1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms simple global variables that never have their address 10 // taken. If obviously true, it marks read/write globals as constant, deletes 11 // variables only stored to, etc. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/GlobalOpt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/BinaryFormat/Dwarf.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Use.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueHandle.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/AtomicOrdering.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/IPO.h" 66 #include "llvm/Transforms/Utils/CtorUtils.h" 67 #include "llvm/Transforms/Utils/Evaluator.h" 68 #include "llvm/Transforms/Utils/GlobalStatus.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include <cassert> 71 #include <cstdint> 72 #include <utility> 73 #include <vector> 74 75 using namespace llvm; 76 77 #define DEBUG_TYPE "globalopt" 78 79 STATISTIC(NumMarked , "Number of globals marked constant"); 80 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 81 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 83 STATISTIC(NumDeleted , "Number of globals deleted"); 84 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 85 STATISTIC(NumLocalized , "Number of globals localized"); 86 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 87 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 89 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 93 STATISTIC(NumInternalFunc, "Number of internal functions"); 94 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 95 96 static cl::opt<bool> 97 EnableColdCCStressTest("enable-coldcc-stress-test", 98 cl::desc("Enable stress test of coldcc by adding " 99 "calling conv to all internal functions."), 100 cl::init(false), cl::Hidden); 101 102 static cl::opt<int> ColdCCRelFreq( 103 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 104 cl::desc( 105 "Maximum block frequency, expressed as a percentage of caller's " 106 "entry frequency, for a call site to be considered cold for enabling" 107 "coldcc")); 108 109 /// Is this global variable possibly used by a leak checker as a root? If so, 110 /// we might not really want to eliminate the stores to it. 111 static bool isLeakCheckerRoot(GlobalVariable *GV) { 112 // A global variable is a root if it is a pointer, or could plausibly contain 113 // a pointer. There are two challenges; one is that we could have a struct 114 // the has an inner member which is a pointer. We recurse through the type to 115 // detect these (up to a point). The other is that we may actually be a union 116 // of a pointer and another type, and so our LLVM type is an integer which 117 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 118 // potentially contained here. 119 120 if (GV->hasPrivateLinkage()) 121 return false; 122 123 SmallVector<Type *, 4> Types; 124 Types.push_back(GV->getValueType()); 125 126 unsigned Limit = 20; 127 do { 128 Type *Ty = Types.pop_back_val(); 129 switch (Ty->getTypeID()) { 130 default: break; 131 case Type::PointerTyID: 132 return true; 133 case Type::FixedVectorTyID: 134 case Type::ScalableVectorTyID: 135 if (cast<VectorType>(Ty)->getElementType()->isPointerTy()) 136 return true; 137 break; 138 case Type::ArrayTyID: 139 Types.push_back(cast<ArrayType>(Ty)->getElementType()); 140 break; 141 case Type::StructTyID: { 142 StructType *STy = cast<StructType>(Ty); 143 if (STy->isOpaque()) return true; 144 for (StructType::element_iterator I = STy->element_begin(), 145 E = STy->element_end(); I != E; ++I) { 146 Type *InnerTy = *I; 147 if (isa<PointerType>(InnerTy)) return true; 148 if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) || 149 isa<VectorType>(InnerTy)) 150 Types.push_back(InnerTy); 151 } 152 break; 153 } 154 } 155 if (--Limit == 0) return true; 156 } while (!Types.empty()); 157 return false; 158 } 159 160 /// Given a value that is stored to a global but never read, determine whether 161 /// it's safe to remove the store and the chain of computation that feeds the 162 /// store. 163 static bool IsSafeComputationToRemove( 164 Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 165 do { 166 if (isa<Constant>(V)) 167 return true; 168 if (!V->hasOneUse()) 169 return false; 170 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 171 isa<GlobalValue>(V)) 172 return false; 173 if (isAllocationFn(V, GetTLI)) 174 return true; 175 176 Instruction *I = cast<Instruction>(V); 177 if (I->mayHaveSideEffects()) 178 return false; 179 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 180 if (!GEP->hasAllConstantIndices()) 181 return false; 182 } else if (I->getNumOperands() != 1) { 183 return false; 184 } 185 186 V = I->getOperand(0); 187 } while (true); 188 } 189 190 /// This GV is a pointer root. Loop over all users of the global and clean up 191 /// any that obviously don't assign the global a value that isn't dynamically 192 /// allocated. 193 static bool 194 CleanupPointerRootUsers(GlobalVariable *GV, 195 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 196 // A brief explanation of leak checkers. The goal is to find bugs where 197 // pointers are forgotten, causing an accumulating growth in memory 198 // usage over time. The common strategy for leak checkers is to explicitly 199 // allow the memory pointed to by globals at exit. This is popular because it 200 // also solves another problem where the main thread of a C++ program may shut 201 // down before other threads that are still expecting to use those globals. To 202 // handle that case, we expect the program may create a singleton and never 203 // destroy it. 204 205 bool Changed = false; 206 207 // If Dead[n].first is the only use of a malloc result, we can delete its 208 // chain of computation and the store to the global in Dead[n].second. 209 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 210 211 // Constants can't be pointers to dynamically allocated memory. 212 for (User *U : llvm::make_early_inc_range(GV->users())) { 213 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 214 Value *V = SI->getValueOperand(); 215 if (isa<Constant>(V)) { 216 Changed = true; 217 SI->eraseFromParent(); 218 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 219 if (I->hasOneUse()) 220 Dead.push_back(std::make_pair(I, SI)); 221 } 222 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 223 if (isa<Constant>(MSI->getValue())) { 224 Changed = true; 225 MSI->eraseFromParent(); 226 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 227 if (I->hasOneUse()) 228 Dead.push_back(std::make_pair(I, MSI)); 229 } 230 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 231 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 232 if (MemSrc && MemSrc->isConstant()) { 233 Changed = true; 234 MTI->eraseFromParent(); 235 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 236 if (I->hasOneUse()) 237 Dead.push_back(std::make_pair(I, MTI)); 238 } 239 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 240 if (CE->use_empty()) { 241 CE->destroyConstant(); 242 Changed = true; 243 } 244 } else if (Constant *C = dyn_cast<Constant>(U)) { 245 if (isSafeToDestroyConstant(C)) { 246 C->destroyConstant(); 247 // This could have invalidated UI, start over from scratch. 248 Dead.clear(); 249 CleanupPointerRootUsers(GV, GetTLI); 250 return true; 251 } 252 } 253 } 254 255 for (int i = 0, e = Dead.size(); i != e; ++i) { 256 if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) { 257 Dead[i].second->eraseFromParent(); 258 Instruction *I = Dead[i].first; 259 do { 260 if (isAllocationFn(I, GetTLI)) 261 break; 262 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 263 if (!J) 264 break; 265 I->eraseFromParent(); 266 I = J; 267 } while (true); 268 I->eraseFromParent(); 269 Changed = true; 270 } 271 } 272 273 return Changed; 274 } 275 276 /// We just marked GV constant. Loop over all users of the global, cleaning up 277 /// the obvious ones. This is largely just a quick scan over the use list to 278 /// clean up the easy and obvious cruft. This returns true if it made a change. 279 static bool CleanupConstantGlobalUsers(GlobalVariable *GV, 280 const DataLayout &DL) { 281 Constant *Init = GV->getInitializer(); 282 SmallVector<User *, 8> WorkList(GV->users()); 283 SmallPtrSet<User *, 8> Visited; 284 bool Changed = false; 285 286 SmallVector<WeakTrackingVH> MaybeDeadInsts; 287 auto EraseFromParent = [&](Instruction *I) { 288 for (Value *Op : I->operands()) 289 if (auto *OpI = dyn_cast<Instruction>(Op)) 290 MaybeDeadInsts.push_back(OpI); 291 I->eraseFromParent(); 292 Changed = true; 293 }; 294 while (!WorkList.empty()) { 295 User *U = WorkList.pop_back_val(); 296 if (!Visited.insert(U).second) 297 continue; 298 299 if (auto *BO = dyn_cast<BitCastOperator>(U)) 300 append_range(WorkList, BO->users()); 301 if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(U)) 302 append_range(WorkList, ASC->users()); 303 else if (auto *GEP = dyn_cast<GEPOperator>(U)) 304 append_range(WorkList, GEP->users()); 305 else if (auto *LI = dyn_cast<LoadInst>(U)) { 306 // A load from a uniform value is always the same, regardless of any 307 // applied offset. 308 Type *Ty = LI->getType(); 309 if (Constant *Res = ConstantFoldLoadFromUniformValue(Init, Ty)) { 310 LI->replaceAllUsesWith(Res); 311 EraseFromParent(LI); 312 continue; 313 } 314 315 Value *PtrOp = LI->getPointerOperand(); 316 APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 317 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 318 DL, Offset, /* AllowNonInbounds */ true); 319 if (PtrOp == GV) { 320 if (auto *Value = ConstantFoldLoadFromConst(Init, Ty, Offset, DL)) { 321 LI->replaceAllUsesWith(Value); 322 EraseFromParent(LI); 323 } 324 } 325 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 326 // Store must be unreachable or storing Init into the global. 327 EraseFromParent(SI); 328 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 329 if (getUnderlyingObject(MI->getRawDest()) == GV) 330 EraseFromParent(MI); 331 } 332 } 333 334 Changed |= 335 RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts); 336 GV->removeDeadConstantUsers(); 337 return Changed; 338 } 339 340 /// Look at all uses of the global and determine which (offset, type) pairs it 341 /// can be split into. 342 static bool collectSRATypes(DenseMap<uint64_t, Type *> &Types, GlobalValue *GV, 343 const DataLayout &DL) { 344 SmallVector<Use *, 16> Worklist; 345 SmallPtrSet<Use *, 16> Visited; 346 auto AppendUses = [&](Value *V) { 347 for (Use &U : V->uses()) 348 if (Visited.insert(&U).second) 349 Worklist.push_back(&U); 350 }; 351 AppendUses(GV); 352 while (!Worklist.empty()) { 353 Use *U = Worklist.pop_back_val(); 354 User *V = U->getUser(); 355 356 auto *GEP = dyn_cast<GEPOperator>(V); 357 if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) || 358 (GEP && GEP->hasAllConstantIndices())) { 359 AppendUses(V); 360 continue; 361 } 362 363 if (Value *Ptr = getLoadStorePointerOperand(V)) { 364 // This is storing the global address into somewhere, not storing into 365 // the global. 