1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms simple global variables that never have their address
11 // taken.  If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/GlobalOpt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/IR/CallSite.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/IPO.h"
46 #include "llvm/Transforms/Utils/CtorUtils.h"
47 #include "llvm/Transforms/Utils/Evaluator.h"
48 #include "llvm/Transforms/Utils/GlobalStatus.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include <algorithm>
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "globalopt"
54 
55 STATISTIC(NumMarked    , "Number of globals marked constant");
56 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
57 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
58 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
59 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
60 STATISTIC(NumDeleted   , "Number of globals deleted");
61 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
62 STATISTIC(NumLocalized , "Number of globals localized");
63 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
64 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
65 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
66 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
67 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
68 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
69 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
70 
71 /// Is this global variable possibly used by a leak checker as a root?  If so,
72 /// we might not really want to eliminate the stores to it.
73 static bool isLeakCheckerRoot(GlobalVariable *GV) {
74   // A global variable is a root if it is a pointer, or could plausibly contain
75   // a pointer.  There are two challenges; one is that we could have a struct
76   // the has an inner member which is a pointer.  We recurse through the type to
77   // detect these (up to a point).  The other is that we may actually be a union
78   // of a pointer and another type, and so our LLVM type is an integer which
79   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
80   // potentially contained here.
81 
82   if (GV->hasPrivateLinkage())
83     return false;
84 
85   SmallVector<Type *, 4> Types;
86   Types.push_back(GV->getValueType());
87 
88   unsigned Limit = 20;
89   do {
90     Type *Ty = Types.pop_back_val();
91     switch (Ty->getTypeID()) {
92       default: break;
93       case Type::PointerTyID: return true;
94       case Type::ArrayTyID:
95       case Type::VectorTyID: {
96         SequentialType *STy = cast<SequentialType>(Ty);
97         Types.push_back(STy->getElementType());
98         break;
99       }
100       case Type::StructTyID: {
101         StructType *STy = cast<StructType>(Ty);
102         if (STy->isOpaque()) return true;
103         for (StructType::element_iterator I = STy->element_begin(),
104                  E = STy->element_end(); I != E; ++I) {
105           Type *InnerTy = *I;
106           if (isa<PointerType>(InnerTy)) return true;
107           if (isa<CompositeType>(InnerTy))
108             Types.push_back(InnerTy);
109         }
110         break;
111       }
112     }
113     if (--Limit == 0) return true;
114   } while (!Types.empty());
115   return false;
116 }
117 
118 /// Given a value that is stored to a global but never read, determine whether
119 /// it's safe to remove the store and the chain of computation that feeds the
120 /// store.
121 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
122   do {
123     if (isa<Constant>(V))
124       return true;
125     if (!V->hasOneUse())
126       return false;
127     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
128         isa<GlobalValue>(V))
129       return false;
130     if (isAllocationFn(V, TLI))
131       return true;
132 
133     Instruction *I = cast<Instruction>(V);
134     if (I->mayHaveSideEffects())
135       return false;
136     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
137       if (!GEP->hasAllConstantIndices())
138         return false;
139     } else if (I->getNumOperands() != 1) {
140       return false;
141     }
142 
143     V = I->getOperand(0);
144   } while (1);
145 }
146 
147 /// This GV is a pointer root.  Loop over all users of the global and clean up
148 /// any that obviously don't assign the global a value that isn't dynamically
149 /// allocated.
150 static bool CleanupPointerRootUsers(GlobalVariable *GV,
151                                     const TargetLibraryInfo *TLI) {
152   // A brief explanation of leak checkers.  The goal is to find bugs where
153   // pointers are forgotten, causing an accumulating growth in memory
154   // usage over time.  The common strategy for leak checkers is to whitelist the
155   // memory pointed to by globals at exit.  This is popular because it also
156   // solves another problem where the main thread of a C++ program may shut down
157   // before other threads that are still expecting to use those globals.  To
158   // handle that case, we expect the program may create a singleton and never
159   // destroy it.
160 
161   bool Changed = false;
162 
163   // If Dead[n].first is the only use of a malloc result, we can delete its
164   // chain of computation and the store to the global in Dead[n].second.
165   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
166 
167   // Constants can't be pointers to dynamically allocated memory.
168   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
169        UI != E;) {
170     User *U = *UI++;
171     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
172       Value *V = SI->getValueOperand();
173       if (isa<Constant>(V)) {
174         Changed = true;
175         SI->eraseFromParent();
176       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
177         if (I->hasOneUse())
178           Dead.push_back(std::make_pair(I, SI));
179       }
180     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
181       if (isa<Constant>(MSI->getValue())) {
182         Changed = true;
183         MSI->eraseFromParent();
184       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
185         if (I->hasOneUse())
186           Dead.push_back(std::make_pair(I, MSI));
187       }
188     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
189       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
190       if (MemSrc && MemSrc->isConstant()) {
191         Changed = true;
192         MTI->eraseFromParent();
193       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
194         if (I->hasOneUse())
195           Dead.push_back(std::make_pair(I, MTI));
196       }
197     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
198       if (CE->use_empty()) {
199         CE->destroyConstant();
200         Changed = true;
201       }
202     } else if (Constant *C = dyn_cast<Constant>(U)) {
203       if (isSafeToDestroyConstant(C)) {
204         C->destroyConstant();
205         // This could have invalidated UI, start over from scratch.
206         Dead.clear();
207         CleanupPointerRootUsers(GV, TLI);
208         return true;
209       }
210     }
211   }
212 
213   for (int i = 0, e = Dead.size(); i != e; ++i) {
214     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
215       Dead[i].second->eraseFromParent();
216       Instruction *I = Dead[i].first;
217       do {
218         if (isAllocationFn(I, TLI))
219           break;
220         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
221         if (!J)
222           break;
223         I->eraseFromParent();
224         I = J;
225       } while (1);
226       I->eraseFromParent();
227     }
228   }
229 
230   return Changed;
231 }
232 
233 /// We just marked GV constant.  Loop over all users of the global, cleaning up
234 /// the obvious ones.  This is largely just a quick scan over the use list to
235 /// clean up the easy and obvious cruft.  This returns true if it made a change.
236 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
237                                        const DataLayout &DL,
238                                        TargetLibraryInfo *TLI) {
239   bool Changed = false;
240   // Note that we need to use a weak value handle for the worklist items. When
241   // we delete a constant array, we may also be holding pointer to one of its
242   // elements (or an element of one of its elements if we're dealing with an
243   // array of arrays) in the worklist.
244   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
245   while (!WorkList.empty()) {
246     Value *UV = WorkList.pop_back_val();
247     if (!UV)
248       continue;
249 
250     User *U = cast<User>(UV);
251 
252     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
253       if (Init) {
254         // Replace the load with the initializer.
255         LI->replaceAllUsesWith(Init);
256         LI->eraseFromParent();
257         Changed = true;
258       }
259     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
260       // Store must be unreachable or storing Init into the global.
261       SI->eraseFromParent();
262       Changed = true;
263     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
264       if (CE->getOpcode() == Instruction::GetElementPtr) {
265         Constant *SubInit = nullptr;
266         if (Init)
267           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
268         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
269       } else if ((CE->getOpcode() == Instruction::BitCast &&
270                   CE->getType()->isPointerTy()) ||
271                  CE->getOpcode() == Instruction::AddrSpaceCast) {
272         // Pointer cast, delete any stores and memsets to the global.
273         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
274       }
275 
276       if (CE->use_empty()) {
277         CE->destroyConstant();
278         Changed = true;
279       }
280     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
281       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
282       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
283       // and will invalidate our notion of what Init is.
284       Constant *SubInit = nullptr;
285       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
286         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
287             ConstantFoldInstruction(GEP, DL, TLI));
288         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
289           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
290 
291         // If the initializer is an all-null value and we have an inbounds GEP,
292         // we already know what the result of any load from that GEP is.
293         // TODO: Handle splats.
294         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
295           SubInit = Constant::getNullValue(GEP->getResultElementType());
296       }
297       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
298 
299       if (GEP->use_empty()) {
300         GEP->eraseFromParent();
301         Changed = true;
302       }
303     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
304       if (MI->getRawDest() == V) {
305         MI->eraseFromParent();
306         Changed = true;
307       }
308 
309     } else if (Constant *C = dyn_cast<Constant>(U)) {
310       // If we have a chain of dead constantexprs or other things dangling from
311       // us, and if they are all dead, nuke them without remorse.
312       if (isSafeToDestroyConstant(C)) {
313         C->destroyConstant();
314         CleanupConstantGlobalUsers(V, Init, DL, TLI);
315         return true;
316       }
317     }
318   }
319   return Changed;
320 }
321 
322 /// Return true if the specified instruction is a safe user of a derived
323 /// expression from a global that we want to SROA.
324 static bool isSafeSROAElementUse(Value *V) {
325   // We might have a dead and dangling constant hanging off of here.
326   if (Constant *C = dyn_cast<Constant>(V))
327     return isSafeToDestroyConstant(C);
328 
329   Instruction *I = dyn_cast<Instruction>(V);
330   if (!I) return false;
331 
332   // Loads are ok.
333   if (isa<LoadInst>(I)) return true;
334 
335   // Stores *to* the pointer are ok.
336   if (StoreInst *SI = dyn_cast<StoreInst>(I))
337     return SI->getOperand(0) != V;
338 
339   // Otherwise, it must be a GEP.
340   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
341   if (!GEPI) return false;
342 
343   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
344       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
345     return false;
346 
347   for (User *U : GEPI->users())
348     if (!isSafeSROAElementUse(U))
349       return false;
350   return true;
351 }
352 
353 
354 /// U is a direct user of the specified global value.  Look at it and its uses
355 /// and decide whether it is safe to SROA this global.
356 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
357   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
358   if (!isa<GetElementPtrInst>(U) &&
359       (!isa<ConstantExpr>(U) ||
360        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
361     return false;
362 
363   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
364   // don't like < 3 operand CE's, and we don't like non-constant integer
365   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
366   // value of C.
367   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
368       !cast<Constant>(U->getOperand(1))->isNullValue() ||
369       !isa<ConstantInt>(U->getOperand(2)))
370     return false;
371 
372   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
373   ++GEPI;  // Skip over the pointer index.
374 
375   // If this is a use of an array allocation, do a bit more checking for sanity.
376   if (GEPI.isSequential()) {
377     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
378 
379     // Check to make sure that index falls within the array.  If not,
380     // something funny is going on, so we won't do the optimization.
