1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/BinaryFormat/Dwarf.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83 STATISTIC(NumDeleted   , "Number of globals deleted");
84 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
85 STATISTIC(NumLocalized , "Number of globals localized");
86 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
87 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93 STATISTIC(NumInternalFunc, "Number of internal functions");
94 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 
96 static cl::opt<bool>
97     EnableColdCCStressTest("enable-coldcc-stress-test",
98                            cl::desc("Enable stress test of coldcc by adding "
99                                     "calling conv to all internal functions."),
100                            cl::init(false), cl::Hidden);
101 
102 static cl::opt<int> ColdCCRelFreq(
103     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
104     cl::desc(
105         "Maximum block frequency, expressed as a percentage of caller's "
106         "entry frequency, for a call site to be considered cold for enabling"
107         "coldcc"));
108 
109 /// Is this global variable possibly used by a leak checker as a root?  If so,
110 /// we might not really want to eliminate the stores to it.
111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112   // A global variable is a root if it is a pointer, or could plausibly contain
113   // a pointer.  There are two challenges; one is that we could have a struct
114   // the has an inner member which is a pointer.  We recurse through the type to
115   // detect these (up to a point).  The other is that we may actually be a union
116   // of a pointer and another type, and so our LLVM type is an integer which
117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118   // potentially contained here.
119 
120   if (GV->hasPrivateLinkage())
121     return false;
122 
123   SmallVector<Type *, 4> Types;
124   Types.push_back(GV->getValueType());
125 
126   unsigned Limit = 20;
127   do {
128     Type *Ty = Types.pop_back_val();
129     switch (Ty->getTypeID()) {
130       default: break;
131       case Type::PointerTyID:
132         return true;
133       case Type::FixedVectorTyID:
134       case Type::ScalableVectorTyID:
135         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
136           return true;
137         break;
138       case Type::ArrayTyID:
139         Types.push_back(cast<ArrayType>(Ty)->getElementType());
140         break;
141       case Type::StructTyID: {
142         StructType *STy = cast<StructType>(Ty);
143         if (STy->isOpaque()) return true;
144         for (StructType::element_iterator I = STy->element_begin(),
145                  E = STy->element_end(); I != E; ++I) {
146           Type *InnerTy = *I;
147           if (isa<PointerType>(InnerTy)) return true;
148           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
149               isa<VectorType>(InnerTy))
150             Types.push_back(InnerTy);
151         }
152         break;
153       }
154     }
155     if (--Limit == 0) return true;
156   } while (!Types.empty());
157   return false;
158 }
159 
160 /// Given a value that is stored to a global but never read, determine whether
161 /// it's safe to remove the store and the chain of computation that feeds the
162 /// store.
163 static bool IsSafeComputationToRemove(
164     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
165   do {
166     if (isa<Constant>(V))
167       return true;
168     if (!V->hasOneUse())
169       return false;
170     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
171         isa<GlobalValue>(V))
172       return false;
173     if (isAllocationFn(V, GetTLI))
174       return true;
175 
176     Instruction *I = cast<Instruction>(V);
177     if (I->mayHaveSideEffects())
178       return false;
179     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
180       if (!GEP->hasAllConstantIndices())
181         return false;
182     } else if (I->getNumOperands() != 1) {
183       return false;
184     }
185 
186     V = I->getOperand(0);
187   } while (true);
188 }
189 
190 /// This GV is a pointer root.  Loop over all users of the global and clean up
191 /// any that obviously don't assign the global a value that isn't dynamically
192 /// allocated.
193 static bool
194 CleanupPointerRootUsers(GlobalVariable *GV,
195                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
196   // A brief explanation of leak checkers.  The goal is to find bugs where
197   // pointers are forgotten, causing an accumulating growth in memory
198   // usage over time.  The common strategy for leak checkers is to explicitly
199   // allow the memory pointed to by globals at exit.  This is popular because it
200   // also solves another problem where the main thread of a C++ program may shut
201   // down before other threads that are still expecting to use those globals. To
202   // handle that case, we expect the program may create a singleton and never
203   // destroy it.
204 
205   bool Changed = false;
206 
207   // If Dead[n].first is the only use of a malloc result, we can delete its
208   // chain of computation and the store to the global in Dead[n].second.
209   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
210 
211   // Constants can't be pointers to dynamically allocated memory.
212   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
213        UI != E;) {
214     User *U = *UI++;
215     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
216       Value *V = SI->getValueOperand();
217       if (isa<Constant>(V)) {
218         Changed = true;
219         SI->eraseFromParent();
220       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
221         if (I->hasOneUse())
222           Dead.push_back(std::make_pair(I, SI));
223       }
224     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
225       if (isa<Constant>(MSI->getValue())) {
226         Changed = true;
227         MSI->eraseFromParent();
228       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
229         if (I->hasOneUse())
230           Dead.push_back(std::make_pair(I, MSI));
231       }
232     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
233       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
234       if (MemSrc && MemSrc->isConstant()) {
235         Changed = true;
236         MTI->eraseFromParent();
237       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
238         if (I->hasOneUse())
239           Dead.push_back(std::make_pair(I, MTI));
240       }
241     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
242       if (CE->use_empty()) {
243         CE->destroyConstant();
244         Changed = true;
245       }
246     } else if (Constant *C = dyn_cast<Constant>(U)) {
247       if (isSafeToDestroyConstant(C)) {
248         C->destroyConstant();
249         // This could have invalidated UI, start over from scratch.
250         Dead.clear();
251         CleanupPointerRootUsers(GV, GetTLI);
252         return true;
253       }
254     }
255   }
256 
257   for (int i = 0, e = Dead.size(); i != e; ++i) {
258     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
259       Dead[i].second->eraseFromParent();
260       Instruction *I = Dead[i].first;
261       do {
262         if (isAllocationFn(I, GetTLI))
263           break;
264         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
265         if (!J)
266           break;
267         I->eraseFromParent();
268         I = J;
269       } while (true);
270       I->eraseFromParent();
271       Changed = true;
272     }
273   }
274 
275   return Changed;
276 }
277 
278 /// We just marked GV constant.  Loop over all users of the global, cleaning up
279 /// the obvious ones.  This is largely just a quick scan over the use list to
280 /// clean up the easy and obvious cruft.  This returns true if it made a change.
281 static bool CleanupConstantGlobalUsers(
282     Value *V, Constant *Init, const DataLayout &DL,
283     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
284   bool Changed = false;
285   // Note that we need to use a weak value handle for the worklist items. When
286   // we delete a constant array, we may also be holding pointer to one of its
287   // elements (or an element of one of its elements if we're dealing with an
288   // array of arrays) in the worklist.
289   SmallVector<WeakTrackingVH, 8> WorkList(V->users());
290   while (!WorkList.empty()) {
291     Value *UV = WorkList.pop_back_val();
292     if (!UV)
293       continue;
294 
295     User *U = cast<User>(UV);
296 
297     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
298       if (Init) {
299         if (auto *Casted =
300                 ConstantFoldLoadThroughBitcast(Init, LI->getType(), DL)) {
301           // Replace the load with the initializer.
302           LI->replaceAllUsesWith(Casted);
303           LI->eraseFromParent();
304           Changed = true;
305         }
306       }
307     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
308       // Store must be unreachable or storing Init into the global.
309       SI->eraseFromParent();
310       Changed = true;
311     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
312       if (CE->getOpcode() == Instruction::GetElementPtr) {
313         Constant *SubInit = nullptr;
314         if (Init)
315           SubInit = ConstantFoldLoadThroughGEPConstantExpr(
316               Init, CE, V->getType()->getPointerElementType(), DL);
317         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
318       } else if ((CE->getOpcode() == Instruction::BitCast &&
319                   CE->getType()->isPointerTy()) ||
320                  CE->getOpcode() == Instruction::AddrSpaceCast) {
321         // Pointer cast, delete any stores and memsets to the global.
322         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
323       }
324 
325       if (CE->use_empty()) {
326         CE->destroyConstant();
327         Changed = true;
328       }
329     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
330       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
331       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
332       // and will invalidate our notion of what Init is.
333       Constant *SubInit = nullptr;
334       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
335         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
336             ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
337         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
338           SubInit = ConstantFoldLoadThroughGEPConstantExpr(
339               Init, CE, V->getType()->getPointerElementType(), DL);
340 
341         // If the initializer is an all-null value and we have an inbounds GEP,
342         // we already know what the result of any load from that GEP is.
343         // TODO: Handle splats.
344         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
345           SubInit = Constant::getNullValue(GEP->getResultElementType());
346       }
347       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
348 
349       if (GEP->use_empty()) {
350         GEP->eraseFromParent();
351         Changed = true;
352       }
353     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
354       if (MI->getRawDest() == V) {
355         MI->eraseFromParent();
356         Changed = true;
357       }
358 
359     } else if (Constant *C = dyn_cast<Constant>(U)) {
360       // If we have a chain of dead constantexprs or other things dangling from
361       // us, and if they are all dead, nuke them without remorse.
362       if (isSafeToDestroyConstant(C)) {
363         C->destroyConstant();
364         CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
365         return true;
366       }
367     }
368   }
369   return Changed;
370 }
371 
372 static bool isSafeSROAElementUse(Value *V);
373 
374 /// Return true if the specified GEP is a safe user of a derived
375 /// expression from a global that we want to SROA.
376 static bool isSafeSROAGEP(User *U) {
377   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
378   // don't like < 3 operand CE's, and we don't like non-constant integer
379   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
380   // value of C.
381   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
382       !cast<Constant>(U->getOperand(1))->isNullValue())
383     return false;
384 
385   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
386   ++GEPI; // Skip over the pointer index.
387 
388   // For all other level we require that the indices are constant and inrange.
389   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
390   // invalid things like allowing i to index an out-of-range subscript that
391   // accesses A[1]. This can also happen between different members of a struct
392   // in llvm IR.
393   for (; GEPI != E; ++GEPI) {
394     if (GEPI.isStruct())
395       continue;
396 
397     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
398     if (!IdxVal || (GEPI.isBoundedSequential() &&
399                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
400       return false;
401   }
402 
403   return llvm::all_of(U->users(),
404                       [](User *UU) { return isSafeSROAElementUse(UU); });
405 }
406 
407 /// Return true if the specified instruction is a safe user of a derived
408 /// expression from a global that we want to SROA.
409 static bool isSafeSROAElementUse(Value *V) {
410   // We might have a dead and dangling constant hanging off of here.
411   if (Constant *C = dyn_cast<Constant>(V))
412     return isSafeToDestroyConstant(C);
413 
414   Instruction *I = dyn_cast<Instruction>(V);
415   if (!I) return false;
416 
417   // Loads are ok.
418   if (isa<LoadInst>(I)) return true;
419 
420   // Stores *to* the pointer are ok.
421   if (StoreInst *SI = dyn_cast<StoreInst>(I))
422     return SI->getOperand(0) != V;
423 
424   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
425   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
426 }
427 
428 /// Look at all uses of the global and decide whether it is safe for us to
429 /// perform this transformation.
430 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
431   for (User *U : GV->users()) {
432     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
433     if (!isa<GetElementPtrInst>(U) &&
434         (!isa<ConstantExpr>(U) ||
435         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
436       return false;
437 
438     // Check the gep and it's users are safe to SRA
439     if (!isSafeSROAGEP(U))
440       return false;
441   }
442 
443   return true;
444 }
445 
446 static bool IsSRASequential(Type *T) {
447   return isa<ArrayType>(T) || isa<VectorType>(T);
448 }
449 static uint64_t GetSRASequentialNumElements(Type *T) {
450   if (ArrayType *AT = dyn_cast<ArrayType>(T))
451     return AT->getNumElements();
452   return cast<FixedVectorType>(T)->getNumElements();
453 }
454 static Type *GetSRASequentialElementType(Type *T) {
455   if (ArrayType *AT = dyn_cast<ArrayType>(T))
456     return AT->getElementType();
457   return cast<VectorType>(T)->getElementType();
458 }
459 static bool CanDoGlobalSRA(GlobalVariable *GV) {
460   Constant *Init = GV->getInitializer();
461 
462   if (isa<StructType>(Init->getType())) {
463     // nothing to check
464   } else if (IsSRASequential(Init->getType())) {
465     if (GetSRASequentialNumElements(Init->getType()) > 16 &&
466         GV->hasNUsesOrMore(16))
467       return false; // It's not worth it.
468   } else
469     return false;
470 
471   return GlobalUsersSafeToSRA(GV);
472 }
473 
474 /// Copy over the debug info for a variable to its SRA replacements.
