1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/CallingConv.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/CtorUtils.h" 44 #include "llvm/Transforms/Utils/Evaluator.h" 45 #include "llvm/Transforms/Utils/GlobalStatus.h" 46 #include "llvm/Transforms/Utils/ModuleUtils.h" 47 #include <algorithm> 48 using namespace llvm; 49 50 #define DEBUG_TYPE "globalopt" 51 52 STATISTIC(NumMarked , "Number of globals marked constant"); 53 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 54 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 55 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 56 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 57 STATISTIC(NumDeleted , "Number of globals deleted"); 58 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 59 STATISTIC(NumLocalized , "Number of globals localized"); 60 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 61 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 62 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 63 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 64 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 65 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 66 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 67 68 namespace { 69 struct GlobalOpt : public ModulePass { 70 void getAnalysisUsage(AnalysisUsage &AU) const override { 71 AU.addRequired<TargetLibraryInfoWrapperPass>(); 72 AU.addRequired<DominatorTreeWrapperPass>(); 73 } 74 static char ID; // Pass identification, replacement for typeid 75 GlobalOpt() : ModulePass(ID) { 76 initializeGlobalOptPass(*PassRegistry::getPassRegistry()); 77 } 78 79 bool runOnModule(Module &M) override; 80 81 private: 82 bool OptimizeFunctions(Module &M); 83 bool OptimizeGlobalVars(Module &M); 84 bool OptimizeGlobalAliases(Module &M); 85 bool deleteIfDead(GlobalValue &GV); 86 bool processGlobal(GlobalValue &GV); 87 bool processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS); 88 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn); 89 90 bool isPointerValueDeadOnEntryToFunction(const Function *F, 91 GlobalValue *GV); 92 93 TargetLibraryInfo *TLI; 94 SmallSet<const Comdat *, 8> NotDiscardableComdats; 95 }; 96 } 97 98 char GlobalOpt::ID = 0; 99 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt", 100 "Global Variable Optimizer", false, false) 101 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 102 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 103 INITIALIZE_PASS_END(GlobalOpt, "globalopt", 104 "Global Variable Optimizer", false, false) 105 106 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } 107 108 /// Is this global variable possibly used by a leak checker as a root? If so, 109 /// we might not really want to eliminate the stores to it. 110 static bool isLeakCheckerRoot(GlobalVariable *GV) { 111 // A global variable is a root if it is a pointer, or could plausibly contain 112 // a pointer. There are two challenges; one is that we could have a struct 113 // the has an inner member which is a pointer. We recurse through the type to 114 // detect these (up to a point). The other is that we may actually be a union 115 // of a pointer and another type, and so our LLVM type is an integer which 116 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 117 // potentially contained here. 118 119 if (GV->hasPrivateLinkage()) 120 return false; 121 122 SmallVector<Type *, 4> Types; 123 Types.push_back(GV->getValueType()); 124 125 unsigned Limit = 20; 126 do { 127 Type *Ty = Types.pop_back_val(); 128 switch (Ty->getTypeID()) { 129 default: break; 130 case Type::PointerTyID: return true; 131 case Type::ArrayTyID: 132 case Type::VectorTyID: { 133 SequentialType *STy = cast<SequentialType>(Ty); 134 Types.push_back(STy->getElementType()); 135 break; 136 } 137 case Type::StructTyID: { 138 StructType *STy = cast<StructType>(Ty); 139 if (STy->isOpaque()) return true; 140 for (StructType::element_iterator I = STy->element_begin(), 141 E = STy->element_end(); I != E; ++I) { 142 Type *InnerTy = *I; 143 if (isa<PointerType>(InnerTy)) return true; 144 if (isa<CompositeType>(InnerTy)) 145 Types.push_back(InnerTy); 146 } 147 break; 148 } 149 } 150 if (--Limit == 0) return true; 151 } while (!Types.empty()); 152 return false; 153 } 154 155 /// Given a value that is stored to a global but never read, determine whether 156 /// it's safe to remove the store and the chain of computation that feeds the 157 /// store. 158 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 159 do { 160 if (isa<Constant>(V)) 161 return true; 162 if (!V->hasOneUse()) 163 return false; 164 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 165 isa<GlobalValue>(V)) 166 return false; 167 if (isAllocationFn(V, TLI)) 168 return true; 169 170 Instruction *I = cast<Instruction>(V); 171 if (I->mayHaveSideEffects()) 172 return false; 173 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 174 if (!GEP->hasAllConstantIndices()) 175 return false; 176 } else if (I->getNumOperands() != 1) { 177 return false; 178 } 179 180 V = I->getOperand(0); 181 } while (1); 182 } 183 184 /// This GV is a pointer root. Loop over all users of the global and clean up 185 /// any that obviously don't assign the global a value that isn't dynamically 186 /// allocated. 