1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/GlobalOpt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/ADT/iterator_range.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/BinaryFormat/Dwarf.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Use.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/AtomicOrdering.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MathExtras.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Transforms/IPO.h" 63 #include "llvm/Transforms/Utils/CtorUtils.h" 64 #include "llvm/Transforms/Utils/Evaluator.h" 65 #include "llvm/Transforms/Utils/GlobalStatus.h" 66 #include "llvm/Transforms/Utils/Local.h" 67 #include <cassert> 68 #include <cstdint> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "globalopt" 75 76 STATISTIC(NumMarked , "Number of globals marked constant"); 77 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 78 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 79 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 80 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 81 STATISTIC(NumDeleted , "Number of globals deleted"); 82 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 83 STATISTIC(NumLocalized , "Number of globals localized"); 84 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 85 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 86 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 87 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 88 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 89 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 90 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 91 92 /// Is this global variable possibly used by a leak checker as a root? If so, 93 /// we might not really want to eliminate the stores to it. 94 static bool isLeakCheckerRoot(GlobalVariable *GV) { 95 // A global variable is a root if it is a pointer, or could plausibly contain 96 // a pointer. There are two challenges; one is that we could have a struct 97 // the has an inner member which is a pointer. We recurse through the type to 98 // detect these (up to a point). The other is that we may actually be a union 99 // of a pointer and another type, and so our LLVM type is an integer which 100 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 101 // potentially contained here. 102 103 if (GV->hasPrivateLinkage()) 104 return false; 105 106 SmallVector<Type *, 4> Types; 107 Types.push_back(GV->getValueType()); 108 109 unsigned Limit = 20; 110 do { 111 Type *Ty = Types.pop_back_val(); 112 switch (Ty->getTypeID()) { 113 default: break; 114 case Type::PointerTyID: return true; 115 case Type::ArrayTyID: 116 case Type::VectorTyID: { 117 SequentialType *STy = cast<SequentialType>(Ty); 118 Types.push_back(STy->getElementType()); 119 break; 120 } 121 case Type::StructTyID: { 122 StructType *STy = cast<StructType>(Ty); 123 if (STy->isOpaque()) return true; 124 for (StructType::element_iterator I = STy->element_begin(), 125 E = STy->element_end(); I != E; ++I) { 126 Type *InnerTy = *I; 127 if (isa<PointerType>(InnerTy)) return true; 128 if (isa<CompositeType>(InnerTy)) 129 Types.push_back(InnerTy); 130 } 131 break; 132 } 133 } 134 if (--Limit == 0) return true; 135 } while (!Types.empty()); 136 return false; 137 } 138 139 /// Given a value that is stored to a global but never read, determine whether 140 /// it's safe to remove the store and the chain of computation that feeds the 141 /// store. 142 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 143 do { 144 if (isa<Constant>(V)) 145 return true; 146 if (!V->hasOneUse()) 147 return false; 148 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 149 isa<GlobalValue>(V)) 150 return false; 151 if (isAllocationFn(V, TLI)) 152 return true; 153 154 Instruction *I = cast<Instruction>(V); 155 if (I->mayHaveSideEffects()) 156 return false; 157 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 158 if (!GEP->hasAllConstantIndices()) 159 return false; 160 } else if (I->getNumOperands() != 1) { 161 return false; 162 } 163 164 V = I->getOperand(0); 165 } while (true); 166 } 167 168 /// This GV is a pointer root. Loop over all users of the global and clean up 169 /// any that obviously don't assign the global a value that isn't dynamically 170 /// allocated. 171 static bool CleanupPointerRootUsers(GlobalVariable *GV, 172 const TargetLibraryInfo *TLI) { 173 // A brief explanation of leak checkers. The goal is to find bugs where 174 // pointers are forgotten, causing an accumulating growth in memory 175 // usage over time. The common strategy for leak checkers is to whitelist the 176 // memory pointed to by globals at exit. This is popular because it also 177 // solves another problem where the main thread of a C++ program may shut down 178 // before other threads that are still expecting to use those globals. To 179 // handle that case, we expect the program may create a singleton and never 180 // destroy it. 181 182 bool Changed = false; 183 184 // If Dead[n].first is the only use of a malloc result, we can delete its 185 // chain of computation and the store to the global in Dead[n].second. 186 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 187 188 // Constants can't be pointers to dynamically allocated memory. 189 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 190 UI != E;) { 191 User *U = *UI++; 192 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 193 Value *V = SI->getValueOperand(); 194 if (isa<Constant>(V)) { 195 Changed = true; 196 SI->eraseFromParent(); 197 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 198 if (I->hasOneUse()) 199 Dead.push_back(std::make_pair(I, SI)); 200 } 201 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 202 if (isa<Constant>(MSI->getValue())) { 203 Changed = true; 204 MSI->eraseFromParent(); 205 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 206 if (I->hasOneUse()) 207 Dead.push_back(std::make_pair(I, MSI)); 208 } 209 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 210 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 211 if (MemSrc && MemSrc->isConstant()) { 212 Changed = true; 213 MTI->eraseFromParent(); 214 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 215 if (I->hasOneUse()) 216 Dead.push_back(std::make_pair(I, MTI)); 217 } 218 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 219 if (CE->use_empty()) { 220 CE->destroyConstant(); 221 Changed = true; 222 } 223 } else if (Constant *C = dyn_cast<Constant>(U)) { 224 if (isSafeToDestroyConstant(C)) { 225 C->destroyConstant(); 226 // This could have invalidated UI, start over from scratch. 227 Dead.clear(); 228 CleanupPointerRootUsers(GV, TLI); 229 return true; 230 } 231 } 232 } 233 234 for (int i = 0, e = Dead.size(); i != e; ++i) { 235 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 236 Dead[i].second->eraseFromParent(); 237 Instruction *I = Dead[i].first; 238 do { 239 if (isAllocationFn(I, TLI)) 240 break; 241 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 242 if (!J) 243 break; 244 I->eraseFromParent(); 245 I = J; 246 } while (true); 247 I->eraseFromParent(); 248 } 249 } 250 251 return Changed; 252 } 253 254 /// We just marked GV constant. Loop over all users of the global, cleaning up 255 /// the obvious ones. This is largely just a quick scan over the use list to 256 /// clean up the easy and obvious cruft. This returns true if it made a change. 257 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 258 const DataLayout &DL, 259 TargetLibraryInfo *TLI) { 260 bool Changed = false; 261 // Note that we need to use a weak value handle for the worklist items. When 262 // we delete a constant array, we may also be holding pointer to one of its 263 // elements (or an element of one of its elements if we're dealing with an 264 // array of arrays) in the worklist. 265 SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end()); 266 while (!WorkList.empty()) { 267 Value *UV = WorkList.pop_back_val(); 268 if (!UV) 269 continue; 270 271 User *U = cast<User>(UV); 272 273 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 274 if (Init) { 275 // Replace the load with the initializer. 276 LI->replaceAllUsesWith(Init); 277 LI->eraseFromParent(); 278 Changed = true; 279 } 280 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 281 // Store must be unreachable or storing Init into the global. 282 SI->eraseFromParent(); 283 Changed = true; 284 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 285 if (CE->getOpcode() == Instruction::GetElementPtr) { 286 Constant *SubInit = nullptr; 287 if (Init) 288 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 289 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 290 } else if ((CE->getOpcode() == Instruction::BitCast && 291 CE->getType()->isPointerTy()) || 292 CE->getOpcode() == Instruction::AddrSpaceCast) { 293 // Pointer cast, delete any stores and memsets to the global. 294 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 295 } 296 297 if (CE->use_empty()) { 298 CE->destroyConstant(); 299 Changed = true; 300 } 301 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 302 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 303 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 304 // and will invalidate our notion of what Init is. 305 Constant *SubInit = nullptr; 306 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 307 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 308 ConstantFoldInstruction(GEP, DL, TLI)); 309 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 310 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 311 312 // If the initializer is an all-null value and we have an inbounds GEP, 313 // we already know what the result of any load from that GEP is. 314 // TODO: Handle splats. 315 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 316 SubInit = Constant::getNullValue(GEP->getResultElementType()); 317 } 318 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 319 320 if (GEP->use_empty()) { 321 GEP->eraseFromParent(); 322 Changed = true; 323 } 324 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 325 if (MI->getRawDest() == V) { 326 MI->eraseFromParent(); 327 Changed = true; 328 } 329 330 } else if (Constant *C = dyn_cast<Constant>(U)) { 331 // If we have a chain of dead constantexprs or other things dangling from 332 // us, and if they are all dead, nuke them without remorse. 333 if (isSafeToDestroyConstant(C)) { 334 C->destroyConstant(); 335 CleanupConstantGlobalUsers(V, Init, DL, TLI); 336 return true; 337 } 338 } 339 } 340 return Changed; 341 } 342 343 /// Return true if the specified instruction is a safe user of a derived 344 /// expression from a global that we want to SROA. 345 static bool isSafeSROAElementUse(Value *V) { 346 // We might have a dead and dangling constant hanging off of here. 347 if (Constant *C = dyn_cast<Constant>(V)) 348 return isSafeToDestroyConstant(C); 349 350 Instruction *I = dyn_cast<Instruction>(V); 351 if (!I) return false; 352 353 // Loads are ok. 354 if (isa<LoadInst>(I)) return true; 355 356 // Stores *to* the pointer are ok. 357 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 358 return SI->getOperand(0) != V; 359 360 // Otherwise, it must be a GEP. 361 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 362 if (!GEPI) return false; 363 364 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 365 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 366 return false; 367 368 for (User *U : GEPI->users()) 369 if (!isSafeSROAElementUse(U)) 370 return false; 371 return true; 372 } 373 374 /// U is a direct user of the specified global value. Look at it and its uses 375 /// and decide whether it is safe to SROA this global. 376 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 377 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 378 if (!isa<GetElementPtrInst>(U) && 379 (!isa<ConstantExpr>(U) || 380 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 381 return false; 382 383 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 384 // don't like < 3 operand CE's, and we don't like non-constant integer 385 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 386 // value of C. 387 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 388 !cast<Constant>(U->getOperand(1))->isNullValue() || 389 !isa<ConstantInt>(U->getOperand(2))) 390 return false; 391 392 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 393 ++GEPI; // Skip over the pointer index. 