475 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
476                                  uint64_t FragmentOffsetInBits,
477                                  uint64_t FragmentSizeInBits,
478                                  uint64_t VarSize) {
479   SmallVector<DIGlobalVariableExpression *, 1> GVs;
480   GV->getDebugInfo(GVs);
481   for (auto *GVE : GVs) {
482     DIVariable *Var = GVE->getVariable();
483     DIExpression *Expr = GVE->getExpression();
484     // If the FragmentSize is smaller than the variable,
485     // emit a fragment expression.
486     if (FragmentSizeInBits < VarSize) {
487       if (auto E = DIExpression::createFragmentExpression(
488               Expr, FragmentOffsetInBits, FragmentSizeInBits))
489         Expr = *E;
490       else
491         return;
492     }
493     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
494     NGV->addDebugInfo(NGVE);
495   }
496 }
497 
498 /// Perform scalar replacement of aggregates on the specified global variable.
499 /// This opens the door for other optimizations by exposing the behavior of the
500 /// program in a more fine-grained way.  We have determined that this
501 /// transformation is safe already.  We return the first global variable we
502 /// insert so that the caller can reprocess it.
503 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
504   // Make sure this global only has simple uses that we can SRA.
505   if (!CanDoGlobalSRA(GV))
506     return nullptr;
507 
508   assert(GV->hasLocalLinkage());
509   Constant *Init = GV->getInitializer();
510   Type *Ty = Init->getType();
511   uint64_t VarSize = DL.getTypeSizeInBits(Ty);
512 
513   std::map<unsigned, GlobalVariable *> NewGlobals;
514 
515   // Get the alignment of the global, either explicit or target-specific.
516   Align StartAlignment =
517       DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType());
518 
519   // Loop over all users and create replacement variables for used aggregate
520   // elements.
521   for (User *GEP : GV->users()) {
522     assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
523                                            Instruction::GetElementPtr) ||
524             isa<GetElementPtrInst>(GEP)) &&
525            "NonGEP CE's are not SRAable!");
526 
527     // Ignore the 1th operand, which has to be zero or else the program is quite
528     // broken (undefined).  Get the 2nd operand, which is the structure or array
529     // index.
530     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
531     if (NewGlobals.count(ElementIdx) == 1)
532       continue; // we`ve already created replacement variable
533     assert(NewGlobals.count(ElementIdx) == 0);
534 
535     Type *ElTy = nullptr;
536     if (StructType *STy = dyn_cast<StructType>(Ty))
537       ElTy = STy->getElementType(ElementIdx);
538     else
539       ElTy = GetSRASequentialElementType(Ty);
540     assert(ElTy);
541 
542     Constant *In = Init->getAggregateElement(ElementIdx);
543     assert(In && "Couldn't get element of initializer?");
544 
545     GlobalVariable *NGV = new GlobalVariable(
546         ElTy, false, GlobalVariable::InternalLinkage, In,
547         GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
548         GV->getType()->getAddressSpace());
549     NGV->setExternallyInitialized(GV->isExternallyInitialized());
550     NGV->copyAttributesFrom(GV);
551     NewGlobals.insert(std::make_pair(ElementIdx, NGV));
552 
553     if (StructType *STy = dyn_cast<StructType>(Ty)) {
554       const StructLayout &Layout = *DL.getStructLayout(STy);
555 
556       // Calculate the known alignment of the field.  If the original aggregate
557       // had 256 byte alignment for example, something might depend on that:
558       // propagate info to each field.
559       uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
560       Align NewAlign = commonAlignment(StartAlignment, FieldOffset);
561       if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx)))
562         NGV->setAlignment(NewAlign);
563 
564       // Copy over the debug info for the variable.
565       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
566       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
567       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize);
568     } else {
569       uint64_t EltSize = DL.getTypeAllocSize(ElTy);
570       Align EltAlign = DL.getABITypeAlign(ElTy);
571       uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
572 
573       // Calculate the known alignment of the field.  If the original aggregate
574       // had 256 byte alignment for example, something might depend on that:
575       // propagate info to each field.
576       Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx);
577       if (NewAlign > EltAlign)
578         NGV->setAlignment(NewAlign);
579       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
580                            FragmentSizeInBits, VarSize);
581     }
582   }
583 
584   if (NewGlobals.empty())
585     return nullptr;
586 
587   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
588   for (auto NewGlobalVar : NewGlobals)
589     Globals.push_back(NewGlobalVar.second);
590 
591   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
592 
593   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
594 
595   // Loop over all of the uses of the global, replacing the constantexpr geps,
596   // with smaller constantexpr geps or direct references.
597   while (!GV->use_empty()) {
598     User *GEP = GV->user_back();
599     assert(((isa<ConstantExpr>(GEP) &&
600              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
601             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
602 
603     // Ignore the 1th operand, which has to be zero or else the program is quite
604     // broken (undefined).  Get the 2nd operand, which is the structure or array
605     // index.
606     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
607     assert(NewGlobals.count(ElementIdx) == 1);
608 
609     Value *NewPtr = NewGlobals[ElementIdx];
610     Type *NewTy = NewGlobals[ElementIdx]->getValueType();
611 
612     // Form a shorter GEP if needed.
613     if (GEP->getNumOperands() > 3) {
614       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
615         SmallVector<Constant*, 8> Idxs;
616         Idxs.push_back(NullInt);
617         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
618           Idxs.push_back(CE->getOperand(i));
619         NewPtr =
620             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
621       } else {
622         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
623         SmallVector<Value*, 8> Idxs;
624         Idxs.push_back(NullInt);
625         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
626           Idxs.push_back(GEPI->getOperand(i));
627         NewPtr = GetElementPtrInst::Create(
628             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
629             GEPI);
630       }
631     }
632     GEP->replaceAllUsesWith(NewPtr);
633 
634     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
635       GEPI->eraseFromParent();
636     else
637       cast<ConstantExpr>(GEP)->destroyConstant();
638   }
639 
640   // Delete the old global, now that it is dead.
641   Globals.erase(GV);
642   ++NumSRA;
643 
644   assert(NewGlobals.size() > 0);
645   return NewGlobals.begin()->second;
646 }
647 
648 /// Return true if all users of the specified value will trap if the value is
649 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
650 /// reprocessing them.
651 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
652                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
653   for (const User *U : V->users()) {
654     if (const Instruction *I = dyn_cast<Instruction>(U)) {
655       // If null pointer is considered valid, then all uses are non-trapping.
656       // Non address-space 0 globals have already been pruned by the caller.
657       if (NullPointerIsDefined(I->getFunction()))
658         return false;
659     }
660     if (isa<LoadInst>(U)) {
661       // Will trap.
662     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
663       if (SI->getOperand(0) == V) {
664         //cerr << "NONTRAPPING USE: " << *U;
665         return false;  // Storing the value.
666       }
667     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
668       if (CI->getCalledOperand() != V) {
669         //cerr << "NONTRAPPING USE: " << *U;
670         return false;  // Not calling the ptr
671       }
672     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
673       if (II->getCalledOperand() != V) {
674         //cerr << "NONTRAPPING USE: " << *U;
675         return false;  // Not calling the ptr
676       }
677     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
678       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
679     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
680       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
681     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
682       // If we've already seen this phi node, ignore it, it has already been
683       // checked.
684       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
685         return false;
686     } else {
687       //cerr << "NONTRAPPING USE: " << *U;
688       return false;
689     }
690   }
691   return true;
692 }
693 
694 /// Return true if all uses of any loads from GV will trap if the loaded value
695 /// is null.  Note that this also permits comparisons of the loaded value
696 /// against null, as a special case.
697 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
698   for (const User *U : GV->users())
699     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
700       SmallPtrSet<const PHINode*, 8> PHIs;
701       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
702         return false;
703     } else if (isa<StoreInst>(U)) {
704       // Ignore stores to the global.
705     } else {
706       // We don't know or understand this user, bail out.
707       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
708       return false;
709     }
710   return true;
711 }
712 
713 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
714   bool Changed = false;
715   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
716     Instruction *I = cast<Instruction>(*UI++);
717     // Uses are non-trapping if null pointer is considered valid.
718     // Non address-space 0 globals are already pruned by the caller.
719     if (NullPointerIsDefined(I->getFunction()))
720       return false;
721     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
722       LI->setOperand(0, NewV);
723       Changed = true;
724     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
725       if (SI->getOperand(1) == V) {
726         SI->setOperand(1, NewV);
727         Changed = true;
728       }
729     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
730       CallBase *CB = cast<CallBase>(I);
731       if (CB->getCalledOperand() == V) {
732         // Calling through the pointer!  Turn into a direct call, but be careful
733         // that the pointer is not also being passed as an argument.
734         CB->setCalledOperand(NewV);
735         Changed = true;
736         bool PassedAsArg = false;
737         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
738           if (CB->getArgOperand(i) == V) {
739             PassedAsArg = true;
740             CB->setArgOperand(i, NewV);
741           }
742 
743         if (PassedAsArg) {
744           // Being passed as an argument also.  Be careful to not invalidate UI!
745           UI = V->user_begin();
746         }
747       }
748     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
749       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
750                                 ConstantExpr::getCast(CI->getOpcode(),
751                                                       NewV, CI->getType()));
752       if (CI->use_empty()) {
753         Changed = true;
754         CI->eraseFromParent();
755       }
756     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
757       // Should handle GEP here.
758       SmallVector<Constant*, 8> Idxs;
759       Idxs.reserve(GEPI->getNumOperands()-1);
760       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
761            i != e; ++i)
762         if (Constant *C = dyn_cast<Constant>(*i))
763           Idxs.push_back(C);
764         else
765           break;
766       if (Idxs.size() == GEPI->getNumOperands()-1)
767         Changed |= OptimizeAwayTrappingUsesOfValue(
768             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
769                                                  NewV, Idxs));
770       if (GEPI->use_empty()) {
771         Changed = true;
772         GEPI->eraseFromParent();
773       }
774     }
775   }
776 
777   return Changed;
778 }
779 
780 /// The specified global has only one non-null value stored into it.  If there
781 /// are uses of the loaded value that would trap if the loaded value is
782 /// dynamically null, then we know that they cannot be reachable with a null
783 /// optimize away the load.
784 static bool OptimizeAwayTrappingUsesOfLoads(
785     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
786     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
787   bool Changed = false;
788 
789   // Keep track of whether we are able to remove all the uses of the global
790   // other than the store that defines it.
791   bool AllNonStoreUsesGone = true;
792 
793   // Replace all uses of loads with uses of uses of the stored value.
794   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
795     User *GlobalUser = *GUI++;
796     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
797       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
798       // If we were able to delete all uses of the loads
799       if (LI->use_empty()) {
800         LI->eraseFromParent();
801         Changed = true;
802       } else {
803         AllNonStoreUsesGone = false;
804       }
805     } else if (isa<StoreInst>(GlobalUser)) {
806       // Ignore the store that stores "LV" to the global.
807       assert(GlobalUser->getOperand(1) == GV &&
808              "Must be storing *to* the global");
809     } else {
810       AllNonStoreUsesGone = false;
811 
812       // If we get here we could have other crazy uses that are transitively
813       // loaded.
814       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
815               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
816               isa<BitCastInst>(GlobalUser) ||
817               isa<GetElementPtrInst>(GlobalUser)) &&
818              "Only expect load and stores!");
819     }
820   }
821 
822   if (Changed) {
823     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
824                       << "\n");
825     ++NumGlobUses;
826   }
827 
828   // If we nuked all of the loads, then none of the stores are needed either,
829   // nor is the global.
830   if (AllNonStoreUsesGone) {
831     if (isLeakCheckerRoot(GV)) {
832       Changed |= CleanupPointerRootUsers(GV, GetTLI);
833     } else {
834       Changed = true;
835       CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
836     }
837     if (GV->use_empty()) {
838       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
839       Changed = true;
840       GV->eraseFromParent();
841       ++NumDeleted;
842     }
843   }
844   return Changed;
845 }
846 
847 /// Walk the use list of V, constant folding all of the instructions that are
848 /// foldable.
849 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
850                                 TargetLibraryInfo *TLI) {
851   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
852     if (Instruction *I = dyn_cast<Instruction>(*UI++))
853       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
854         I->replaceAllUsesWith(NewC);
855 
856         // Advance UI to the next non-I use to avoid invalidating it!
857         // Instructions could multiply use V.
858         while (UI != E && *UI == I)
859           ++UI;
860         if (isInstructionTriviallyDead(I, TLI))
861           I->eraseFromParent();
862       }
863 }
864 
865 /// This function takes the specified global variable, and transforms the
866 /// program as if it always contained the result of the specified malloc.