381     //
382     if (GEPI.isBoundedSequential() &&
383         Idx->getZExtValue() >= GEPI.getSequentialNumElements())
384       return false;
385 
386     // We cannot scalar repl this level of the array unless any array
387     // sub-indices are in-range constants.  In particular, consider:
388     // A[0][i].  We cannot know that the user isn't doing invalid things like
389     // allowing i to index an out-of-range subscript that accesses A[1].
390     //
391     // Scalar replacing *just* the outer index of the array is probably not
392     // going to be a win anyway, so just give up.
393     for (++GEPI; // Skip array index.
394          GEPI != E;
395          ++GEPI) {
396       if (GEPI.isStruct())
397         continue;
398 
399       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
400       if (!IdxVal ||
401           (GEPI.isBoundedSequential() &&
402            IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
403         return false;
404     }
405   }
406 
407   return llvm::all_of(U->users(),
408                       [](User *UU) { return isSafeSROAElementUse(UU); });
409 }
410 
411 /// Look at all uses of the global and decide whether it is safe for us to
412 /// perform this transformation.
413 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
414   for (User *U : GV->users())
415     if (!IsUserOfGlobalSafeForSRA(U, GV))
416       return false;
417 
418   return true;
419 }
420 
421 /// Copy over the debug info for a variable to its SRA replacements.
422 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
423                                  uint64_t FragmentOffsetInBits,
424                                  uint64_t FragmentSizeInBits,
425                                  unsigned NumElements) {
426   SmallVector<DIGlobalVariableExpression *, 1> GVs;
427   GV->getDebugInfo(GVs);
428   for (auto *GVE : GVs) {
429     DIVariable *Var = GVE->getVariable();
430     DIExpression *Expr = GVE->getExpression();
431     if (NumElements > 1)
432       Expr = DIExpression::createFragmentExpression(Expr, FragmentOffsetInBits,
433                                                     FragmentSizeInBits);
434     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
435     NGV->addDebugInfo(NGVE);
436   }
437 }
438 
439 
440 /// Perform scalar replacement of aggregates on the specified global variable.
441 /// This opens the door for other optimizations by exposing the behavior of the
442 /// program in a more fine-grained way.  We have determined that this
443 /// transformation is safe already.  We return the first global variable we
444 /// insert so that the caller can reprocess it.
445 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
446   // Make sure this global only has simple uses that we can SRA.
447   if (!GlobalUsersSafeToSRA(GV))
448     return nullptr;
449 
450   assert(GV->hasLocalLinkage());
451   Constant *Init = GV->getInitializer();
452   Type *Ty = Init->getType();
453 
454   std::vector<GlobalVariable*> NewGlobals;
455   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
456 
457   // Get the alignment of the global, either explicit or target-specific.
458   unsigned StartAlignment = GV->getAlignment();
459   if (StartAlignment == 0)
460     StartAlignment = DL.getABITypeAlignment(GV->getType());
461 
462   if (StructType *STy = dyn_cast<StructType>(Ty)) {
463     uint64_t FragmentOffset = 0;
464     unsigned NumElements = STy->getNumElements();
465     NewGlobals.reserve(NumElements);
466     const StructLayout &Layout = *DL.getStructLayout(STy);
467     for (unsigned i = 0, e = NumElements; i != e; ++i) {
468       Constant *In = Init->getAggregateElement(i);
469       assert(In && "Couldn't get element of initializer?");
470       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
471                                                GlobalVariable::InternalLinkage,
472                                                In, GV->getName()+"."+Twine(i),
473                                                GV->getThreadLocalMode(),
474                                               GV->getType()->getAddressSpace());
475       NGV->setExternallyInitialized(GV->isExternallyInitialized());
476       NGV->copyAttributesFrom(GV);
477       Globals.push_back(NGV);
478       NewGlobals.push_back(NGV);
479 
480       // Calculate the known alignment of the field.  If the original aggregate
481       // had 256 byte alignment for example, something might depend on that:
482       // propagate info to each field.
483       uint64_t FieldOffset = Layout.getElementOffset(i);
484       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
485       if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
486         NGV->setAlignment(NewAlign);
487 
488       // Copy over the debug info for the variable.
489       FragmentOffset = alignTo(FragmentOffset, NewAlign);
490       uint64_t Size = DL.getTypeSizeInBits(NGV->getValueType());
491       transferSRADebugInfo(GV, NGV, FragmentOffset, Size, NumElements);
492       FragmentOffset += Size;
493     }
494   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
495     unsigned NumElements = STy->getNumElements();
496     if (NumElements > 16 && GV->hasNUsesOrMore(16))
497       return nullptr; // It's not worth it.
498     NewGlobals.reserve(NumElements);
499     auto ElTy = STy->getElementType();
500     uint64_t EltSize = DL.getTypeAllocSize(ElTy);
501     unsigned EltAlign = DL.getABITypeAlignment(ElTy);
502     uint64_t FragmentSizeInBits = DL.getTypeSizeInBits(ElTy);
503     for (unsigned i = 0, e = NumElements; i != e; ++i) {
504       Constant *In = Init->getAggregateElement(i);
505       assert(In && "Couldn't get element of initializer?");
506 
507       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
508                                                GlobalVariable::InternalLinkage,
509                                                In, GV->getName()+"."+Twine(i),
510                                                GV->getThreadLocalMode(),
511                                               GV->getType()->getAddressSpace());
512       NGV->setExternallyInitialized(GV->isExternallyInitialized());
513       NGV->copyAttributesFrom(GV);
514       Globals.push_back(NGV);
515       NewGlobals.push_back(NGV);
516 
517       // Calculate the known alignment of the field.  If the original aggregate
518       // had 256 byte alignment for example, something might depend on that:
519       // propagate info to each field.
520       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
521       if (NewAlign > EltAlign)
522         NGV->setAlignment(NewAlign);
523       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits,
524                            NumElements);
525     }
526   }
527 
528   if (NewGlobals.empty())
529     return nullptr;
530 
531   DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
532 
533   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
534 
535   // Loop over all of the uses of the global, replacing the constantexpr geps,
536   // with smaller constantexpr geps or direct references.
537   while (!GV->use_empty()) {
538     User *GEP = GV->user_back();
539     assert(((isa<ConstantExpr>(GEP) &&
540              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
541             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
542 
543     // Ignore the 1th operand, which has to be zero or else the program is quite
544     // broken (undefined).  Get the 2nd operand, which is the structure or array
545     // index.
546     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
547     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
548 
549     Value *NewPtr = NewGlobals[Val];
550     Type *NewTy = NewGlobals[Val]->getValueType();
551 
552     // Form a shorter GEP if needed.
553     if (GEP->getNumOperands() > 3) {
554       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
555         SmallVector<Constant*, 8> Idxs;
556         Idxs.push_back(NullInt);
557         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
558           Idxs.push_back(CE->getOperand(i));
559         NewPtr =
560             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
561       } else {
562         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
563         SmallVector<Value*, 8> Idxs;
564         Idxs.push_back(NullInt);
565         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
566           Idxs.push_back(GEPI->getOperand(i));
567         NewPtr = GetElementPtrInst::Create(
568             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
569       }
570     }
571     GEP->replaceAllUsesWith(NewPtr);
572 
573     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
574       GEPI->eraseFromParent();
575     else
576       cast<ConstantExpr>(GEP)->destroyConstant();
577   }
578 
579   // Delete the old global, now that it is dead.
580   Globals.erase(GV);
581   ++NumSRA;
582 
583   // Loop over the new globals array deleting any globals that are obviously
584   // dead.  This can arise due to scalarization of a structure or an array that
585   // has elements that are dead.
586   unsigned FirstGlobal = 0;
587   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
588     if (NewGlobals[i]->use_empty()) {
589       Globals.erase(NewGlobals[i]);
590       if (FirstGlobal == i) ++FirstGlobal;
591     }
592 
593   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
594 }
595 
596 /// Return true if all users of the specified value will trap if the value is
597 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
598 /// reprocessing them.
599 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
600                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
601   for (const User *U : V->users())
602     if (isa<LoadInst>(U)) {
603       // Will trap.
604     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
605       if (SI->getOperand(0) == V) {
606         //cerr << "NONTRAPPING USE: " << *U;
607         return false;  // Storing the value.
608       }
609     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
610       if (CI->getCalledValue() != V) {
611         //cerr << "NONTRAPPING USE: " << *U;
612         return false;  // Not calling the ptr
613       }
614     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
615       if (II->getCalledValue() != V) {
616         //cerr << "NONTRAPPING USE: " << *U;
617         return false;  // Not calling the ptr
618       }
619     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
620       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
621     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
622       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
623     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
624       // If we've already seen this phi node, ignore it, it has already been
625       // checked.
626       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
627         return false;
628     } else if (isa<ICmpInst>(U) &&
629                isa<ConstantPointerNull>(U->getOperand(1))) {
630       // Ignore icmp X, null
631     } else {
632       //cerr << "NONTRAPPING USE: " << *U;
633       return false;
634     }
635 
636   return true;
637 }
638 
639 /// Return true if all uses of any loads from GV will trap if the loaded value
640 /// is null.  Note that this also permits comparisons of the loaded value
641 /// against null, as a special case.
642 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
643   for (const User *U : GV->users())
644     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
645       SmallPtrSet<const PHINode*, 8> PHIs;
646       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
647         return false;
648     } else if (isa<StoreInst>(U)) {
649       // Ignore stores to the global.
650     } else {
651       // We don't know or understand this user, bail out.
652       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
653       return false;
654     }
655   return true;
656 }
657 
658 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
659   bool Changed = false;
660   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
661     Instruction *I = cast<Instruction>(*UI++);
662     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
663       LI->setOperand(0, NewV);
664       Changed = true;
665     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
666       if (SI->getOperand(1) == V) {
667         SI->setOperand(1, NewV);
668         Changed = true;
669       }
670     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
671       CallSite CS(I);
672       if (CS.getCalledValue() == V) {
673         // Calling through the pointer!  Turn into a direct call, but be careful
674         // that the pointer is not also being passed as an argument.
675         CS.setCalledFunction(NewV);
676         Changed = true;
677         bool PassedAsArg = false;
678         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
679           if (CS.getArgument(i) == V) {
680             PassedAsArg = true;
681             CS.setArgument(i, NewV);
682           }
683 
684         if (PassedAsArg) {
685           // Being passed as an argument also.  Be careful to not invalidate UI!
