1205 /// derived value to use the HeapSRoA'd load. 1206 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1207 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1208 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1209 // If this is a comparison against null, handle it. 1210 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1211 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1212 // If we have a setcc of the loaded pointer, we can use a setcc of any 1213 // field. 1214 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1215 InsertedScalarizedValues, PHIsToRewrite); 1216 1217 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1218 Constant::getNullValue(NPtr->getType()), 1219 SCI->getName()); 1220 SCI->replaceAllUsesWith(New); 1221 SCI->eraseFromParent(); 1222 return; 1223 } 1224 1225 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1226 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1227 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1228 && "Unexpected GEPI!"); 1229 1230 // Load the pointer for this field. 1231 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1232 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1233 InsertedScalarizedValues, PHIsToRewrite); 1234 1235 // Create the new GEP idx vector. 1236 SmallVector<Value*, 8> GEPIdx; 1237 GEPIdx.push_back(GEPI->getOperand(1)); 1238 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1239 1240 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1241 GEPI->getName(), GEPI); 1242 GEPI->replaceAllUsesWith(NGEPI); 1243 GEPI->eraseFromParent(); 1244 return; 1245 } 1246 1247 // Recursively transform the users of PHI nodes. This will lazily create the 1248 // PHIs that are needed for individual elements. Keep track of what PHIs we 1249 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1250 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1251 // already been seen first by another load, so its uses have already been 1252 // processed. 1253 PHINode *PN = cast<PHINode>(LoadUser); 1254 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1255 std::vector<Value *>())).second) 1256 return; 1257 1258 // If this is the first time we've seen this PHI, recursively process all 1259 // users. 1260 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1261 Instruction *User = cast<Instruction>(*UI++); 1262 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1263 } 1264 } 1265 1266 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1267 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1268 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1269 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1270 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1271 std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) { 1272 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1273 Instruction *User = cast<Instruction>(*UI++); 1274 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1275 } 1276 1277 if (Load->use_empty()) { 1278 Load->eraseFromParent(); 1279 InsertedScalarizedValues.erase(Load); 1280 } 1281 } 1282 1283 /// CI is an allocation of an array of structures. Break it up into multiple 1284 /// allocations of arrays of the fields. 1285 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1286 Value *NElems, const DataLayout &DL, 1287 const TargetLibraryInfo *TLI) { 1288 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1289 Type *MAT = getMallocAllocatedType(CI, TLI); 1290 StructType *STy = cast<StructType>(MAT); 1291 1292 // There is guaranteed to be at least one use of the malloc (storing 1293 // it into GV). If there are other uses, change them to be uses of 1294 // the global to simplify later code. This also deletes the store 1295 // into GV. 1296 ReplaceUsesOfMallocWithGlobal(CI, GV); 1297 1298 // Okay, at this point, there are no users of the malloc. Insert N 1299 // new mallocs at the same place as CI, and N globals. 1300 std::vector<Value *> FieldGlobals; 1301 std::vector<Value *> FieldMallocs; 1302 1303 SmallVector<OperandBundleDef, 1> OpBundles; 1304 CI->getOperandBundlesAsDefs(OpBundles); 1305 1306 unsigned AS = GV->getType()->getPointerAddressSpace(); 1307 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1308 Type *FieldTy = STy->getElementType(FieldNo); 1309 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1310 1311 GlobalVariable *NGV = new GlobalVariable( 1312 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1313 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1314 nullptr, GV->getThreadLocalMode()); 1315 NGV->copyAttributesFrom(GV); 1316 FieldGlobals.push_back(NGV); 1317 1318 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1319 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1320 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1321 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1322 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1323 ConstantInt::get(IntPtrTy, TypeSize), 1324 NElems, OpBundles, nullptr, 1325 CI->getName() + ".f" + Twine(FieldNo)); 1326 FieldMallocs.push_back(NMI); 1327 new StoreInst(NMI, NGV, CI); 1328 } 1329 1330 // The tricky aspect of this transformation is handling the case when malloc 1331 // fails. In the original code, malloc failing would set the result pointer 1332 // of malloc to null. In this case, some mallocs could succeed and others 1333 // could fail. As such, we emit code that looks like this: 1334 // F0 = malloc(field0) 1335 // F1 = malloc(field1) 1336 // F2 = malloc(field2) 1337 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1338 // if (F0) { free(F0); F0 = 0; } 1339 // if (F1) { free(F1); F1 = 0; } 1340 // if (F2) { free(F2); F2 = 0; } 1341 // } 1342 // The malloc can also fail if its argument is too large. 1343 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1344 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1345 ConstantZero, "isneg"); 1346 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1347 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1348 Constant::getNullValue(FieldMallocs[i]->getType()), 1349 "isnull"); 1350 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1351 } 1352 1353 // Split the basic block at the old malloc. 1354 BasicBlock *OrigBB = CI->getParent(); 1355 BasicBlock *ContBB = 1356 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1357 1358 // Create the block to check the first condition. Put all these blocks at the 1359 // end of the function as they are unlikely to be executed. 1360 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1361 "malloc_ret_null", 1362 OrigBB->getParent()); 1363 1364 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1365 // branch on RunningOr. 1366 OrigBB->getTerminator()->eraseFromParent(); 1367 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1368 1369 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1370 // pointer, because some may be null while others are not. 1371 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1372 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1373 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1374 Constant::getNullValue(GVVal->getType())); 1375 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1376 OrigBB->getParent()); 1377 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1378 OrigBB->getParent()); 1379 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1380 Cmp, NullPtrBlock); 1381 1382 // Fill in FreeBlock. 1383 CallInst::CreateFree(GVVal, OpBundles, BI); 1384 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1385 FreeBlock); 1386 BranchInst::Create(NextBlock, FreeBlock); 1387 1388 NullPtrBlock = NextBlock; 1389 } 1390 1391 BranchInst::Create(ContBB, NullPtrBlock); 1392 1393 // CI is no longer needed, remove it. 1394 CI->eraseFromParent(); 1395 1396 /// As we process loads, if we can't immediately update all uses of the load, 1397 /// keep track of what scalarized loads are inserted for a given load. 1398 DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues; 1399 InsertedScalarizedValues[GV] = FieldGlobals; 1400 1401 std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite; 1402 1403 // Okay, the malloc site is completely handled. All of the uses of GV are now 1404 // loads, and all uses of those loads are simple. Rewrite them to use loads 1405 // of the per-field globals instead. 