867 /// Because it is always the result of the specified malloc, there is no reason
868 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
869 /// loads of GV as uses of the new global.
870 static GlobalVariable *
871 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
872                               ConstantInt *NElements, const DataLayout &DL,
873                               TargetLibraryInfo *TLI) {
874   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
875                     << '\n');
876 
877   Type *GlobalType;
878   if (NElements->getZExtValue() == 1)
879     GlobalType = AllocTy;
880   else
881     // If we have an array allocation, the global variable is of an array.
882     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
883 
884   // Create the new global variable.  The contents of the malloc'd memory is
885   // undefined, so initialize with an undef value.
886   GlobalVariable *NewGV = new GlobalVariable(
887       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
888       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
889       GV->getThreadLocalMode());
890 
891   // If there are bitcast users of the malloc (which is typical, usually we have
892   // a malloc + bitcast) then replace them with uses of the new global.  Update
893   // other users to use the global as well.
894   BitCastInst *TheBC = nullptr;
895   while (!CI->use_empty()) {
896     Instruction *User = cast<Instruction>(CI->user_back());
897     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
898       if (BCI->getType() == NewGV->getType()) {
899         BCI->replaceAllUsesWith(NewGV);
900         BCI->eraseFromParent();
901       } else {
902         BCI->setOperand(0, NewGV);
903       }
904     } else {
905       if (!TheBC)
906         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
907       User->replaceUsesOfWith(CI, TheBC);
908     }
909   }
910 
911   Constant *RepValue = NewGV;
912   if (NewGV->getType() != GV->getValueType())
913     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
914 
915   // If there is a comparison against null, we will insert a global bool to
916   // keep track of whether the global was initialized yet or not.
917   GlobalVariable *InitBool =
918     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
919                        GlobalValue::InternalLinkage,
920                        ConstantInt::getFalse(GV->getContext()),
921                        GV->getName()+".init", GV->getThreadLocalMode());
922   bool InitBoolUsed = false;
923 
924   // Loop over all uses of GV, processing them in turn.
925   while (!GV->use_empty()) {
926     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
927       // The global is initialized when the store to it occurs.
928       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false,
929                     Align(1), SI->getOrdering(), SI->getSyncScopeID(), SI);
930       SI->eraseFromParent();
931       continue;
932     }
933 
934     LoadInst *LI = cast<LoadInst>(GV->user_back());
935     while (!LI->use_empty()) {
936       Use &LoadUse = *LI->use_begin();
937       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
938       if (!ICI) {
939         LoadUse = RepValue;
940         continue;
941       }
942 
943       // Replace the cmp X, 0 with a use of the bool value.
944       // Sink the load to where the compare was, if atomic rules allow us to.
945       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
946                                InitBool->getName() + ".val", false, Align(1),
947                                LI->getOrdering(), LI->getSyncScopeID(),
948                                LI->isUnordered() ? (Instruction *)ICI : LI);
949       InitBoolUsed = true;
950       switch (ICI->getPredicate()) {
951       default: llvm_unreachable("Unknown ICmp Predicate!");
952       case ICmpInst::ICMP_ULT:
953       case ICmpInst::ICMP_SLT:   // X < null -> always false
954         LV = ConstantInt::getFalse(GV->getContext());
955         break;
956       case ICmpInst::ICMP_ULE:
957       case ICmpInst::ICMP_SLE:
958       case ICmpInst::ICMP_EQ:
959         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
960         break;
961       case ICmpInst::ICMP_NE:
962       case ICmpInst::ICMP_UGE:
963       case ICmpInst::ICMP_SGE:
964       case ICmpInst::ICMP_UGT:
965       case ICmpInst::ICMP_SGT:
966         break;  // no change.
967       }
968       ICI->replaceAllUsesWith(LV);
969       ICI->eraseFromParent();
970     }
971     LI->eraseFromParent();
972   }
973 
974   // If the initialization boolean was used, insert it, otherwise delete it.
975   if (!InitBoolUsed) {
976     while (!InitBool->use_empty())  // Delete initializations
977       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
978     delete InitBool;
979   } else
980     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
981 
982   // Now the GV is dead, nuke it and the malloc..
983   GV->eraseFromParent();
984   CI->eraseFromParent();
985 
986   // To further other optimizations, loop over all users of NewGV and try to
987   // constant prop them.  This will promote GEP instructions with constant
988   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
989   ConstantPropUsersOf(NewGV, DL, TLI);
990   if (RepValue != NewGV)
991     ConstantPropUsersOf(RepValue, DL, TLI);
992 
993   return NewGV;
994 }
995 
996 /// Scan the use-list of V checking to make sure that there are no complex uses
997 /// of V.  We permit simple things like dereferencing the pointer, but not
998 /// storing through the address, unless it is to the specified global.
999 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
1000                                                       const GlobalVariable *GV,
1001                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
1002   for (const User *U : V->users()) {
1003     const Instruction *Inst = cast<Instruction>(U);
1004 
1005     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
1006       continue; // Fine, ignore.
1007     }
1008 
1009     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1010       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
1011         return false;  // Storing the pointer itself... bad.
1012       continue; // Otherwise, storing through it, or storing into GV... fine.
1013     }
1014 
1015     // Must index into the array and into the struct.
1016     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
1017       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
1018         return false;
1019       continue;
1020     }
1021 
1022     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1023       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1024       // cycles.
1025       if (PHIs.insert(PN).second)
1026         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1027           return false;
1028       continue;
1029     }
1030 
1031     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1032       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1033         return false;
1034       continue;
1035     }
1036 
1037     return false;
1038   }
1039   return true;
1040 }
1041 
1042 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1043 /// allocation into loads from the global and uses of the resultant pointer.
1044 /// Further, delete the store into GV.  This assumes that these value pass the
1045 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1046 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1047                                           GlobalVariable *GV) {
1048   while (!Alloc->use_empty()) {
1049     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1050     Instruction *InsertPt = U;
1051     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1052       // If this is the store of the allocation into the global, remove it.
1053       if (SI->getOperand(1) == GV) {
1054         SI->eraseFromParent();
1055         continue;
1056       }
1057     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1058       // Insert the load in the corresponding predecessor, not right before the
1059       // PHI.
1060       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1061     } else if (isa<BitCastInst>(U)) {
1062       // Must be bitcast between the malloc and store to initialize the global.
1063       ReplaceUsesOfMallocWithGlobal(U, GV);
1064       U->eraseFromParent();
1065       continue;
1066     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1067       // If this is a "GEP bitcast" and the user is a store to the global, then
1068       // just process it as a bitcast.
1069       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1070         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1071           if (SI->getOperand(1) == GV) {
1072             // Must be bitcast GEP between the malloc and store to initialize
1073             // the global.
1074             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1075             GEPI->eraseFromParent();
1076             continue;
1077           }
1078     }
1079 
1080     // Insert a load from the global, and use it instead of the malloc.
1081     Value *NL =
1082         new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt);
1083     U->replaceUsesOfWith(Alloc, NL);
1084   }
1085 }
1086 
1087 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1088 /// perform heap SRA on.  This permits GEP's that index through the array and
1089 /// struct field, icmps of null, and PHIs.
1090 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1091                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1092                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1093   // We permit two users of the load: setcc comparing against the null
1094   // pointer, and a getelementptr of a specific form.
1095   for (const User *U : V->users()) {
1096     const Instruction *UI = cast<Instruction>(U);
1097 
1098     // Comparison against null is ok.
1099     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1100       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1101         return false;
1102       continue;
1103     }
1104 
1105     // getelementptr is also ok, but only a simple form.
1106     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1107       // Must index into the array and into the struct.
1108       if (GEPI->getNumOperands() < 3)
1109         return false;
1110 
1111       // Otherwise the GEP is ok.
1112       continue;
1113     }
1114 
1115     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1116       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1117         // This means some phi nodes are dependent on each other.
1118         // Avoid infinite looping!
1119         return false;
1120       if (!LoadUsingPHIs.insert(PN).second)
1121         // If we have already analyzed this PHI, then it is safe.
1122         continue;
1123 
1124       // Make sure all uses of the PHI are simple enough to transform.
1125       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1126                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1127         return false;
1128 
1129       continue;
1130     }
1131 
1132     // Otherwise we don't know what this is, not ok.
1133     return false;
1134   }
1135 
1136   return true;
1137 }
1138 
1139 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1140 /// return true.
1141 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1142                                                     Instruction *StoredVal) {
1143   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1144   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1145   for (const User *U : GV->users())
1146     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1147       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1148                                           LoadUsingPHIsPerLoad))
1149         return false;
1150       LoadUsingPHIsPerLoad.clear();
1151     }
1152 
1153   // If we reach here, we know that all uses of the loads and transitive uses
1154   // (through PHI nodes) are simple enough to transform.  However, we don't know
1155   // that all inputs the to the PHI nodes are in the same equivalence sets.
1156   // Check to verify that all operands of the PHIs are either PHIS that can be
1157   // transformed, loads from GV, or MI itself.
1158   for (const PHINode *PN : LoadUsingPHIs) {
1159     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1160       Value *InVal = PN->getIncomingValue(op);
1161 
1162       // PHI of the stored value itself is ok.
1163       if (InVal == StoredVal) continue;
1164 
1165       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1166         // One of the PHIs in our set is (optimistically) ok.
1167         if (LoadUsingPHIs.count(InPN))
1168           continue;
1169         return false;
1170       }
1171 
1172       // Load from GV is ok.
1173       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1174         if (LI->getOperand(0) == GV)
1175           continue;
1176 
1177       // UNDEF? NULL?
1178 
1179       // Anything else is rejected.
1180       return false;
1181     }
1182   }
1183 
1184   return true;
1185 }
1186 
1187 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1188               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1189                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1190   std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1191 
1192   if (FieldNo >= FieldVals.size())
1193     FieldVals.resize(FieldNo+1);
1194 
1195   // If we already have this value, just reuse the previously scalarized
1196   // version.
1197   if (Value *FieldVal = FieldVals[FieldNo])
1198     return FieldVal;
1199 
1200   // Depending on what instruction this is, we have several cases.
1201   Value *Result;
1202   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1203     // This is a scalarized version of the load from the global.  Just create
1204     // a new Load of the scalarized global.
1205     Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo,
1206                                 InsertedScalarizedValues, PHIsToRewrite);
1207     Result = new LoadInst(V->getType()->getPointerElementType(), V,
1208                           LI->getName() + ".f" + Twine(FieldNo), LI);
1209   } else {
1210     PHINode *PN = cast<PHINode>(V);
1211     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1212     // field.
1213 
1214     PointerType *PTy = cast<PointerType>(PN->getType());
1215     StructType *ST = cast<StructType>(PTy->getElementType());
1216 
1217     unsigned AS = PTy->getAddressSpace();
1218     PHINode *NewPN =
1219       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1220                      PN->getNumIncomingValues(),
1221                      PN->getName()+".f"+Twine(FieldNo), PN);
1222     Result = NewPN;
1223     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1224   }
1225 
1226   return FieldVals[FieldNo] = Result;
1227 }
1228 
1229 /// Given a load instruction and a value derived from the load, rewrite the
1230 /// derived value to use the HeapSRoA'd load.
1231 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1232               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1233                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1234   // If this is a comparison against null, handle it.
1235   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1236     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1237     // If we have a setcc of the loaded pointer, we can use a setcc of any
1238     // field.
1239     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1240                                    InsertedScalarizedValues, PHIsToRewrite);
1241 
1242     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1243                               Constant::getNullValue(NPtr->getType()),
1244                               SCI->getName());
1245     SCI->replaceAllUsesWith(New);
1246     SCI->eraseFromParent();
1247     return;
1248   }
1249 
1250   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1251   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1252     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1253            && "Unexpected GEPI!");
1254 
1255     // Load the pointer for this field.
1256     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1257     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1258                                      InsertedScalarizedValues, PHIsToRewrite);
1259 
1260     // Create the new GEP idx vector.
1261     SmallVector<Value*, 8> GEPIdx;
1262     GEPIdx.push_back(GEPI->getOperand(1));
1263     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1264 
1265     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1266                                              GEPI->getName(), GEPI);
1267     GEPI->replaceAllUsesWith(NGEPI);
1268     GEPI->eraseFromParent();
1269     return;
1270   }
1271 
1272   // Recursively transform the users of PHI nodes.  This will lazily create the
1273   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1274   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1275   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1276   // already been seen first by another load, so its uses have already been
1277   // processed.