187 static bool CleanupPointerRootUsers(GlobalVariable *GV, 188 const TargetLibraryInfo *TLI) { 189 // A brief explanation of leak checkers. The goal is to find bugs where 190 // pointers are forgotten, causing an accumulating growth in memory 191 // usage over time. The common strategy for leak checkers is to whitelist the 192 // memory pointed to by globals at exit. This is popular because it also 193 // solves another problem where the main thread of a C++ program may shut down 194 // before other threads that are still expecting to use those globals. To 195 // handle that case, we expect the program may create a singleton and never 196 // destroy it. 197 198 bool Changed = false; 199 200 // If Dead[n].first is the only use of a malloc result, we can delete its 201 // chain of computation and the store to the global in Dead[n].second. 202 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 203 204 // Constants can't be pointers to dynamically allocated memory. 205 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 206 UI != E;) { 207 User *U = *UI++; 208 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 209 Value *V = SI->getValueOperand(); 210 if (isa<Constant>(V)) { 211 Changed = true; 212 SI->eraseFromParent(); 213 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 214 if (I->hasOneUse()) 215 Dead.push_back(std::make_pair(I, SI)); 216 } 217 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 218 if (isa<Constant>(MSI->getValue())) { 219 Changed = true; 220 MSI->eraseFromParent(); 221 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 222 if (I->hasOneUse()) 223 Dead.push_back(std::make_pair(I, MSI)); 224 } 225 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 226 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 227 if (MemSrc && MemSrc->isConstant()) { 228 Changed = true; 229 MTI->eraseFromParent(); 230 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 231 if (I->hasOneUse()) 232 Dead.push_back(std::make_pair(I, MTI)); 233 } 234 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 235 if (CE->use_empty()) { 236 CE->destroyConstant(); 237 Changed = true; 238 } 239 } else if (Constant *C = dyn_cast<Constant>(U)) { 240 if (isSafeToDestroyConstant(C)) { 241 C->destroyConstant(); 242 // This could have invalidated UI, start over from scratch. 243 Dead.clear(); 244 CleanupPointerRootUsers(GV, TLI); 245 return true; 246 } 247 } 248 } 249 250 for (int i = 0, e = Dead.size(); i != e; ++i) { 251 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 252 Dead[i].second->eraseFromParent(); 253 Instruction *I = Dead[i].first; 254 do { 255 if (isAllocationFn(I, TLI)) 256 break; 257 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 258 if (!J) 259 break; 260 I->eraseFromParent(); 261 I = J; 262 } while (1); 263 I->eraseFromParent(); 264 } 265 } 266 267 return Changed; 268 } 269 270 /// We just marked GV constant. Loop over all users of the global, cleaning up 271 /// the obvious ones. This is largely just a quick scan over the use list to 272 /// clean up the easy and obvious cruft. This returns true if it made a change. 273 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 274 const DataLayout &DL, 275 TargetLibraryInfo *TLI) { 276 bool Changed = false; 277 // Note that we need to use a weak value handle for the worklist items. When 278 // we delete a constant array, we may also be holding pointer to one of its 279 // elements (or an element of one of its elements if we're dealing with an 280 // array of arrays) in the worklist. 281 SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end()); 282 while (!WorkList.empty()) { 283 Value *UV = WorkList.pop_back_val(); 284 if (!UV) 285 continue; 286 287 User *U = cast<User>(UV); 288 289 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 290 if (Init) { 291 // Replace the load with the initializer. 292 LI->replaceAllUsesWith(Init); 293 LI->eraseFromParent(); 294 Changed = true; 295 } 296 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 297 // Store must be unreachable or storing Init into the global. 298 SI->eraseFromParent(); 299 Changed = true; 300 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 301 if (CE->getOpcode() == Instruction::GetElementPtr) { 302 Constant *SubInit = nullptr; 303 if (Init) 304 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 305 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 306 } else if ((CE->getOpcode() == Instruction::BitCast && 307 CE->getType()->isPointerTy()) || 308 CE->getOpcode() == Instruction::AddrSpaceCast) { 309 // Pointer cast, delete any stores and memsets to the global. 