1406 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1407 Instruction *User = cast<Instruction>(*UI++); 1408 1409 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1410 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1411 continue; 1412 } 1413 1414 // Must be a store of null. 1415 StoreInst *SI = cast<StoreInst>(User); 1416 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1417 "Unexpected heap-sra user!"); 1418 1419 // Insert a store of null into each global. 1420 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1421 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1422 Constant *Null = Constant::getNullValue(ValTy); 1423 new StoreInst(Null, FieldGlobals[i], SI); 1424 } 1425 // Erase the original store. 1426 SI->eraseFromParent(); 1427 } 1428 1429 // While we have PHIs that are interesting to rewrite, do it. 1430 while (!PHIsToRewrite.empty()) { 1431 PHINode *PN = PHIsToRewrite.back().first; 1432 unsigned FieldNo = PHIsToRewrite.back().second; 1433 PHIsToRewrite.pop_back(); 1434 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1435 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1436 1437 // Add all the incoming values. This can materialize more phis. 1438 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1439 Value *InVal = PN->getIncomingValue(i); 1440 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1441 PHIsToRewrite); 1442 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1443 } 1444 } 1445 1446 // Drop all inter-phi links and any loads that made it this far. 1447 for (DenseMap<Value *, std::vector<Value *>>::iterator 1448 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1449 I != E; ++I) { 1450 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1451 PN->dropAllReferences(); 1452 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1453 LI->dropAllReferences(); 1454 } 1455 1456 // Delete all the phis and loads now that inter-references are dead. 1457 for (DenseMap<Value *, std::vector<Value *>>::iterator 1458 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1459 I != E; ++I) { 1460 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1461 PN->eraseFromParent(); 1462 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1463 LI->eraseFromParent(); 1464 } 1465 1466 // The old global is now dead, remove it. 1467 GV->eraseFromParent(); 1468 1469 ++NumHeapSRA; 1470 return cast<GlobalVariable>(FieldGlobals[0]); 1471 } 1472 1473 /// This function is called when we see a pointer global variable with a single 1474 /// value stored it that is a malloc or cast of malloc. 1475 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1476 Type *AllocTy, 1477 AtomicOrdering Ordering, 1478 const DataLayout &DL, 1479 TargetLibraryInfo *TLI) { 1480 // If this is a malloc of an abstract type, don't touch it. 1481 if (!AllocTy->isSized()) 1482 return false; 1483 1484 // We can't optimize this global unless all uses of it are *known* to be 1485 // of the malloc value, not of the null initializer value (consider a use 1486 // that compares the global's value against zero to see if the malloc has 1487 // been reached). To do this, we check to see if all uses of the global 1488 // would trap if the global were null: this proves that they must all 1489 // happen after the malloc. 1490 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1491 return false; 1492 1493 // We can't optimize this if the malloc itself is used in a complex way, 1494 // for example, being stored into multiple globals. This allows the 1495 // malloc to be stored into the specified global, loaded icmp'd, and 1496 // GEP'd. These are all things we could transform to using the global 1497 // for. 1498 SmallPtrSet<const PHINode*, 8> PHIs; 1499 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1500 return false; 1501 1502 // If we have a global that is only initialized with a fixed size malloc, 1503 // transform the program to use global memory instead of malloc'd memory. 1504 // This eliminates dynamic allocation, avoids an indirection accessing the 1505 // data, and exposes the resultant global to further GlobalOpt. 1506 // We cannot optimize the malloc if we cannot determine malloc array size. 1507 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1508 if (!NElems) 1509 return false; 1510 1511 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1512 // Restrict this transformation to only working on small allocations 1513 // (2048 bytes currently), as we don't want to introduce a 16M global or 1514 // something. 1515 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1516 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1517 return true; 1518 } 1519 1520 // If the allocation is an array of structures, consider transforming this 1521 // into multiple malloc'd arrays, one for each field. This is basically 1522 // SRoA for malloc'd memory. 1523 1524 if (Ordering != AtomicOrdering::NotAtomic) 1525 return false; 1526 1527 // If this is an allocation of a fixed size array of structs, analyze as a 1528 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1529 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1530 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1531 AllocTy = AT->getElementType(); 1532 1533 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1534 if (!AllocSTy) 1535 return false; 1536 1537 // This the structure has an unreasonable number of fields, leave it 1538 // alone. 1539 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1540 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1541 1542 // If this is a fixed size array, transform the Malloc to be an alloc of 1543 // structs. malloc [100 x struct],1 -> malloc struct, 100 1544 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1545 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1546 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1547 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1548 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1549 SmallVector<OperandBundleDef, 1> OpBundles; 1550 CI->getOperandBundlesAsDefs(OpBundles); 1551 Instruction *Malloc = 1552 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements, 1553 OpBundles, nullptr, CI->getName()); 1554 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1555 CI->replaceAllUsesWith(Cast); 1556 CI->eraseFromParent(); 1557 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1558 CI = cast<CallInst>(BCI->getOperand(0)); 1559 else 1560 CI = cast<CallInst>(Malloc); 1561 } 1562 1563 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1564 TLI); 1565 return true; 1566 } 1567 1568 return false; 1569 } 1570 1571 // Try to optimize globals based on the knowledge that only one value (besides 1572 // its initializer) is ever stored to the global. 1573 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1574 AtomicOrdering Ordering, 1575 const DataLayout &DL, 1576 TargetLibraryInfo *TLI) { 1577 // Ignore no-op GEPs and bitcasts. 1578 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1579 1580 // If we are dealing with a pointer global that is initialized to null and 1581 // only has one (non-null) value stored into it, then we can optimize any 1582 // users of the loaded value (often calls and loads) that would trap if the 1583 // value was null. 1584 if (GV->getInitializer()->getType()->isPointerTy() && 1585 GV->getInitializer()->isNullValue()) { 1586 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1587 if (GV->getInitializer()->getType() != SOVC->getType()) 1588 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1589 1590 // Optimize away any trapping uses of the loaded value. 1591 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1592 return true; 1593 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1594 Type *MallocType = getMallocAllocatedType(CI, TLI); 1595 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1596 Ordering, DL, TLI)) 1597 return true; 1598 } 1599 } 1600 1601 return false; 1602 } 1603 1604 /// At this point, we have learned that the only two values ever stored into GV 1605 /// are its initializer and OtherVal. See if we can shrink the global into a 1606 /// boolean and select between the two values whenever it is used. This exposes 1607 /// the values to other scalar optimizations. 