1278   PHINode *PN = cast<PHINode>(LoadUser);
1279   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1280                                               std::vector<Value *>())).second)
1281     return;
1282 
1283   // If this is the first time we've seen this PHI, recursively process all
1284   // users.
1285   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1286     Instruction *User = cast<Instruction>(*UI++);
1287     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1288   }
1289 }
1290 
1291 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1292 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1293 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1294 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1295               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1296                   std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1297   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1298     Instruction *User = cast<Instruction>(*UI++);
1299     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1300   }
1301 
1302   if (Load->use_empty()) {
1303     Load->eraseFromParent();
1304     InsertedScalarizedValues.erase(Load);
1305   }
1306 }
1307 
1308 /// CI is an allocation of an array of structures.  Break it up into multiple
1309 /// allocations of arrays of the fields.
1310 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1311                                             Value *NElems, const DataLayout &DL,
1312                                             const TargetLibraryInfo *TLI) {
1313   LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
1314                     << '\n');
1315   Type *MAT = getMallocAllocatedType(CI, TLI);
1316   StructType *STy = cast<StructType>(MAT);
1317 
1318   // There is guaranteed to be at least one use of the malloc (storing
1319   // it into GV).  If there are other uses, change them to be uses of
1320   // the global to simplify later code.  This also deletes the store
1321   // into GV.
1322   ReplaceUsesOfMallocWithGlobal(CI, GV);
1323 
1324   // Okay, at this point, there are no users of the malloc.  Insert N
1325   // new mallocs at the same place as CI, and N globals.
1326   std::vector<Value *> FieldGlobals;
1327   std::vector<Value *> FieldMallocs;
1328 
1329   SmallVector<OperandBundleDef, 1> OpBundles;
1330   CI->getOperandBundlesAsDefs(OpBundles);
1331 
1332   unsigned AS = GV->getType()->getPointerAddressSpace();
1333   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1334     Type *FieldTy = STy->getElementType(FieldNo);
1335     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1336 
1337     GlobalVariable *NGV = new GlobalVariable(
1338         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1339         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1340         nullptr, GV->getThreadLocalMode());
1341     NGV->copyAttributesFrom(GV);
1342     FieldGlobals.push_back(NGV);
1343 
1344     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1345     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1346       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1347     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1348     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1349                                         ConstantInt::get(IntPtrTy, TypeSize),
1350                                         NElems, OpBundles, nullptr,
1351                                         CI->getName() + ".f" + Twine(FieldNo));
1352     FieldMallocs.push_back(NMI);
1353     new StoreInst(NMI, NGV, CI);
1354   }
1355 
1356   // The tricky aspect of this transformation is handling the case when malloc
1357   // fails.  In the original code, malloc failing would set the result pointer
1358   // of malloc to null.  In this case, some mallocs could succeed and others
1359   // could fail.  As such, we emit code that looks like this:
1360   //    F0 = malloc(field0)
1361   //    F1 = malloc(field1)
1362   //    F2 = malloc(field2)
1363   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1364   //      if (F0) { free(F0); F0 = 0; }
1365   //      if (F1) { free(F1); F1 = 0; }
1366   //      if (F2) { free(F2); F2 = 0; }
1367   //    }
1368   // The malloc can also fail if its argument is too large.
1369   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1370   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1371                                   ConstantZero, "isneg");
1372   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1373     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1374                              Constant::getNullValue(FieldMallocs[i]->getType()),
1375                                "isnull");
1376     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1377   }
1378 
1379   // Split the basic block at the old malloc.
1380   BasicBlock *OrigBB = CI->getParent();
1381   BasicBlock *ContBB =
1382       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1383 
1384   // Create the block to check the first condition.  Put all these blocks at the
1385   // end of the function as they are unlikely to be executed.
1386   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1387                                                 "malloc_ret_null",
1388                                                 OrigBB->getParent());
1389 
1390   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1391   // branch on RunningOr.
1392   OrigBB->getTerminator()->eraseFromParent();
1393   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1394 
1395   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1396   // pointer, because some may be null while others are not.
1397   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1398     Value *GVVal =
1399         new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(),
1400                      FieldGlobals[i], "tmp", NullPtrBlock);
1401     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1402                               Constant::getNullValue(GVVal->getType()));
1403     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1404                                                OrigBB->getParent());
1405     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1406                                                OrigBB->getParent());
1407     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1408                                          Cmp, NullPtrBlock);
1409 
1410     // Fill in FreeBlock.
1411     CallInst::CreateFree(GVVal, OpBundles, BI);
1412     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1413                   FreeBlock);
1414     BranchInst::Create(NextBlock, FreeBlock);
1415 
1416     NullPtrBlock = NextBlock;
1417   }
1418 
1419   BranchInst::Create(ContBB, NullPtrBlock);
1420 
1421   // CI is no longer needed, remove it.
1422   CI->eraseFromParent();
1423 
1424   /// As we process loads, if we can't immediately update all uses of the load,
1425   /// keep track of what scalarized loads are inserted for a given load.
1426   DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1427   InsertedScalarizedValues[GV] = FieldGlobals;
1428 
1429   std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1430 
1431   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1432   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1433   // of the per-field globals instead.
1434   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1435     Instruction *User = cast<Instruction>(*UI++);
1436 
1437     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1438       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1439       continue;
1440     }
1441 
1442     // Must be a store of null.
1443     StoreInst *SI = cast<StoreInst>(User);
1444     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1445            "Unexpected heap-sra user!");
1446 
1447     // Insert a store of null into each global.
1448     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1449       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1450       Constant *Null = Constant::getNullValue(ValTy);
1451       new StoreInst(Null, FieldGlobals[i], SI);
1452     }
1453     // Erase the original store.
1454     SI->eraseFromParent();
1455   }
1456 
1457   // While we have PHIs that are interesting to rewrite, do it.
1458   while (!PHIsToRewrite.empty()) {
1459     PHINode *PN = PHIsToRewrite.back().first;
1460     unsigned FieldNo = PHIsToRewrite.back().second;
1461     PHIsToRewrite.pop_back();
1462     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1463     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1464 
1465     // Add all the incoming values.  This can materialize more phis.
1466     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1467       Value *InVal = PN->getIncomingValue(i);
1468       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1469                                PHIsToRewrite);
1470       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1471     }
1472   }
1473 
1474   // Drop all inter-phi links and any loads that made it this far.
1475   for (DenseMap<Value *, std::vector<Value *>>::iterator
1476        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1477        I != E; ++I) {
1478     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1479       PN->dropAllReferences();
1480     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1481       LI->dropAllReferences();
1482   }
1483 
1484   // Delete all the phis and loads now that inter-references are dead.
1485   for (DenseMap<Value *, std::vector<Value *>>::iterator
1486        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1487        I != E; ++I) {
1488     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1489       PN->eraseFromParent();
1490     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1491       LI->eraseFromParent();
1492   }
1493 
1494   // The old global is now dead, remove it.
1495   GV->eraseFromParent();
1496 
1497   ++NumHeapSRA;
1498   return cast<GlobalVariable>(FieldGlobals[0]);
1499 }
1500 
1501 /// This function is called when we see a pointer global variable with a single
1502 /// value stored it that is a malloc or cast of malloc.
1503 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1504                                                Type *AllocTy,
1505                                                AtomicOrdering Ordering,
1506                                                const DataLayout &DL,
1507                                                TargetLibraryInfo *TLI) {
1508   // If this is a malloc of an abstract type, don't touch it.
1509   if (!AllocTy->isSized())
1510     return false;
1511 
1512   // We can't optimize this global unless all uses of it are *known* to be
1513   // of the malloc value, not of the null initializer value (consider a use
1514   // that compares the global's value against zero to see if the malloc has
1515   // been reached).  To do this, we check to see if all uses of the global
1516   // would trap if the global were null: this proves that they must all
1517   // happen after the malloc.
1518   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1519     return false;
1520 
1521   // We can't optimize this if the malloc itself is used in a complex way,
1522   // for example, being stored into multiple globals.  This allows the
1523   // malloc to be stored into the specified global, loaded icmp'd, and
1524   // GEP'd.  These are all things we could transform to using the global
1525   // for.
1526   SmallPtrSet<const PHINode*, 8> PHIs;
1527   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1528     return false;
1529 
1530   // If we have a global that is only initialized with a fixed size malloc,
1531   // transform the program to use global memory instead of malloc'd memory.
1532   // This eliminates dynamic allocation, avoids an indirection accessing the
1533   // data, and exposes the resultant global to further GlobalOpt.
1534   // We cannot optimize the malloc if we cannot determine malloc array size.
1535   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1536   if (!NElems)
1537     return false;
1538 
1539   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1540     // Restrict this transformation to only working on small allocations
1541     // (2048 bytes currently), as we don't want to introduce a 16M global or
1542     // something.
1543     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1544       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1545       return true;
1546     }
1547 
1548   // If the allocation is an array of structures, consider transforming this
1549   // into multiple malloc'd arrays, one for each field.  This is basically
1550   // SRoA for malloc'd memory.
1551 
1552   if (Ordering != AtomicOrdering::NotAtomic)
1553     return false;
1554 
1555   // If this is an allocation of a fixed size array of structs, analyze as a
1556   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1557   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1558     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1559       AllocTy = AT->getElementType();
1560 
1561   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1562   if (!AllocSTy)
1563     return false;
1564 
1565   // This the structure has an unreasonable number of fields, leave it
1566   // alone.
1567   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1568       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1569 
1570     // If this is a fixed size array, transform the Malloc to be an alloc of
1571     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1572     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1573       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1574       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1575       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1576       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1577       SmallVector<OperandBundleDef, 1> OpBundles;
1578       CI->getOperandBundlesAsDefs(OpBundles);
1579       Instruction *Malloc =
1580           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1581                                  OpBundles, nullptr, CI->getName());
1582       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1583       CI->replaceAllUsesWith(Cast);
1584       CI->eraseFromParent();
1585       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1586         CI = cast<CallInst>(BCI->getOperand(0));
1587       else
1588         CI = cast<CallInst>(Malloc);
1589     }
1590 
1591     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1592                          TLI);
1593     return true;
1594   }
1595 
1596   return false;
1597 }
1598 
1599 // Try to optimize globals based on the knowledge that only one value (besides
1600 // its initializer) is ever stored to the global.
1601 static bool
1602 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1603                          AtomicOrdering Ordering, const DataLayout &DL,
1604                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1605   // Ignore no-op GEPs and bitcasts.
1606   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1607 
1608   // If we are dealing with a pointer global that is initialized to null and
1609   // only has one (non-null) value stored into it, then we can optimize any
1610   // users of the loaded value (often calls and loads) that would trap if the
1611   // value was null.
1612   if (GV->getInitializer()->getType()->isPointerTy() &&
1613       GV->getInitializer()->isNullValue() &&
1614       !NullPointerIsDefined(
1615           nullptr /* F */,
1616           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1617     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1618       if (GV->getInitializer()->getType() != SOVC->getType())
1619         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1620 
1621       // Optimize away any trapping uses of the loaded value.
1622       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1623         return true;
1624     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1625       auto *TLI = &GetTLI(*CI->getFunction());
1626       Type *MallocType = getMallocAllocatedType(CI, TLI);
1627       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1628                                                            Ordering, DL, TLI))
1629         return true;
1630     }
1631   }
1632 
1633   return false;
1634 }
1635 
1636 /// At this point, we have learned that the only two values ever stored into GV
1637 /// are its initializer and OtherVal.  See if we can shrink the global into a
1638 /// boolean and select between the two values whenever it is used.  This exposes
1639 /// the values to other scalar optimizations.
1640 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1641   Type *GVElType = GV->getValueType();
1642 
1643   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1644   // an FP value, pointer or vector, don't do this optimization because a select
1645   // between them is very expensive and unlikely to lead to later
1646   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1647   // where v1 and v2 both require constant pool loads, a big loss.
1648   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1649       GVElType->isFloatingPointTy() ||
1650       GVElType->isPointerTy() || GVElType->isVectorTy())
1651     return false;
1652 
1653   // Walk the use list of the global seeing if all the uses are load or store.
1654   // If there is anything else, bail out.
1655   for (User *U : GV->users())
1656     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1657       return false;
1658 
1659   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1660 
1661   // Create the new global, initializing it to false.
