1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms simple global variables that never have their address
11 // taken.  If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/IR/CallSite.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/CtorUtils.h"
44 #include "llvm/Transforms/Utils/Evaluator.h"
45 #include "llvm/Transforms/Utils/GlobalStatus.h"
46 #include <algorithm>
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "globalopt"
50 
51 STATISTIC(NumMarked    , "Number of globals marked constant");
52 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
53 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
54 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
55 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
56 STATISTIC(NumDeleted   , "Number of globals deleted");
57 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
58 STATISTIC(NumLocalized , "Number of globals localized");
59 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
60 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
61 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
62 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
63 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
64 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
65 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
66 
67 namespace {
68   struct GlobalOpt : public ModulePass {
69     void getAnalysisUsage(AnalysisUsage &AU) const override {
70       AU.addRequired<TargetLibraryInfoWrapperPass>();
71       AU.addRequired<DominatorTreeWrapperPass>();
72     }
73     static char ID; // Pass identification, replacement for typeid
74     GlobalOpt() : ModulePass(ID) {
75       initializeGlobalOptPass(*PassRegistry::getPassRegistry());
76     }
77 
78     bool runOnModule(Module &M) override;
79 
80   private:
81     bool OptimizeFunctions(Module &M);
82     bool OptimizeGlobalVars(Module &M);
83     bool OptimizeGlobalAliases(Module &M);
84     bool deleteIfDead(GlobalValue &GV);
85     bool processGlobal(GlobalValue &GV);
86     bool processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS);
87     bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
88 
89     bool isPointerValueDeadOnEntryToFunction(const Function *F,
90                                              GlobalValue *GV);
91 
92     TargetLibraryInfo *TLI;
93     SmallSet<const Comdat *, 8> NotDiscardableComdats;
94   };
95 }
96 
97 char GlobalOpt::ID = 0;
98 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
99                 "Global Variable Optimizer", false, false)
100 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
101 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
102 INITIALIZE_PASS_END(GlobalOpt, "globalopt",
103                 "Global Variable Optimizer", false, false)
104 
105 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
106 
107 /// Is this global variable possibly used by a leak checker as a root?  If so,
108 /// we might not really want to eliminate the stores to it.
109 static bool isLeakCheckerRoot(GlobalVariable *GV) {
110   // A global variable is a root if it is a pointer, or could plausibly contain
111   // a pointer.  There are two challenges; one is that we could have a struct
112   // the has an inner member which is a pointer.  We recurse through the type to
113   // detect these (up to a point).  The other is that we may actually be a union
114   // of a pointer and another type, and so our LLVM type is an integer which
115   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
116   // potentially contained here.
117 
118   if (GV->hasPrivateLinkage())
119     return false;
120 
121   SmallVector<Type *, 4> Types;
122   Types.push_back(GV->getValueType());
123 
124   unsigned Limit = 20;
125   do {
126     Type *Ty = Types.pop_back_val();
127     switch (Ty->getTypeID()) {
128       default: break;
129       case Type::PointerTyID: return true;
130       case Type::ArrayTyID:
131       case Type::VectorTyID: {
132         SequentialType *STy = cast<SequentialType>(Ty);
133         Types.push_back(STy->getElementType());
134         break;
135       }
136       case Type::StructTyID: {
137         StructType *STy = cast<StructType>(Ty);
138         if (STy->isOpaque()) return true;
139         for (StructType::element_iterator I = STy->element_begin(),
140                  E = STy->element_end(); I != E; ++I) {
141           Type *InnerTy = *I;
142           if (isa<PointerType>(InnerTy)) return true;
143           if (isa<CompositeType>(InnerTy))
144             Types.push_back(InnerTy);
145         }
146         break;
147       }
148     }
149     if (--Limit == 0) return true;
150   } while (!Types.empty());
151   return false;
152 }
153 
154 /// Given a value that is stored to a global but never read, determine whether
155 /// it's safe to remove the store and the chain of computation that feeds the
156 /// store.
157 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
158   do {
159     if (isa<Constant>(V))
160       return true;
161     if (!V->hasOneUse())
162       return false;
163     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
164         isa<GlobalValue>(V))
165       return false;
166     if (isAllocationFn(V, TLI))
167       return true;
168 
169     Instruction *I = cast<Instruction>(V);
170     if (I->mayHaveSideEffects())
171       return false;
172     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
173       if (!GEP->hasAllConstantIndices())
174         return false;
175     } else if (I->getNumOperands() != 1) {
176       return false;
177     }
178 
179     V = I->getOperand(0);
180   } while (1);
181 }
182 
183 /// This GV is a pointer root.  Loop over all users of the global and clean up
184 /// any that obviously don't assign the global a value that isn't dynamically
185 /// allocated.
186 static bool CleanupPointerRootUsers(GlobalVariable *GV,
187                                     const TargetLibraryInfo *TLI) {
188   // A brief explanation of leak checkers.  The goal is to find bugs where
189   // pointers are forgotten, causing an accumulating growth in memory
190   // usage over time.  The common strategy for leak checkers is to whitelist the
191   // memory pointed to by globals at exit.  This is popular because it also
192   // solves another problem where the main thread of a C++ program may shut down
193   // before other threads that are still expecting to use those globals.  To
194   // handle that case, we expect the program may create a singleton and never
195   // destroy it.
196 
197   bool Changed = false;
198 
199   // If Dead[n].first is the only use of a malloc result, we can delete its
200   // chain of computation and the store to the global in Dead[n].second.
201   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
202 
203   // Constants can't be pointers to dynamically allocated memory.
204   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
205        UI != E;) {
206     User *U = *UI++;
207     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
208       Value *V = SI->getValueOperand();
209       if (isa<Constant>(V)) {
210         Changed = true;
211         SI->eraseFromParent();
212       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
213         if (I->hasOneUse())
214           Dead.push_back(std::make_pair(I, SI));
215       }
216     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
217       if (isa<Constant>(MSI->getValue())) {
218         Changed = true;
219         MSI->eraseFromParent();
220       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
221         if (I->hasOneUse())
222           Dead.push_back(std::make_pair(I, MSI));
223       }
224     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
225       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
226       if (MemSrc && MemSrc->isConstant()) {
227         Changed = true;
228         MTI->eraseFromParent();
229       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
230         if (I->hasOneUse())
231           Dead.push_back(std::make_pair(I, MTI));
232       }
233     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
234       if (CE->use_empty()) {
235         CE->destroyConstant();
236         Changed = true;
237       }
238     } else if (Constant *C = dyn_cast<Constant>(U)) {
239       if (isSafeToDestroyConstant(C)) {
240         C->destroyConstant();
241         // This could have invalidated UI, start over from scratch.
242         Dead.clear();
243         CleanupPointerRootUsers(GV, TLI);
244         return true;
245       }
246     }
247   }
248 
249   for (int i = 0, e = Dead.size(); i != e; ++i) {
250     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
251       Dead[i].second->eraseFromParent();
252       Instruction *I = Dead[i].first;
253       do {
254         if (isAllocationFn(I, TLI))
255           break;
256         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
257         if (!J)
258           break;
259         I->eraseFromParent();
260         I = J;
261       } while (1);
262       I->eraseFromParent();
263     }
264   }
265 
266   return Changed;
267 }
268 
269 /// We just marked GV constant.  Loop over all users of the global, cleaning up
270 /// the obvious ones.  This is largely just a quick scan over the use list to
271 /// clean up the easy and obvious cruft.  This returns true if it made a change.
272 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
273                                        const DataLayout &DL,
274                                        TargetLibraryInfo *TLI) {
275   bool Changed = false;
276   // Note that we need to use a weak value handle for the worklist items. When
277   // we delete a constant array, we may also be holding pointer to one of its
278   // elements (or an element of one of its elements if we're dealing with an
279   // array of arrays) in the worklist.
280   SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end());
281   while (!WorkList.empty()) {
282     Value *UV = WorkList.pop_back_val();
283     if (!UV)
284       continue;
285 
286     User *U = cast<User>(UV);
287 
288     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
289       if (Init) {
290         // Replace the load with the initializer.
291         LI->replaceAllUsesWith(Init);
292         LI->eraseFromParent();
293         Changed = true;
294       }
295     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
296       // Store must be unreachable or storing Init into the global.
297       SI->eraseFromParent();
298       Changed = true;
299     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
300       if (CE->getOpcode() == Instruction::GetElementPtr) {
301         Constant *SubInit = nullptr;
302         if (Init)
303           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
304         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
305       } else if ((CE->getOpcode() == Instruction::BitCast &&
306                   CE->getType()->isPointerTy()) ||
307                  CE->getOpcode() == Instruction::AddrSpaceCast) {
308         // Pointer cast, delete any stores and memsets to the global.
309         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
310       }
311 
312       if (CE->use_empty()) {
313         CE->destroyConstant();
314         Changed = true;
315       }
316     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
317       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
318       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
319       // and will invalidate our notion of what Init is.
320       Constant *SubInit = nullptr;
321       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
322         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
323             ConstantFoldInstruction(GEP, DL, TLI));
324         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
325           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
326 
327         // If the initializer is an all-null value and we have an inbounds GEP,
328         // we already know what the result of any load from that GEP is.
329         // TODO: Handle splats.
330         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
331           SubInit = Constant::getNullValue(GEP->getResultElementType());
332       }
333       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
334 
335       if (GEP->use_empty()) {
336         GEP->eraseFromParent();
337         Changed = true;
338       }
339     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
340       if (MI->getRawDest() == V) {
341         MI->eraseFromParent();
342         Changed = true;
343       }
344 
345     } else if (Constant *C = dyn_cast<Constant>(U)) {
346       // If we have a chain of dead constantexprs or other things dangling from
347       // us, and if they are all dead, nuke them without remorse.
348       if (isSafeToDestroyConstant(C)) {
349         C->destroyConstant();
350         CleanupConstantGlobalUsers(V, Init, DL, TLI);
351         return true;
352       }
353     }
354   }
355   return Changed;
356 }
357 
358 /// Return true if the specified instruction is a safe user of a derived
359 /// expression from a global that we want to SROA.