366 if (isa<StoreInst>(V) && U->getOperandNo() == 0) 367 return false; 368 369 APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 370 Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset, 371 /* AllowNonInbounds */ true); 372 if (Ptr != GV || Offset.getActiveBits() >= 64) 373 return false; 374 375 // TODO: We currently require that all accesses at a given offset must 376 // use the same type. This could be relaxed. 377 Type *Ty = getLoadStoreType(V); 378 auto It = Types.try_emplace(Offset.getZExtValue(), Ty).first; 379 if (Ty != It->second) 380 return false; 381 continue; 382 } 383 384 // Ignore dead constant users. 385 if (auto *C = dyn_cast<Constant>(V)) { 386 if (!isSafeToDestroyConstant(C)) 387 return false; 388 continue; 389 } 390 391 // Unknown user. 392 return false; 393 } 394 395 return true; 396 } 397 398 /// Copy over the debug info for a variable to its SRA replacements. 399 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 400 uint64_t FragmentOffsetInBits, 401 uint64_t FragmentSizeInBits, 402 uint64_t VarSize) { 403 SmallVector<DIGlobalVariableExpression *, 1> GVs; 404 GV->getDebugInfo(GVs); 405 for (auto *GVE : GVs) { 406 DIVariable *Var = GVE->getVariable(); 407 DIExpression *Expr = GVE->getExpression(); 408 int64_t CurVarOffsetInBytes = 0; 409 uint64_t CurVarOffsetInBits = 0; 410 411 // Calculate the offset (Bytes), Continue if unknown. 412 if (!Expr->extractIfOffset(CurVarOffsetInBytes)) 413 continue; 414 415 // Ignore negative offset. 416 if (CurVarOffsetInBytes < 0) 417 continue; 418 419 // Convert offset to bits. 420 CurVarOffsetInBits = CHAR_BIT * (uint64_t)CurVarOffsetInBytes; 421 422 // Current var starts after the fragment, ignore. 423 if (CurVarOffsetInBits >= (FragmentOffsetInBits + FragmentSizeInBits)) 424 continue; 425 426 uint64_t CurVarSize = Var->getType()->getSizeInBits(); 427 // Current variable ends before start of fragment, ignore. 428 if (CurVarSize != 0 && 429 (CurVarOffsetInBits + CurVarSize) <= FragmentOffsetInBits) 430 continue; 431 432 // Current variable fits in the fragment. 433 if (CurVarOffsetInBits == FragmentOffsetInBits && 434 CurVarSize == FragmentSizeInBits) 435 Expr = DIExpression::get(Expr->getContext(), {}); 436 // If the FragmentSize is smaller than the variable, 437 // emit a fragment expression. 438 else if (FragmentSizeInBits < VarSize) { 439 if (auto E = DIExpression::createFragmentExpression( 440 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 441 Expr = *E; 442 else 443 return; 444 } 445 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 446 NGV->addDebugInfo(NGVE); 447 } 448 } 449 450 /// Perform scalar replacement of aggregates on the specified global variable. 451 /// This opens the door for other optimizations by exposing the behavior of the 452 /// program in a more fine-grained way. We have determined that this 453 /// transformation is safe already. We return the first global variable we 454 /// insert so that the caller can reprocess it. 455 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 456 assert(GV->hasLocalLinkage()); 457 458 // Collect types to split into. 459 DenseMap<uint64_t, Type *> Types; 460 if (!collectSRATypes(Types, GV, DL) || Types.empty()) 461 return nullptr; 462 463 // Make sure we don't SRA back to the same type. 464 if (Types.size() == 1 && Types.begin()->second == GV->getValueType()) 465 return nullptr; 466 467 // Don't perform SRA if we would have to split into many globals. 468 if (Types.size() > 16) 469 return nullptr; 470 471 // Sort by offset. 472 SmallVector<std::pair<uint64_t, Type *>, 16> TypesVector; 473 append_range(TypesVector, Types); 474 sort(TypesVector, 475 [](const auto &A, const auto &B) { return A.first < B.first; }); 476 477 // Check that the types are non-overlapping. 478 uint64_t Offset = 0; 479 for (const auto &Pair : TypesVector) { 480 // Overlaps with previous type. 481 if (Pair.first < Offset) 482 return nullptr; 483 484 Offset = Pair.first + DL.getTypeAllocSize(Pair.second); 485 } 486 487 // Some accesses go beyond the end of the global, don't bother. 488 if (Offset > DL.getTypeAllocSize(GV->getValueType())) 489 return nullptr; 490 491 // Collect initializers for new globals. 492 Constant *OrigInit = GV->getInitializer(); 493 DenseMap<uint64_t, Constant *> Initializers; 494 for (const auto &Pair : Types) { 495 Constant *NewInit = ConstantFoldLoadFromConst(OrigInit, Pair.second, 496 APInt(64, Pair.first), DL); 497 if (!NewInit) { 498 LLVM_DEBUG(dbgs() << "Global SRA: Failed to evaluate initializer of " 499 << *GV << " with type " << *Pair.second << " at offset " 500 << Pair.first << "\n"); 501 return nullptr; 502 } 503 Initializers.insert({Pair.first, NewInit}); 504 } 505 506 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 507 508 // Get the alignment of the global, either explicit or target-specific. 509 Align StartAlignment = 510 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 511 uint64_t VarSize = DL.getTypeSizeInBits(GV->getValueType()); 512 513 // Create replacement globals. 514 DenseMap<uint64_t, GlobalVariable *> NewGlobals; 515 unsigned NameSuffix = 0; 516 for (auto &Pair : TypesVector) { 517 uint64_t Offset = Pair.first; 518 Type *Ty = Pair.second; 519 GlobalVariable *NGV = new GlobalVariable( 520 *GV->getParent(), Ty, false, GlobalVariable::InternalLinkage, 521 Initializers[Offset], GV->getName() + "." + Twine(NameSuffix++), GV, 522 GV->getThreadLocalMode(), GV->getAddressSpace()); 523 NGV->copyAttributesFrom(GV); 524 NewGlobals.insert({Offset, NGV}); 525 526 // Calculate the known alignment of the field. If the original aggregate 527 // had 256 byte alignment for example, something might depend on that: 528 // propagate info to each field. 529 Align NewAlign = commonAlignment(StartAlignment, Offset); 530 if (NewAlign > DL.getABITypeAlign(Ty)) 531 NGV->setAlignment(NewAlign); 532 533 // Copy over the debug info for the variable. 534 transferSRADebugInfo(GV, NGV, Offset * 8, DL.getTypeAllocSizeInBits(Ty), 535 VarSize); 536 } 537 538 // Replace uses of the original global with uses of the new global. 539 SmallVector<Value *, 16> Worklist; 540 SmallPtrSet<Value *, 16> Visited; 541 SmallVector<WeakTrackingVH, 16> DeadInsts; 542 auto AppendUsers = [&](Value *V) { 543 for (User *U : V->users()) 544 if (Visited.insert(U).second) 545 Worklist.push_back(U); 546 }; 547 AppendUsers(GV); 548 while (!Worklist.empty()) { 549 Value *V = Worklist.pop_back_val(); 550 if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) || 551 isa<GEPOperator>(V)) { 552 AppendUsers(V); 553 if (isa<Instruction>(V)) 554 DeadInsts.push_back(V); 555 continue; 556 } 557 558 if (Value *Ptr = getLoadStorePointerOperand(V)) { 559 APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 560 Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset, 561 /* AllowNonInbounds */ true); 562 assert(Ptr == GV && "Load/store must be from/to global"); 563 GlobalVariable *NGV = NewGlobals[Offset.getZExtValue()]; 564 assert(NGV && "Must have replacement global for this offset"); 565 566 // Update the pointer operand and recalculate alignment. 567 Align PrefAlign = DL.getPrefTypeAlign(getLoadStoreType(V)); 568 Align NewAlign = 569 getOrEnforceKnownAlignment(NGV, PrefAlign, DL, cast<Instruction>(V)); 570 571 if (auto *LI = dyn_cast<LoadInst>(V)) { 572 LI->setOperand(0, NGV); 573 LI->setAlignment(NewAlign); 574 } else { 575 auto *SI = cast<StoreInst>(V); 576 SI->setOperand(1, NGV); 577 SI->setAlignment(NewAlign); 578 } 579 continue; 580 } 581 582 assert(isa<Constant>(V) && isSafeToDestroyConstant(cast<Constant>(V)) && 583 "Other users can only be dead constants"); 584 } 585 586 // Delete old instructions and global. 587 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 588 GV->removeDeadConstantUsers(); 589 GV->eraseFromParent(); 590 ++NumSRA; 591 592 assert(NewGlobals.size() > 0); 593 return NewGlobals.begin()->second; 594 } 595 596 /// Return true if all users of the specified value will trap if the value is 597 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 598 /// reprocessing them. 599 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 600 SmallPtrSetImpl<const PHINode*> &PHIs) { 601 for (const User *U : V->users()) { 602 if (const Instruction *I = dyn_cast<Instruction>(U)) { 603 // If null pointer is considered valid, then all uses are non-trapping. 604 // Non address-space 0 globals have already been pruned by the caller. 605 if (NullPointerIsDefined(I->getFunction())) 606 return false; 607 } 608 if (isa<LoadInst>(U)) { 609 // Will trap. 610 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 611 if (SI->getOperand(0) == V) { 612 //cerr << "NONTRAPPING USE: " << *U; 613 return false; // Storing the value. 614 } 615 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 616 if (CI->getCalledOperand() != V) { 617 //cerr << "NONTRAPPING USE: " << *U; 618 return false; // Not calling the ptr 619 } 620 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 621 if (II->getCalledOperand() != V) { 622 //cerr << "NONTRAPPING USE: " << *U; 623 return false; // Not calling the ptr 624 } 625 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 626 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 627 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 628 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 629 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 630 // If we've already seen this phi node, ignore it, it has already been 631 // checked. 632 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 633 return false; 634 } else if (isa<ICmpInst>(U) && 635 !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) && 636 isa<LoadInst>(U->getOperand(0)) && 637 isa<ConstantPointerNull>(U->getOperand(1))) { 638 assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0)) 639 ->getPointerOperand() 640 ->stripPointerCasts()) && 641 "Should be GlobalVariable"); 642 // This and only this kind of non-signed ICmpInst is to be replaced with 643 // the comparing of the value of the created global init bool later in 644 // optimizeGlobalAddressOfAllocation for the global variable. 645 } else { 646 //cerr << "NONTRAPPING USE: " << *U; 647 return false; 648 } 649 } 650 return true; 651 } 652 653 /// Return true if all uses of any loads from GV will trap if the loaded value 654 /// is null. Note that this also permits comparisons of the loaded value 655 /// against null, as a special case. 656 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 657 SmallVector<const Value *, 4> Worklist; 658 Worklist.push_back(GV); 659 while (!Worklist.empty()) { 660 const Value *P = Worklist.pop_back_val(); 661 for (auto *U : P->users()) { 662 if (auto *LI = dyn_cast<LoadInst>(U)) { 663 SmallPtrSet<const PHINode *, 8> PHIs; 664 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 665 return false; 666 } else if (auto *SI = dyn_cast<StoreInst>(U)) { 667 // Ignore stores to the global. 668 if (SI->getPointerOperand() != P) 669 return false; 670 } else if (auto *CE = dyn_cast<ConstantExpr>(U)) { 671 if (CE->stripPointerCasts() != GV) 672 return false; 673 // Check further the ConstantExpr. 