1662   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1663                                              false,
1664                                              GlobalValue::InternalLinkage,
1665                                         ConstantInt::getFalse(GV->getContext()),
1666                                              GV->getName()+".b",
1667                                              GV->getThreadLocalMode(),
1668                                              GV->getType()->getAddressSpace());
1669   NewGV->copyAttributesFrom(GV);
1670   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1671 
1672   Constant *InitVal = GV->getInitializer();
1673   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1674          "No reason to shrink to bool!");
1675 
1676   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1677   GV->getDebugInfo(GVs);
1678 
1679   // If initialized to zero and storing one into the global, we can use a cast
1680   // instead of a select to synthesize the desired value.
1681   bool IsOneZero = false;
1682   bool EmitOneOrZero = true;
1683   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1684   if (CI && CI->getValue().getActiveBits() <= 64) {
1685     IsOneZero = InitVal->isNullValue() && CI->isOne();
1686 
1687     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1688     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1689       uint64_t ValInit = CIInit->getZExtValue();
1690       uint64_t ValOther = CI->getZExtValue();
1691       uint64_t ValMinus = ValOther - ValInit;
1692 
1693       for(auto *GVe : GVs){
1694         DIGlobalVariable *DGV = GVe->getVariable();
1695         DIExpression *E = GVe->getExpression();
1696         const DataLayout &DL = GV->getParent()->getDataLayout();
1697         unsigned SizeInOctets =
1698           DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8;
1699 
1700         // It is expected that the address of global optimized variable is on
1701         // top of the stack. After optimization, value of that variable will
1702         // be ether 0 for initial value or 1 for other value. The following
1703         // expression should return constant integer value depending on the
1704         // value at global object address:
1705         // val * (ValOther - ValInit) + ValInit:
1706         // DW_OP_deref DW_OP_constu <ValMinus>
1707         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1708         SmallVector<uint64_t, 12> Ops = {
1709             dwarf::DW_OP_deref_size, SizeInOctets,
1710             dwarf::DW_OP_constu, ValMinus,
1711             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1712             dwarf::DW_OP_plus};
1713         bool WithStackValue = true;
1714         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1715         DIGlobalVariableExpression *DGVE =
1716           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1717         NewGV->addDebugInfo(DGVE);
1718      }
1719      EmitOneOrZero = false;
1720     }
1721   }
1722 
1723   if (EmitOneOrZero) {
1724      // FIXME: This will only emit address for debugger on which will
1725      // be written only 0 or 1.
1726      for(auto *GV : GVs)
1727        NewGV->addDebugInfo(GV);
1728    }
1729 
1730   while (!GV->use_empty()) {
1731     Instruction *UI = cast<Instruction>(GV->user_back());
1732     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1733       // Change the store into a boolean store.
1734       bool StoringOther = SI->getOperand(0) == OtherVal;
1735       // Only do this if we weren't storing a loaded value.
1736       Value *StoreVal;
1737       if (StoringOther || SI->getOperand(0) == InitVal) {
1738         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1739                                     StoringOther);
1740       } else {
1741         // Otherwise, we are storing a previously loaded copy.  To do this,
1742         // change the copy from copying the original value to just copying the
1743         // bool.
1744         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1745 
1746         // If we've already replaced the input, StoredVal will be a cast or
1747         // select instruction.  If not, it will be a load of the original
1748         // global.
1749         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1750           assert(LI->getOperand(0) == GV && "Not a copy!");
1751           // Insert a new load, to preserve the saved value.
1752           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1753                                   LI->getName() + ".b", false, Align(1),
1754                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1755         } else {
1756           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1757                  "This is not a form that we understand!");
1758           StoreVal = StoredVal->getOperand(0);
1759           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1760         }
1761       }
1762       StoreInst *NSI =
1763           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1764                         SI->getSyncScopeID(), SI);
1765       NSI->setDebugLoc(SI->getDebugLoc());
1766     } else {
1767       // Change the load into a load of bool then a select.
1768       LoadInst *LI = cast<LoadInst>(UI);
1769       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1770                                    LI->getName() + ".b", false, Align(1),
1771                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1772       Instruction *NSI;
1773       if (IsOneZero)
1774         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1775       else
1776         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1777       NSI->takeName(LI);
1778       // Since LI is split into two instructions, NLI and NSI both inherit the
1779       // same DebugLoc
1780       NLI->setDebugLoc(LI->getDebugLoc());
1781       NSI->setDebugLoc(LI->getDebugLoc());
1782       LI->replaceAllUsesWith(NSI);
1783     }
1784     UI->eraseFromParent();
1785   }
1786 
1787   // Retain the name of the old global variable. People who are debugging their
1788   // programs may expect these variables to be named the same.
1789   NewGV->takeName(GV);
1790   GV->eraseFromParent();
1791   return true;
1792 }
1793 
1794 static bool deleteIfDead(
1795     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1796   GV.removeDeadConstantUsers();
1797 
1798   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1799     return false;
1800 
1801   if (const Comdat *C = GV.getComdat())
1802     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1803       return false;
1804 
1805   bool Dead;
1806   if (auto *F = dyn_cast<Function>(&GV))
1807     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1808   else
1809     Dead = GV.use_empty();
1810   if (!Dead)
1811     return false;
1812 
1813   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1814   GV.eraseFromParent();
1815   ++NumDeleted;
1816   return true;
1817 }
1818 
1819 static bool isPointerValueDeadOnEntryToFunction(
1820     const Function *F, GlobalValue *GV,
1821     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1822   // Find all uses of GV. We expect them all to be in F, and if we can't
1823   // identify any of the uses we bail out.
1824   //
1825   // On each of these uses, identify if the memory that GV points to is
1826   // used/required/live at the start of the function. If it is not, for example
1827   // if the first thing the function does is store to the GV, the GV can
1828   // possibly be demoted.
1829   //
1830   // We don't do an exhaustive search for memory operations - simply look
1831   // through bitcasts as they're quite common and benign.
1832   const DataLayout &DL = GV->getParent()->getDataLayout();
1833   SmallVector<LoadInst *, 4> Loads;
1834   SmallVector<StoreInst *, 4> Stores;
1835   for (auto *U : GV->users()) {
1836     if (Operator::getOpcode(U) == Instruction::BitCast) {
1837       for (auto *UU : U->users()) {
1838         if (auto *LI = dyn_cast<LoadInst>(UU))
1839           Loads.push_back(LI);
1840         else if (auto *SI = dyn_cast<StoreInst>(UU))
1841           Stores.push_back(SI);
1842         else
1843           return false;
1844       }
1845       continue;
1846     }
1847 
1848     Instruction *I = dyn_cast<Instruction>(U);
1849     if (!I)
1850       return false;
1851     assert(I->getParent()->getParent() == F);
1852 
1853     if (auto *LI = dyn_cast<LoadInst>(I))
1854       Loads.push_back(LI);
1855     else if (auto *SI = dyn_cast<StoreInst>(I))
1856       Stores.push_back(SI);
1857     else
1858       return false;
1859   }
1860 
1861   // We have identified all uses of GV into loads and stores. Now check if all
1862   // of them are known not to depend on the value of the global at the function
1863   // entry point. We do this by ensuring that every load is dominated by at
1864   // least one store.
1865   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1866 
1867   // The below check is quadratic. Check we're not going to do too many tests.
1868   // FIXME: Even though this will always have worst-case quadratic time, we
1869   // could put effort into minimizing the average time by putting stores that
1870   // have been shown to dominate at least one load at the beginning of the
1871   // Stores array, making subsequent dominance checks more likely to succeed
1872   // early.
1873   //
1874   // The threshold here is fairly large because global->local demotion is a
1875   // very powerful optimization should it fire.
1876   const unsigned Threshold = 100;
1877   if (Loads.size() * Stores.size() > Threshold)
1878     return false;
1879 
1880   for (auto *L : Loads) {
1881     auto *LTy = L->getType();
1882     if (none_of(Stores, [&](const StoreInst *S) {
1883           auto *STy = S->getValueOperand()->getType();
1884           // The load is only dominated by the store if DomTree says so
1885           // and the number of bits loaded in L is less than or equal to
1886           // the number of bits stored in S.
1887           return DT.dominates(S, L) &&
1888                  DL.getTypeStoreSize(LTy).getFixedSize() <=
1889                      DL.getTypeStoreSize(STy).getFixedSize();
1890         }))
1891       return false;
1892   }
1893   // All loads have known dependences inside F, so the global can be localized.
1894   return true;
1895 }
1896 
1897 /// C may have non-instruction users. Can all of those users be turned into
1898 /// instructions?
1899 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1900   // We don't do this exhaustively. The most common pattern that we really need
1901   // to care about is a constant GEP or constant bitcast - so just looking
1902   // through one single ConstantExpr.
1903   //
1904   // The set of constants that this function returns true for must be able to be
1905   // handled by makeAllConstantUsesInstructions.
1906   for (auto *U : C->users()) {
1907     if (isa<Instruction>(U))
1908       continue;
1909     if (!isa<ConstantExpr>(U))
1910       // Non instruction, non-constantexpr user; cannot convert this.
1911       return false;
1912     for (auto *UU : U->users())
1913       if (!isa<Instruction>(UU))
1914         // A constantexpr used by another constant. We don't try and recurse any
1915         // further but just bail out at this point.
1916         return false;
1917   }
1918 
1919   return true;
1920 }
1921 
1922 /// C may have non-instruction users, and
1923 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1924 /// non-instruction users to instructions.
1925 static void makeAllConstantUsesInstructions(Constant *C) {
1926   SmallVector<ConstantExpr*,4> Users;
1927   for (auto *U : C->users()) {
1928     if (isa<ConstantExpr>(U))
1929       Users.push_back(cast<ConstantExpr>(U));
1930     else
1931       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1932       // should not have returned true for C.
1933       assert(
1934           isa<Instruction>(U) &&
1935           "Can't transform non-constantexpr non-instruction to instruction!");
1936   }
1937 
1938   SmallVector<Value*,4> UUsers;
1939   for (auto *U : Users) {
1940     UUsers.clear();
1941     append_range(UUsers, U->users());
1942     for (auto *UU : UUsers) {
1943       Instruction *UI = cast<Instruction>(UU);
1944       Instruction *NewU = U->getAsInstruction();
1945       NewU->insertBefore(UI);
1946       UI->replaceUsesOfWith(U, NewU);
1947     }
1948     // We've replaced all the uses, so destroy the constant. (destroyConstant
1949     // will update value handles and metadata.)
1950     U->destroyConstant();
1951   }
1952 }
1953 
1954 /// Analyze the specified global variable and optimize
1955 /// it if possible.  If we make a change, return true.
1956 static bool
1957 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1958                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1959                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1960   auto &DL = GV->getParent()->getDataLayout();
1961   // If this is a first class global and has only one accessing function and
1962   // this function is non-recursive, we replace the global with a local alloca
1963   // in this function.
1964   //
1965   // NOTE: It doesn't make sense to promote non-single-value types since we
1966   // are just replacing static memory to stack memory.
1967   //
1968   // If the global is in different address space, don't bring it to stack.
1969   if (!GS.HasMultipleAccessingFunctions &&
1970       GS.AccessingFunction &&
1971       GV->getValueType()->isSingleValueType() &&
1972       GV->getType()->getAddressSpace() == 0 &&
1973       !GV->isExternallyInitialized() &&
1974       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1975       GS.AccessingFunction->doesNotRecurse() &&
1976       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1977                                           LookupDomTree)) {
1978     const DataLayout &DL = GV->getParent()->getDataLayout();
1979 
1980     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1981     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1982                                                    ->getEntryBlock().begin());
1983     Type *ElemTy = GV->getValueType();
1984     // FIXME: Pass Global's alignment when globals have alignment
1985     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1986                                         GV->getName(), &FirstI);
1987     if (!isa<UndefValue>(GV->getInitializer()))
1988       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1989 
1990     makeAllConstantUsesInstructions(GV);
1991 
1992     GV->replaceAllUsesWith(Alloca);
1993     GV->eraseFromParent();
1994     ++NumLocalized;
1995     return true;
1996   }
1997 
1998   bool Changed = false;
1999 
2000   // If the global is never loaded (but may be stored to), it is dead.
2001   // Delete it now.
2002   if (!GS.IsLoaded) {
2003     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
2004 
2005     if (isLeakCheckerRoot(GV)) {
2006       // Delete any constant stores to the global.
2007       Changed = CleanupPointerRootUsers(GV, GetTLI);
2008     } else {
2009       // Delete any stores we can find to the global.  We may not be able to
2010       // make it completely dead though.
2011       Changed =
2012           CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2013     }
2014 
2015     // If the global is dead now, delete it.
