1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/CallingConv.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/ValueHandle.h" 36 #include "llvm/Pass.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include "llvm/Target/TargetLibraryInfo.h" 42 #include "llvm/Transforms/Utils/CtorUtils.h" 43 #include "llvm/Transforms/Utils/GlobalStatus.h" 44 #include "llvm/Transforms/Utils/ModuleUtils.h" 45 #include <algorithm> 46 #include <deque> 47 using namespace llvm; 48 49 #define DEBUG_TYPE "globalopt" 50 51 STATISTIC(NumMarked , "Number of globals marked constant"); 52 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 53 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 54 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 55 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 56 STATISTIC(NumDeleted , "Number of globals deleted"); 57 STATISTIC(NumFnDeleted , "Number of functions deleted"); 58 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 59 STATISTIC(NumLocalized , "Number of globals localized"); 60 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 61 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 62 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 63 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 64 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 65 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 66 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 67 68 namespace { 69 struct GlobalOpt : public ModulePass { 70 void getAnalysisUsage(AnalysisUsage &AU) const override { 71 AU.addRequired<TargetLibraryInfo>(); 72 } 73 static char ID; // Pass identification, replacement for typeid 74 GlobalOpt() : ModulePass(ID) { 75 initializeGlobalOptPass(*PassRegistry::getPassRegistry()); 76 } 77 78 bool runOnModule(Module &M) override; 79 80 private: 81 bool OptimizeFunctions(Module &M); 82 bool OptimizeGlobalVars(Module &M); 83 bool OptimizeGlobalAliases(Module &M); 84 bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI); 85 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI, 86 const GlobalStatus &GS); 87 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn); 88 89 const DataLayout *DL; 90 TargetLibraryInfo *TLI; 91 SmallSet<const Comdat *, 8> NotDiscardableComdats; 92 }; 93 } 94 95 char GlobalOpt::ID = 0; 96 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt", 97 "Global Variable Optimizer", false, false) 98 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 99 INITIALIZE_PASS_END(GlobalOpt, "globalopt", 100 "Global Variable Optimizer", false, false) 101 102 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } 103 104 /// isLeakCheckerRoot - Is this global variable possibly used by a leak checker 105 /// as a root? If so, we might not really want to eliminate the stores to it. 106 static bool isLeakCheckerRoot(GlobalVariable *GV) { 107 // A global variable is a root if it is a pointer, or could plausibly contain 108 // a pointer. There are two challenges; one is that we could have a struct 109 // the has an inner member which is a pointer. We recurse through the type to 110 // detect these (up to a point). The other is that we may actually be a union 111 // of a pointer and another type, and so our LLVM type is an integer which 112 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 113 // potentially contained here. 114 115 if (GV->hasPrivateLinkage()) 116 return false; 117 118 SmallVector<Type *, 4> Types; 119 Types.push_back(cast<PointerType>(GV->getType())->getElementType()); 120 121 unsigned Limit = 20; 122 do { 123 Type *Ty = Types.pop_back_val(); 124 switch (Ty->getTypeID()) { 125 default: break; 126 case Type::PointerTyID: return true; 127 case Type::ArrayTyID: 128 case Type::VectorTyID: { 129 SequentialType *STy = cast<SequentialType>(Ty); 130 Types.push_back(STy->getElementType()); 131 break; 132 } 133 case Type::StructTyID: { 134 StructType *STy = cast<StructType>(Ty); 135 if (STy->isOpaque()) return true; 136 for (StructType::element_iterator I = STy->element_begin(), 137 E = STy->element_end(); I != E; ++I) { 138 Type *InnerTy = *I; 139 if (isa<PointerType>(InnerTy)) return true; 140 if (isa<CompositeType>(InnerTy)) 141 Types.push_back(InnerTy); 142 } 143 break; 144 } 145 } 146 if (--Limit == 0) return true; 147 } while (!Types.empty()); 148 return false; 149 } 150 151 /// Given a value that is stored to a global but never read, determine whether 152 /// it's safe to remove the store and the chain of computation that feeds the 153 /// store. 154 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 155 do { 156 if (isa<Constant>(V)) 157 return true; 158 if (!V->hasOneUse()) 159 return false; 160 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 161 isa<GlobalValue>(V)) 162 return false; 163 if (isAllocationFn(V, TLI)) 164 return true; 165 166 Instruction *I = cast<Instruction>(V); 167 if (I->mayHaveSideEffects()) 168 return false; 169 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 170 if (!GEP->hasAllConstantIndices()) 171 return false; 172 } else if (I->getNumOperands() != 1) { 173 return false; 174 } 175 176 V = I->getOperand(0); 177 } while (1); 178 } 179 180 /// CleanupPointerRootUsers - This GV is a pointer root. Loop over all users 181 /// of the global and clean up any that obviously don't assign the global a 182 /// value that isn't dynamically allocated. 183 /// 184 static bool CleanupPointerRootUsers(GlobalVariable *GV, 185 const TargetLibraryInfo *TLI) { 186 // A brief explanation of leak checkers. The goal is to find bugs where 187 // pointers are forgotten, causing an accumulating growth in memory 188 // usage over time. The common strategy for leak checkers is to whitelist the 189 // memory pointed to by globals at exit. This is popular because it also 190 // solves another problem where the main thread of a C++ program may shut down 191 // before other threads that are still expecting to use those globals. To 192 // handle that case, we expect the program may create a singleton and never 193 // destroy it. 194 195 bool Changed = false; 196 197 // If Dead[n].first is the only use of a malloc result, we can delete its 198 // chain of computation and the store to the global in Dead[n].second. 199 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 200 201 // Constants can't be pointers to dynamically allocated memory. 202 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 203 UI != E;) { 204 User *U = *UI++; 205 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 206 Value *V = SI->getValueOperand(); 207 if (isa<Constant>(V)) { 208 Changed = true; 209 SI->eraseFromParent(); 210 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 211 if (I->hasOneUse()) 212 Dead.push_back(std::make_pair(I, SI)); 213 } 214 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 215 if (isa<Constant>(MSI->getValue())) { 216 Changed = true; 217 MSI->eraseFromParent(); 218 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 219 if (I->hasOneUse()) 220 Dead.push_back(std::make_pair(I, MSI)); 221 } 222 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 223 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 224 if (MemSrc && MemSrc->isConstant()) { 225 Changed = true; 226 MTI->eraseFromParent(); 227 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 228 if (I->hasOneUse()) 229 Dead.push_back(std::make_pair(I, MTI)); 230 } 231 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 232 if (CE->use_empty()) { 233 CE->destroyConstant(); 234 Changed = true; 235 } 236 } else if (Constant *C = dyn_cast<Constant>(U)) { 237 if (isSafeToDestroyConstant(C)) { 238 C->destroyConstant(); 239 // This could have invalidated UI, start over from scratch. 240 Dead.clear(); 241 CleanupPointerRootUsers(GV, TLI); 242 return true; 243 } 244 } 245 } 246 247 for (int i = 0, e = Dead.size(); i != e; ++i) { 248 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 249 Dead[i].second->eraseFromParent(); 250 Instruction *I = Dead[i].first; 251 do { 252 if (isAllocationFn(I, TLI)) 253 break; 254 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 255 if (!J) 256 break; 257 I->eraseFromParent(); 258 I = J; 259 } while (1); 260 I->eraseFromParent(); 261 } 262 } 263 264 return Changed; 265 } 266 267 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all 268 /// users of the global, cleaning up the obvious ones. This is largely just a 269 /// quick scan over the use list to clean up the easy and obvious cruft. This 270 /// returns true if it made a change. 271 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 272 const DataLayout *DL, 273 TargetLibraryInfo *TLI) { 274 bool Changed = false; 275 // Note that we need to use a weak value handle for the worklist items. When 276 // we delete a constant array, we may also be holding pointer to one of its 277 // elements (or an element of one of its elements if we're dealing with an 278 // array of arrays) in the worklist. 279 SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end()); 280 while (!WorkList.empty()) { 281 Value *UV = WorkList.pop_back_val(); 282 if (!UV) 283 continue; 284 285 User *U = cast<User>(UV); 286 287 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 288 if (Init) { 289 // Replace the load with the initializer. 290 LI->replaceAllUsesWith(Init); 291 LI->eraseFromParent(); 292 Changed = true; 293 } 294 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 295 // Store must be unreachable or storing Init into the global. 296 SI->eraseFromParent(); 297 Changed = true; 298 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 299 if (CE->getOpcode() == Instruction::GetElementPtr) { 300 Constant *SubInit = nullptr; 301 if (Init) 302 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 303 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 304 } else if ((CE->getOpcode() == Instruction::BitCast && 305 CE->getType()->isPointerTy()) || 306 CE->getOpcode() == Instruction::AddrSpaceCast) { 307 // Pointer cast, delete any stores and memsets to the global. 308 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 309 } 310 311 if (CE->use_empty()) { 312 CE->destroyConstant(); 313 Changed = true; 314 } 315 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 316 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 317 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 318 // and will invalidate our notion of what Init is. 319 Constant *SubInit = nullptr; 320 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 321 ConstantExpr *CE = 322 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, DL, TLI)); 323 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 324 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 325 326 // If the initializer is an all-null value and we have an inbounds GEP, 327 // we already know what the result of any load from that GEP is. 328 // TODO: Handle splats. 329 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 330 SubInit = Constant::getNullValue(GEP->getType()->getElementType()); 331 } 332 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 333 334 if (GEP->use_empty()) { 335 GEP->eraseFromParent(); 336 Changed = true; 337 } 338 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 339 if (MI->getRawDest() == V) { 340 MI->eraseFromParent(); 341 Changed = true; 342 } 343 344 } else if (Constant *C = dyn_cast<Constant>(U)) { 345 // If we have a chain of dead constantexprs or other things dangling from 346 // us, and if they are all dead, nuke them without remorse. 347 if (isSafeToDestroyConstant(C)) { 348 C->destroyConstant(); 349 CleanupConstantGlobalUsers(V, Init, DL, TLI); 350 return true; 351 } 352 } 353 } 354 return Changed; 355 } 356 357 /// isSafeSROAElementUse - Return true if the specified instruction is a safe 358 /// user of a derived expression from a global that we want to SROA. 359 static bool isSafeSROAElementUse(Value *V) { 360 // We might have a dead and dangling constant hanging off of here. 361 if (Constant *C = dyn_cast<Constant>(V)) 362 return isSafeToDestroyConstant(C); 363 364 Instruction *I = dyn_cast<Instruction>(V); 365 if (!I) return false; 366 367 // Loads are ok. 368 if (isa<LoadInst>(I)) return true; 369 370 // Stores *to* the pointer are ok. 371 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 372 return SI->getOperand(0) != V; 373 374 // Otherwise, it must be a GEP. 375 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 376 if (!GEPI) return false; 377 378 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 379 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 380 return false; 381 382 for (User *U : GEPI->users()) 383 if (!isSafeSROAElementUse(U)) 384 return false; 385 return true; 386 } 387 388 389 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value. 390 /// Look at it and its uses and decide whether it is safe to SROA this global. 391 /// 392 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 393 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 394 if (!isa<GetElementPtrInst>(U) && 395 (!isa<ConstantExpr>(U) || 396 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 397 return false; 398 399 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 400 // don't like < 3 operand CE's, and we don't like non-constant integer 401 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 402 // value of C. 403 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 404 !cast<Constant>(U->getOperand(1))->isNullValue() || 405 !isa<ConstantInt>(U->getOperand(2))) 406 return false; 407 408 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 409 ++GEPI; // Skip over the pointer index. 410 411 // If this is a use of an array allocation, do a bit more checking for sanity. 412 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 413 uint64_t NumElements = AT->getNumElements(); 414 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 415 416 // Check to make sure that index falls within the array. If not, 417 // something funny is going on, so we won't do the optimization. 