674 Worklist.push_back(CE); 675 } else { 676 // We don't know or understand this user, bail out. 677 return false; 678 } 679 } 680 } 681 682 return true; 683 } 684 685 /// Get all the loads/store uses for global variable \p GV. 686 static void allUsesOfLoadAndStores(GlobalVariable *GV, 687 SmallVector<Value *, 4> &Uses) { 688 SmallVector<Value *, 4> Worklist; 689 Worklist.push_back(GV); 690 while (!Worklist.empty()) { 691 auto *P = Worklist.pop_back_val(); 692 for (auto *U : P->users()) { 693 if (auto *CE = dyn_cast<ConstantExpr>(U)) { 694 Worklist.push_back(CE); 695 continue; 696 } 697 698 assert((isa<LoadInst>(U) || isa<StoreInst>(U)) && 699 "Expect only load or store instructions"); 700 Uses.push_back(U); 701 } 702 } 703 } 704 705 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 706 bool Changed = false; 707 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 708 Instruction *I = cast<Instruction>(*UI++); 709 // Uses are non-trapping if null pointer is considered valid. 710 // Non address-space 0 globals are already pruned by the caller. 711 if (NullPointerIsDefined(I->getFunction())) 712 return false; 713 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 714 LI->setOperand(0, NewV); 715 Changed = true; 716 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 717 if (SI->getOperand(1) == V) { 718 SI->setOperand(1, NewV); 719 Changed = true; 720 } 721 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 722 CallBase *CB = cast<CallBase>(I); 723 if (CB->getCalledOperand() == V) { 724 // Calling through the pointer! Turn into a direct call, but be careful 725 // that the pointer is not also being passed as an argument. 726 CB->setCalledOperand(NewV); 727 Changed = true; 728 bool PassedAsArg = false; 729 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 730 if (CB->getArgOperand(i) == V) { 731 PassedAsArg = true; 732 CB->setArgOperand(i, NewV); 733 } 734 735 if (PassedAsArg) { 736 // Being passed as an argument also. Be careful to not invalidate UI! 737 UI = V->user_begin(); 738 } 739 } 740 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 741 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 742 ConstantExpr::getCast(CI->getOpcode(), 743 NewV, CI->getType())); 744 if (CI->use_empty()) { 745 Changed = true; 746 CI->eraseFromParent(); 747 } 748 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 749 // Should handle GEP here. 750 SmallVector<Constant*, 8> Idxs; 751 Idxs.reserve(GEPI->getNumOperands()-1); 752 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 753 i != e; ++i) 754 if (Constant *C = dyn_cast<Constant>(*i)) 755 Idxs.push_back(C); 756 else 757 break; 758 if (Idxs.size() == GEPI->getNumOperands()-1) 759 Changed |= OptimizeAwayTrappingUsesOfValue( 760 GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(), 761 NewV, Idxs)); 762 if (GEPI->use_empty()) { 763 Changed = true; 764 GEPI->eraseFromParent(); 765 } 766 } 767 } 768 769 return Changed; 770 } 771 772 /// The specified global has only one non-null value stored into it. If there 773 /// are uses of the loaded value that would trap if the loaded value is 774 /// dynamically null, then we know that they cannot be reachable with a null 775 /// optimize away the load. 776 static bool OptimizeAwayTrappingUsesOfLoads( 777 GlobalVariable *GV, Constant *LV, const DataLayout &DL, 778 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 779 bool Changed = false; 780 781 // Keep track of whether we are able to remove all the uses of the global 782 // other than the store that defines it. 783 bool AllNonStoreUsesGone = true; 784 785 // Replace all uses of loads with uses of uses of the stored value. 786 for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) { 787 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 788 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 789 // If we were able to delete all uses of the loads 790 if (LI->use_empty()) { 791 LI->eraseFromParent(); 792 Changed = true; 793 } else { 794 AllNonStoreUsesGone = false; 795 } 796 } else if (isa<StoreInst>(GlobalUser)) { 797 // Ignore the store that stores "LV" to the global. 798 assert(GlobalUser->getOperand(1) == GV && 799 "Must be storing *to* the global"); 800 } else { 801 AllNonStoreUsesGone = false; 802 803 // If we get here we could have other crazy uses that are transitively 804 // loaded. 805 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 806 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 807 isa<BitCastInst>(GlobalUser) || 808 isa<GetElementPtrInst>(GlobalUser)) && 809 "Only expect load and stores!"); 810 } 811 } 812 813 if (Changed) { 814 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV 815 << "\n"); 816 ++NumGlobUses; 817 } 818 819 // If we nuked all of the loads, then none of the stores are needed either, 820 // nor is the global. 821 if (AllNonStoreUsesGone) { 822 if (isLeakCheckerRoot(GV)) { 823 Changed |= CleanupPointerRootUsers(GV, GetTLI); 824 } else { 825 Changed = true; 826 CleanupConstantGlobalUsers(GV, DL); 827 } 828 if (GV->use_empty()) { 829 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 830 Changed = true; 831 GV->eraseFromParent(); 832 ++NumDeleted; 833 } 834 } 835 return Changed; 836 } 837 838 /// Walk the use list of V, constant folding all of the instructions that are 839 /// foldable. 840 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 841 TargetLibraryInfo *TLI) { 842 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 843 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 844 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 845 I->replaceAllUsesWith(NewC); 846 847 // Advance UI to the next non-I use to avoid invalidating it! 848 // Instructions could multiply use V. 849 while (UI != E && *UI == I) 850 ++UI; 851 if (isInstructionTriviallyDead(I, TLI)) 852 I->eraseFromParent(); 853 } 854 } 855 856 /// This function takes the specified global variable, and transforms the 857 /// program as if it always contained the result of the specified malloc. 858 /// Because it is always the result of the specified malloc, there is no reason 859 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 860 /// loads of GV as uses of the new global. 861 static GlobalVariable * 862 OptimizeGlobalAddressOfAllocation(GlobalVariable *GV, CallInst *CI, 863 uint64_t AllocSize, Constant *InitVal, 864 const DataLayout &DL, 865 TargetLibraryInfo *TLI) { 866 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI 867 << '\n'); 868 869 // Create global of type [AllocSize x i8]. 870 Type *GlobalType = ArrayType::get(Type::getInt8Ty(GV->getContext()), 871 AllocSize); 872 873 // Create the new global variable. The contents of the allocated memory is 874 // undefined initially, so initialize with an undef value. 875 GlobalVariable *NewGV = new GlobalVariable( 876 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 877 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 878 GV->getThreadLocalMode()); 879 880 // Initialize the global at the point of the original call. Note that this 881 // is a different point from the initialization referred to below for the 882 // nullability handling. Sublety: We have not proven the original global was 883 // only initialized once. As such, we can not fold this into the initializer 884 // of the new global as may need to re-init the storage multiple times. 885 if (!isa<UndefValue>(InitVal)) { 886 IRBuilder<> Builder(CI->getNextNode()); 887 // TODO: Use alignment above if align!=1 888 Builder.CreateMemSet(NewGV, InitVal, AllocSize, None); 889 } 890 891 // Update users of the allocation to use the new global instead. 892 BitCastInst *TheBC = nullptr; 893 while (!CI->use_empty()) { 894 Instruction *User = cast<Instruction>(CI->user_back()); 895 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 896 if (BCI->getType() == NewGV->getType()) { 897 BCI->replaceAllUsesWith(NewGV); 898 BCI->eraseFromParent(); 899 } else { 900 BCI->setOperand(0, NewGV); 901 } 902 } else { 903 if (!TheBC) 904 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 905 User->replaceUsesOfWith(CI, TheBC); 906 } 907 } 908 909 SmallPtrSet<Constant *, 1> RepValues; 910 RepValues.insert(NewGV); 911 912 // If there is a comparison against null, we will insert a global bool to 913 // keep track of whether the global was initialized yet or not. 914 GlobalVariable *InitBool = 915 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 916 GlobalValue::InternalLinkage, 917 ConstantInt::getFalse(GV->getContext()), 918 GV->getName()+".init", GV->getThreadLocalMode()); 919 bool InitBoolUsed = false; 920 921 // Loop over all instruction uses of GV, processing them in turn. 922 SmallVector<Value *, 4> Guses; 923 allUsesOfLoadAndStores(GV, Guses); 924 for (auto *U : Guses) { 925 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 926 // The global is initialized when the store to it occurs. If the stored 927 // value is null value, the global bool is set to false, otherwise true. 928 new StoreInst(ConstantInt::getBool( 929 GV->getContext(), 930 !isa<ConstantPointerNull>(SI->getValueOperand())), 931 InitBool, false, Align(1), SI->getOrdering(), 932 SI->getSyncScopeID(), SI); 933 SI->eraseFromParent(); 934 continue; 935 } 936 937 LoadInst *LI = cast<LoadInst>(U); 938 while (!LI->use_empty()) { 939 Use &LoadUse = *LI->use_begin(); 940 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 941 if (!ICI) { 942 auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType()); 943 RepValues.insert(CE); 944 LoadUse.set(CE); 945 continue; 946 } 947 948 // Replace the cmp X, 0 with a use of the bool value. 949 Value *LV = new LoadInst(InitBool->getValueType(), InitBool, 950 InitBool->getName() + ".val", false, Align(1), 951 LI->getOrdering(), LI->getSyncScopeID(), LI); 952 InitBoolUsed = true; 953 switch (ICI->getPredicate()) { 954 default: llvm_unreachable("Unknown ICmp Predicate!"); 955 case ICmpInst::ICMP_ULT: // X < null -> always false 956 LV = ConstantInt::getFalse(GV->getContext()); 957 break; 958 case ICmpInst::ICMP_UGE: // X >= null -> always true 959 LV = ConstantInt::getTrue(GV->getContext()); 960 break; 961 case ICmpInst::ICMP_ULE: 962 case ICmpInst::ICMP_EQ: 963 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 964 break; 965 case ICmpInst::ICMP_NE: 966 case ICmpInst::ICMP_UGT: 967 break; // no change. 968 } 969 ICI->replaceAllUsesWith(LV); 970 ICI->eraseFromParent(); 971 } 972 LI->eraseFromParent(); 973 } 974 975 // If the initialization boolean was used, insert it, otherwise delete it. 976 if (!InitBoolUsed) { 977 while (!InitBool->use_empty()) // Delete initializations 978 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 979 delete InitBool; 980 } else 981 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 982 983 // Now the GV is dead, nuke it and the allocation.. 984 GV->eraseFromParent(); 985 CI->eraseFromParent(); 986 987 // To further other optimizations, loop over all users of NewGV and try to 988 // constant prop them. This will promote GEP instructions with constant 989 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 990 for (auto *CE : RepValues) 991 ConstantPropUsersOf(CE, DL, TLI); 992 993 return NewGV; 994 } 995 996 /// Scan the use-list of GV checking to make sure that there are no complex uses 997 /// of GV. We permit simple things like dereferencing the pointer, but not 998 /// storing through the address, unless it is to the specified global. 