686           UI = V->user_begin();
687         }
688       }
689     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
690       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
691                                 ConstantExpr::getCast(CI->getOpcode(),
692                                                       NewV, CI->getType()));
693       if (CI->use_empty()) {
694         Changed = true;
695         CI->eraseFromParent();
696       }
697     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
698       // Should handle GEP here.
699       SmallVector<Constant*, 8> Idxs;
700       Idxs.reserve(GEPI->getNumOperands()-1);
701       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
702            i != e; ++i)
703         if (Constant *C = dyn_cast<Constant>(*i))
704           Idxs.push_back(C);
705         else
706           break;
707       if (Idxs.size() == GEPI->getNumOperands()-1)
708         Changed |= OptimizeAwayTrappingUsesOfValue(
709             GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
710       if (GEPI->use_empty()) {
711         Changed = true;
712         GEPI->eraseFromParent();
713       }
714     }
715   }
716 
717   return Changed;
718 }
719 
720 
721 /// The specified global has only one non-null value stored into it.  If there
722 /// are uses of the loaded value that would trap if the loaded value is
723 /// dynamically null, then we know that they cannot be reachable with a null
724 /// optimize away the load.
725 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
726                                             const DataLayout &DL,
727                                             TargetLibraryInfo *TLI) {
728   bool Changed = false;
729 
730   // Keep track of whether we are able to remove all the uses of the global
731   // other than the store that defines it.
732   bool AllNonStoreUsesGone = true;
733 
734   // Replace all uses of loads with uses of uses of the stored value.
735   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
736     User *GlobalUser = *GUI++;
737     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
738       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
739       // If we were able to delete all uses of the loads
740       if (LI->use_empty()) {
741         LI->eraseFromParent();
742         Changed = true;
743       } else {
744         AllNonStoreUsesGone = false;
745       }
746     } else if (isa<StoreInst>(GlobalUser)) {
747       // Ignore the store that stores "LV" to the global.
748       assert(GlobalUser->getOperand(1) == GV &&
749              "Must be storing *to* the global");
750     } else {
751       AllNonStoreUsesGone = false;
752 
753       // If we get here we could have other crazy uses that are transitively
754       // loaded.
755       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
756               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
757               isa<BitCastInst>(GlobalUser) ||
758               isa<GetElementPtrInst>(GlobalUser)) &&
759              "Only expect load and stores!");
760     }
761   }
762 
763   if (Changed) {
764     DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n");
765     ++NumGlobUses;
766   }
767 
768   // If we nuked all of the loads, then none of the stores are needed either,
769   // nor is the global.
770   if (AllNonStoreUsesGone) {
771     if (isLeakCheckerRoot(GV)) {
772       Changed |= CleanupPointerRootUsers(GV, TLI);
773     } else {
774       Changed = true;
775       CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
776     }
777     if (GV->use_empty()) {
778       DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
779       Changed = true;
780       GV->eraseFromParent();
781       ++NumDeleted;
782     }
783   }
784   return Changed;
785 }
786 
787 /// Walk the use list of V, constant folding all of the instructions that are
788 /// foldable.
789 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
790                                 TargetLibraryInfo *TLI) {
791   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
792     if (Instruction *I = dyn_cast<Instruction>(*UI++))
793       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
794         I->replaceAllUsesWith(NewC);
795 
796         // Advance UI to the next non-I use to avoid invalidating it!
797         // Instructions could multiply use V.
798         while (UI != E && *UI == I)
799           ++UI;
800         if (isInstructionTriviallyDead(I, TLI))
801           I->eraseFromParent();
802       }
803 }
804 
805 /// This function takes the specified global variable, and transforms the
806 /// program as if it always contained the result of the specified malloc.
807 /// Because it is always the result of the specified malloc, there is no reason
808 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
809 /// loads of GV as uses of the new global.
810 static GlobalVariable *
811 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
812                               ConstantInt *NElements, const DataLayout &DL,
813                               TargetLibraryInfo *TLI) {
814   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
815 
816   Type *GlobalType;
817   if (NElements->getZExtValue() == 1)
818     GlobalType = AllocTy;
819   else
820     // If we have an array allocation, the global variable is of an array.
821     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
822 
823   // Create the new global variable.  The contents of the malloc'd memory is
824   // undefined, so initialize with an undef value.
825   GlobalVariable *NewGV = new GlobalVariable(
826       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
827       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
828       GV->getThreadLocalMode());
829 
830   // If there are bitcast users of the malloc (which is typical, usually we have
831   // a malloc + bitcast) then replace them with uses of the new global.  Update
832   // other users to use the global as well.
833   BitCastInst *TheBC = nullptr;
834   while (!CI->use_empty()) {
835     Instruction *User = cast<Instruction>(CI->user_back());
836     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
837       if (BCI->getType() == NewGV->getType()) {
838         BCI->replaceAllUsesWith(NewGV);
839         BCI->eraseFromParent();
840       } else {
841         BCI->setOperand(0, NewGV);
842       }
843     } else {
844       if (!TheBC)
845         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
846       User->replaceUsesOfWith(CI, TheBC);
847     }
848   }
849 
850   Constant *RepValue = NewGV;
851   if (NewGV->getType() != GV->getValueType())
852     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
853 
854   // If there is a comparison against null, we will insert a global bool to
855   // keep track of whether the global was initialized yet or not.
856   GlobalVariable *InitBool =
857     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
858                        GlobalValue::InternalLinkage,
859                        ConstantInt::getFalse(GV->getContext()),
860                        GV->getName()+".init", GV->getThreadLocalMode());
861   bool InitBoolUsed = false;
862 
863   // Loop over all uses of GV, processing them in turn.
864   while (!GV->use_empty()) {
865     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
866       // The global is initialized when the store to it occurs.
867       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
868                     SI->getOrdering(), SI->getSyncScopeID(), SI);
869       SI->eraseFromParent();
870       continue;
871     }
872 
873     LoadInst *LI = cast<LoadInst>(GV->user_back());
874     while (!LI->use_empty()) {
875       Use &LoadUse = *LI->use_begin();
876       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
877       if (!ICI) {
878         LoadUse = RepValue;
879         continue;
880       }
881 
882       // Replace the cmp X, 0 with a use of the bool value.
883       // Sink the load to where the compare was, if atomic rules allow us to.
884       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
885                                LI->getOrdering(), LI->getSyncScopeID(),
886                                LI->isUnordered() ? (Instruction*)ICI : LI);
887       InitBoolUsed = true;
888       switch (ICI->getPredicate()) {
889       default: llvm_unreachable("Unknown ICmp Predicate!");
890       case ICmpInst::ICMP_ULT:
891       case ICmpInst::ICMP_SLT:   // X < null -> always false
892         LV = ConstantInt::getFalse(GV->getContext());
893         break;
894       case ICmpInst::ICMP_ULE:
895       case ICmpInst::ICMP_SLE:
896       case ICmpInst::ICMP_EQ:
897         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
898         break;
899       case ICmpInst::ICMP_NE:
900       case ICmpInst::ICMP_UGE:
901       case ICmpInst::ICMP_SGE:
902       case ICmpInst::ICMP_UGT:
903       case ICmpInst::ICMP_SGT:
904         break;  // no change.
905       }
906       ICI->replaceAllUsesWith(LV);
907       ICI->eraseFromParent();
908     }
909     LI->eraseFromParent();
910   }
911 
912   // If the initialization boolean was used, insert it, otherwise delete it.
913   if (!InitBoolUsed) {
914     while (!InitBool->use_empty())  // Delete initializations
915       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
916     delete InitBool;
917   } else
918     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
919 
920   // Now the GV is dead, nuke it and the malloc..
921   GV->eraseFromParent();
922   CI->eraseFromParent();
923 
924   // To further other optimizations, loop over all users of NewGV and try to
925   // constant prop them.  This will promote GEP instructions with constant
926   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
927   ConstantPropUsersOf(NewGV, DL, TLI);
928   if (RepValue != NewGV)
929     ConstantPropUsersOf(RepValue, DL, TLI);
930 
931   return NewGV;
932 }
933 
934 /// Scan the use-list of V checking to make sure that there are no complex uses
935 /// of V.  We permit simple things like dereferencing the pointer, but not
936 /// storing through the address, unless it is to the specified global.
937 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
938                                                       const GlobalVariable *GV,
939                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
940   for (const User *U : V->users()) {
941     const Instruction *Inst = cast<Instruction>(U);
942 
943     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
944       continue; // Fine, ignore.
945     }
946 
947     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
948       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
949         return false;  // Storing the pointer itself... bad.
950       continue; // Otherwise, storing through it, or storing into GV... fine.
951     }
952 
953     // Must index into the array and into the struct.
954     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
955       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
956         return false;
957       continue;
958     }
959 
960     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
961       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
962       // cycles.
963       if (PHIs.insert(PN).second)
964         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
965           return false;
966       continue;
967     }
968 
969     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
970       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
971         return false;
972       continue;
973     }
974 
975     return false;
976   }
977   return true;
978 }
979 
980 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
981 /// allocation into loads from the global and uses of the resultant pointer.
982 /// Further, delete the store into GV.  This assumes that these value pass the
983 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
984 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
985                                           GlobalVariable *GV) {
986   while (!Alloc->use_empty()) {
987     Instruction *U = cast<Instruction>(*Alloc->user_begin());
988     Instruction *InsertPt = U;
989     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
990       // If this is the store of the allocation into the global, remove it.
991       if (SI->getOperand(1) == GV) {
992         SI->eraseFromParent();
993         continue;
994       }
995     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
996       // Insert the load in the corresponding predecessor, not right before the
997       // PHI.
998       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
999     } else if (isa<BitCastInst>(U)) {
1000       // Must be bitcast between the malloc and store to initialize the global.
1001       ReplaceUsesOfMallocWithGlobal(U, GV);
1002       U->eraseFromParent();
1003       continue;
1004     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1005       // If this is a "GEP bitcast" and the user is a store to the global, then
1006       // just process it as a bitcast.
1007       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1008         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1009           if (SI->getOperand(1) == GV) {
1010             // Must be bitcast GEP between the malloc and store to initialize
1011             // the global.
1012             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1013             GEPI->eraseFromParent();
1014             continue;
1015           }
1016     }
1017 
1018     // Insert a load from the global, and use it instead of the malloc.
1019     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1020     U->replaceUsesOfWith(Alloc, NL);
1021   }
1022 }
1023 
1024 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1025 /// perform heap SRA on.  This permits GEP's that index through the array and
1026 /// struct field, icmps of null, and PHIs.
1027 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1028                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1029                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1030   // We permit two users of the load: setcc comparing against the null
1031   // pointer, and a getelementptr of a specific form.