394 395 // If this is a use of an array allocation, do a bit more checking for sanity. 396 if (GEPI.isSequential()) { 397 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 398 399 // Check to make sure that index falls within the array. If not, 400 // something funny is going on, so we won't do the optimization. 401 // 402 if (GEPI.isBoundedSequential() && 403 Idx->getZExtValue() >= GEPI.getSequentialNumElements()) 404 return false; 405 406 // We cannot scalar repl this level of the array unless any array 407 // sub-indices are in-range constants. In particular, consider: 408 // A[0][i]. We cannot know that the user isn't doing invalid things like 409 // allowing i to index an out-of-range subscript that accesses A[1]. 410 // 411 // Scalar replacing *just* the outer index of the array is probably not 412 // going to be a win anyway, so just give up. 413 for (++GEPI; // Skip array index. 414 GEPI != E; 415 ++GEPI) { 416 if (GEPI.isStruct()) 417 continue; 418 419 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 420 if (!IdxVal || 421 (GEPI.isBoundedSequential() && 422 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 423 return false; 424 } 425 } 426 427 return llvm::all_of(U->users(), 428 [](User *UU) { return isSafeSROAElementUse(UU); }); 429 } 430 431 /// Look at all uses of the global and decide whether it is safe for us to 432 /// perform this transformation. 433 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 434 for (User *U : GV->users()) 435 if (!IsUserOfGlobalSafeForSRA(U, GV)) 436 return false; 437 438 return true; 439 } 440 441 /// Copy over the debug info for a variable to its SRA replacements. 442 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 443 uint64_t FragmentOffsetInBits, 444 uint64_t FragmentSizeInBits, 445 unsigned NumElements) { 446 SmallVector<DIGlobalVariableExpression *, 1> GVs; 447 GV->getDebugInfo(GVs); 448 for (auto *GVE : GVs) { 449 DIVariable *Var = GVE->getVariable(); 450 DIExpression *Expr = GVE->getExpression(); 451 if (NumElements > 1) { 452 if (auto E = DIExpression::createFragmentExpression( 453 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 454 Expr = *E; 455 else 456 return; 457 } 458 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 459 NGV->addDebugInfo(NGVE); 460 } 461 } 462 463 /// Perform scalar replacement of aggregates on the specified global variable. 464 /// This opens the door for other optimizations by exposing the behavior of the 465 /// program in a more fine-grained way. We have determined that this 466 /// transformation is safe already. We return the first global variable we 467 /// insert so that the caller can reprocess it. 468 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 469 // Make sure this global only has simple uses that we can SRA. 470 if (!GlobalUsersSafeToSRA(GV)) 471 return nullptr; 472 473 assert(GV->hasLocalLinkage()); 474 Constant *Init = GV->getInitializer(); 475 Type *Ty = Init->getType(); 476 477 std::vector<GlobalVariable *> NewGlobals; 478 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 479 480 // Get the alignment of the global, either explicit or target-specific. 481 unsigned StartAlignment = GV->getAlignment(); 482 if (StartAlignment == 0) 483 StartAlignment = DL.getABITypeAlignment(GV->getType()); 484 485 if (StructType *STy = dyn_cast<StructType>(Ty)) { 486 uint64_t FragmentOffset = 0; 487 unsigned NumElements = STy->getNumElements(); 488 NewGlobals.reserve(NumElements); 489 const StructLayout &Layout = *DL.getStructLayout(STy); 490 for (unsigned i = 0, e = NumElements; i != e; ++i) { 491 Constant *In = Init->getAggregateElement(i); 492 assert(In && "Couldn't get element of initializer?"); 493 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 494 GlobalVariable::InternalLinkage, 495 In, GV->getName()+"."+Twine(i), 496 GV->getThreadLocalMode(), 497 GV->getType()->getAddressSpace()); 498 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 499 NGV->copyAttributesFrom(GV); 500 Globals.push_back(NGV); 501 NewGlobals.push_back(NGV); 502 503 // Calculate the known alignment of the field. If the original aggregate 504 // had 256 byte alignment for example, something might depend on that: 505 // propagate info to each field. 506 uint64_t FieldOffset = Layout.getElementOffset(i); 507 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 508 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 509 NGV->setAlignment(NewAlign); 510 511 // Copy over the debug info for the variable. 512 FragmentOffset = alignTo(FragmentOffset, NewAlign); 513 uint64_t Size = DL.getTypeSizeInBits(NGV->getValueType()); 514 transferSRADebugInfo(GV, NGV, FragmentOffset, Size, NumElements); 515 FragmentOffset += Size; 516 } 517 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 518 unsigned NumElements = STy->getNumElements(); 519 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 520 return nullptr; // It's not worth it. 521 NewGlobals.reserve(NumElements); 522 auto ElTy = STy->getElementType(); 523 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 524 unsigned EltAlign = DL.getABITypeAlignment(ElTy); 525 uint64_t FragmentSizeInBits = DL.getTypeSizeInBits(ElTy); 526 for (unsigned i = 0, e = NumElements; i != e; ++i) { 527 Constant *In = Init->getAggregateElement(i); 528 assert(In && "Couldn't get element of initializer?"); 529 530 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 531 GlobalVariable::InternalLinkage, 532 In, GV->getName()+"."+Twine(i), 533 GV->getThreadLocalMode(), 534 GV->getType()->getAddressSpace()); 535 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 536 NGV->copyAttributesFrom(GV); 537 Globals.push_back(NGV); 538 NewGlobals.push_back(NGV); 539 540 // Calculate the known alignment of the field. If the original aggregate 541 // had 256 byte alignment for example, something might depend on that: 542 // propagate info to each field. 543 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 544 if (NewAlign > EltAlign) 545 NGV->setAlignment(NewAlign); 546 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits, 547 NumElements); 548 } 549 } 550 551 if (NewGlobals.empty()) 552 return nullptr; 553 554 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 555 556 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 557 558 // Loop over all of the uses of the global, replacing the constantexpr geps, 559 // with smaller constantexpr geps or direct references. 560 while (!GV->use_empty()) { 561 User *GEP = GV->user_back(); 562 assert(((isa<ConstantExpr>(GEP) && 563 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 564 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 565 566 // Ignore the 1th operand, which has to be zero or else the program is quite 567 // broken (undefined). Get the 2nd operand, which is the structure or array 568 // index. 569 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 570 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 571 572 Value *NewPtr = NewGlobals[Val]; 573 Type *NewTy = NewGlobals[Val]->getValueType(); 574 575 // Form a shorter GEP if needed. 576 if (GEP->getNumOperands() > 3) { 577 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 578 SmallVector<Constant*, 8> Idxs; 579 Idxs.push_back(NullInt); 580 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 581 Idxs.push_back(CE->getOperand(i)); 582 NewPtr = 583 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 584 } else { 585 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 586 SmallVector<Value*, 8> Idxs; 587 Idxs.push_back(NullInt); 588 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 589 Idxs.push_back(GEPI->getOperand(i)); 590 NewPtr = GetElementPtrInst::Create( 591 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 592 } 593 } 594 GEP->replaceAllUsesWith(NewPtr); 595 596 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 597 GEPI->eraseFromParent(); 598 else 599 cast<ConstantExpr>(GEP)->destroyConstant(); 600 } 601 602 // Delete the old global, now that it is dead. 603 Globals.erase(GV); 604 ++NumSRA; 605 606 // Loop over the new globals array deleting any globals that are obviously 607 // dead. This can arise due to scalarization of a structure or an array that 608 // has elements that are dead. 609 unsigned FirstGlobal = 0; 610 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 611 if (NewGlobals[i]->use_empty()) { 612 Globals.erase(NewGlobals[i]); 613 if (FirstGlobal == i) ++FirstGlobal; 614 } 615 616 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 617 } 618 619 /// Return true if all users of the specified value will trap if the value is 620 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 621 /// reprocessing them. 622 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 623 SmallPtrSetImpl<const PHINode*> &PHIs) { 624 for (const User *U : V->users()) 625 if (isa<LoadInst>(U)) { 626 // Will trap. 627 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 628 if (SI->getOperand(0) == V) { 629 //cerr << "NONTRAPPING USE: " << *U; 630 return false; // Storing the value. 631 } 632 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 633 if (CI->getCalledValue() != V) { 634 //cerr << "NONTRAPPING USE: " << *U; 635 return false; // Not calling the ptr 636 } 637 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 638 if (II->getCalledValue() != V) { 639 //cerr << "NONTRAPPING USE: " << *U; 640 return false; // Not calling the ptr 641 } 642 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 643 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 644 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 645 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 646 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 647 // If we've already seen this phi node, ignore it, it has already been 648 // checked. 649 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 650 return false; 651 } else if (isa<ICmpInst>(U) && 652 isa<ConstantPointerNull>(U->getOperand(1))) { 653 // Ignore icmp X, null 654 } else { 655 //cerr << "NONTRAPPING USE: " << *U; 656 return false; 657 } 658 659 return true; 660 } 661 662 /// Return true if all uses of any loads from GV will trap if the loaded value 663 /// is null. Note that this also permits comparisons of the loaded value 664 /// against null, as a special case. 665 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 666 for (const User *U : GV->users()) 667 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 668 SmallPtrSet<const PHINode*, 8> PHIs; 669 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 670 return false; 671 } else if (isa<StoreInst>(U)) { 672 // Ignore stores to the global. 673 } else { 674 // We don't know or understand this user, bail out. 675 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 676 return false; 677 } 678 return true; 679 } 680 681 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 682 bool Changed = false; 683 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 684 Instruction *I = cast<Instruction>(*UI++); 685 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 686 LI->setOperand(0, NewV); 687 Changed = true; 688 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 689 if (SI->getOperand(1) == V) { 690 SI->setOperand(1, NewV); 691 Changed = true; 692 } 693 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 694 CallSite CS(I); 695 if (CS.getCalledValue() == V) { 696 // Calling through the pointer! Turn into a direct call, but be careful 697 // that the pointer is not also being passed as an argument. 