1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/CallingConv.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/CtorUtils.h" 44 #include "llvm/Transforms/Utils/Evaluator.h" 45 #include "llvm/Transforms/Utils/GlobalStatus.h" 46 #include <algorithm> 47 using namespace llvm; 48 49 #define DEBUG_TYPE "globalopt" 50 51 STATISTIC(NumMarked , "Number of globals marked constant"); 52 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 53 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 54 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 55 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 56 STATISTIC(NumDeleted , "Number of globals deleted"); 57 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 58 STATISTIC(NumLocalized , "Number of globals localized"); 59 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 60 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 61 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 62 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 63 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 64 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 65 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 66 67 namespace { 68 struct GlobalOpt : public ModulePass { 69 void getAnalysisUsage(AnalysisUsage &AU) const override { 70 AU.addRequired<TargetLibraryInfoWrapperPass>(); 71 AU.addRequired<DominatorTreeWrapperPass>(); 72 } 73 static char ID; // Pass identification, replacement for typeid 74 GlobalOpt() : ModulePass(ID) { 75 initializeGlobalOptPass(*PassRegistry::getPassRegistry()); 76 } 77 78 bool runOnModule(Module &M) override; 79 80 private: 81 bool OptimizeFunctions(Module &M); 82 bool OptimizeGlobalVars(Module &M); 83 bool OptimizeGlobalAliases(Module &M); 84 bool deleteIfDead(GlobalValue &GV); 85 bool processGlobal(GlobalValue &GV); 86 bool processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS); 87 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn); 88 89 bool isPointerValueDeadOnEntryToFunction(const Function *F, 90 GlobalValue *GV); 91 92 TargetLibraryInfo *TLI; 93 SmallSet<const Comdat *, 8> NotDiscardableComdats; 94 }; 95 } 96 97 char GlobalOpt::ID = 0; 98 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt", 99 "Global Variable Optimizer", false, false) 100 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 101 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 102 INITIALIZE_PASS_END(GlobalOpt, "globalopt", 103 "Global Variable Optimizer", false, false) 104 105 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } 106 107 /// Is this global variable possibly used by a leak checker as a root? If so, 108 /// we might not really want to eliminate the stores to it. 109 static bool isLeakCheckerRoot(GlobalVariable *GV) { 110 // A global variable is a root if it is a pointer, or could plausibly contain 111 // a pointer. There are two challenges; one is that we could have a struct 112 // the has an inner member which is a pointer. We recurse through the type to 113 // detect these (up to a point). The other is that we may actually be a union 114 // of a pointer and another type, and so our LLVM type is an integer which 115 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 116 // potentially contained here. 117 118 if (GV->hasPrivateLinkage()) 119 return false; 120 121 SmallVector<Type *, 4> Types; 122 Types.push_back(GV->getValueType()); 123 124 unsigned Limit = 20; 125 do { 126 Type *Ty = Types.pop_back_val(); 127 switch (Ty->getTypeID()) { 128 default: break; 129 case Type::PointerTyID: return true; 130 case Type::ArrayTyID: 131 case Type::VectorTyID: { 132 SequentialType *STy = cast<SequentialType>(Ty); 133 Types.push_back(STy->getElementType()); 134 break; 135 } 136 case Type::StructTyID: { 137 StructType *STy = cast<StructType>(Ty); 138 if (STy->isOpaque()) return true; 139 for (StructType::element_iterator I = STy->element_begin(), 140 E = STy->element_end(); I != E; ++I) { 141 Type *InnerTy = *I; 142 if (isa<PointerType>(InnerTy)) return true; 143 if (isa<CompositeType>(InnerTy)) 144 Types.push_back(InnerTy); 145 } 146 break; 147 } 148 } 149 if (--Limit == 0) return true; 150 } while (!Types.empty()); 151 return false; 152 } 153 154 /// Given a value that is stored to a global but never read, determine whether 155 /// it's safe to remove the store and the chain of computation that feeds the 156 /// store. 157 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 158 do { 159 if (isa<Constant>(V)) 160 return true; 161 if (!V->hasOneUse()) 162 return false; 163 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 164 isa<GlobalValue>(V)) 165 return false; 166 if (isAllocationFn(V, TLI)) 167 return true; 168 169 Instruction *I = cast<Instruction>(V); 170 if (I->mayHaveSideEffects()) 171 return false; 172 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 173 if (!GEP->hasAllConstantIndices()) 174 return false; 175 } else if (I->getNumOperands() != 1) { 176 return false; 177 } 178 179 V = I->getOperand(0); 180 } while (1); 181 } 182 183 /// This GV is a pointer root. Loop over all users of the global and clean up 184 /// any that obviously don't assign the global a value that isn't dynamically 185 /// allocated. 186 static bool CleanupPointerRootUsers(GlobalVariable *GV, 187 const TargetLibraryInfo *TLI) { 188 // A brief explanation of leak checkers. The goal is to find bugs where 189 // pointers are forgotten, causing an accumulating growth in memory 190 // usage over time. The common strategy for leak checkers is to whitelist the 191 // memory pointed to by globals at exit. This is popular because it also 192 // solves another problem where the main thread of a C++ program may shut down 193 // before other threads that are still expecting to use those globals. To 194 // handle that case, we expect the program may create a singleton and never 195 // destroy it. 196 197 bool Changed = false; 198 199 // If Dead[n].first is the only use of a malloc result, we can delete its 200 // chain of computation and the store to the global in Dead[n].second. 201 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 202 203 // Constants can't be pointers to dynamically allocated memory. 204 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 205 UI != E;) { 206 User *U = *UI++; 207 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 208 Value *V = SI->getValueOperand(); 209 if (isa<Constant>(V)) { 210 Changed = true; 211 SI->eraseFromParent(); 212 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 213 if (I->hasOneUse()) 214 Dead.push_back(std::make_pair(I, SI)); 215 } 216 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 217 if (isa<Constant>(MSI->getValue())) { 218 Changed = true; 219 MSI->eraseFromParent(); 220 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 221 if (I->hasOneUse()) 222 Dead.push_back(std::make_pair(I, MSI)); 223 } 224 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 225 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 226 if (MemSrc && MemSrc->isConstant()) { 227 Changed = true; 228 MTI->eraseFromParent(); 229 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 230 if (I->hasOneUse()) 231 Dead.push_back(std::make_pair(I, MTI)); 232 } 233 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 234 if (CE->use_empty()) { 235 CE->destroyConstant(); 236 Changed = true; 237 } 238 } else if (Constant *C = dyn_cast<Constant>(U)) { 239 if (isSafeToDestroyConstant(C)) { 240 C->destroyConstant(); 241 // This could have invalidated UI, start over from scratch. 242 Dead.clear(); 243 CleanupPointerRootUsers(GV, TLI); 244 return true; 245 } 246 } 247 } 248 249 for (int i = 0, e = Dead.size(); i != e; ++i) { 250 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 251 Dead[i].second->eraseFromParent(); 252 Instruction *I = Dead[i].first; 253 do { 254 if (isAllocationFn(I, TLI)) 255 break; 256 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 257 if (!J) 258 break; 259 I->eraseFromParent(); 260 I = J; 261 } while (1); 262 I->eraseFromParent(); 263 } 264 } 265 266 return Changed; 267 } 268 269 /// We just marked GV constant. Loop over all users of the global, cleaning up 270 /// the obvious ones. This is largely just a quick scan over the use list to 271 /// clean up the easy and obvious cruft. This returns true if it made a change. 272 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 273 const DataLayout &DL, 274 TargetLibraryInfo *TLI) { 275 bool Changed = false; 276 // Note that we need to use a weak value handle for the worklist items. When 277 // we delete a constant array, we may also be holding pointer to one of its 278 // elements (or an element of one of its elements if we're dealing with an 279 // array of arrays) in the worklist. 280 SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end()); 281 while (!WorkList.empty()) { 282 Value *UV = WorkList.pop_back_val(); 283 if (!UV) 284 continue; 285 286 User *U = cast<User>(UV); 287 288 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 289 if (Init) { 290 // Replace the load with the initializer. 291 LI->replaceAllUsesWith(Init); 292 LI->eraseFromParent(); 293 Changed = true; 294 } 295 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 296 // Store must be unreachable or storing Init into the global. 297 SI->eraseFromParent(); 298 Changed = true; 299 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 300 if (CE->getOpcode() == Instruction::GetElementPtr) { 301 Constant *SubInit = nullptr; 302 if (Init) 303 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 304 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 305 } else if ((CE->getOpcode() == Instruction::BitCast && 306 CE->getType()->isPointerTy()) || 307 CE->getOpcode() == Instruction::AddrSpaceCast) { 308 // Pointer cast, delete any stores and memsets to the global. 309 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 310 } 311 312 if (CE->use_empty()) { 313 CE->destroyConstant(); 314 Changed = true; 315 } 316 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 317 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 318 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 319 // and will invalidate our notion of what Init is. 320 Constant *SubInit = nullptr; 321 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 322 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 323 ConstantFoldInstruction(GEP, DL, TLI)); 324 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 325 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 326 327 // If the initializer is an all-null value and we have an inbounds GEP, 328 // we already know what the result of any load from that GEP is. 329 // TODO: Handle splats. 330 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 331 SubInit = Constant::getNullValue(GEP->getResultElementType()); 332 } 333 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 334 335 if (GEP->use_empty()) { 336 GEP->eraseFromParent(); 337 Changed = true; 338 } 339 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 340 if (MI->getRawDest() == V) { 341 MI->eraseFromParent(); 342 Changed = true; 343 } 344 345 } else if (Constant *C = dyn_cast<Constant>(U)) { 346 // If we have a chain of dead constantexprs or other things dangling from 347 // us, and if they are all dead, nuke them without remorse. 