1032   for (const User *U : V->users()) {
1033     const Instruction *UI = cast<Instruction>(U);
1034 
1035     // Comparison against null is ok.
1036     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1037       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1038         return false;
1039       continue;
1040     }
1041 
1042     // getelementptr is also ok, but only a simple form.
1043     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1044       // Must index into the array and into the struct.
1045       if (GEPI->getNumOperands() < 3)
1046         return false;
1047 
1048       // Otherwise the GEP is ok.
1049       continue;
1050     }
1051 
1052     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1053       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1054         // This means some phi nodes are dependent on each other.
1055         // Avoid infinite looping!
1056         return false;
1057       if (!LoadUsingPHIs.insert(PN).second)
1058         // If we have already analyzed this PHI, then it is safe.
1059         continue;
1060 
1061       // Make sure all uses of the PHI are simple enough to transform.
1062       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1063                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1064         return false;
1065 
1066       continue;
1067     }
1068 
1069     // Otherwise we don't know what this is, not ok.
1070     return false;
1071   }
1072 
1073   return true;
1074 }
1075 
1076 
1077 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1078 /// return true.
1079 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1080                                                     Instruction *StoredVal) {
1081   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1082   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1083   for (const User *U : GV->users())
1084     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1085       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1086                                           LoadUsingPHIsPerLoad))
1087         return false;
1088       LoadUsingPHIsPerLoad.clear();
1089     }
1090 
1091   // If we reach here, we know that all uses of the loads and transitive uses
1092   // (through PHI nodes) are simple enough to transform.  However, we don't know
1093   // that all inputs the to the PHI nodes are in the same equivalence sets.
1094   // Check to verify that all operands of the PHIs are either PHIS that can be
1095   // transformed, loads from GV, or MI itself.
1096   for (const PHINode *PN : LoadUsingPHIs) {
1097     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1098       Value *InVal = PN->getIncomingValue(op);
1099 
1100       // PHI of the stored value itself is ok.
1101       if (InVal == StoredVal) continue;
1102 
1103       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1104         // One of the PHIs in our set is (optimistically) ok.
1105         if (LoadUsingPHIs.count(InPN))
1106           continue;
1107         return false;
1108       }
1109 
1110       // Load from GV is ok.
1111       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1112         if (LI->getOperand(0) == GV)
1113           continue;
1114 
1115       // UNDEF? NULL?
1116 
1117       // Anything else is rejected.
1118       return false;
1119     }
1120   }
1121 
1122   return true;
1123 }
1124 
1125 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1126                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1127                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1128   std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1129 
1130   if (FieldNo >= FieldVals.size())
1131     FieldVals.resize(FieldNo+1);
1132 
1133   // If we already have this value, just reuse the previously scalarized
1134   // version.
1135   if (Value *FieldVal = FieldVals[FieldNo])
1136     return FieldVal;
1137 
1138   // Depending on what instruction this is, we have several cases.
1139   Value *Result;
1140   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1141     // This is a scalarized version of the load from the global.  Just create
1142     // a new Load of the scalarized global.
1143     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1144                                            InsertedScalarizedValues,
1145                                            PHIsToRewrite),
1146                           LI->getName()+".f"+Twine(FieldNo), LI);
1147   } else {
1148     PHINode *PN = cast<PHINode>(V);
1149     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1150     // field.
1151 
1152     PointerType *PTy = cast<PointerType>(PN->getType());
1153     StructType *ST = cast<StructType>(PTy->getElementType());
1154 
1155     unsigned AS = PTy->getAddressSpace();
1156     PHINode *NewPN =
1157       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1158                      PN->getNumIncomingValues(),
1159                      PN->getName()+".f"+Twine(FieldNo), PN);
1160     Result = NewPN;
1161     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1162   }
1163 
1164   return FieldVals[FieldNo] = Result;
1165 }
1166 
1167 /// Given a load instruction and a value derived from the load, rewrite the
1168 /// derived value to use the HeapSRoA'd load.
1169 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1170              DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1171                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1172   // If this is a comparison against null, handle it.
1173   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1174     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1175     // If we have a setcc of the loaded pointer, we can use a setcc of any
1176     // field.
1177     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1178                                    InsertedScalarizedValues, PHIsToRewrite);
1179 
1180     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1181                               Constant::getNullValue(NPtr->getType()),
1182                               SCI->getName());
1183     SCI->replaceAllUsesWith(New);
1184     SCI->eraseFromParent();
1185     return;
1186   }
1187 
1188   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1189   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1190     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1191            && "Unexpected GEPI!");
1192 
1193     // Load the pointer for this field.
1194     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1195     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1196                                      InsertedScalarizedValues, PHIsToRewrite);
1197 
1198     // Create the new GEP idx vector.
1199     SmallVector<Value*, 8> GEPIdx;
1200     GEPIdx.push_back(GEPI->getOperand(1));
1201     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1202 
1203     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1204                                              GEPI->getName(), GEPI);
1205     GEPI->replaceAllUsesWith(NGEPI);
1206     GEPI->eraseFromParent();
1207     return;
1208   }
1209 
1210   // Recursively transform the users of PHI nodes.  This will lazily create the
1211   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1212   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1213   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1214   // already been seen first by another load, so its uses have already been
1215   // processed.
1216   PHINode *PN = cast<PHINode>(LoadUser);
1217   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1218                                               std::vector<Value*>())).second)
1219     return;
1220 
1221   // If this is the first time we've seen this PHI, recursively process all
1222   // users.
1223   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1224     Instruction *User = cast<Instruction>(*UI++);
1225     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1226   }
1227 }
1228 
1229 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1230 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1231 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1232 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1233                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1234                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1235   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1236     Instruction *User = cast<Instruction>(*UI++);
1237     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1238   }
1239 
1240   if (Load->use_empty()) {
1241     Load->eraseFromParent();
1242     InsertedScalarizedValues.erase(Load);
1243   }
1244 }
1245 
1246 /// CI is an allocation of an array of structures.  Break it up into multiple
1247 /// allocations of arrays of the fields.
1248 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1249                                             Value *NElems, const DataLayout &DL,
1250                                             const TargetLibraryInfo *TLI) {
1251   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1252   Type *MAT = getMallocAllocatedType(CI, TLI);
1253   StructType *STy = cast<StructType>(MAT);
1254 
1255   // There is guaranteed to be at least one use of the malloc (storing
1256   // it into GV).  If there are other uses, change them to be uses of
1257   // the global to simplify later code.  This also deletes the store
1258   // into GV.
1259   ReplaceUsesOfMallocWithGlobal(CI, GV);
1260 
1261   // Okay, at this point, there are no users of the malloc.  Insert N
1262   // new mallocs at the same place as CI, and N globals.
1263   std::vector<Value*> FieldGlobals;
1264   std::vector<Value*> FieldMallocs;
1265 
1266   SmallVector<OperandBundleDef, 1> OpBundles;
1267   CI->getOperandBundlesAsDefs(OpBundles);
1268 
1269   unsigned AS = GV->getType()->getPointerAddressSpace();
1270   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1271     Type *FieldTy = STy->getElementType(FieldNo);
1272     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1273 
1274     GlobalVariable *NGV = new GlobalVariable(
1275         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1276         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1277         nullptr, GV->getThreadLocalMode());
1278     NGV->copyAttributesFrom(GV);
1279     FieldGlobals.push_back(NGV);
1280 
1281     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1282     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1283       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1284     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1285     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1286                                         ConstantInt::get(IntPtrTy, TypeSize),
1287                                         NElems, OpBundles, nullptr,
1288                                         CI->getName() + ".f" + Twine(FieldNo));
1289     FieldMallocs.push_back(NMI);
1290     new StoreInst(NMI, NGV, CI);
1291   }
1292 
1293   // The tricky aspect of this transformation is handling the case when malloc
1294   // fails.  In the original code, malloc failing would set the result pointer
1295   // of malloc to null.  In this case, some mallocs could succeed and others
1296   // could fail.  As such, we emit code that looks like this:
1297   //    F0 = malloc(field0)
1298   //    F1 = malloc(field1)
1299   //    F2 = malloc(field2)
1300   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1301   //      if (F0) { free(F0); F0 = 0; }
1302   //      if (F1) { free(F1); F1 = 0; }
1303   //      if (F2) { free(F2); F2 = 0; }
1304   //    }
1305   // The malloc can also fail if its argument is too large.
1306   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1307   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1308                                   ConstantZero, "isneg");
1309   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1310     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1311                              Constant::getNullValue(FieldMallocs[i]->getType()),
1312                                "isnull");
1313     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1314   }
1315 
1316   // Split the basic block at the old malloc.
1317   BasicBlock *OrigBB = CI->getParent();
1318   BasicBlock *ContBB =
1319       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1320 
1321   // Create the block to check the first condition.  Put all these blocks at the
1322   // end of the function as they are unlikely to be executed.
1323   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1324                                                 "malloc_ret_null",
1325                                                 OrigBB->getParent());
1326 
1327   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1328   // branch on RunningOr.
1329   OrigBB->getTerminator()->eraseFromParent();
1330   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1331 
1332   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1333   // pointer, because some may be null while others are not.
1334   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1335     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1336     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1337                               Constant::getNullValue(GVVal->getType()));
1338     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1339                                                OrigBB->getParent());
1340     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1341                                                OrigBB->getParent());
1342     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1343                                          Cmp, NullPtrBlock);
1344 
1345     // Fill in FreeBlock.
1346     CallInst::CreateFree(GVVal, OpBundles, BI);
1347     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1348                   FreeBlock);
1349     BranchInst::Create(NextBlock, FreeBlock);
1350 
1351     NullPtrBlock = NextBlock;
1352   }
1353 
1354   BranchInst::Create(ContBB, NullPtrBlock);
1355 
1356   // CI is no longer needed, remove it.
1357   CI->eraseFromParent();
1358 
1359   /// As we process loads, if we can't immediately update all uses of the load,
1360   /// keep track of what scalarized loads are inserted for a given load.
1361   DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1362   InsertedScalarizedValues[GV] = FieldGlobals;
1363 
1364   std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1365 
1366   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1367   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1368   // of the per-field globals instead.
1369   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1370     Instruction *User = cast<Instruction>(*UI++);
1371 
1372     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1373       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1374       continue;
1375     }
1376 
1377     // Must be a store of null.
1378     StoreInst *SI = cast<StoreInst>(User);
1379     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1380            "Unexpected heap-sra user!");
1381 
1382     // Insert a store of null into each global.