999 static bool 1000 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI, 1001 const GlobalVariable *GV) { 1002 SmallPtrSet<const Value *, 4> Visited; 1003 SmallVector<const Value *, 4> Worklist; 1004 Worklist.push_back(CI); 1005 1006 while (!Worklist.empty()) { 1007 const Value *V = Worklist.pop_back_val(); 1008 if (!Visited.insert(V).second) 1009 continue; 1010 1011 for (const Use &VUse : V->uses()) { 1012 const User *U = VUse.getUser(); 1013 if (isa<LoadInst>(U) || isa<CmpInst>(U)) 1014 continue; // Fine, ignore. 1015 1016 if (auto *SI = dyn_cast<StoreInst>(U)) { 1017 if (SI->getValueOperand() == V && 1018 SI->getPointerOperand()->stripPointerCasts() != GV) 1019 return false; // Storing the pointer not into GV... bad. 1020 continue; // Otherwise, storing through it, or storing into GV... fine. 1021 } 1022 1023 if (auto *BCI = dyn_cast<BitCastInst>(U)) { 1024 Worklist.push_back(BCI); 1025 continue; 1026 } 1027 1028 if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1029 Worklist.push_back(GEPI); 1030 continue; 1031 } 1032 1033 return false; 1034 } 1035 } 1036 1037 return true; 1038 } 1039 1040 /// If we have a global that is only initialized with a fixed size allocation 1041 /// try to transform the program to use global memory instead of heap 1042 /// allocated memory. This eliminates dynamic allocation, avoids an indirection 1043 /// accessing the data, and exposes the resultant global to further GlobalOpt. 1044 static bool tryToOptimizeStoreOfAllocationToGlobal(GlobalVariable *GV, 1045 CallInst *CI, 1046 AtomicOrdering Ordering, 1047 const DataLayout &DL, 1048 TargetLibraryInfo *TLI) { 1049 if (!isAllocRemovable(CI, TLI)) 1050 // Must be able to remove the call when we get done.. 1051 return false; 1052 1053 Type *Int8Ty = Type::getInt8Ty(CI->getFunction()->getContext()); 1054 Constant *InitVal = getInitialValueOfAllocation(CI, TLI, Int8Ty); 1055 if (!InitVal) 1056 // Must be able to emit a memset for initialization 1057 return false; 1058 1059 uint64_t AllocSize; 1060 if (!getObjectSize(CI, AllocSize, DL, TLI, ObjectSizeOpts())) 1061 return false; 1062 1063 // Restrict this transformation to only working on small allocations 1064 // (2048 bytes currently), as we don't want to introduce a 16M global or 1065 // something. 1066 if (AllocSize >= 2048) 1067 return false; 1068 1069 // We can't optimize this global unless all uses of it are *known* to be 1070 // of the malloc value, not of the null initializer value (consider a use 1071 // that compares the global's value against zero to see if the malloc has 1072 // been reached). To do this, we check to see if all uses of the global 1073 // would trap if the global were null: this proves that they must all 1074 // happen after the malloc. 1075 if (!allUsesOfLoadedValueWillTrapIfNull(GV)) 1076 return false; 1077 1078 // We can't optimize this if the malloc itself is used in a complex way, 1079 // for example, being stored into multiple globals. This allows the 1080 // malloc to be stored into the specified global, loaded, gep, icmp'd. 1081 // These are all things we could transform to using the global for. 1082 if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV)) 1083 return false; 1084 1085 OptimizeGlobalAddressOfAllocation(GV, CI, AllocSize, InitVal, DL, TLI); 1086 return true; 1087 } 1088 1089 // Try to optimize globals based on the knowledge that only one value (besides 1090 // its initializer) is ever stored to the global. 1091 static bool 1092 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1093 AtomicOrdering Ordering, const DataLayout &DL, 1094 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1095 // Ignore no-op GEPs and bitcasts. 1096 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1097 1098 // If we are dealing with a pointer global that is initialized to null and 1099 // only has one (non-null) value stored into it, then we can optimize any 1100 // users of the loaded value (often calls and loads) that would trap if the 1101 // value was null. 1102 if (GV->getInitializer()->getType()->isPointerTy() && 1103 GV->getInitializer()->isNullValue() && 1104 StoredOnceVal->getType()->isPointerTy() && 1105 !NullPointerIsDefined( 1106 nullptr /* F */, 1107 GV->getInitializer()->getType()->getPointerAddressSpace())) { 1108 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1109 if (GV->getInitializer()->getType() != SOVC->getType()) 1110 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1111 1112 // Optimize away any trapping uses of the loaded value. 1113 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI)) 1114 return true; 1115 } else if (isAllocationFn(StoredOnceVal, GetTLI)) { 1116 if (auto *CI = dyn_cast<CallInst>(StoredOnceVal)) { 1117 auto *TLI = &GetTLI(*CI->getFunction()); 1118 if (tryToOptimizeStoreOfAllocationToGlobal(GV, CI, Ordering, DL, TLI)) 1119 return true; 1120 } 1121 } 1122 } 1123 1124 return false; 1125 } 1126 1127 /// At this point, we have learned that the only two values ever stored into GV 1128 /// are its initializer and OtherVal. See if we can shrink the global into a 1129 /// boolean and select between the two values whenever it is used. This exposes 1130 /// the values to other scalar optimizations. 1131 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1132 Type *GVElType = GV->getValueType(); 1133 1134 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1135 // an FP value, pointer or vector, don't do this optimization because a select 1136 // between them is very expensive and unlikely to lead to later 1137 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1138 // where v1 and v2 both require constant pool loads, a big loss. 1139 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1140 GVElType->isFloatingPointTy() || 1141 GVElType->isPointerTy() || GVElType->isVectorTy()) 1142 return false; 1143 1144 // Walk the use list of the global seeing if all the uses are load or store. 1145 // If there is anything else, bail out. 1146 for (User *U : GV->users()) { 1147 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1148 return false; 1149 if (getLoadStoreType(U) != GVElType) 1150 return false; 1151 } 1152 1153 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1154 1155 // Create the new global, initializing it to false. 1156 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1157 false, 1158 GlobalValue::InternalLinkage, 1159 ConstantInt::getFalse(GV->getContext()), 1160 GV->getName()+".b", 1161 GV->getThreadLocalMode(), 1162 GV->getType()->getAddressSpace()); 1163 NewGV->copyAttributesFrom(GV); 1164 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1165 1166 Constant *InitVal = GV->getInitializer(); 1167 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1168 "No reason to shrink to bool!"); 1169 1170 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1171 GV->getDebugInfo(GVs); 1172 1173 // If initialized to zero and storing one into the global, we can use a cast 1174 // instead of a select to synthesize the desired value. 1175 bool IsOneZero = false; 1176 bool EmitOneOrZero = true; 1177 auto *CI = dyn_cast<ConstantInt>(OtherVal); 1178 if (CI && CI->getValue().getActiveBits() <= 64) { 1179 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1180 1181 auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer()); 1182 if (CIInit && CIInit->getValue().getActiveBits() <= 64) { 1183 uint64_t ValInit = CIInit->getZExtValue(); 1184 uint64_t ValOther = CI->getZExtValue(); 1185 uint64_t ValMinus = ValOther - ValInit; 1186 1187 for(auto *GVe : GVs){ 1188 DIGlobalVariable *DGV = GVe->getVariable(); 1189 DIExpression *E = GVe->getExpression(); 1190 const DataLayout &DL = GV->getParent()->getDataLayout(); 1191 unsigned SizeInOctets = 1192 DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8; 1193 1194 // It is expected that the address of global optimized variable is on 1195 // top of the stack. After optimization, value of that variable will 1196 // be ether 0 for initial value or 1 for other value. The following 1197 // expression should return constant integer value depending on the 1198 // value at global object address: 1199 // val * (ValOther - ValInit) + ValInit: 1200 // DW_OP_deref DW_OP_constu <ValMinus> 1201 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1202 SmallVector<uint64_t, 12> Ops = { 1203 dwarf::DW_OP_deref_size, SizeInOctets, 1204 dwarf::DW_OP_constu, ValMinus, 1205 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1206 dwarf::DW_OP_plus}; 1207 bool WithStackValue = true; 1208 E = DIExpression::prependOpcodes(E, Ops, WithStackValue); 1209 DIGlobalVariableExpression *DGVE = 1210 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1211 NewGV->addDebugInfo(DGVE); 1212 } 1213 EmitOneOrZero = false; 1214 } 1215 } 1216 1217 if (EmitOneOrZero) { 1218 // FIXME: This will only emit address for debugger on which will 1219 // be written only 0 or 1. 1220 for(auto *GV : GVs) 1221 NewGV->addDebugInfo(GV); 1222 } 1223 1224 while (!GV->use_empty()) { 1225 Instruction *UI = cast<Instruction>(GV->user_back()); 1226 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1227 // Change the store into a boolean store. 1228 bool StoringOther = SI->getOperand(0) == OtherVal; 1229 // Only do this if we weren't storing a loaded value. 1230 Value *StoreVal; 1231 if (StoringOther || SI->getOperand(0) == InitVal) { 1232 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1233 StoringOther); 1234 } else { 1235 // Otherwise, we are storing a previously loaded copy. To do this, 1236 // change the copy from copying the original value to just copying the 1237 // bool. 1238 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1239 1240 // If we've already replaced the input, StoredVal will be a cast or 1241 // select instruction. If not, it will be a load of the original 1242 // global. 1243 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1244 assert(LI->getOperand(0) == GV && "Not a copy!"); 1245 // Insert a new load, to preserve the saved value. 1246 StoreVal = new LoadInst(NewGV->getValueType(), NewGV, 1247 LI->getName() + ".b", false, Align(1), 1248 LI->getOrdering(), LI->getSyncScopeID(), LI); 1249 } else { 1250 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1251 "This is not a form that we understand!"); 1252 StoreVal = StoredVal->getOperand(0); 1253 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1254 } 1255 } 1256 StoreInst *NSI = 1257 new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(), 1258 SI->getSyncScopeID(), SI); 1259 NSI->setDebugLoc(SI->getDebugLoc()); 1260 } else { 1261 // Change the load into a load of bool then a select. 