348 if (isSafeToDestroyConstant(C)) { 349 C->destroyConstant(); 350 CleanupConstantGlobalUsers(V, Init, DL, TLI); 351 return true; 352 } 353 } 354 } 355 return Changed; 356 } 357 358 /// Return true if the specified instruction is a safe user of a derived 359 /// expression from a global that we want to SROA. 360 static bool isSafeSROAElementUse(Value *V) { 361 // We might have a dead and dangling constant hanging off of here. 362 if (Constant *C = dyn_cast<Constant>(V)) 363 return isSafeToDestroyConstant(C); 364 365 Instruction *I = dyn_cast<Instruction>(V); 366 if (!I) return false; 367 368 // Loads are ok. 369 if (isa<LoadInst>(I)) return true; 370 371 // Stores *to* the pointer are ok. 372 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 373 return SI->getOperand(0) != V; 374 375 // Otherwise, it must be a GEP. 376 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 377 if (!GEPI) return false; 378 379 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 380 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 381 return false; 382 383 for (User *U : GEPI->users()) 384 if (!isSafeSROAElementUse(U)) 385 return false; 386 return true; 387 } 388 389 390 /// U is a direct user of the specified global value. Look at it and its uses 391 /// and decide whether it is safe to SROA this global. 392 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 393 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 394 if (!isa<GetElementPtrInst>(U) && 395 (!isa<ConstantExpr>(U) || 396 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 397 return false; 398 399 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 400 // don't like < 3 operand CE's, and we don't like non-constant integer 401 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 402 // value of C. 403 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 404 !cast<Constant>(U->getOperand(1))->isNullValue() || 405 !isa<ConstantInt>(U->getOperand(2))) 406 return false; 407 408 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 409 ++GEPI; // Skip over the pointer index. 410 411 // If this is a use of an array allocation, do a bit more checking for sanity. 412 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 413 uint64_t NumElements = AT->getNumElements(); 414 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 415 416 // Check to make sure that index falls within the array. If not, 417 // something funny is going on, so we won't do the optimization. 418 // 419 if (Idx->getZExtValue() >= NumElements) 420 return false; 421 422 // We cannot scalar repl this level of the array unless any array 423 // sub-indices are in-range constants. In particular, consider: 424 // A[0][i]. We cannot know that the user isn't doing invalid things like 425 // allowing i to index an out-of-range subscript that accesses A[1]. 426 // 427 // Scalar replacing *just* the outer index of the array is probably not 428 // going to be a win anyway, so just give up. 429 for (++GEPI; // Skip array index. 430 GEPI != E; 431 ++GEPI) { 432 uint64_t NumElements; 433 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 434 NumElements = SubArrayTy->getNumElements(); 435 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 436 NumElements = SubVectorTy->getNumElements(); 437 else { 438 assert((*GEPI)->isStructTy() && 439 "Indexed GEP type is not array, vector, or struct!"); 440 continue; 441 } 442 443 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 444 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 445 return false; 446 } 447 } 448 449 for (User *UU : U->users()) 450 if (!isSafeSROAElementUse(UU)) 451 return false; 452 453 return true; 454 } 455 456 /// Look at all uses of the global and decide whether it is safe for us to 457 /// perform this transformation. 458 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 459 for (User *U : GV->users()) 460 if (!IsUserOfGlobalSafeForSRA(U, GV)) 461 return false; 462 463 return true; 464 } 465 466 467 /// Perform scalar replacement of aggregates on the specified global variable. 468 /// This opens the door for other optimizations by exposing the behavior of the 469 /// program in a more fine-grained way. We have determined that this 470 /// transformation is safe already. We return the first global variable we 471 /// insert so that the caller can reprocess it. 472 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 473 // Make sure this global only has simple uses that we can SRA. 474 if (!GlobalUsersSafeToSRA(GV)) 475 return nullptr; 476 477 assert(GV->hasLocalLinkage() && !GV->isConstant()); 478 Constant *Init = GV->getInitializer(); 479 Type *Ty = Init->getType(); 480 481 std::vector<GlobalVariable*> NewGlobals; 482 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 483 484 // Get the alignment of the global, either explicit or target-specific. 485 unsigned StartAlignment = GV->getAlignment(); 486 if (StartAlignment == 0) 487 StartAlignment = DL.getABITypeAlignment(GV->getType()); 488 489 if (StructType *STy = dyn_cast<StructType>(Ty)) { 490 NewGlobals.reserve(STy->getNumElements()); 491 const StructLayout &Layout = *DL.getStructLayout(STy); 492 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 493 Constant *In = Init->getAggregateElement(i); 494 assert(In && "Couldn't get element of initializer?"); 495 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 496 GlobalVariable::InternalLinkage, 497 In, GV->getName()+"."+Twine(i), 498 GV->getThreadLocalMode(), 499 GV->getType()->getAddressSpace()); 500 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 501 NGV->copyAttributesFrom(GV); 502 Globals.push_back(NGV); 503 NewGlobals.push_back(NGV); 504 505 // Calculate the known alignment of the field. If the original aggregate 506 // had 256 byte alignment for example, something might depend on that: 507 // propagate info to each field. 508 uint64_t FieldOffset = Layout.getElementOffset(i); 509 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 510 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 511 NGV->setAlignment(NewAlign); 512 } 513 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 514 unsigned NumElements = 0; 515 if (ArrayType *ATy = dyn_cast<ArrayType>(STy)) 516 NumElements = ATy->getNumElements(); 517 else 518 NumElements = cast<VectorType>(STy)->getNumElements(); 519 520 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 521 return nullptr; // It's not worth it. 522 NewGlobals.reserve(NumElements); 523 524 uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType()); 525 unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType()); 526 for (unsigned i = 0, e = NumElements; i != e; ++i) { 527 Constant *In = Init->getAggregateElement(i); 528 assert(In && "Couldn't get element of initializer?"); 529 530 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 531 GlobalVariable::InternalLinkage, 532 In, GV->getName()+"."+Twine(i), 533 GV->getThreadLocalMode(), 534 GV->getType()->getAddressSpace()); 535 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 536 NGV->copyAttributesFrom(GV); 537 Globals.push_back(NGV); 538 NewGlobals.push_back(NGV); 539 540 // Calculate the known alignment of the field. If the original aggregate 541 // had 256 byte alignment for example, something might depend on that: 542 // propagate info to each field. 543 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 544 if (NewAlign > EltAlign) 545 NGV->setAlignment(NewAlign); 546 } 547 } 548 549 if (NewGlobals.empty()) 550 return nullptr; 551 552 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 553 554 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 555 556 // Loop over all of the uses of the global, replacing the constantexpr geps, 557 // with smaller constantexpr geps or direct references. 558 while (!GV->use_empty()) { 559 User *GEP = GV->user_back(); 560 assert(((isa<ConstantExpr>(GEP) && 561 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 562 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 563 564 // Ignore the 1th operand, which has to be zero or else the program is quite 565 // broken (undefined). Get the 2nd operand, which is the structure or array 566 // index. 567 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 568 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 569 570 Value *NewPtr = NewGlobals[Val]; 571 Type *NewTy = NewGlobals[Val]->getValueType(); 572 573 // Form a shorter GEP if needed. 574 if (GEP->getNumOperands() > 3) { 575 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 576 SmallVector<Constant*, 8> Idxs; 577 Idxs.push_back(NullInt); 578 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 579 Idxs.push_back(CE->getOperand(i)); 580 NewPtr = 581 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 582 } else { 583 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 584 SmallVector<Value*, 8> Idxs; 585 Idxs.push_back(NullInt); 586 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 587 Idxs.push_back(GEPI->getOperand(i)); 588 NewPtr = GetElementPtrInst::Create( 589 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 590 } 591 } 592 GEP->replaceAllUsesWith(NewPtr); 593 594 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 595 GEPI->eraseFromParent(); 596 else 597 cast<ConstantExpr>(GEP)->destroyConstant(); 598 } 599 600 // Delete the old global, now that it is dead. 601 Globals.erase(GV); 602 ++NumSRA; 603 604 // Loop over the new globals array deleting any globals that are obviously 605 // dead. This can arise due to scalarization of a structure or an array that 606 // has elements that are dead. 607 unsigned FirstGlobal = 0; 608 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 609 if (NewGlobals[i]->use_empty()) { 610 Globals.erase(NewGlobals[i]); 611 if (FirstGlobal == i) ++FirstGlobal; 612 } 613 614 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 615 } 616 617 /// Return true if all users of the specified value will trap if the value is 618 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 619 /// reprocessing them. 620 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 621 SmallPtrSetImpl<const PHINode*> &PHIs) { 622 for (const User *U : V->users()) 623 if (isa<LoadInst>(U)) { 624 // Will trap. 625 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 626 if (SI->getOperand(0) == V) { 627 //cerr << "NONTRAPPING USE: " << *U; 628 return false; // Storing the value. 629 } 630 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 631 if (CI->getCalledValue() != V) { 632 //cerr << "NONTRAPPING USE: " << *U; 633 return false; // Not calling the ptr 634 } 635 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 636 if (II->getCalledValue() != V) { 637 //cerr << "NONTRAPPING USE: " << *U; 638 return false; // Not calling the ptr 639 } 640 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 641 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 642 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 643 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 644 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 645 // If we've already seen this phi node, ignore it, it has already been 646 // checked. 647 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 648 return false; 649 } else if (isa<ICmpInst>(U) && 650 isa<ConstantPointerNull>(U->getOperand(1))) { 651 // Ignore icmp X, null 652 } else { 653 //cerr << "NONTRAPPING USE: " << *U; 654 return false; 655 } 656 657 return true; 658 } 659 660 /// Return true if all uses of any loads from GV will trap if the loaded value 661 /// is null. Note that this also permits comparisons of the loaded value 662 /// against null, as a special case. 663 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 664 for (const User *U : GV->users()) 665 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 666 SmallPtrSet<const PHINode*, 8> PHIs; 667 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 668 return false; 669 } else if (isa<StoreInst>(U)) { 670 // Ignore stores to the global. 