698 CS.setCalledFunction(NewV); 699 Changed = true; 700 bool PassedAsArg = false; 701 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 702 if (CS.getArgument(i) == V) { 703 PassedAsArg = true; 704 CS.setArgument(i, NewV); 705 } 706 707 if (PassedAsArg) { 708 // Being passed as an argument also. Be careful to not invalidate UI! 709 UI = V->user_begin(); 710 } 711 } 712 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 713 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 714 ConstantExpr::getCast(CI->getOpcode(), 715 NewV, CI->getType())); 716 if (CI->use_empty()) { 717 Changed = true; 718 CI->eraseFromParent(); 719 } 720 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 721 // Should handle GEP here. 722 SmallVector<Constant*, 8> Idxs; 723 Idxs.reserve(GEPI->getNumOperands()-1); 724 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 725 i != e; ++i) 726 if (Constant *C = dyn_cast<Constant>(*i)) 727 Idxs.push_back(C); 728 else 729 break; 730 if (Idxs.size() == GEPI->getNumOperands()-1) 731 Changed |= OptimizeAwayTrappingUsesOfValue( 732 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 733 if (GEPI->use_empty()) { 734 Changed = true; 735 GEPI->eraseFromParent(); 736 } 737 } 738 } 739 740 return Changed; 741 } 742 743 /// The specified global has only one non-null value stored into it. If there 744 /// are uses of the loaded value that would trap if the loaded value is 745 /// dynamically null, then we know that they cannot be reachable with a null 746 /// optimize away the load. 747 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 748 const DataLayout &DL, 749 TargetLibraryInfo *TLI) { 750 bool Changed = false; 751 752 // Keep track of whether we are able to remove all the uses of the global 753 // other than the store that defines it. 754 bool AllNonStoreUsesGone = true; 755 756 // Replace all uses of loads with uses of uses of the stored value. 757 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 758 User *GlobalUser = *GUI++; 759 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 760 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 761 // If we were able to delete all uses of the loads 762 if (LI->use_empty()) { 763 LI->eraseFromParent(); 764 Changed = true; 765 } else { 766 AllNonStoreUsesGone = false; 767 } 768 } else if (isa<StoreInst>(GlobalUser)) { 769 // Ignore the store that stores "LV" to the global. 770 assert(GlobalUser->getOperand(1) == GV && 771 "Must be storing *to* the global"); 772 } else { 773 AllNonStoreUsesGone = false; 774 775 // If we get here we could have other crazy uses that are transitively 776 // loaded. 777 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 778 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 779 isa<BitCastInst>(GlobalUser) || 780 isa<GetElementPtrInst>(GlobalUser)) && 781 "Only expect load and stores!"); 782 } 783 } 784 785 if (Changed) { 786 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n"); 787 ++NumGlobUses; 788 } 789 790 // If we nuked all of the loads, then none of the stores are needed either, 791 // nor is the global. 792 if (AllNonStoreUsesGone) { 793 if (isLeakCheckerRoot(GV)) { 794 Changed |= CleanupPointerRootUsers(GV, TLI); 795 } else { 796 Changed = true; 797 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 798 } 799 if (GV->use_empty()) { 800 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 801 Changed = true; 802 GV->eraseFromParent(); 803 ++NumDeleted; 804 } 805 } 806 return Changed; 807 } 808 809 /// Walk the use list of V, constant folding all of the instructions that are 810 /// foldable. 811 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 812 TargetLibraryInfo *TLI) { 813 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 814 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 815 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 816 I->replaceAllUsesWith(NewC); 817 818 // Advance UI to the next non-I use to avoid invalidating it! 819 // Instructions could multiply use V. 820 while (UI != E && *UI == I) 821 ++UI; 822 if (isInstructionTriviallyDead(I, TLI)) 823 I->eraseFromParent(); 824 } 825 } 826 827 /// This function takes the specified global variable, and transforms the 828 /// program as if it always contained the result of the specified malloc. 829 /// Because it is always the result of the specified malloc, there is no reason 830 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 831 /// loads of GV as uses of the new global. 832 static GlobalVariable * 833 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 834 ConstantInt *NElements, const DataLayout &DL, 835 TargetLibraryInfo *TLI) { 836 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 837 838 Type *GlobalType; 839 if (NElements->getZExtValue() == 1) 840 GlobalType = AllocTy; 841 else 842 // If we have an array allocation, the global variable is of an array. 843 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 844 845 // Create the new global variable. The contents of the malloc'd memory is 846 // undefined, so initialize with an undef value. 847 GlobalVariable *NewGV = new GlobalVariable( 848 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 849 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 850 GV->getThreadLocalMode()); 851 852 // If there are bitcast users of the malloc (which is typical, usually we have 853 // a malloc + bitcast) then replace them with uses of the new global. Update 854 // other users to use the global as well. 855 BitCastInst *TheBC = nullptr; 856 while (!CI->use_empty()) { 857 Instruction *User = cast<Instruction>(CI->user_back()); 858 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 859 if (BCI->getType() == NewGV->getType()) { 860 BCI->replaceAllUsesWith(NewGV); 861 BCI->eraseFromParent(); 862 } else { 863 BCI->setOperand(0, NewGV); 864 } 865 } else { 866 if (!TheBC) 867 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 868 User->replaceUsesOfWith(CI, TheBC); 869 } 870 } 871 872 Constant *RepValue = NewGV; 873 if (NewGV->getType() != GV->getValueType()) 874 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 875 876 // If there is a comparison against null, we will insert a global bool to 877 // keep track of whether the global was initialized yet or not. 878 GlobalVariable *InitBool = 879 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 880 GlobalValue::InternalLinkage, 881 ConstantInt::getFalse(GV->getContext()), 882 GV->getName()+".init", GV->getThreadLocalMode()); 883 bool InitBoolUsed = false; 884 885 // Loop over all uses of GV, processing them in turn. 886 while (!GV->use_empty()) { 887 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 888 // The global is initialized when the store to it occurs. 889 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 890 SI->getOrdering(), SI->getSyncScopeID(), SI); 891 SI->eraseFromParent(); 892 continue; 893 } 894 895 LoadInst *LI = cast<LoadInst>(GV->user_back()); 896 while (!LI->use_empty()) { 897 Use &LoadUse = *LI->use_begin(); 898 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 899 if (!ICI) { 900 LoadUse = RepValue; 901 continue; 902 } 903 904 // Replace the cmp X, 0 with a use of the bool value. 905 // Sink the load to where the compare was, if atomic rules allow us to. 906 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 907 LI->getOrdering(), LI->getSyncScopeID(), 908 LI->isUnordered() ? (Instruction*)ICI : LI); 909 InitBoolUsed = true; 910 switch (ICI->getPredicate()) { 911 default: llvm_unreachable("Unknown ICmp Predicate!"); 912 case ICmpInst::ICMP_ULT: 913 case ICmpInst::ICMP_SLT: // X < null -> always false 914 LV = ConstantInt::getFalse(GV->getContext()); 915 break; 916 case ICmpInst::ICMP_ULE: 917 case ICmpInst::ICMP_SLE: 918 case ICmpInst::ICMP_EQ: 919 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 920 break; 921 case ICmpInst::ICMP_NE: 922 case ICmpInst::ICMP_UGE: 923 case ICmpInst::ICMP_SGE: 924 case ICmpInst::ICMP_UGT: 925 case ICmpInst::ICMP_SGT: 926 break; // no change. 927 } 928 ICI->replaceAllUsesWith(LV); 929 ICI->eraseFromParent(); 930 } 931 LI->eraseFromParent(); 932 } 933 934 // If the initialization boolean was used, insert it, otherwise delete it. 935 if (!InitBoolUsed) { 936 while (!InitBool->use_empty()) // Delete initializations 937 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 938 delete InitBool; 939 } else 940 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 941 942 // Now the GV is dead, nuke it and the malloc.. 943 GV->eraseFromParent(); 944 CI->eraseFromParent(); 945 946 // To further other optimizations, loop over all users of NewGV and try to 947 // constant prop them. This will promote GEP instructions with constant 948 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 949 ConstantPropUsersOf(NewGV, DL, TLI); 950 if (RepValue != NewGV) 951 ConstantPropUsersOf(RepValue, DL, TLI); 952 953 return NewGV; 954 } 955 956 /// Scan the use-list of V checking to make sure that there are no complex uses 957 /// of V. We permit simple things like dereferencing the pointer, but not 958 /// storing through the address, unless it is to the specified global. 959 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 960 const GlobalVariable *GV, 961 SmallPtrSetImpl<const PHINode*> &PHIs) { 962 for (const User *U : V->users()) { 963 const Instruction *Inst = cast<Instruction>(U); 964 965 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 966 continue; // Fine, ignore. 967 } 968 969 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 970 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 971 return false; // Storing the pointer itself... bad. 972 continue; // Otherwise, storing through it, or storing into GV... fine. 973 } 974 975 // Must index into the array and into the struct. 976 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 977 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 978 return false; 979 continue; 980 } 981 982 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 983 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 984 // cycles. 985 if (PHIs.insert(PN).second) 986 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 987 return false; 988 continue; 989 } 990 991 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 992 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 993 return false; 994 continue; 995 } 996 997 return false; 998 } 999 return true; 1000 } 1001 1002 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the 1003 /// allocation into loads from the global and uses of the resultant pointer. 1004 /// Further, delete the store into GV. This assumes that these value pass the 1005 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1006 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1007 GlobalVariable *GV) { 1008 while (!Alloc->use_empty()) { 1009 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 1010 Instruction *InsertPt = U; 1011 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1012 // If this is the store of the allocation into the global, remove it. 1013 if (SI->getOperand(1) == GV) { 1014 SI->eraseFromParent(); 1015 continue; 1016 } 1017 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1018 // Insert the load in the corresponding predecessor, not right before the 1019 // PHI. 1020 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 1021 } else if (isa<BitCastInst>(U)) { 1022 // Must be bitcast between the malloc and store to initialize the global. 1023 ReplaceUsesOfMallocWithGlobal(U, GV); 1024 U->eraseFromParent(); 1025 continue; 1026 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1027 // If this is a "GEP bitcast" and the user is a store to the global, then 1028 // just process it as a bitcast. 1029 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1030 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1031 if (SI->getOperand(1) == GV) { 1032 // Must be bitcast GEP between the malloc and store to initialize 1033 // the global. 1034 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1035 GEPI->eraseFromParent(); 1036 continue; 1037 } 1038 } 1039 1040 // Insert a load from the global, and use it instead of the malloc. 