360 static bool isSafeSROAElementUse(Value *V) {
361   // We might have a dead and dangling constant hanging off of here.
362   if (Constant *C = dyn_cast<Constant>(V))
363     return isSafeToDestroyConstant(C);
364 
365   Instruction *I = dyn_cast<Instruction>(V);
366   if (!I) return false;
367 
368   // Loads are ok.
369   if (isa<LoadInst>(I)) return true;
370 
371   // Stores *to* the pointer are ok.
372   if (StoreInst *SI = dyn_cast<StoreInst>(I))
373     return SI->getOperand(0) != V;
374 
375   // Otherwise, it must be a GEP.
376   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
377   if (!GEPI) return false;
378 
379   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
380       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
381     return false;
382 
383   for (User *U : GEPI->users())
384     if (!isSafeSROAElementUse(U))
385       return false;
386   return true;
387 }
388 
389 
390 /// U is a direct user of the specified global value.  Look at it and its uses
391 /// and decide whether it is safe to SROA this global.
392 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
393   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
394   if (!isa<GetElementPtrInst>(U) &&
395       (!isa<ConstantExpr>(U) ||
396        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
397     return false;
398 
399   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
400   // don't like < 3 operand CE's, and we don't like non-constant integer
401   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
402   // value of C.
403   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
404       !cast<Constant>(U->getOperand(1))->isNullValue() ||
405       !isa<ConstantInt>(U->getOperand(2)))
406     return false;
407 
408   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
409   ++GEPI;  // Skip over the pointer index.
410 
411   // If this is a use of an array allocation, do a bit more checking for sanity.
412   if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
413     uint64_t NumElements = AT->getNumElements();
414     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
415 
416     // Check to make sure that index falls within the array.  If not,
417     // something funny is going on, so we won't do the optimization.
418     //
419     if (Idx->getZExtValue() >= NumElements)
420       return false;
421 
422     // We cannot scalar repl this level of the array unless any array
423     // sub-indices are in-range constants.  In particular, consider:
424     // A[0][i].  We cannot know that the user isn't doing invalid things like
425     // allowing i to index an out-of-range subscript that accesses A[1].
426     //
427     // Scalar replacing *just* the outer index of the array is probably not
428     // going to be a win anyway, so just give up.
429     for (++GEPI; // Skip array index.
430          GEPI != E;
431          ++GEPI) {
432       uint64_t NumElements;
433       if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
434         NumElements = SubArrayTy->getNumElements();
435       else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
436         NumElements = SubVectorTy->getNumElements();
437       else {
438         assert((*GEPI)->isStructTy() &&
439                "Indexed GEP type is not array, vector, or struct!");
440         continue;
441       }
442 
443       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
444       if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
445         return false;
446     }
447   }
448 
449   for (User *UU : U->users())
450     if (!isSafeSROAElementUse(UU))
451       return false;
452 
453   return true;
454 }
455 
456 /// Look at all uses of the global and decide whether it is safe for us to
457 /// perform this transformation.
458 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
459   for (User *U : GV->users())
460     if (!IsUserOfGlobalSafeForSRA(U, GV))
461       return false;
462 
463   return true;
464 }
465 
466 
467 /// Perform scalar replacement of aggregates on the specified global variable.
468 /// This opens the door for other optimizations by exposing the behavior of the
469 /// program in a more fine-grained way.  We have determined that this
470 /// transformation is safe already.  We return the first global variable we
471 /// insert so that the caller can reprocess it.
472 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
473   // Make sure this global only has simple uses that we can SRA.
474   if (!GlobalUsersSafeToSRA(GV))
475     return nullptr;
476 
477   assert(GV->hasLocalLinkage() && !GV->isConstant());
478   Constant *Init = GV->getInitializer();
479   Type *Ty = Init->getType();
480 
481   std::vector<GlobalVariable*> NewGlobals;
482   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
483 
484   // Get the alignment of the global, either explicit or target-specific.
485   unsigned StartAlignment = GV->getAlignment();
486   if (StartAlignment == 0)
487     StartAlignment = DL.getABITypeAlignment(GV->getType());
488 
489   if (StructType *STy = dyn_cast<StructType>(Ty)) {
490     NewGlobals.reserve(STy->getNumElements());
491     const StructLayout &Layout = *DL.getStructLayout(STy);
492     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
493       Constant *In = Init->getAggregateElement(i);
494       assert(In && "Couldn't get element of initializer?");
495       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
496                                                GlobalVariable::InternalLinkage,
497                                                In, GV->getName()+"."+Twine(i),
498                                                GV->getThreadLocalMode(),
499                                               GV->getType()->getAddressSpace());
500       NGV->setExternallyInitialized(GV->isExternallyInitialized());
501       NGV->copyAttributesFrom(GV);
502       Globals.push_back(NGV);
503       NewGlobals.push_back(NGV);
504 
505       // Calculate the known alignment of the field.  If the original aggregate
506       // had 256 byte alignment for example, something might depend on that:
507       // propagate info to each field.
508       uint64_t FieldOffset = Layout.getElementOffset(i);
509       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
510       if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
511         NGV->setAlignment(NewAlign);
512     }
513   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
514     unsigned NumElements = 0;
515     if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
516       NumElements = ATy->getNumElements();
517     else
518       NumElements = cast<VectorType>(STy)->getNumElements();
519 
520     if (NumElements > 16 && GV->hasNUsesOrMore(16))
521       return nullptr; // It's not worth it.
522     NewGlobals.reserve(NumElements);
523 
524     uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType());
525     unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType());
526     for (unsigned i = 0, e = NumElements; i != e; ++i) {
527       Constant *In = Init->getAggregateElement(i);
528       assert(In && "Couldn't get element of initializer?");
529 
530       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
531                                                GlobalVariable::InternalLinkage,
532                                                In, GV->getName()+"."+Twine(i),
533                                                GV->getThreadLocalMode(),
534                                               GV->getType()->getAddressSpace());
535       NGV->setExternallyInitialized(GV->isExternallyInitialized());
536       NGV->copyAttributesFrom(GV);
537       Globals.push_back(NGV);
538       NewGlobals.push_back(NGV);
539 
540       // Calculate the known alignment of the field.  If the original aggregate
541       // had 256 byte alignment for example, something might depend on that:
542       // propagate info to each field.
543       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
544       if (NewAlign > EltAlign)
545         NGV->setAlignment(NewAlign);
546     }
547   }
548 
549   if (NewGlobals.empty())
550     return nullptr;
551 
552   DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
553 
554   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
555 
556   // Loop over all of the uses of the global, replacing the constantexpr geps,
557   // with smaller constantexpr geps or direct references.
558   while (!GV->use_empty()) {
559     User *GEP = GV->user_back();
560     assert(((isa<ConstantExpr>(GEP) &&
561              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
562             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
563 
564     // Ignore the 1th operand, which has to be zero or else the program is quite
565     // broken (undefined).  Get the 2nd operand, which is the structure or array
566     // index.
567     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
568     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
569 
570     Value *NewPtr = NewGlobals[Val];
571     Type *NewTy = NewGlobals[Val]->getValueType();
572 
573     // Form a shorter GEP if needed.
574     if (GEP->getNumOperands() > 3) {
575       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
576         SmallVector<Constant*, 8> Idxs;
577         Idxs.push_back(NullInt);
578         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
579           Idxs.push_back(CE->getOperand(i));
580         NewPtr =
581             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
582       } else {
583         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
584         SmallVector<Value*, 8> Idxs;
585         Idxs.push_back(NullInt);
586         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
587           Idxs.push_back(GEPI->getOperand(i));
588         NewPtr = GetElementPtrInst::Create(
589             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
590       }
591     }
592     GEP->replaceAllUsesWith(NewPtr);
593 
594     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
595       GEPI->eraseFromParent();
596     else
597       cast<ConstantExpr>(GEP)->destroyConstant();
598   }
599 
600   // Delete the old global, now that it is dead.
601   Globals.erase(GV);
602   ++NumSRA;
603 
604   // Loop over the new globals array deleting any globals that are obviously
605   // dead.  This can arise due to scalarization of a structure or an array that
606   // has elements that are dead.
607   unsigned FirstGlobal = 0;
608   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
609     if (NewGlobals[i]->use_empty()) {
610       Globals.erase(NewGlobals[i]);
611       if (FirstGlobal == i) ++FirstGlobal;
612     }
613 
614   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
615 }
616 
617 /// Return true if all users of the specified value will trap if the value is
618 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
619 /// reprocessing them.
620 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
621                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
622   for (const User *U : V->users())
623     if (isa<LoadInst>(U)) {
624       // Will trap.
625     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
626       if (SI->getOperand(0) == V) {
627         //cerr << "NONTRAPPING USE: " << *U;
628         return false;  // Storing the value.
629       }
630     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
631       if (CI->getCalledValue() != V) {
632         //cerr << "NONTRAPPING USE: " << *U;
633         return false;  // Not calling the ptr
634       }
635     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
636       if (II->getCalledValue() != V) {
637         //cerr << "NONTRAPPING USE: " << *U;
638         return false;  // Not calling the ptr
639       }
640     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
641       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
642     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
643       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
644     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
645       // If we've already seen this phi node, ignore it, it has already been
646       // checked.
647       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
648         return false;
649     } else if (isa<ICmpInst>(U) &&
650                isa<ConstantPointerNull>(U->getOperand(1))) {
651       // Ignore icmp X, null
652     } else {
653       //cerr << "NONTRAPPING USE: " << *U;
654       return false;
655     }
656 
657   return true;
658 }
659 
660 /// Return true if all uses of any loads from GV will trap if the loaded value
661 /// is null.  Note that this also permits comparisons of the loaded value
662 /// against null, as a special case.
663 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
664   for (const User *U : GV->users())
665     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
666       SmallPtrSet<const PHINode*, 8> PHIs;
667       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
668         return false;
669     } else if (isa<StoreInst>(U)) {
670       // Ignore stores to the global.