1608 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1609 Type *GVElType = GV->getValueType(); 1610 1611 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1612 // an FP value, pointer or vector, don't do this optimization because a select 1613 // between them is very expensive and unlikely to lead to later 1614 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1615 // where v1 and v2 both require constant pool loads, a big loss. 1616 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1617 GVElType->isFloatingPointTy() || 1618 GVElType->isPointerTy() || GVElType->isVectorTy()) 1619 return false; 1620 1621 // Walk the use list of the global seeing if all the uses are load or store. 1622 // If there is anything else, bail out. 1623 for (User *U : GV->users()) 1624 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1625 return false; 1626 1627 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1628 1629 // Create the new global, initializing it to false. 1630 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1631 false, 1632 GlobalValue::InternalLinkage, 1633 ConstantInt::getFalse(GV->getContext()), 1634 GV->getName()+".b", 1635 GV->getThreadLocalMode(), 1636 GV->getType()->getAddressSpace()); 1637 NewGV->copyAttributesFrom(GV); 1638 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1639 1640 Constant *InitVal = GV->getInitializer(); 1641 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1642 "No reason to shrink to bool!"); 1643 1644 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1645 GV->getDebugInfo(GVs); 1646 1647 // If initialized to zero and storing one into the global, we can use a cast 1648 // instead of a select to synthesize the desired value. 1649 bool IsOneZero = false; 1650 bool EmitOneOrZero = true; 1651 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)){ 1652 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1653 1654 if (ConstantInt *CIInit = dyn_cast<ConstantInt>(GV->getInitializer())){ 1655 uint64_t ValInit = CIInit->getZExtValue(); 1656 uint64_t ValOther = CI->getZExtValue(); 1657 uint64_t ValMinus = ValOther - ValInit; 1658 1659 for(auto *GVe : GVs){ 1660 DIGlobalVariable *DGV = GVe->getVariable(); 1661 DIExpression *E = GVe->getExpression(); 1662 1663 // It is expected that the address of global optimized variable is on 1664 // top of the stack. After optimization, value of that variable will 1665 // be ether 0 for initial value or 1 for other value. The following 1666 // expression should return constant integer value depending on the 1667 // value at global object address: 1668 // val * (ValOther - ValInit) + ValInit: 1669 // DW_OP_deref DW_OP_constu <ValMinus> 1670 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1671 SmallVector<uint64_t, 12> Ops = { 1672 dwarf::DW_OP_deref, dwarf::DW_OP_constu, ValMinus, 1673 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1674 dwarf::DW_OP_plus}; 1675 E = DIExpression::prependOpcodes(E, Ops, DIExpression::WithStackValue); 1676 DIGlobalVariableExpression *DGVE = 1677 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1678 NewGV->addDebugInfo(DGVE); 1679 } 1680 EmitOneOrZero = false; 1681 } 1682 } 1683 1684 if (EmitOneOrZero) { 1685 // FIXME: This will only emit address for debugger on which will 1686 // be written only 0 or 1. 1687 for(auto *GV : GVs) 1688 NewGV->addDebugInfo(GV); 1689 } 1690 1691 while (!GV->use_empty()) { 1692 Instruction *UI = cast<Instruction>(GV->user_back()); 1693 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1694 // Change the store into a boolean store. 1695 bool StoringOther = SI->getOperand(0) == OtherVal; 1696 // Only do this if we weren't storing a loaded value. 1697 Value *StoreVal; 1698 if (StoringOther || SI->getOperand(0) == InitVal) { 1699 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1700 StoringOther); 1701 } else { 1702 // Otherwise, we are storing a previously loaded copy. To do this, 1703 // change the copy from copying the original value to just copying the 1704 // bool. 1705 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1706 1707 // If we've already replaced the input, StoredVal will be a cast or 1708 // select instruction. If not, it will be a load of the original 1709 // global. 1710 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1711 assert(LI->getOperand(0) == GV && "Not a copy!"); 1712 // Insert a new load, to preserve the saved value. 1713 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1714 LI->getOrdering(), LI->getSyncScopeID(), LI); 1715 } else { 1716 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1717 "This is not a form that we understand!"); 1718 StoreVal = StoredVal->getOperand(0); 1719 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1720 } 1721 } 1722 new StoreInst(StoreVal, NewGV, false, 0, 1723 SI->getOrdering(), SI->getSyncScopeID(), SI); 1724 } else { 1725 // Change the load into a load of bool then a select. 1726 LoadInst *LI = cast<LoadInst>(UI); 1727 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1728 LI->getOrdering(), LI->getSyncScopeID(), LI); 1729 Value *NSI; 1730 if (IsOneZero) 1731 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1732 else 1733 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1734 NSI->takeName(LI); 1735 LI->replaceAllUsesWith(NSI); 1736 } 1737 UI->eraseFromParent(); 1738 } 1739 1740 // Retain the name of the old global variable. People who are debugging their 1741 // programs may expect these variables to be named the same. 1742 NewGV->takeName(GV); 1743 GV->eraseFromParent(); 1744 return true; 1745 } 1746 1747 static bool deleteIfDead(GlobalValue &GV, 1748 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 1749 GV.removeDeadConstantUsers(); 1750 1751 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1752 return false; 1753 1754 if (const Comdat *C = GV.getComdat()) 1755 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1756 return false; 1757 1758 bool Dead; 1759 if (auto *F = dyn_cast<Function>(&GV)) 1760 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1761 else 1762 Dead = GV.use_empty(); 1763 if (!Dead) 1764 return false; 1765 1766 DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1767 GV.eraseFromParent(); 1768 ++NumDeleted; 1769 return true; 1770 } 1771 1772 static bool isPointerValueDeadOnEntryToFunction( 1773 const Function *F, GlobalValue *GV, 1774 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1775 // Find all uses of GV. We expect them all to be in F, and if we can't 1776 // identify any of the uses we bail out. 1777 // 1778 // On each of these uses, identify if the memory that GV points to is 1779 // used/required/live at the start of the function. If it is not, for example 1780 // if the first thing the function does is store to the GV, the GV can 1781 // possibly be demoted. 1782 // 1783 // We don't do an exhaustive search for memory operations - simply look 1784 // through bitcasts as they're quite common and benign. 1785 const DataLayout &DL = GV->getParent()->getDataLayout(); 1786 SmallVector<LoadInst *, 4> Loads; 1787 SmallVector<StoreInst *, 4> Stores; 1788 for (auto *U : GV->users()) { 1789 if (Operator::getOpcode(U) == Instruction::BitCast) { 1790 for (auto *UU : U->users()) { 1791 if (auto *LI = dyn_cast<LoadInst>(UU)) 1792 Loads.push_back(LI); 1793 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1794 Stores.push_back(SI); 1795 else 1796 return false; 1797 } 1798 continue; 1799 } 1800 1801 Instruction *I = dyn_cast<Instruction>(U); 1802 if (!I) 1803 return false; 1804 assert(I->getParent()->getParent() == F); 1805 1806 if (auto *LI = dyn_cast<LoadInst>(I)) 1807 Loads.push_back(LI); 1808 else if (auto *SI = dyn_cast<StoreInst>(I)) 1809 Stores.push_back(SI); 1810 else 1811 return false; 1812 } 1813 1814 // We have identified all uses of GV into loads and stores. Now check if all 1815 // of them are known not to depend on the value of the global at the function 1816 // entry point. We do this by ensuring that every load is dominated by at 1817 // least one store. 1818 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1819 1820 // The below check is quadratic. Check we're not going to do too many tests. 1821 // FIXME: Even though this will always have worst-case quadratic time, we 1822 // could put effort into minimizing the average time by putting stores that 1823 // have been shown to dominate at least one load at the beginning of the 1824 // Stores array, making subsequent dominance checks more likely to succeed 1825 // early. 