418 // 419 if (Idx->getZExtValue() >= NumElements) 420 return false; 421 422 // We cannot scalar repl this level of the array unless any array 423 // sub-indices are in-range constants. In particular, consider: 424 // A[0][i]. We cannot know that the user isn't doing invalid things like 425 // allowing i to index an out-of-range subscript that accesses A[1]. 426 // 427 // Scalar replacing *just* the outer index of the array is probably not 428 // going to be a win anyway, so just give up. 429 for (++GEPI; // Skip array index. 430 GEPI != E; 431 ++GEPI) { 432 uint64_t NumElements; 433 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 434 NumElements = SubArrayTy->getNumElements(); 435 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 436 NumElements = SubVectorTy->getNumElements(); 437 else { 438 assert((*GEPI)->isStructTy() && 439 "Indexed GEP type is not array, vector, or struct!"); 440 continue; 441 } 442 443 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 444 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 445 return false; 446 } 447 } 448 449 for (User *UU : U->users()) 450 if (!isSafeSROAElementUse(UU)) 451 return false; 452 453 return true; 454 } 455 456 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it 457 /// is safe for us to perform this transformation. 458 /// 459 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 460 for (User *U : GV->users()) 461 if (!IsUserOfGlobalSafeForSRA(U, GV)) 462 return false; 463 464 return true; 465 } 466 467 468 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global 469 /// variable. This opens the door for other optimizations by exposing the 470 /// behavior of the program in a more fine-grained way. We have determined that 471 /// this transformation is safe already. We return the first global variable we 472 /// insert so that the caller can reprocess it. 473 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 474 // Make sure this global only has simple uses that we can SRA. 475 if (!GlobalUsersSafeToSRA(GV)) 476 return nullptr; 477 478 assert(GV->hasLocalLinkage() && !GV->isConstant()); 479 Constant *Init = GV->getInitializer(); 480 Type *Ty = Init->getType(); 481 482 std::vector<GlobalVariable*> NewGlobals; 483 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 484 485 // Get the alignment of the global, either explicit or target-specific. 486 unsigned StartAlignment = GV->getAlignment(); 487 if (StartAlignment == 0) 488 StartAlignment = DL.getABITypeAlignment(GV->getType()); 489 490 if (StructType *STy = dyn_cast<StructType>(Ty)) { 491 NewGlobals.reserve(STy->getNumElements()); 492 const StructLayout &Layout = *DL.getStructLayout(STy); 493 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 494 Constant *In = Init->getAggregateElement(i); 495 assert(In && "Couldn't get element of initializer?"); 496 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 497 GlobalVariable::InternalLinkage, 498 In, GV->getName()+"."+Twine(i), 499 GV->getThreadLocalMode(), 500 GV->getType()->getAddressSpace()); 501 Globals.insert(GV, NGV); 502 NewGlobals.push_back(NGV); 503 504 // Calculate the known alignment of the field. If the original aggregate 505 // had 256 byte alignment for example, something might depend on that: 506 // propagate info to each field. 507 uint64_t FieldOffset = Layout.getElementOffset(i); 508 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 509 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 510 NGV->setAlignment(NewAlign); 511 } 512 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 513 unsigned NumElements = 0; 514 if (ArrayType *ATy = dyn_cast<ArrayType>(STy)) 515 NumElements = ATy->getNumElements(); 516 else 517 NumElements = cast<VectorType>(STy)->getNumElements(); 518 519 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 520 return nullptr; // It's not worth it. 521 NewGlobals.reserve(NumElements); 522 523 uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType()); 524 unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType()); 525 for (unsigned i = 0, e = NumElements; i != e; ++i) { 526 Constant *In = Init->getAggregateElement(i); 527 assert(In && "Couldn't get element of initializer?"); 528 529 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 530 GlobalVariable::InternalLinkage, 531 In, GV->getName()+"."+Twine(i), 532 GV->getThreadLocalMode(), 533 GV->getType()->getAddressSpace()); 534 Globals.insert(GV, NGV); 535 NewGlobals.push_back(NGV); 536 537 // Calculate the known alignment of the field. If the original aggregate 538 // had 256 byte alignment for example, something might depend on that: 539 // propagate info to each field. 540 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 541 if (NewAlign > EltAlign) 542 NGV->setAlignment(NewAlign); 543 } 544 } 545 546 if (NewGlobals.empty()) 547 return nullptr; 548 549 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV); 550 551 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 552 553 // Loop over all of the uses of the global, replacing the constantexpr geps, 554 // with smaller constantexpr geps or direct references. 555 while (!GV->use_empty()) { 556 User *GEP = GV->user_back(); 557 assert(((isa<ConstantExpr>(GEP) && 558 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 559 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 560 561 // Ignore the 1th operand, which has to be zero or else the program is quite 562 // broken (undefined). Get the 2nd operand, which is the structure or array 563 // index. 564 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 565 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 566 567 Value *NewPtr = NewGlobals[Val]; 568 569 // Form a shorter GEP if needed. 570 if (GEP->getNumOperands() > 3) { 571 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 572 SmallVector<Constant*, 8> Idxs; 573 Idxs.push_back(NullInt); 574 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 575 Idxs.push_back(CE->getOperand(i)); 576 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs); 577 } else { 578 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 579 SmallVector<Value*, 8> Idxs; 580 Idxs.push_back(NullInt); 581 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 582 Idxs.push_back(GEPI->getOperand(i)); 583 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs, 584 GEPI->getName()+"."+Twine(Val),GEPI); 585 } 586 } 587 GEP->replaceAllUsesWith(NewPtr); 588 589 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 590 GEPI->eraseFromParent(); 591 else 592 cast<ConstantExpr>(GEP)->destroyConstant(); 593 } 594 595 // Delete the old global, now that it is dead. 596 Globals.erase(GV); 597 ++NumSRA; 598 599 // Loop over the new globals array deleting any globals that are obviously 600 // dead. This can arise due to scalarization of a structure or an array that 601 // has elements that are dead. 602 unsigned FirstGlobal = 0; 603 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 604 if (NewGlobals[i]->use_empty()) { 605 Globals.erase(NewGlobals[i]); 606 if (FirstGlobal == i) ++FirstGlobal; 607 } 608 609 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 610 } 611 612 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified 613 /// value will trap if the value is dynamically null. PHIs keeps track of any 614 /// phi nodes we've seen to avoid reprocessing them. 615 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 616 SmallPtrSetImpl<const PHINode*> &PHIs) { 617 for (const User *U : V->users()) 618 if (isa<LoadInst>(U)) { 619 // Will trap. 620 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 621 if (SI->getOperand(0) == V) { 622 //cerr << "NONTRAPPING USE: " << *U; 623 return false; // Storing the value. 624 } 625 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 626 if (CI->getCalledValue() != V) { 627 //cerr << "NONTRAPPING USE: " << *U; 628 return false; // Not calling the ptr 629 } 630 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 631 if (II->getCalledValue() != V) { 632 //cerr << "NONTRAPPING USE: " << *U; 633 return false; // Not calling the ptr 634 } 635 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 636 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 637 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 638 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 639 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 640 // If we've already seen this phi node, ignore it, it has already been 641 // checked. 642 if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 643 return false; 644 } else if (isa<ICmpInst>(U) && 645 isa<ConstantPointerNull>(U->getOperand(1))) { 646 // Ignore icmp X, null 647 } else { 648 //cerr << "NONTRAPPING USE: " << *U; 649 return false; 650 } 651 652 return true; 653 } 654 655 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads 656 /// from GV will trap if the loaded value is null. Note that this also permits 657 /// comparisons of the loaded value against null, as a special case. 658 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 659 for (const User *U : GV->users()) 660 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 661 SmallPtrSet<const PHINode*, 8> PHIs; 662 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 663 return false; 664 } else if (isa<StoreInst>(U)) { 665 // Ignore stores to the global. 666 } else { 667 // We don't know or understand this user, bail out. 668 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 669 return false; 670 } 671 return true; 672 } 673 674 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 675 bool Changed = false; 676 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 677 Instruction *I = cast<Instruction>(*UI++); 678 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 679 LI->setOperand(0, NewV); 680 Changed = true; 681 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 682 if (SI->getOperand(1) == V) { 683 SI->setOperand(1, NewV); 684 Changed = true; 685 } 686 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 687 CallSite CS(I); 688 if (CS.getCalledValue() == V) { 689 // Calling through the pointer! Turn into a direct call, but be careful 690 // that the pointer is not also being passed as an argument. 691 CS.setCalledFunction(NewV); 692 Changed = true; 693 bool PassedAsArg = false; 694 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 695 if (CS.getArgument(i) == V) { 696 PassedAsArg = true; 697 CS.setArgument(i, NewV); 698 } 699 700 if (PassedAsArg) { 701 // Being passed as an argument also. Be careful to not invalidate UI! 702 UI = V->user_begin(); 703 } 704 } 705 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 706 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 707 ConstantExpr::getCast(CI->getOpcode(), 708 NewV, CI->getType())); 709 if (CI->use_empty()) { 710 Changed = true; 711 CI->eraseFromParent(); 712 } 713 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 714 // Should handle GEP here. 715 SmallVector<Constant*, 8> Idxs; 716 Idxs.reserve(GEPI->getNumOperands()-1); 717 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 718 i != e; ++i) 719 if (Constant *C = dyn_cast<Constant>(*i)) 720 Idxs.push_back(C); 721 else 722 break; 723 if (Idxs.size() == GEPI->getNumOperands()-1) 724 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI, 725 ConstantExpr::getGetElementPtr(NewV, Idxs)); 726 if (GEPI->use_empty()) { 727 Changed = true; 728 GEPI->eraseFromParent(); 729 } 730 } 731 } 732 733 return Changed; 734 } 735 736 737 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null 738 /// value stored into it. If there are uses of the loaded value that would trap 739 /// if the loaded value is dynamically null, then we know that they cannot be 740 /// reachable with a null optimize away the load. 741 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 742 const DataLayout *DL, 743 TargetLibraryInfo *TLI) { 744 bool Changed = false; 745 746 // Keep track of whether we are able to remove all the uses of the global 747 // other than the store that defines it. 748 bool AllNonStoreUsesGone = true; 749 750 // Replace all uses of loads with uses of uses of the stored value. 751 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 752 User *GlobalUser = *GUI++; 753 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 754 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 755 // If we were able to delete all uses of the loads 756 if (LI->use_empty()) { 757 LI->eraseFromParent(); 758 Changed = true; 759 } else { 760 AllNonStoreUsesGone = false; 761 } 762 } else if (isa<StoreInst>(GlobalUser)) { 763 // Ignore the store that stores "LV" to the global. 764 assert(GlobalUser->getOperand(1) == GV && 765 "Must be storing *to* the global"); 766 } else { 767 AllNonStoreUsesGone = false; 768 769 // If we get here we could have other crazy uses that are transitively 770 // loaded. 771 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 772 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 773 isa<BitCastInst>(GlobalUser) || 774 isa<GetElementPtrInst>(GlobalUser)) && 775 "Only expect load and stores!"); 776 } 777 } 778 779 if (Changed) { 780 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV); 781 ++NumGlobUses; 782 } 783 784 // If we nuked all of the loads, then none of the stores are needed either, 785 // nor is the global. 786 if (AllNonStoreUsesGone) { 787 if (isLeakCheckerRoot(GV)) { 788 Changed |= CleanupPointerRootUsers(GV, TLI); 789 } else { 790 Changed = true; 791 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 792 } 793 if (GV->use_empty()) { 794 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 795 Changed = true; 796 GV->eraseFromParent(); 797 ++NumDeleted; 798 } 799 } 800 return Changed; 801 } 802 803 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the 804 /// instructions that are foldable. 