2016     if (GV->use_empty()) {
2017       GV->eraseFromParent();
2018       ++NumDeleted;
2019       Changed = true;
2020     }
2021     return Changed;
2022 
2023   }
2024   if (GS.StoredType <= GlobalStatus::InitializerStored) {
2025     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
2026 
2027     // Don't actually mark a global constant if it's atomic because atomic loads
2028     // are implemented by a trivial cmpxchg in some edge-cases and that usually
2029     // requires write access to the variable even if it's not actually changed.
2030     if (GS.Ordering == AtomicOrdering::NotAtomic) {
2031       assert(!GV->isConstant() && "Expected a non-constant global");
2032       GV->setConstant(true);
2033       Changed = true;
2034     }
2035 
2036     // Clean up any obviously simplifiable users now.
2037     Changed |= CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2038 
2039     // If the global is dead now, just nuke it.
2040     if (GV->use_empty()) {
2041       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
2042                         << "all users and delete global!\n");
2043       GV->eraseFromParent();
2044       ++NumDeleted;
2045       return true;
2046     }
2047 
2048     // Fall through to the next check; see if we can optimize further.
2049     ++NumMarked;
2050   }
2051   if (!GV->getInitializer()->getType()->isSingleValueType()) {
2052     const DataLayout &DL = GV->getParent()->getDataLayout();
2053     if (SRAGlobal(GV, DL))
2054       return true;
2055   }
2056   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
2057     // If the initial value for the global was an undef value, and if only
2058     // one other value was stored into it, we can just change the
2059     // initializer to be the stored value, then delete all stores to the
2060     // global.  This allows us to mark it constant.
2061     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2062       if (isa<UndefValue>(GV->getInitializer())) {
2063         // Change the initial value here.
2064         GV->setInitializer(SOVConstant);
2065 
2066         // Clean up any obviously simplifiable users now.
2067         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2068 
2069         if (GV->use_empty()) {
2070           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2071                             << "simplify all users and delete global!\n");
2072           GV->eraseFromParent();
2073           ++NumDeleted;
2074         }
2075         ++NumSubstitute;
2076         return true;
2077       }
2078 
2079     // Try to optimize globals based on the knowledge that only one value
2080     // (besides its initializer) is ever stored to the global.
2081     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
2082                                  GetTLI))
2083       return true;
2084 
2085     // Otherwise, if the global was not a boolean, we can shrink it to be a
2086     // boolean.
2087     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2088       if (GS.Ordering == AtomicOrdering::NotAtomic) {
2089         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2090           ++NumShrunkToBool;
2091           return true;
2092         }
2093       }
2094     }
2095   }
2096 
2097   return Changed;
2098 }
2099 
2100 /// Analyze the specified global variable and optimize it if possible.  If we
2101 /// make a change, return true.
2102 static bool
2103 processGlobal(GlobalValue &GV,
2104               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2105               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2106   if (GV.getName().startswith("llvm."))
2107     return false;
2108 
2109   GlobalStatus GS;
2110 
2111   if (GlobalStatus::analyzeGlobal(&GV, GS))
2112     return false;
2113 
2114   bool Changed = false;
2115   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2116     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2117                                                : GlobalValue::UnnamedAddr::Local;
2118     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2119       GV.setUnnamedAddr(NewUnnamedAddr);
2120       NumUnnamed++;
2121       Changed = true;
2122     }
2123   }
2124 
2125   // Do more involved optimizations if the global is internal.
2126   if (!GV.hasLocalLinkage())
2127     return Changed;
2128 
2129   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2130   if (!GVar)
2131     return Changed;
2132 
2133   if (GVar->isConstant() || !GVar->hasInitializer())
2134     return Changed;
2135 
2136   return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
2137 }
2138 
2139 /// Walk all of the direct calls of the specified function, changing them to
2140 /// FastCC.
2141 static void ChangeCalleesToFastCall(Function *F) {
2142   for (User *U : F->users()) {
2143     if (isa<BlockAddress>(U))
2144       continue;
2145     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
2146   }
2147 }
2148 
2149 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
2150                                Attribute::AttrKind A) {
2151   unsigned AttrIndex;
2152   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
2153     return Attrs.removeAttribute(C, AttrIndex, A);
2154   return Attrs;
2155 }
2156 
2157 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
2158   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
2159   for (User *U : F->users()) {
2160     if (isa<BlockAddress>(U))
2161       continue;
2162     CallBase *CB = cast<CallBase>(U);
2163     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
2164   }
2165 }
2166 
2167 /// Return true if this is a calling convention that we'd like to change.  The
2168 /// idea here is that we don't want to mess with the convention if the user
2169 /// explicitly requested something with performance implications like coldcc,
2170 /// GHC, or anyregcc.
2171 static bool hasChangeableCC(Function *F) {
2172   CallingConv::ID CC = F->getCallingConv();
2173 
2174   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2175   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2176     return false;
2177 
2178   // FIXME: Change CC for the whole chain of musttail calls when possible.
2179   //
2180   // Can't change CC of the function that either has musttail calls, or is a
2181   // musttail callee itself
2182   for (User *U : F->users()) {
2183     if (isa<BlockAddress>(U))
2184       continue;
2185     CallInst* CI = dyn_cast<CallInst>(U);
2186     if (!CI)
2187       continue;
2188 
2189     if (CI->isMustTailCall())
2190       return false;
2191   }
2192 
2193   for (BasicBlock &BB : *F)
2194     if (BB.getTerminatingMustTailCall())
2195       return false;
2196 
2197   return true;
2198 }
2199 
2200 /// Return true if the block containing the call site has a BlockFrequency of
2201 /// less than ColdCCRelFreq% of the entry block.
2202 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
2203   const BranchProbability ColdProb(ColdCCRelFreq, 100);
2204   auto *CallSiteBB = CB.getParent();
2205   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2206   auto CallerEntryFreq =
2207       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
2208   return CallSiteFreq < CallerEntryFreq * ColdProb;
2209 }
2210 
2211 // This function checks if the input function F is cold at all call sites. It
2212 // also looks each call site's containing function, returning false if the
2213 // caller function contains other non cold calls. The input vector AllCallsCold
2214 // contains a list of functions that only have call sites in cold blocks.
2215 static bool
2216 isValidCandidateForColdCC(Function &F,
2217                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2218                           const std::vector<Function *> &AllCallsCold) {
2219 
2220   if (F.user_empty())
2221     return false;
2222 
2223   for (User *U : F.users()) {
2224     if (isa<BlockAddress>(U))
2225       continue;
2226 
2227     CallBase &CB = cast<CallBase>(*U);
2228     Function *CallerFunc = CB.getParent()->getParent();
2229     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2230     if (!isColdCallSite(CB, CallerBFI))
2231       return false;
2232     if (!llvm::is_contained(AllCallsCold, CallerFunc))
2233       return false;
2234   }
2235   return true;
2236 }
2237 
2238 static void changeCallSitesToColdCC(Function *F) {
2239   for (User *U : F->users()) {
2240     if (isa<BlockAddress>(U))
2241       continue;
2242     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
2243   }
2244 }
2245 
2246 // This function iterates over all the call instructions in the input Function
2247 // and checks that all call sites are in cold blocks and are allowed to use the
2248 // coldcc calling convention.
2249 static bool
2250 hasOnlyColdCalls(Function &F,
2251                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2252   for (BasicBlock &BB : F) {
2253     for (Instruction &I : BB) {
2254       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2255         // Skip over isline asm instructions since they aren't function calls.
2256         if (CI->isInlineAsm())
2257           continue;
2258         Function *CalledFn = CI->getCalledFunction();
2259         if (!CalledFn)
2260           return false;
2261         if (!CalledFn->hasLocalLinkage())
2262           return false;
2263         // Skip over instrinsics since they won't remain as function calls.
2264         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2265           continue;
2266         // Check if it's valid to use coldcc calling convention.
2267         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2268             CalledFn->hasAddressTaken())
2269           return false;
2270         BlockFrequencyInfo &CallerBFI = GetBFI(F);
2271         if (!isColdCallSite(*CI, CallerBFI))
2272           return false;
2273       }
2274     }
2275   }
2276   return true;
2277 }
2278 
2279 static bool hasMustTailCallers(Function *F) {
2280   for (User *U : F->users()) {
2281     CallBase *CB = dyn_cast<CallBase>(U);
2282     if (!CB) {
2283       assert(isa<BlockAddress>(U) &&
2284              "Expected either CallBase or BlockAddress");
2285       continue;
2286     }
2287     if (CB->isMustTailCall())
2288       return true;
2289   }
2290   return false;
2291 }
2292 
2293 static bool hasInvokeCallers(Function *F) {
2294   for (User *U : F->users())
2295     if (isa<InvokeInst>(U))
2296       return true;
2297   return false;
2298 }
2299 
2300 static void RemovePreallocated(Function *F) {
2301   RemoveAttribute(F, Attribute::Preallocated);
2302 
2303   auto *M = F->getParent();
2304 
2305   IRBuilder<> Builder(M->getContext());
2306 
2307   // Cannot modify users() while iterating over it, so make a copy.
2308   SmallVector<User *, 4> PreallocatedCalls(F->users());
2309   for (User *U : PreallocatedCalls) {
2310     CallBase *CB = dyn_cast<CallBase>(U);
2311     if (!CB)
2312       continue;
2313 
2314     assert(
2315         !CB->isMustTailCall() &&
2316         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
2317     // Create copy of call without "preallocated" operand bundle.
2318     SmallVector<OperandBundleDef, 1> OpBundles;
2319     CB->getOperandBundlesAsDefs(OpBundles);
2320     CallBase *PreallocatedSetup = nullptr;
2321     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
2322       if (It->getTag() == "preallocated") {
2323         PreallocatedSetup = cast<CallBase>(*It->input_begin());
2324         OpBundles.erase(It);
2325         break;
2326       }
2327     }
2328     assert(PreallocatedSetup && "Did not find preallocated bundle");
2329     uint64_t ArgCount =
2330         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
2331 
2332     assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
2333            "Unknown indirect call type");
2334     CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
2335     CB->replaceAllUsesWith(NewCB);
2336     NewCB->takeName(CB);
2337     CB->eraseFromParent();
2338 
2339     Builder.SetInsertPoint(PreallocatedSetup);
2340     auto *StackSave =
2341         Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
2342 
2343     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
2344     Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
2345                        StackSave);
2346 
2347     // Replace @llvm.call.preallocated.arg() with alloca.
2348     // Cannot modify users() while iterating over it, so make a copy.
2349     // @llvm.call.preallocated.arg() can be called with the same index multiple
2350     // times. So for each @llvm.call.preallocated.arg(), we see if we have
2351     // already created a Value* for the index, and if not, create an alloca and
2352     // bitcast right after the @llvm.call.preallocated.setup() so that it
2353     // dominates all uses.
2354     SmallVector<Value *, 2> ArgAllocas(ArgCount);
2355     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
2356     for (auto *User : PreallocatedArgs) {
2357       auto *UseCall = cast<CallBase>(User);
2358       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
2359                  Intrinsic::call_preallocated_arg &&
2360              "preallocated token use was not a llvm.call.preallocated.arg");
2361       uint64_t AllocArgIndex =
2362           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
2363       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
2364       if (!AllocaReplacement) {
2365         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
2366         auto *ArgType = UseCall
2367                             ->getAttribute(AttributeList::FunctionIndex,
2368                                            Attribute::Preallocated)
2369                             .getValueAsType();
2370         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
2371         Builder.SetInsertPoint(InsertBefore);
2372         auto *Alloca =
2373             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
2374         auto *BitCast = Builder.CreateBitCast(
2375             Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
2376         ArgAllocas[AllocArgIndex] = BitCast;
2377         AllocaReplacement = BitCast;
2378       }
2379 
2380       UseCall->replaceAllUsesWith(AllocaReplacement);
2381       UseCall->eraseFromParent();
2382     }
2383     // Remove @llvm.call.preallocated.setup().
2384     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
2385   }
2386 }
2387 
2388 static bool
2389 OptimizeFunctions(Module &M,
2390                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2391                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
2392                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2393                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2394                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2395 
2396   bool Changed = false;
2397 
2398   std::vector<Function *> AllCallsCold;
2399   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2400     Function *F = &*FI++;
2401     if (hasOnlyColdCalls(*F, GetBFI))
2402       AllCallsCold.push_back(F);
2403   }
2404 
2405   // Optimize functions.
2406   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2407     Function *F = &*FI++;
2408 
2409     // Don't perform global opt pass on naked functions; we don't want fast
2410     // calling conventions for naked functions.
2411     if (F->hasFnAttribute(Attribute::Naked))
2412       continue;
2413 
2414     // Functions without names cannot be referenced outside this module.