671 } else { 672 // We don't know or understand this user, bail out. 673 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 674 return false; 675 } 676 return true; 677 } 678 679 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 680 bool Changed = false; 681 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 682 Instruction *I = cast<Instruction>(*UI++); 683 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 684 LI->setOperand(0, NewV); 685 Changed = true; 686 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 687 if (SI->getOperand(1) == V) { 688 SI->setOperand(1, NewV); 689 Changed = true; 690 } 691 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 692 CallSite CS(I); 693 if (CS.getCalledValue() == V) { 694 // Calling through the pointer! Turn into a direct call, but be careful 695 // that the pointer is not also being passed as an argument. 696 CS.setCalledFunction(NewV); 697 Changed = true; 698 bool PassedAsArg = false; 699 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 700 if (CS.getArgument(i) == V) { 701 PassedAsArg = true; 702 CS.setArgument(i, NewV); 703 } 704 705 if (PassedAsArg) { 706 // Being passed as an argument also. Be careful to not invalidate UI! 707 UI = V->user_begin(); 708 } 709 } 710 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 711 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 712 ConstantExpr::getCast(CI->getOpcode(), 713 NewV, CI->getType())); 714 if (CI->use_empty()) { 715 Changed = true; 716 CI->eraseFromParent(); 717 } 718 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 719 // Should handle GEP here. 720 SmallVector<Constant*, 8> Idxs; 721 Idxs.reserve(GEPI->getNumOperands()-1); 722 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 723 i != e; ++i) 724 if (Constant *C = dyn_cast<Constant>(*i)) 725 Idxs.push_back(C); 726 else 727 break; 728 if (Idxs.size() == GEPI->getNumOperands()-1) 729 Changed |= OptimizeAwayTrappingUsesOfValue( 730 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 731 if (GEPI->use_empty()) { 732 Changed = true; 733 GEPI->eraseFromParent(); 734 } 735 } 736 } 737 738 return Changed; 739 } 740 741 742 /// The specified global has only one non-null value stored into it. If there 743 /// are uses of the loaded value that would trap if the loaded value is 744 /// dynamically null, then we know that they cannot be reachable with a null 745 /// optimize away the load. 746 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 747 const DataLayout &DL, 748 TargetLibraryInfo *TLI) { 749 bool Changed = false; 750 751 // Keep track of whether we are able to remove all the uses of the global 752 // other than the store that defines it. 753 bool AllNonStoreUsesGone = true; 754 755 // Replace all uses of loads with uses of uses of the stored value. 756 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 757 User *GlobalUser = *GUI++; 758 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 759 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 760 // If we were able to delete all uses of the loads 761 if (LI->use_empty()) { 762 LI->eraseFromParent(); 763 Changed = true; 764 } else { 765 AllNonStoreUsesGone = false; 766 } 767 } else if (isa<StoreInst>(GlobalUser)) { 768 // Ignore the store that stores "LV" to the global. 769 assert(GlobalUser->getOperand(1) == GV && 770 "Must be storing *to* the global"); 771 } else { 772 AllNonStoreUsesGone = false; 773 774 // If we get here we could have other crazy uses that are transitively 775 // loaded. 776 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 777 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 778 isa<BitCastInst>(GlobalUser) || 779 isa<GetElementPtrInst>(GlobalUser)) && 780 "Only expect load and stores!"); 781 } 782 } 783 784 if (Changed) { 785 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n"); 786 ++NumGlobUses; 787 } 788 789 // If we nuked all of the loads, then none of the stores are needed either, 790 // nor is the global. 791 if (AllNonStoreUsesGone) { 792 if (isLeakCheckerRoot(GV)) { 793 Changed |= CleanupPointerRootUsers(GV, TLI); 794 } else { 795 Changed = true; 796 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 797 } 798 if (GV->use_empty()) { 799 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 800 Changed = true; 801 GV->eraseFromParent(); 802 ++NumDeleted; 803 } 804 } 805 return Changed; 806 } 807 808 /// Walk the use list of V, constant folding all of the instructions that are 809 /// foldable. 810 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 811 TargetLibraryInfo *TLI) { 812 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 813 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 814 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 815 I->replaceAllUsesWith(NewC); 816 817 // Advance UI to the next non-I use to avoid invalidating it! 818 // Instructions could multiply use V. 819 while (UI != E && *UI == I) 820 ++UI; 821 I->eraseFromParent(); 822 } 823 } 824 825 /// This function takes the specified global variable, and transforms the 826 /// program as if it always contained the result of the specified malloc. 827 /// Because it is always the result of the specified malloc, there is no reason 828 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 829 /// loads of GV as uses of the new global. 830 static GlobalVariable * 831 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 832 ConstantInt *NElements, const DataLayout &DL, 833 TargetLibraryInfo *TLI) { 834 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 835 836 Type *GlobalType; 837 if (NElements->getZExtValue() == 1) 838 GlobalType = AllocTy; 839 else 840 // If we have an array allocation, the global variable is of an array. 841 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 842 843 // Create the new global variable. The contents of the malloc'd memory is 844 // undefined, so initialize with an undef value. 845 GlobalVariable *NewGV = new GlobalVariable( 846 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 847 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 848 GV->getThreadLocalMode()); 849 850 // If there are bitcast users of the malloc (which is typical, usually we have 851 // a malloc + bitcast) then replace them with uses of the new global. Update 852 // other users to use the global as well. 853 BitCastInst *TheBC = nullptr; 854 while (!CI->use_empty()) { 855 Instruction *User = cast<Instruction>(CI->user_back()); 856 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 857 if (BCI->getType() == NewGV->getType()) { 858 BCI->replaceAllUsesWith(NewGV); 859 BCI->eraseFromParent(); 860 } else { 861 BCI->setOperand(0, NewGV); 862 } 863 } else { 864 if (!TheBC) 865 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 866 User->replaceUsesOfWith(CI, TheBC); 867 } 868 } 869 870 Constant *RepValue = NewGV; 871 if (NewGV->getType() != GV->getValueType()) 872 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 873 874 // If there is a comparison against null, we will insert a global bool to 875 // keep track of whether the global was initialized yet or not. 876 GlobalVariable *InitBool = 877 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 878 GlobalValue::InternalLinkage, 879 ConstantInt::getFalse(GV->getContext()), 880 GV->getName()+".init", GV->getThreadLocalMode()); 881 bool InitBoolUsed = false; 882 883 // Loop over all uses of GV, processing them in turn. 884 while (!GV->use_empty()) { 885 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 886 // The global is initialized when the store to it occurs. 887 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 888 SI->getOrdering(), SI->getSynchScope(), SI); 889 SI->eraseFromParent(); 890 continue; 891 } 892 893 LoadInst *LI = cast<LoadInst>(GV->user_back()); 894 while (!LI->use_empty()) { 895 Use &LoadUse = *LI->use_begin(); 896 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 897 if (!ICI) { 898 LoadUse = RepValue; 899 continue; 900 } 901 902 // Replace the cmp X, 0 with a use of the bool value. 903 // Sink the load to where the compare was, if atomic rules allow us to. 904 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 905 LI->getOrdering(), LI->getSynchScope(), 906 LI->isUnordered() ? (Instruction*)ICI : LI); 907 InitBoolUsed = true; 908 switch (ICI->getPredicate()) { 909 default: llvm_unreachable("Unknown ICmp Predicate!"); 910 case ICmpInst::ICMP_ULT: 911 case ICmpInst::ICMP_SLT: // X < null -> always false 912 LV = ConstantInt::getFalse(GV->getContext()); 913 break; 914 case ICmpInst::ICMP_ULE: 915 case ICmpInst::ICMP_SLE: 916 case ICmpInst::ICMP_EQ: 917 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 918 break; 919 case ICmpInst::ICMP_NE: 920 case ICmpInst::ICMP_UGE: 921 case ICmpInst::ICMP_SGE: 922 case ICmpInst::ICMP_UGT: 923 case ICmpInst::ICMP_SGT: 924 break; // no change. 925 } 926 ICI->replaceAllUsesWith(LV); 927 ICI->eraseFromParent(); 928 } 929 LI->eraseFromParent(); 930 } 931 932 // If the initialization boolean was used, insert it, otherwise delete it. 933 if (!InitBoolUsed) { 934 while (!InitBool->use_empty()) // Delete initializations 935 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 936 delete InitBool; 937 } else 938 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 939 940 // Now the GV is dead, nuke it and the malloc.. 941 GV->eraseFromParent(); 942 CI->eraseFromParent(); 943 944 // To further other optimizations, loop over all users of NewGV and try to 945 // constant prop them. This will promote GEP instructions with constant 946 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 947 ConstantPropUsersOf(NewGV, DL, TLI); 948 if (RepValue != NewGV) 949 ConstantPropUsersOf(RepValue, DL, TLI); 950 951 return NewGV; 952 } 953 954 /// Scan the use-list of V checking to make sure that there are no complex uses 955 /// of V. We permit simple things like dereferencing the pointer, but not 956 /// storing through the address, unless it is to the specified global. 957 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 958 const GlobalVariable *GV, 959 SmallPtrSetImpl<const PHINode*> &PHIs) { 960 for (const User *U : V->users()) { 961 const Instruction *Inst = cast<Instruction>(U); 962 963 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 964 continue; // Fine, ignore. 965 } 966 967 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 968 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 969 return false; // Storing the pointer itself... bad. 970 continue; // Otherwise, storing through it, or storing into GV... fine. 971 } 972 973 // Must index into the array and into the struct. 974 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 975 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 976 return false; 977 continue; 978 } 979 980 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 981 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 982 // cycles. 983 if (PHIs.insert(PN).second) 984 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 985 return false; 986 continue; 987 } 988 989 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 990 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 991 return false; 992 continue; 993 } 994 995 return false; 996 } 997 return true; 998 } 999 1000 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the 1001 /// allocation into loads from the global and uses of the resultant pointer. 