805 static void ConstantPropUsersOf(Value *V, const DataLayout *DL, 806 TargetLibraryInfo *TLI) { 807 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 808 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 809 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 810 I->replaceAllUsesWith(NewC); 811 812 // Advance UI to the next non-I use to avoid invalidating it! 813 // Instructions could multiply use V. 814 while (UI != E && *UI == I) 815 ++UI; 816 I->eraseFromParent(); 817 } 818 } 819 820 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global 821 /// variable, and transforms the program as if it always contained the result of 822 /// the specified malloc. Because it is always the result of the specified 823 /// malloc, there is no reason to actually DO the malloc. Instead, turn the 824 /// malloc into a global, and any loads of GV as uses of the new global. 825 static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, 826 CallInst *CI, 827 Type *AllocTy, 828 ConstantInt *NElements, 829 const DataLayout *DL, 830 TargetLibraryInfo *TLI) { 831 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 832 833 Type *GlobalType; 834 if (NElements->getZExtValue() == 1) 835 GlobalType = AllocTy; 836 else 837 // If we have an array allocation, the global variable is of an array. 838 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 839 840 // Create the new global variable. The contents of the malloc'd memory is 841 // undefined, so initialize with an undef value. 842 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(), 843 GlobalType, false, 844 GlobalValue::InternalLinkage, 845 UndefValue::get(GlobalType), 846 GV->getName()+".body", 847 GV, 848 GV->getThreadLocalMode()); 849 850 // If there are bitcast users of the malloc (which is typical, usually we have 851 // a malloc + bitcast) then replace them with uses of the new global. Update 852 // other users to use the global as well. 853 BitCastInst *TheBC = nullptr; 854 while (!CI->use_empty()) { 855 Instruction *User = cast<Instruction>(CI->user_back()); 856 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 857 if (BCI->getType() == NewGV->getType()) { 858 BCI->replaceAllUsesWith(NewGV); 859 BCI->eraseFromParent(); 860 } else { 861 BCI->setOperand(0, NewGV); 862 } 863 } else { 864 if (!TheBC) 865 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 866 User->replaceUsesOfWith(CI, TheBC); 867 } 868 } 869 870 Constant *RepValue = NewGV; 871 if (NewGV->getType() != GV->getType()->getElementType()) 872 RepValue = ConstantExpr::getBitCast(RepValue, 873 GV->getType()->getElementType()); 874 875 // If there is a comparison against null, we will insert a global bool to 876 // keep track of whether the global was initialized yet or not. 877 GlobalVariable *InitBool = 878 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 879 GlobalValue::InternalLinkage, 880 ConstantInt::getFalse(GV->getContext()), 881 GV->getName()+".init", GV->getThreadLocalMode()); 882 bool InitBoolUsed = false; 883 884 // Loop over all uses of GV, processing them in turn. 885 while (!GV->use_empty()) { 886 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 887 // The global is initialized when the store to it occurs. 888 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 889 SI->getOrdering(), SI->getSynchScope(), SI); 890 SI->eraseFromParent(); 891 continue; 892 } 893 894 LoadInst *LI = cast<LoadInst>(GV->user_back()); 895 while (!LI->use_empty()) { 896 Use &LoadUse = *LI->use_begin(); 897 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 898 if (!ICI) { 899 LoadUse = RepValue; 900 continue; 901 } 902 903 // Replace the cmp X, 0 with a use of the bool value. 904 // Sink the load to where the compare was, if atomic rules allow us to. 905 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 906 LI->getOrdering(), LI->getSynchScope(), 907 LI->isUnordered() ? (Instruction*)ICI : LI); 908 InitBoolUsed = true; 909 switch (ICI->getPredicate()) { 910 default: llvm_unreachable("Unknown ICmp Predicate!"); 911 case ICmpInst::ICMP_ULT: 912 case ICmpInst::ICMP_SLT: // X < null -> always false 913 LV = ConstantInt::getFalse(GV->getContext()); 914 break; 915 case ICmpInst::ICMP_ULE: 916 case ICmpInst::ICMP_SLE: 917 case ICmpInst::ICMP_EQ: 918 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 919 break; 920 case ICmpInst::ICMP_NE: 921 case ICmpInst::ICMP_UGE: 922 case ICmpInst::ICMP_SGE: 923 case ICmpInst::ICMP_UGT: 924 case ICmpInst::ICMP_SGT: 925 break; // no change. 926 } 927 ICI->replaceAllUsesWith(LV); 928 ICI->eraseFromParent(); 929 } 930 LI->eraseFromParent(); 931 } 932 933 // If the initialization boolean was used, insert it, otherwise delete it. 934 if (!InitBoolUsed) { 935 while (!InitBool->use_empty()) // Delete initializations 936 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 937 delete InitBool; 938 } else 939 GV->getParent()->getGlobalList().insert(GV, InitBool); 940 941 // Now the GV is dead, nuke it and the malloc.. 942 GV->eraseFromParent(); 943 CI->eraseFromParent(); 944 945 // To further other optimizations, loop over all users of NewGV and try to 946 // constant prop them. This will promote GEP instructions with constant 947 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 948 ConstantPropUsersOf(NewGV, DL, TLI); 949 if (RepValue != NewGV) 950 ConstantPropUsersOf(RepValue, DL, TLI); 951 952 return NewGV; 953 } 954 955 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking 956 /// to make sure that there are no complex uses of V. We permit simple things 957 /// like dereferencing the pointer, but not storing through the address, unless 958 /// it is to the specified global. 959 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 960 const GlobalVariable *GV, 961 SmallPtrSetImpl<const PHINode*> &PHIs) { 962 for (const User *U : V->users()) { 963 const Instruction *Inst = cast<Instruction>(U); 964 965 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 966 continue; // Fine, ignore. 967 } 968 969 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 970 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 971 return false; // Storing the pointer itself... bad. 972 continue; // Otherwise, storing through it, or storing into GV... fine. 973 } 974 975 // Must index into the array and into the struct. 976 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 977 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 978 return false; 979 continue; 980 } 981 982 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 983 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 984 // cycles. 985 if (PHIs.insert(PN)) 986 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 987 return false; 988 continue; 989 } 990 991 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 992 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 993 return false; 994 continue; 995 } 996 997 return false; 998 } 999 return true; 1000 } 1001 1002 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV 1003 /// somewhere. Transform all uses of the allocation into loads from the 1004 /// global and uses of the resultant pointer. Further, delete the store into 1005 /// GV. This assumes that these value pass the 1006 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1007 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1008 GlobalVariable *GV) { 1009 while (!Alloc->use_empty()) { 1010 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 1011 Instruction *InsertPt = U; 1012 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1013 // If this is the store of the allocation into the global, remove it. 1014 if (SI->getOperand(1) == GV) { 1015 SI->eraseFromParent(); 1016 continue; 1017 } 1018 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1019 // Insert the load in the corresponding predecessor, not right before the 1020 // PHI. 1021 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 1022 } else if (isa<BitCastInst>(U)) { 1023 // Must be bitcast between the malloc and store to initialize the global. 1024 ReplaceUsesOfMallocWithGlobal(U, GV); 1025 U->eraseFromParent(); 1026 continue; 1027 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1028 // If this is a "GEP bitcast" and the user is a store to the global, then 1029 // just process it as a bitcast. 1030 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1031 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1032 if (SI->getOperand(1) == GV) { 1033 // Must be bitcast GEP between the malloc and store to initialize 1034 // the global. 1035 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1036 GEPI->eraseFromParent(); 1037 continue; 1038 } 1039 } 1040 1041 // Insert a load from the global, and use it instead of the malloc. 1042 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1043 U->replaceUsesOfWith(Alloc, NL); 1044 } 1045 } 1046 1047 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi 1048 /// of a load) are simple enough to perform heap SRA on. This permits GEP's 1049 /// that index through the array and struct field, icmps of null, and PHIs. 1050 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1051 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1052 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1053 // We permit two users of the load: setcc comparing against the null 1054 // pointer, and a getelementptr of a specific form. 1055 for (const User *U : V->users()) { 1056 const Instruction *UI = cast<Instruction>(U); 1057 1058 // Comparison against null is ok. 1059 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1060 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1061 return false; 1062 continue; 1063 } 1064 1065 // getelementptr is also ok, but only a simple form. 1066 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1067 // Must index into the array and into the struct. 1068 if (GEPI->getNumOperands() < 3) 1069 return false; 1070 1071 // Otherwise the GEP is ok. 1072 continue; 1073 } 1074 1075 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1076 if (!LoadUsingPHIsPerLoad.insert(PN)) 1077 // This means some phi nodes are dependent on each other. 1078 // Avoid infinite looping! 1079 return false; 1080 if (!LoadUsingPHIs.insert(PN)) 1081 // If we have already analyzed this PHI, then it is safe. 1082 continue; 1083 1084 // Make sure all uses of the PHI are simple enough to transform. 1085 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1086 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1087 return false; 1088 1089 continue; 1090 } 1091 1092 // Otherwise we don't know what this is, not ok. 1093 return false; 1094 } 1095 1096 return true; 1097 } 1098 1099 1100 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from 1101 /// GV are simple enough to perform HeapSRA, return true. 1102 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1103 Instruction *StoredVal) { 1104 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1105 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1106 for (const User *U : GV->users()) 1107 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1108 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1109 LoadUsingPHIsPerLoad)) 1110 return false; 1111 LoadUsingPHIsPerLoad.clear(); 1112 } 1113 1114 // If we reach here, we know that all uses of the loads and transitive uses 1115 // (through PHI nodes) are simple enough to transform. However, we don't know 1116 // that all inputs the to the PHI nodes are in the same equivalence sets. 1117 // Check to verify that all operands of the PHIs are either PHIS that can be 1118 // transformed, loads from GV, or MI itself. 1119 for (const PHINode *PN : LoadUsingPHIs) { 1120 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1121 Value *InVal = PN->getIncomingValue(op); 1122 1123 // PHI of the stored value itself is ok. 1124 if (InVal == StoredVal) continue; 1125 1126 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1127 // One of the PHIs in our set is (optimistically) ok. 1128 if (LoadUsingPHIs.count(InPN)) 1129 continue; 1130 return false; 1131 } 1132 1133 // Load from GV is ok. 1134 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1135 if (LI->getOperand(0) == GV) 1136 continue; 1137 1138 // UNDEF? NULL? 1139 1140 // Anything else is rejected. 1141 return false; 1142 } 1143 } 1144 1145 return true; 1146 } 1147 1148 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1149 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1150 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1151 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1152 1153 if (FieldNo >= FieldVals.size()) 1154 FieldVals.resize(FieldNo+1); 1155 1156 // If we already have this value, just reuse the previously scalarized 1157 // version. 1158 if (Value *FieldVal = FieldVals[FieldNo]) 1159 return FieldVal; 1160 1161 // Depending on what instruction this is, we have several cases. 1162 Value *Result; 1163 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1164 // This is a scalarized version of the load from the global. Just create 1165 // a new Load of the scalarized global. 1166 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1167 InsertedScalarizedValues, 1168 PHIsToRewrite), 1169 LI->getName()+".f"+Twine(FieldNo), LI); 1170 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1171 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1172 // field. 1173 1174 PointerType *PTy = cast<PointerType>(PN->getType()); 1175 StructType *ST = cast<StructType>(PTy->getElementType()); 1176 1177 unsigned AS = PTy->getAddressSpace(); 1178 PHINode *NewPN = 1179 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1180 PN->getNumIncomingValues(), 1181 PN->getName()+".f"+Twine(FieldNo), PN); 1182 Result = NewPN; 1183 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1184 } else { 1185 llvm_unreachable("Unknown usable value"); 1186 } 1187 1188 return FieldVals[FieldNo] = Result; 1189 } 1190 1191 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from 1192 /// the load, rewrite the derived value to use the HeapSRoA'd load. 1193 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1194 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1195 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1196 // If this is a comparison against null, handle it. 1197 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1198 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1199 // If we have a setcc of the loaded pointer, we can use a setcc of any 1200 // field. 