1826 // 1827 // The threshold here is fairly large because global->local demotion is a 1828 // very powerful optimization should it fire. 1829 const unsigned Threshold = 100; 1830 if (Loads.size() * Stores.size() > Threshold) 1831 return false; 1832 1833 for (auto *L : Loads) { 1834 auto *LTy = L->getType(); 1835 if (none_of(Stores, [&](const StoreInst *S) { 1836 auto *STy = S->getValueOperand()->getType(); 1837 // The load is only dominated by the store if DomTree says so 1838 // and the number of bits loaded in L is less than or equal to 1839 // the number of bits stored in S. 1840 return DT.dominates(S, L) && 1841 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1842 })) 1843 return false; 1844 } 1845 // All loads have known dependences inside F, so the global can be localized. 1846 return true; 1847 } 1848 1849 /// C may have non-instruction users. Can all of those users be turned into 1850 /// instructions? 1851 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1852 // We don't do this exhaustively. The most common pattern that we really need 1853 // to care about is a constant GEP or constant bitcast - so just looking 1854 // through one single ConstantExpr. 1855 // 1856 // The set of constants that this function returns true for must be able to be 1857 // handled by makeAllConstantUsesInstructions. 1858 for (auto *U : C->users()) { 1859 if (isa<Instruction>(U)) 1860 continue; 1861 if (!isa<ConstantExpr>(U)) 1862 // Non instruction, non-constantexpr user; cannot convert this. 1863 return false; 1864 for (auto *UU : U->users()) 1865 if (!isa<Instruction>(UU)) 1866 // A constantexpr used by another constant. We don't try and recurse any 1867 // further but just bail out at this point. 1868 return false; 1869 } 1870 1871 return true; 1872 } 1873 1874 /// C may have non-instruction users, and 1875 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1876 /// non-instruction users to instructions. 1877 static void makeAllConstantUsesInstructions(Constant *C) { 1878 SmallVector<ConstantExpr*,4> Users; 1879 for (auto *U : C->users()) { 1880 if (isa<ConstantExpr>(U)) 1881 Users.push_back(cast<ConstantExpr>(U)); 1882 else 1883 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1884 // should not have returned true for C. 1885 assert( 1886 isa<Instruction>(U) && 1887 "Can't transform non-constantexpr non-instruction to instruction!"); 1888 } 1889 1890 SmallVector<Value*,4> UUsers; 1891 for (auto *U : Users) { 1892 UUsers.clear(); 1893 for (auto *UU : U->users()) 1894 UUsers.push_back(UU); 1895 for (auto *UU : UUsers) { 1896 Instruction *UI = cast<Instruction>(UU); 1897 Instruction *NewU = U->getAsInstruction(); 1898 NewU->insertBefore(UI); 1899 UI->replaceUsesOfWith(U, NewU); 1900 } 1901 // We've replaced all the uses, so destroy the constant. (destroyConstant 1902 // will update value handles and metadata.) 1903 U->destroyConstant(); 1904 } 1905 } 1906 1907 /// Analyze the specified global variable and optimize 1908 /// it if possible. If we make a change, return true. 1909 static bool processInternalGlobal( 1910 GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI, 1911 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1912 auto &DL = GV->getParent()->getDataLayout(); 1913 // If this is a first class global and has only one accessing function and 1914 // this function is non-recursive, we replace the global with a local alloca 1915 // in this function. 1916 // 1917 // NOTE: It doesn't make sense to promote non-single-value types since we 1918 // are just replacing static memory to stack memory. 1919 // 1920 // If the global is in different address space, don't bring it to stack. 1921 if (!GS.HasMultipleAccessingFunctions && 1922 GS.AccessingFunction && 1923 GV->getValueType()->isSingleValueType() && 1924 GV->getType()->getAddressSpace() == 0 && 1925 !GV->isExternallyInitialized() && 1926 allNonInstructionUsersCanBeMadeInstructions(GV) && 1927 GS.AccessingFunction->doesNotRecurse() && 1928 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1929 LookupDomTree)) { 1930 const DataLayout &DL = GV->getParent()->getDataLayout(); 1931 1932 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1933 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1934 ->getEntryBlock().begin()); 1935 Type *ElemTy = GV->getValueType(); 1936 // FIXME: Pass Global's alignment when globals have alignment 1937 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1938 GV->getName(), &FirstI); 1939 if (!isa<UndefValue>(GV->getInitializer())) 1940 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1941 1942 makeAllConstantUsesInstructions(GV); 1943 1944 GV->replaceAllUsesWith(Alloca); 1945 GV->eraseFromParent(); 1946 ++NumLocalized; 1947 return true; 1948 } 1949 1950 // If the global is never loaded (but may be stored to), it is dead. 1951 // Delete it now. 1952 if (!GS.IsLoaded) { 1953 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1954 1955 bool Changed; 1956 if (isLeakCheckerRoot(GV)) { 1957 // Delete any constant stores to the global. 1958 Changed = CleanupPointerRootUsers(GV, TLI); 1959 } else { 1960 // Delete any stores we can find to the global. We may not be able to 1961 // make it completely dead though. 1962 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1963 } 1964 1965 // If the global is dead now, delete it. 1966 if (GV->use_empty()) { 1967 GV->eraseFromParent(); 1968 ++NumDeleted; 1969 Changed = true; 1970 } 1971 return Changed; 1972 1973 } 1974 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1975 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1976 GV->setConstant(true); 1977 1978 // Clean up any obviously simplifiable users now. 1979 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1980 1981 // If the global is dead now, just nuke it. 1982 if (GV->use_empty()) { 1983 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1984 << "all users and delete global!\n"); 1985 GV->eraseFromParent(); 1986 ++NumDeleted; 1987 return true; 1988 } 1989 1990 // Fall through to the next check; see if we can optimize further. 1991 ++NumMarked; 1992 } 1993 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1994 const DataLayout &DL = GV->getParent()->getDataLayout(); 1995 if (SRAGlobal(GV, DL)) 1996 return true; 1997 } 1998 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1999 // If the initial value for the global was an undef value, and if only 2000 // one other value was stored into it, we can just change the 2001 // initializer to be the stored value, then delete all stores to the 2002 // global. This allows us to mark it constant. 2003 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 2004 if (isa<UndefValue>(GV->getInitializer())) { 2005 // Change the initial value here. 2006 GV->setInitializer(SOVConstant); 2007 2008 // Clean up any obviously simplifiable users now. 2009 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 2010 2011 if (GV->use_empty()) { 2012 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 2013 << "simplify all users and delete global!\n"); 2014 GV->eraseFromParent(); 2015 ++NumDeleted; 2016 } 2017 ++NumSubstitute; 2018 return true; 2019 } 2020 2021 // Try to optimize globals based on the knowledge that only one value 2022 // (besides its initializer) is ever stored to the global. 2023 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI)) 2024 return true; 2025 2026 // Otherwise, if the global was not a boolean, we can shrink it to be a 2027 // boolean. 2028 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 2029 if (GS.Ordering == AtomicOrdering::NotAtomic) { 2030 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 2031 ++NumShrunkToBool; 2032 return true; 2033 } 2034 } 2035 } 2036 } 2037 2038 return false; 2039 } 2040 2041 /// Analyze the specified global variable and optimize it if possible. If we 2042 /// make a change, return true. 2043 static bool 2044 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI, 2045 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2046 if (GV.getName().startswith("llvm.")) 2047 return false; 2048 2049 GlobalStatus GS; 2050 2051 if (GlobalStatus::analyzeGlobal(&GV, GS)) 2052 return false; 2053 2054 bool Changed = false; 2055 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 2056 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 2057 : GlobalValue::UnnamedAddr::Local; 2058 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 2059 GV.setUnnamedAddr(NewUnnamedAddr); 2060 NumUnnamed++; 2061 Changed = true; 2062 } 2063 } 2064 2065 // Do more involved optimizations if the global is internal. 