1383     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1384       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1385       Constant *Null = Constant::getNullValue(ValTy);
1386       new StoreInst(Null, FieldGlobals[i], SI);
1387     }
1388     // Erase the original store.
1389     SI->eraseFromParent();
1390   }
1391 
1392   // While we have PHIs that are interesting to rewrite, do it.
1393   while (!PHIsToRewrite.empty()) {
1394     PHINode *PN = PHIsToRewrite.back().first;
1395     unsigned FieldNo = PHIsToRewrite.back().second;
1396     PHIsToRewrite.pop_back();
1397     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1398     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1399 
1400     // Add all the incoming values.  This can materialize more phis.
1401     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1402       Value *InVal = PN->getIncomingValue(i);
1403       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1404                                PHIsToRewrite);
1405       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1406     }
1407   }
1408 
1409   // Drop all inter-phi links and any loads that made it this far.
1410   for (DenseMap<Value*, std::vector<Value*> >::iterator
1411        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1412        I != E; ++I) {
1413     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1414       PN->dropAllReferences();
1415     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1416       LI->dropAllReferences();
1417   }
1418 
1419   // Delete all the phis and loads now that inter-references are dead.
1420   for (DenseMap<Value*, std::vector<Value*> >::iterator
1421        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1422        I != E; ++I) {
1423     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1424       PN->eraseFromParent();
1425     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1426       LI->eraseFromParent();
1427   }
1428 
1429   // The old global is now dead, remove it.
1430   GV->eraseFromParent();
1431 
1432   ++NumHeapSRA;
1433   return cast<GlobalVariable>(FieldGlobals[0]);
1434 }
1435 
1436 /// This function is called when we see a pointer global variable with a single
1437 /// value stored it that is a malloc or cast of malloc.
1438 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1439                                                Type *AllocTy,
1440                                                AtomicOrdering Ordering,
1441                                                const DataLayout &DL,
1442                                                TargetLibraryInfo *TLI) {
1443   // If this is a malloc of an abstract type, don't touch it.
1444   if (!AllocTy->isSized())
1445     return false;
1446 
1447   // We can't optimize this global unless all uses of it are *known* to be
1448   // of the malloc value, not of the null initializer value (consider a use
1449   // that compares the global's value against zero to see if the malloc has
1450   // been reached).  To do this, we check to see if all uses of the global
1451   // would trap if the global were null: this proves that they must all
1452   // happen after the malloc.
1453   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1454     return false;
1455 
1456   // We can't optimize this if the malloc itself is used in a complex way,
1457   // for example, being stored into multiple globals.  This allows the
1458   // malloc to be stored into the specified global, loaded icmp'd, and
1459   // GEP'd.  These are all things we could transform to using the global
1460   // for.
1461   SmallPtrSet<const PHINode*, 8> PHIs;
1462   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1463     return false;
1464 
1465   // If we have a global that is only initialized with a fixed size malloc,
1466   // transform the program to use global memory instead of malloc'd memory.
1467   // This eliminates dynamic allocation, avoids an indirection accessing the
1468   // data, and exposes the resultant global to further GlobalOpt.
1469   // We cannot optimize the malloc if we cannot determine malloc array size.
1470   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1471   if (!NElems)
1472     return false;
1473 
1474   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1475     // Restrict this transformation to only working on small allocations
1476     // (2048 bytes currently), as we don't want to introduce a 16M global or
1477     // something.
1478     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1479       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1480       return true;
1481     }
1482 
1483   // If the allocation is an array of structures, consider transforming this
1484   // into multiple malloc'd arrays, one for each field.  This is basically
1485   // SRoA for malloc'd memory.
1486 
1487   if (Ordering != AtomicOrdering::NotAtomic)
1488     return false;
1489 
1490   // If this is an allocation of a fixed size array of structs, analyze as a
1491   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1492   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1493     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1494       AllocTy = AT->getElementType();
1495 
1496   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1497   if (!AllocSTy)
1498     return false;
1499 
1500   // This the structure has an unreasonable number of fields, leave it
1501   // alone.
1502   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1503       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1504 
1505     // If this is a fixed size array, transform the Malloc to be an alloc of
1506     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1507     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1508       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1509       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1510       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1511       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1512       SmallVector<OperandBundleDef, 1> OpBundles;
1513       CI->getOperandBundlesAsDefs(OpBundles);
1514       Instruction *Malloc =
1515           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1516                                  OpBundles, nullptr, CI->getName());
1517       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1518       CI->replaceAllUsesWith(Cast);
1519       CI->eraseFromParent();
1520       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1521         CI = cast<CallInst>(BCI->getOperand(0));
1522       else
1523         CI = cast<CallInst>(Malloc);
1524     }
1525 
1526     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1527                          TLI);
1528     return true;
1529   }
1530 
1531   return false;
1532 }
1533 
1534 // Try to optimize globals based on the knowledge that only one value (besides
1535 // its initializer) is ever stored to the global.
1536 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1537                                      AtomicOrdering Ordering,
1538                                      const DataLayout &DL,
1539                                      TargetLibraryInfo *TLI) {
1540   // Ignore no-op GEPs and bitcasts.
1541   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1542 
1543   // If we are dealing with a pointer global that is initialized to null and
1544   // only has one (non-null) value stored into it, then we can optimize any
1545   // users of the loaded value (often calls and loads) that would trap if the
1546   // value was null.
1547   if (GV->getInitializer()->getType()->isPointerTy() &&
1548       GV->getInitializer()->isNullValue()) {
1549     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1550       if (GV->getInitializer()->getType() != SOVC->getType())
1551         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1552 
1553       // Optimize away any trapping uses of the loaded value.
1554       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1555         return true;
1556     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1557       Type *MallocType = getMallocAllocatedType(CI, TLI);
1558       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1559                                                            Ordering, DL, TLI))
1560         return true;
1561     }
1562   }
1563 
1564   return false;
1565 }
1566 
1567 /// At this point, we have learned that the only two values ever stored into GV
1568 /// are its initializer and OtherVal.  See if we can shrink the global into a
1569 /// boolean and select between the two values whenever it is used.  This exposes
1570 /// the values to other scalar optimizations.
1571 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1572   Type *GVElType = GV->getValueType();
1573 
1574   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1575   // an FP value, pointer or vector, don't do this optimization because a select
1576   // between them is very expensive and unlikely to lead to later
1577   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1578   // where v1 and v2 both require constant pool loads, a big loss.
1579   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1580       GVElType->isFloatingPointTy() ||
1581       GVElType->isPointerTy() || GVElType->isVectorTy())
1582     return false;
1583 
1584   // Walk the use list of the global seeing if all the uses are load or store.
1585   // If there is anything else, bail out.
1586   for (User *U : GV->users())
1587     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1588       return false;
1589 
1590   DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1591 
1592   // Create the new global, initializing it to false.
1593   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1594                                              false,
1595                                              GlobalValue::InternalLinkage,
1596                                         ConstantInt::getFalse(GV->getContext()),
1597                                              GV->getName()+".b",
1598                                              GV->getThreadLocalMode(),
1599                                              GV->getType()->getAddressSpace());
1600   NewGV->copyAttributesFrom(GV);
1601   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1602 
1603   Constant *InitVal = GV->getInitializer();
1604   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1605          "No reason to shrink to bool!");
1606 
1607   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1608   GV->getDebugInfo(GVs);
1609 
1610   // If initialized to zero and storing one into the global, we can use a cast
1611   // instead of a select to synthesize the desired value.
1612   bool IsOneZero = false;
1613   bool EmitOneOrZero = true;
1614   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)){
1615     IsOneZero = InitVal->isNullValue() && CI->isOne();
1616 
1617     if (ConstantInt *CIInit = dyn_cast<ConstantInt>(GV->getInitializer())){
1618       uint64_t ValInit = CIInit->getZExtValue();
1619       uint64_t ValOther = CI->getZExtValue();
1620       uint64_t ValMinus = ValOther - ValInit;
1621 
1622       for(auto *GVe : GVs){
1623         DIGlobalVariable *DGV = GVe->getVariable();
1624         DIExpression *E = GVe->getExpression();
1625 
1626         // It is expected that the address of global optimized variable is on
1627         // top of the stack. After optimization, value of that variable will
1628         // be ether 0 for initial value or 1 for other value. The following
1629         // expression should return constant integer value depending on the
1630         // value at global object address:
1631         // val * (ValOther - ValInit) + ValInit:
1632         // DW_OP_deref DW_OP_constu <ValMinus>
1633         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1634         E = DIExpression::get(NewGV->getContext(),
1635                              {dwarf::DW_OP_deref,
1636                               dwarf::DW_OP_constu,
1637                               ValMinus,
1638                               dwarf::DW_OP_mul,
1639                               dwarf::DW_OP_constu,
1640                               ValInit,
1641                               dwarf::DW_OP_plus,
1642                               dwarf::DW_OP_stack_value});
1643         DIGlobalVariableExpression *DGVE =
1644           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1645         NewGV->addDebugInfo(DGVE);
1646      }
1647      EmitOneOrZero = false;
1648     }
1649   }
1650 
1651   if (EmitOneOrZero) {
1652      // FIXME: This will only emit address for debugger on which will
1653      // be written only 0 or 1.
1654      for(auto *GV : GVs)
1655        NewGV->addDebugInfo(GV);
1656    }
1657 
1658   while (!GV->use_empty()) {
1659     Instruction *UI = cast<Instruction>(GV->user_back());
1660     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1661       // Change the store into a boolean store.
1662       bool StoringOther = SI->getOperand(0) == OtherVal;
1663       // Only do this if we weren't storing a loaded value.
1664       Value *StoreVal;
1665       if (StoringOther || SI->getOperand(0) == InitVal) {
1666         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1667                                     StoringOther);
1668       } else {
1669         // Otherwise, we are storing a previously loaded copy.  To do this,
1670         // change the copy from copying the original value to just copying the
1671         // bool.
1672         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1673 
1674         // If we've already replaced the input, StoredVal will be a cast or
1675         // select instruction.  If not, it will be a load of the original
1676         // global.
1677         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1678           assert(LI->getOperand(0) == GV && "Not a copy!");
1679           // Insert a new load, to preserve the saved value.
1680           StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1681                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1682         } else {
1683           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1684                  "This is not a form that we understand!");
1685           StoreVal = StoredVal->getOperand(0);
1686           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1687         }
1688       }
1689       new StoreInst(StoreVal, NewGV, false, 0,
1690                     SI->getOrdering(), SI->getSyncScopeID(), SI);
1691     } else {
1692       // Change the load into a load of bool then a select.