1201 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1202 InsertedScalarizedValues, PHIsToRewrite); 1203 1204 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1205 Constant::getNullValue(NPtr->getType()), 1206 SCI->getName()); 1207 SCI->replaceAllUsesWith(New); 1208 SCI->eraseFromParent(); 1209 return; 1210 } 1211 1212 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1213 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1214 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1215 && "Unexpected GEPI!"); 1216 1217 // Load the pointer for this field. 1218 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1219 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1220 InsertedScalarizedValues, PHIsToRewrite); 1221 1222 // Create the new GEP idx vector. 1223 SmallVector<Value*, 8> GEPIdx; 1224 GEPIdx.push_back(GEPI->getOperand(1)); 1225 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1226 1227 Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx, 1228 GEPI->getName(), GEPI); 1229 GEPI->replaceAllUsesWith(NGEPI); 1230 GEPI->eraseFromParent(); 1231 return; 1232 } 1233 1234 // Recursively transform the users of PHI nodes. This will lazily create the 1235 // PHIs that are needed for individual elements. Keep track of what PHIs we 1236 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1237 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1238 // already been seen first by another load, so its uses have already been 1239 // processed. 1240 PHINode *PN = cast<PHINode>(LoadUser); 1241 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1242 std::vector<Value*>())).second) 1243 return; 1244 1245 // If this is the first time we've seen this PHI, recursively process all 1246 // users. 1247 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1248 Instruction *User = cast<Instruction>(*UI++); 1249 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1250 } 1251 } 1252 1253 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr 1254 /// is a value loaded from the global. Eliminate all uses of Ptr, making them 1255 /// use FieldGlobals instead. All uses of loaded values satisfy 1256 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1257 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1258 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1259 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1260 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1261 Instruction *User = cast<Instruction>(*UI++); 1262 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1263 } 1264 1265 if (Load->use_empty()) { 1266 Load->eraseFromParent(); 1267 InsertedScalarizedValues.erase(Load); 1268 } 1269 } 1270 1271 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break 1272 /// it up into multiple allocations of arrays of the fields. 1273 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1274 Value *NElems, const DataLayout *DL, 1275 const TargetLibraryInfo *TLI) { 1276 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1277 Type *MAT = getMallocAllocatedType(CI, TLI); 1278 StructType *STy = cast<StructType>(MAT); 1279 1280 // There is guaranteed to be at least one use of the malloc (storing 1281 // it into GV). If there are other uses, change them to be uses of 1282 // the global to simplify later code. This also deletes the store 1283 // into GV. 1284 ReplaceUsesOfMallocWithGlobal(CI, GV); 1285 1286 // Okay, at this point, there are no users of the malloc. Insert N 1287 // new mallocs at the same place as CI, and N globals. 1288 std::vector<Value*> FieldGlobals; 1289 std::vector<Value*> FieldMallocs; 1290 1291 unsigned AS = GV->getType()->getPointerAddressSpace(); 1292 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1293 Type *FieldTy = STy->getElementType(FieldNo); 1294 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1295 1296 GlobalVariable *NGV = 1297 new GlobalVariable(*GV->getParent(), 1298 PFieldTy, false, GlobalValue::InternalLinkage, 1299 Constant::getNullValue(PFieldTy), 1300 GV->getName() + ".f" + Twine(FieldNo), GV, 1301 GV->getThreadLocalMode()); 1302 FieldGlobals.push_back(NGV); 1303 1304 unsigned TypeSize = DL->getTypeAllocSize(FieldTy); 1305 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1306 TypeSize = DL->getStructLayout(ST)->getSizeInBytes(); 1307 Type *IntPtrTy = DL->getIntPtrType(CI->getType()); 1308 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1309 ConstantInt::get(IntPtrTy, TypeSize), 1310 NElems, nullptr, 1311 CI->getName() + ".f" + Twine(FieldNo)); 1312 FieldMallocs.push_back(NMI); 1313 new StoreInst(NMI, NGV, CI); 1314 } 1315 1316 // The tricky aspect of this transformation is handling the case when malloc 1317 // fails. In the original code, malloc failing would set the result pointer 1318 // of malloc to null. In this case, some mallocs could succeed and others 1319 // could fail. As such, we emit code that looks like this: 1320 // F0 = malloc(field0) 1321 // F1 = malloc(field1) 1322 // F2 = malloc(field2) 1323 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1324 // if (F0) { free(F0); F0 = 0; } 1325 // if (F1) { free(F1); F1 = 0; } 1326 // if (F2) { free(F2); F2 = 0; } 1327 // } 1328 // The malloc can also fail if its argument is too large. 1329 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1330 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1331 ConstantZero, "isneg"); 1332 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1333 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1334 Constant::getNullValue(FieldMallocs[i]->getType()), 1335 "isnull"); 1336 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1337 } 1338 1339 // Split the basic block at the old malloc. 1340 BasicBlock *OrigBB = CI->getParent(); 1341 BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont"); 1342 1343 // Create the block to check the first condition. Put all these blocks at the 1344 // end of the function as they are unlikely to be executed. 1345 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1346 "malloc_ret_null", 1347 OrigBB->getParent()); 1348 1349 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1350 // branch on RunningOr. 1351 OrigBB->getTerminator()->eraseFromParent(); 1352 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1353 1354 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1355 // pointer, because some may be null while others are not. 1356 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1357 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1358 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1359 Constant::getNullValue(GVVal->getType())); 1360 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1361 OrigBB->getParent()); 1362 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1363 OrigBB->getParent()); 1364 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1365 Cmp, NullPtrBlock); 1366 1367 // Fill in FreeBlock. 1368 CallInst::CreateFree(GVVal, BI); 1369 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1370 FreeBlock); 1371 BranchInst::Create(NextBlock, FreeBlock); 1372 1373 NullPtrBlock = NextBlock; 1374 } 1375 1376 BranchInst::Create(ContBB, NullPtrBlock); 1377 1378 // CI is no longer needed, remove it. 1379 CI->eraseFromParent(); 1380 1381 /// InsertedScalarizedLoads - As we process loads, if we can't immediately 1382 /// update all uses of the load, keep track of what scalarized loads are 1383 /// inserted for a given load. 1384 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1385 InsertedScalarizedValues[GV] = FieldGlobals; 1386 1387 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1388 1389 // Okay, the malloc site is completely handled. All of the uses of GV are now 1390 // loads, and all uses of those loads are simple. Rewrite them to use loads 1391 // of the per-field globals instead. 1392 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1393 Instruction *User = cast<Instruction>(*UI++); 1394 1395 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1396 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1397 continue; 1398 } 1399 1400 // Must be a store of null. 1401 StoreInst *SI = cast<StoreInst>(User); 1402 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1403 "Unexpected heap-sra user!"); 1404 1405 // Insert a store of null into each global. 1406 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1407 PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType()); 1408 Constant *Null = Constant::getNullValue(PT->getElementType()); 1409 new StoreInst(Null, FieldGlobals[i], SI); 1410 } 1411 // Erase the original store. 1412 SI->eraseFromParent(); 1413 } 1414 1415 // While we have PHIs that are interesting to rewrite, do it. 1416 while (!PHIsToRewrite.empty()) { 1417 PHINode *PN = PHIsToRewrite.back().first; 1418 unsigned FieldNo = PHIsToRewrite.back().second; 1419 PHIsToRewrite.pop_back(); 1420 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1421 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1422 1423 // Add all the incoming values. This can materialize more phis. 1424 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1425 Value *InVal = PN->getIncomingValue(i); 1426 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1427 PHIsToRewrite); 1428 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1429 } 1430 } 1431 1432 // Drop all inter-phi links and any loads that made it this far. 1433 for (DenseMap<Value*, std::vector<Value*> >::iterator 1434 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1435 I != E; ++I) { 1436 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1437 PN->dropAllReferences(); 1438 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1439 LI->dropAllReferences(); 1440 } 1441 1442 // Delete all the phis and loads now that inter-references are dead. 1443 for (DenseMap<Value*, std::vector<Value*> >::iterator 1444 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1445 I != E; ++I) { 1446 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1447 PN->eraseFromParent(); 1448 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1449 LI->eraseFromParent(); 1450 } 1451 1452 // The old global is now dead, remove it. 1453 GV->eraseFromParent(); 1454 1455 ++NumHeapSRA; 1456 return cast<GlobalVariable>(FieldGlobals[0]); 1457 } 1458 1459 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a 1460 /// pointer global variable with a single value stored it that is a malloc or 1461 /// cast of malloc. 1462 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, 1463 CallInst *CI, 1464 Type *AllocTy, 1465 AtomicOrdering Ordering, 1466 Module::global_iterator &GVI, 1467 const DataLayout *DL, 1468 TargetLibraryInfo *TLI) { 1469 if (!DL) 1470 return false; 1471 1472 // If this is a malloc of an abstract type, don't touch it. 1473 if (!AllocTy->isSized()) 1474 return false; 1475 1476 // We can't optimize this global unless all uses of it are *known* to be 1477 // of the malloc value, not of the null initializer value (consider a use 1478 // that compares the global's value against zero to see if the malloc has 1479 // been reached). To do this, we check to see if all uses of the global 1480 // would trap if the global were null: this proves that they must all 1481 // happen after the malloc. 1482 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1483 return false; 1484 1485 // We can't optimize this if the malloc itself is used in a complex way, 1486 // for example, being stored into multiple globals. This allows the 1487 // malloc to be stored into the specified global, loaded icmp'd, and 1488 // GEP'd. These are all things we could transform to using the global 1489 // for. 1490 SmallPtrSet<const PHINode*, 8> PHIs; 1491 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1492 return false; 1493 1494 // If we have a global that is only initialized with a fixed size malloc, 1495 // transform the program to use global memory instead of malloc'd memory. 1496 // This eliminates dynamic allocation, avoids an indirection accessing the 1497 // data, and exposes the resultant global to further GlobalOpt. 1498 // We cannot optimize the malloc if we cannot determine malloc array size. 1499 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1500 if (!NElems) 1501 return false; 1502 1503 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1504 // Restrict this transformation to only working on small allocations 1505 // (2048 bytes currently), as we don't want to introduce a 16M global or 1506 // something. 1507 if (NElements->getZExtValue() * DL->getTypeAllocSize(AllocTy) < 2048) { 1508 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1509 return true; 1510 } 1511 1512 // If the allocation is an array of structures, consider transforming this 1513 // into multiple malloc'd arrays, one for each field. This is basically 1514 // SRoA for malloc'd memory. 1515 1516 if (Ordering != NotAtomic) 1517 return false; 1518 1519 // If this is an allocation of a fixed size array of structs, analyze as a 1520 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1521 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1522 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1523 AllocTy = AT->getElementType(); 1524 1525 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1526 if (!AllocSTy) 1527 return false; 1528 1529 // This the structure has an unreasonable number of fields, leave it 1530 // alone. 1531 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1532 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1533 1534 // If this is a fixed size array, transform the Malloc to be an alloc of 1535 // structs. malloc [100 x struct],1 -> malloc struct, 100 1536 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1537 Type *IntPtrTy = DL->getIntPtrType(CI->getType()); 1538 unsigned TypeSize = DL->getStructLayout(AllocSTy)->getSizeInBytes(); 1539 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1540 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1541 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, 1542 AllocSize, NumElements, 1543 nullptr, CI->getName()); 1544 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1545 CI->replaceAllUsesWith(Cast); 1546 CI->eraseFromParent(); 1547 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1548 CI = cast<CallInst>(BCI->getOperand(0)); 1549 else 1550 CI = cast<CallInst>(Malloc); 1551 } 1552 1553 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), 1554 DL, TLI); 1555 return true; 1556 } 1557 1558 return false; 1559 } 1560 1561 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge 1562 // that only one value (besides its initializer) is ever stored to the global. 