1041 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1042 U->replaceUsesOfWith(Alloc, NL); 1043 } 1044 } 1045 1046 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to 1047 /// perform heap SRA on. This permits GEP's that index through the array and 1048 /// struct field, icmps of null, and PHIs. 1049 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1050 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1051 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1052 // We permit two users of the load: setcc comparing against the null 1053 // pointer, and a getelementptr of a specific form. 1054 for (const User *U : V->users()) { 1055 const Instruction *UI = cast<Instruction>(U); 1056 1057 // Comparison against null is ok. 1058 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1059 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1060 return false; 1061 continue; 1062 } 1063 1064 // getelementptr is also ok, but only a simple form. 1065 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1066 // Must index into the array and into the struct. 1067 if (GEPI->getNumOperands() < 3) 1068 return false; 1069 1070 // Otherwise the GEP is ok. 1071 continue; 1072 } 1073 1074 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1075 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1076 // This means some phi nodes are dependent on each other. 1077 // Avoid infinite looping! 1078 return false; 1079 if (!LoadUsingPHIs.insert(PN).second) 1080 // If we have already analyzed this PHI, then it is safe. 1081 continue; 1082 1083 // Make sure all uses of the PHI are simple enough to transform. 1084 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1085 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1086 return false; 1087 1088 continue; 1089 } 1090 1091 // Otherwise we don't know what this is, not ok. 1092 return false; 1093 } 1094 1095 return true; 1096 } 1097 1098 /// If all users of values loaded from GV are simple enough to perform HeapSRA, 1099 /// return true. 1100 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1101 Instruction *StoredVal) { 1102 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1103 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1104 for (const User *U : GV->users()) 1105 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1106 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1107 LoadUsingPHIsPerLoad)) 1108 return false; 1109 LoadUsingPHIsPerLoad.clear(); 1110 } 1111 1112 // If we reach here, we know that all uses of the loads and transitive uses 1113 // (through PHI nodes) are simple enough to transform. However, we don't know 1114 // that all inputs the to the PHI nodes are in the same equivalence sets. 1115 // Check to verify that all operands of the PHIs are either PHIS that can be 1116 // transformed, loads from GV, or MI itself. 1117 for (const PHINode *PN : LoadUsingPHIs) { 1118 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1119 Value *InVal = PN->getIncomingValue(op); 1120 1121 // PHI of the stored value itself is ok. 1122 if (InVal == StoredVal) continue; 1123 1124 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1125 // One of the PHIs in our set is (optimistically) ok. 1126 if (LoadUsingPHIs.count(InPN)) 1127 continue; 1128 return false; 1129 } 1130 1131 // Load from GV is ok. 1132 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1133 if (LI->getOperand(0) == GV) 1134 continue; 1135 1136 // UNDEF? NULL? 1137 1138 // Anything else is rejected. 1139 return false; 1140 } 1141 } 1142 1143 return true; 1144 } 1145 1146 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1147 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1148 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1149 std::vector<Value *> &FieldVals = InsertedScalarizedValues[V]; 1150 1151 if (FieldNo >= FieldVals.size()) 1152 FieldVals.resize(FieldNo+1); 1153 1154 // If we already have this value, just reuse the previously scalarized 1155 // version. 1156 if (Value *FieldVal = FieldVals[FieldNo]) 1157 return FieldVal; 1158 1159 // Depending on what instruction this is, we have several cases. 1160 Value *Result; 1161 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1162 // This is a scalarized version of the load from the global. Just create 1163 // a new Load of the scalarized global. 1164 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1165 InsertedScalarizedValues, 1166 PHIsToRewrite), 1167 LI->getName()+".f"+Twine(FieldNo), LI); 1168 } else { 1169 PHINode *PN = cast<PHINode>(V); 1170 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1171 // field. 1172 1173 PointerType *PTy = cast<PointerType>(PN->getType()); 1174 StructType *ST = cast<StructType>(PTy->getElementType()); 1175 1176 unsigned AS = PTy->getAddressSpace(); 1177 PHINode *NewPN = 1178 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1179 PN->getNumIncomingValues(), 1180 PN->getName()+".f"+Twine(FieldNo), PN); 1181 Result = NewPN; 1182 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1183 } 1184 1185 return FieldVals[FieldNo] = Result; 1186 } 1187 1188 /// Given a load instruction and a value derived from the load, rewrite the 1189 /// derived value to use the HeapSRoA'd load. 1190 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1191 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1192 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1193 // If this is a comparison against null, handle it. 1194 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1195 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1196 // If we have a setcc of the loaded pointer, we can use a setcc of any 1197 // field. 1198 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1199 InsertedScalarizedValues, PHIsToRewrite); 1200 1201 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1202 Constant::getNullValue(NPtr->getType()), 1203 SCI->getName()); 1204 SCI->replaceAllUsesWith(New); 1205 SCI->eraseFromParent(); 1206 return; 1207 } 1208 1209 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1210 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1211 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1212 && "Unexpected GEPI!"); 1213 1214 // Load the pointer for this field. 1215 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1216 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1217 InsertedScalarizedValues, PHIsToRewrite); 1218 1219 // Create the new GEP idx vector. 1220 SmallVector<Value*, 8> GEPIdx; 1221 GEPIdx.push_back(GEPI->getOperand(1)); 1222 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1223 1224 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1225 GEPI->getName(), GEPI); 1226 GEPI->replaceAllUsesWith(NGEPI); 1227 GEPI->eraseFromParent(); 1228 return; 1229 } 1230 1231 // Recursively transform the users of PHI nodes. This will lazily create the 1232 // PHIs that are needed for individual elements. Keep track of what PHIs we 1233 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1234 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1235 // already been seen first by another load, so its uses have already been 1236 // processed. 1237 PHINode *PN = cast<PHINode>(LoadUser); 1238 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1239 std::vector<Value *>())).second) 1240 return; 1241 1242 // If this is the first time we've seen this PHI, recursively process all 1243 // users. 1244 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1245 Instruction *User = cast<Instruction>(*UI++); 1246 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1247 } 1248 } 1249 1250 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1251 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1252 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1253 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1254 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1255 std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) { 1256 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1257 Instruction *User = cast<Instruction>(*UI++); 1258 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1259 } 1260 1261 if (Load->use_empty()) { 1262 Load->eraseFromParent(); 1263 InsertedScalarizedValues.erase(Load); 1264 } 1265 } 1266 1267 /// CI is an allocation of an array of structures. Break it up into multiple 1268 /// allocations of arrays of the fields. 1269 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1270 Value *NElems, const DataLayout &DL, 1271 const TargetLibraryInfo *TLI) { 1272 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1273 Type *MAT = getMallocAllocatedType(CI, TLI); 1274 StructType *STy = cast<StructType>(MAT); 1275 1276 // There is guaranteed to be at least one use of the malloc (storing 1277 // it into GV). If there are other uses, change them to be uses of 1278 // the global to simplify later code. This also deletes the store 1279 // into GV. 1280 ReplaceUsesOfMallocWithGlobal(CI, GV); 1281 1282 // Okay, at this point, there are no users of the malloc. Insert N 1283 // new mallocs at the same place as CI, and N globals. 1284 std::vector<Value *> FieldGlobals; 1285 std::vector<Value *> FieldMallocs; 1286 1287 SmallVector<OperandBundleDef, 1> OpBundles; 1288 CI->getOperandBundlesAsDefs(OpBundles); 1289 1290 unsigned AS = GV->getType()->getPointerAddressSpace(); 1291 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1292 Type *FieldTy = STy->getElementType(FieldNo); 1293 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1294 1295 GlobalVariable *NGV = new GlobalVariable( 1296 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1297 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1298 nullptr, GV->getThreadLocalMode()); 1299 NGV->copyAttributesFrom(GV); 1300 FieldGlobals.push_back(NGV); 1301 1302 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1303 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1304 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1305 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1306 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1307 ConstantInt::get(IntPtrTy, TypeSize), 1308 NElems, OpBundles, nullptr, 1309 CI->getName() + ".f" + Twine(FieldNo)); 1310 FieldMallocs.push_back(NMI); 1311 new StoreInst(NMI, NGV, CI); 1312 } 1313 1314 // The tricky aspect of this transformation is handling the case when malloc 1315 // fails. In the original code, malloc failing would set the result pointer 1316 // of malloc to null. In this case, some mallocs could succeed and others 1317 // could fail. As such, we emit code that looks like this: 1318 // F0 = malloc(field0) 1319 // F1 = malloc(field1) 1320 // F2 = malloc(field2) 1321 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1322 // if (F0) { free(F0); F0 = 0; } 1323 // if (F1) { free(F1); F1 = 0; } 1324 // if (F2) { free(F2); F2 = 0; } 1325 // } 1326 // The malloc can also fail if its argument is too large. 1327 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1328 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1329 ConstantZero, "isneg"); 1330 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1331 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1332 Constant::getNullValue(FieldMallocs[i]->getType()), 1333 "isnull"); 1334 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1335 } 1336 1337 // Split the basic block at the old malloc. 1338 BasicBlock *OrigBB = CI->getParent(); 1339 BasicBlock *ContBB = 1340 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1341 1342 // Create the block to check the first condition. Put all these blocks at the 1343 // end of the function as they are unlikely to be executed. 1344 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1345 "malloc_ret_null", 1346 OrigBB->getParent()); 1347 1348 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1349 // branch on RunningOr. 1350 OrigBB->getTerminator()->eraseFromParent(); 1351 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1352 1353 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1354 // pointer, because some may be null while others are not. 1355 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1356 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1357 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1358 Constant::getNullValue(GVVal->getType())); 1359 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1360 OrigBB->getParent()); 1361 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1362 OrigBB->getParent()); 1363 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1364 Cmp, NullPtrBlock); 1365 1366 // Fill in FreeBlock. 