1693       LoadInst *LI = cast<LoadInst>(UI);
1694       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1695                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1696       Value *NSI;
1697       if (IsOneZero)
1698         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1699       else
1700         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1701       NSI->takeName(LI);
1702       LI->replaceAllUsesWith(NSI);
1703     }
1704     UI->eraseFromParent();
1705   }
1706 
1707   // Retain the name of the old global variable. People who are debugging their
1708   // programs may expect these variables to be named the same.
1709   NewGV->takeName(GV);
1710   GV->eraseFromParent();
1711   return true;
1712 }
1713 
1714 static bool deleteIfDead(GlobalValue &GV,
1715                          SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
1716   GV.removeDeadConstantUsers();
1717 
1718   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1719     return false;
1720 
1721   if (const Comdat *C = GV.getComdat())
1722     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1723       return false;
1724 
1725   bool Dead;
1726   if (auto *F = dyn_cast<Function>(&GV))
1727     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1728   else
1729     Dead = GV.use_empty();
1730   if (!Dead)
1731     return false;
1732 
1733   DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1734   GV.eraseFromParent();
1735   ++NumDeleted;
1736   return true;
1737 }
1738 
1739 static bool isPointerValueDeadOnEntryToFunction(
1740     const Function *F, GlobalValue *GV,
1741     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1742   // Find all uses of GV. We expect them all to be in F, and if we can't
1743   // identify any of the uses we bail out.
1744   //
1745   // On each of these uses, identify if the memory that GV points to is
1746   // used/required/live at the start of the function. If it is not, for example
1747   // if the first thing the function does is store to the GV, the GV can
1748   // possibly be demoted.
1749   //
1750   // We don't do an exhaustive search for memory operations - simply look
1751   // through bitcasts as they're quite common and benign.
1752   const DataLayout &DL = GV->getParent()->getDataLayout();
1753   SmallVector<LoadInst *, 4> Loads;
1754   SmallVector<StoreInst *, 4> Stores;
1755   for (auto *U : GV->users()) {
1756     if (Operator::getOpcode(U) == Instruction::BitCast) {
1757       for (auto *UU : U->users()) {
1758         if (auto *LI = dyn_cast<LoadInst>(UU))
1759           Loads.push_back(LI);
1760         else if (auto *SI = dyn_cast<StoreInst>(UU))
1761           Stores.push_back(SI);
1762         else
1763           return false;
1764       }
1765       continue;
1766     }
1767 
1768     Instruction *I = dyn_cast<Instruction>(U);
1769     if (!I)
1770       return false;
1771     assert(I->getParent()->getParent() == F);
1772 
1773     if (auto *LI = dyn_cast<LoadInst>(I))
1774       Loads.push_back(LI);
1775     else if (auto *SI = dyn_cast<StoreInst>(I))
1776       Stores.push_back(SI);
1777     else
1778       return false;
1779   }
1780 
1781   // We have identified all uses of GV into loads and stores. Now check if all
1782   // of them are known not to depend on the value of the global at the function
1783   // entry point. We do this by ensuring that every load is dominated by at
1784   // least one store.
1785   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1786 
1787   // The below check is quadratic. Check we're not going to do too many tests.
1788   // FIXME: Even though this will always have worst-case quadratic time, we
1789   // could put effort into minimizing the average time by putting stores that
1790   // have been shown to dominate at least one load at the beginning of the
1791   // Stores array, making subsequent dominance checks more likely to succeed
1792   // early.
1793   //
1794   // The threshold here is fairly large because global->local demotion is a
1795   // very powerful optimization should it fire.
1796   const unsigned Threshold = 100;
1797   if (Loads.size() * Stores.size() > Threshold)
1798     return false;
1799 
1800   for (auto *L : Loads) {
1801     auto *LTy = L->getType();
1802     if (none_of(Stores, [&](const StoreInst *S) {
1803           auto *STy = S->getValueOperand()->getType();
1804           // The load is only dominated by the store if DomTree says so
1805           // and the number of bits loaded in L is less than or equal to
1806           // the number of bits stored in S.
1807           return DT.dominates(S, L) &&
1808                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1809         }))
1810       return false;
1811   }
1812   // All loads have known dependences inside F, so the global can be localized.
1813   return true;
1814 }
1815 
1816 /// C may have non-instruction users. Can all of those users be turned into
1817 /// instructions?
1818 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1819   // We don't do this exhaustively. The most common pattern that we really need
1820   // to care about is a constant GEP or constant bitcast - so just looking
1821   // through one single ConstantExpr.
1822   //
1823   // The set of constants that this function returns true for must be able to be
1824   // handled by makeAllConstantUsesInstructions.
1825   for (auto *U : C->users()) {
1826     if (isa<Instruction>(U))
1827       continue;
1828     if (!isa<ConstantExpr>(U))
1829       // Non instruction, non-constantexpr user; cannot convert this.
1830       return false;
1831     for (auto *UU : U->users())
1832       if (!isa<Instruction>(UU))
1833         // A constantexpr used by another constant. We don't try and recurse any
1834         // further but just bail out at this point.
1835         return false;
1836   }
1837 
1838   return true;
1839 }
1840 
1841 /// C may have non-instruction users, and
1842 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1843 /// non-instruction users to instructions.
1844 static void makeAllConstantUsesInstructions(Constant *C) {
1845   SmallVector<ConstantExpr*,4> Users;
1846   for (auto *U : C->users()) {
1847     if (isa<ConstantExpr>(U))
1848       Users.push_back(cast<ConstantExpr>(U));
1849     else
1850       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1851       // should not have returned true for C.
1852       assert(
1853           isa<Instruction>(U) &&
1854           "Can't transform non-constantexpr non-instruction to instruction!");
1855   }
1856 
1857   SmallVector<Value*,4> UUsers;
1858   for (auto *U : Users) {
1859     UUsers.clear();
1860     for (auto *UU : U->users())
1861       UUsers.push_back(UU);
1862     for (auto *UU : UUsers) {
1863       Instruction *UI = cast<Instruction>(UU);
1864       Instruction *NewU = U->getAsInstruction();
1865       NewU->insertBefore(UI);
1866       UI->replaceUsesOfWith(U, NewU);
1867     }
1868     // We've replaced all the uses, so destroy the constant. (destroyConstant
1869     // will update value handles and metadata.)
1870     U->destroyConstant();
1871   }
1872 }
1873 
1874 /// Analyze the specified global variable and optimize
1875 /// it if possible.  If we make a change, return true.
1876 static bool processInternalGlobal(
1877     GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI,
1878     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1879   auto &DL = GV->getParent()->getDataLayout();
1880   // If this is a first class global and has only one accessing function and
1881   // this function is non-recursive, we replace the global with a local alloca
1882   // in this function.
1883   //
1884   // NOTE: It doesn't make sense to promote non-single-value types since we
1885   // are just replacing static memory to stack memory.
1886   //
1887   // If the global is in different address space, don't bring it to stack.
1888   if (!GS.HasMultipleAccessingFunctions &&
1889       GS.AccessingFunction &&
1890       GV->getValueType()->isSingleValueType() &&
1891       GV->getType()->getAddressSpace() == 0 &&
1892       !GV->isExternallyInitialized() &&
1893       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1894       GS.AccessingFunction->doesNotRecurse() &&
1895       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1896                                           LookupDomTree)) {
1897     const DataLayout &DL = GV->getParent()->getDataLayout();
1898 
1899     DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1900     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1901                                                    ->getEntryBlock().begin());
1902     Type *ElemTy = GV->getValueType();
1903     // FIXME: Pass Global's alignment when globals have alignment
1904     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1905                                         GV->getName(), &FirstI);
1906     if (!isa<UndefValue>(GV->getInitializer()))
1907       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1908 
1909     makeAllConstantUsesInstructions(GV);
1910 
1911     GV->replaceAllUsesWith(Alloca);
1912     GV->eraseFromParent();
1913     ++NumLocalized;
1914     return true;
1915   }
1916 
1917   // If the global is never loaded (but may be stored to), it is dead.
1918   // Delete it now.
1919   if (!GS.IsLoaded) {
1920     DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1921 
1922     bool Changed;
1923     if (isLeakCheckerRoot(GV)) {
1924       // Delete any constant stores to the global.
1925       Changed = CleanupPointerRootUsers(GV, TLI);
1926     } else {
1927       // Delete any stores we can find to the global.  We may not be able to
1928       // make it completely dead though.
1929       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1930     }
1931 
1932     // If the global is dead now, delete it.
1933     if (GV->use_empty()) {
1934       GV->eraseFromParent();
1935       ++NumDeleted;
1936       Changed = true;
1937     }
1938     return Changed;
1939 
1940   }
1941   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1942     DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1943     GV->setConstant(true);
1944 
1945     // Clean up any obviously simplifiable users now.
1946     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1947 
1948     // If the global is dead now, just nuke it.
1949     if (GV->use_empty()) {
1950       DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1951             << "all users and delete global!\n");
1952       GV->eraseFromParent();
1953       ++NumDeleted;
1954       return true;
1955     }
1956 
1957     // Fall through to the next check; see if we can optimize further.
1958     ++NumMarked;
1959   }
1960   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1961     const DataLayout &DL = GV->getParent()->getDataLayout();
1962     if (SRAGlobal(GV, DL))
1963       return true;
1964   }
1965   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1966     // If the initial value for the global was an undef value, and if only
1967     // one other value was stored into it, we can just change the
1968     // initializer to be the stored value, then delete all stores to the
1969     // global.  This allows us to mark it constant.
1970     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1971       if (isa<UndefValue>(GV->getInitializer())) {
1972         // Change the initial value here.
1973         GV->setInitializer(SOVConstant);
1974 
1975         // Clean up any obviously simplifiable users now.
1976         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1977 
1978         if (GV->use_empty()) {
1979           DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1980                        << "simplify all users and delete global!\n");
1981           GV->eraseFromParent();
1982           ++NumDeleted;
1983         }
1984         ++NumSubstitute;
1985         return true;
1986       }
1987 
1988     // Try to optimize globals based on the knowledge that only one value
1989     // (besides its initializer) is ever stored to the global.
1990     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
1991       return true;
1992 
1993     // Otherwise, if the global was not a boolean, we can shrink it to be a
1994     // boolean.