1262 LoadInst *LI = cast<LoadInst>(UI); 1263 LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV, 1264 LI->getName() + ".b", false, Align(1), 1265 LI->getOrdering(), LI->getSyncScopeID(), LI); 1266 Instruction *NSI; 1267 if (IsOneZero) 1268 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1269 else 1270 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1271 NSI->takeName(LI); 1272 // Since LI is split into two instructions, NLI and NSI both inherit the 1273 // same DebugLoc 1274 NLI->setDebugLoc(LI->getDebugLoc()); 1275 NSI->setDebugLoc(LI->getDebugLoc()); 1276 LI->replaceAllUsesWith(NSI); 1277 } 1278 UI->eraseFromParent(); 1279 } 1280 1281 // Retain the name of the old global variable. People who are debugging their 1282 // programs may expect these variables to be named the same. 1283 NewGV->takeName(GV); 1284 GV->eraseFromParent(); 1285 return true; 1286 } 1287 1288 static bool deleteIfDead( 1289 GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1290 GV.removeDeadConstantUsers(); 1291 1292 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1293 return false; 1294 1295 if (const Comdat *C = GV.getComdat()) 1296 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1297 return false; 1298 1299 bool Dead; 1300 if (auto *F = dyn_cast<Function>(&GV)) 1301 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1302 else 1303 Dead = GV.use_empty(); 1304 if (!Dead) 1305 return false; 1306 1307 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1308 GV.eraseFromParent(); 1309 ++NumDeleted; 1310 return true; 1311 } 1312 1313 static bool isPointerValueDeadOnEntryToFunction( 1314 const Function *F, GlobalValue *GV, 1315 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1316 // Find all uses of GV. We expect them all to be in F, and if we can't 1317 // identify any of the uses we bail out. 1318 // 1319 // On each of these uses, identify if the memory that GV points to is 1320 // used/required/live at the start of the function. If it is not, for example 1321 // if the first thing the function does is store to the GV, the GV can 1322 // possibly be demoted. 1323 // 1324 // We don't do an exhaustive search for memory operations - simply look 1325 // through bitcasts as they're quite common and benign. 1326 const DataLayout &DL = GV->getParent()->getDataLayout(); 1327 SmallVector<LoadInst *, 4> Loads; 1328 SmallVector<StoreInst *, 4> Stores; 1329 for (auto *U : GV->users()) { 1330 if (Operator::getOpcode(U) == Instruction::BitCast) { 1331 for (auto *UU : U->users()) { 1332 if (auto *LI = dyn_cast<LoadInst>(UU)) 1333 Loads.push_back(LI); 1334 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1335 Stores.push_back(SI); 1336 else 1337 return false; 1338 } 1339 continue; 1340 } 1341 1342 Instruction *I = dyn_cast<Instruction>(U); 1343 if (!I) 1344 return false; 1345 assert(I->getParent()->getParent() == F); 1346 1347 if (auto *LI = dyn_cast<LoadInst>(I)) 1348 Loads.push_back(LI); 1349 else if (auto *SI = dyn_cast<StoreInst>(I)) 1350 Stores.push_back(SI); 1351 else 1352 return false; 1353 } 1354 1355 // We have identified all uses of GV into loads and stores. Now check if all 1356 // of them are known not to depend on the value of the global at the function 1357 // entry point. We do this by ensuring that every load is dominated by at 1358 // least one store. 1359 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1360 1361 // The below check is quadratic. Check we're not going to do too many tests. 1362 // FIXME: Even though this will always have worst-case quadratic time, we 1363 // could put effort into minimizing the average time by putting stores that 1364 // have been shown to dominate at least one load at the beginning of the 1365 // Stores array, making subsequent dominance checks more likely to succeed 1366 // early. 1367 // 1368 // The threshold here is fairly large because global->local demotion is a 1369 // very powerful optimization should it fire. 1370 const unsigned Threshold = 100; 1371 if (Loads.size() * Stores.size() > Threshold) 1372 return false; 1373 1374 for (auto *L : Loads) { 1375 auto *LTy = L->getType(); 1376 if (none_of(Stores, [&](const StoreInst *S) { 1377 auto *STy = S->getValueOperand()->getType(); 1378 // The load is only dominated by the store if DomTree says so 1379 // and the number of bits loaded in L is less than or equal to 1380 // the number of bits stored in S. 1381 return DT.dominates(S, L) && 1382 DL.getTypeStoreSize(LTy).getFixedSize() <= 1383 DL.getTypeStoreSize(STy).getFixedSize(); 1384 })) 1385 return false; 1386 } 1387 // All loads have known dependences inside F, so the global can be localized. 1388 return true; 1389 } 1390 1391 /// C may have non-instruction users. Can all of those users be turned into 1392 /// instructions? 1393 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1394 // We don't do this exhaustively. The most common pattern that we really need 1395 // to care about is a constant GEP or constant bitcast - so just looking 1396 // through one single ConstantExpr. 1397 // 1398 // The set of constants that this function returns true for must be able to be 1399 // handled by makeAllConstantUsesInstructions. 1400 for (auto *U : C->users()) { 1401 if (isa<Instruction>(U)) 1402 continue; 1403 if (!isa<ConstantExpr>(U)) 1404 // Non instruction, non-constantexpr user; cannot convert this. 1405 return false; 1406 for (auto *UU : U->users()) 1407 if (!isa<Instruction>(UU)) 1408 // A constantexpr used by another constant. We don't try and recurse any 1409 // further but just bail out at this point. 1410 return false; 1411 } 1412 1413 return true; 1414 } 1415 1416 /// C may have non-instruction users, and 1417 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1418 /// non-instruction users to instructions. 1419 static void makeAllConstantUsesInstructions(Constant *C) { 1420 SmallVector<ConstantExpr*,4> Users; 1421 for (auto *U : C->users()) { 1422 if (isa<ConstantExpr>(U)) 1423 Users.push_back(cast<ConstantExpr>(U)); 1424 else 1425 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1426 // should not have returned true for C. 1427 assert( 1428 isa<Instruction>(U) && 1429 "Can't transform non-constantexpr non-instruction to instruction!"); 1430 } 1431 1432 SmallVector<Value*,4> UUsers; 1433 for (auto *U : Users) { 1434 UUsers.clear(); 1435 append_range(UUsers, U->users()); 1436 for (auto *UU : UUsers) { 1437 Instruction *UI = cast<Instruction>(UU); 1438 Instruction *NewU = U->getAsInstruction(UI); 1439 UI->replaceUsesOfWith(U, NewU); 1440 } 1441 // We've replaced all the uses, so destroy the constant. (destroyConstant 1442 // will update value handles and metadata.) 1443 U->destroyConstant(); 1444 } 1445 } 1446 1447 /// Analyze the specified global variable and optimize 1448 /// it if possible. If we make a change, return true. 1449 static bool 1450 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, 1451 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1452 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1453 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1454 auto &DL = GV->getParent()->getDataLayout(); 1455 // If this is a first class global and has only one accessing function and 1456 // this function is non-recursive, we replace the global with a local alloca 1457 // in this function. 1458 // 1459 // NOTE: It doesn't make sense to promote non-single-value types since we 1460 // are just replacing static memory to stack memory. 1461 // 1462 // If the global is in different address space, don't bring it to stack. 1463 if (!GS.HasMultipleAccessingFunctions && 1464 GS.AccessingFunction && 1465 GV->getValueType()->isSingleValueType() && 1466 GV->getType()->getAddressSpace() == 0 && 1467 !GV->isExternallyInitialized() && 1468 allNonInstructionUsersCanBeMadeInstructions(GV) && 1469 GS.AccessingFunction->doesNotRecurse() && 1470 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1471 LookupDomTree)) { 1472 const DataLayout &DL = GV->getParent()->getDataLayout(); 1473 1474 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1475 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1476 ->getEntryBlock().begin()); 1477 Type *ElemTy = GV->getValueType(); 1478 // FIXME: Pass Global's alignment when globals have alignment 1479 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1480 GV->getName(), &FirstI); 1481 if (!isa<UndefValue>(GV->getInitializer())) 1482 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1483 1484 makeAllConstantUsesInstructions(GV); 1485 1486 GV->replaceAllUsesWith(Alloca); 1487 GV->eraseFromParent(); 1488 ++NumLocalized; 1489 return true; 1490 } 1491 1492 bool Changed = false; 1493 1494 // If the global is never loaded (but may be stored to), it is dead. 1495 // Delete it now. 1496 if (!GS.IsLoaded) { 1497 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1498 1499 if (isLeakCheckerRoot(GV)) { 1500 // Delete any constant stores to the global. 1501 Changed = CleanupPointerRootUsers(GV, GetTLI); 1502 } else { 1503 // Delete any stores we can find to the global. We may not be able to 1504 // make it completely dead though. 1505 Changed = CleanupConstantGlobalUsers(GV, DL); 1506 } 1507 1508 // If the global is dead now, delete it. 1509 if (GV->use_empty()) { 1510 GV->eraseFromParent(); 1511 ++NumDeleted; 1512 Changed = true; 1513 } 1514 return Changed; 1515 1516 } 1517 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1518 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1519 1520 // Don't actually mark a global constant if it's atomic because atomic loads 1521 // are implemented by a trivial cmpxchg in some edge-cases and that usually 1522 // requires write access to the variable even if it's not actually changed. 1523 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1524 assert(!GV->isConstant() && "Expected a non-constant global"); 1525 GV->setConstant(true); 1526 Changed = true; 1527 } 1528 1529 // Clean up any obviously simplifiable users now. 1530 Changed |= CleanupConstantGlobalUsers(GV, DL); 1531 1532 // If the global is dead now, just nuke it. 1533 if (GV->use_empty()) { 1534 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1535 << "all users and delete global!\n"); 1536 GV->eraseFromParent(); 1537 ++NumDeleted; 1538 return true; 1539 } 1540 1541 // Fall through to the next check; see if we can optimize further. 1542 ++NumMarked; 1543 } 1544 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1545 const DataLayout &DL = GV->getParent()->getDataLayout(); 1546 if (SRAGlobal(GV, DL)) 1547 return true; 1548 } 1549 Value *StoredOnceValue = GS.getStoredOnceValue(); 1550 if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) { 1551 // Avoid speculating constant expressions that might trap (div/rem). 1552 auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue); 1553 if (SOVConstant && SOVConstant->canTrap()) 1554 return Changed; 1555 1556 Function &StoreFn = 1557 const_cast<Function &>(*GS.StoredOnceStore->getFunction()); 1558 bool CanHaveNonUndefGlobalInitializer = 1559 GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace( 1560 GV->getType()->getAddressSpace()); 1561 // If the initial value for the global was an undef value, and if only 1562 // one other value was stored into it, we can just change the 1563 // initializer to be the stored value, then delete all stores to the 1564 // global. This allows us to mark it constant. 1565 // This is restricted to address spaces that allow globals to have 1566 // initializers. NVPTX, for example, does not support initializers for 1567 // shared memory (AS 3). 