1563 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1564 AtomicOrdering Ordering, 1565 Module::global_iterator &GVI, 1566 const DataLayout *DL, 1567 TargetLibraryInfo *TLI) { 1568 // Ignore no-op GEPs and bitcasts. 1569 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1570 1571 // If we are dealing with a pointer global that is initialized to null and 1572 // only has one (non-null) value stored into it, then we can optimize any 1573 // users of the loaded value (often calls and loads) that would trap if the 1574 // value was null. 1575 if (GV->getInitializer()->getType()->isPointerTy() && 1576 GV->getInitializer()->isNullValue()) { 1577 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1578 if (GV->getInitializer()->getType() != SOVC->getType()) 1579 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1580 1581 // Optimize away any trapping uses of the loaded value. 1582 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1583 return true; 1584 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1585 Type *MallocType = getMallocAllocatedType(CI, TLI); 1586 if (MallocType && 1587 TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI, 1588 DL, TLI)) 1589 return true; 1590 } 1591 } 1592 1593 return false; 1594 } 1595 1596 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only 1597 /// two values ever stored into GV are its initializer and OtherVal. See if we 1598 /// can shrink the global into a boolean and select between the two values 1599 /// whenever it is used. This exposes the values to other scalar optimizations. 1600 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1601 Type *GVElType = GV->getType()->getElementType(); 1602 1603 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1604 // an FP value, pointer or vector, don't do this optimization because a select 1605 // between them is very expensive and unlikely to lead to later 1606 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1607 // where v1 and v2 both require constant pool loads, a big loss. 1608 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1609 GVElType->isFloatingPointTy() || 1610 GVElType->isPointerTy() || GVElType->isVectorTy()) 1611 return false; 1612 1613 // Walk the use list of the global seeing if all the uses are load or store. 1614 // If there is anything else, bail out. 1615 for (User *U : GV->users()) 1616 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1617 return false; 1618 1619 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV); 1620 1621 // Create the new global, initializing it to false. 1622 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1623 false, 1624 GlobalValue::InternalLinkage, 1625 ConstantInt::getFalse(GV->getContext()), 1626 GV->getName()+".b", 1627 GV->getThreadLocalMode(), 1628 GV->getType()->getAddressSpace()); 1629 GV->getParent()->getGlobalList().insert(GV, NewGV); 1630 1631 Constant *InitVal = GV->getInitializer(); 1632 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1633 "No reason to shrink to bool!"); 1634 1635 // If initialized to zero and storing one into the global, we can use a cast 1636 // instead of a select to synthesize the desired value. 1637 bool IsOneZero = false; 1638 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1639 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1640 1641 while (!GV->use_empty()) { 1642 Instruction *UI = cast<Instruction>(GV->user_back()); 1643 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1644 // Change the store into a boolean store. 1645 bool StoringOther = SI->getOperand(0) == OtherVal; 1646 // Only do this if we weren't storing a loaded value. 1647 Value *StoreVal; 1648 if (StoringOther || SI->getOperand(0) == InitVal) { 1649 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1650 StoringOther); 1651 } else { 1652 // Otherwise, we are storing a previously loaded copy. To do this, 1653 // change the copy from copying the original value to just copying the 1654 // bool. 1655 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1656 1657 // If we've already replaced the input, StoredVal will be a cast or 1658 // select instruction. If not, it will be a load of the original 1659 // global. 1660 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1661 assert(LI->getOperand(0) == GV && "Not a copy!"); 1662 // Insert a new load, to preserve the saved value. 1663 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1664 LI->getOrdering(), LI->getSynchScope(), LI); 1665 } else { 1666 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1667 "This is not a form that we understand!"); 1668 StoreVal = StoredVal->getOperand(0); 1669 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1670 } 1671 } 1672 new StoreInst(StoreVal, NewGV, false, 0, 1673 SI->getOrdering(), SI->getSynchScope(), SI); 1674 } else { 1675 // Change the load into a load of bool then a select. 1676 LoadInst *LI = cast<LoadInst>(UI); 1677 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1678 LI->getOrdering(), LI->getSynchScope(), LI); 1679 Value *NSI; 1680 if (IsOneZero) 1681 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1682 else 1683 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1684 NSI->takeName(LI); 1685 LI->replaceAllUsesWith(NSI); 1686 } 1687 UI->eraseFromParent(); 1688 } 1689 1690 // Retain the name of the old global variable. People who are debugging their 1691 // programs may expect these variables to be named the same. 1692 NewGV->takeName(GV); 1693 GV->eraseFromParent(); 1694 return true; 1695 } 1696 1697 1698 /// ProcessGlobal - Analyze the specified global variable and optimize it if 1699 /// possible. If we make a change, return true. 1700 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV, 1701 Module::global_iterator &GVI) { 1702 // Do more involved optimizations if the global is internal. 1703 GV->removeDeadConstantUsers(); 1704 1705 if (GV->use_empty()) { 1706 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV); 1707 GV->eraseFromParent(); 1708 ++NumDeleted; 1709 return true; 1710 } 1711 1712 if (!GV->hasLocalLinkage()) 1713 return false; 1714 1715 GlobalStatus GS; 1716 1717 if (GlobalStatus::analyzeGlobal(GV, GS)) 1718 return false; 1719 1720 if (!GS.IsCompared && !GV->hasUnnamedAddr()) { 1721 GV->setUnnamedAddr(true); 1722 NumUnnamed++; 1723 } 1724 1725 if (GV->isConstant() || !GV->hasInitializer()) 1726 return false; 1727 1728 return ProcessInternalGlobal(GV, GVI, GS); 1729 } 1730 1731 /// ProcessInternalGlobal - Analyze the specified global variable and optimize 1732 /// it if possible. If we make a change, return true. 1733 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, 1734 Module::global_iterator &GVI, 1735 const GlobalStatus &GS) { 1736 // If this is a first class global and has only one accessing function 1737 // and this function is main (which we know is not recursive), we replace 1738 // the global with a local alloca in this function. 1739 // 1740 // NOTE: It doesn't make sense to promote non-single-value types since we 1741 // are just replacing static memory to stack memory. 1742 // 1743 // If the global is in different address space, don't bring it to stack. 1744 if (!GS.HasMultipleAccessingFunctions && 1745 GS.AccessingFunction && !GS.HasNonInstructionUser && 1746 GV->getType()->getElementType()->isSingleValueType() && 1747 GS.AccessingFunction->getName() == "main" && 1748 GS.AccessingFunction->hasExternalLinkage() && 1749 GV->getType()->getAddressSpace() == 0) { 1750 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV); 1751 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1752 ->getEntryBlock().begin()); 1753 Type *ElemTy = GV->getType()->getElementType(); 1754 // FIXME: Pass Global's alignment when globals have alignment 1755 AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr, 1756 GV->getName(), &FirstI); 1757 if (!isa<UndefValue>(GV->getInitializer())) 1758 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1759 1760 GV->replaceAllUsesWith(Alloca); 1761 GV->eraseFromParent(); 1762 ++NumLocalized; 1763 return true; 1764 } 1765 1766 // If the global is never loaded (but may be stored to), it is dead. 1767 // Delete it now. 1768 if (!GS.IsLoaded) { 1769 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV); 1770 1771 bool Changed; 1772 if (isLeakCheckerRoot(GV)) { 1773 // Delete any constant stores to the global. 1774 Changed = CleanupPointerRootUsers(GV, TLI); 1775 } else { 1776 // Delete any stores we can find to the global. We may not be able to 1777 // make it completely dead though. 1778 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1779 } 1780 1781 // If the global is dead now, delete it. 1782 if (GV->use_empty()) { 1783 GV->eraseFromParent(); 1784 ++NumDeleted; 1785 Changed = true; 1786 } 1787 return Changed; 1788 1789 } else if (GS.StoredType <= GlobalStatus::InitializerStored) { 1790 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1791 GV->setConstant(true); 1792 1793 // Clean up any obviously simplifiable users now. 1794 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1795 1796 // If the global is dead now, just nuke it. 1797 if (GV->use_empty()) { 1798 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1799 << "all users and delete global!\n"); 1800 GV->eraseFromParent(); 1801 ++NumDeleted; 1802 } 1803 1804 ++NumMarked; 1805 return true; 1806 } else if (!GV->getInitializer()->getType()->isSingleValueType()) { 1807 if (DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>()) { 1808 const DataLayout &DL = DLP->getDataLayout(); 1809 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, DL)) { 1810 GVI = FirstNewGV; // Don't skip the newly produced globals! 1811 return true; 1812 } 1813 } 1814 } else if (GS.StoredType == GlobalStatus::StoredOnce) { 1815 // If the initial value for the global was an undef value, and if only 1816 // one other value was stored into it, we can just change the 1817 // initializer to be the stored value, then delete all stores to the 1818 // global. This allows us to mark it constant. 1819 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1820 if (isa<UndefValue>(GV->getInitializer())) { 1821 // Change the initial value here. 1822 GV->setInitializer(SOVConstant); 1823 1824 // Clean up any obviously simplifiable users now. 1825 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1826 1827 if (GV->use_empty()) { 1828 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1829 << "simplify all users and delete global!\n"); 1830 GV->eraseFromParent(); 1831 ++NumDeleted; 1832 } else { 1833 GVI = GV; 1834 } 1835 ++NumSubstitute; 1836 return true; 1837 } 1838 1839 // Try to optimize globals based on the knowledge that only one value 1840 // (besides its initializer) is ever stored to the global. 1841 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI, 1842 DL, TLI)) 1843 return true; 1844 1845 // Otherwise, if the global was not a boolean, we can shrink it to be a 1846 // boolean. 1847 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 1848 if (GS.Ordering == NotAtomic) { 1849 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1850 ++NumShrunkToBool; 1851 return true; 1852 } 1853 } 1854 } 1855 } 1856 1857 return false; 1858 } 1859 1860 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified 1861 /// function, changing them to FastCC. 1862 static void ChangeCalleesToFastCall(Function *F) { 1863 for (User *U : F->users()) { 1864 if (isa<BlockAddress>(U)) 1865 continue; 1866 CallSite CS(cast<Instruction>(U)); 1867 CS.setCallingConv(CallingConv::Fast); 1868 } 1869 } 1870 1871 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) { 1872 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1873 unsigned Index = Attrs.getSlotIndex(i); 1874 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest)) 1875 continue; 1876 1877 // There can be only one. 1878 return Attrs.removeAttribute(C, Index, Attribute::Nest); 1879 } 1880 1881 return Attrs; 1882 } 1883 1884 static void RemoveNestAttribute(Function *F) { 1885 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 1886 for (User *U : F->users()) { 1887 if (isa<BlockAddress>(U)) 1888 continue; 1889 CallSite CS(cast<Instruction>(U)); 1890 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 1891 } 1892 } 1893 1894 /// Return true if this is a calling convention that we'd like to change. The 1895 /// idea here is that we don't want to mess with the convention if the user 1896 /// explicitly requested something with performance implications like coldcc, 1897 /// GHC, or anyregcc. 1898 static bool isProfitableToMakeFastCC(Function *F) { 1899 CallingConv::ID CC = F->getCallingConv(); 1900 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 1901 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall; 1902 } 1903 1904 bool GlobalOpt::OptimizeFunctions(Module &M) { 1905 bool Changed = false; 1906 // Optimize functions. 1907 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 1908 Function *F = FI++; 1909 // Functions without names cannot be referenced outside this module. 1910 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 1911 F->setLinkage(GlobalValue::InternalLinkage); 1912 1913 const Comdat *C = F->getComdat(); 1914 bool inComdat = C && NotDiscardableComdats.count(C); 1915 F->removeDeadConstantUsers(); 1916 if ((!inComdat || F->hasLocalLinkage()) && F->isDefTriviallyDead()) { 1917 F->eraseFromParent(); 1918 Changed = true; 1919 ++NumFnDeleted; 1920 } else if (F->hasLocalLinkage()) { 1921 if (isProfitableToMakeFastCC(F) && !F->isVarArg() && 1922 !F->hasAddressTaken()) { 1923 // If this function has a calling convention worth changing, is not a 1924 // varargs function, and is only called directly, promote it to use the 1925 // Fast calling convention. 