1995     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1996       if (GS.Ordering == AtomicOrdering::NotAtomic) {
1997         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1998           ++NumShrunkToBool;
1999           return true;
2000         }
2001       }
2002     }
2003   }
2004 
2005   return false;
2006 }
2007 
2008 /// Analyze the specified global variable and optimize it if possible.  If we
2009 /// make a change, return true.
2010 static bool
2011 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI,
2012               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2013   if (GV.getName().startswith("llvm."))
2014     return false;
2015 
2016   GlobalStatus GS;
2017 
2018   if (GlobalStatus::analyzeGlobal(&GV, GS))
2019     return false;
2020 
2021   bool Changed = false;
2022   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2023     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2024                                                : GlobalValue::UnnamedAddr::Local;
2025     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2026       GV.setUnnamedAddr(NewUnnamedAddr);
2027       NumUnnamed++;
2028       Changed = true;
2029     }
2030   }
2031 
2032   // Do more involved optimizations if the global is internal.
2033   if (!GV.hasLocalLinkage())
2034     return Changed;
2035 
2036   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2037   if (!GVar)
2038     return Changed;
2039 
2040   if (GVar->isConstant() || !GVar->hasInitializer())
2041     return Changed;
2042 
2043   return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed;
2044 }
2045 
2046 /// Walk all of the direct calls of the specified function, changing them to
2047 /// FastCC.
2048 static void ChangeCalleesToFastCall(Function *F) {
2049   for (User *U : F->users()) {
2050     if (isa<BlockAddress>(U))
2051       continue;
2052     CallSite CS(cast<Instruction>(U));
2053     CS.setCallingConv(CallingConv::Fast);
2054   }
2055 }
2056 
2057 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) {
2058   // There can be at most one attribute set with a nest attribute.
2059   unsigned NestIndex;
2060   if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex))
2061     return Attrs.removeAttribute(C, NestIndex, Attribute::Nest);
2062   return Attrs;
2063 }
2064 
2065 static void RemoveNestAttribute(Function *F) {
2066   F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2067   for (User *U : F->users()) {
2068     if (isa<BlockAddress>(U))
2069       continue;
2070     CallSite CS(cast<Instruction>(U));
2071     CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
2072   }
2073 }
2074 
2075 /// Return true if this is a calling convention that we'd like to change.  The
2076 /// idea here is that we don't want to mess with the convention if the user
2077 /// explicitly requested something with performance implications like coldcc,
2078 /// GHC, or anyregcc.
2079 static bool isProfitableToMakeFastCC(Function *F) {
2080   CallingConv::ID CC = F->getCallingConv();
2081   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2082   return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
2083 }
2084 
2085 static bool
2086 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI,
2087                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2088                   SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2089   bool Changed = false;
2090   // Optimize functions.
2091   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2092     Function *F = &*FI++;
2093     // Functions without names cannot be referenced outside this module.
2094     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2095       F->setLinkage(GlobalValue::InternalLinkage);
2096 
2097     if (deleteIfDead(*F, NotDiscardableComdats)) {
2098       Changed = true;
2099       continue;
2100     }
2101 
2102     // LLVM's definition of dominance allows instructions that are cyclic
2103     // in unreachable blocks, e.g.:
2104     // %pat = select i1 %condition, @global, i16* %pat
2105     // because any instruction dominates an instruction in a block that's
2106     // not reachable from entry.
2107     // So, remove unreachable blocks from the function, because a) there's
2108     // no point in analyzing them and b) GlobalOpt should otherwise grow
2109     // some more complicated logic to break these cycles.
2110     // Removing unreachable blocks might invalidate the dominator so we
2111     // recalculate it.
2112     if (!F->isDeclaration()) {
2113       if (removeUnreachableBlocks(*F)) {
2114         auto &DT = LookupDomTree(*F);
2115         DT.recalculate(*F);
2116         Changed = true;
2117       }
2118     }
2119 
2120     Changed |= processGlobal(*F, TLI, LookupDomTree);
2121 
2122     if (!F->hasLocalLinkage())
2123       continue;
2124     if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
2125         !F->hasAddressTaken()) {
2126       // If this function has a calling convention worth changing, is not a
2127       // varargs function, and is only called directly, promote it to use the
2128       // Fast calling convention.
2129       F->setCallingConv(CallingConv::Fast);
2130       ChangeCalleesToFastCall(F);
2131       ++NumFastCallFns;
2132       Changed = true;
2133     }
2134 
2135     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2136         !F->hasAddressTaken()) {
2137       // The function is not used by a trampoline intrinsic, so it is safe
2138       // to remove the 'nest' attribute.
2139       RemoveNestAttribute(F);
2140       ++NumNestRemoved;
2141       Changed = true;
2142     }
2143   }
2144   return Changed;
2145 }
2146 
2147 static bool
2148 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI,
2149                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2150                    SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2151   bool Changed = false;
2152 
2153   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2154        GVI != E; ) {
2155     GlobalVariable *GV = &*GVI++;
2156     // Global variables without names cannot be referenced outside this module.
2157     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2158       GV->setLinkage(GlobalValue::InternalLinkage);
2159     // Simplify the initializer.
2160     if (GV->hasInitializer())
2161       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2162         auto &DL = M.getDataLayout();
2163         Constant *New = ConstantFoldConstant(C, DL, TLI);
2164         if (New && New != C)
2165           GV->setInitializer(New);
2166       }
2167 
2168     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2169       Changed = true;
2170       continue;
2171     }
2172 
2173     Changed |= processGlobal(*GV, TLI, LookupDomTree);
2174   }
2175   return Changed;
2176 }
2177 
2178 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2179 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2180 /// GEP operands of Addr [0, OpNo) have been stepped into.
2181 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2182                                    ConstantExpr *Addr, unsigned OpNo) {
2183   // Base case of the recursion.
2184   if (OpNo == Addr->getNumOperands()) {
2185     assert(Val->getType() == Init->getType() && "Type mismatch!");
2186     return Val;
2187   }
2188 
2189   SmallVector<Constant*, 32> Elts;
2190   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2191     // Break up the constant into its elements.
2192     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2193       Elts.push_back(Init->getAggregateElement(i));
2194 
2195     // Replace the element that we are supposed to.
2196     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2197     unsigned Idx = CU->getZExtValue();
2198     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2199     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2200 
2201     // Return the modified struct.
2202     return ConstantStruct::get(STy, Elts);
2203   }
2204 
2205   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2206   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2207   uint64_t NumElts = InitTy->getNumElements();
2208 
2209   // Break up the array into elements.
2210   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2211     Elts.push_back(Init->getAggregateElement(i));
2212 
2213   assert(CI->getZExtValue() < NumElts);
2214   Elts[CI->getZExtValue()] =
2215     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2216 
2217   if (Init->getType()->isArrayTy())
2218     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2219   return ConstantVector::get(Elts);
2220 }
2221 
2222 /// We have decided that Addr (which satisfies the predicate
2223 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2224 static void CommitValueTo(Constant *Val, Constant *Addr) {
2225   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2226     assert(GV->hasInitializer());
2227     GV->setInitializer(Val);
2228     return;
2229   }
2230 
2231   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2232   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2233   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2234 }
2235 
2236 /// Evaluate static constructors in the function, if we can.  Return true if we
2237 /// can, false otherwise.
2238 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2239                                       TargetLibraryInfo *TLI) {
2240   // Call the function.
2241   Evaluator Eval(DL, TLI);
2242   Constant *RetValDummy;
2243   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2244                                            SmallVector<Constant*, 0>());
2245 
2246   if (EvalSuccess) {
2247     ++NumCtorsEvaluated;
2248 
2249     // We succeeded at evaluation: commit the result.
2250     DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2251           << F->getName() << "' to " << Eval.getMutatedMemory().size()
2252           << " stores.\n");
2253     for (const auto &I : Eval.getMutatedMemory())
2254       CommitValueTo(I.second, I.first);
2255     for (GlobalVariable *GV : Eval.getInvariants())
2256       GV->setConstant(true);
2257   }
2258 
2259   return EvalSuccess;
2260 }
2261 
2262 static int compareNames(Constant *const *A, Constant *const *B) {
2263   Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
2264   Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
2265   return AStripped->getName().compare(BStripped->getName());
2266 }
2267 
2268 static void setUsedInitializer(GlobalVariable &V,
2269                                const SmallPtrSet<GlobalValue *, 8> &Init) {
2270   if (Init.empty()) {
2271     V.eraseFromParent();
2272     return;
2273   }
2274 
2275   // Type of pointer to the array of pointers.
2276   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2277 
2278   SmallVector<llvm::Constant *, 8> UsedArray;
2279   for (GlobalValue *GV : Init) {
2280     Constant *Cast
2281       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2282     UsedArray.push_back(Cast);
2283   }
2284   // Sort to get deterministic order.
2285   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2286   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2287 
2288   Module *M = V.getParent();
2289   V.removeFromParent();
2290   GlobalVariable *NV =
2291       new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
2292                          llvm::ConstantArray::get(ATy, UsedArray), "");
2293   NV->takeName(&V);
2294   NV->setSection("llvm.metadata");
2295   delete &V;
2296 }
2297 
2298 namespace {
2299 /// An easy to access representation of llvm.used and llvm.compiler.used.
2300 class LLVMUsed {
2301   SmallPtrSet<GlobalValue *, 8> Used;
2302   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2303   GlobalVariable *UsedV;
2304   GlobalVariable *CompilerUsedV;
2305 
2306 public:
2307   LLVMUsed(Module &M) {
2308     UsedV = collectUsedGlobalVariables(M, Used, false);
2309     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2310   }
2311   typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
2312   typedef iterator_range<iterator> used_iterator_range;
2313   iterator usedBegin() { return Used.begin(); }
2314   iterator usedEnd() { return Used.end(); }
2315   used_iterator_range used() {
2316     return used_iterator_range(usedBegin(), usedEnd());
2317   }
2318   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2319   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2320   used_iterator_range compilerUsed() {
2321     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2322   }
2323   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2324   bool compilerUsedCount(GlobalValue *GV) const {
2325     return CompilerUsed.count(GV);
2326   }
2327   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2328   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2329   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2330   bool compilerUsedInsert(GlobalValue *GV) {
2331     return CompilerUsed.insert(GV).second;
2332   }
2333 
2334   void syncVariablesAndSets() {
2335     if (UsedV)
2336       setUsedInitializer(*UsedV, Used);
2337     if (CompilerUsedV)
2338       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2339   }
2340 };
2341 }
2342 
2343 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2344   if (GA.use_empty()) // No use at all.