1002 /// Further, delete the store into GV. This assumes that these value pass the 1003 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1004 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1005 GlobalVariable *GV) { 1006 while (!Alloc->use_empty()) { 1007 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 1008 Instruction *InsertPt = U; 1009 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1010 // If this is the store of the allocation into the global, remove it. 1011 if (SI->getOperand(1) == GV) { 1012 SI->eraseFromParent(); 1013 continue; 1014 } 1015 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1016 // Insert the load in the corresponding predecessor, not right before the 1017 // PHI. 1018 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 1019 } else if (isa<BitCastInst>(U)) { 1020 // Must be bitcast between the malloc and store to initialize the global. 1021 ReplaceUsesOfMallocWithGlobal(U, GV); 1022 U->eraseFromParent(); 1023 continue; 1024 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1025 // If this is a "GEP bitcast" and the user is a store to the global, then 1026 // just process it as a bitcast. 1027 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1028 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1029 if (SI->getOperand(1) == GV) { 1030 // Must be bitcast GEP between the malloc and store to initialize 1031 // the global. 1032 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1033 GEPI->eraseFromParent(); 1034 continue; 1035 } 1036 } 1037 1038 // Insert a load from the global, and use it instead of the malloc. 1039 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1040 U->replaceUsesOfWith(Alloc, NL); 1041 } 1042 } 1043 1044 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to 1045 /// perform heap SRA on. This permits GEP's that index through the array and 1046 /// struct field, icmps of null, and PHIs. 1047 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1048 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1049 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1050 // We permit two users of the load: setcc comparing against the null 1051 // pointer, and a getelementptr of a specific form. 1052 for (const User *U : V->users()) { 1053 const Instruction *UI = cast<Instruction>(U); 1054 1055 // Comparison against null is ok. 1056 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1057 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1058 return false; 1059 continue; 1060 } 1061 1062 // getelementptr is also ok, but only a simple form. 1063 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1064 // Must index into the array and into the struct. 1065 if (GEPI->getNumOperands() < 3) 1066 return false; 1067 1068 // Otherwise the GEP is ok. 1069 continue; 1070 } 1071 1072 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1073 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1074 // This means some phi nodes are dependent on each other. 1075 // Avoid infinite looping! 1076 return false; 1077 if (!LoadUsingPHIs.insert(PN).second) 1078 // If we have already analyzed this PHI, then it is safe. 1079 continue; 1080 1081 // Make sure all uses of the PHI are simple enough to transform. 1082 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1083 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1084 return false; 1085 1086 continue; 1087 } 1088 1089 // Otherwise we don't know what this is, not ok. 1090 return false; 1091 } 1092 1093 return true; 1094 } 1095 1096 1097 /// If all users of values loaded from GV are simple enough to perform HeapSRA, 1098 /// return true. 1099 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1100 Instruction *StoredVal) { 1101 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1102 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1103 for (const User *U : GV->users()) 1104 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1105 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1106 LoadUsingPHIsPerLoad)) 1107 return false; 1108 LoadUsingPHIsPerLoad.clear(); 1109 } 1110 1111 // If we reach here, we know that all uses of the loads and transitive uses 1112 // (through PHI nodes) are simple enough to transform. However, we don't know 1113 // that all inputs the to the PHI nodes are in the same equivalence sets. 1114 // Check to verify that all operands of the PHIs are either PHIS that can be 1115 // transformed, loads from GV, or MI itself. 1116 for (const PHINode *PN : LoadUsingPHIs) { 1117 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1118 Value *InVal = PN->getIncomingValue(op); 1119 1120 // PHI of the stored value itself is ok. 1121 if (InVal == StoredVal) continue; 1122 1123 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1124 // One of the PHIs in our set is (optimistically) ok. 1125 if (LoadUsingPHIs.count(InPN)) 1126 continue; 1127 return false; 1128 } 1129 1130 // Load from GV is ok. 1131 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1132 if (LI->getOperand(0) == GV) 1133 continue; 1134 1135 // UNDEF? NULL? 1136 1137 // Anything else is rejected. 1138 return false; 1139 } 1140 } 1141 1142 return true; 1143 } 1144 1145 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1146 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1147 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1148 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1149 1150 if (FieldNo >= FieldVals.size()) 1151 FieldVals.resize(FieldNo+1); 1152 1153 // If we already have this value, just reuse the previously scalarized 1154 // version. 1155 if (Value *FieldVal = FieldVals[FieldNo]) 1156 return FieldVal; 1157 1158 // Depending on what instruction this is, we have several cases. 1159 Value *Result; 1160 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1161 // This is a scalarized version of the load from the global. Just create 1162 // a new Load of the scalarized global. 1163 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1164 InsertedScalarizedValues, 1165 PHIsToRewrite), 1166 LI->getName()+".f"+Twine(FieldNo), LI); 1167 } else { 1168 PHINode *PN = cast<PHINode>(V); 1169 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1170 // field. 1171 1172 PointerType *PTy = cast<PointerType>(PN->getType()); 1173 StructType *ST = cast<StructType>(PTy->getElementType()); 1174 1175 unsigned AS = PTy->getAddressSpace(); 1176 PHINode *NewPN = 1177 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1178 PN->getNumIncomingValues(), 1179 PN->getName()+".f"+Twine(FieldNo), PN); 1180 Result = NewPN; 1181 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1182 } 1183 1184 return FieldVals[FieldNo] = Result; 1185 } 1186 1187 /// Given a load instruction and a value derived from the load, rewrite the 1188 /// derived value to use the HeapSRoA'd load. 1189 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1190 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1191 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1192 // If this is a comparison against null, handle it. 1193 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1194 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1195 // If we have a setcc of the loaded pointer, we can use a setcc of any 1196 // field. 1197 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1198 InsertedScalarizedValues, PHIsToRewrite); 1199 1200 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1201 Constant::getNullValue(NPtr->getType()), 1202 SCI->getName()); 1203 SCI->replaceAllUsesWith(New); 1204 SCI->eraseFromParent(); 1205 return; 1206 } 1207 1208 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1209 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1210 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1211 && "Unexpected GEPI!"); 1212 1213 // Load the pointer for this field. 1214 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1215 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1216 InsertedScalarizedValues, PHIsToRewrite); 1217 1218 // Create the new GEP idx vector. 1219 SmallVector<Value*, 8> GEPIdx; 1220 GEPIdx.push_back(GEPI->getOperand(1)); 1221 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1222 1223 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1224 GEPI->getName(), GEPI); 1225 GEPI->replaceAllUsesWith(NGEPI); 1226 GEPI->eraseFromParent(); 1227 return; 1228 } 1229 1230 // Recursively transform the users of PHI nodes. This will lazily create the 1231 // PHIs that are needed for individual elements. Keep track of what PHIs we 1232 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1233 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1234 // already been seen first by another load, so its uses have already been 1235 // processed. 1236 PHINode *PN = cast<PHINode>(LoadUser); 1237 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1238 std::vector<Value*>())).second) 1239 return; 1240 1241 // If this is the first time we've seen this PHI, recursively process all 1242 // users. 1243 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1244 Instruction *User = cast<Instruction>(*UI++); 1245 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1246 } 1247 } 1248 1249 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1250 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1251 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1252 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1253 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1254 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1255 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1256 Instruction *User = cast<Instruction>(*UI++); 1257 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1258 } 1259 1260 if (Load->use_empty()) { 1261 Load->eraseFromParent(); 1262 InsertedScalarizedValues.erase(Load); 1263 } 1264 } 1265 1266 /// CI is an allocation of an array of structures. Break it up into multiple 1267 /// allocations of arrays of the fields. 1268 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1269 Value *NElems, const DataLayout &DL, 1270 const TargetLibraryInfo *TLI) { 1271 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1272 Type *MAT = getMallocAllocatedType(CI, TLI); 1273 StructType *STy = cast<StructType>(MAT); 1274 1275 // There is guaranteed to be at least one use of the malloc (storing 1276 // it into GV). If there are other uses, change them to be uses of 1277 // the global to simplify later code. This also deletes the store 1278 // into GV. 1279 ReplaceUsesOfMallocWithGlobal(CI, GV); 1280 1281 // Okay, at this point, there are no users of the malloc. Insert N 1282 // new mallocs at the same place as CI, and N globals. 1283 std::vector<Value*> FieldGlobals; 1284 std::vector<Value*> FieldMallocs; 1285 1286 unsigned AS = GV->getType()->getPointerAddressSpace(); 1287 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1288 Type *FieldTy = STy->getElementType(FieldNo); 1289 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1290 1291 GlobalVariable *NGV = new GlobalVariable( 1292 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1293 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1294 nullptr, GV->getThreadLocalMode()); 1295 NGV->copyAttributesFrom(GV); 1296 FieldGlobals.push_back(NGV); 1297 1298 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1299 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1300 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1301 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1302 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1303 ConstantInt::get(IntPtrTy, TypeSize), 1304 NElems, nullptr, 1305 CI->getName() + ".f" + Twine(FieldNo)); 1306 FieldMallocs.push_back(NMI); 1307 new StoreInst(NMI, NGV, CI); 1308 } 1309 1310 // The tricky aspect of this transformation is handling the case when malloc 1311 // fails. In the original code, malloc failing would set the result pointer 1312 // of malloc to null. In this case, some mallocs could succeed and others 1313 // could fail. As such, we emit code that looks like this: 1314 // F0 = malloc(field0) 1315 // F1 = malloc(field1) 1316 // F2 = malloc(field2) 1317 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1318 // if (F0) { free(F0); F0 = 0; } 1319 // if (F1) { free(F1); F1 = 0; } 1320 // if (F2) { free(F2); F2 = 0; } 1321 // } 1322 // The malloc can also fail if its argument is too large. 