1568 if (SOVConstant && isa<UndefValue>(GV->getInitializer()) && 1569 DL.getTypeAllocSize(SOVConstant->getType()) == 1570 DL.getTypeAllocSize(GV->getValueType()) && 1571 CanHaveNonUndefGlobalInitializer) { 1572 if (SOVConstant->getType() == GV->getValueType()) { 1573 // Change the initializer in place. 1574 GV->setInitializer(SOVConstant); 1575 } else { 1576 // Create a new global with adjusted type. 1577 auto *NGV = new GlobalVariable( 1578 *GV->getParent(), SOVConstant->getType(), GV->isConstant(), 1579 GV->getLinkage(), SOVConstant, "", GV, GV->getThreadLocalMode(), 1580 GV->getAddressSpace()); 1581 NGV->takeName(GV); 1582 NGV->copyAttributesFrom(GV); 1583 GV->replaceAllUsesWith(ConstantExpr::getBitCast(NGV, GV->getType())); 1584 GV->eraseFromParent(); 1585 GV = NGV; 1586 } 1587 1588 // Clean up any obviously simplifiable users now. 1589 CleanupConstantGlobalUsers(GV, DL); 1590 1591 if (GV->use_empty()) { 1592 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1593 << "simplify all users and delete global!\n"); 1594 GV->eraseFromParent(); 1595 ++NumDeleted; 1596 } 1597 ++NumSubstitute; 1598 return true; 1599 } 1600 1601 // Try to optimize globals based on the knowledge that only one value 1602 // (besides its initializer) is ever stored to the global. 1603 if (optimizeOnceStoredGlobal(GV, StoredOnceValue, GS.Ordering, DL, GetTLI)) 1604 return true; 1605 1606 // Otherwise, if the global was not a boolean, we can shrink it to be a 1607 // boolean. Skip this optimization for AS that doesn't allow an initializer. 1608 if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic && 1609 (!isa<UndefValue>(GV->getInitializer()) || 1610 CanHaveNonUndefGlobalInitializer)) { 1611 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1612 ++NumShrunkToBool; 1613 return true; 1614 } 1615 } 1616 } 1617 1618 return Changed; 1619 } 1620 1621 /// Analyze the specified global variable and optimize it if possible. If we 1622 /// make a change, return true. 1623 static bool 1624 processGlobal(GlobalValue &GV, 1625 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1626 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1627 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1628 if (GV.getName().startswith("llvm.")) 1629 return false; 1630 1631 GlobalStatus GS; 1632 1633 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1634 return false; 1635 1636 bool Changed = false; 1637 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 1638 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 1639 : GlobalValue::UnnamedAddr::Local; 1640 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 1641 GV.setUnnamedAddr(NewUnnamedAddr); 1642 NumUnnamed++; 1643 Changed = true; 1644 } 1645 } 1646 1647 // Do more involved optimizations if the global is internal. 1648 if (!GV.hasLocalLinkage()) 1649 return Changed; 1650 1651 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1652 if (!GVar) 1653 return Changed; 1654 1655 if (GVar->isConstant() || !GVar->hasInitializer()) 1656 return Changed; 1657 1658 return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) || 1659 Changed; 1660 } 1661 1662 /// Walk all of the direct calls of the specified function, changing them to 1663 /// FastCC. 1664 static void ChangeCalleesToFastCall(Function *F) { 1665 for (User *U : F->users()) { 1666 if (isa<BlockAddress>(U)) 1667 continue; 1668 cast<CallBase>(U)->setCallingConv(CallingConv::Fast); 1669 } 1670 } 1671 1672 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, 1673 Attribute::AttrKind A) { 1674 unsigned AttrIndex; 1675 if (Attrs.hasAttrSomewhere(A, &AttrIndex)) 1676 return Attrs.removeAttributeAtIndex(C, AttrIndex, A); 1677 return Attrs; 1678 } 1679 1680 static void RemoveAttribute(Function *F, Attribute::AttrKind A) { 1681 F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A)); 1682 for (User *U : F->users()) { 1683 if (isa<BlockAddress>(U)) 1684 continue; 1685 CallBase *CB = cast<CallBase>(U); 1686 CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A)); 1687 } 1688 } 1689 1690 /// Return true if this is a calling convention that we'd like to change. The 1691 /// idea here is that we don't want to mess with the convention if the user 1692 /// explicitly requested something with performance implications like coldcc, 1693 /// GHC, or anyregcc. 1694 static bool hasChangeableCC(Function *F) { 1695 CallingConv::ID CC = F->getCallingConv(); 1696 1697 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 1698 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 1699 return false; 1700 1701 // FIXME: Change CC for the whole chain of musttail calls when possible. 1702 // 1703 // Can't change CC of the function that either has musttail calls, or is a 1704 // musttail callee itself 1705 for (User *U : F->users()) { 1706 if (isa<BlockAddress>(U)) 1707 continue; 1708 CallInst* CI = dyn_cast<CallInst>(U); 1709 if (!CI) 1710 continue; 1711 1712 if (CI->isMustTailCall()) 1713 return false; 1714 } 1715 1716 for (BasicBlock &BB : *F) 1717 if (BB.getTerminatingMustTailCall()) 1718 return false; 1719 1720 return true; 1721 } 1722 1723 /// Return true if the block containing the call site has a BlockFrequency of 1724 /// less than ColdCCRelFreq% of the entry block. 1725 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) { 1726 const BranchProbability ColdProb(ColdCCRelFreq, 100); 1727 auto *CallSiteBB = CB.getParent(); 1728 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 1729 auto CallerEntryFreq = 1730 CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock())); 1731 return CallSiteFreq < CallerEntryFreq * ColdProb; 1732 } 1733 1734 // This function checks if the input function F is cold at all call sites. It 1735 // also looks each call site's containing function, returning false if the 1736 // caller function contains other non cold calls. The input vector AllCallsCold 1737 // contains a list of functions that only have call sites in cold blocks. 1738 static bool 1739 isValidCandidateForColdCC(Function &F, 1740 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1741 const std::vector<Function *> &AllCallsCold) { 1742 1743 if (F.user_empty()) 1744 return false; 1745 1746 for (User *U : F.users()) { 1747 if (isa<BlockAddress>(U)) 1748 continue; 1749 1750 CallBase &CB = cast<CallBase>(*U); 1751 Function *CallerFunc = CB.getParent()->getParent(); 1752 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 1753 if (!isColdCallSite(CB, CallerBFI)) 1754 return false; 1755 if (!llvm::is_contained(AllCallsCold, CallerFunc)) 1756 return false; 1757 } 1758 return true; 1759 } 1760 1761 static void changeCallSitesToColdCC(Function *F) { 1762 for (User *U : F->users()) { 1763 if (isa<BlockAddress>(U)) 1764 continue; 1765 cast<CallBase>(U)->setCallingConv(CallingConv::Cold); 1766 } 1767 } 1768 1769 // This function iterates over all the call instructions in the input Function 1770 // and checks that all call sites are in cold blocks and are allowed to use the 1771 // coldcc calling convention. 1772 static bool 1773 hasOnlyColdCalls(Function &F, 1774 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { 1775 for (BasicBlock &BB : F) { 1776 for (Instruction &I : BB) { 1777 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1778 // Skip over isline asm instructions since they aren't function calls. 1779 if (CI->isInlineAsm()) 1780 continue; 1781 Function *CalledFn = CI->getCalledFunction(); 1782 if (!CalledFn) 1783 return false; 1784 if (!CalledFn->hasLocalLinkage()) 1785 return false; 1786 // Skip over instrinsics since they won't remain as function calls. 1787 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 1788 continue; 1789 // Check if it's valid to use coldcc calling convention. 1790 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || 1791 CalledFn->hasAddressTaken()) 1792 return false; 1793 BlockFrequencyInfo &CallerBFI = GetBFI(F); 1794 if (!isColdCallSite(*CI, CallerBFI)) 1795 return false; 1796 } 1797 } 1798 } 1799 return true; 1800 } 1801 1802 static bool hasMustTailCallers(Function *F) { 1803 for (User *U : F->users()) { 1804 CallBase *CB = dyn_cast<CallBase>(U); 1805 if (!CB) { 1806 assert(isa<BlockAddress>(U) && 1807 "Expected either CallBase or BlockAddress"); 1808 continue; 1809 } 1810 if (CB->isMustTailCall()) 1811 return true; 1812 } 1813 return false; 1814 } 1815 1816 static bool hasInvokeCallers(Function *F) { 1817 for (User *U : F->users()) 1818 if (isa<InvokeInst>(U)) 1819 return true; 1820 return false; 1821 } 1822 1823 static void RemovePreallocated(Function *F) { 1824 RemoveAttribute(F, Attribute::Preallocated); 1825 1826 auto *M = F->getParent(); 1827 1828 IRBuilder<> Builder(M->getContext()); 1829 1830 // Cannot modify users() while iterating over it, so make a copy. 1831 SmallVector<User *, 4> PreallocatedCalls(F->users()); 1832 for (User *U : PreallocatedCalls) { 1833 CallBase *CB = dyn_cast<CallBase>(U); 1834 if (!CB) 1835 continue; 1836 1837 assert( 1838 !CB->isMustTailCall() && 1839 "Shouldn't call RemotePreallocated() on a musttail preallocated call"); 1840 // Create copy of call without "preallocated" operand bundle. 1841 SmallVector<OperandBundleDef, 1> OpBundles; 1842 CB->getOperandBundlesAsDefs(OpBundles); 1843 CallBase *PreallocatedSetup = nullptr; 1844 for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) { 1845 if (It->getTag() == "preallocated") { 1846 PreallocatedSetup = cast<CallBase>(*It->input_begin()); 1847 OpBundles.erase(It); 1848 break; 1849 } 1850 } 1851 assert(PreallocatedSetup && "Did not find preallocated bundle"); 1852 uint64_t ArgCount = 1853 cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue(); 1854 1855 assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) && 1856 "Unknown indirect call type"); 1857 CallBase *NewCB = CallBase::Create(CB, OpBundles, CB); 1858 CB->replaceAllUsesWith(NewCB); 1859 NewCB->takeName(CB); 1860 CB->eraseFromParent(); 1861 1862 Builder.SetInsertPoint(PreallocatedSetup); 1863 auto *StackSave = 1864 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave)); 1865 1866 Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction()); 1867 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore), 1868 StackSave); 1869 1870 // Replace @llvm.call.preallocated.arg() with alloca. 