2345     return false;
2346 
2347   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2348          "We should have removed the duplicated "
2349          "element from llvm.compiler.used");
2350   if (!GA.hasOneUse())
2351     // Strictly more than one use. So at least one is not in llvm.used and
2352     // llvm.compiler.used.
2353     return true;
2354 
2355   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2356   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2357 }
2358 
2359 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2360                                                const LLVMUsed &U) {
2361   unsigned N = 2;
2362   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2363          "We should have removed the duplicated "
2364          "element from llvm.compiler.used");
2365   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2366     ++N;
2367   return V.hasNUsesOrMore(N);
2368 }
2369 
2370 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2371   if (!GA.hasLocalLinkage())
2372     return true;
2373 
2374   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2375 }
2376 
2377 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2378                              bool &RenameTarget) {
2379   RenameTarget = false;
2380   bool Ret = false;
2381   if (hasUseOtherThanLLVMUsed(GA, U))
2382     Ret = true;
2383 
2384   // If the alias is externally visible, we may still be able to simplify it.
2385   if (!mayHaveOtherReferences(GA, U))
2386     return Ret;
2387 
2388   // If the aliasee has internal linkage, give it the name and linkage
2389   // of the alias, and delete the alias.  This turns:
2390   //   define internal ... @f(...)
2391   //   @a = alias ... @f
2392   // into:
2393   //   define ... @a(...)
2394   Constant *Aliasee = GA.getAliasee();
2395   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2396   if (!Target->hasLocalLinkage())
2397     return Ret;
2398 
2399   // Do not perform the transform if multiple aliases potentially target the
2400   // aliasee. This check also ensures that it is safe to replace the section
2401   // and other attributes of the aliasee with those of the alias.
2402   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2403     return Ret;
2404 
2405   RenameTarget = true;
2406   return true;
2407 }
2408 
2409 static bool
2410 OptimizeGlobalAliases(Module &M,
2411                       SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2412   bool Changed = false;
2413   LLVMUsed Used(M);
2414 
2415   for (GlobalValue *GV : Used.used())
2416     Used.compilerUsedErase(GV);
2417 
2418   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2419        I != E;) {
2420     GlobalAlias *J = &*I++;
2421 
2422     // Aliases without names cannot be referenced outside this module.
2423     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2424       J->setLinkage(GlobalValue::InternalLinkage);
2425 
2426     if (deleteIfDead(*J, NotDiscardableComdats)) {
2427       Changed = true;
2428       continue;
2429     }
2430 
2431     // If the aliasee may change at link time, nothing can be done - bail out.
2432     if (J->isInterposable())
2433       continue;
2434 
2435     Constant *Aliasee = J->getAliasee();
2436     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2437     // We can't trivially replace the alias with the aliasee if the aliasee is
2438     // non-trivial in some way.
2439     // TODO: Try to handle non-zero GEPs of local aliasees.
2440     if (!Target)
2441       continue;
2442     Target->removeDeadConstantUsers();
2443 
2444     // Make all users of the alias use the aliasee instead.
2445     bool RenameTarget;
2446     if (!hasUsesToReplace(*J, Used, RenameTarget))
2447       continue;
2448 
2449     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2450     ++NumAliasesResolved;
2451     Changed = true;
2452 
2453     if (RenameTarget) {
2454       // Give the aliasee the name, linkage and other attributes of the alias.
2455       Target->takeName(&*J);
2456       Target->setLinkage(J->getLinkage());
2457       Target->setVisibility(J->getVisibility());
2458       Target->setDLLStorageClass(J->getDLLStorageClass());
2459 
2460       if (Used.usedErase(&*J))
2461         Used.usedInsert(Target);
2462 
2463       if (Used.compilerUsedErase(&*J))
2464         Used.compilerUsedInsert(Target);
2465     } else if (mayHaveOtherReferences(*J, Used))
2466       continue;
2467 
2468     // Delete the alias.
2469     M.getAliasList().erase(J);
2470     ++NumAliasesRemoved;
2471     Changed = true;
2472   }
2473 
2474   Used.syncVariablesAndSets();
2475 
2476   return Changed;
2477 }
2478 
2479 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2480   LibFunc F = LibFunc_cxa_atexit;
2481   if (!TLI->has(F))
2482     return nullptr;
2483 
2484   Function *Fn = M.getFunction(TLI->getName(F));
2485   if (!Fn)
2486     return nullptr;
2487 
2488   // Make sure that the function has the correct prototype.
2489   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2490     return nullptr;
2491 
2492   return Fn;
2493 }
2494 
2495 /// Returns whether the given function is an empty C++ destructor and can
2496 /// therefore be eliminated.
2497 /// Note that we assume that other optimization passes have already simplified
2498 /// the code so we only look for a function with a single basic block, where
2499 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2500 /// other side-effect free instructions.
2501 static bool cxxDtorIsEmpty(const Function &Fn,
2502                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
2503   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2504   // nounwind, but that doesn't seem worth doing.
2505   if (Fn.isDeclaration())
2506     return false;
2507 
2508   if (++Fn.begin() != Fn.end())
2509     return false;
2510 
2511   const BasicBlock &EntryBlock = Fn.getEntryBlock();
2512   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2513        I != E; ++I) {
2514     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2515       // Ignore debug intrinsics.
2516       if (isa<DbgInfoIntrinsic>(CI))
2517         continue;
2518 
2519       const Function *CalledFn = CI->getCalledFunction();
2520 
2521       if (!CalledFn)
2522         return false;
2523 
2524       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2525 
2526       // Don't treat recursive functions as empty.
2527       if (!NewCalledFunctions.insert(CalledFn).second)
2528         return false;
2529 
2530       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2531         return false;
2532     } else if (isa<ReturnInst>(*I))
2533       return true; // We're done.
2534     else if (I->mayHaveSideEffects())
2535       return false; // Destructor with side effects, bail.
2536   }
2537 
2538   return false;
2539 }
2540 
2541 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2542   /// Itanium C++ ABI p3.3.5:
2543   ///
2544   ///   After constructing a global (or local static) object, that will require
2545   ///   destruction on exit, a termination function is registered as follows:
2546   ///
2547   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2548   ///
2549   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2550   ///   call f(p) when DSO d is unloaded, before all such termination calls
2551   ///   registered before this one. It returns zero if registration is
2552   ///   successful, nonzero on failure.
2553 
2554   // This pass will look for calls to __cxa_atexit where the function is trivial
2555   // and remove them.
2556   bool Changed = false;
2557 
2558   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2559        I != E;) {
2560     // We're only interested in calls. Theoretically, we could handle invoke
2561     // instructions as well, but neither llvm-gcc nor clang generate invokes
2562     // to __cxa_atexit.
2563     CallInst *CI = dyn_cast<CallInst>(*I++);
2564     if (!CI)
2565       continue;
2566 
2567     Function *DtorFn =
2568       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2569     if (!DtorFn)
2570       continue;
2571 
2572     SmallPtrSet<const Function *, 8> CalledFunctions;
2573     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2574       continue;
2575 
2576     // Just remove the call.
2577     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2578     CI->eraseFromParent();
2579 
2580     ++NumCXXDtorsRemoved;
2581 
2582     Changed |= true;
2583   }
2584 
2585   return Changed;
2586 }
2587 
2588 static bool optimizeGlobalsInModule(
2589     Module &M, const DataLayout &DL, TargetLibraryInfo *TLI,
2590     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2591   SmallSet<const Comdat *, 8> NotDiscardableComdats;
2592   bool Changed = false;
2593   bool LocalChange = true;
2594   while (LocalChange) {
2595     LocalChange = false;
2596 
2597     NotDiscardableComdats.clear();
2598     for (const GlobalVariable &GV : M.globals())
2599       if (const Comdat *C = GV.getComdat())
2600         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2601           NotDiscardableComdats.insert(C);
2602     for (Function &F : M)
2603       if (const Comdat *C = F.getComdat())
2604         if (!F.isDefTriviallyDead())
2605           NotDiscardableComdats.insert(C);
2606     for (GlobalAlias &GA : M.aliases())
2607       if (const Comdat *C = GA.getComdat())
2608         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2609           NotDiscardableComdats.insert(C);
2610 
2611     // Delete functions that are trivially dead, ccc -> fastcc
2612     LocalChange |=
2613         OptimizeFunctions(M, TLI, LookupDomTree, NotDiscardableComdats);
2614 
2615     // Optimize global_ctors list.
2616     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2617       return EvaluateStaticConstructor(F, DL, TLI);
2618     });
2619 
2620     // Optimize non-address-taken globals.
2621     LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree,
2622                                       NotDiscardableComdats);
2623 
2624     // Resolve aliases, when possible.
2625     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2626 
2627     // Try to remove trivial global destructors if they are not removed
2628     // already.
2629     Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
2630     if (CXAAtExitFn)
2631       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2632 
2633     Changed |= LocalChange;
2634   }
2635 
2636   // TODO: Move all global ctors functions to the end of the module for code
2637   // layout.
2638 
2639   return Changed;
2640 }
2641 
2642 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2643     auto &DL = M.getDataLayout();
2644     auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
2645     auto &FAM =
2646         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2647     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2648       return FAM.getResult<DominatorTreeAnalysis>(F);
2649     };
2650     if (!optimizeGlobalsInModule(M, DL, &TLI, LookupDomTree))
2651       return PreservedAnalyses::all();
2652     return PreservedAnalyses::none();
2653 }
2654 
2655 namespace {
2656 struct GlobalOptLegacyPass : public ModulePass {
2657   static char ID; // Pass identification, replacement for typeid
2658   GlobalOptLegacyPass() : ModulePass(ID) {
2659     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2660   }
2661 
2662   bool runOnModule(Module &M) override {
2663     if (skipModule(M))
2664       return false;
2665 
2666     auto &DL = M.getDataLayout();
2667     auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2668     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2669       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2670     };
2671     return optimizeGlobalsInModule(M, DL, TLI, LookupDomTree);
2672   }
2673 
2674   void getAnalysisUsage(AnalysisUsage &AU) const override {
2675     AU.addRequired<TargetLibraryInfoWrapperPass>();
2676     AU.addRequired<DominatorTreeWrapperPass>();
2677   }
2678 };
2679 }
2680 
2681 char GlobalOptLegacyPass::ID = 0;
2682 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2683                       "Global Variable Optimizer", false, false)
2684 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2685 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2686 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2687                     "Global Variable Optimizer", false, false)
2688 
2689 ModulePass *llvm::createGlobalOptimizerPass() {
2690   return new GlobalOptLegacyPass();
2691 }
2692