671     } else {
672       // We don't know or understand this user, bail out.
673       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
674       return false;
675     }
676   return true;
677 }
678 
679 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
680   bool Changed = false;
681   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
682     Instruction *I = cast<Instruction>(*UI++);
683     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
684       LI->setOperand(0, NewV);
685       Changed = true;
686     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
687       if (SI->getOperand(1) == V) {
688         SI->setOperand(1, NewV);
689         Changed = true;
690       }
691     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
692       CallSite CS(I);
693       if (CS.getCalledValue() == V) {
694         // Calling through the pointer!  Turn into a direct call, but be careful
695         // that the pointer is not also being passed as an argument.
696         CS.setCalledFunction(NewV);
697         Changed = true;
698         bool PassedAsArg = false;
699         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
700           if (CS.getArgument(i) == V) {
701             PassedAsArg = true;
702             CS.setArgument(i, NewV);
703           }
704 
705         if (PassedAsArg) {
706           // Being passed as an argument also.  Be careful to not invalidate UI!
707           UI = V->user_begin();
708         }
709       }
710     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
711       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
712                                 ConstantExpr::getCast(CI->getOpcode(),
713                                                       NewV, CI->getType()));
714       if (CI->use_empty()) {
715         Changed = true;
716         CI->eraseFromParent();
717       }
718     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
719       // Should handle GEP here.
720       SmallVector<Constant*, 8> Idxs;
721       Idxs.reserve(GEPI->getNumOperands()-1);
722       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
723            i != e; ++i)
724         if (Constant *C = dyn_cast<Constant>(*i))
725           Idxs.push_back(C);
726         else
727           break;
728       if (Idxs.size() == GEPI->getNumOperands()-1)
729         Changed |= OptimizeAwayTrappingUsesOfValue(
730             GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
731       if (GEPI->use_empty()) {
732         Changed = true;
733         GEPI->eraseFromParent();
734       }
735     }
736   }
737 
738   return Changed;
739 }
740 
741 
742 /// The specified global has only one non-null value stored into it.  If there
743 /// are uses of the loaded value that would trap if the loaded value is
744 /// dynamically null, then we know that they cannot be reachable with a null
745 /// optimize away the load.
746 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
747                                             const DataLayout &DL,
748                                             TargetLibraryInfo *TLI) {
749   bool Changed = false;
750 
751   // Keep track of whether we are able to remove all the uses of the global
752   // other than the store that defines it.
753   bool AllNonStoreUsesGone = true;
754 
755   // Replace all uses of loads with uses of uses of the stored value.
756   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
757     User *GlobalUser = *GUI++;
758     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
759       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
760       // If we were able to delete all uses of the loads
761       if (LI->use_empty()) {
762         LI->eraseFromParent();
763         Changed = true;
764       } else {
765         AllNonStoreUsesGone = false;
766       }
767     } else if (isa<StoreInst>(GlobalUser)) {
768       // Ignore the store that stores "LV" to the global.
769       assert(GlobalUser->getOperand(1) == GV &&
770              "Must be storing *to* the global");
771     } else {
772       AllNonStoreUsesGone = false;
773 
774       // If we get here we could have other crazy uses that are transitively
775       // loaded.
776       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
777               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
778               isa<BitCastInst>(GlobalUser) ||
779               isa<GetElementPtrInst>(GlobalUser)) &&
780              "Only expect load and stores!");
781     }
782   }
783 
784   if (Changed) {
785     DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n");
786     ++NumGlobUses;
787   }
788 
789   // If we nuked all of the loads, then none of the stores are needed either,
790   // nor is the global.
791   if (AllNonStoreUsesGone) {
792     if (isLeakCheckerRoot(GV)) {
793       Changed |= CleanupPointerRootUsers(GV, TLI);
794     } else {
795       Changed = true;
796       CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
797     }
798     if (GV->use_empty()) {
799       DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
800       Changed = true;
801       GV->eraseFromParent();
802       ++NumDeleted;
803     }
804   }
805   return Changed;
806 }
807 
808 /// Walk the use list of V, constant folding all of the instructions that are
809 /// foldable.
810 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
811                                 TargetLibraryInfo *TLI) {
812   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
813     if (Instruction *I = dyn_cast<Instruction>(*UI++))
814       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
815         I->replaceAllUsesWith(NewC);
816 
817         // Advance UI to the next non-I use to avoid invalidating it!
818         // Instructions could multiply use V.
819         while (UI != E && *UI == I)
820           ++UI;
821         I->eraseFromParent();
822       }
823 }
824 
825 /// This function takes the specified global variable, and transforms the
826 /// program as if it always contained the result of the specified malloc.
827 /// Because it is always the result of the specified malloc, there is no reason
828 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
829 /// loads of GV as uses of the new global.
830 static GlobalVariable *
831 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
832                               ConstantInt *NElements, const DataLayout &DL,
833                               TargetLibraryInfo *TLI) {
834   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
835 
836   Type *GlobalType;
837   if (NElements->getZExtValue() == 1)
838     GlobalType = AllocTy;
839   else
840     // If we have an array allocation, the global variable is of an array.
841     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
842 
843   // Create the new global variable.  The contents of the malloc'd memory is
844   // undefined, so initialize with an undef value.
845   GlobalVariable *NewGV = new GlobalVariable(
846       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
847       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
848       GV->getThreadLocalMode());
849 
850   // If there are bitcast users of the malloc (which is typical, usually we have
851   // a malloc + bitcast) then replace them with uses of the new global.  Update
852   // other users to use the global as well.
853   BitCastInst *TheBC = nullptr;
854   while (!CI->use_empty()) {
855     Instruction *User = cast<Instruction>(CI->user_back());
856     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
857       if (BCI->getType() == NewGV->getType()) {
858         BCI->replaceAllUsesWith(NewGV);
859         BCI->eraseFromParent();
860       } else {
861         BCI->setOperand(0, NewGV);
862       }
863     } else {
864       if (!TheBC)
865         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
866       User->replaceUsesOfWith(CI, TheBC);
867     }
868   }
869 
870   Constant *RepValue = NewGV;
871   if (NewGV->getType() != GV->getValueType())
872     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
873 
874   // If there is a comparison against null, we will insert a global bool to
875   // keep track of whether the global was initialized yet or not.
876   GlobalVariable *InitBool =
877     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
878                        GlobalValue::InternalLinkage,
879                        ConstantInt::getFalse(GV->getContext()),
880                        GV->getName()+".init", GV->getThreadLocalMode());
881   bool InitBoolUsed = false;
882 
883   // Loop over all uses of GV, processing them in turn.
884   while (!GV->use_empty()) {
885     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
886       // The global is initialized when the store to it occurs.
887       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
888                     SI->getOrdering(), SI->getSynchScope(), SI);
889       SI->eraseFromParent();
890       continue;
891     }
892 
893     LoadInst *LI = cast<LoadInst>(GV->user_back());
894     while (!LI->use_empty()) {
895       Use &LoadUse = *LI->use_begin();
896       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
897       if (!ICI) {
898         LoadUse = RepValue;
899         continue;
900       }
901 
902       // Replace the cmp X, 0 with a use of the bool value.
903       // Sink the load to where the compare was, if atomic rules allow us to.
904       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
905                                LI->getOrdering(), LI->getSynchScope(),
906                                LI->isUnordered() ? (Instruction*)ICI : LI);
907       InitBoolUsed = true;
908       switch (ICI->getPredicate()) {
909       default: llvm_unreachable("Unknown ICmp Predicate!");
910       case ICmpInst::ICMP_ULT:
911       case ICmpInst::ICMP_SLT:   // X < null -> always false
912         LV = ConstantInt::getFalse(GV->getContext());
913         break;
914       case ICmpInst::ICMP_ULE:
915       case ICmpInst::ICMP_SLE:
916       case ICmpInst::ICMP_EQ:
917         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
918         break;
919       case ICmpInst::ICMP_NE:
920       case ICmpInst::ICMP_UGE:
921       case ICmpInst::ICMP_SGE:
922       case ICmpInst::ICMP_UGT:
923       case ICmpInst::ICMP_SGT:
924         break;  // no change.
925       }
926       ICI->replaceAllUsesWith(LV);
927       ICI->eraseFromParent();
928     }
929     LI->eraseFromParent();
930   }
931 
932   // If the initialization boolean was used, insert it, otherwise delete it.
933   if (!InitBoolUsed) {
934     while (!InitBool->use_empty())  // Delete initializations
935       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
936     delete InitBool;
937   } else
938     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
939 
940   // Now the GV is dead, nuke it and the malloc..
941   GV->eraseFromParent();
942   CI->eraseFromParent();
943 
944   // To further other optimizations, loop over all users of NewGV and try to
945   // constant prop them.  This will promote GEP instructions with constant
946   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
947   ConstantPropUsersOf(NewGV, DL, TLI);
948   if (RepValue != NewGV)
949     ConstantPropUsersOf(RepValue, DL, TLI);
950 
951   return NewGV;
952 }
953 
954 /// Scan the use-list of V checking to make sure that there are no complex uses
955 /// of V.  We permit simple things like dereferencing the pointer, but not
956 /// storing through the address, unless it is to the specified global.
957 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
958                                                       const GlobalVariable *GV,
959                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
960   for (const User *U : V->users()) {
961     const Instruction *Inst = cast<Instruction>(U);
962 
963     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
964       continue; // Fine, ignore.
965     }
966 
967     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
968       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
969         return false;  // Storing the pointer itself... bad.
970       continue; // Otherwise, storing through it, or storing into GV... fine.
971     }
972 
973     // Must index into the array and into the struct.
974     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
975       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
976         return false;
977       continue;
978     }
979 
980     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
981       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
982       // cycles.
983       if (PHIs.insert(PN).second)
984         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
985           return false;
986       continue;
987     }
988 
989     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
990       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
991         return false;
992       continue;
993     }
994 
995     return false;
996   }
997   return true;
998 }
999 
1000 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1001 /// allocation into loads from the global and uses of the resultant pointer.