1367 CallInst::CreateFree(GVVal, OpBundles, BI); 1368 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1369 FreeBlock); 1370 BranchInst::Create(NextBlock, FreeBlock); 1371 1372 NullPtrBlock = NextBlock; 1373 } 1374 1375 BranchInst::Create(ContBB, NullPtrBlock); 1376 1377 // CI is no longer needed, remove it. 1378 CI->eraseFromParent(); 1379 1380 /// As we process loads, if we can't immediately update all uses of the load, 1381 /// keep track of what scalarized loads are inserted for a given load. 1382 DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues; 1383 InsertedScalarizedValues[GV] = FieldGlobals; 1384 1385 std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite; 1386 1387 // Okay, the malloc site is completely handled. All of the uses of GV are now 1388 // loads, and all uses of those loads are simple. Rewrite them to use loads 1389 // of the per-field globals instead. 1390 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1391 Instruction *User = cast<Instruction>(*UI++); 1392 1393 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1394 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1395 continue; 1396 } 1397 1398 // Must be a store of null. 1399 StoreInst *SI = cast<StoreInst>(User); 1400 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1401 "Unexpected heap-sra user!"); 1402 1403 // Insert a store of null into each global. 1404 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1405 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1406 Constant *Null = Constant::getNullValue(ValTy); 1407 new StoreInst(Null, FieldGlobals[i], SI); 1408 } 1409 // Erase the original store. 1410 SI->eraseFromParent(); 1411 } 1412 1413 // While we have PHIs that are interesting to rewrite, do it. 1414 while (!PHIsToRewrite.empty()) { 1415 PHINode *PN = PHIsToRewrite.back().first; 1416 unsigned FieldNo = PHIsToRewrite.back().second; 1417 PHIsToRewrite.pop_back(); 1418 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1419 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1420 1421 // Add all the incoming values. This can materialize more phis. 1422 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1423 Value *InVal = PN->getIncomingValue(i); 1424 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1425 PHIsToRewrite); 1426 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1427 } 1428 } 1429 1430 // Drop all inter-phi links and any loads that made it this far. 1431 for (DenseMap<Value *, std::vector<Value *>>::iterator 1432 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1433 I != E; ++I) { 1434 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1435 PN->dropAllReferences(); 1436 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1437 LI->dropAllReferences(); 1438 } 1439 1440 // Delete all the phis and loads now that inter-references are dead. 1441 for (DenseMap<Value *, std::vector<Value *>>::iterator 1442 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1443 I != E; ++I) { 1444 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1445 PN->eraseFromParent(); 1446 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1447 LI->eraseFromParent(); 1448 } 1449 1450 // The old global is now dead, remove it. 1451 GV->eraseFromParent(); 1452 1453 ++NumHeapSRA; 1454 return cast<GlobalVariable>(FieldGlobals[0]); 1455 } 1456 1457 /// This function is called when we see a pointer global variable with a single 1458 /// value stored it that is a malloc or cast of malloc. 1459 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1460 Type *AllocTy, 1461 AtomicOrdering Ordering, 1462 const DataLayout &DL, 1463 TargetLibraryInfo *TLI) { 1464 // If this is a malloc of an abstract type, don't touch it. 1465 if (!AllocTy->isSized()) 1466 return false; 1467 1468 // We can't optimize this global unless all uses of it are *known* to be 1469 // of the malloc value, not of the null initializer value (consider a use 1470 // that compares the global's value against zero to see if the malloc has 1471 // been reached). To do this, we check to see if all uses of the global 1472 // would trap if the global were null: this proves that they must all 1473 // happen after the malloc. 1474 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1475 return false; 1476 1477 // We can't optimize this if the malloc itself is used in a complex way, 1478 // for example, being stored into multiple globals. This allows the 1479 // malloc to be stored into the specified global, loaded icmp'd, and 1480 // GEP'd. These are all things we could transform to using the global 1481 // for. 1482 SmallPtrSet<const PHINode*, 8> PHIs; 1483 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1484 return false; 1485 1486 // If we have a global that is only initialized with a fixed size malloc, 1487 // transform the program to use global memory instead of malloc'd memory. 1488 // This eliminates dynamic allocation, avoids an indirection accessing the 1489 // data, and exposes the resultant global to further GlobalOpt. 1490 // We cannot optimize the malloc if we cannot determine malloc array size. 1491 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1492 if (!NElems) 1493 return false; 1494 1495 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1496 // Restrict this transformation to only working on small allocations 1497 // (2048 bytes currently), as we don't want to introduce a 16M global or 1498 // something. 1499 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1500 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1501 return true; 1502 } 1503 1504 // If the allocation is an array of structures, consider transforming this 1505 // into multiple malloc'd arrays, one for each field. This is basically 1506 // SRoA for malloc'd memory. 1507 1508 if (Ordering != AtomicOrdering::NotAtomic) 1509 return false; 1510 1511 // If this is an allocation of a fixed size array of structs, analyze as a 1512 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1513 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1514 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1515 AllocTy = AT->getElementType(); 1516 1517 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1518 if (!AllocSTy) 1519 return false; 1520 1521 // This the structure has an unreasonable number of fields, leave it 1522 // alone. 1523 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1524 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1525 1526 // If this is a fixed size array, transform the Malloc to be an alloc of 1527 // structs. malloc [100 x struct],1 -> malloc struct, 100 1528 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1529 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1530 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1531 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1532 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1533 SmallVector<OperandBundleDef, 1> OpBundles; 1534 CI->getOperandBundlesAsDefs(OpBundles); 1535 Instruction *Malloc = 1536 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements, 1537 OpBundles, nullptr, CI->getName()); 1538 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1539 CI->replaceAllUsesWith(Cast); 1540 CI->eraseFromParent(); 1541 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1542 CI = cast<CallInst>(BCI->getOperand(0)); 1543 else 1544 CI = cast<CallInst>(Malloc); 1545 } 1546 1547 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1548 TLI); 1549 return true; 1550 } 1551 1552 return false; 1553 } 1554 1555 // Try to optimize globals based on the knowledge that only one value (besides 1556 // its initializer) is ever stored to the global. 1557 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1558 AtomicOrdering Ordering, 1559 const DataLayout &DL, 1560 TargetLibraryInfo *TLI) { 1561 // Ignore no-op GEPs and bitcasts. 1562 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1563 1564 // If we are dealing with a pointer global that is initialized to null and 1565 // only has one (non-null) value stored into it, then we can optimize any 1566 // users of the loaded value (often calls and loads) that would trap if the 1567 // value was null. 1568 if (GV->getInitializer()->getType()->isPointerTy() && 1569 GV->getInitializer()->isNullValue()) { 1570 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1571 if (GV->getInitializer()->getType() != SOVC->getType()) 1572 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1573 1574 // Optimize away any trapping uses of the loaded value. 1575 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1576 return true; 1577 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1578 Type *MallocType = getMallocAllocatedType(CI, TLI); 1579 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1580 Ordering, DL, TLI)) 1581 return true; 1582 } 1583 } 1584 1585 return false; 1586 } 1587 1588 /// At this point, we have learned that the only two values ever stored into GV 1589 /// are its initializer and OtherVal. See if we can shrink the global into a 1590 /// boolean and select between the two values whenever it is used. This exposes 1591 /// the values to other scalar optimizations. 1592 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1593 Type *GVElType = GV->getValueType(); 1594 1595 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1596 // an FP value, pointer or vector, don't do this optimization because a select 1597 // between them is very expensive and unlikely to lead to later 1598 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1599 // where v1 and v2 both require constant pool loads, a big loss. 1600 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1601 GVElType->isFloatingPointTy() || 1602 GVElType->isPointerTy() || GVElType->isVectorTy()) 1603 return false; 1604 1605 // Walk the use list of the global seeing if all the uses are load or store. 1606 // If there is anything else, bail out. 1607 for (User *U : GV->users()) 1608 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1609 return false; 1610 1611 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1612 1613 // Create the new global, initializing it to false. 1614 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1615 false, 1616 GlobalValue::InternalLinkage, 1617 ConstantInt::getFalse(GV->getContext()), 1618 GV->getName()+".b", 1619 GV->getThreadLocalMode(), 1620 GV->getType()->getAddressSpace()); 1621 NewGV->copyAttributesFrom(GV); 1622 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1623 1624 Constant *InitVal = GV->getInitializer(); 1625 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1626 "No reason to shrink to bool!"); 1627 1628 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1629 GV->getDebugInfo(GVs); 1630 1631 // If initialized to zero and storing one into the global, we can use a cast 1632 // instead of a select to synthesize the desired value. 1633 bool IsOneZero = false; 1634 bool EmitOneOrZero = true; 1635 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)){ 1636 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1637 1638 if (ConstantInt *CIInit = dyn_cast<ConstantInt>(GV->getInitializer())){ 1639 uint64_t ValInit = CIInit->getZExtValue(); 1640 uint64_t ValOther = CI->getZExtValue(); 1641 uint64_t ValMinus = ValOther - ValInit; 1642 1643 for(auto *GVe : GVs){ 1644 DIGlobalVariable *DGV = GVe->getVariable(); 1645 DIExpression *E = GVe->getExpression(); 1646 1647 // It is expected that the address of global optimized variable is on 1648 // top of the stack. After optimization, value of that variable will 1649 // be ether 0 for initial value or 1 for other value. The following 1650 // expression should return constant integer value depending on the 1651 // value at global object address: 1652 // val * (ValOther - ValInit) + ValInit: 1653 // DW_OP_deref DW_OP_constu <ValMinus> 1654 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1655 E = DIExpression::get(NewGV->getContext(), 1656 {dwarf::DW_OP_deref, 1657 dwarf::DW_OP_constu, 1658 ValMinus, 1659 dwarf::DW_OP_mul, 1660 dwarf::DW_OP_constu, 1661 ValInit, 1662 dwarf::DW_OP_plus, 1663 dwarf::DW_OP_stack_value}); 1664 DIGlobalVariableExpression *DGVE = 1665 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1666 NewGV->addDebugInfo(DGVE); 1667 } 1668 EmitOneOrZero = false; 1669 } 1670 } 1671 1672 if (EmitOneOrZero) { 1673 // FIXME: This will only emit address for debugger on which will 1674 // be written only 0 or 1. 