2066 if (!GV.hasLocalLinkage()) 2067 return Changed; 2068 2069 auto *GVar = dyn_cast<GlobalVariable>(&GV); 2070 if (!GVar) 2071 return Changed; 2072 2073 if (GVar->isConstant() || !GVar->hasInitializer()) 2074 return Changed; 2075 2076 return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed; 2077 } 2078 2079 /// Walk all of the direct calls of the specified function, changing them to 2080 /// FastCC. 2081 static void ChangeCalleesToFastCall(Function *F) { 2082 for (User *U : F->users()) { 2083 if (isa<BlockAddress>(U)) 2084 continue; 2085 CallSite CS(cast<Instruction>(U)); 2086 CS.setCallingConv(CallingConv::Fast); 2087 } 2088 } 2089 2090 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) { 2091 // There can be at most one attribute set with a nest attribute. 2092 unsigned NestIndex; 2093 if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex)) 2094 return Attrs.removeAttribute(C, NestIndex, Attribute::Nest); 2095 return Attrs; 2096 } 2097 2098 static void RemoveNestAttribute(Function *F) { 2099 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 2100 for (User *U : F->users()) { 2101 if (isa<BlockAddress>(U)) 2102 continue; 2103 CallSite CS(cast<Instruction>(U)); 2104 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 2105 } 2106 } 2107 2108 /// Return true if this is a calling convention that we'd like to change. The 2109 /// idea here is that we don't want to mess with the convention if the user 2110 /// explicitly requested something with performance implications like coldcc, 2111 /// GHC, or anyregcc. 2112 static bool hasChangeableCC(Function *F) { 2113 CallingConv::ID CC = F->getCallingConv(); 2114 2115 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2116 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 2117 return false; 2118 2119 // FIXME: Change CC for the whole chain of musttail calls when possible. 2120 // 2121 // Can't change CC of the function that either has musttail calls, or is a 2122 // musttail callee itself 2123 for (User *U : F->users()) { 2124 if (isa<BlockAddress>(U)) 2125 continue; 2126 CallInst* CI = dyn_cast<CallInst>(U); 2127 if (!CI) 2128 continue; 2129 2130 if (CI->isMustTailCall()) 2131 return false; 2132 } 2133 2134 for (BasicBlock &BB : *F) 2135 if (BB.getTerminatingMustTailCall()) 2136 return false; 2137 2138 return true; 2139 } 2140 2141 /// Return true if the block containing the call site has a BlockFrequency of 2142 /// less than ColdCCRelFreq% of the entry block. 2143 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) { 2144 const BranchProbability ColdProb(ColdCCRelFreq, 100); 2145 auto CallSiteBB = CS.getInstruction()->getParent(); 2146 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 2147 auto CallerEntryFreq = 2148 CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock())); 2149 return CallSiteFreq < CallerEntryFreq * ColdProb; 2150 } 2151 2152 // This function checks if the input function F is cold at all call sites. It 2153 // also looks each call site's containing function, returning false if the 2154 // caller function contains other non cold calls. The input vector AllCallsCold 2155 // contains a list of functions that only have call sites in cold blocks. 2156 static bool 2157 isValidCandidateForColdCC(Function &F, 2158 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2159 const std::vector<Function *> &AllCallsCold) { 2160 2161 if (F.user_empty()) 2162 return false; 2163 2164 for (User *U : F.users()) { 2165 if (isa<BlockAddress>(U)) 2166 continue; 2167 2168 CallSite CS(cast<Instruction>(U)); 2169 Function *CallerFunc = CS.getInstruction()->getParent()->getParent(); 2170 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 2171 if (!isColdCallSite(CS, CallerBFI)) 2172 return false; 2173 auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc); 2174 if (It == AllCallsCold.end()) 2175 return false; 2176 } 2177 return true; 2178 } 2179 2180 static void changeCallSitesToColdCC(Function *F) { 2181 for (User *U : F->users()) { 2182 if (isa<BlockAddress>(U)) 2183 continue; 2184 CallSite CS(cast<Instruction>(U)); 2185 CS.setCallingConv(CallingConv::Cold); 2186 } 2187 } 2188 2189 // This function iterates over all the call instructions in the input Function 2190 // and checks that all call sites are in cold blocks and are allowed to use the 2191 // coldcc calling convention. 2192 static bool 2193 hasOnlyColdCalls(Function &F, 2194 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { 2195 for (BasicBlock &BB : F) { 2196 for (Instruction &I : BB) { 2197 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2198 CallSite CS(cast<Instruction>(CI)); 2199 // Skip over isline asm instructions since they aren't function calls. 2200 if (CI->isInlineAsm()) 2201 continue; 2202 Function *CalledFn = CI->getCalledFunction(); 2203 if (!CalledFn) 2204 return false; 2205 if (!CalledFn->hasLocalLinkage()) 2206 return false; 2207 // Skip over instrinsics since they won't remain as function calls. 2208 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 2209 continue; 2210 // Check if it's valid to use coldcc calling convention. 2211 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || 2212 CalledFn->hasAddressTaken()) 2213 return false; 2214 BlockFrequencyInfo &CallerBFI = GetBFI(F); 2215 if (!isColdCallSite(CS, CallerBFI)) 2216 return false; 2217 } 2218 } 2219 } 2220 return true; 2221 } 2222 2223 static bool 2224 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI, 2225 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2226 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2227 function_ref<DominatorTree &(Function &)> LookupDomTree, 2228 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2229 2230 bool Changed = false; 2231 2232 std::vector<Function *> AllCallsCold; 2233 for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) { 2234 Function *F = &*FI++; 2235 if (hasOnlyColdCalls(*F, GetBFI)) 2236 AllCallsCold.push_back(F); 2237 } 2238 2239 // Optimize functions. 2240 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2241 Function *F = &*FI++; 2242 2243 // Don't perform global opt pass on naked functions; we don't want fast 2244 // calling conventions for naked functions. 2245 if (F->hasFnAttribute(Attribute::Naked)) 2246 continue; 2247 2248 // Functions without names cannot be referenced outside this module. 2249 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2250 F->setLinkage(GlobalValue::InternalLinkage); 2251 2252 if (deleteIfDead(*F, NotDiscardableComdats)) { 2253 Changed = true; 2254 continue; 2255 } 2256 2257 // LLVM's definition of dominance allows instructions that are cyclic 2258 // in unreachable blocks, e.g.: 2259 // %pat = select i1 %condition, @global, i16* %pat 2260 // because any instruction dominates an instruction in a block that's 2261 // not reachable from entry. 2262 // So, remove unreachable blocks from the function, because a) there's 2263 // no point in analyzing them and b) GlobalOpt should otherwise grow 2264 // some more complicated logic to break these cycles. 2265 // Removing unreachable blocks might invalidate the dominator so we 2266 // recalculate it. 2267 if (!F->isDeclaration()) { 2268 if (removeUnreachableBlocks(*F)) { 2269 auto &DT = LookupDomTree(*F); 2270 DT.recalculate(*F); 2271 Changed = true; 2272 } 2273 } 2274 2275 Changed |= processGlobal(*F, TLI, LookupDomTree); 2276 2277 if (!F->hasLocalLinkage()) 2278 continue; 2279 2280 if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) { 2281 NumInternalFunc++; 2282 TargetTransformInfo &TTI = GetTTI(*F); 2283 // Change the calling convention to coldcc if either stress testing is 2284 // enabled or the target would like to use coldcc on functions which are 2285 // cold at all call sites and the callers contain no other non coldcc 2286 // calls. 2287 if (EnableColdCCStressTest || 2288 (isValidCandidateForColdCC(*F, GetBFI, AllCallsCold) && 2289 TTI.useColdCCForColdCall(*F))) { 2290 F->setCallingConv(CallingConv::Cold); 2291 changeCallSitesToColdCC(F); 2292 Changed = true; 2293 NumColdCC++; 2294 } 2295 } 2296 2297 if (hasChangeableCC(F) && !F->isVarArg() && 2298 !F->hasAddressTaken()) { 2299 // If this function has a calling convention worth changing, is not a 2300 // varargs function, and is only called directly, promote it to use the 2301 // Fast calling convention. 