1002 /// Further, delete the store into GV.  This assumes that these value pass the
1003 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1004 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1005                                           GlobalVariable *GV) {
1006   while (!Alloc->use_empty()) {
1007     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1008     Instruction *InsertPt = U;
1009     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1010       // If this is the store of the allocation into the global, remove it.
1011       if (SI->getOperand(1) == GV) {
1012         SI->eraseFromParent();
1013         continue;
1014       }
1015     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1016       // Insert the load in the corresponding predecessor, not right before the
1017       // PHI.
1018       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1019     } else if (isa<BitCastInst>(U)) {
1020       // Must be bitcast between the malloc and store to initialize the global.
1021       ReplaceUsesOfMallocWithGlobal(U, GV);
1022       U->eraseFromParent();
1023       continue;
1024     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1025       // If this is a "GEP bitcast" and the user is a store to the global, then
1026       // just process it as a bitcast.
1027       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1028         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1029           if (SI->getOperand(1) == GV) {
1030             // Must be bitcast GEP between the malloc and store to initialize
1031             // the global.
1032             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1033             GEPI->eraseFromParent();
1034             continue;
1035           }
1036     }
1037 
1038     // Insert a load from the global, and use it instead of the malloc.
1039     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1040     U->replaceUsesOfWith(Alloc, NL);
1041   }
1042 }
1043 
1044 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1045 /// perform heap SRA on.  This permits GEP's that index through the array and
1046 /// struct field, icmps of null, and PHIs.
1047 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1048                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1049                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1050   // We permit two users of the load: setcc comparing against the null
1051   // pointer, and a getelementptr of a specific form.
1052   for (const User *U : V->users()) {
1053     const Instruction *UI = cast<Instruction>(U);
1054 
1055     // Comparison against null is ok.
1056     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1057       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1058         return false;
1059       continue;
1060     }
1061 
1062     // getelementptr is also ok, but only a simple form.
1063     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1064       // Must index into the array and into the struct.
1065       if (GEPI->getNumOperands() < 3)
1066         return false;
1067 
1068       // Otherwise the GEP is ok.
1069       continue;
1070     }
1071 
1072     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1073       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1074         // This means some phi nodes are dependent on each other.
1075         // Avoid infinite looping!
1076         return false;
1077       if (!LoadUsingPHIs.insert(PN).second)
1078         // If we have already analyzed this PHI, then it is safe.
1079         continue;
1080 
1081       // Make sure all uses of the PHI are simple enough to transform.
1082       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1083                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1084         return false;
1085 
1086       continue;
1087     }
1088 
1089     // Otherwise we don't know what this is, not ok.
1090     return false;
1091   }
1092 
1093   return true;
1094 }
1095 
1096 
1097 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1098 /// return true.
1099 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1100                                                     Instruction *StoredVal) {
1101   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1102   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1103   for (const User *U : GV->users())
1104     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1105       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1106                                           LoadUsingPHIsPerLoad))
1107         return false;
1108       LoadUsingPHIsPerLoad.clear();
1109     }
1110 
1111   // If we reach here, we know that all uses of the loads and transitive uses
1112   // (through PHI nodes) are simple enough to transform.  However, we don't know
1113   // that all inputs the to the PHI nodes are in the same equivalence sets.
1114   // Check to verify that all operands of the PHIs are either PHIS that can be
1115   // transformed, loads from GV, or MI itself.
1116   for (const PHINode *PN : LoadUsingPHIs) {
1117     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1118       Value *InVal = PN->getIncomingValue(op);
1119 
1120       // PHI of the stored value itself is ok.
1121       if (InVal == StoredVal) continue;
1122 
1123       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1124         // One of the PHIs in our set is (optimistically) ok.
1125         if (LoadUsingPHIs.count(InPN))
1126           continue;
1127         return false;
1128       }
1129 
1130       // Load from GV is ok.
1131       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1132         if (LI->getOperand(0) == GV)
1133           continue;
1134 
1135       // UNDEF? NULL?
1136 
1137       // Anything else is rejected.
1138       return false;
1139     }
1140   }
1141 
1142   return true;
1143 }
1144 
1145 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1146                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1147                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1148   std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1149 
1150   if (FieldNo >= FieldVals.size())
1151     FieldVals.resize(FieldNo+1);
1152 
1153   // If we already have this value, just reuse the previously scalarized
1154   // version.
1155   if (Value *FieldVal = FieldVals[FieldNo])
1156     return FieldVal;
1157 
1158   // Depending on what instruction this is, we have several cases.
1159   Value *Result;
1160   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1161     // This is a scalarized version of the load from the global.  Just create
1162     // a new Load of the scalarized global.
1163     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1164                                            InsertedScalarizedValues,
1165                                            PHIsToRewrite),
1166                           LI->getName()+".f"+Twine(FieldNo), LI);
1167   } else {
1168     PHINode *PN = cast<PHINode>(V);
1169     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1170     // field.
1171 
1172     PointerType *PTy = cast<PointerType>(PN->getType());
1173     StructType *ST = cast<StructType>(PTy->getElementType());
1174 
1175     unsigned AS = PTy->getAddressSpace();
1176     PHINode *NewPN =
1177       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1178                      PN->getNumIncomingValues(),
1179                      PN->getName()+".f"+Twine(FieldNo), PN);
1180     Result = NewPN;
1181     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1182   }
1183 
1184   return FieldVals[FieldNo] = Result;
1185 }
1186 
1187 /// Given a load instruction and a value derived from the load, rewrite the
1188 /// derived value to use the HeapSRoA'd load.
1189 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1190              DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1191                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1192   // If this is a comparison against null, handle it.
1193   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1194     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1195     // If we have a setcc of the loaded pointer, we can use a setcc of any
1196     // field.
1197     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1198                                    InsertedScalarizedValues, PHIsToRewrite);
1199 
1200     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1201                               Constant::getNullValue(NPtr->getType()),
1202                               SCI->getName());
1203     SCI->replaceAllUsesWith(New);
1204     SCI->eraseFromParent();
1205     return;
1206   }
1207 
1208   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1209   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1210     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1211            && "Unexpected GEPI!");
1212 
1213     // Load the pointer for this field.
1214     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1215     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1216                                      InsertedScalarizedValues, PHIsToRewrite);
1217 
1218     // Create the new GEP idx vector.
1219     SmallVector<Value*, 8> GEPIdx;
1220     GEPIdx.push_back(GEPI->getOperand(1));
1221     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1222 
1223     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1224                                              GEPI->getName(), GEPI);
1225     GEPI->replaceAllUsesWith(NGEPI);
1226     GEPI->eraseFromParent();
1227     return;
1228   }
1229 
1230   // Recursively transform the users of PHI nodes.  This will lazily create the
1231   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1232   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1233   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1234   // already been seen first by another load, so its uses have already been
1235   // processed.
1236   PHINode *PN = cast<PHINode>(LoadUser);
1237   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1238                                               std::vector<Value*>())).second)
1239     return;
1240 
1241   // If this is the first time we've seen this PHI, recursively process all
1242   // users.
1243   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1244     Instruction *User = cast<Instruction>(*UI++);
1245     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1246   }
1247 }
1248 
1249 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1250 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1251 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1252 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1253                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1254                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1255   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1256     Instruction *User = cast<Instruction>(*UI++);
1257     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1258   }
1259 
1260   if (Load->use_empty()) {
1261     Load->eraseFromParent();
1262     InsertedScalarizedValues.erase(Load);
1263   }
1264 }
1265 
1266 /// CI is an allocation of an array of structures.  Break it up into multiple
1267 /// allocations of arrays of the fields.
1268 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1269                                             Value *NElems, const DataLayout &DL,
1270                                             const TargetLibraryInfo *TLI) {
1271   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1272   Type *MAT = getMallocAllocatedType(CI, TLI);
1273   StructType *STy = cast<StructType>(MAT);
1274 
1275   // There is guaranteed to be at least one use of the malloc (storing
1276   // it into GV).  If there are other uses, change them to be uses of
1277   // the global to simplify later code.  This also deletes the store
1278   // into GV.
1279   ReplaceUsesOfMallocWithGlobal(CI, GV);
1280 
1281   // Okay, at this point, there are no users of the malloc.  Insert N
1282   // new mallocs at the same place as CI, and N globals.
1283   std::vector<Value*> FieldGlobals;
1284   std::vector<Value*> FieldMallocs;
1285 
1286   unsigned AS = GV->getType()->getPointerAddressSpace();
1287   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1288     Type *FieldTy = STy->getElementType(FieldNo);
1289     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1290 
1291     GlobalVariable *NGV = new GlobalVariable(
1292         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1293         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1294         nullptr, GV->getThreadLocalMode());
1295     NGV->copyAttributesFrom(GV);
1296     FieldGlobals.push_back(NGV);
1297 
1298     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1299     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1300       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1301     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1302     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1303                                         ConstantInt::get(IntPtrTy, TypeSize),
1304                                         NElems, nullptr,
1305                                         CI->getName() + ".f" + Twine(FieldNo));
1306     FieldMallocs.push_back(NMI);
1307     new StoreInst(NMI, NGV, CI);
1308   }
1309 
1310   // The tricky aspect of this transformation is handling the case when malloc
1311   // fails.  In the original code, malloc failing would set the result pointer
1312   // of malloc to null.  In this case, some mallocs could succeed and others
1313   // could fail.  As such, we emit code that looks like this:
1314   //    F0 = malloc(field0)
1315   //    F1 = malloc(field1)
1316   //    F2 = malloc(field2)
1317   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1318   //      if (F0) { free(F0); F0 = 0; }
1319   //      if (F1) { free(F1); F1 = 0; }
1320   //      if (F2) { free(F2); F2 = 0; }
1321   //    }
1322   // The malloc can also fail if its argument is too large.
1323   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1324   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1325                                   ConstantZero, "isneg");
1326   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1327     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1328                              Constant::getNullValue(FieldMallocs[i]->getType()),
1329                                "isnull");
1330     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1331   }
1332 
1333   // Split the basic block at the old malloc.