1926 F->setCallingConv(CallingConv::Fast); 1927 ChangeCalleesToFastCall(F); 1928 ++NumFastCallFns; 1929 Changed = true; 1930 } 1931 1932 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 1933 !F->hasAddressTaken()) { 1934 // The function is not used by a trampoline intrinsic, so it is safe 1935 // to remove the 'nest' attribute. 1936 RemoveNestAttribute(F); 1937 ++NumNestRemoved; 1938 Changed = true; 1939 } 1940 } 1941 } 1942 return Changed; 1943 } 1944 1945 bool GlobalOpt::OptimizeGlobalVars(Module &M) { 1946 bool Changed = false; 1947 1948 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 1949 GVI != E; ) { 1950 GlobalVariable *GV = GVI++; 1951 // Global variables without names cannot be referenced outside this module. 1952 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 1953 GV->setLinkage(GlobalValue::InternalLinkage); 1954 // Simplify the initializer. 1955 if (GV->hasInitializer()) 1956 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) { 1957 Constant *New = ConstantFoldConstantExpression(CE, DL, TLI); 1958 if (New && New != CE) 1959 GV->setInitializer(New); 1960 } 1961 1962 if (GV->isDiscardableIfUnused()) { 1963 if (const Comdat *C = GV->getComdat()) 1964 if (NotDiscardableComdats.count(C) && !GV->hasLocalLinkage()) 1965 continue; 1966 Changed |= ProcessGlobal(GV, GVI); 1967 } 1968 } 1969 return Changed; 1970 } 1971 1972 static inline bool 1973 isSimpleEnoughValueToCommit(Constant *C, 1974 SmallPtrSetImpl<Constant*> &SimpleConstants, 1975 const DataLayout *DL); 1976 1977 1978 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be 1979 /// handled by the code generator. We don't want to generate something like: 1980 /// void *X = &X/42; 1981 /// because the code generator doesn't have a relocation that can handle that. 1982 /// 1983 /// This function should be called if C was not found (but just got inserted) 1984 /// in SimpleConstants to avoid having to rescan the same constants all the 1985 /// time. 1986 static bool isSimpleEnoughValueToCommitHelper(Constant *C, 1987 SmallPtrSetImpl<Constant*> &SimpleConstants, 1988 const DataLayout *DL) { 1989 // Simple global addresses are supported, do not allow dllimport or 1990 // thread-local globals. 1991 if (auto *GV = dyn_cast<GlobalValue>(C)) 1992 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); 1993 1994 // Simple integer, undef, constant aggregate zero, etc are all supported. 1995 if (C->getNumOperands() == 0 || isa<BlockAddress>(C)) 1996 return true; 1997 1998 // Aggregate values are safe if all their elements are. 1999 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2000 isa<ConstantVector>(C)) { 2001 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 2002 Constant *Op = cast<Constant>(C->getOperand(i)); 2003 if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, DL)) 2004 return false; 2005 } 2006 return true; 2007 } 2008 2009 // We don't know exactly what relocations are allowed in constant expressions, 2010 // so we allow &global+constantoffset, which is safe and uniformly supported 2011 // across targets. 2012 ConstantExpr *CE = cast<ConstantExpr>(C); 2013 switch (CE->getOpcode()) { 2014 case Instruction::BitCast: 2015 // Bitcast is fine if the casted value is fine. 2016 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2017 2018 case Instruction::IntToPtr: 2019 case Instruction::PtrToInt: 2020 // int <=> ptr is fine if the int type is the same size as the 2021 // pointer type. 2022 if (!DL || DL->getTypeSizeInBits(CE->getType()) != 2023 DL->getTypeSizeInBits(CE->getOperand(0)->getType())) 2024 return false; 2025 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2026 2027 // GEP is fine if it is simple + constant offset. 2028 case Instruction::GetElementPtr: 2029 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 2030 if (!isa<ConstantInt>(CE->getOperand(i))) 2031 return false; 2032 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2033 2034 case Instruction::Add: 2035 // We allow simple+cst. 2036 if (!isa<ConstantInt>(CE->getOperand(1))) 2037 return false; 2038 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2039 } 2040 return false; 2041 } 2042 2043 static inline bool 2044 isSimpleEnoughValueToCommit(Constant *C, 2045 SmallPtrSetImpl<Constant*> &SimpleConstants, 2046 const DataLayout *DL) { 2047 // If we already checked this constant, we win. 2048 if (!SimpleConstants.insert(C)) return true; 2049 // Check the constant. 2050 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); 2051 } 2052 2053 2054 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple 2055 /// enough for us to understand. In particular, if it is a cast to anything 2056 /// other than from one pointer type to another pointer type, we punt. 2057 /// We basically just support direct accesses to globals and GEP's of 2058 /// globals. This should be kept up to date with CommitValueTo. 2059 static bool isSimpleEnoughPointerToCommit(Constant *C) { 2060 // Conservatively, avoid aggregate types. This is because we don't 2061 // want to worry about them partially overlapping other stores. 2062 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) 2063 return false; 2064 2065 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 2066 // Do not allow weak/*_odr/linkonce linkage or external globals. 2067 return GV->hasUniqueInitializer(); 2068 2069 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2070 // Handle a constantexpr gep. 2071 if (CE->getOpcode() == Instruction::GetElementPtr && 2072 isa<GlobalVariable>(CE->getOperand(0)) && 2073 cast<GEPOperator>(CE)->isInBounds()) { 2074 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2075 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2076 // external globals. 2077 if (!GV->hasUniqueInitializer()) 2078 return false; 2079 2080 // The first index must be zero. 2081 ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin())); 2082 if (!CI || !CI->isZero()) return false; 2083 2084 // The remaining indices must be compile-time known integers within the 2085 // notional bounds of the corresponding static array types. 2086 if (!CE->isGEPWithNoNotionalOverIndexing()) 2087 return false; 2088 2089 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2090 2091 // A constantexpr bitcast from a pointer to another pointer is a no-op, 2092 // and we know how to evaluate it by moving the bitcast from the pointer 2093 // operand to the value operand. 2094 } else if (CE->getOpcode() == Instruction::BitCast && 2095 isa<GlobalVariable>(CE->getOperand(0))) { 2096 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2097 // external globals. 2098 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); 2099 } 2100 } 2101 2102 return false; 2103 } 2104 2105 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global 2106 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it. 2107 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into. 2108 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2109 ConstantExpr *Addr, unsigned OpNo) { 2110 // Base case of the recursion. 2111 if (OpNo == Addr->getNumOperands()) { 2112 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2113 return Val; 2114 } 2115 2116 SmallVector<Constant*, 32> Elts; 2117 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2118 // Break up the constant into its elements. 2119 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2120 Elts.push_back(Init->getAggregateElement(i)); 2121 2122 // Replace the element that we are supposed to. 2123 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2124 unsigned Idx = CU->getZExtValue(); 2125 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2126 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2127 2128 // Return the modified struct. 2129 return ConstantStruct::get(STy, Elts); 2130 } 2131 2132 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2133 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2134 2135 uint64_t NumElts; 2136 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy)) 2137 NumElts = ATy->getNumElements(); 2138 else 2139 NumElts = InitTy->getVectorNumElements(); 2140 2141 // Break up the array into elements. 2142 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2143 Elts.push_back(Init->getAggregateElement(i)); 2144 2145 assert(CI->getZExtValue() < NumElts); 2146 Elts[CI->getZExtValue()] = 2147 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2148 2149 if (Init->getType()->isArrayTy()) 2150 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2151 return ConstantVector::get(Elts); 2152 } 2153 2154 /// CommitValueTo - We have decided that Addr (which satisfies the predicate 2155 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2156 static void CommitValueTo(Constant *Val, Constant *Addr) { 2157 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2158 assert(GV->hasInitializer()); 2159 GV->setInitializer(Val); 2160 return; 2161 } 2162 2163 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2164 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2165 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2166 } 2167 2168 namespace { 2169 2170 /// Evaluator - This class evaluates LLVM IR, producing the Constant 2171 /// representing each SSA instruction. Changes to global variables are stored 2172 /// in a mapping that can be iterated over after the evaluation is complete. 2173 /// Once an evaluation call fails, the evaluation object should not be reused. 2174 class Evaluator { 2175 public: 2176 Evaluator(const DataLayout *DL, const TargetLibraryInfo *TLI) 2177 : DL(DL), TLI(TLI) { 2178 ValueStack.emplace_back(); 2179 } 2180 2181 ~Evaluator() { 2182 for (auto &Tmp : AllocaTmps) 2183 // If there are still users of the alloca, the program is doing something 2184 // silly, e.g. storing the address of the alloca somewhere and using it 2185 // later. Since this is undefined, we'll just make it be null. 2186 if (!Tmp->use_empty()) 2187 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType())); 2188 } 2189 2190 /// EvaluateFunction - Evaluate a call to function F, returning true if 2191 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2192 /// arguments for the function. 2193 bool EvaluateFunction(Function *F, Constant *&RetVal, 2194 const SmallVectorImpl<Constant*> &ActualArgs); 2195 2196 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2197 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2198 /// control flows into, or null upon return. 2199 bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB); 2200 2201 Constant *getVal(Value *V) { 2202 if (Constant *CV = dyn_cast<Constant>(V)) return CV; 2203 Constant *R = ValueStack.back().lookup(V); 2204 assert(R && "Reference to an uncomputed value!"); 2205 return R; 2206 } 2207 2208 void setVal(Value *V, Constant *C) { 2209 ValueStack.back()[V] = C; 2210 } 2211 2212 const DenseMap<Constant*, Constant*> &getMutatedMemory() const { 2213 return MutatedMemory; 2214 } 2215 2216 const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const { 2217 return Invariants; 2218 } 2219 2220 private: 2221 Constant *ComputeLoadResult(Constant *P); 2222 2223 /// ValueStack - As we compute SSA register values, we store their contents 2224 /// here. The back of the deque contains the current function and the stack 2225 /// contains the values in the calling frames. 2226 std::deque<DenseMap<Value*, Constant*>> ValueStack; 2227 2228 /// CallStack - This is used to detect recursion. In pathological situations 2229 /// we could hit exponential behavior, but at least there is nothing 2230 /// unbounded. 2231 SmallVector<Function*, 4> CallStack; 2232 2233 /// MutatedMemory - For each store we execute, we update this map. Loads 2234 /// check this to get the most up-to-date value. If evaluation is successful, 2235 /// this state is committed to the process. 2236 DenseMap<Constant*, Constant*> MutatedMemory; 2237 2238 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable 2239 /// to represent its body. This vector is needed so we can delete the 2240 /// temporary globals when we are done. 2241 SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps; 2242 2243 /// Invariants - These global variables have been marked invariant by the 2244 /// static constructor. 2245 SmallPtrSet<GlobalVariable*, 8> Invariants; 2246 2247 /// SimpleConstants - These are constants we have checked and know to be 2248 /// simple enough to live in a static initializer of a global. 2249 SmallPtrSet<Constant*, 8> SimpleConstants; 2250 2251 const DataLayout *DL; 2252 const TargetLibraryInfo *TLI; 2253 }; 2254 2255 } // anonymous namespace 2256 2257 /// ComputeLoadResult - Return the value that would be computed by a load from 2258 /// P after the stores reflected by 'memory' have been performed. If we can't 2259 /// decide, return null. 2260 Constant *Evaluator::ComputeLoadResult(Constant *P) { 2261 // If this memory location has been recently stored, use the stored value: it 2262 // is the most up-to-date. 2263 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P); 2264 if (I != MutatedMemory.end()) return I->second; 2265 2266 // Access it. 2267 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 2268 if (GV->hasDefinitiveInitializer()) 2269 return GV->getInitializer(); 2270 return nullptr; 2271 } 2272 2273 // Handle a constantexpr getelementptr. 2274 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) 2275 if (CE->getOpcode() == Instruction::GetElementPtr && 2276 isa<GlobalVariable>(CE->getOperand(0))) { 2277 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2278 if (GV->hasDefinitiveInitializer()) 2279 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2280 } 2281 2282 return nullptr; // don't know how to evaluate. 2283 } 2284 2285 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2286 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2287 /// control flows into, or null upon return. 