2415     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2416       F->setLinkage(GlobalValue::InternalLinkage);
2417 
2418     if (deleteIfDead(*F, NotDiscardableComdats)) {
2419       Changed = true;
2420       continue;
2421     }
2422 
2423     // LLVM's definition of dominance allows instructions that are cyclic
2424     // in unreachable blocks, e.g.:
2425     // %pat = select i1 %condition, @global, i16* %pat
2426     // because any instruction dominates an instruction in a block that's
2427     // not reachable from entry.
2428     // So, remove unreachable blocks from the function, because a) there's
2429     // no point in analyzing them and b) GlobalOpt should otherwise grow
2430     // some more complicated logic to break these cycles.
2431     // Removing unreachable blocks might invalidate the dominator so we
2432     // recalculate it.
2433     if (!F->isDeclaration()) {
2434       if (removeUnreachableBlocks(*F)) {
2435         auto &DT = LookupDomTree(*F);
2436         DT.recalculate(*F);
2437         Changed = true;
2438       }
2439     }
2440 
2441     Changed |= processGlobal(*F, GetTLI, LookupDomTree);
2442 
2443     if (!F->hasLocalLinkage())
2444       continue;
2445 
2446     // If we have an inalloca parameter that we can safely remove the
2447     // inalloca attribute from, do so. This unlocks optimizations that
2448     // wouldn't be safe in the presence of inalloca.
2449     // FIXME: We should also hoist alloca affected by this to the entry
2450     // block if possible.
2451     if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2452         !F->hasAddressTaken() && !hasMustTailCallers(F)) {
2453       RemoveAttribute(F, Attribute::InAlloca);
2454       Changed = true;
2455     }
2456 
2457     // FIXME: handle invokes
2458     // FIXME: handle musttail
2459     if (F->getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
2460       if (!F->hasAddressTaken() && !hasMustTailCallers(F) &&
2461           !hasInvokeCallers(F)) {
2462         RemovePreallocated(F);
2463         Changed = true;
2464       }
2465       continue;
2466     }
2467 
2468     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2469       NumInternalFunc++;
2470       TargetTransformInfo &TTI = GetTTI(*F);
2471       // Change the calling convention to coldcc if either stress testing is
2472       // enabled or the target would like to use coldcc on functions which are
2473       // cold at all call sites and the callers contain no other non coldcc
2474       // calls.
2475       if (EnableColdCCStressTest ||
2476           (TTI.useColdCCForColdCall(*F) &&
2477            isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
2478         F->setCallingConv(CallingConv::Cold);
2479         changeCallSitesToColdCC(F);
2480         Changed = true;
2481         NumColdCC++;
2482       }
2483     }
2484 
2485     if (hasChangeableCC(F) && !F->isVarArg() &&
2486         !F->hasAddressTaken()) {
2487       // If this function has a calling convention worth changing, is not a
2488       // varargs function, and is only called directly, promote it to use the
2489       // Fast calling convention.
2490       F->setCallingConv(CallingConv::Fast);
2491       ChangeCalleesToFastCall(F);
2492       ++NumFastCallFns;
2493       Changed = true;
2494     }
2495 
2496     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2497         !F->hasAddressTaken()) {
2498       // The function is not used by a trampoline intrinsic, so it is safe
2499       // to remove the 'nest' attribute.
2500       RemoveAttribute(F, Attribute::Nest);
2501       ++NumNestRemoved;
2502       Changed = true;
2503     }
2504   }
2505   return Changed;
2506 }
2507 
2508 static bool
2509 OptimizeGlobalVars(Module &M,
2510                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2511                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2512                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2513   bool Changed = false;
2514 
2515   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2516        GVI != E; ) {
2517     GlobalVariable *GV = &*GVI++;
2518     // Global variables without names cannot be referenced outside this module.
2519     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2520       GV->setLinkage(GlobalValue::InternalLinkage);
2521     // Simplify the initializer.
2522     if (GV->hasInitializer())
2523       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2524         auto &DL = M.getDataLayout();
2525         // TLI is not used in the case of a Constant, so use default nullptr
2526         // for that optional parameter, since we don't have a Function to
2527         // provide GetTLI anyway.
2528         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2529         if (New != C)
2530           GV->setInitializer(New);
2531       }
2532 
2533     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2534       Changed = true;
2535       continue;
2536     }
2537 
2538     Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
2539   }
2540   return Changed;
2541 }
2542 
2543 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2544 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2545 /// GEP operands of Addr [0, OpNo) have been stepped into.
2546 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2547                                    ConstantExpr *Addr, unsigned OpNo) {
2548   // Base case of the recursion.
2549   if (OpNo == Addr->getNumOperands()) {
2550     assert(Val->getType() == Init->getType() && "Type mismatch!");
2551     return Val;
2552   }
2553 
2554   SmallVector<Constant*, 32> Elts;
2555   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2556     // Break up the constant into its elements.
2557     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2558       Elts.push_back(Init->getAggregateElement(i));
2559 
2560     // Replace the element that we are supposed to.
2561     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2562     unsigned Idx = CU->getZExtValue();
2563     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2564     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2565 
2566     // Return the modified struct.
2567     return ConstantStruct::get(STy, Elts);
2568   }
2569 
2570   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2571   uint64_t NumElts;
2572   if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType()))
2573     NumElts = ATy->getNumElements();
2574   else
2575     NumElts = cast<FixedVectorType>(Init->getType())->getNumElements();
2576 
2577   // Break up the array into elements.
2578   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2579     Elts.push_back(Init->getAggregateElement(i));
2580 
2581   assert(CI->getZExtValue() < NumElts);
2582   Elts[CI->getZExtValue()] =
2583     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2584 
2585   if (Init->getType()->isArrayTy())
2586     return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts);
2587   return ConstantVector::get(Elts);
2588 }
2589 
2590 /// We have decided that Addr (which satisfies the predicate
2591 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2592 static void CommitValueTo(Constant *Val, Constant *Addr) {
2593   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2594     assert(GV->hasInitializer());
2595     GV->setInitializer(Val);
2596     return;
2597   }
2598 
2599   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2600   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2601   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2602 }
2603 
2604 /// Given a map of address -> value, where addresses are expected to be some form
2605 /// of either a global or a constant GEP, set the initializer for the address to
2606 /// be the value. This performs mostly the same function as CommitValueTo()
2607 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2608 /// case where the set of addresses are GEPs sharing the same underlying global,
2609 /// processing the GEPs in batches rather than individually.
2610 ///
2611 /// To give an example, consider the following C++ code adapted from the clang
2612 /// regression tests:
2613 /// struct S {
2614 ///  int n = 10;
2615 ///  int m = 2 * n;
2616 ///  S(int a) : n(a) {}
2617 /// };
2618 ///
2619 /// template<typename T>
2620 /// struct U {
2621 ///  T *r = &q;
2622 ///  T q = 42;
2623 ///  U *p = this;
2624 /// };
2625 ///
2626 /// U<S> e;
2627 ///
2628 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2629 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2630 /// members. This batch algorithm will simply use general CommitValueTo() method
2631 /// to handle the complex nested S struct initialization of 'q', before
2632 /// processing the outermost members in a single batch. Using CommitValueTo() to
2633 /// handle member in the outer struct is inefficient when the struct/array is
2634 /// very large as we end up creating and destroy constant arrays for each
2635 /// initialization.
2636 /// For the above case, we expect the following IR to be generated:
2637 ///
2638 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2639 /// %struct.S = type { i32, i32 }
2640 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2641 ///                                                  i64 0, i32 1),
2642 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2643 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2644 /// constant expression, while the other two elements of @e are "simple".
2645 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2646   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2647   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2648   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2649   SimpleCEs.reserve(Mem.size());
2650 
2651   for (const auto &I : Mem) {
2652     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2653       GVs.push_back(std::make_pair(GV, I.second));
2654     } else {
2655       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2656       // We don't handle the deeply recursive case using the batch method.
2657       if (GEP->getNumOperands() > 3)
2658         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2659       else
2660         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2661     }
2662   }
2663 
2664   // The algorithm below doesn't handle cases like nested structs, so use the
2665   // slower fully general method if we have to.
2666   for (auto ComplexCE : ComplexCEs)
2667     CommitValueTo(ComplexCE.second, ComplexCE.first);
2668 
2669   for (auto GVPair : GVs) {
2670     assert(GVPair.first->hasInitializer());
2671     GVPair.first->setInitializer(GVPair.second);
2672   }
2673 
2674   if (SimpleCEs.empty())
2675     return;
2676 
2677   // We cache a single global's initializer elements in the case where the
2678   // subsequent address/val pair uses the same one. This avoids throwing away and
2679   // rebuilding the constant struct/vector/array just because one element is
2680   // modified at a time.
2681   SmallVector<Constant *, 32> Elts;
2682   Elts.reserve(SimpleCEs.size());
2683   GlobalVariable *CurrentGV = nullptr;
2684 
2685   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2686     Constant *Init = GV->getInitializer();
2687     Type *Ty = Init->getType();
2688     if (Update) {
2689       if (CurrentGV) {
2690         assert(CurrentGV && "Expected a GV to commit to!");
2691         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2692         // We have a valid cache that needs to be committed.
2693         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2694           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2695         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2696           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2697         else
2698           CurrentGV->setInitializer(ConstantVector::get(Elts));
2699       }
2700       if (CurrentGV == GV)
2701         return;
2702       // Need to clear and set up cache for new initializer.
2703       CurrentGV = GV;
2704       Elts.clear();
2705       unsigned NumElts;
2706       if (auto *STy = dyn_cast<StructType>(Ty))
2707         NumElts = STy->getNumElements();
2708       else if (auto *ATy = dyn_cast<ArrayType>(Ty))
2709         NumElts = ATy->getNumElements();
2710       else
2711         NumElts = cast<FixedVectorType>(Ty)->getNumElements();
2712       for (unsigned i = 0, e = NumElts; i != e; ++i)
2713         Elts.push_back(Init->getAggregateElement(i));
2714     }
2715   };
2716 
2717   for (auto CEPair : SimpleCEs) {
2718     ConstantExpr *GEP = CEPair.first;
2719     Constant *Val = CEPair.second;
2720 
2721     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2722     commitAndSetupCache(GV, GV != CurrentGV);
2723     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2724     Elts[CI->getZExtValue()] = Val;
2725   }
2726   // The last initializer in the list needs to be committed, others
2727   // will be committed on a new initializer being processed.
2728   commitAndSetupCache(CurrentGV, true);
2729 }
2730 
2731 /// Evaluate static constructors in the function, if we can.  Return true if we
2732 /// can, false otherwise.
2733 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2734                                       TargetLibraryInfo *TLI) {
2735   // Call the function.
2736   Evaluator Eval(DL, TLI);
2737   Constant *RetValDummy;
2738   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2739                                            SmallVector<Constant*, 0>());
2740 
2741   if (EvalSuccess) {
2742     ++NumCtorsEvaluated;
2743 
2744     // We succeeded at evaluation: commit the result.
2745     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2746                       << F->getName() << "' to "
2747                       << Eval.getMutatedMemory().size() << " stores.\n");
2748     BatchCommitValueTo(Eval.getMutatedMemory());
2749     for (GlobalVariable *GV : Eval.getInvariants())
2750       GV->setConstant(true);
2751   }
2752 
2753   return EvalSuccess;
2754 }
2755 
2756 static int compareNames(Constant *const *A, Constant *const *B) {
2757   Value *AStripped = (*A)->stripPointerCasts();
2758   Value *BStripped = (*B)->stripPointerCasts();
2759   return AStripped->getName().compare(BStripped->getName());
2760 }
2761 
2762 static void setUsedInitializer(GlobalVariable &V,
2763                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2764   if (Init.empty()) {
2765     V.eraseFromParent();
2766     return;
2767   }
2768 
2769   // Type of pointer to the array of pointers.
2770   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2771 
2772   SmallVector<Constant *, 8> UsedArray;
2773   for (GlobalValue *GV : Init) {
2774     Constant *Cast
2775       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2776     UsedArray.push_back(Cast);
2777   }
2778   // Sort to get deterministic order.
2779   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2780   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2781 
2782   Module *M = V.getParent();
2783   V.removeFromParent();
2784   GlobalVariable *NV =
2785       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2786                          ConstantArray::get(ATy, UsedArray), "");
2787   NV->takeName(&V);
2788   NV->setSection("llvm.metadata");
2789   delete &V;
2790 }
2791 
2792 namespace {
2793 
2794 /// An easy to access representation of llvm.used and llvm.compiler.used.