1675 for(auto *GV : GVs) 1676 NewGV->addDebugInfo(GV); 1677 } 1678 1679 while (!GV->use_empty()) { 1680 Instruction *UI = cast<Instruction>(GV->user_back()); 1681 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1682 // Change the store into a boolean store. 1683 bool StoringOther = SI->getOperand(0) == OtherVal; 1684 // Only do this if we weren't storing a loaded value. 1685 Value *StoreVal; 1686 if (StoringOther || SI->getOperand(0) == InitVal) { 1687 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1688 StoringOther); 1689 } else { 1690 // Otherwise, we are storing a previously loaded copy. To do this, 1691 // change the copy from copying the original value to just copying the 1692 // bool. 1693 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1694 1695 // If we've already replaced the input, StoredVal will be a cast or 1696 // select instruction. If not, it will be a load of the original 1697 // global. 1698 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1699 assert(LI->getOperand(0) == GV && "Not a copy!"); 1700 // Insert a new load, to preserve the saved value. 1701 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1702 LI->getOrdering(), LI->getSyncScopeID(), LI); 1703 } else { 1704 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1705 "This is not a form that we understand!"); 1706 StoreVal = StoredVal->getOperand(0); 1707 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1708 } 1709 } 1710 new StoreInst(StoreVal, NewGV, false, 0, 1711 SI->getOrdering(), SI->getSyncScopeID(), SI); 1712 } else { 1713 // Change the load into a load of bool then a select. 1714 LoadInst *LI = cast<LoadInst>(UI); 1715 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1716 LI->getOrdering(), LI->getSyncScopeID(), LI); 1717 Value *NSI; 1718 if (IsOneZero) 1719 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1720 else 1721 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1722 NSI->takeName(LI); 1723 LI->replaceAllUsesWith(NSI); 1724 } 1725 UI->eraseFromParent(); 1726 } 1727 1728 // Retain the name of the old global variable. People who are debugging their 1729 // programs may expect these variables to be named the same. 1730 NewGV->takeName(GV); 1731 GV->eraseFromParent(); 1732 return true; 1733 } 1734 1735 static bool deleteIfDead(GlobalValue &GV, 1736 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 1737 GV.removeDeadConstantUsers(); 1738 1739 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1740 return false; 1741 1742 if (const Comdat *C = GV.getComdat()) 1743 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1744 return false; 1745 1746 bool Dead; 1747 if (auto *F = dyn_cast<Function>(&GV)) 1748 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1749 else 1750 Dead = GV.use_empty(); 1751 if (!Dead) 1752 return false; 1753 1754 DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1755 GV.eraseFromParent(); 1756 ++NumDeleted; 1757 return true; 1758 } 1759 1760 static bool isPointerValueDeadOnEntryToFunction( 1761 const Function *F, GlobalValue *GV, 1762 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1763 // Find all uses of GV. We expect them all to be in F, and if we can't 1764 // identify any of the uses we bail out. 1765 // 1766 // On each of these uses, identify if the memory that GV points to is 1767 // used/required/live at the start of the function. If it is not, for example 1768 // if the first thing the function does is store to the GV, the GV can 1769 // possibly be demoted. 1770 // 1771 // We don't do an exhaustive search for memory operations - simply look 1772 // through bitcasts as they're quite common and benign. 1773 const DataLayout &DL = GV->getParent()->getDataLayout(); 1774 SmallVector<LoadInst *, 4> Loads; 1775 SmallVector<StoreInst *, 4> Stores; 1776 for (auto *U : GV->users()) { 1777 if (Operator::getOpcode(U) == Instruction::BitCast) { 1778 for (auto *UU : U->users()) { 1779 if (auto *LI = dyn_cast<LoadInst>(UU)) 1780 Loads.push_back(LI); 1781 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1782 Stores.push_back(SI); 1783 else 1784 return false; 1785 } 1786 continue; 1787 } 1788 1789 Instruction *I = dyn_cast<Instruction>(U); 1790 if (!I) 1791 return false; 1792 assert(I->getParent()->getParent() == F); 1793 1794 if (auto *LI = dyn_cast<LoadInst>(I)) 1795 Loads.push_back(LI); 1796 else if (auto *SI = dyn_cast<StoreInst>(I)) 1797 Stores.push_back(SI); 1798 else 1799 return false; 1800 } 1801 1802 // We have identified all uses of GV into loads and stores. Now check if all 1803 // of them are known not to depend on the value of the global at the function 1804 // entry point. We do this by ensuring that every load is dominated by at 1805 // least one store. 1806 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1807 1808 // The below check is quadratic. Check we're not going to do too many tests. 1809 // FIXME: Even though this will always have worst-case quadratic time, we 1810 // could put effort into minimizing the average time by putting stores that 1811 // have been shown to dominate at least one load at the beginning of the 1812 // Stores array, making subsequent dominance checks more likely to succeed 1813 // early. 1814 // 1815 // The threshold here is fairly large because global->local demotion is a 1816 // very powerful optimization should it fire. 1817 const unsigned Threshold = 100; 1818 if (Loads.size() * Stores.size() > Threshold) 1819 return false; 1820 1821 for (auto *L : Loads) { 1822 auto *LTy = L->getType(); 1823 if (none_of(Stores, [&](const StoreInst *S) { 1824 auto *STy = S->getValueOperand()->getType(); 1825 // The load is only dominated by the store if DomTree says so 1826 // and the number of bits loaded in L is less than or equal to 1827 // the number of bits stored in S. 1828 return DT.dominates(S, L) && 1829 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1830 })) 1831 return false; 1832 } 1833 // All loads have known dependences inside F, so the global can be localized. 1834 return true; 1835 } 1836 1837 /// C may have non-instruction users. Can all of those users be turned into 1838 /// instructions? 1839 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1840 // We don't do this exhaustively. The most common pattern that we really need 1841 // to care about is a constant GEP or constant bitcast - so just looking 1842 // through one single ConstantExpr. 1843 // 1844 // The set of constants that this function returns true for must be able to be 1845 // handled by makeAllConstantUsesInstructions. 1846 for (auto *U : C->users()) { 1847 if (isa<Instruction>(U)) 1848 continue; 1849 if (!isa<ConstantExpr>(U)) 1850 // Non instruction, non-constantexpr user; cannot convert this. 1851 return false; 1852 for (auto *UU : U->users()) 1853 if (!isa<Instruction>(UU)) 1854 // A constantexpr used by another constant. We don't try and recurse any 1855 // further but just bail out at this point. 1856 return false; 1857 } 1858 1859 return true; 1860 } 1861 1862 /// C may have non-instruction users, and 1863 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1864 /// non-instruction users to instructions. 1865 static void makeAllConstantUsesInstructions(Constant *C) { 1866 SmallVector<ConstantExpr*,4> Users; 1867 for (auto *U : C->users()) { 1868 if (isa<ConstantExpr>(U)) 1869 Users.push_back(cast<ConstantExpr>(U)); 1870 else 1871 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1872 // should not have returned true for C. 1873 assert( 1874 isa<Instruction>(U) && 1875 "Can't transform non-constantexpr non-instruction to instruction!"); 1876 } 1877 1878 SmallVector<Value*,4> UUsers; 1879 for (auto *U : Users) { 1880 UUsers.clear(); 1881 for (auto *UU : U->users()) 1882 UUsers.push_back(UU); 1883 for (auto *UU : UUsers) { 1884 Instruction *UI = cast<Instruction>(UU); 1885 Instruction *NewU = U->getAsInstruction(); 1886 NewU->insertBefore(UI); 1887 UI->replaceUsesOfWith(U, NewU); 1888 } 1889 // We've replaced all the uses, so destroy the constant. (destroyConstant 1890 // will update value handles and metadata.) 1891 U->destroyConstant(); 1892 } 1893 } 1894 1895 /// Analyze the specified global variable and optimize 1896 /// it if possible. If we make a change, return true. 1897 static bool processInternalGlobal( 1898 GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI, 1899 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1900 auto &DL = GV->getParent()->getDataLayout(); 1901 // If this is a first class global and has only one accessing function and 1902 // this function is non-recursive, we replace the global with a local alloca 1903 // in this function. 1904 // 1905 // NOTE: It doesn't make sense to promote non-single-value types since we 1906 // are just replacing static memory to stack memory. 1907 // 1908 // If the global is in different address space, don't bring it to stack. 1909 if (!GS.HasMultipleAccessingFunctions && 1910 GS.AccessingFunction && 1911 GV->getValueType()->isSingleValueType() && 1912 GV->getType()->getAddressSpace() == 0 && 1913 !GV->isExternallyInitialized() && 1914 allNonInstructionUsersCanBeMadeInstructions(GV) && 1915 GS.AccessingFunction->doesNotRecurse() && 1916 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1917 LookupDomTree)) { 1918 const DataLayout &DL = GV->getParent()->getDataLayout(); 1919 1920 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1921 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1922 ->getEntryBlock().begin()); 1923 Type *ElemTy = GV->getValueType(); 1924 // FIXME: Pass Global's alignment when globals have alignment 1925 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1926 GV->getName(), &FirstI); 1927 if (!isa<UndefValue>(GV->getInitializer())) 1928 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1929 1930 makeAllConstantUsesInstructions(GV); 1931 1932 GV->replaceAllUsesWith(Alloca); 1933 GV->eraseFromParent(); 1934 ++NumLocalized; 1935 return true; 1936 } 1937 1938 // If the global is never loaded (but may be stored to), it is dead. 1939 // Delete it now. 1940 if (!GS.IsLoaded) { 1941 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1942 1943 bool Changed; 1944 if (isLeakCheckerRoot(GV)) { 1945 // Delete any constant stores to the global. 1946 Changed = CleanupPointerRootUsers(GV, TLI); 1947 } else { 1948 // Delete any stores we can find to the global. We may not be able to 1949 // make it completely dead though. 1950 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1951 } 1952 1953 // If the global is dead now, delete it. 1954 if (GV->use_empty()) { 1955 GV->eraseFromParent(); 1956 ++NumDeleted; 1957 Changed = true; 1958 } 1959 return Changed; 1960 1961 } 1962 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1963 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1964 GV->setConstant(true); 1965 1966 // Clean up any obviously simplifiable users now. 1967 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1968 1969 // If the global is dead now, just nuke it. 1970 if (GV->use_empty()) { 1971 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1972 << "all users and delete global!\n"); 1973 GV->eraseFromParent(); 1974 ++NumDeleted; 1975 return true; 1976 } 1977 1978 // Fall through to the next check; see if we can optimize further. 1979 ++NumMarked; 1980 } 1981 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1982 const DataLayout &DL = GV->getParent()->getDataLayout(); 1983 if (SRAGlobal(GV, DL)) 1984 return true; 1985 } 1986 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1987 // If the initial value for the global was an undef value, and if only 1988 // one other value was stored into it, we can just change the 1989 // initializer to be the stored value, then delete all stores to the 1990 // global. This allows us to mark it constant. 