1323 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1324 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1325 ConstantZero, "isneg"); 1326 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1327 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1328 Constant::getNullValue(FieldMallocs[i]->getType()), 1329 "isnull"); 1330 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1331 } 1332 1333 // Split the basic block at the old malloc. 1334 BasicBlock *OrigBB = CI->getParent(); 1335 BasicBlock *ContBB = 1336 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1337 1338 // Create the block to check the first condition. Put all these blocks at the 1339 // end of the function as they are unlikely to be executed. 1340 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1341 "malloc_ret_null", 1342 OrigBB->getParent()); 1343 1344 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1345 // branch on RunningOr. 1346 OrigBB->getTerminator()->eraseFromParent(); 1347 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1348 1349 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1350 // pointer, because some may be null while others are not. 1351 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1352 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1353 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1354 Constant::getNullValue(GVVal->getType())); 1355 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1356 OrigBB->getParent()); 1357 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1358 OrigBB->getParent()); 1359 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1360 Cmp, NullPtrBlock); 1361 1362 // Fill in FreeBlock. 1363 CallInst::CreateFree(GVVal, BI); 1364 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1365 FreeBlock); 1366 BranchInst::Create(NextBlock, FreeBlock); 1367 1368 NullPtrBlock = NextBlock; 1369 } 1370 1371 BranchInst::Create(ContBB, NullPtrBlock); 1372 1373 // CI is no longer needed, remove it. 1374 CI->eraseFromParent(); 1375 1376 /// As we process loads, if we can't immediately update all uses of the load, 1377 /// keep track of what scalarized loads are inserted for a given load. 1378 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1379 InsertedScalarizedValues[GV] = FieldGlobals; 1380 1381 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1382 1383 // Okay, the malloc site is completely handled. All of the uses of GV are now 1384 // loads, and all uses of those loads are simple. Rewrite them to use loads 1385 // of the per-field globals instead. 1386 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1387 Instruction *User = cast<Instruction>(*UI++); 1388 1389 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1390 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1391 continue; 1392 } 1393 1394 // Must be a store of null. 1395 StoreInst *SI = cast<StoreInst>(User); 1396 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1397 "Unexpected heap-sra user!"); 1398 1399 // Insert a store of null into each global. 1400 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1401 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1402 Constant *Null = Constant::getNullValue(ValTy); 1403 new StoreInst(Null, FieldGlobals[i], SI); 1404 } 1405 // Erase the original store. 1406 SI->eraseFromParent(); 1407 } 1408 1409 // While we have PHIs that are interesting to rewrite, do it. 1410 while (!PHIsToRewrite.empty()) { 1411 PHINode *PN = PHIsToRewrite.back().first; 1412 unsigned FieldNo = PHIsToRewrite.back().second; 1413 PHIsToRewrite.pop_back(); 1414 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1415 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1416 1417 // Add all the incoming values. This can materialize more phis. 1418 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1419 Value *InVal = PN->getIncomingValue(i); 1420 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1421 PHIsToRewrite); 1422 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1423 } 1424 } 1425 1426 // Drop all inter-phi links and any loads that made it this far. 1427 for (DenseMap<Value*, std::vector<Value*> >::iterator 1428 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1429 I != E; ++I) { 1430 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1431 PN->dropAllReferences(); 1432 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1433 LI->dropAllReferences(); 1434 } 1435 1436 // Delete all the phis and loads now that inter-references are dead. 1437 for (DenseMap<Value*, std::vector<Value*> >::iterator 1438 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1439 I != E; ++I) { 1440 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1441 PN->eraseFromParent(); 1442 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1443 LI->eraseFromParent(); 1444 } 1445 1446 // The old global is now dead, remove it. 1447 GV->eraseFromParent(); 1448 1449 ++NumHeapSRA; 1450 return cast<GlobalVariable>(FieldGlobals[0]); 1451 } 1452 1453 /// This function is called when we see a pointer global variable with a single 1454 /// value stored it that is a malloc or cast of malloc. 1455 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1456 Type *AllocTy, 1457 AtomicOrdering Ordering, 1458 const DataLayout &DL, 1459 TargetLibraryInfo *TLI) { 1460 // If this is a malloc of an abstract type, don't touch it. 1461 if (!AllocTy->isSized()) 1462 return false; 1463 1464 // We can't optimize this global unless all uses of it are *known* to be 1465 // of the malloc value, not of the null initializer value (consider a use 1466 // that compares the global's value against zero to see if the malloc has 1467 // been reached). To do this, we check to see if all uses of the global 1468 // would trap if the global were null: this proves that they must all 1469 // happen after the malloc. 1470 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1471 return false; 1472 1473 // We can't optimize this if the malloc itself is used in a complex way, 1474 // for example, being stored into multiple globals. This allows the 1475 // malloc to be stored into the specified global, loaded icmp'd, and 1476 // GEP'd. These are all things we could transform to using the global 1477 // for. 1478 SmallPtrSet<const PHINode*, 8> PHIs; 1479 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1480 return false; 1481 1482 // If we have a global that is only initialized with a fixed size malloc, 1483 // transform the program to use global memory instead of malloc'd memory. 1484 // This eliminates dynamic allocation, avoids an indirection accessing the 1485 // data, and exposes the resultant global to further GlobalOpt. 1486 // We cannot optimize the malloc if we cannot determine malloc array size. 1487 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1488 if (!NElems) 1489 return false; 1490 1491 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1492 // Restrict this transformation to only working on small allocations 1493 // (2048 bytes currently), as we don't want to introduce a 16M global or 1494 // something. 1495 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1496 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1497 return true; 1498 } 1499 1500 // If the allocation is an array of structures, consider transforming this 1501 // into multiple malloc'd arrays, one for each field. This is basically 1502 // SRoA for malloc'd memory. 1503 1504 if (Ordering != AtomicOrdering::NotAtomic) 1505 return false; 1506 1507 // If this is an allocation of a fixed size array of structs, analyze as a 1508 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1509 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1510 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1511 AllocTy = AT->getElementType(); 1512 1513 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1514 if (!AllocSTy) 1515 return false; 1516 1517 // This the structure has an unreasonable number of fields, leave it 1518 // alone. 1519 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1520 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1521 1522 // If this is a fixed size array, transform the Malloc to be an alloc of 1523 // structs. malloc [100 x struct],1 -> malloc struct, 100 1524 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1525 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1526 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1527 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1528 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1529 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, 1530 AllocSize, NumElements, 1531 nullptr, CI->getName()); 1532 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1533 CI->replaceAllUsesWith(Cast); 1534 CI->eraseFromParent(); 1535 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1536 CI = cast<CallInst>(BCI->getOperand(0)); 1537 else 1538 CI = cast<CallInst>(Malloc); 1539 } 1540 1541 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1542 TLI); 1543 return true; 1544 } 1545 1546 return false; 1547 } 1548 1549 // Try to optimize globals based on the knowledge that only one value (besides 1550 // its initializer) is ever stored to the global. 1551 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1552 AtomicOrdering Ordering, 1553 const DataLayout &DL, 1554 TargetLibraryInfo *TLI) { 1555 // Ignore no-op GEPs and bitcasts. 1556 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1557 1558 // If we are dealing with a pointer global that is initialized to null and 1559 // only has one (non-null) value stored into it, then we can optimize any 1560 // users of the loaded value (often calls and loads) that would trap if the 1561 // value was null. 1562 if (GV->getInitializer()->getType()->isPointerTy() && 1563 GV->getInitializer()->isNullValue()) { 1564 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1565 if (GV->getInitializer()->getType() != SOVC->getType()) 1566 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1567 1568 // Optimize away any trapping uses of the loaded value. 1569 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1570 return true; 1571 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1572 Type *MallocType = getMallocAllocatedType(CI, TLI); 1573 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1574 Ordering, DL, TLI)) 1575 return true; 1576 } 1577 } 1578 1579 return false; 1580 } 1581 1582 /// At this point, we have learned that the only two values ever stored into GV 1583 /// are its initializer and OtherVal. See if we can shrink the global into a 1584 /// boolean and select between the two values whenever it is used. This exposes 1585 /// the values to other scalar optimizations. 