1334   BasicBlock *OrigBB = CI->getParent();
1335   BasicBlock *ContBB =
1336       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1337 
1338   // Create the block to check the first condition.  Put all these blocks at the
1339   // end of the function as they are unlikely to be executed.
1340   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1341                                                 "malloc_ret_null",
1342                                                 OrigBB->getParent());
1343 
1344   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1345   // branch on RunningOr.
1346   OrigBB->getTerminator()->eraseFromParent();
1347   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1348 
1349   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1350   // pointer, because some may be null while others are not.
1351   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1352     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1353     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1354                               Constant::getNullValue(GVVal->getType()));
1355     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1356                                                OrigBB->getParent());
1357     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1358                                                OrigBB->getParent());
1359     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1360                                          Cmp, NullPtrBlock);
1361 
1362     // Fill in FreeBlock.
1363     CallInst::CreateFree(GVVal, BI);
1364     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1365                   FreeBlock);
1366     BranchInst::Create(NextBlock, FreeBlock);
1367 
1368     NullPtrBlock = NextBlock;
1369   }
1370 
1371   BranchInst::Create(ContBB, NullPtrBlock);
1372 
1373   // CI is no longer needed, remove it.
1374   CI->eraseFromParent();
1375 
1376   /// As we process loads, if we can't immediately update all uses of the load,
1377   /// keep track of what scalarized loads are inserted for a given load.
1378   DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1379   InsertedScalarizedValues[GV] = FieldGlobals;
1380 
1381   std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1382 
1383   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1384   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1385   // of the per-field globals instead.
1386   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1387     Instruction *User = cast<Instruction>(*UI++);
1388 
1389     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1390       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1391       continue;
1392     }
1393 
1394     // Must be a store of null.
1395     StoreInst *SI = cast<StoreInst>(User);
1396     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1397            "Unexpected heap-sra user!");
1398 
1399     // Insert a store of null into each global.
1400     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1401       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1402       Constant *Null = Constant::getNullValue(ValTy);
1403       new StoreInst(Null, FieldGlobals[i], SI);
1404     }
1405     // Erase the original store.
1406     SI->eraseFromParent();
1407   }
1408 
1409   // While we have PHIs that are interesting to rewrite, do it.
1410   while (!PHIsToRewrite.empty()) {
1411     PHINode *PN = PHIsToRewrite.back().first;
1412     unsigned FieldNo = PHIsToRewrite.back().second;
1413     PHIsToRewrite.pop_back();
1414     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1415     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1416 
1417     // Add all the incoming values.  This can materialize more phis.
1418     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1419       Value *InVal = PN->getIncomingValue(i);
1420       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1421                                PHIsToRewrite);
1422       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1423     }
1424   }
1425 
1426   // Drop all inter-phi links and any loads that made it this far.
1427   for (DenseMap<Value*, std::vector<Value*> >::iterator
1428        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1429        I != E; ++I) {
1430     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1431       PN->dropAllReferences();
1432     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1433       LI->dropAllReferences();
1434   }
1435 
1436   // Delete all the phis and loads now that inter-references are dead.
1437   for (DenseMap<Value*, std::vector<Value*> >::iterator
1438        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1439        I != E; ++I) {
1440     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1441       PN->eraseFromParent();
1442     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1443       LI->eraseFromParent();
1444   }
1445 
1446   // The old global is now dead, remove it.
1447   GV->eraseFromParent();
1448 
1449   ++NumHeapSRA;
1450   return cast<GlobalVariable>(FieldGlobals[0]);
1451 }
1452 
1453 /// This function is called when we see a pointer global variable with a single
1454 /// value stored it that is a malloc or cast of malloc.
1455 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1456                                                Type *AllocTy,
1457                                                AtomicOrdering Ordering,
1458                                                const DataLayout &DL,
1459                                                TargetLibraryInfo *TLI) {
1460   // If this is a malloc of an abstract type, don't touch it.
1461   if (!AllocTy->isSized())
1462     return false;
1463 
1464   // We can't optimize this global unless all uses of it are *known* to be
1465   // of the malloc value, not of the null initializer value (consider a use
1466   // that compares the global's value against zero to see if the malloc has
1467   // been reached).  To do this, we check to see if all uses of the global
1468   // would trap if the global were null: this proves that they must all
1469   // happen after the malloc.
1470   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1471     return false;
1472 
1473   // We can't optimize this if the malloc itself is used in a complex way,
1474   // for example, being stored into multiple globals.  This allows the
1475   // malloc to be stored into the specified global, loaded icmp'd, and
1476   // GEP'd.  These are all things we could transform to using the global
1477   // for.
1478   SmallPtrSet<const PHINode*, 8> PHIs;
1479   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1480     return false;
1481 
1482   // If we have a global that is only initialized with a fixed size malloc,
1483   // transform the program to use global memory instead of malloc'd memory.
1484   // This eliminates dynamic allocation, avoids an indirection accessing the
1485   // data, and exposes the resultant global to further GlobalOpt.
1486   // We cannot optimize the malloc if we cannot determine malloc array size.
1487   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1488   if (!NElems)
1489     return false;
1490 
1491   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1492     // Restrict this transformation to only working on small allocations
1493     // (2048 bytes currently), as we don't want to introduce a 16M global or
1494     // something.
1495     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1496       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1497       return true;
1498     }
1499 
1500   // If the allocation is an array of structures, consider transforming this
1501   // into multiple malloc'd arrays, one for each field.  This is basically
1502   // SRoA for malloc'd memory.
1503 
1504   if (Ordering != AtomicOrdering::NotAtomic)
1505     return false;
1506 
1507   // If this is an allocation of a fixed size array of structs, analyze as a
1508   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1509   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1510     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1511       AllocTy = AT->getElementType();
1512 
1513   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1514   if (!AllocSTy)
1515     return false;
1516 
1517   // This the structure has an unreasonable number of fields, leave it
1518   // alone.
1519   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1520       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1521 
1522     // If this is a fixed size array, transform the Malloc to be an alloc of
1523     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1524     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1525       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1526       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1527       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1528       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1529       Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1530                                                    AllocSize, NumElements,
1531                                                    nullptr, CI->getName());
1532       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1533       CI->replaceAllUsesWith(Cast);
1534       CI->eraseFromParent();
1535       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1536         CI = cast<CallInst>(BCI->getOperand(0));
1537       else
1538         CI = cast<CallInst>(Malloc);
1539     }
1540 
1541     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1542                          TLI);
1543     return true;
1544   }
1545 
1546   return false;
1547 }
1548 
1549 // Try to optimize globals based on the knowledge that only one value (besides
1550 // its initializer) is ever stored to the global.
1551 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1552                                      AtomicOrdering Ordering,
1553                                      const DataLayout &DL,
1554                                      TargetLibraryInfo *TLI) {
1555   // Ignore no-op GEPs and bitcasts.
1556   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1557 
1558   // If we are dealing with a pointer global that is initialized to null and
1559   // only has one (non-null) value stored into it, then we can optimize any
1560   // users of the loaded value (often calls and loads) that would trap if the
1561   // value was null.
1562   if (GV->getInitializer()->getType()->isPointerTy() &&
1563       GV->getInitializer()->isNullValue()) {
1564     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1565       if (GV->getInitializer()->getType() != SOVC->getType())
1566         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1567 
1568       // Optimize away any trapping uses of the loaded value.
1569       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1570         return true;
1571     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1572       Type *MallocType = getMallocAllocatedType(CI, TLI);
1573       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1574                                                            Ordering, DL, TLI))
1575         return true;
1576     }
1577   }
1578 
1579   return false;
1580 }
1581 
1582 /// At this point, we have learned that the only two values ever stored into GV
1583 /// are its initializer and OtherVal.  See if we can shrink the global into a
1584 /// boolean and select between the two values whenever it is used.  This exposes
1585 /// the values to other scalar optimizations.
1586 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1587   Type *GVElType = GV->getValueType();
1588 
1589   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1590   // an FP value, pointer or vector, don't do this optimization because a select
1591   // between them is very expensive and unlikely to lead to later
1592   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1593   // where v1 and v2 both require constant pool loads, a big loss.
1594   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1595       GVElType->isFloatingPointTy() ||
1596       GVElType->isPointerTy() || GVElType->isVectorTy())
1597     return false;
1598 
1599   // Walk the use list of the global seeing if all the uses are load or store.
1600   // If there is anything else, bail out.
1601   for (User *U : GV->users())
1602     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1603       return false;
1604 
1605   DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1606 
1607   // Create the new global, initializing it to false.
1608   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1609                                              false,
1610                                              GlobalValue::InternalLinkage,
1611                                         ConstantInt::getFalse(GV->getContext()),
1612                                              GV->getName()+".b",
1613                                              GV->getThreadLocalMode(),
1614                                              GV->getType()->getAddressSpace());
1615   NewGV->copyAttributesFrom(GV);
1616   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1617 
1618   Constant *InitVal = GV->getInitializer();
1619   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1620          "No reason to shrink to bool!");
1621 
1622   // If initialized to zero and storing one into the global, we can use a cast
1623   // instead of a select to synthesize the desired value.
1624   bool IsOneZero = false;
1625   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1626     IsOneZero = InitVal->isNullValue() && CI->isOne();
1627 
1628   while (!GV->use_empty()) {
1629     Instruction *UI = cast<Instruction>(GV->user_back());
1630     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1631       // Change the store into a boolean store.
1632       bool StoringOther = SI->getOperand(0) == OtherVal;
1633       // Only do this if we weren't storing a loaded value.
1634       Value *StoreVal;
1635       if (StoringOther || SI->getOperand(0) == InitVal) {
1636         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1637                                     StoringOther);
1638       } else {
1639         // Otherwise, we are storing a previously loaded copy.  To do this,
1640         // change the copy from copying the original value to just copying the
1641         // bool.
1642         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1643 
1644         // If we've already replaced the input, StoredVal will be a cast or
1645         // select instruction.  If not, it will be a load of the original
1646         // global.