2288 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, 2289 BasicBlock *&NextBB) { 2290 // This is the main evaluation loop. 2291 while (1) { 2292 Constant *InstResult = nullptr; 2293 2294 DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); 2295 2296 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 2297 if (!SI->isSimple()) { 2298 DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n"); 2299 return false; // no volatile/atomic accesses. 2300 } 2301 Constant *Ptr = getVal(SI->getOperand(1)); 2302 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2303 DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); 2304 Ptr = ConstantFoldConstantExpression(CE, DL, TLI); 2305 DEBUG(dbgs() << "; To: " << *Ptr << "\n"); 2306 } 2307 if (!isSimpleEnoughPointerToCommit(Ptr)) { 2308 // If this is too complex for us to commit, reject it. 2309 DEBUG(dbgs() << "Pointer is too complex for us to evaluate store."); 2310 return false; 2311 } 2312 2313 Constant *Val = getVal(SI->getOperand(0)); 2314 2315 // If this might be too difficult for the backend to handle (e.g. the addr 2316 // of one global variable divided by another) then we can't commit it. 2317 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { 2318 DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val 2319 << "\n"); 2320 return false; 2321 } 2322 2323 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2324 if (CE->getOpcode() == Instruction::BitCast) { 2325 DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n"); 2326 // If we're evaluating a store through a bitcast, then we need 2327 // to pull the bitcast off the pointer type and push it onto the 2328 // stored value. 2329 Ptr = CE->getOperand(0); 2330 2331 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType(); 2332 2333 // In order to push the bitcast onto the stored value, a bitcast 2334 // from NewTy to Val's type must be legal. If it's not, we can try 2335 // introspecting NewTy to find a legal conversion. 2336 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) { 2337 // If NewTy is a struct, we can convert the pointer to the struct 2338 // into a pointer to its first member. 2339 // FIXME: This could be extended to support arrays as well. 2340 if (StructType *STy = dyn_cast<StructType>(NewTy)) { 2341 NewTy = STy->getTypeAtIndex(0U); 2342 2343 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32); 2344 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); 2345 Constant * const IdxList[] = {IdxZero, IdxZero}; 2346 2347 Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList); 2348 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 2349 Ptr = ConstantFoldConstantExpression(CE, DL, TLI); 2350 2351 // If we can't improve the situation by introspecting NewTy, 2352 // we have to give up. 2353 } else { 2354 DEBUG(dbgs() << "Failed to bitcast constant ptr, can not " 2355 "evaluate.\n"); 2356 return false; 2357 } 2358 } 2359 2360 // If we found compatible types, go ahead and push the bitcast 2361 // onto the stored value. 2362 Val = ConstantExpr::getBitCast(Val, NewTy); 2363 2364 DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n"); 2365 } 2366 } 2367 2368 MutatedMemory[Ptr] = Val; 2369 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 2370 InstResult = ConstantExpr::get(BO->getOpcode(), 2371 getVal(BO->getOperand(0)), 2372 getVal(BO->getOperand(1))); 2373 DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult 2374 << "\n"); 2375 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 2376 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 2377 getVal(CI->getOperand(0)), 2378 getVal(CI->getOperand(1))); 2379 DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult 2380 << "\n"); 2381 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 2382 InstResult = ConstantExpr::getCast(CI->getOpcode(), 2383 getVal(CI->getOperand(0)), 2384 CI->getType()); 2385 DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult 2386 << "\n"); 2387 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 2388 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), 2389 getVal(SI->getOperand(1)), 2390 getVal(SI->getOperand(2))); 2391 DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult 2392 << "\n"); 2393 } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) { 2394 InstResult = ConstantExpr::getExtractValue( 2395 getVal(EVI->getAggregateOperand()), EVI->getIndices()); 2396 DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult 2397 << "\n"); 2398 } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) { 2399 InstResult = ConstantExpr::getInsertValue( 2400 getVal(IVI->getAggregateOperand()), 2401 getVal(IVI->getInsertedValueOperand()), IVI->getIndices()); 2402 DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult 2403 << "\n"); 2404 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 2405 Constant *P = getVal(GEP->getOperand(0)); 2406 SmallVector<Constant*, 8> GEPOps; 2407 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); 2408 i != e; ++i) 2409 GEPOps.push_back(getVal(*i)); 2410 InstResult = 2411 ConstantExpr::getGetElementPtr(P, GEPOps, 2412 cast<GEPOperator>(GEP)->isInBounds()); 2413 DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult 2414 << "\n"); 2415 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 2416 2417 if (!LI->isSimple()) { 2418 DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"); 2419 return false; // no volatile/atomic accesses. 2420 } 2421 2422 Constant *Ptr = getVal(LI->getOperand(0)); 2423 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2424 Ptr = ConstantFoldConstantExpression(CE, DL, TLI); 2425 DEBUG(dbgs() << "Found a constant pointer expression, constant " 2426 "folding: " << *Ptr << "\n"); 2427 } 2428 InstResult = ComputeLoadResult(Ptr); 2429 if (!InstResult) { 2430 DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load." 2431 "\n"); 2432 return false; // Could not evaluate load. 2433 } 2434 2435 DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); 2436 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 2437 if (AI->isArrayAllocation()) { 2438 DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); 2439 return false; // Cannot handle array allocs. 2440 } 2441 Type *Ty = AI->getType()->getElementType(); 2442 AllocaTmps.push_back( 2443 make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage, 2444 UndefValue::get(Ty), AI->getName())); 2445 InstResult = AllocaTmps.back().get(); 2446 DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); 2447 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { 2448 CallSite CS(CurInst); 2449 2450 // Debug info can safely be ignored here. 2451 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) { 2452 DEBUG(dbgs() << "Ignoring debug info.\n"); 2453 ++CurInst; 2454 continue; 2455 } 2456 2457 // Cannot handle inline asm. 2458 if (isa<InlineAsm>(CS.getCalledValue())) { 2459 DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); 2460 return false; 2461 } 2462 2463 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { 2464 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { 2465 if (MSI->isVolatile()) { 2466 DEBUG(dbgs() << "Can not optimize a volatile memset " << 2467 "intrinsic.\n"); 2468 return false; 2469 } 2470 Constant *Ptr = getVal(MSI->getDest()); 2471 Constant *Val = getVal(MSI->getValue()); 2472 Constant *DestVal = ComputeLoadResult(getVal(Ptr)); 2473 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { 2474 // This memset is a no-op. 2475 DEBUG(dbgs() << "Ignoring no-op memset.\n"); 2476 ++CurInst; 2477 continue; 2478 } 2479 } 2480 2481 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 2482 II->getIntrinsicID() == Intrinsic::lifetime_end) { 2483 DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); 2484 ++CurInst; 2485 continue; 2486 } 2487 2488 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2489 // We don't insert an entry into Values, as it doesn't have a 2490 // meaningful return value. 2491 if (!II->use_empty()) { 2492 DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n"); 2493 return false; 2494 } 2495 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); 2496 Value *PtrArg = getVal(II->getArgOperand(1)); 2497 Value *Ptr = PtrArg->stripPointerCasts(); 2498 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 2499 Type *ElemTy = cast<PointerType>(GV->getType())->getElementType(); 2500 if (DL && !Size->isAllOnesValue() && 2501 Size->getValue().getLimitedValue() >= 2502 DL->getTypeStoreSize(ElemTy)) { 2503 Invariants.insert(GV); 2504 DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV 2505 << "\n"); 2506 } else { 2507 DEBUG(dbgs() << "Found a global var, but can not treat it as an " 2508 "invariant.\n"); 2509 } 2510 } 2511 // Continue even if we do nothing. 2512 ++CurInst; 2513 continue; 2514 } 2515 2516 DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n"); 2517 return false; 2518 } 2519 2520 // Resolve function pointers. 2521 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue())); 2522 if (!Callee || Callee->mayBeOverridden()) { 2523 DEBUG(dbgs() << "Can not resolve function pointer.\n"); 2524 return false; // Cannot resolve. 2525 } 2526 2527 SmallVector<Constant*, 8> Formals; 2528 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) 2529 Formals.push_back(getVal(*i)); 2530 2531 if (Callee->isDeclaration()) { 2532 // If this is a function we can constant fold, do it. 2533 if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) { 2534 InstResult = C; 2535 DEBUG(dbgs() << "Constant folded function call. Result: " << 2536 *InstResult << "\n"); 2537 } else { 2538 DEBUG(dbgs() << "Can not constant fold function call.\n"); 2539 return false; 2540 } 2541 } else { 2542 if (Callee->getFunctionType()->isVarArg()) { 2543 DEBUG(dbgs() << "Can not constant fold vararg function call.\n"); 2544 return false; 2545 } 2546 2547 Constant *RetVal = nullptr; 2548 // Execute the call, if successful, use the return value. 2549 ValueStack.emplace_back(); 2550 if (!EvaluateFunction(Callee, RetVal, Formals)) { 2551 DEBUG(dbgs() << "Failed to evaluate function.\n"); 2552 return false; 2553 } 2554 ValueStack.pop_back(); 2555 InstResult = RetVal; 2556 2557 if (InstResult) { 2558 DEBUG(dbgs() << "Successfully evaluated function. Result: " << 2559 InstResult << "\n\n"); 2560 } else { 2561 DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n"); 2562 } 2563 } 2564 } else if (isa<TerminatorInst>(CurInst)) { 2565 DEBUG(dbgs() << "Found a terminator instruction.\n"); 2566 2567 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 2568 if (BI->isUnconditional()) { 2569 NextBB = BI->getSuccessor(0); 2570 } else { 2571 ConstantInt *Cond = 2572 dyn_cast<ConstantInt>(getVal(BI->getCondition())); 2573 if (!Cond) return false; // Cannot determine. 2574 2575 NextBB = BI->getSuccessor(!Cond->getZExtValue()); 2576 } 2577 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 2578 ConstantInt *Val = 2579 dyn_cast<ConstantInt>(getVal(SI->getCondition())); 2580 if (!Val) return false; // Cannot determine. 2581 NextBB = SI->findCaseValue(Val).getCaseSuccessor(); 2582 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 2583 Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); 2584 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 2585 NextBB = BA->getBasicBlock(); 2586 else 2587 return false; // Cannot determine. 2588 } else if (isa<ReturnInst>(CurInst)) { 2589 NextBB = nullptr; 2590 } else { 2591 // invoke, unwind, resume, unreachable. 2592 DEBUG(dbgs() << "Can not handle terminator."); 2593 return false; // Cannot handle this terminator. 2594 } 2595 2596 // We succeeded at evaluating this block! 2597 DEBUG(dbgs() << "Successfully evaluated block.\n"); 2598 return true; 2599 } else { 2600 // Did not know how to evaluate this! 2601 DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction." 2602 "\n"); 2603 return false; 2604 } 2605 2606 if (!CurInst->use_empty()) { 2607 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult)) 2608 InstResult = ConstantFoldConstantExpression(CE, DL, TLI); 2609 2610 setVal(CurInst, InstResult); 2611 } 2612 2613 // If we just processed an invoke, we finished evaluating the block. 2614 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { 2615 NextBB = II->getNormalDest(); 2616 DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); 2617 return true; 2618 } 2619 2620 // Advance program counter. 2621 ++CurInst; 2622 } 2623 } 2624 2625 /// EvaluateFunction - Evaluate a call to function F, returning true if 2626 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2627 /// arguments for the function. 2628 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, 2629 const SmallVectorImpl<Constant*> &ActualArgs) { 2630 // Check to see if this function is already executing (recursion). If so, 2631 // bail out. TODO: we might want to accept limited recursion. 2632 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end()) 2633 return false; 2634 2635 CallStack.push_back(F); 2636 2637 // Initialize arguments to the incoming values specified. 2638 unsigned ArgNo = 0; 2639 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 2640 ++AI, ++ArgNo) 2641 setVal(AI, ActualArgs[ArgNo]); 2642 2643 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 2644 // we can only evaluate any one basic block at most once. This set keeps 2645 // track of what we have executed so we can detect recursive cases etc. 2646 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 2647 2648 // CurBB - The current basic block we're evaluating. 2649 BasicBlock *CurBB = F->begin(); 2650 2651 BasicBlock::iterator CurInst = CurBB->begin(); 2652 2653 while (1) { 2654 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. 2655 DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); 2656 2657 if (!EvaluateBlock(CurInst, NextBB)) 2658 return false; 2659 2660 if (!NextBB) { 2661 // Successfully running until there's no next block means that we found 2662 // the return. Fill it the return value and pop the call stack. 