1991 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1992 if (isa<UndefValue>(GV->getInitializer())) { 1993 // Change the initial value here. 1994 GV->setInitializer(SOVConstant); 1995 1996 // Clean up any obviously simplifiable users now. 1997 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1998 1999 if (GV->use_empty()) { 2000 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 2001 << "simplify all users and delete global!\n"); 2002 GV->eraseFromParent(); 2003 ++NumDeleted; 2004 } 2005 ++NumSubstitute; 2006 return true; 2007 } 2008 2009 // Try to optimize globals based on the knowledge that only one value 2010 // (besides its initializer) is ever stored to the global. 2011 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI)) 2012 return true; 2013 2014 // Otherwise, if the global was not a boolean, we can shrink it to be a 2015 // boolean. 2016 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 2017 if (GS.Ordering == AtomicOrdering::NotAtomic) { 2018 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 2019 ++NumShrunkToBool; 2020 return true; 2021 } 2022 } 2023 } 2024 } 2025 2026 return false; 2027 } 2028 2029 /// Analyze the specified global variable and optimize it if possible. If we 2030 /// make a change, return true. 2031 static bool 2032 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI, 2033 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2034 if (GV.getName().startswith("llvm.")) 2035 return false; 2036 2037 GlobalStatus GS; 2038 2039 if (GlobalStatus::analyzeGlobal(&GV, GS)) 2040 return false; 2041 2042 bool Changed = false; 2043 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 2044 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 2045 : GlobalValue::UnnamedAddr::Local; 2046 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 2047 GV.setUnnamedAddr(NewUnnamedAddr); 2048 NumUnnamed++; 2049 Changed = true; 2050 } 2051 } 2052 2053 // Do more involved optimizations if the global is internal. 2054 if (!GV.hasLocalLinkage()) 2055 return Changed; 2056 2057 auto *GVar = dyn_cast<GlobalVariable>(&GV); 2058 if (!GVar) 2059 return Changed; 2060 2061 if (GVar->isConstant() || !GVar->hasInitializer()) 2062 return Changed; 2063 2064 return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed; 2065 } 2066 2067 /// Walk all of the direct calls of the specified function, changing them to 2068 /// FastCC. 2069 static void ChangeCalleesToFastCall(Function *F) { 2070 for (User *U : F->users()) { 2071 if (isa<BlockAddress>(U)) 2072 continue; 2073 CallSite CS(cast<Instruction>(U)); 2074 CS.setCallingConv(CallingConv::Fast); 2075 } 2076 } 2077 2078 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) { 2079 // There can be at most one attribute set with a nest attribute. 2080 unsigned NestIndex; 2081 if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex)) 2082 return Attrs.removeAttribute(C, NestIndex, Attribute::Nest); 2083 return Attrs; 2084 } 2085 2086 static void RemoveNestAttribute(Function *F) { 2087 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 2088 for (User *U : F->users()) { 2089 if (isa<BlockAddress>(U)) 2090 continue; 2091 CallSite CS(cast<Instruction>(U)); 2092 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 2093 } 2094 } 2095 2096 /// Return true if this is a calling convention that we'd like to change. The 2097 /// idea here is that we don't want to mess with the convention if the user 2098 /// explicitly requested something with performance implications like coldcc, 2099 /// GHC, or anyregcc. 2100 static bool isProfitableToMakeFastCC(Function *F) { 2101 CallingConv::ID CC = F->getCallingConv(); 2102 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2103 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall; 2104 } 2105 2106 static bool 2107 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI, 2108 function_ref<DominatorTree &(Function &)> LookupDomTree, 2109 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2110 bool Changed = false; 2111 // Optimize functions. 2112 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2113 Function *F = &*FI++; 2114 // Functions without names cannot be referenced outside this module. 2115 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2116 F->setLinkage(GlobalValue::InternalLinkage); 2117 2118 if (deleteIfDead(*F, NotDiscardableComdats)) { 2119 Changed = true; 2120 continue; 2121 } 2122 2123 // LLVM's definition of dominance allows instructions that are cyclic 2124 // in unreachable blocks, e.g.: 2125 // %pat = select i1 %condition, @global, i16* %pat 2126 // because any instruction dominates an instruction in a block that's 2127 // not reachable from entry. 2128 // So, remove unreachable blocks from the function, because a) there's 2129 // no point in analyzing them and b) GlobalOpt should otherwise grow 2130 // some more complicated logic to break these cycles. 2131 // Removing unreachable blocks might invalidate the dominator so we 2132 // recalculate it. 2133 if (!F->isDeclaration()) { 2134 if (removeUnreachableBlocks(*F)) { 2135 auto &DT = LookupDomTree(*F); 2136 DT.recalculate(*F); 2137 Changed = true; 2138 } 2139 } 2140 2141 Changed |= processGlobal(*F, TLI, LookupDomTree); 2142 2143 if (!F->hasLocalLinkage()) 2144 continue; 2145 if (isProfitableToMakeFastCC(F) && !F->isVarArg() && 2146 !F->hasAddressTaken()) { 2147 // If this function has a calling convention worth changing, is not a 2148 // varargs function, and is only called directly, promote it to use the 2149 // Fast calling convention. 2150 F->setCallingConv(CallingConv::Fast); 2151 ChangeCalleesToFastCall(F); 2152 ++NumFastCallFns; 2153 Changed = true; 2154 } 2155 2156 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2157 !F->hasAddressTaken()) { 2158 // The function is not used by a trampoline intrinsic, so it is safe 2159 // to remove the 'nest' attribute. 2160 RemoveNestAttribute(F); 2161 ++NumNestRemoved; 2162 Changed = true; 2163 } 2164 } 2165 return Changed; 2166 } 2167 2168 static bool 2169 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI, 2170 function_ref<DominatorTree &(Function &)> LookupDomTree, 2171 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2172 bool Changed = false; 2173 2174 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2175 GVI != E; ) { 2176 GlobalVariable *GV = &*GVI++; 2177 // Global variables without names cannot be referenced outside this module. 2178 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2179 GV->setLinkage(GlobalValue::InternalLinkage); 2180 // Simplify the initializer. 2181 if (GV->hasInitializer()) 2182 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 2183 auto &DL = M.getDataLayout(); 2184 Constant *New = ConstantFoldConstant(C, DL, TLI); 2185 if (New && New != C) 2186 GV->setInitializer(New); 2187 } 2188 2189 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2190 Changed = true; 2191 continue; 2192 } 2193 2194 Changed |= processGlobal(*GV, TLI, LookupDomTree); 2195 } 2196 return Changed; 2197 } 2198 2199 /// Evaluate a piece of a constantexpr store into a global initializer. This 2200 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2201 /// GEP operands of Addr [0, OpNo) have been stepped into. 2202 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2203 ConstantExpr *Addr, unsigned OpNo) { 2204 // Base case of the recursion. 2205 if (OpNo == Addr->getNumOperands()) { 2206 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2207 return Val; 2208 } 2209 2210 SmallVector<Constant*, 32> Elts; 2211 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2212 // Break up the constant into its elements. 2213 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2214 Elts.push_back(Init->getAggregateElement(i)); 2215 2216 // Replace the element that we are supposed to. 2217 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2218 unsigned Idx = CU->getZExtValue(); 2219 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2220 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2221 2222 // Return the modified struct. 2223 return ConstantStruct::get(STy, Elts); 2224 } 2225 2226 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2227 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2228 uint64_t NumElts = InitTy->getNumElements(); 2229 2230 // Break up the array into elements. 2231 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2232 Elts.push_back(Init->getAggregateElement(i)); 2233 2234 assert(CI->getZExtValue() < NumElts); 2235 Elts[CI->getZExtValue()] = 2236 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2237 2238 if (Init->getType()->isArrayTy()) 2239 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2240 return ConstantVector::get(Elts); 2241 } 2242 2243 /// We have decided that Addr (which satisfies the predicate 2244 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2245 static void CommitValueTo(Constant *Val, Constant *Addr) { 2246 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2247 assert(GV->hasInitializer()); 2248 GV->setInitializer(Val); 2249 return; 2250 } 2251 2252 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2253 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2254 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2255 } 2256 2257 /// Evaluate static constructors in the function, if we can. Return true if we 2258 /// can, false otherwise. 2259 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2260 TargetLibraryInfo *TLI) { 2261 // Call the function. 2262 Evaluator Eval(DL, TLI); 2263 Constant *RetValDummy; 2264 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2265 SmallVector<Constant*, 0>()); 2266 2267 if (EvalSuccess) { 2268 ++NumCtorsEvaluated; 2269 2270 // We succeeded at evaluation: commit the result. 2271 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2272 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2273 << " stores.\n"); 2274 for (const auto &I : Eval.getMutatedMemory()) 2275 CommitValueTo(I.second, I.first); 2276 for (GlobalVariable *GV : Eval.getInvariants()) 2277 GV->setConstant(true); 2278 } 2279 2280 return EvalSuccess; 2281 } 2282 2283 static int compareNames(Constant *const *A, Constant *const *B) { 2284 Value *AStripped = (*A)->stripPointerCastsNoFollowAliases(); 2285 Value *BStripped = (*B)->stripPointerCastsNoFollowAliases(); 2286 return AStripped->getName().compare(BStripped->getName()); 2287 } 2288 2289 static void setUsedInitializer(GlobalVariable &V, 2290 const SmallPtrSet<GlobalValue *, 8> &Init) { 2291 if (Init.empty()) { 2292 V.eraseFromParent(); 2293 return; 2294 } 2295 2296 // Type of pointer to the array of pointers. 2297 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2298 2299 SmallVector<Constant *, 8> UsedArray; 2300 for (GlobalValue *GV : Init) { 2301 Constant *Cast 2302 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2303 UsedArray.push_back(Cast); 2304 } 2305 // Sort to get deterministic order. 