2302 F->setCallingConv(CallingConv::Fast); 2303 ChangeCalleesToFastCall(F); 2304 ++NumFastCallFns; 2305 Changed = true; 2306 } 2307 2308 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2309 !F->hasAddressTaken()) { 2310 // The function is not used by a trampoline intrinsic, so it is safe 2311 // to remove the 'nest' attribute. 2312 RemoveNestAttribute(F); 2313 ++NumNestRemoved; 2314 Changed = true; 2315 } 2316 } 2317 return Changed; 2318 } 2319 2320 static bool 2321 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI, 2322 function_ref<DominatorTree &(Function &)> LookupDomTree, 2323 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2324 bool Changed = false; 2325 2326 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2327 GVI != E; ) { 2328 GlobalVariable *GV = &*GVI++; 2329 // Global variables without names cannot be referenced outside this module. 2330 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2331 GV->setLinkage(GlobalValue::InternalLinkage); 2332 // Simplify the initializer. 2333 if (GV->hasInitializer()) 2334 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 2335 auto &DL = M.getDataLayout(); 2336 Constant *New = ConstantFoldConstant(C, DL, TLI); 2337 if (New && New != C) 2338 GV->setInitializer(New); 2339 } 2340 2341 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2342 Changed = true; 2343 continue; 2344 } 2345 2346 Changed |= processGlobal(*GV, TLI, LookupDomTree); 2347 } 2348 return Changed; 2349 } 2350 2351 /// Evaluate a piece of a constantexpr store into a global initializer. This 2352 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2353 /// GEP operands of Addr [0, OpNo) have been stepped into. 2354 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2355 ConstantExpr *Addr, unsigned OpNo) { 2356 // Base case of the recursion. 2357 if (OpNo == Addr->getNumOperands()) { 2358 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2359 return Val; 2360 } 2361 2362 SmallVector<Constant*, 32> Elts; 2363 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2364 // Break up the constant into its elements. 2365 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2366 Elts.push_back(Init->getAggregateElement(i)); 2367 2368 // Replace the element that we are supposed to. 2369 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2370 unsigned Idx = CU->getZExtValue(); 2371 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2372 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2373 2374 // Return the modified struct. 2375 return ConstantStruct::get(STy, Elts); 2376 } 2377 2378 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2379 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2380 uint64_t NumElts = InitTy->getNumElements(); 2381 2382 // Break up the array into elements. 2383 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2384 Elts.push_back(Init->getAggregateElement(i)); 2385 2386 assert(CI->getZExtValue() < NumElts); 2387 Elts[CI->getZExtValue()] = 2388 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2389 2390 if (Init->getType()->isArrayTy()) 2391 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2392 return ConstantVector::get(Elts); 2393 } 2394 2395 /// We have decided that Addr (which satisfies the predicate 2396 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2397 static void CommitValueTo(Constant *Val, Constant *Addr) { 2398 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2399 assert(GV->hasInitializer()); 2400 GV->setInitializer(Val); 2401 return; 2402 } 2403 2404 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2405 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2406 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2407 } 2408 2409 /// Given a map of address -> value, where addresses are expected to be some form 2410 /// of either a global or a constant GEP, set the initializer for the address to 2411 /// be the value. This performs mostly the same function as CommitValueTo() 2412 /// and EvaluateStoreInto() but is optimized to be more efficient for the common 2413 /// case where the set of addresses are GEPs sharing the same underlying global, 2414 /// processing the GEPs in batches rather than individually. 2415 /// 2416 /// To give an example, consider the following C++ code adapted from the clang 2417 /// regression tests: 2418 /// struct S { 2419 /// int n = 10; 2420 /// int m = 2 * n; 2421 /// S(int a) : n(a) {} 2422 /// }; 2423 /// 2424 /// template<typename T> 2425 /// struct U { 2426 /// T *r = &q; 2427 /// T q = 42; 2428 /// U *p = this; 2429 /// }; 2430 /// 2431 /// U<S> e; 2432 /// 2433 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of 2434 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm' 2435 /// members. This batch algorithm will simply use general CommitValueTo() method 2436 /// to handle the complex nested S struct initialization of 'q', before 2437 /// processing the outermost members in a single batch. Using CommitValueTo() to 2438 /// handle member in the outer struct is inefficient when the struct/array is 2439 /// very large as we end up creating and destroy constant arrays for each 2440 /// initialization. 2441 /// For the above case, we expect the following IR to be generated: 2442 /// 2443 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* } 2444 /// %struct.S = type { i32, i32 } 2445 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e, 2446 /// i64 0, i32 1), 2447 /// %struct.S { i32 42, i32 84 }, %struct.U* @e } 2448 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex 2449 /// constant expression, while the other two elements of @e are "simple". 2450 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) { 2451 SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs; 2452 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs; 2453 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs; 2454 SimpleCEs.reserve(Mem.size()); 2455 2456 for (const auto &I : Mem) { 2457 if (auto *GV = dyn_cast<GlobalVariable>(I.first)) { 2458 GVs.push_back(std::make_pair(GV, I.second)); 2459 } else { 2460 ConstantExpr *GEP = cast<ConstantExpr>(I.first); 2461 // We don't handle the deeply recursive case using the batch method. 2462 if (GEP->getNumOperands() > 3) 2463 ComplexCEs.push_back(std::make_pair(GEP, I.second)); 2464 else 2465 SimpleCEs.push_back(std::make_pair(GEP, I.second)); 2466 } 2467 } 2468 2469 // The algorithm below doesn't handle cases like nested structs, so use the 2470 // slower fully general method if we have to. 2471 for (auto ComplexCE : ComplexCEs) 2472 CommitValueTo(ComplexCE.second, ComplexCE.first); 2473 2474 for (auto GVPair : GVs) { 2475 assert(GVPair.first->hasInitializer()); 2476 GVPair.first->setInitializer(GVPair.second); 2477 } 2478 2479 if (SimpleCEs.empty()) 2480 return; 2481 2482 // We cache a single global's initializer elements in the case where the 2483 // subsequent address/val pair uses the same one. This avoids throwing away and 2484 // rebuilding the constant struct/vector/array just because one element is 2485 // modified at a time. 2486 SmallVector<Constant *, 32> Elts; 2487 Elts.reserve(SimpleCEs.size()); 2488 GlobalVariable *CurrentGV = nullptr; 2489 2490 auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) { 2491 Constant *Init = GV->getInitializer(); 2492 Type *Ty = Init->getType(); 2493 if (Update) { 2494 if (CurrentGV) { 2495 assert(CurrentGV && "Expected a GV to commit to!"); 2496 Type *CurrentInitTy = CurrentGV->getInitializer()->getType(); 2497 // We have a valid cache that needs to be committed. 2498 if (StructType *STy = dyn_cast<StructType>(CurrentInitTy)) 2499 CurrentGV->setInitializer(ConstantStruct::get(STy, Elts)); 2500 else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy)) 2501 CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts)); 2502 else 2503 CurrentGV->setInitializer(ConstantVector::get(Elts)); 2504 } 2505 if (CurrentGV == GV) 2506 return; 2507 // Need to clear and set up cache for new initializer. 