310 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 311 } 312 313 if (CE->use_empty()) { 314 CE->destroyConstant(); 315 Changed = true; 316 } 317 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 318 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 319 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 320 // and will invalidate our notion of what Init is. 321 Constant *SubInit = nullptr; 322 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 323 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 324 ConstantFoldInstruction(GEP, DL, TLI)); 325 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 326 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 327 328 // If the initializer is an all-null value and we have an inbounds GEP, 329 // we already know what the result of any load from that GEP is. 330 // TODO: Handle splats. 331 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 332 SubInit = Constant::getNullValue(GEP->getResultElementType()); 333 } 334 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 335 336 if (GEP->use_empty()) { 337 GEP->eraseFromParent(); 338 Changed = true; 339 } 340 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 341 if (MI->getRawDest() == V) { 342 MI->eraseFromParent(); 343 Changed = true; 344 } 345 346 } else if (Constant *C = dyn_cast<Constant>(U)) { 347 // If we have a chain of dead constantexprs or other things dangling from 348 // us, and if they are all dead, nuke them without remorse. 349 if (isSafeToDestroyConstant(C)) { 350 C->destroyConstant(); 351 CleanupConstantGlobalUsers(V, Init, DL, TLI); 352 return true; 353 } 354 } 355 } 356 return Changed; 357 } 358 359 /// Return true if the specified instruction is a safe user of a derived 360 /// expression from a global that we want to SROA. 361 static bool isSafeSROAElementUse(Value *V) { 362 // We might have a dead and dangling constant hanging off of here. 363 if (Constant *C = dyn_cast<Constant>(V)) 364 return isSafeToDestroyConstant(C); 365 366 Instruction *I = dyn_cast<Instruction>(V); 367 if (!I) return false; 368 369 // Loads are ok. 370 if (isa<LoadInst>(I)) return true; 371 372 // Stores *to* the pointer are ok. 373 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 374 return SI->getOperand(0) != V; 375 376 // Otherwise, it must be a GEP. 377 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 378 if (!GEPI) return false; 379 380 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 381 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 382 return false; 383 384 for (User *U : GEPI->users()) 385 if (!isSafeSROAElementUse(U)) 386 return false; 387 return true; 388 } 389 390 391 /// U is a direct user of the specified global value. Look at it and its uses 392 /// and decide whether it is safe to SROA this global. 393 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 394 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 395 if (!isa<GetElementPtrInst>(U) && 396 (!isa<ConstantExpr>(U) || 397 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 398 return false; 399 400 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 401 // don't like < 3 operand CE's, and we don't like non-constant integer 402 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 403 // value of C. 404 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 405 !cast<Constant>(U->getOperand(1))->isNullValue() || 406 !isa<ConstantInt>(U->getOperand(2))) 407 return false; 408 409 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 410 ++GEPI; // Skip over the pointer index. 411 412 // If this is a use of an array allocation, do a bit more checking for sanity. 413 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 414 uint64_t NumElements = AT->getNumElements(); 415 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 416 417 // Check to make sure that index falls within the array. If not, 418 // something funny is going on, so we won't do the optimization. 419 // 420 if (Idx->getZExtValue() >= NumElements) 421 return false; 422 423 // We cannot scalar repl this level of the array unless any array 424 // sub-indices are in-range constants. In particular, consider: 425 // A[0][i]. We cannot know that the user isn't doing invalid things like 426 // allowing i to index an out-of-range subscript that accesses A[1]. 427 // 428 // Scalar replacing *just* the outer index of the array is probably not 429 // going to be a win anyway, so just give up. 430 for (++GEPI; // Skip array index. 431 GEPI != E; 432 ++GEPI) { 433 uint64_t NumElements; 434 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 435 NumElements = SubArrayTy->getNumElements(); 436 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 437 NumElements = SubVectorTy->getNumElements(); 438 else { 439 assert((*GEPI)->isStructTy() && 440 "Indexed GEP type is not array, vector, or struct!"); 441 continue; 442 } 443 444 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 445 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 446 return false; 447 } 448 } 449 450 for (User *UU : U->users()) 451 if (!isSafeSROAElementUse(UU)) 452 return false; 453 454 return true; 455 } 456 457 /// Look at all uses of the global and decide whether it is safe for us to 458 /// perform this transformation. 