1647         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1648           assert(LI->getOperand(0) == GV && "Not a copy!");
1649           // Insert a new load, to preserve the saved value.
1650           StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1651                                   LI->getOrdering(), LI->getSynchScope(), LI);
1652         } else {
1653           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1654                  "This is not a form that we understand!");
1655           StoreVal = StoredVal->getOperand(0);
1656           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1657         }
1658       }
1659       new StoreInst(StoreVal, NewGV, false, 0,
1660                     SI->getOrdering(), SI->getSynchScope(), SI);
1661     } else {
1662       // Change the load into a load of bool then a select.
1663       LoadInst *LI = cast<LoadInst>(UI);
1664       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1665                                    LI->getOrdering(), LI->getSynchScope(), LI);
1666       Value *NSI;
1667       if (IsOneZero)
1668         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1669       else
1670         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1671       NSI->takeName(LI);
1672       LI->replaceAllUsesWith(NSI);
1673     }
1674     UI->eraseFromParent();
1675   }
1676 
1677   // Retain the name of the old global variable. People who are debugging their
1678   // programs may expect these variables to be named the same.
1679   NewGV->takeName(GV);
1680   GV->eraseFromParent();
1681   return true;
1682 }
1683 
1684 bool GlobalOpt::deleteIfDead(GlobalValue &GV) {
1685   GV.removeDeadConstantUsers();
1686 
1687   if (!GV.isDiscardableIfUnused())
1688     return false;
1689 
1690   if (const Comdat *C = GV.getComdat())
1691     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1692       return false;
1693 
1694   bool Dead;
1695   if (auto *F = dyn_cast<Function>(&GV))
1696     Dead = F->isDefTriviallyDead();
1697   else
1698     Dead = GV.use_empty();
1699   if (!Dead)
1700     return false;
1701 
1702   DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1703   GV.eraseFromParent();
1704   ++NumDeleted;
1705   return true;
1706 }
1707 
1708 /// Analyze the specified global variable and optimize it if possible.  If we
1709 /// make a change, return true.
1710 bool GlobalOpt::processGlobal(GlobalValue &GV) {
1711   // Do more involved optimizations if the global is internal.
1712   if (!GV.hasLocalLinkage())
1713     return false;
1714 
1715   GlobalStatus GS;
1716 
1717   if (GlobalStatus::analyzeGlobal(&GV, GS))
1718     return false;
1719 
1720   bool Changed = false;
1721   if (!GS.IsCompared && !GV.hasUnnamedAddr()) {
1722     GV.setUnnamedAddr(true);
1723     NumUnnamed++;
1724     Changed = true;
1725   }
1726 
1727   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1728   if (!GVar)
1729     return Changed;
1730 
1731   if (GVar->isConstant() || !GVar->hasInitializer())
1732     return Changed;
1733 
1734   return processInternalGlobal(GVar, GS) || Changed;
1735 }
1736 
1737 bool GlobalOpt::isPointerValueDeadOnEntryToFunction(const Function *F, GlobalValue *GV) {
1738   // Find all uses of GV. We expect them all to be in F, and if we can't
1739   // identify any of the uses we bail out.
1740   //
1741   // On each of these uses, identify if the memory that GV points to is
1742   // used/required/live at the start of the function. If it is not, for example
1743   // if the first thing the function does is store to the GV, the GV can
1744   // possibly be demoted.
1745   //
1746   // We don't do an exhaustive search for memory operations - simply look
1747   // through bitcasts as they're quite common and benign.
1748   const DataLayout &DL = GV->getParent()->getDataLayout();
1749   SmallVector<LoadInst *, 4> Loads;
1750   SmallVector<StoreInst *, 4> Stores;
1751   for (auto *U : GV->users()) {
1752     if (Operator::getOpcode(U) == Instruction::BitCast) {
1753       for (auto *UU : U->users()) {
1754         if (auto *LI = dyn_cast<LoadInst>(UU))
1755           Loads.push_back(LI);
1756         else if (auto *SI = dyn_cast<StoreInst>(UU))
1757           Stores.push_back(SI);
1758         else
1759           return false;
1760       }
1761       continue;
1762     }
1763 
1764     Instruction *I = dyn_cast<Instruction>(U);
1765     if (!I)
1766       return false;
1767     assert(I->getParent()->getParent() == F);
1768 
1769     if (auto *LI = dyn_cast<LoadInst>(I))
1770       Loads.push_back(LI);
1771     else if (auto *SI = dyn_cast<StoreInst>(I))
1772       Stores.push_back(SI);
1773     else
1774       return false;
1775   }
1776 
1777   // We have identified all uses of GV into loads and stores. Now check if all
1778   // of them are known not to depend on the value of the global at the function
1779   // entry point. We do this by ensuring that every load is dominated by at
1780   // least one store.
1781   auto &DT = getAnalysis<DominatorTreeWrapperPass>(*const_cast<Function *>(F))
1782                  .getDomTree();
1783 
1784   // The below check is quadratic. Check we're not going to do too many tests.
1785   // FIXME: Even though this will always have worst-case quadratic time, we
1786   // could put effort into minimizing the average time by putting stores that
1787   // have been shown to dominate at least one load at the beginning of the
1788   // Stores array, making subsequent dominance checks more likely to succeed
1789   // early.
1790   //
1791   // The threshold here is fairly large because global->local demotion is a
1792   // very powerful optimization should it fire.
1793   const unsigned Threshold = 100;
1794   if (Loads.size() * Stores.size() > Threshold)
1795     return false;
1796 
1797   for (auto *L : Loads) {
1798     auto *LTy = L->getType();
1799     if (!std::any_of(Stores.begin(), Stores.end(), [&](StoreInst *S) {
1800           auto *STy = S->getValueOperand()->getType();
1801           // The load is only dominated by the store if DomTree says so
1802           // and the number of bits loaded in L is less than or equal to
1803           // the number of bits stored in S.
1804           return DT.dominates(S, L) &&
1805                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1806         }))
1807       return false;
1808   }
1809   // All loads have known dependences inside F, so the global can be localized.
1810   return true;
1811 }
1812 
1813 /// C may have non-instruction users. Can all of those users be turned into
1814 /// instructions?
1815 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1816   // We don't do this exhaustively. The most common pattern that we really need
1817   // to care about is a constant GEP or constant bitcast - so just looking
1818   // through one single ConstantExpr.
1819   //
1820   // The set of constants that this function returns true for must be able to be
1821   // handled by makeAllConstantUsesInstructions.
1822   for (auto *U : C->users()) {
1823     if (isa<Instruction>(U))
1824       continue;
1825     if (!isa<ConstantExpr>(U))
1826       // Non instruction, non-constantexpr user; cannot convert this.
1827       return false;
1828     for (auto *UU : U->users())
1829       if (!isa<Instruction>(UU))
1830         // A constantexpr used by another constant. We don't try and recurse any
1831         // further but just bail out at this point.
1832         return false;
1833   }
1834 
1835   return true;
1836 }
1837 
1838 /// C may have non-instruction users, and
1839 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1840 /// non-instruction users to instructions.
1841 static void makeAllConstantUsesInstructions(Constant *C) {
1842   SmallVector<ConstantExpr*,4> Users;
1843   for (auto *U : C->users()) {
1844     if (isa<ConstantExpr>(U))
1845       Users.push_back(cast<ConstantExpr>(U));
1846     else
1847       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1848       // should not have returned true for C.
1849       assert(
1850           isa<Instruction>(U) &&
1851           "Can't transform non-constantexpr non-instruction to instruction!");
1852   }
1853 
1854   SmallVector<Value*,4> UUsers;
1855   for (auto *U : Users) {
1856     UUsers.clear();
1857     for (auto *UU : U->users())
1858       UUsers.push_back(UU);
1859     for (auto *UU : UUsers) {
1860       Instruction *UI = cast<Instruction>(UU);
1861       Instruction *NewU = U->getAsInstruction();
1862       NewU->insertBefore(UI);
1863       UI->replaceUsesOfWith(U, NewU);
1864     }
1865     U->dropAllReferences();
1866   }
1867 }
1868 
1869 /// Analyze the specified global variable and optimize
1870 /// it if possible.  If we make a change, return true.
1871 bool GlobalOpt::processInternalGlobal(GlobalVariable *GV,
1872                                       const GlobalStatus &GS) {
1873   auto &DL = GV->getParent()->getDataLayout();
1874   // If this is a first class global and has only one accessing function and
1875   // this function is non-recursive, we replace the global with a local alloca
1876   // in this function.
1877   //
1878   // NOTE: It doesn't make sense to promote non-single-value types since we
1879   // are just replacing static memory to stack memory.
1880   //
1881   // If the global is in different address space, don't bring it to stack.
1882   if (!GS.HasMultipleAccessingFunctions &&
1883       GS.AccessingFunction &&
1884       GV->getValueType()->isSingleValueType() &&
1885       GV->getType()->getAddressSpace() == 0 &&
1886       !GV->isExternallyInitialized() &&
1887       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1888       GS.AccessingFunction->doesNotRecurse() &&
1889       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV) ) {
1890     DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1891     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1892                                                    ->getEntryBlock().begin());
1893     Type *ElemTy = GV->getValueType();
1894     // FIXME: Pass Global's alignment when globals have alignment
1895     AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr,
1896                                         GV->getName(), &FirstI);
1897     if (!isa<UndefValue>(GV->getInitializer()))
1898       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1899 
1900     makeAllConstantUsesInstructions(GV);
1901 
1902     GV->replaceAllUsesWith(Alloca);
1903     GV->eraseFromParent();
1904     ++NumLocalized;
1905     return true;
1906   }
1907 
1908   // If the global is never loaded (but may be stored to), it is dead.
1909   // Delete it now.
1910   if (!GS.IsLoaded) {
1911     DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1912 
1913     bool Changed;
1914     if (isLeakCheckerRoot(GV)) {
1915       // Delete any constant stores to the global.
1916       Changed = CleanupPointerRootUsers(GV, TLI);
1917     } else {
1918       // Delete any stores we can find to the global.  We may not be able to
1919       // make it completely dead though.