2508 CurrentGV = GV; 2509 Elts.clear(); 2510 unsigned NumElts; 2511 if (auto *STy = dyn_cast<StructType>(Ty)) 2512 NumElts = STy->getNumElements(); 2513 else 2514 NumElts = cast<SequentialType>(Ty)->getNumElements(); 2515 for (unsigned i = 0, e = NumElts; i != e; ++i) 2516 Elts.push_back(Init->getAggregateElement(i)); 2517 } 2518 }; 2519 2520 for (auto CEPair : SimpleCEs) { 2521 ConstantExpr *GEP = CEPair.first; 2522 Constant *Val = CEPair.second; 2523 2524 GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0)); 2525 commitAndSetupCache(GV, GV != CurrentGV); 2526 ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2)); 2527 Elts[CI->getZExtValue()] = Val; 2528 } 2529 // The last initializer in the list needs to be committed, others 2530 // will be committed on a new initializer being processed. 2531 commitAndSetupCache(CurrentGV, true); 2532 } 2533 2534 /// Evaluate static constructors in the function, if we can. Return true if we 2535 /// can, false otherwise. 2536 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2537 TargetLibraryInfo *TLI) { 2538 // Call the function. 2539 Evaluator Eval(DL, TLI); 2540 Constant *RetValDummy; 2541 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2542 SmallVector<Constant*, 0>()); 2543 2544 if (EvalSuccess) { 2545 ++NumCtorsEvaluated; 2546 2547 // We succeeded at evaluation: commit the result. 2548 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2549 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2550 << " stores.\n"); 2551 BatchCommitValueTo(Eval.getMutatedMemory()); 2552 for (GlobalVariable *GV : Eval.getInvariants()) 2553 GV->setConstant(true); 2554 } 2555 2556 return EvalSuccess; 2557 } 2558 2559 static int compareNames(Constant *const *A, Constant *const *B) { 2560 Value *AStripped = (*A)->stripPointerCastsNoFollowAliases(); 2561 Value *BStripped = (*B)->stripPointerCastsNoFollowAliases(); 2562 return AStripped->getName().compare(BStripped->getName()); 2563 } 2564 2565 static void setUsedInitializer(GlobalVariable &V, 2566 const SmallPtrSet<GlobalValue *, 8> &Init) { 2567 if (Init.empty()) { 2568 V.eraseFromParent(); 2569 return; 2570 } 2571 2572 // Type of pointer to the array of pointers. 2573 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2574 2575 SmallVector<Constant *, 8> UsedArray; 2576 for (GlobalValue *GV : Init) { 2577 Constant *Cast 2578 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2579 UsedArray.push_back(Cast); 2580 } 2581 // Sort to get deterministic order. 2582 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2583 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2584 2585 Module *M = V.getParent(); 2586 V.removeFromParent(); 2587 GlobalVariable *NV = 2588 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2589 ConstantArray::get(ATy, UsedArray), ""); 2590 NV->takeName(&V); 2591 NV->setSection("llvm.metadata"); 2592 delete &V; 2593 } 2594 2595 namespace { 2596 2597 /// An easy to access representation of llvm.used and llvm.compiler.used. 2598 class LLVMUsed { 2599 SmallPtrSet<GlobalValue *, 8> Used; 2600 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2601 GlobalVariable *UsedV; 2602 GlobalVariable *CompilerUsedV; 2603 2604 public: 2605 LLVMUsed(Module &M) { 2606 UsedV = collectUsedGlobalVariables(M, Used, false); 2607 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2608 } 2609 2610 using iterator = SmallPtrSet<GlobalValue *, 8>::iterator; 2611 using used_iterator_range = iterator_range<iterator>; 2612 2613 iterator usedBegin() { return Used.begin(); } 2614 iterator usedEnd() { return Used.end(); } 2615 2616 used_iterator_range used() { 2617 return used_iterator_range(usedBegin(), usedEnd()); 2618 } 2619 2620 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2621 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2622 2623 used_iterator_range compilerUsed() { 2624 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2625 } 2626 2627 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2628 2629 bool compilerUsedCount(GlobalValue *GV) const { 2630 return CompilerUsed.count(GV); 2631 } 2632 2633 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2634 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2635 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2636 2637 bool compilerUsedInsert(GlobalValue *GV) { 2638 return CompilerUsed.insert(GV).second; 2639 } 2640 2641 void syncVariablesAndSets() { 2642 if (UsedV) 2643 setUsedInitializer(*UsedV, Used); 2644 if (CompilerUsedV) 2645 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2646 } 2647 }; 2648 2649 } // end anonymous namespace 2650 2651 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2652 if (GA.use_empty()) // No use at all. 2653 return false; 2654 2655 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2656 "We should have removed the duplicated " 2657 "element from llvm.compiler.used"); 2658 if (!GA.hasOneUse()) 2659 // Strictly more than one use. So at least one is not in llvm.used and 2660 // llvm.compiler.used. 2661 return true; 2662 2663 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2664 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2665 } 2666 2667 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2668 const LLVMUsed &U) { 2669 unsigned N = 2; 2670 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2671 "We should have removed the duplicated " 2672 "element from llvm.compiler.used"); 2673 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2674 ++N; 2675 return V.hasNUsesOrMore(N); 2676 } 2677 2678 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2679 if (!GA.hasLocalLinkage()) 2680 return true; 2681 2682 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2683 } 2684 2685 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2686 bool &RenameTarget) { 2687 RenameTarget = false; 2688 bool Ret = false; 2689 if (hasUseOtherThanLLVMUsed(GA, U)) 2690 Ret = true; 2691 2692 // If the alias is externally visible, we may still be able to simplify it. 2693 if (!mayHaveOtherReferences(GA, U)) 2694 return Ret; 2695 2696 // If the aliasee has internal linkage, give it the name and linkage 2697 // of the alias, and delete the alias. This turns: 2698 // define internal ... @f(...) 2699 // @a = alias ... @f 2700 // into: 2701 // define ... @a(...) 2702 Constant *Aliasee = GA.getAliasee(); 2703 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2704 if (!Target->hasLocalLinkage()) 2705 return Ret; 2706 2707 // Do not perform the transform if multiple aliases potentially target the 2708 // aliasee. This check also ensures that it is safe to replace the section 2709 // and other attributes of the aliasee with those of the alias. 2710 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2711 return Ret; 2712 2713 RenameTarget = true; 2714 return true; 2715 } 2716 2717 static bool 2718 OptimizeGlobalAliases(Module &M, 2719 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2720 bool Changed = false; 2721 LLVMUsed Used(M); 2722 2723 for (GlobalValue *GV : Used.used()) 2724 Used.compilerUsedErase(GV); 2725 2726 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2727 I != E;) { 2728 GlobalAlias *J = &*I++; 2729 2730 // Aliases without names cannot be referenced outside this module. 2731 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2732 J->setLinkage(GlobalValue::InternalLinkage); 2733 2734 if (deleteIfDead(*J, NotDiscardableComdats)) { 2735 Changed = true; 2736 continue; 2737 } 2738 2739 // If the alias can change at link time, nothing can be done - bail out. 2740 if (J->isInterposable()) 2741 continue; 2742 2743 Constant *Aliasee = J->getAliasee(); 2744 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2745 // We can't trivially replace the alias with the aliasee if the aliasee is 2746 // non-trivial in some way. 2747 // TODO: Try to handle non-zero GEPs of local aliasees. 2748 if (!Target) 2749 continue; 2750 Target->removeDeadConstantUsers(); 2751 2752 // Make all users of the alias use the aliasee instead. 2753 bool RenameTarget; 2754 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2755 continue; 2756 2757 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2758 ++NumAliasesResolved; 2759 Changed = true; 2760 2761 if (RenameTarget) { 2762 // Give the aliasee the name, linkage and other attributes of the alias. 2763 Target->takeName(&*J); 2764 Target->setLinkage(J->getLinkage()); 2765 Target->setDSOLocal(J->isDSOLocal()); 2766 Target->setVisibility(J->getVisibility()); 2767 Target->setDLLStorageClass(J->getDLLStorageClass()); 2768 2769 if (Used.usedErase(&*J)) 2770 Used.usedInsert(Target); 2771 2772 if (Used.compilerUsedErase(&*J)) 2773 Used.compilerUsedInsert(Target); 2774 } else if (mayHaveOtherReferences(*J, Used)) 2775 continue; 2776 2777 // Delete the alias. 