1871 // Cannot modify users() while iterating over it, so make a copy. 1872 // @llvm.call.preallocated.arg() can be called with the same index multiple 1873 // times. So for each @llvm.call.preallocated.arg(), we see if we have 1874 // already created a Value* for the index, and if not, create an alloca and 1875 // bitcast right after the @llvm.call.preallocated.setup() so that it 1876 // dominates all uses. 1877 SmallVector<Value *, 2> ArgAllocas(ArgCount); 1878 SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users()); 1879 for (auto *User : PreallocatedArgs) { 1880 auto *UseCall = cast<CallBase>(User); 1881 assert(UseCall->getCalledFunction()->getIntrinsicID() == 1882 Intrinsic::call_preallocated_arg && 1883 "preallocated token use was not a llvm.call.preallocated.arg"); 1884 uint64_t AllocArgIndex = 1885 cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue(); 1886 Value *AllocaReplacement = ArgAllocas[AllocArgIndex]; 1887 if (!AllocaReplacement) { 1888 auto AddressSpace = UseCall->getType()->getPointerAddressSpace(); 1889 auto *ArgType = 1890 UseCall->getFnAttr(Attribute::Preallocated).getValueAsType(); 1891 auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction(); 1892 Builder.SetInsertPoint(InsertBefore); 1893 auto *Alloca = 1894 Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg"); 1895 auto *BitCast = Builder.CreateBitCast( 1896 Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName()); 1897 ArgAllocas[AllocArgIndex] = BitCast; 1898 AllocaReplacement = BitCast; 1899 } 1900 1901 UseCall->replaceAllUsesWith(AllocaReplacement); 1902 UseCall->eraseFromParent(); 1903 } 1904 // Remove @llvm.call.preallocated.setup(). 1905 cast<Instruction>(PreallocatedSetup)->eraseFromParent(); 1906 } 1907 } 1908 1909 static bool 1910 OptimizeFunctions(Module &M, 1911 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1912 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1913 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1914 function_ref<DominatorTree &(Function &)> LookupDomTree, 1915 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1916 1917 bool Changed = false; 1918 1919 std::vector<Function *> AllCallsCold; 1920 for (Function &F : llvm::make_early_inc_range(M)) 1921 if (hasOnlyColdCalls(F, GetBFI)) 1922 AllCallsCold.push_back(&F); 1923 1924 // Optimize functions. 1925 for (Function &F : llvm::make_early_inc_range(M)) { 1926 // Don't perform global opt pass on naked functions; we don't want fast 1927 // calling conventions for naked functions. 1928 if (F.hasFnAttribute(Attribute::Naked)) 1929 continue; 1930 1931 // Functions without names cannot be referenced outside this module. 1932 if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage()) 1933 F.setLinkage(GlobalValue::InternalLinkage); 1934 1935 if (deleteIfDead(F, NotDiscardableComdats)) { 1936 Changed = true; 1937 continue; 1938 } 1939 1940 // LLVM's definition of dominance allows instructions that are cyclic 1941 // in unreachable blocks, e.g.: 1942 // %pat = select i1 %condition, @global, i16* %pat 1943 // because any instruction dominates an instruction in a block that's 1944 // not reachable from entry. 1945 // So, remove unreachable blocks from the function, because a) there's 1946 // no point in analyzing them and b) GlobalOpt should otherwise grow 1947 // some more complicated logic to break these cycles. 1948 // Removing unreachable blocks might invalidate the dominator so we 1949 // recalculate it. 1950 if (!F.isDeclaration()) { 1951 if (removeUnreachableBlocks(F)) { 1952 auto &DT = LookupDomTree(F); 1953 DT.recalculate(F); 1954 Changed = true; 1955 } 1956 } 1957 1958 Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree); 1959 1960 if (!F.hasLocalLinkage()) 1961 continue; 1962 1963 // If we have an inalloca parameter that we can safely remove the 1964 // inalloca attribute from, do so. This unlocks optimizations that 1965 // wouldn't be safe in the presence of inalloca. 1966 // FIXME: We should also hoist alloca affected by this to the entry 1967 // block if possible. 1968 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) && 1969 !F.hasAddressTaken() && !hasMustTailCallers(&F)) { 1970 RemoveAttribute(&F, Attribute::InAlloca); 1971 Changed = true; 1972 } 1973 1974 // FIXME: handle invokes 1975 // FIXME: handle musttail 1976 if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { 1977 if (!F.hasAddressTaken() && !hasMustTailCallers(&F) && 1978 !hasInvokeCallers(&F)) { 1979 RemovePreallocated(&F); 1980 Changed = true; 1981 } 1982 continue; 1983 } 1984 1985 if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) { 1986 NumInternalFunc++; 1987 TargetTransformInfo &TTI = GetTTI(F); 1988 // Change the calling convention to coldcc if either stress testing is 1989 // enabled or the target would like to use coldcc on functions which are 1990 // cold at all call sites and the callers contain no other non coldcc 1991 // calls. 1992 if (EnableColdCCStressTest || 1993 (TTI.useColdCCForColdCall(F) && 1994 isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) { 1995 F.setCallingConv(CallingConv::Cold); 1996 changeCallSitesToColdCC(&F); 1997 Changed = true; 1998 NumColdCC++; 1999 } 2000 } 2001 2002 if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) { 2003 // If this function has a calling convention worth changing, is not a 2004 // varargs function, and is only called directly, promote it to use the 2005 // Fast calling convention. 2006 F.setCallingConv(CallingConv::Fast); 2007 ChangeCalleesToFastCall(&F); 2008 ++NumFastCallFns; 2009 Changed = true; 2010 } 2011 2012 if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) && 2013 !F.hasAddressTaken()) { 2014 // The function is not used by a trampoline intrinsic, so it is safe 2015 // to remove the 'nest' attribute. 2016 RemoveAttribute(&F, Attribute::Nest); 2017 ++NumNestRemoved; 2018 Changed = true; 2019 } 2020 } 2021 return Changed; 2022 } 2023 2024 static bool 2025 OptimizeGlobalVars(Module &M, 2026 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2027 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2028 function_ref<DominatorTree &(Function &)> LookupDomTree, 2029 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2030 bool Changed = false; 2031 2032 for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) { 2033 // Global variables without names cannot be referenced outside this module. 2034 if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage()) 2035 GV.setLinkage(GlobalValue::InternalLinkage); 2036 // Simplify the initializer. 2037 if (GV.hasInitializer()) 2038 if (auto *C = dyn_cast<Constant>(GV.getInitializer())) { 2039 auto &DL = M.getDataLayout(); 2040 // TLI is not used in the case of a Constant, so use default nullptr 2041 // for that optional parameter, since we don't have a Function to 2042 // provide GetTLI anyway. 2043 Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); 2044 if (New != C) 2045 GV.setInitializer(New); 2046 } 2047 2048 if (deleteIfDead(GV, NotDiscardableComdats)) { 2049 Changed = true; 2050 continue; 2051 } 2052 2053 Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree); 2054 } 2055 return Changed; 2056 } 2057 2058 /// Evaluate static constructors in the function, if we can. Return true if we 2059 /// can, false otherwise. 2060 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2061 TargetLibraryInfo *TLI) { 2062 // Call the function. 2063 Evaluator Eval(DL, TLI); 2064 Constant *RetValDummy; 2065 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2066 SmallVector<Constant*, 0>()); 2067 2068 if (EvalSuccess) { 2069 ++NumCtorsEvaluated; 2070 2071 // We succeeded at evaluation: commit the result. 2072 auto NewInitializers = Eval.getMutatedInitializers(); 2073 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2074 << F->getName() << "' to " << NewInitializers.size() 2075 << " stores.\n"); 2076 for (const auto &Pair : NewInitializers) 2077 Pair.first->setInitializer(Pair.second); 2078 for (GlobalVariable *GV : Eval.getInvariants()) 2079 GV->setConstant(true); 2080 } 2081 2082 return EvalSuccess; 2083 } 2084 2085 static int compareNames(Constant *const *A, Constant *const *B) { 2086 Value *AStripped = (*A)->stripPointerCasts(); 2087 Value *BStripped = (*B)->stripPointerCasts(); 2088 return AStripped->getName().compare(BStripped->getName()); 2089 } 2090 2091 static void setUsedInitializer(GlobalVariable &V, 2092 const SmallPtrSetImpl<GlobalValue *> &Init) { 2093 if (Init.empty()) { 2094 V.eraseFromParent(); 2095 return; 2096 } 2097 2098 // Type of pointer to the array of pointers. 2099 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2100 2101 SmallVector<Constant *, 8> UsedArray; 2102 for (GlobalValue *GV : Init) { 2103 Constant *Cast 2104 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2105 UsedArray.push_back(Cast); 2106 } 2107 // Sort to get deterministic order. 2108 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2109 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2110 2111 Module *M = V.getParent(); 2112 V.removeFromParent(); 2113 GlobalVariable *NV = 2114 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2115 ConstantArray::get(ATy, UsedArray), ""); 2116 NV->takeName(&V); 2117 NV->setSection("llvm.metadata"); 2118 delete &V; 2119 } 2120 2121 namespace { 2122 2123 /// An easy to access representation of llvm.used and llvm.compiler.used. 2124 class LLVMUsed { 2125 SmallPtrSet<GlobalValue *, 4> Used; 2126 SmallPtrSet<GlobalValue *, 4> CompilerUsed; 2127 GlobalVariable *UsedV; 2128 GlobalVariable *CompilerUsedV; 2129 2130 public: 2131 LLVMUsed(Module &M) { 2132 SmallVector<GlobalValue *, 4> Vec; 2133 UsedV = collectUsedGlobalVariables(M, Vec, false); 2134 Used = {Vec.begin(), Vec.end()}; 2135 Vec.clear(); 2136 CompilerUsedV = collectUsedGlobalVariables(M, Vec, true); 2137 CompilerUsed = {Vec.begin(), Vec.end()}; 2138 } 2139 2140 using iterator = SmallPtrSet<GlobalValue *, 4>::iterator; 2141 using used_iterator_range = iterator_range<iterator>; 2142 2143 iterator usedBegin() { return Used.begin(); } 2144 iterator usedEnd() { return Used.end(); } 2145 2146 used_iterator_range used() { 2147 return used_iterator_range(usedBegin(), usedEnd()); 2148 } 2149 2150 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2151 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2152 2153 used_iterator_range compilerUsed() { 2154 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2155 } 2156 2157 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2158 2159 bool compilerUsedCount(GlobalValue *GV) const { 2160 return CompilerUsed.count(GV); 2161 } 2162 2163 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2164 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2165 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2166 2167 bool compilerUsedInsert(GlobalValue *GV) { 2168 return CompilerUsed.insert(GV).second; 2169 } 2170 2171 void syncVariablesAndSets() { 2172 if (UsedV) 2173 setUsedInitializer(*UsedV, Used); 2174 if (CompilerUsedV) 2175 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2176 } 2177 }; 2178 2179 } // end anonymous namespace 2180 2181 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2182 if (GA.use_empty()) // No use at all. 2183 return false; 2184 2185 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2186 "We should have removed the duplicated " 2187 "element from llvm.compiler.used"); 2188 if (!GA.hasOneUse()) 2189 // Strictly more than one use. So at least one is not in llvm.used and 2190 // llvm.compiler.used. 2191 return true; 2192 2193 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2194 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2195 } 2196 2197 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2198 const LLVMUsed &U) { 2199 unsigned N = 2; 2200 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2201 "We should have removed the duplicated " 2202 "element from llvm.compiler.used"); 2203 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2204 ++N; 2205 return V.hasNUsesOrMore(N); 2206 } 2207 2208 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2209 if (!GA.hasLocalLinkage()) 2210 return true; 2211 2212 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2213 } 2214 2215 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2216 bool &RenameTarget) { 2217 RenameTarget = false; 2218 bool Ret = false; 2219 if (hasUseOtherThanLLVMUsed(GA, U)) 2220 Ret = true; 2221 2222 // If the alias is externally visible, we may still be able to simplify it. 2223 if (!mayHaveOtherReferences(GA, U)) 2224 return Ret; 2225 2226 // If the aliasee has internal linkage, give it the name and linkage 2227 // of the alias, and delete the alias. This turns: 2228 // define internal ... @f(...) 