2663 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); 2664 if (RI->getNumOperands()) 2665 RetVal = getVal(RI->getOperand(0)); 2666 CallStack.pop_back(); 2667 return true; 2668 } 2669 2670 // Okay, we succeeded in evaluating this control flow. See if we have 2671 // executed the new block before. If so, we have a looping function, 2672 // which we cannot evaluate in reasonable time. 2673 if (!ExecutedBlocks.insert(NextBB)) 2674 return false; // looped! 2675 2676 // Okay, we have never been in this block before. Check to see if there 2677 // are any PHI nodes. If so, evaluate them with information about where 2678 // we came from. 2679 PHINode *PN = nullptr; 2680 for (CurInst = NextBB->begin(); 2681 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 2682 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); 2683 2684 // Advance to the next block. 2685 CurBB = NextBB; 2686 } 2687 } 2688 2689 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if 2690 /// we can. Return true if we can, false otherwise. 2691 static bool EvaluateStaticConstructor(Function *F, const DataLayout *DL, 2692 const TargetLibraryInfo *TLI) { 2693 // Call the function. 2694 Evaluator Eval(DL, TLI); 2695 Constant *RetValDummy; 2696 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2697 SmallVector<Constant*, 0>()); 2698 2699 if (EvalSuccess) { 2700 ++NumCtorsEvaluated; 2701 2702 // We succeeded at evaluation: commit the result. 2703 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2704 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2705 << " stores.\n"); 2706 for (DenseMap<Constant*, Constant*>::const_iterator I = 2707 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end(); 2708 I != E; ++I) 2709 CommitValueTo(I->second, I->first); 2710 for (GlobalVariable *GV : Eval.getInvariants()) 2711 GV->setConstant(true); 2712 } 2713 2714 return EvalSuccess; 2715 } 2716 2717 static int compareNames(Constant *const *A, Constant *const *B) { 2718 return (*A)->getName().compare((*B)->getName()); 2719 } 2720 2721 static void setUsedInitializer(GlobalVariable &V, 2722 const SmallPtrSet<GlobalValue *, 8> &Init) { 2723 if (Init.empty()) { 2724 V.eraseFromParent(); 2725 return; 2726 } 2727 2728 // Type of pointer to the array of pointers. 2729 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2730 2731 SmallVector<llvm::Constant *, 8> UsedArray; 2732 for (GlobalValue *GV : Init) { 2733 Constant *Cast 2734 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2735 UsedArray.push_back(Cast); 2736 } 2737 // Sort to get deterministic order. 2738 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2739 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2740 2741 Module *M = V.getParent(); 2742 V.removeFromParent(); 2743 GlobalVariable *NV = 2744 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage, 2745 llvm::ConstantArray::get(ATy, UsedArray), ""); 2746 NV->takeName(&V); 2747 NV->setSection("llvm.metadata"); 2748 delete &V; 2749 } 2750 2751 namespace { 2752 /// \brief An easy to access representation of llvm.used and llvm.compiler.used. 2753 class LLVMUsed { 2754 SmallPtrSet<GlobalValue *, 8> Used; 2755 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2756 GlobalVariable *UsedV; 2757 GlobalVariable *CompilerUsedV; 2758 2759 public: 2760 LLVMUsed(Module &M) { 2761 UsedV = collectUsedGlobalVariables(M, Used, false); 2762 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2763 } 2764 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator; 2765 typedef iterator_range<iterator> used_iterator_range; 2766 iterator usedBegin() { return Used.begin(); } 2767 iterator usedEnd() { return Used.end(); } 2768 used_iterator_range used() { 2769 return used_iterator_range(usedBegin(), usedEnd()); 2770 } 2771 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2772 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2773 used_iterator_range compilerUsed() { 2774 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2775 } 2776 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2777 bool compilerUsedCount(GlobalValue *GV) const { 2778 return CompilerUsed.count(GV); 2779 } 2780 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2781 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2782 bool usedInsert(GlobalValue *GV) { return Used.insert(GV); } 2783 bool compilerUsedInsert(GlobalValue *GV) { return CompilerUsed.insert(GV); } 2784 2785 void syncVariablesAndSets() { 2786 if (UsedV) 2787 setUsedInitializer(*UsedV, Used); 2788 if (CompilerUsedV) 2789 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2790 } 2791 }; 2792 } 2793 2794 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2795 if (GA.use_empty()) // No use at all. 2796 return false; 2797 2798 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2799 "We should have removed the duplicated " 2800 "element from llvm.compiler.used"); 2801 if (!GA.hasOneUse()) 2802 // Strictly more than one use. So at least one is not in llvm.used and 2803 // llvm.compiler.used. 2804 return true; 2805 2806 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2807 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2808 } 2809 2810 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2811 const LLVMUsed &U) { 2812 unsigned N = 2; 2813 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2814 "We should have removed the duplicated " 2815 "element from llvm.compiler.used"); 2816 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2817 ++N; 2818 return V.hasNUsesOrMore(N); 2819 } 2820 2821 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2822 if (!GA.hasLocalLinkage()) 2823 return true; 2824 2825 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2826 } 2827 2828 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2829 bool &RenameTarget) { 2830 RenameTarget = false; 2831 bool Ret = false; 2832 if (hasUseOtherThanLLVMUsed(GA, U)) 2833 Ret = true; 2834 2835 // If the alias is externally visible, we may still be able to simplify it. 2836 if (!mayHaveOtherReferences(GA, U)) 2837 return Ret; 2838 2839 // If the aliasee has internal linkage, give it the name and linkage 2840 // of the alias, and delete the alias. This turns: 2841 // define internal ... @f(...) 2842 // @a = alias ... @f 2843 // into: 2844 // define ... @a(...) 2845 Constant *Aliasee = GA.getAliasee(); 2846 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2847 if (!Target->hasLocalLinkage()) 2848 return Ret; 2849 2850 // Do not perform the transform if multiple aliases potentially target the 2851 // aliasee. This check also ensures that it is safe to replace the section 2852 // and other attributes of the aliasee with those of the alias. 2853 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2854 return Ret; 2855 2856 RenameTarget = true; 2857 return true; 2858 } 2859 2860 bool GlobalOpt::OptimizeGlobalAliases(Module &M) { 2861 bool Changed = false; 2862 LLVMUsed Used(M); 2863 2864 for (GlobalValue *GV : Used.used()) 2865 Used.compilerUsedErase(GV); 2866 2867 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2868 I != E;) { 2869 Module::alias_iterator J = I++; 2870 // Aliases without names cannot be referenced outside this module. 2871 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2872 J->setLinkage(GlobalValue::InternalLinkage); 2873 // If the aliasee may change at link time, nothing can be done - bail out. 2874 if (J->mayBeOverridden()) 2875 continue; 2876 2877 Constant *Aliasee = J->getAliasee(); 2878 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2879 // We can't trivially replace the alias with the aliasee if the aliasee is 2880 // non-trivial in some way. 2881 // TODO: Try to handle non-zero GEPs of local aliasees. 2882 if (!Target) 2883 continue; 2884 Target->removeDeadConstantUsers(); 2885 2886 // Make all users of the alias use the aliasee instead. 2887 bool RenameTarget; 2888 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2889 continue; 2890 2891 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2892 ++NumAliasesResolved; 2893 Changed = true; 2894 2895 if (RenameTarget) { 2896 // Give the aliasee the name, linkage and other attributes of the alias. 2897 Target->takeName(J); 2898 Target->setLinkage(J->getLinkage()); 2899 Target->setVisibility(J->getVisibility()); 2900 Target->setDLLStorageClass(J->getDLLStorageClass()); 2901 2902 if (Used.usedErase(J)) 2903 Used.usedInsert(Target); 2904 2905 if (Used.compilerUsedErase(J)) 2906 Used.compilerUsedInsert(Target); 2907 } else if (mayHaveOtherReferences(*J, Used)) 2908 continue; 2909 2910 // Delete the alias. 2911 M.getAliasList().erase(J); 2912 ++NumAliasesRemoved; 2913 Changed = true; 2914 } 2915 2916 Used.syncVariablesAndSets(); 2917 2918 return Changed; 2919 } 2920 2921 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2922 if (!TLI->has(LibFunc::cxa_atexit)) 2923 return nullptr; 2924 2925 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit)); 2926 2927 if (!Fn) 2928 return nullptr; 2929 2930 FunctionType *FTy = Fn->getFunctionType(); 2931 2932 // Checking that the function has the right return type, the right number of 2933 // parameters and that they all have pointer types should be enough. 2934 if (!FTy->getReturnType()->isIntegerTy() || 2935 FTy->getNumParams() != 3 || 2936 !FTy->getParamType(0)->isPointerTy() || 2937 !FTy->getParamType(1)->isPointerTy() || 2938 !FTy->getParamType(2)->isPointerTy()) 2939 return nullptr; 2940 2941 return Fn; 2942 } 2943 2944 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++ 2945 /// destructor and can therefore be eliminated. 2946 /// Note that we assume that other optimization passes have already simplified 2947 /// the code so we only look for a function with a single basic block, where 2948 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2949 /// other side-effect free instructions. 2950 static bool cxxDtorIsEmpty(const Function &Fn, 2951 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2952 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2953 // nounwind, but that doesn't seem worth doing. 2954 if (Fn.isDeclaration()) 2955 return false; 2956 2957 if (++Fn.begin() != Fn.end()) 2958 return false; 2959 2960 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2961 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2962 I != E; ++I) { 2963 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2964 // Ignore debug intrinsics. 2965 if (isa<DbgInfoIntrinsic>(CI)) 2966 continue; 2967 2968 const Function *CalledFn = CI->getCalledFunction(); 2969 2970 if (!CalledFn) 2971 return false; 2972 2973 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2974 2975 // Don't treat recursive functions as empty. 2976 if (!NewCalledFunctions.insert(CalledFn)) 2977 return false; 2978 2979 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2980 return false; 2981 } else if (isa<ReturnInst>(*I)) 2982 return true; // We're done. 2983 else if (I->mayHaveSideEffects()) 2984 return false; // Destructor with side effects, bail. 2985 } 2986 2987 return false; 2988 } 2989 2990 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2991 /// Itanium C++ ABI p3.3.5: 2992 /// 2993 /// After constructing a global (or local static) object, that will require 2994 /// destruction on exit, a termination function is registered as follows: 2995 /// 2996 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2997 /// 2998 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2999 /// call f(p) when DSO d is unloaded, before all such termination calls 3000 /// registered before this one. It returns zero if registration is 3001 /// successful, nonzero on failure. 3002 3003 // This pass will look for calls to __cxa_atexit where the function is trivial 3004 // and remove them. 3005 bool Changed = false; 3006 3007 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 3008 I != E;) { 3009 // We're only interested in calls. Theoretically, we could handle invoke 3010 // instructions as well, but neither llvm-gcc nor clang generate invokes 3011 // to __cxa_atexit. 3012 CallInst *CI = dyn_cast<CallInst>(*I++); 3013 if (!CI) 3014 continue; 3015 3016 Function *DtorFn = 3017 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 3018 if (!DtorFn) 3019 continue; 3020 3021 SmallPtrSet<const Function *, 8> CalledFunctions; 3022 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 3023 continue; 3024 3025 // Just remove the call. 3026 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 3027 CI->eraseFromParent(); 3028 3029 ++NumCXXDtorsRemoved; 3030 3031 Changed |= true; 3032 } 3033 3034 return Changed; 3035 } 3036 3037 bool GlobalOpt::runOnModule(Module &M) { 3038 bool Changed = false; 3039 3040 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 3041 DL = DLP ? &DLP->getDataLayout() : nullptr; 3042 TLI = &getAnalysis<TargetLibraryInfo>(); 3043 3044 bool LocalChange = true; 3045 while (LocalChange) { 3046 LocalChange = false; 3047 3048 NotDiscardableComdats.clear(); 3049 for (const GlobalVariable &GV : M.globals()) 3050 if (const Comdat *C = GV.getComdat()) 3051 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 3052 NotDiscardableComdats.insert(C); 3053 for (Function &F : M) 3054 if (const Comdat *C = F.getComdat()) 3055 if (!F.isDefTriviallyDead()) 3056 NotDiscardableComdats.insert(C); 3057 for (GlobalAlias &GA : M.aliases()) 3058 if (const Comdat *C = GA.getComdat()) 3059 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 3060 NotDiscardableComdats.insert(C); 3061 3062 // Delete functions that are trivially dead, ccc -> fastcc 3063 LocalChange |= OptimizeFunctions(M); 3064 3065 // Optimize global_ctors list. 3066 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 3067 return EvaluateStaticConstructor(F, DL, TLI); 3068 }); 3069 3070 // Optimize non-address-taken globals. 3071 LocalChange |= OptimizeGlobalVars(M); 3072 3073 // Resolve aliases, when possible. 3074 LocalChange |= OptimizeGlobalAliases(M); 3075 3076 // Try to remove trivial global destructors if they are not removed 3077 // already. 3078 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 3079 if (CXAAtExitFn) 3080 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 3081 3082 Changed |= LocalChange; 3083 } 3084 3085 // TODO: Move all global ctors functions to the end of the module for code 3086 // layout. 3087 3088 return Changed; 3089 } 3090