2778 M.getAliasList().erase(J); 2779 ++NumAliasesRemoved; 2780 Changed = true; 2781 } 2782 2783 Used.syncVariablesAndSets(); 2784 2785 return Changed; 2786 } 2787 2788 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2789 LibFunc F = LibFunc_cxa_atexit; 2790 if (!TLI->has(F)) 2791 return nullptr; 2792 2793 Function *Fn = M.getFunction(TLI->getName(F)); 2794 if (!Fn) 2795 return nullptr; 2796 2797 // Make sure that the function has the correct prototype. 2798 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2799 return nullptr; 2800 2801 return Fn; 2802 } 2803 2804 /// Returns whether the given function is an empty C++ destructor and can 2805 /// therefore be eliminated. 2806 /// Note that we assume that other optimization passes have already simplified 2807 /// the code so we only look for a function with a single basic block, where 2808 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2809 /// other side-effect free instructions. 2810 static bool cxxDtorIsEmpty(const Function &Fn, 2811 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2812 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2813 // nounwind, but that doesn't seem worth doing. 2814 if (Fn.isDeclaration()) 2815 return false; 2816 2817 if (++Fn.begin() != Fn.end()) 2818 return false; 2819 2820 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2821 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2822 I != E; ++I) { 2823 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2824 // Ignore debug intrinsics. 2825 if (isa<DbgInfoIntrinsic>(CI)) 2826 continue; 2827 2828 const Function *CalledFn = CI->getCalledFunction(); 2829 2830 if (!CalledFn) 2831 return false; 2832 2833 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2834 2835 // Don't treat recursive functions as empty. 2836 if (!NewCalledFunctions.insert(CalledFn).second) 2837 return false; 2838 2839 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2840 return false; 2841 } else if (isa<ReturnInst>(*I)) 2842 return true; // We're done. 2843 else if (I->mayHaveSideEffects()) 2844 return false; // Destructor with side effects, bail. 2845 } 2846 2847 return false; 2848 } 2849 2850 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2851 /// Itanium C++ ABI p3.3.5: 2852 /// 2853 /// After constructing a global (or local static) object, that will require 2854 /// destruction on exit, a termination function is registered as follows: 2855 /// 2856 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2857 /// 2858 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2859 /// call f(p) when DSO d is unloaded, before all such termination calls 2860 /// registered before this one. It returns zero if registration is 2861 /// successful, nonzero on failure. 2862 2863 // This pass will look for calls to __cxa_atexit where the function is trivial 2864 // and remove them. 2865 bool Changed = false; 2866 2867 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2868 I != E;) { 2869 // We're only interested in calls. Theoretically, we could handle invoke 2870 // instructions as well, but neither llvm-gcc nor clang generate invokes 2871 // to __cxa_atexit. 2872 CallInst *CI = dyn_cast<CallInst>(*I++); 2873 if (!CI) 2874 continue; 2875 2876 Function *DtorFn = 2877 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2878 if (!DtorFn) 2879 continue; 2880 2881 SmallPtrSet<const Function *, 8> CalledFunctions; 2882 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 2883 continue; 2884 2885 // Just remove the call. 2886 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2887 CI->eraseFromParent(); 2888 2889 ++NumCXXDtorsRemoved; 2890 2891 Changed |= true; 2892 } 2893 2894 return Changed; 2895 } 2896 2897 static bool optimizeGlobalsInModule( 2898 Module &M, const DataLayout &DL, TargetLibraryInfo *TLI, 2899 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2900 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2901 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2902 SmallSet<const Comdat *, 8> NotDiscardableComdats; 2903 bool Changed = false; 2904 bool LocalChange = true; 2905 while (LocalChange) { 2906 LocalChange = false; 2907 2908 NotDiscardableComdats.clear(); 2909 for (const GlobalVariable &GV : M.globals()) 2910 if (const Comdat *C = GV.getComdat()) 2911 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2912 NotDiscardableComdats.insert(C); 2913 for (Function &F : M) 2914 if (const Comdat *C = F.getComdat()) 2915 if (!F.isDefTriviallyDead()) 2916 NotDiscardableComdats.insert(C); 2917 for (GlobalAlias &GA : M.aliases()) 2918 if (const Comdat *C = GA.getComdat()) 2919 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2920 NotDiscardableComdats.insert(C); 2921 2922 // Delete functions that are trivially dead, ccc -> fastcc 2923 LocalChange |= OptimizeFunctions(M, TLI, GetTTI, GetBFI, LookupDomTree, 2924 NotDiscardableComdats); 2925 2926 // Optimize global_ctors list. 2927 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2928 return EvaluateStaticConstructor(F, DL, TLI); 2929 }); 2930 2931 // Optimize non-address-taken globals. 2932 LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree, 2933 NotDiscardableComdats); 2934 2935 // Resolve aliases, when possible. 2936 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2937 2938 // Try to remove trivial global destructors if they are not removed 2939 // already. 2940 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 2941 if (CXAAtExitFn) 2942 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2943 2944 Changed |= LocalChange; 2945 } 2946 2947 // TODO: Move all global ctors functions to the end of the module for code 2948 // layout. 2949 2950 return Changed; 2951 } 2952 2953 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2954 auto &DL = M.getDataLayout(); 2955 auto &TLI = AM.getResult<TargetLibraryAnalysis>(M); 2956 auto &FAM = 2957 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2958 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2959 return FAM.getResult<DominatorTreeAnalysis>(F); 2960 }; 2961 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 2962 return FAM.getResult<TargetIRAnalysis>(F); 2963 }; 2964 2965 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 2966 return FAM.getResult<BlockFrequencyAnalysis>(F); 2967 }; 2968 2969 if (!optimizeGlobalsInModule(M, DL, &TLI, GetTTI, GetBFI, LookupDomTree)) 2970 return PreservedAnalyses::all(); 2971 return PreservedAnalyses::none(); 2972 } 2973 2974 namespace { 2975 2976 struct GlobalOptLegacyPass : public ModulePass { 2977 static char ID; // Pass identification, replacement for typeid 2978 2979 GlobalOptLegacyPass() : ModulePass(ID) { 2980 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2981 } 2982 2983 bool runOnModule(Module &M) override { 2984 if (skipModule(M)) 2985 return false; 2986 2987 auto &DL = M.getDataLayout(); 2988 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2989 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2990 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2991 }; 2992 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 2993 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2994 }; 2995 2996 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { 2997 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 2998 }; 2999 3000 return optimizeGlobalsInModule(M, DL, TLI, GetTTI, GetBFI, LookupDomTree); 3001 } 3002 3003 void getAnalysisUsage(AnalysisUsage &AU) const override { 3004 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3005 AU.addRequired<TargetTransformInfoWrapperPass>(); 3006 AU.addRequired<DominatorTreeWrapperPass>(); 3007 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 3008 } 3009 }; 3010 3011 } // end anonymous namespace 3012 3013 char GlobalOptLegacyPass::ID = 0; 3014 3015 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 3016 "Global Variable Optimizer", false, false) 3017 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3018 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3019 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 3020 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3021 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 3022 "Global Variable Optimizer", false, false) 3023 3024 ModulePass *llvm::createGlobalOptimizerPass() { 3025 return new GlobalOptLegacyPass(); 3026 } 3027