2229 // @a = alias ... @f 2230 // into: 2231 // define ... @a(...) 2232 Constant *Aliasee = GA.getAliasee(); 2233 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2234 if (!Target->hasLocalLinkage()) 2235 return Ret; 2236 2237 // Do not perform the transform if multiple aliases potentially target the 2238 // aliasee. This check also ensures that it is safe to replace the section 2239 // and other attributes of the aliasee with those of the alias. 2240 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2241 return Ret; 2242 2243 RenameTarget = true; 2244 return true; 2245 } 2246 2247 static bool 2248 OptimizeGlobalAliases(Module &M, 2249 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2250 bool Changed = false; 2251 LLVMUsed Used(M); 2252 2253 for (GlobalValue *GV : Used.used()) 2254 Used.compilerUsedErase(GV); 2255 2256 for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) { 2257 // Aliases without names cannot be referenced outside this module. 2258 if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage()) 2259 J.setLinkage(GlobalValue::InternalLinkage); 2260 2261 if (deleteIfDead(J, NotDiscardableComdats)) { 2262 Changed = true; 2263 continue; 2264 } 2265 2266 // If the alias can change at link time, nothing can be done - bail out. 2267 if (J.isInterposable()) 2268 continue; 2269 2270 Constant *Aliasee = J.getAliasee(); 2271 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2272 // We can't trivially replace the alias with the aliasee if the aliasee is 2273 // non-trivial in some way. We also can't replace the alias with the aliasee 2274 // if the aliasee is interposable because aliases point to the local 2275 // definition. 2276 // TODO: Try to handle non-zero GEPs of local aliasees. 2277 if (!Target || Target->isInterposable()) 2278 continue; 2279 Target->removeDeadConstantUsers(); 2280 2281 // Make all users of the alias use the aliasee instead. 2282 bool RenameTarget; 2283 if (!hasUsesToReplace(J, Used, RenameTarget)) 2284 continue; 2285 2286 J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType())); 2287 ++NumAliasesResolved; 2288 Changed = true; 2289 2290 if (RenameTarget) { 2291 // Give the aliasee the name, linkage and other attributes of the alias. 2292 Target->takeName(&J); 2293 Target->setLinkage(J.getLinkage()); 2294 Target->setDSOLocal(J.isDSOLocal()); 2295 Target->setVisibility(J.getVisibility()); 2296 Target->setDLLStorageClass(J.getDLLStorageClass()); 2297 2298 if (Used.usedErase(&J)) 2299 Used.usedInsert(Target); 2300 2301 if (Used.compilerUsedErase(&J)) 2302 Used.compilerUsedInsert(Target); 2303 } else if (mayHaveOtherReferences(J, Used)) 2304 continue; 2305 2306 // Delete the alias. 2307 M.getAliasList().erase(&J); 2308 ++NumAliasesRemoved; 2309 Changed = true; 2310 } 2311 2312 Used.syncVariablesAndSets(); 2313 2314 return Changed; 2315 } 2316 2317 static Function * 2318 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 2319 // Hack to get a default TLI before we have actual Function. 2320 auto FuncIter = M.begin(); 2321 if (FuncIter == M.end()) 2322 return nullptr; 2323 auto *TLI = &GetTLI(*FuncIter); 2324 2325 LibFunc F = LibFunc_cxa_atexit; 2326 if (!TLI->has(F)) 2327 return nullptr; 2328 2329 Function *Fn = M.getFunction(TLI->getName(F)); 2330 if (!Fn) 2331 return nullptr; 2332 2333 // Now get the actual TLI for Fn. 2334 TLI = &GetTLI(*Fn); 2335 2336 // Make sure that the function has the correct prototype. 2337 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2338 return nullptr; 2339 2340 return Fn; 2341 } 2342 2343 /// Returns whether the given function is an empty C++ destructor and can 2344 /// therefore be eliminated. 2345 /// Note that we assume that other optimization passes have already simplified 2346 /// the code so we simply check for 'ret'. 2347 static bool cxxDtorIsEmpty(const Function &Fn) { 2348 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2349 // nounwind, but that doesn't seem worth doing. 2350 if (Fn.isDeclaration()) 2351 return false; 2352 2353 for (auto &I : Fn.getEntryBlock()) { 2354 if (I.isDebugOrPseudoInst()) 2355 continue; 2356 if (isa<ReturnInst>(I)) 2357 return true; 2358 break; 2359 } 2360 return false; 2361 } 2362 2363 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2364 /// Itanium C++ ABI p3.3.5: 2365 /// 2366 /// After constructing a global (or local static) object, that will require 2367 /// destruction on exit, a termination function is registered as follows: 2368 /// 2369 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2370 /// 2371 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2372 /// call f(p) when DSO d is unloaded, before all such termination calls 2373 /// registered before this one. It returns zero if registration is 2374 /// successful, nonzero on failure. 2375 2376 // This pass will look for calls to __cxa_atexit where the function is trivial 2377 // and remove them. 2378 bool Changed = false; 2379 2380 for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) { 2381 // We're only interested in calls. Theoretically, we could handle invoke 2382 // instructions as well, but neither llvm-gcc nor clang generate invokes 2383 // to __cxa_atexit. 2384 CallInst *CI = dyn_cast<CallInst>(U); 2385 if (!CI) 2386 continue; 2387 2388 Function *DtorFn = 2389 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2390 if (!DtorFn || !cxxDtorIsEmpty(*DtorFn)) 2391 continue; 2392 2393 // Just remove the call. 2394 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2395 CI->eraseFromParent(); 2396 2397 ++NumCXXDtorsRemoved; 2398 2399 Changed |= true; 2400 } 2401 2402 return Changed; 2403 } 2404 2405 static bool optimizeGlobalsInModule( 2406 Module &M, const DataLayout &DL, 2407 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2408 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2409 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2410 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2411 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; 2412 bool Changed = false; 2413 bool LocalChange = true; 2414 while (LocalChange) { 2415 LocalChange = false; 2416 2417 NotDiscardableComdats.clear(); 2418 for (const GlobalVariable &GV : M.globals()) 2419 if (const Comdat *C = GV.getComdat()) 2420 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2421 NotDiscardableComdats.insert(C); 2422 for (Function &F : M) 2423 if (const Comdat *C = F.getComdat()) 2424 if (!F.isDefTriviallyDead()) 2425 NotDiscardableComdats.insert(C); 2426 for (GlobalAlias &GA : M.aliases()) 2427 if (const Comdat *C = GA.getComdat()) 2428 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2429 NotDiscardableComdats.insert(C); 2430 2431 // Delete functions that are trivially dead, ccc -> fastcc 2432 LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, 2433 NotDiscardableComdats); 2434 2435 // Optimize global_ctors list. 2436 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2437 return EvaluateStaticConstructor(F, DL, &GetTLI(*F)); 2438 }); 2439 2440 // Optimize non-address-taken globals. 2441 LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree, 2442 NotDiscardableComdats); 2443 2444 // Resolve aliases, when possible. 2445 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2446 2447 // Try to remove trivial global destructors if they are not removed 2448 // already. 2449 Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI); 2450 if (CXAAtExitFn) 2451 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2452 2453 Changed |= LocalChange; 2454 } 2455 2456 // TODO: Move all global ctors functions to the end of the module for code 2457 // layout. 2458 2459 return Changed; 2460 } 2461 2462 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2463 auto &DL = M.getDataLayout(); 2464 auto &FAM = 2465 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2466 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2467 return FAM.getResult<DominatorTreeAnalysis>(F); 2468 }; 2469 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 2470 return FAM.getResult<TargetLibraryAnalysis>(F); 2471 }; 2472 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 2473 return FAM.getResult<TargetIRAnalysis>(F); 2474 }; 2475 2476 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 2477 return FAM.getResult<BlockFrequencyAnalysis>(F); 2478 }; 2479 2480 if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree)) 2481 return PreservedAnalyses::all(); 2482 return PreservedAnalyses::none(); 2483 } 2484 2485 namespace { 2486 2487 struct GlobalOptLegacyPass : public ModulePass { 2488 static char ID; // Pass identification, replacement for typeid 2489 2490 GlobalOptLegacyPass() : ModulePass(ID) { 2491 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2492 } 2493 2494 bool runOnModule(Module &M) override { 2495 if (skipModule(M)) 2496 return false; 2497 2498 auto &DL = M.getDataLayout(); 2499 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2500 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2501 }; 2502 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 2503 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2504 }; 2505 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 2506 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2507 }; 2508 2509 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { 2510 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 2511 }; 2512 2513 return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, 2514 LookupDomTree); 2515 } 2516 2517 void getAnalysisUsage(AnalysisUsage &AU) const override { 2518 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2519 AU.addRequired<TargetTransformInfoWrapperPass>(); 2520 AU.addRequired<DominatorTreeWrapperPass>(); 2521 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2522 } 2523 }; 2524 2525 } // end anonymous namespace 2526 2527 char GlobalOptLegacyPass::ID = 0; 2528 2529 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2530 "Global Variable Optimizer", false, false) 2531 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2532 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2533 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 2534 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2535 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2536 "Global Variable Optimizer", false, false) 2537 2538 ModulePass *llvm::createGlobalOptimizerPass() { 2539 return new GlobalOptLegacyPass(); 2540 } 2541