2795 class LLVMUsed {
2796   SmallPtrSet<GlobalValue *, 4> Used;
2797   SmallPtrSet<GlobalValue *, 4> CompilerUsed;
2798   GlobalVariable *UsedV;
2799   GlobalVariable *CompilerUsedV;
2800 
2801 public:
2802   LLVMUsed(Module &M) {
2803     SmallVector<GlobalValue *, 4> Vec;
2804     UsedV = collectUsedGlobalVariables(M, Vec, false);
2805     Used = {Vec.begin(), Vec.end()};
2806     Vec.clear();
2807     CompilerUsedV = collectUsedGlobalVariables(M, Vec, true);
2808     CompilerUsed = {Vec.begin(), Vec.end()};
2809   }
2810 
2811   using iterator = SmallPtrSet<GlobalValue *, 4>::iterator;
2812   using used_iterator_range = iterator_range<iterator>;
2813 
2814   iterator usedBegin() { return Used.begin(); }
2815   iterator usedEnd() { return Used.end(); }
2816 
2817   used_iterator_range used() {
2818     return used_iterator_range(usedBegin(), usedEnd());
2819   }
2820 
2821   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2822   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2823 
2824   used_iterator_range compilerUsed() {
2825     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2826   }
2827 
2828   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2829 
2830   bool compilerUsedCount(GlobalValue *GV) const {
2831     return CompilerUsed.count(GV);
2832   }
2833 
2834   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2835   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2836   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2837 
2838   bool compilerUsedInsert(GlobalValue *GV) {
2839     return CompilerUsed.insert(GV).second;
2840   }
2841 
2842   void syncVariablesAndSets() {
2843     if (UsedV)
2844       setUsedInitializer(*UsedV, Used);
2845     if (CompilerUsedV)
2846       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2847   }
2848 };
2849 
2850 } // end anonymous namespace
2851 
2852 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2853   if (GA.use_empty()) // No use at all.
2854     return false;
2855 
2856   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2857          "We should have removed the duplicated "
2858          "element from llvm.compiler.used");
2859   if (!GA.hasOneUse())
2860     // Strictly more than one use. So at least one is not in llvm.used and
2861     // llvm.compiler.used.
2862     return true;
2863 
2864   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2865   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2866 }
2867 
2868 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2869                                                const LLVMUsed &U) {
2870   unsigned N = 2;
2871   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2872          "We should have removed the duplicated "
2873          "element from llvm.compiler.used");
2874   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2875     ++N;
2876   return V.hasNUsesOrMore(N);
2877 }
2878 
2879 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2880   if (!GA.hasLocalLinkage())
2881     return true;
2882 
2883   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2884 }
2885 
2886 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2887                              bool &RenameTarget) {
2888   RenameTarget = false;
2889   bool Ret = false;
2890   if (hasUseOtherThanLLVMUsed(GA, U))
2891     Ret = true;
2892 
2893   // If the alias is externally visible, we may still be able to simplify it.
2894   if (!mayHaveOtherReferences(GA, U))
2895     return Ret;
2896 
2897   // If the aliasee has internal linkage, give it the name and linkage
2898   // of the alias, and delete the alias.  This turns:
2899   //   define internal ... @f(...)
2900   //   @a = alias ... @f
2901   // into:
2902   //   define ... @a(...)
2903   Constant *Aliasee = GA.getAliasee();
2904   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2905   if (!Target->hasLocalLinkage())
2906     return Ret;
2907 
2908   // Do not perform the transform if multiple aliases potentially target the
2909   // aliasee. This check also ensures that it is safe to replace the section
2910   // and other attributes of the aliasee with those of the alias.
2911   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2912     return Ret;
2913 
2914   RenameTarget = true;
2915   return true;
2916 }
2917 
2918 static bool
2919 OptimizeGlobalAliases(Module &M,
2920                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2921   bool Changed = false;
2922   LLVMUsed Used(M);
2923 
2924   for (GlobalValue *GV : Used.used())
2925     Used.compilerUsedErase(GV);
2926 
2927   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2928        I != E;) {
2929     GlobalAlias *J = &*I++;
2930 
2931     // Aliases without names cannot be referenced outside this module.
2932     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2933       J->setLinkage(GlobalValue::InternalLinkage);
2934 
2935     if (deleteIfDead(*J, NotDiscardableComdats)) {
2936       Changed = true;
2937       continue;
2938     }
2939 
2940     // If the alias can change at link time, nothing can be done - bail out.
2941     if (J->isInterposable())
2942       continue;
2943 
2944     Constant *Aliasee = J->getAliasee();
2945     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2946     // We can't trivially replace the alias with the aliasee if the aliasee is
2947     // non-trivial in some way.
2948     // TODO: Try to handle non-zero GEPs of local aliasees.
2949     if (!Target)
2950       continue;
2951     Target->removeDeadConstantUsers();
2952 
2953     // Make all users of the alias use the aliasee instead.
2954     bool RenameTarget;
2955     if (!hasUsesToReplace(*J, Used, RenameTarget))
2956       continue;
2957 
2958     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2959     ++NumAliasesResolved;
2960     Changed = true;
2961 
2962     if (RenameTarget) {
2963       // Give the aliasee the name, linkage and other attributes of the alias.
2964       Target->takeName(&*J);
2965       Target->setLinkage(J->getLinkage());
2966       Target->setDSOLocal(J->isDSOLocal());
2967       Target->setVisibility(J->getVisibility());
2968       Target->setDLLStorageClass(J->getDLLStorageClass());
2969 
2970       if (Used.usedErase(&*J))
2971         Used.usedInsert(Target);
2972 
2973       if (Used.compilerUsedErase(&*J))
2974         Used.compilerUsedInsert(Target);
2975     } else if (mayHaveOtherReferences(*J, Used))
2976       continue;
2977 
2978     // Delete the alias.
2979     M.getAliasList().erase(J);
2980     ++NumAliasesRemoved;
2981     Changed = true;
2982   }
2983 
2984   Used.syncVariablesAndSets();
2985 
2986   return Changed;
2987 }
2988 
2989 static Function *
2990 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2991   // Hack to get a default TLI before we have actual Function.
2992   auto FuncIter = M.begin();
2993   if (FuncIter == M.end())
2994     return nullptr;
2995   auto *TLI = &GetTLI(*FuncIter);
2996 
2997   LibFunc F = LibFunc_cxa_atexit;
2998   if (!TLI->has(F))
2999     return nullptr;
3000 
3001   Function *Fn = M.getFunction(TLI->getName(F));
3002   if (!Fn)
3003     return nullptr;
3004 
3005   // Now get the actual TLI for Fn.
3006   TLI = &GetTLI(*Fn);
3007 
3008   // Make sure that the function has the correct prototype.
3009   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
3010     return nullptr;
3011 
3012   return Fn;
3013 }
3014 
3015 /// Returns whether the given function is an empty C++ destructor and can
3016 /// therefore be eliminated.
3017 /// Note that we assume that other optimization passes have already simplified
3018 /// the code so we simply check for 'ret'.
3019 static bool cxxDtorIsEmpty(const Function &Fn) {
3020   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
3021   // nounwind, but that doesn't seem worth doing.
3022   if (Fn.isDeclaration())
3023     return false;
3024 
3025   for (auto &I : Fn.getEntryBlock()) {
3026     if (isa<DbgInfoIntrinsic>(I))
3027       continue;
3028     if (isa<ReturnInst>(I))
3029       return true;
3030     break;
3031   }
3032   return false;
3033 }
3034 
3035 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
3036   /// Itanium C++ ABI p3.3.5:
3037   ///
3038   ///   After constructing a global (or local static) object, that will require
3039   ///   destruction on exit, a termination function is registered as follows:
3040   ///
3041   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
3042   ///
3043   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
3044   ///   call f(p) when DSO d is unloaded, before all such termination calls
3045   ///   registered before this one. It returns zero if registration is
3046   ///   successful, nonzero on failure.
3047 
3048   // This pass will look for calls to __cxa_atexit where the function is trivial
3049   // and remove them.
3050   bool Changed = false;
3051 
3052   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
3053        I != E;) {
3054     // We're only interested in calls. Theoretically, we could handle invoke
3055     // instructions as well, but neither llvm-gcc nor clang generate invokes
3056     // to __cxa_atexit.
3057     CallInst *CI = dyn_cast<CallInst>(*I++);
3058     if (!CI)
3059       continue;
3060 
3061     Function *DtorFn =
3062       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
3063     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
3064       continue;
3065 
3066     // Just remove the call.
3067     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
3068     CI->eraseFromParent();
3069 
3070     ++NumCXXDtorsRemoved;
3071 
3072     Changed |= true;
3073   }
3074 
3075   return Changed;
3076 }
3077 
3078 static bool optimizeGlobalsInModule(
3079     Module &M, const DataLayout &DL,
3080     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
3081     function_ref<TargetTransformInfo &(Function &)> GetTTI,
3082     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
3083     function_ref<DominatorTree &(Function &)> LookupDomTree) {
3084   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
3085   bool Changed = false;
3086   bool LocalChange = true;
3087   while (LocalChange) {
3088     LocalChange = false;
3089 
3090     NotDiscardableComdats.clear();
3091     for (const GlobalVariable &GV : M.globals())
3092       if (const Comdat *C = GV.getComdat())
3093         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
3094           NotDiscardableComdats.insert(C);
3095     for (Function &F : M)
3096       if (const Comdat *C = F.getComdat())
3097         if (!F.isDefTriviallyDead())
3098           NotDiscardableComdats.insert(C);
3099     for (GlobalAlias &GA : M.aliases())
3100       if (const Comdat *C = GA.getComdat())
3101         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
3102           NotDiscardableComdats.insert(C);
3103 
3104     // Delete functions that are trivially dead, ccc -> fastcc
3105     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
3106                                      NotDiscardableComdats);
3107 
3108     // Optimize global_ctors list.
3109     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
3110       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
3111     });
3112 
3113     // Optimize non-address-taken globals.
3114     LocalChange |=
3115         OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);
3116 
3117     // Resolve aliases, when possible.
3118     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
3119 
3120     // Try to remove trivial global destructors if they are not removed
3121     // already.
3122     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
3123     if (CXAAtExitFn)
3124       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
3125 
3126     Changed |= LocalChange;
3127   }
3128 
3129   // TODO: Move all global ctors functions to the end of the module for code
3130   // layout.
3131 
3132   return Changed;
3133 }
3134 
3135 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
3136     auto &DL = M.getDataLayout();
3137     auto &FAM =
3138         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3139     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
3140       return FAM.getResult<DominatorTreeAnalysis>(F);
3141     };
3142     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
3143       return FAM.getResult<TargetLibraryAnalysis>(F);
3144     };
3145     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
3146       return FAM.getResult<TargetIRAnalysis>(F);
3147     };
3148 
3149     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
3150       return FAM.getResult<BlockFrequencyAnalysis>(F);
3151     };
3152 
3153     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
3154       return PreservedAnalyses::all();
3155     return PreservedAnalyses::none();
3156 }
3157 
3158 namespace {
3159 
3160 struct GlobalOptLegacyPass : public ModulePass {
3161   static char ID; // Pass identification, replacement for typeid
3162 
3163   GlobalOptLegacyPass() : ModulePass(ID) {
3164     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
3165   }
3166 
3167   bool runOnModule(Module &M) override {
3168     if (skipModule(M))
3169       return false;
3170 
3171     auto &DL = M.getDataLayout();
3172     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
3173       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
3174     };
3175     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
3176       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3177     };
3178     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
3179       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3180     };
3181 
3182     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3183       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3184     };
3185 
3186     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
3187                                    LookupDomTree);
3188   }
3189 
3190   void getAnalysisUsage(AnalysisUsage &AU) const override {
3191     AU.addRequired<TargetLibraryInfoWrapperPass>();
3192     AU.addRequired<TargetTransformInfoWrapperPass>();
3193     AU.addRequired<DominatorTreeWrapperPass>();
3194     AU.addRequired<BlockFrequencyInfoWrapperPass>();
3195   }
3196 };
3197 
3198 } // end anonymous namespace
3199 
3200 char GlobalOptLegacyPass::ID = 0;
3201 
3202 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3203                       "Global Variable Optimizer", false, false)
3204 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3205 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3206 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3207 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3208 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3209                     "Global Variable Optimizer", false, false)
3210 
3211 ModulePass *llvm::createGlobalOptimizerPass() {
3212   return new GlobalOptLegacyPass();
3213 }
3214