1586 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1587 Type *GVElType = GV->getValueType(); 1588 1589 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1590 // an FP value, pointer or vector, don't do this optimization because a select 1591 // between them is very expensive and unlikely to lead to later 1592 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1593 // where v1 and v2 both require constant pool loads, a big loss. 1594 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1595 GVElType->isFloatingPointTy() || 1596 GVElType->isPointerTy() || GVElType->isVectorTy()) 1597 return false; 1598 1599 // Walk the use list of the global seeing if all the uses are load or store. 1600 // If there is anything else, bail out. 1601 for (User *U : GV->users()) 1602 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1603 return false; 1604 1605 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1606 1607 // Create the new global, initializing it to false. 1608 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1609 false, 1610 GlobalValue::InternalLinkage, 1611 ConstantInt::getFalse(GV->getContext()), 1612 GV->getName()+".b", 1613 GV->getThreadLocalMode(), 1614 GV->getType()->getAddressSpace()); 1615 NewGV->copyAttributesFrom(GV); 1616 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1617 1618 Constant *InitVal = GV->getInitializer(); 1619 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1620 "No reason to shrink to bool!"); 1621 1622 // If initialized to zero and storing one into the global, we can use a cast 1623 // instead of a select to synthesize the desired value. 1624 bool IsOneZero = false; 1625 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1626 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1627 1628 while (!GV->use_empty()) { 1629 Instruction *UI = cast<Instruction>(GV->user_back()); 1630 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1631 // Change the store into a boolean store. 1632 bool StoringOther = SI->getOperand(0) == OtherVal; 1633 // Only do this if we weren't storing a loaded value. 1634 Value *StoreVal; 1635 if (StoringOther || SI->getOperand(0) == InitVal) { 1636 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1637 StoringOther); 1638 } else { 1639 // Otherwise, we are storing a previously loaded copy. To do this, 1640 // change the copy from copying the original value to just copying the 1641 // bool. 1642 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1643 1644 // If we've already replaced the input, StoredVal will be a cast or 1645 // select instruction. If not, it will be a load of the original 1646 // global. 1647 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1648 assert(LI->getOperand(0) == GV && "Not a copy!"); 1649 // Insert a new load, to preserve the saved value. 1650 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1651 LI->getOrdering(), LI->getSynchScope(), LI); 1652 } else { 1653 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1654 "This is not a form that we understand!"); 1655 StoreVal = StoredVal->getOperand(0); 1656 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1657 } 1658 } 1659 new StoreInst(StoreVal, NewGV, false, 0, 1660 SI->getOrdering(), SI->getSynchScope(), SI); 1661 } else { 1662 // Change the load into a load of bool then a select. 1663 LoadInst *LI = cast<LoadInst>(UI); 1664 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1665 LI->getOrdering(), LI->getSynchScope(), LI); 1666 Value *NSI; 1667 if (IsOneZero) 1668 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1669 else 1670 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1671 NSI->takeName(LI); 1672 LI->replaceAllUsesWith(NSI); 1673 } 1674 UI->eraseFromParent(); 1675 } 1676 1677 // Retain the name of the old global variable. People who are debugging their 1678 // programs may expect these variables to be named the same. 1679 NewGV->takeName(GV); 1680 GV->eraseFromParent(); 1681 return true; 1682 } 1683 1684 bool GlobalOpt::deleteIfDead(GlobalValue &GV) { 1685 GV.removeDeadConstantUsers(); 1686 1687 if (!GV.isDiscardableIfUnused()) 1688 return false; 1689 1690 if (const Comdat *C = GV.getComdat()) 1691 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1692 return false; 1693 1694 bool Dead; 1695 if (auto *F = dyn_cast<Function>(&GV)) 1696 Dead = F->isDefTriviallyDead(); 1697 else 1698 Dead = GV.use_empty(); 1699 if (!Dead) 1700 return false; 1701 1702 DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1703 GV.eraseFromParent(); 1704 ++NumDeleted; 1705 return true; 1706 } 1707 1708 /// Analyze the specified global variable and optimize it if possible. If we 1709 /// make a change, return true. 1710 bool GlobalOpt::processGlobal(GlobalValue &GV) { 1711 // Do more involved optimizations if the global is internal. 1712 if (!GV.hasLocalLinkage()) 1713 return false; 1714 1715 GlobalStatus GS; 1716 1717 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1718 return false; 1719 1720 bool Changed = false; 1721 if (!GS.IsCompared && !GV.hasUnnamedAddr()) { 1722 GV.setUnnamedAddr(true); 1723 NumUnnamed++; 1724 Changed = true; 1725 } 1726 1727 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1728 if (!GVar) 1729 return Changed; 1730 1731 if (GVar->isConstant() || !GVar->hasInitializer()) 1732 return Changed; 1733 1734 return processInternalGlobal(GVar, GS) || Changed; 1735 } 1736 1737 bool GlobalOpt::isPointerValueDeadOnEntryToFunction(const Function *F, GlobalValue *GV) { 1738 // Find all uses of GV. We expect them all to be in F, and if we can't 1739 // identify any of the uses we bail out. 1740 // 1741 // On each of these uses, identify if the memory that GV points to is 1742 // used/required/live at the start of the function. If it is not, for example 1743 // if the first thing the function does is store to the GV, the GV can 1744 // possibly be demoted. 1745 // 1746 // We don't do an exhaustive search for memory operations - simply look 1747 // through bitcasts as they're quite common and benign. 1748 const DataLayout &DL = GV->getParent()->getDataLayout(); 1749 SmallVector<LoadInst *, 4> Loads; 1750 SmallVector<StoreInst *, 4> Stores; 1751 for (auto *U : GV->users()) { 1752 if (Operator::getOpcode(U) == Instruction::BitCast) { 1753 for (auto *UU : U->users()) { 1754 if (auto *LI = dyn_cast<LoadInst>(UU)) 1755 Loads.push_back(LI); 1756 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1757 Stores.push_back(SI); 1758 else 1759 return false; 1760 } 1761 continue; 1762 } 1763 1764 Instruction *I = dyn_cast<Instruction>(U); 1765 if (!I) 1766 return false; 1767 assert(I->getParent()->getParent() == F); 1768 1769 if (auto *LI = dyn_cast<LoadInst>(I)) 1770 Loads.push_back(LI); 1771 else if (auto *SI = dyn_cast<StoreInst>(I)) 1772 Stores.push_back(SI); 1773 else 1774 return false; 1775 } 1776 1777 // We have identified all uses of GV into loads and stores. Now check if all 1778 // of them are known not to depend on the value of the global at the function 1779 // entry point. We do this by ensuring that every load is dominated by at 1780 // least one store. 1781 auto &DT = getAnalysis<DominatorTreeWrapperPass>(*const_cast<Function *>(F)) 1782 .getDomTree(); 1783 1784 // The below check is quadratic. Check we're not going to do too many tests. 1785 // FIXME: Even though this will always have worst-case quadratic time, we 1786 // could put effort into minimizing the average time by putting stores that 1787 // have been shown to dominate at least one load at the beginning of the 1788 // Stores array, making subsequent dominance checks more likely to succeed 1789 // early. 1790 // 1791 // The threshold here is fairly large because global->local demotion is a 1792 // very powerful optimization should it fire. 1793 const unsigned Threshold = 100; 1794 if (Loads.size() * Stores.size() > Threshold) 1795 return false; 1796 1797 for (auto *L : Loads) { 1798 auto *LTy = L->getType(); 1799 if (!std::any_of(Stores.begin(), Stores.end(), [&](StoreInst *S) { 1800 auto *STy = S->getValueOperand()->getType(); 1801 // The load is only dominated by the store if DomTree says so 1802 // and the number of bits loaded in L is less than or equal to 1803 // the number of bits stored in S. 1804 return DT.dominates(S, L) && 1805 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1806 })) 1807 return false; 1808 } 1809 // All loads have known dependences inside F, so the global can be localized. 1810 return true; 1811 } 1812 1813 /// C may have non-instruction users. Can all of those users be turned into 1814 /// instructions? 1815 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1816 // We don't do this exhaustively. The most common pattern that we really need 1817 // to care about is a constant GEP or constant bitcast - so just looking 1818 // through one single ConstantExpr. 1819 // 1820 // The set of constants that this function returns true for must be able to be 1821 // handled by makeAllConstantUsesInstructions. 1822 for (auto *U : C->users()) { 1823 if (isa<Instruction>(U)) 1824 continue; 1825 if (!isa<ConstantExpr>(U)) 1826 // Non instruction, non-constantexpr user; cannot convert this. 1827 return false; 1828 for (auto *UU : U->users()) 1829 if (!isa<Instruction>(UU)) 1830 // A constantexpr used by another constant. We don't try and recurse any 1831 // further but just bail out at this point. 1832 return false; 1833 } 1834 1835 return true; 1836 } 1837 1838 /// C may have non-instruction users, and 1839 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1840 /// non-instruction users to instructions. 1841 static void makeAllConstantUsesInstructions(Constant *C) { 1842 SmallVector<ConstantExpr*,4> Users; 1843 for (auto *U : C->users()) { 1844 if (isa<ConstantExpr>(U)) 1845 Users.push_back(cast<ConstantExpr>(U)); 1846 else 1847 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1848 // should not have returned true for C. 1849 assert( 1850 isa<Instruction>(U) && 1851 "Can't transform non-constantexpr non-instruction to instruction!"); 1852 } 1853 1854 SmallVector<Value*,4> UUsers; 1855 for (auto *U : Users) { 1856 UUsers.clear(); 1857 for (auto *UU : U->users()) 1858 UUsers.push_back(UU); 1859 for (auto *UU : UUsers) { 1860 Instruction *UI = cast<Instruction>(UU); 1861 Instruction *NewU = U->getAsInstruction(); 1862 NewU->insertBefore(UI); 1863 UI->replaceUsesOfWith(U, NewU); 1864 } 1865 U->dropAllReferences(); 1866 } 1867 } 1868 1869 /// Analyze the specified global variable and optimize 1870 /// it if possible. If we make a change, return true. 1871 bool GlobalOpt::processInternalGlobal(GlobalVariable *GV, 1872 const GlobalStatus &GS) { 1873 auto &DL = GV->getParent()->getDataLayout(); 1874 // If this is a first class global and has only one accessing function and 1875 // this function is non-recursive, we replace the global with a local alloca 1876 // in this function. 1877 // 1878 // NOTE: It doesn't make sense to promote non-single-value types since we 1879 // are just replacing static memory to stack memory. 1880 // 1881 // If the global is in different address space, don't bring it to stack. 