1920       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1921     }
1922 
1923     // If the global is dead now, delete it.
1924     if (GV->use_empty()) {
1925       GV->eraseFromParent();
1926       ++NumDeleted;
1927       Changed = true;
1928     }
1929     return Changed;
1930 
1931   } else if (GS.StoredType <= GlobalStatus::InitializerStored) {
1932     DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1933     GV->setConstant(true);
1934 
1935     // Clean up any obviously simplifiable users now.
1936     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1937 
1938     // If the global is dead now, just nuke it.
1939     if (GV->use_empty()) {
1940       DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1941             << "all users and delete global!\n");
1942       GV->eraseFromParent();
1943       ++NumDeleted;
1944     }
1945 
1946     ++NumMarked;
1947     return true;
1948   } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1949     const DataLayout &DL = GV->getParent()->getDataLayout();
1950     if (SRAGlobal(GV, DL))
1951       return true;
1952   } else if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1953     // If the initial value for the global was an undef value, and if only
1954     // one other value was stored into it, we can just change the
1955     // initializer to be the stored value, then delete all stores to the
1956     // global.  This allows us to mark it constant.
1957     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1958       if (isa<UndefValue>(GV->getInitializer())) {
1959         // Change the initial value here.
1960         GV->setInitializer(SOVConstant);
1961 
1962         // Clean up any obviously simplifiable users now.
1963         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1964 
1965         if (GV->use_empty()) {
1966           DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1967                        << "simplify all users and delete global!\n");
1968           GV->eraseFromParent();
1969           ++NumDeleted;
1970         }
1971         ++NumSubstitute;
1972         return true;
1973       }
1974 
1975     // Try to optimize globals based on the knowledge that only one value
1976     // (besides its initializer) is ever stored to the global.
1977     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
1978       return true;
1979 
1980     // Otherwise, if the global was not a boolean, we can shrink it to be a
1981     // boolean.
1982     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1983       if (GS.Ordering == AtomicOrdering::NotAtomic) {
1984         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1985           ++NumShrunkToBool;
1986           return true;
1987         }
1988       }
1989     }
1990   }
1991 
1992   return false;
1993 }
1994 
1995 /// Walk all of the direct calls of the specified function, changing them to
1996 /// FastCC.
1997 static void ChangeCalleesToFastCall(Function *F) {
1998   for (User *U : F->users()) {
1999     if (isa<BlockAddress>(U))
2000       continue;
2001     CallSite CS(cast<Instruction>(U));
2002     CS.setCallingConv(CallingConv::Fast);
2003   }
2004 }
2005 
2006 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
2007   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
2008     unsigned Index = Attrs.getSlotIndex(i);
2009     if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
2010       continue;
2011 
2012     // There can be only one.
2013     return Attrs.removeAttribute(C, Index, Attribute::Nest);
2014   }
2015 
2016   return Attrs;
2017 }
2018 
2019 static void RemoveNestAttribute(Function *F) {
2020   F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2021   for (User *U : F->users()) {
2022     if (isa<BlockAddress>(U))
2023       continue;
2024     CallSite CS(cast<Instruction>(U));
2025     CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
2026   }
2027 }
2028 
2029 /// Return true if this is a calling convention that we'd like to change.  The
2030 /// idea here is that we don't want to mess with the convention if the user
2031 /// explicitly requested something with performance implications like coldcc,
2032 /// GHC, or anyregcc.
2033 static bool isProfitableToMakeFastCC(Function *F) {
2034   CallingConv::ID CC = F->getCallingConv();
2035   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2036   return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
2037 }
2038 
2039 bool GlobalOpt::OptimizeFunctions(Module &M) {
2040   bool Changed = false;
2041   // Optimize functions.
2042   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2043     Function *F = &*FI++;
2044     // Functions without names cannot be referenced outside this module.
2045     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2046       F->setLinkage(GlobalValue::InternalLinkage);
2047 
2048     if (deleteIfDead(*F)) {
2049       Changed = true;
2050       continue;
2051     }
2052 
2053     Changed |= processGlobal(*F);
2054 
2055     if (!F->hasLocalLinkage())
2056       continue;
2057     if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
2058         !F->hasAddressTaken()) {
2059       // If this function has a calling convention worth changing, is not a
2060       // varargs function, and is only called directly, promote it to use the
2061       // Fast calling convention.
2062       F->setCallingConv(CallingConv::Fast);
2063       ChangeCalleesToFastCall(F);
2064       ++NumFastCallFns;
2065       Changed = true;
2066     }
2067 
2068     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2069         !F->hasAddressTaken()) {
2070       // The function is not used by a trampoline intrinsic, so it is safe
2071       // to remove the 'nest' attribute.
2072       RemoveNestAttribute(F);
2073       ++NumNestRemoved;
2074       Changed = true;
2075     }
2076   }
2077   return Changed;
2078 }
2079 
2080 bool GlobalOpt::OptimizeGlobalVars(Module &M) {
2081   bool Changed = false;
2082 
2083   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2084        GVI != E; ) {
2085     GlobalVariable *GV = &*GVI++;
2086     // Global variables without names cannot be referenced outside this module.
2087     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2088       GV->setLinkage(GlobalValue::InternalLinkage);
2089     // Simplify the initializer.
2090     if (GV->hasInitializer())
2091       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
2092         auto &DL = M.getDataLayout();
2093         Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
2094         if (New && New != CE)
2095           GV->setInitializer(New);
2096       }
2097 
2098     if (deleteIfDead(*GV)) {
2099       Changed = true;
2100       continue;
2101     }
2102 
2103     Changed |= processGlobal(*GV);
2104   }
2105   return Changed;
2106 }
2107 
2108 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2109 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2110 /// GEP operands of Addr [0, OpNo) have been stepped into.
2111 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2112                                    ConstantExpr *Addr, unsigned OpNo) {
2113   // Base case of the recursion.
2114   if (OpNo == Addr->getNumOperands()) {
2115     assert(Val->getType() == Init->getType() && "Type mismatch!");
2116     return Val;
2117   }
2118 
2119   SmallVector<Constant*, 32> Elts;
2120   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2121     // Break up the constant into its elements.
2122     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2123       Elts.push_back(Init->getAggregateElement(i));
2124 
2125     // Replace the element that we are supposed to.
2126     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2127     unsigned Idx = CU->getZExtValue();
2128     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2129     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2130 
2131     // Return the modified struct.
2132     return ConstantStruct::get(STy, Elts);
2133   }
2134 
2135   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2136   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2137 
2138   uint64_t NumElts;
2139   if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2140     NumElts = ATy->getNumElements();
2141   else
2142     NumElts = InitTy->getVectorNumElements();
2143 
2144   // Break up the array into elements.
2145   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2146     Elts.push_back(Init->getAggregateElement(i));
2147 
2148   assert(CI->getZExtValue() < NumElts);
2149   Elts[CI->getZExtValue()] =
2150     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2151 
2152   if (Init->getType()->isArrayTy())
2153     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2154   return ConstantVector::get(Elts);
2155 }
2156 
2157 /// We have decided that Addr (which satisfies the predicate
2158 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2159 static void CommitValueTo(Constant *Val, Constant *Addr) {
2160   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2161     assert(GV->hasInitializer());
2162     GV->setInitializer(Val);
2163     return;
2164   }
2165 
2166   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2167   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2168   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2169 }
2170 
2171 /// Evaluate static constructors in the function, if we can.  Return true if we
2172 /// can, false otherwise.
2173 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2174                                       const TargetLibraryInfo *TLI) {
2175   // Call the function.
2176   Evaluator Eval(DL, TLI);
2177   Constant *RetValDummy;
2178   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2179                                            SmallVector<Constant*, 0>());
2180 
2181   if (EvalSuccess) {
2182     ++NumCtorsEvaluated;
2183 
2184     // We succeeded at evaluation: commit the result.
2185     DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2186           << F->getName() << "' to " << Eval.getMutatedMemory().size()
2187           << " stores.\n");
2188     for (DenseMap<Constant*, Constant*>::const_iterator I =
2189            Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
2190          I != E; ++I)
2191       CommitValueTo(I->second, I->first);
2192     for (GlobalVariable *GV : Eval.getInvariants())
2193       GV->setConstant(true);
2194   }
2195 
2196   return EvalSuccess;
2197 }
2198 
2199 static int compareNames(Constant *const *A, Constant *const *B) {
2200   Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
2201   Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
2202   return AStripped->getName().compare(BStripped->getName());
2203 }
2204 
2205 static void setUsedInitializer(GlobalVariable &V,
2206                                const SmallPtrSet<GlobalValue *, 8> &Init) {
2207   if (Init.empty()) {
2208     V.eraseFromParent();
2209     return;
2210   }
2211 
2212   // Type of pointer to the array of pointers.
2213   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2214 
2215   SmallVector<llvm::Constant *, 8> UsedArray;
2216   for (GlobalValue *GV : Init) {
2217     Constant *Cast
2218       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2219     UsedArray.push_back(Cast);
2220   }
2221   // Sort to get deterministic order.
2222   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2223   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2224 
2225   Module *M = V.getParent();
2226   V.removeFromParent();
2227   GlobalVariable *NV =
2228       new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
2229                          llvm::ConstantArray::get(ATy, UsedArray), "");
2230   NV->takeName(&V);
2231   NV->setSection("llvm.metadata");
2232   delete &V;
2233 }
2234 
2235 namespace {
2236 /// An easy to access representation of llvm.used and llvm.compiler.used.