2306 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2307 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2308 2309 Module *M = V.getParent(); 2310 V.removeFromParent(); 2311 GlobalVariable *NV = 2312 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2313 ConstantArray::get(ATy, UsedArray), ""); 2314 NV->takeName(&V); 2315 NV->setSection("llvm.metadata"); 2316 delete &V; 2317 } 2318 2319 namespace { 2320 2321 /// An easy to access representation of llvm.used and llvm.compiler.used. 2322 class LLVMUsed { 2323 SmallPtrSet<GlobalValue *, 8> Used; 2324 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2325 GlobalVariable *UsedV; 2326 GlobalVariable *CompilerUsedV; 2327 2328 public: 2329 LLVMUsed(Module &M) { 2330 UsedV = collectUsedGlobalVariables(M, Used, false); 2331 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2332 } 2333 2334 using iterator = SmallPtrSet<GlobalValue *, 8>::iterator; 2335 using used_iterator_range = iterator_range<iterator>; 2336 2337 iterator usedBegin() { return Used.begin(); } 2338 iterator usedEnd() { return Used.end(); } 2339 2340 used_iterator_range used() { 2341 return used_iterator_range(usedBegin(), usedEnd()); 2342 } 2343 2344 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2345 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2346 2347 used_iterator_range compilerUsed() { 2348 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2349 } 2350 2351 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2352 2353 bool compilerUsedCount(GlobalValue *GV) const { 2354 return CompilerUsed.count(GV); 2355 } 2356 2357 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2358 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2359 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2360 2361 bool compilerUsedInsert(GlobalValue *GV) { 2362 return CompilerUsed.insert(GV).second; 2363 } 2364 2365 void syncVariablesAndSets() { 2366 if (UsedV) 2367 setUsedInitializer(*UsedV, Used); 2368 if (CompilerUsedV) 2369 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2370 } 2371 }; 2372 2373 } // end anonymous namespace 2374 2375 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2376 if (GA.use_empty()) // No use at all. 2377 return false; 2378 2379 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2380 "We should have removed the duplicated " 2381 "element from llvm.compiler.used"); 2382 if (!GA.hasOneUse()) 2383 // Strictly more than one use. So at least one is not in llvm.used and 2384 // llvm.compiler.used. 2385 return true; 2386 2387 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2388 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2389 } 2390 2391 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2392 const LLVMUsed &U) { 2393 unsigned N = 2; 2394 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2395 "We should have removed the duplicated " 2396 "element from llvm.compiler.used"); 2397 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2398 ++N; 2399 return V.hasNUsesOrMore(N); 2400 } 2401 2402 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2403 if (!GA.hasLocalLinkage()) 2404 return true; 2405 2406 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2407 } 2408 2409 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2410 bool &RenameTarget) { 2411 RenameTarget = false; 2412 bool Ret = false; 2413 if (hasUseOtherThanLLVMUsed(GA, U)) 2414 Ret = true; 2415 2416 // If the alias is externally visible, we may still be able to simplify it. 2417 if (!mayHaveOtherReferences(GA, U)) 2418 return Ret; 2419 2420 // If the aliasee has internal linkage, give it the name and linkage 2421 // of the alias, and delete the alias. This turns: 2422 // define internal ... @f(...) 2423 // @a = alias ... @f 2424 // into: 2425 // define ... @a(...) 2426 Constant *Aliasee = GA.getAliasee(); 2427 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2428 if (!Target->hasLocalLinkage()) 2429 return Ret; 2430 2431 // Do not perform the transform if multiple aliases potentially target the 2432 // aliasee. This check also ensures that it is safe to replace the section 2433 // and other attributes of the aliasee with those of the alias. 2434 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2435 return Ret; 2436 2437 RenameTarget = true; 2438 return true; 2439 } 2440 2441 static bool 2442 OptimizeGlobalAliases(Module &M, 2443 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2444 bool Changed = false; 2445 LLVMUsed Used(M); 2446 2447 for (GlobalValue *GV : Used.used()) 2448 Used.compilerUsedErase(GV); 2449 2450 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2451 I != E;) { 2452 GlobalAlias *J = &*I++; 2453 2454 // Aliases without names cannot be referenced outside this module. 2455 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2456 J->setLinkage(GlobalValue::InternalLinkage); 2457 2458 if (deleteIfDead(*J, NotDiscardableComdats)) { 2459 Changed = true; 2460 continue; 2461 } 2462 2463 // If the aliasee may change at link time, nothing can be done - bail out. 2464 if (J->isInterposable()) 2465 continue; 2466 2467 Constant *Aliasee = J->getAliasee(); 2468 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2469 // We can't trivially replace the alias with the aliasee if the aliasee is 2470 // non-trivial in some way. 2471 // TODO: Try to handle non-zero GEPs of local aliasees. 2472 if (!Target) 2473 continue; 2474 Target->removeDeadConstantUsers(); 2475 2476 // Make all users of the alias use the aliasee instead. 2477 bool RenameTarget; 2478 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2479 continue; 2480 2481 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2482 ++NumAliasesResolved; 2483 Changed = true; 2484 2485 if (RenameTarget) { 2486 // Give the aliasee the name, linkage and other attributes of the alias. 2487 Target->takeName(&*J); 2488 Target->setLinkage(J->getLinkage()); 2489 Target->setDSOLocal(J->isDSOLocal()); 2490 Target->setVisibility(J->getVisibility()); 2491 Target->setDLLStorageClass(J->getDLLStorageClass()); 2492 2493 if (Used.usedErase(&*J)) 2494 Used.usedInsert(Target); 2495 2496 if (Used.compilerUsedErase(&*J)) 2497 Used.compilerUsedInsert(Target); 2498 } else if (mayHaveOtherReferences(*J, Used)) 2499 continue; 2500 2501 // Delete the alias. 2502 M.getAliasList().erase(J); 2503 ++NumAliasesRemoved; 2504 Changed = true; 2505 } 2506 2507 Used.syncVariablesAndSets(); 2508 2509 return Changed; 2510 } 2511 2512 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2513 LibFunc F = LibFunc_cxa_atexit; 2514 if (!TLI->has(F)) 2515 return nullptr; 2516 2517 Function *Fn = M.getFunction(TLI->getName(F)); 2518 if (!Fn) 2519 return nullptr; 2520 2521 // Make sure that the function has the correct prototype. 2522 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2523 return nullptr; 2524 2525 return Fn; 2526 } 2527 2528 /// Returns whether the given function is an empty C++ destructor and can 2529 /// therefore be eliminated. 2530 /// Note that we assume that other optimization passes have already simplified 2531 /// the code so we only look for a function with a single basic block, where 2532 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2533 /// other side-effect free instructions. 2534 static bool cxxDtorIsEmpty(const Function &Fn, 2535 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2536 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2537 // nounwind, but that doesn't seem worth doing. 2538 if (Fn.isDeclaration()) 2539 return false; 2540 2541 if (++Fn.begin() != Fn.end()) 2542 return false; 2543 2544 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2545 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2546 I != E; ++I) { 2547 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2548 // Ignore debug intrinsics. 2549 if (isa<DbgInfoIntrinsic>(CI)) 2550 continue; 2551 2552 const Function *CalledFn = CI->getCalledFunction(); 2553 2554 if (!CalledFn) 2555 return false; 2556 2557 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2558 2559 // Don't treat recursive functions as empty. 2560 if (!NewCalledFunctions.insert(CalledFn).second) 2561 return false; 2562 2563 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2564 return false; 2565 } else if (isa<ReturnInst>(*I)) 2566 return true; // We're done. 2567 else if (I->mayHaveSideEffects()) 2568 return false; // Destructor with side effects, bail. 2569 } 2570 2571 return false; 2572 } 2573 2574 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2575 /// Itanium C++ ABI p3.3.5: 2576 /// 2577 /// After constructing a global (or local static) object, that will require 2578 /// destruction on exit, a termination function is registered as follows: 2579 /// 2580 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2581 /// 2582 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2583 /// call f(p) when DSO d is unloaded, before all such termination calls 2584 /// registered before this one. It returns zero if registration is 2585 /// successful, nonzero on failure. 2586 2587 // This pass will look for calls to __cxa_atexit where the function is trivial 2588 // and remove them. 2589 bool Changed = false; 2590 2591 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2592 I != E;) { 2593 // We're only interested in calls. Theoretically, we could handle invoke 2594 // instructions as well, but neither llvm-gcc nor clang generate invokes 2595 // to __cxa_atexit. 2596 CallInst *CI = dyn_cast<CallInst>(*I++); 2597 if (!CI) 2598 continue; 2599 2600 Function *DtorFn = 2601 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2602 if (!DtorFn) 2603 continue; 2604 2605 SmallPtrSet<const Function *, 8> CalledFunctions; 2606 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 2607 continue; 2608 2609 // Just remove the call. 2610 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2611 CI->eraseFromParent(); 2612 2613 ++NumCXXDtorsRemoved; 2614 2615 Changed |= true; 2616 } 2617 2618 return Changed; 2619 } 2620 2621 static bool optimizeGlobalsInModule( 2622 Module &M, const DataLayout &DL, TargetLibraryInfo *TLI, 2623 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2624 SmallSet<const Comdat *, 8> NotDiscardableComdats; 2625 bool Changed = false; 2626 bool LocalChange = true; 2627 while (LocalChange) { 2628 LocalChange = false; 2629 2630 NotDiscardableComdats.clear(); 2631 for (const GlobalVariable &GV : M.globals()) 2632 if (const Comdat *C = GV.getComdat()) 2633 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2634 NotDiscardableComdats.insert(C); 2635 for (Function &F : M) 2636 if (const Comdat *C = F.getComdat()) 2637 if (!F.isDefTriviallyDead()) 2638 NotDiscardableComdats.insert(C); 2639 for (GlobalAlias &GA : M.aliases()) 2640 if (const Comdat *C = GA.getComdat()) 2641 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2642 NotDiscardableComdats.insert(C); 2643 2644 // Delete functions that are trivially dead, ccc -> fastcc 2645 LocalChange |= 2646 OptimizeFunctions(M, TLI, LookupDomTree, NotDiscardableComdats); 2647 2648 // Optimize global_ctors list. 2649 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2650 return EvaluateStaticConstructor(F, DL, TLI); 2651 }); 2652 2653 // Optimize non-address-taken globals. 2654 LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree, 2655 NotDiscardableComdats); 2656 2657 // Resolve aliases, when possible. 2658 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2659 2660 // Try to remove trivial global destructors if they are not removed 2661 // already. 2662 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 2663 if (CXAAtExitFn) 2664 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2665 2666 Changed |= LocalChange; 2667 } 2668 2669 // TODO: Move all global ctors functions to the end of the module for code 2670 // layout. 2671 2672 return Changed; 2673 } 2674 2675 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2676 auto &DL = M.getDataLayout(); 2677 auto &TLI = AM.getResult<TargetLibraryAnalysis>(M); 2678 auto &FAM = 2679 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2680 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2681 return FAM.getResult<DominatorTreeAnalysis>(F); 2682 }; 2683 if (!optimizeGlobalsInModule(M, DL, &TLI, LookupDomTree)) 2684 return PreservedAnalyses::all(); 2685 return PreservedAnalyses::none(); 2686 } 2687 2688 namespace { 2689 2690 struct GlobalOptLegacyPass : public ModulePass { 2691 static char ID; // Pass identification, replacement for typeid 2692 2693 GlobalOptLegacyPass() : ModulePass(ID) { 2694 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2695 } 2696 2697 bool runOnModule(Module &M) override { 2698 if (skipModule(M)) 2699 return false; 2700 2701 auto &DL = M.getDataLayout(); 2702 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2703 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2704 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2705 }; 2706 return optimizeGlobalsInModule(M, DL, TLI, LookupDomTree); 2707 } 2708 2709 void getAnalysisUsage(AnalysisUsage &AU) const override { 2710 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2711 AU.addRequired<DominatorTreeWrapperPass>(); 2712 } 2713 }; 2714 2715 } // end anonymous namespace 2716 2717 char GlobalOptLegacyPass::ID = 0; 2718 2719 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2720 "Global Variable Optimizer", false, false) 2721 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2722 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2723 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2724 "Global Variable Optimizer", false, false) 2725 2726 ModulePass *llvm::createGlobalOptimizerPass() { 2727 return new GlobalOptLegacyPass(); 2728 } 2729