1882 if (!GS.HasMultipleAccessingFunctions && 1883 GS.AccessingFunction && 1884 GV->getValueType()->isSingleValueType() && 1885 GV->getType()->getAddressSpace() == 0 && 1886 !GV->isExternallyInitialized() && 1887 allNonInstructionUsersCanBeMadeInstructions(GV) && 1888 GS.AccessingFunction->doesNotRecurse() && 1889 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV) ) { 1890 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1891 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1892 ->getEntryBlock().begin()); 1893 Type *ElemTy = GV->getValueType(); 1894 // FIXME: Pass Global's alignment when globals have alignment 1895 AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr, 1896 GV->getName(), &FirstI); 1897 if (!isa<UndefValue>(GV->getInitializer())) 1898 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1899 1900 makeAllConstantUsesInstructions(GV); 1901 1902 GV->replaceAllUsesWith(Alloca); 1903 GV->eraseFromParent(); 1904 ++NumLocalized; 1905 return true; 1906 } 1907 1908 // If the global is never loaded (but may be stored to), it is dead. 1909 // Delete it now. 1910 if (!GS.IsLoaded) { 1911 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1912 1913 bool Changed; 1914 if (isLeakCheckerRoot(GV)) { 1915 // Delete any constant stores to the global. 1916 Changed = CleanupPointerRootUsers(GV, TLI); 1917 } else { 1918 // Delete any stores we can find to the global. We may not be able to 1919 // make it completely dead though. 1920 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1921 } 1922 1923 // If the global is dead now, delete it. 1924 if (GV->use_empty()) { 1925 GV->eraseFromParent(); 1926 ++NumDeleted; 1927 Changed = true; 1928 } 1929 return Changed; 1930 1931 } else if (GS.StoredType <= GlobalStatus::InitializerStored) { 1932 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1933 GV->setConstant(true); 1934 1935 // Clean up any obviously simplifiable users now. 1936 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1937 1938 // If the global is dead now, just nuke it. 1939 if (GV->use_empty()) { 1940 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1941 << "all users and delete global!\n"); 1942 GV->eraseFromParent(); 1943 ++NumDeleted; 1944 } 1945 1946 ++NumMarked; 1947 return true; 1948 } else if (!GV->getInitializer()->getType()->isSingleValueType()) { 1949 const DataLayout &DL = GV->getParent()->getDataLayout(); 1950 if (SRAGlobal(GV, DL)) 1951 return true; 1952 } else if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1953 // If the initial value for the global was an undef value, and if only 1954 // one other value was stored into it, we can just change the 1955 // initializer to be the stored value, then delete all stores to the 1956 // global. This allows us to mark it constant. 1957 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1958 if (isa<UndefValue>(GV->getInitializer())) { 1959 // Change the initial value here. 1960 GV->setInitializer(SOVConstant); 1961 1962 // Clean up any obviously simplifiable users now. 1963 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1964 1965 if (GV->use_empty()) { 1966 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1967 << "simplify all users and delete global!\n"); 1968 GV->eraseFromParent(); 1969 ++NumDeleted; 1970 } 1971 ++NumSubstitute; 1972 return true; 1973 } 1974 1975 // Try to optimize globals based on the knowledge that only one value 1976 // (besides its initializer) is ever stored to the global. 1977 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI)) 1978 return true; 1979 1980 // Otherwise, if the global was not a boolean, we can shrink it to be a 1981 // boolean. 1982 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 1983 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1984 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1985 ++NumShrunkToBool; 1986 return true; 1987 } 1988 } 1989 } 1990 } 1991 1992 return false; 1993 } 1994 1995 /// Walk all of the direct calls of the specified function, changing them to 1996 /// FastCC. 1997 static void ChangeCalleesToFastCall(Function *F) { 1998 for (User *U : F->users()) { 1999 if (isa<BlockAddress>(U)) 2000 continue; 2001 CallSite CS(cast<Instruction>(U)); 2002 CS.setCallingConv(CallingConv::Fast); 2003 } 2004 } 2005 2006 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) { 2007 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 2008 unsigned Index = Attrs.getSlotIndex(i); 2009 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest)) 2010 continue; 2011 2012 // There can be only one. 2013 return Attrs.removeAttribute(C, Index, Attribute::Nest); 2014 } 2015 2016 return Attrs; 2017 } 2018 2019 static void RemoveNestAttribute(Function *F) { 2020 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 2021 for (User *U : F->users()) { 2022 if (isa<BlockAddress>(U)) 2023 continue; 2024 CallSite CS(cast<Instruction>(U)); 2025 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 2026 } 2027 } 2028 2029 /// Return true if this is a calling convention that we'd like to change. The 2030 /// idea here is that we don't want to mess with the convention if the user 2031 /// explicitly requested something with performance implications like coldcc, 2032 /// GHC, or anyregcc. 2033 static bool isProfitableToMakeFastCC(Function *F) { 2034 CallingConv::ID CC = F->getCallingConv(); 2035 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2036 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall; 2037 } 2038 2039 bool GlobalOpt::OptimizeFunctions(Module &M) { 2040 bool Changed = false; 2041 // Optimize functions. 2042 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2043 Function *F = &*FI++; 2044 // Functions without names cannot be referenced outside this module. 2045 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2046 F->setLinkage(GlobalValue::InternalLinkage); 2047 2048 if (deleteIfDead(*F)) { 2049 Changed = true; 2050 continue; 2051 } 2052 2053 Changed |= processGlobal(*F); 2054 2055 if (!F->hasLocalLinkage()) 2056 continue; 2057 if (isProfitableToMakeFastCC(F) && !F->isVarArg() && 2058 !F->hasAddressTaken()) { 2059 // If this function has a calling convention worth changing, is not a 2060 // varargs function, and is only called directly, promote it to use the 2061 // Fast calling convention. 2062 F->setCallingConv(CallingConv::Fast); 2063 ChangeCalleesToFastCall(F); 2064 ++NumFastCallFns; 2065 Changed = true; 2066 } 2067 2068 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2069 !F->hasAddressTaken()) { 2070 // The function is not used by a trampoline intrinsic, so it is safe 2071 // to remove the 'nest' attribute. 2072 RemoveNestAttribute(F); 2073 ++NumNestRemoved; 2074 Changed = true; 2075 } 2076 } 2077 return Changed; 2078 } 2079 2080 bool GlobalOpt::OptimizeGlobalVars(Module &M) { 2081 bool Changed = false; 2082 2083 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2084 GVI != E; ) { 2085 GlobalVariable *GV = &*GVI++; 2086 // Global variables without names cannot be referenced outside this module. 2087 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2088 GV->setLinkage(GlobalValue::InternalLinkage); 2089 // Simplify the initializer. 2090 if (GV->hasInitializer()) 2091 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) { 2092 auto &DL = M.getDataLayout(); 2093 Constant *New = ConstantFoldConstantExpression(CE, DL, TLI); 2094 if (New && New != CE) 2095 GV->setInitializer(New); 2096 } 2097 2098 if (deleteIfDead(*GV)) { 2099 Changed = true; 2100 continue; 2101 } 2102 2103 Changed |= processGlobal(*GV); 2104 } 2105 return Changed; 2106 } 2107 2108 /// Evaluate a piece of a constantexpr store into a global initializer. This 2109 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2110 /// GEP operands of Addr [0, OpNo) have been stepped into. 2111 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2112 ConstantExpr *Addr, unsigned OpNo) { 2113 // Base case of the recursion. 2114 if (OpNo == Addr->getNumOperands()) { 2115 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2116 return Val; 2117 } 2118 2119 SmallVector<Constant*, 32> Elts; 2120 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2121 // Break up the constant into its elements. 2122 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2123 Elts.push_back(Init->getAggregateElement(i)); 2124 2125 // Replace the element that we are supposed to. 2126 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2127 unsigned Idx = CU->getZExtValue(); 2128 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2129 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2130 2131 // Return the modified struct. 2132 return ConstantStruct::get(STy, Elts); 2133 } 2134 2135 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2136 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2137 2138 uint64_t NumElts; 2139 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy)) 2140 NumElts = ATy->getNumElements(); 2141 else 2142 NumElts = InitTy->getVectorNumElements(); 2143 2144 // Break up the array into elements. 2145 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2146 Elts.push_back(Init->getAggregateElement(i)); 2147 2148 assert(CI->getZExtValue() < NumElts); 2149 Elts[CI->getZExtValue()] = 2150 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2151 2152 if (Init->getType()->isArrayTy()) 2153 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2154 return ConstantVector::get(Elts); 2155 } 2156 2157 /// We have decided that Addr (which satisfies the predicate 2158 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2159 static void CommitValueTo(Constant *Val, Constant *Addr) { 2160 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2161 assert(GV->hasInitializer()); 2162 GV->setInitializer(Val); 2163 return; 2164 } 2165 2166 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2167 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2168 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2169 } 2170 2171 /// Evaluate static constructors in the function, if we can. Return true if we 2172 /// can, false otherwise. 2173 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2174 const TargetLibraryInfo *TLI) { 2175 // Call the function. 2176 Evaluator Eval(DL, TLI); 2177 Constant *RetValDummy; 2178 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2179 SmallVector<Constant*, 0>()); 2180 2181 if (EvalSuccess) { 2182 ++NumCtorsEvaluated; 2183 2184 // We succeeded at evaluation: commit the result. 2185 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2186 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2187 << " stores.\n"); 2188 for (DenseMap<Constant*, Constant*>::const_iterator I = 2189 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end(); 2190 I != E; ++I) 2191 CommitValueTo(I->second, I->first); 2192 for (GlobalVariable *GV : Eval.getInvariants()) 2193 GV->setConstant(true); 2194 } 2195 2196 return EvalSuccess; 2197 } 2198 2199 static int compareNames(Constant *const *A, Constant *const *B) { 2200 Value *AStripped = (*A)->stripPointerCastsNoFollowAliases(); 2201 Value *BStripped = (*B)->stripPointerCastsNoFollowAliases(); 2202 return AStripped->getName().compare(BStripped->getName()); 2203 } 2204 2205 static void setUsedInitializer(GlobalVariable &V, 2206 const SmallPtrSet<GlobalValue *, 8> &Init) { 2207 if (Init.empty()) { 2208 V.eraseFromParent(); 2209 return; 2210 } 2211 2212 // Type of pointer to the array of pointers. 2213 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2214 2215 SmallVector<llvm::Constant *, 8> UsedArray; 2216 for (GlobalValue *GV : Init) { 2217 Constant *Cast 2218 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2219 UsedArray.push_back(Cast); 2220 } 2221 // Sort to get deterministic order. 