2237 class LLVMUsed {
2238   SmallPtrSet<GlobalValue *, 8> Used;
2239   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2240   GlobalVariable *UsedV;
2241   GlobalVariable *CompilerUsedV;
2242 
2243 public:
2244   LLVMUsed(Module &M) {
2245     UsedV = collectUsedGlobalVariables(M, Used, false);
2246     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2247   }
2248   typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
2249   typedef iterator_range<iterator> used_iterator_range;
2250   iterator usedBegin() { return Used.begin(); }
2251   iterator usedEnd() { return Used.end(); }
2252   used_iterator_range used() {
2253     return used_iterator_range(usedBegin(), usedEnd());
2254   }
2255   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2256   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2257   used_iterator_range compilerUsed() {
2258     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2259   }
2260   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2261   bool compilerUsedCount(GlobalValue *GV) const {
2262     return CompilerUsed.count(GV);
2263   }
2264   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2265   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2266   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2267   bool compilerUsedInsert(GlobalValue *GV) {
2268     return CompilerUsed.insert(GV).second;
2269   }
2270 
2271   void syncVariablesAndSets() {
2272     if (UsedV)
2273       setUsedInitializer(*UsedV, Used);
2274     if (CompilerUsedV)
2275       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2276   }
2277 };
2278 }
2279 
2280 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2281   if (GA.use_empty()) // No use at all.
2282     return false;
2283 
2284   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2285          "We should have removed the duplicated "
2286          "element from llvm.compiler.used");
2287   if (!GA.hasOneUse())
2288     // Strictly more than one use. So at least one is not in llvm.used and
2289     // llvm.compiler.used.
2290     return true;
2291 
2292   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2293   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2294 }
2295 
2296 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2297                                                const LLVMUsed &U) {
2298   unsigned N = 2;
2299   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2300          "We should have removed the duplicated "
2301          "element from llvm.compiler.used");
2302   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2303     ++N;
2304   return V.hasNUsesOrMore(N);
2305 }
2306 
2307 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2308   if (!GA.hasLocalLinkage())
2309     return true;
2310 
2311   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2312 }
2313 
2314 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2315                              bool &RenameTarget) {
2316   RenameTarget = false;
2317   bool Ret = false;
2318   if (hasUseOtherThanLLVMUsed(GA, U))
2319     Ret = true;
2320 
2321   // If the alias is externally visible, we may still be able to simplify it.
2322   if (!mayHaveOtherReferences(GA, U))
2323     return Ret;
2324 
2325   // If the aliasee has internal linkage, give it the name and linkage
2326   // of the alias, and delete the alias.  This turns:
2327   //   define internal ... @f(...)
2328   //   @a = alias ... @f
2329   // into:
2330   //   define ... @a(...)
2331   Constant *Aliasee = GA.getAliasee();
2332   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2333   if (!Target->hasLocalLinkage())
2334     return Ret;
2335 
2336   // Do not perform the transform if multiple aliases potentially target the
2337   // aliasee. This check also ensures that it is safe to replace the section
2338   // and other attributes of the aliasee with those of the alias.
2339   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2340     return Ret;
2341 
2342   RenameTarget = true;
2343   return true;
2344 }
2345 
2346 bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2347   bool Changed = false;
2348   LLVMUsed Used(M);
2349 
2350   for (GlobalValue *GV : Used.used())
2351     Used.compilerUsedErase(GV);
2352 
2353   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2354        I != E;) {
2355     GlobalAlias *J = &*I++;
2356 
2357     // Aliases without names cannot be referenced outside this module.
2358     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2359       J->setLinkage(GlobalValue::InternalLinkage);
2360 
2361     if (deleteIfDead(*J)) {
2362       Changed = true;
2363       continue;
2364     }
2365 
2366     // If the aliasee may change at link time, nothing can be done - bail out.
2367     if (J->isInterposable())
2368       continue;
2369 
2370     Constant *Aliasee = J->getAliasee();
2371     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2372     // We can't trivially replace the alias with the aliasee if the aliasee is
2373     // non-trivial in some way.
2374     // TODO: Try to handle non-zero GEPs of local aliasees.
2375     if (!Target)
2376       continue;
2377     Target->removeDeadConstantUsers();
2378 
2379     // Make all users of the alias use the aliasee instead.
2380     bool RenameTarget;
2381     if (!hasUsesToReplace(*J, Used, RenameTarget))
2382       continue;
2383 
2384     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2385     ++NumAliasesResolved;
2386     Changed = true;
2387 
2388     if (RenameTarget) {
2389       // Give the aliasee the name, linkage and other attributes of the alias.
2390       Target->takeName(&*J);
2391       Target->setLinkage(J->getLinkage());
2392       Target->setVisibility(J->getVisibility());
2393       Target->setDLLStorageClass(J->getDLLStorageClass());
2394 
2395       if (Used.usedErase(&*J))
2396         Used.usedInsert(Target);
2397 
2398       if (Used.compilerUsedErase(&*J))
2399         Used.compilerUsedInsert(Target);
2400     } else if (mayHaveOtherReferences(*J, Used))
2401       continue;
2402 
2403     // Delete the alias.
2404     M.getAliasList().erase(J);
2405     ++NumAliasesRemoved;
2406     Changed = true;
2407   }
2408 
2409   Used.syncVariablesAndSets();
2410 
2411   return Changed;
2412 }
2413 
2414 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2415   if (!TLI->has(LibFunc::cxa_atexit))
2416     return nullptr;
2417 
2418   Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
2419 
2420   if (!Fn)
2421     return nullptr;
2422 
2423   FunctionType *FTy = Fn->getFunctionType();
2424 
2425   // Checking that the function has the right return type, the right number of
2426   // parameters and that they all have pointer types should be enough.
2427   if (!FTy->getReturnType()->isIntegerTy() ||
2428       FTy->getNumParams() != 3 ||
2429       !FTy->getParamType(0)->isPointerTy() ||
2430       !FTy->getParamType(1)->isPointerTy() ||
2431       !FTy->getParamType(2)->isPointerTy())
2432     return nullptr;
2433 
2434   return Fn;
2435 }
2436 
2437 /// Returns whether the given function is an empty C++ destructor and can
2438 /// therefore be eliminated.
2439 /// Note that we assume that other optimization passes have already simplified
2440 /// the code so we only look for a function with a single basic block, where
2441 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2442 /// other side-effect free instructions.
2443 static bool cxxDtorIsEmpty(const Function &Fn,
2444                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
2445   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2446   // nounwind, but that doesn't seem worth doing.
2447   if (Fn.isDeclaration())
2448     return false;
2449 
2450   if (++Fn.begin() != Fn.end())
2451     return false;
2452 
2453   const BasicBlock &EntryBlock = Fn.getEntryBlock();
2454   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2455        I != E; ++I) {
2456     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2457       // Ignore debug intrinsics.
2458       if (isa<DbgInfoIntrinsic>(CI))
2459         continue;
2460 
2461       const Function *CalledFn = CI->getCalledFunction();
2462 
2463       if (!CalledFn)
2464         return false;
2465 
2466       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2467 
2468       // Don't treat recursive functions as empty.
2469       if (!NewCalledFunctions.insert(CalledFn).second)
2470         return false;
2471 
2472       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2473         return false;
2474     } else if (isa<ReturnInst>(*I))
2475       return true; // We're done.
2476     else if (I->mayHaveSideEffects())
2477       return false; // Destructor with side effects, bail.
2478   }
2479 
2480   return false;
2481 }
2482 
2483 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2484   /// Itanium C++ ABI p3.3.5:
2485   ///
2486   ///   After constructing a global (or local static) object, that will require
2487   ///   destruction on exit, a termination function is registered as follows:
2488   ///
2489   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2490   ///
2491   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2492   ///   call f(p) when DSO d is unloaded, before all such termination calls
2493   ///   registered before this one. It returns zero if registration is
2494   ///   successful, nonzero on failure.
2495 
2496   // This pass will look for calls to __cxa_atexit where the function is trivial
2497   // and remove them.
2498   bool Changed = false;
2499 
2500   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2501        I != E;) {
2502     // We're only interested in calls. Theoretically, we could handle invoke
2503     // instructions as well, but neither llvm-gcc nor clang generate invokes
2504     // to __cxa_atexit.
2505     CallInst *CI = dyn_cast<CallInst>(*I++);
2506     if (!CI)
2507       continue;
2508 
2509     Function *DtorFn =
2510       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2511     if (!DtorFn)
2512       continue;
2513 
2514     SmallPtrSet<const Function *, 8> CalledFunctions;
2515     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2516       continue;
2517 
2518     // Just remove the call.
2519     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2520     CI->eraseFromParent();
2521 
2522     ++NumCXXDtorsRemoved;
2523 
2524     Changed |= true;
2525   }
2526 
2527   return Changed;
2528 }
2529 
2530 bool GlobalOpt::runOnModule(Module &M) {
2531   if (skipModule(M))
2532     return false;
2533 
2534   bool Changed = false;
2535 
2536   auto &DL = M.getDataLayout();
2537   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2538 
2539   bool LocalChange = true;
2540   while (LocalChange) {
2541     LocalChange = false;
2542 
2543     NotDiscardableComdats.clear();
2544     for (const GlobalVariable &GV : M.globals())
2545       if (const Comdat *C = GV.getComdat())
2546         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2547           NotDiscardableComdats.insert(C);
2548     for (Function &F : M)
2549       if (const Comdat *C = F.getComdat())
2550         if (!F.isDefTriviallyDead())
2551           NotDiscardableComdats.insert(C);
2552     for (GlobalAlias &GA : M.aliases())
2553       if (const Comdat *C = GA.getComdat())
2554         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2555           NotDiscardableComdats.insert(C);
2556 
2557     // Delete functions that are trivially dead, ccc -> fastcc
2558     LocalChange |= OptimizeFunctions(M);
2559 
2560     // Optimize global_ctors list.
2561     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2562       return EvaluateStaticConstructor(F, DL, TLI);
2563     });
2564 
2565     // Optimize non-address-taken globals.
2566     LocalChange |= OptimizeGlobalVars(M);
2567 
2568     // Resolve aliases, when possible.
2569     LocalChange |= OptimizeGlobalAliases(M);
2570 
2571     // Try to remove trivial global destructors if they are not removed
2572     // already.
2573     Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
2574     if (CXAAtExitFn)
2575       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2576 
2577     Changed |= LocalChange;
2578   }
2579 
2580   // TODO: Move all global ctors functions to the end of the module for code
2581   // layout.
2582 
2583   return Changed;
2584 }
2585