2222 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2223 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2224 2225 Module *M = V.getParent(); 2226 V.removeFromParent(); 2227 GlobalVariable *NV = 2228 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage, 2229 llvm::ConstantArray::get(ATy, UsedArray), ""); 2230 NV->takeName(&V); 2231 NV->setSection("llvm.metadata"); 2232 delete &V; 2233 } 2234 2235 namespace { 2236 /// An easy to access representation of llvm.used and llvm.compiler.used. 2237 class LLVMUsed { 2238 SmallPtrSet<GlobalValue *, 8> Used; 2239 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2240 GlobalVariable *UsedV; 2241 GlobalVariable *CompilerUsedV; 2242 2243 public: 2244 LLVMUsed(Module &M) { 2245 UsedV = collectUsedGlobalVariables(M, Used, false); 2246 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2247 } 2248 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator; 2249 typedef iterator_range<iterator> used_iterator_range; 2250 iterator usedBegin() { return Used.begin(); } 2251 iterator usedEnd() { return Used.end(); } 2252 used_iterator_range used() { 2253 return used_iterator_range(usedBegin(), usedEnd()); 2254 } 2255 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2256 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2257 used_iterator_range compilerUsed() { 2258 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2259 } 2260 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2261 bool compilerUsedCount(GlobalValue *GV) const { 2262 return CompilerUsed.count(GV); 2263 } 2264 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2265 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2266 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2267 bool compilerUsedInsert(GlobalValue *GV) { 2268 return CompilerUsed.insert(GV).second; 2269 } 2270 2271 void syncVariablesAndSets() { 2272 if (UsedV) 2273 setUsedInitializer(*UsedV, Used); 2274 if (CompilerUsedV) 2275 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2276 } 2277 }; 2278 } 2279 2280 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2281 if (GA.use_empty()) // No use at all. 2282 return false; 2283 2284 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2285 "We should have removed the duplicated " 2286 "element from llvm.compiler.used"); 2287 if (!GA.hasOneUse()) 2288 // Strictly more than one use. So at least one is not in llvm.used and 2289 // llvm.compiler.used. 2290 return true; 2291 2292 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2293 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2294 } 2295 2296 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2297 const LLVMUsed &U) { 2298 unsigned N = 2; 2299 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2300 "We should have removed the duplicated " 2301 "element from llvm.compiler.used"); 2302 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2303 ++N; 2304 return V.hasNUsesOrMore(N); 2305 } 2306 2307 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2308 if (!GA.hasLocalLinkage()) 2309 return true; 2310 2311 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2312 } 2313 2314 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2315 bool &RenameTarget) { 2316 RenameTarget = false; 2317 bool Ret = false; 2318 if (hasUseOtherThanLLVMUsed(GA, U)) 2319 Ret = true; 2320 2321 // If the alias is externally visible, we may still be able to simplify it. 2322 if (!mayHaveOtherReferences(GA, U)) 2323 return Ret; 2324 2325 // If the aliasee has internal linkage, give it the name and linkage 2326 // of the alias, and delete the alias. This turns: 2327 // define internal ... @f(...) 2328 // @a = alias ... @f 2329 // into: 2330 // define ... @a(...) 2331 Constant *Aliasee = GA.getAliasee(); 2332 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2333 if (!Target->hasLocalLinkage()) 2334 return Ret; 2335 2336 // Do not perform the transform if multiple aliases potentially target the 2337 // aliasee. This check also ensures that it is safe to replace the section 2338 // and other attributes of the aliasee with those of the alias. 2339 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2340 return Ret; 2341 2342 RenameTarget = true; 2343 return true; 2344 } 2345 2346 bool GlobalOpt::OptimizeGlobalAliases(Module &M) { 2347 bool Changed = false; 2348 LLVMUsed Used(M); 2349 2350 for (GlobalValue *GV : Used.used()) 2351 Used.compilerUsedErase(GV); 2352 2353 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2354 I != E;) { 2355 GlobalAlias *J = &*I++; 2356 2357 // Aliases without names cannot be referenced outside this module. 2358 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2359 J->setLinkage(GlobalValue::InternalLinkage); 2360 2361 if (deleteIfDead(*J)) { 2362 Changed = true; 2363 continue; 2364 } 2365 2366 // If the aliasee may change at link time, nothing can be done - bail out. 2367 if (J->isInterposable()) 2368 continue; 2369 2370 Constant *Aliasee = J->getAliasee(); 2371 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2372 // We can't trivially replace the alias with the aliasee if the aliasee is 2373 // non-trivial in some way. 2374 // TODO: Try to handle non-zero GEPs of local aliasees. 2375 if (!Target) 2376 continue; 2377 Target->removeDeadConstantUsers(); 2378 2379 // Make all users of the alias use the aliasee instead. 2380 bool RenameTarget; 2381 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2382 continue; 2383 2384 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2385 ++NumAliasesResolved; 2386 Changed = true; 2387 2388 if (RenameTarget) { 2389 // Give the aliasee the name, linkage and other attributes of the alias. 2390 Target->takeName(&*J); 2391 Target->setLinkage(J->getLinkage()); 2392 Target->setVisibility(J->getVisibility()); 2393 Target->setDLLStorageClass(J->getDLLStorageClass()); 2394 2395 if (Used.usedErase(&*J)) 2396 Used.usedInsert(Target); 2397 2398 if (Used.compilerUsedErase(&*J)) 2399 Used.compilerUsedInsert(Target); 2400 } else if (mayHaveOtherReferences(*J, Used)) 2401 continue; 2402 2403 // Delete the alias. 2404 M.getAliasList().erase(J); 2405 ++NumAliasesRemoved; 2406 Changed = true; 2407 } 2408 2409 Used.syncVariablesAndSets(); 2410 2411 return Changed; 2412 } 2413 2414 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2415 if (!TLI->has(LibFunc::cxa_atexit)) 2416 return nullptr; 2417 2418 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit)); 2419 2420 if (!Fn) 2421 return nullptr; 2422 2423 FunctionType *FTy = Fn->getFunctionType(); 2424 2425 // Checking that the function has the right return type, the right number of 2426 // parameters and that they all have pointer types should be enough. 2427 if (!FTy->getReturnType()->isIntegerTy() || 2428 FTy->getNumParams() != 3 || 2429 !FTy->getParamType(0)->isPointerTy() || 2430 !FTy->getParamType(1)->isPointerTy() || 2431 !FTy->getParamType(2)->isPointerTy()) 2432 return nullptr; 2433 2434 return Fn; 2435 } 2436 2437 /// Returns whether the given function is an empty C++ destructor and can 2438 /// therefore be eliminated. 2439 /// Note that we assume that other optimization passes have already simplified 2440 /// the code so we only look for a function with a single basic block, where 2441 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2442 /// other side-effect free instructions. 2443 static bool cxxDtorIsEmpty(const Function &Fn, 2444 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2445 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2446 // nounwind, but that doesn't seem worth doing. 2447 if (Fn.isDeclaration()) 2448 return false; 2449 2450 if (++Fn.begin() != Fn.end()) 2451 return false; 2452 2453 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2454 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2455 I != E; ++I) { 2456 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2457 // Ignore debug intrinsics. 2458 if (isa<DbgInfoIntrinsic>(CI)) 2459 continue; 2460 2461 const Function *CalledFn = CI->getCalledFunction(); 2462 2463 if (!CalledFn) 2464 return false; 2465 2466 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2467 2468 // Don't treat recursive functions as empty. 2469 if (!NewCalledFunctions.insert(CalledFn).second) 2470 return false; 2471 2472 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2473 return false; 2474 } else if (isa<ReturnInst>(*I)) 2475 return true; // We're done. 2476 else if (I->mayHaveSideEffects()) 2477 return false; // Destructor with side effects, bail. 2478 } 2479 2480 return false; 2481 } 2482 2483 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2484 /// Itanium C++ ABI p3.3.5: 2485 /// 2486 /// After constructing a global (or local static) object, that will require 2487 /// destruction on exit, a termination function is registered as follows: 2488 /// 2489 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2490 /// 2491 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2492 /// call f(p) when DSO d is unloaded, before all such termination calls 2493 /// registered before this one. It returns zero if registration is 2494 /// successful, nonzero on failure. 2495 2496 // This pass will look for calls to __cxa_atexit where the function is trivial 2497 // and remove them. 2498 bool Changed = false; 2499 2500 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2501 I != E;) { 2502 // We're only interested in calls. Theoretically, we could handle invoke 2503 // instructions as well, but neither llvm-gcc nor clang generate invokes 2504 // to __cxa_atexit. 2505 CallInst *CI = dyn_cast<CallInst>(*I++); 2506 if (!CI) 2507 continue; 2508 2509 Function *DtorFn = 2510 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2511 if (!DtorFn) 2512 continue; 2513 2514 SmallPtrSet<const Function *, 8> CalledFunctions; 2515 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 2516 continue; 2517 2518 // Just remove the call. 2519 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2520 CI->eraseFromParent(); 2521 2522 ++NumCXXDtorsRemoved; 2523 2524 Changed |= true; 2525 } 2526 2527 return Changed; 2528 } 2529 2530 bool GlobalOpt::runOnModule(Module &M) { 2531 if (skipModule(M)) 2532 return false; 2533 2534 bool Changed = false; 2535 2536 auto &DL = M.getDataLayout(); 2537 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2538 2539 bool LocalChange = true; 2540 while (LocalChange) { 2541 LocalChange = false; 2542 2543 NotDiscardableComdats.clear(); 2544 for (const GlobalVariable &GV : M.globals()) 2545 if (const Comdat *C = GV.getComdat()) 2546 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2547 NotDiscardableComdats.insert(C); 2548 for (Function &F : M) 2549 if (const Comdat *C = F.getComdat()) 2550 if (!F.isDefTriviallyDead()) 2551 NotDiscardableComdats.insert(C); 2552 for (GlobalAlias &GA : M.aliases()) 2553 if (const Comdat *C = GA.getComdat()) 2554 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2555 NotDiscardableComdats.insert(C); 2556 2557 // Delete functions that are trivially dead, ccc -> fastcc 2558 LocalChange |= OptimizeFunctions(M); 2559 2560 // Optimize global_ctors list. 2561 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2562 return EvaluateStaticConstructor(F, DL, TLI); 2563 }); 2564 2565 // Optimize non-address-taken globals. 2566 LocalChange |= OptimizeGlobalVars(M); 2567 2568 // Resolve aliases, when possible. 2569 LocalChange |= OptimizeGlobalAliases(M); 2570 2571 // Try to remove trivial global destructors if they are not removed 2572 // already. 2573 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 2574 if (CXAAtExitFn) 2575 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2576 2577 Changed |= LocalChange; 2578 } 2579 2580 // TODO: Move all global ctors functions to the end of the module for code 2581 // layout. 2582 2583 return Changed; 2584 } 2585