459 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 460 for (User *U : GV->users()) 461 if (!IsUserOfGlobalSafeForSRA(U, GV)) 462 return false; 463 464 return true; 465 } 466 467 468 /// Perform scalar replacement of aggregates on the specified global variable. 469 /// This opens the door for other optimizations by exposing the behavior of the 470 /// program in a more fine-grained way. We have determined that this 471 /// transformation is safe already. We return the first global variable we 472 /// insert so that the caller can reprocess it. 473 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 474 // Make sure this global only has simple uses that we can SRA. 475 if (!GlobalUsersSafeToSRA(GV)) 476 return nullptr; 477 478 assert(GV->hasLocalLinkage() && !GV->isConstant()); 479 Constant *Init = GV->getInitializer(); 480 Type *Ty = Init->getType(); 481 482 std::vector<GlobalVariable*> NewGlobals; 483 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 484 485 // Get the alignment of the global, either explicit or target-specific. 486 unsigned StartAlignment = GV->getAlignment(); 487 if (StartAlignment == 0) 488 StartAlignment = DL.getABITypeAlignment(GV->getType()); 489 490 if (StructType *STy = dyn_cast<StructType>(Ty)) { 491 NewGlobals.reserve(STy->getNumElements()); 492 const StructLayout &Layout = *DL.getStructLayout(STy); 493 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 494 Constant *In = Init->getAggregateElement(i); 495 assert(In && "Couldn't get element of initializer?"); 496 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 497 GlobalVariable::InternalLinkage, 498 In, GV->getName()+"."+Twine(i), 499 GV->getThreadLocalMode(), 500 GV->getType()->getAddressSpace()); 501 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 502 NGV->copyAttributesFrom(GV); 503 Globals.push_back(NGV); 504 NewGlobals.push_back(NGV); 505 506 // Calculate the known alignment of the field. If the original aggregate 507 // had 256 byte alignment for example, something might depend on that: 508 // propagate info to each field. 509 uint64_t FieldOffset = Layout.getElementOffset(i); 510 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 511 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 512 NGV->setAlignment(NewAlign); 513 } 514 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 515 unsigned NumElements = 0; 516 if (ArrayType *ATy = dyn_cast<ArrayType>(STy)) 517 NumElements = ATy->getNumElements(); 518 else 519 NumElements = cast<VectorType>(STy)->getNumElements(); 520 521 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 522 return nullptr; // It's not worth it. 523 NewGlobals.reserve(NumElements); 524 525 uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType()); 526 unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType()); 527 for (unsigned i = 0, e = NumElements; i != e; ++i) { 528 Constant *In = Init->getAggregateElement(i); 529 assert(In && "Couldn't get element of initializer?"); 530 531 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 532 GlobalVariable::InternalLinkage, 533 In, GV->getName()+"."+Twine(i), 534 GV->getThreadLocalMode(), 535 GV->getType()->getAddressSpace()); 536 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 537 NGV->copyAttributesFrom(GV); 538 Globals.push_back(NGV); 539 NewGlobals.push_back(NGV); 540 541 // Calculate the known alignment of the field. If the original aggregate 542 // had 256 byte alignment for example, something might depend on that: 543 // propagate info to each field. 544 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 545 if (NewAlign > EltAlign) 546 NGV->setAlignment(NewAlign); 547 } 548 } 549 550 if (NewGlobals.empty()) 551 return nullptr; 552 553 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 554 555 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 556 557 // Loop over all of the uses of the global, replacing the constantexpr geps, 558 // with smaller constantexpr geps or direct references. 559 while (!GV->use_empty()) { 560 User *GEP = GV->user_back(); 561 assert(((isa<ConstantExpr>(GEP) && 562 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 563 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 564 565 // Ignore the 1th operand, which has to be zero or else the program is quite 566 // broken (undefined). Get the 2nd operand, which is the structure or array 567 // index. 568 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 569 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 570 571 Value *NewPtr = NewGlobals[Val]; 572 Type *NewTy = NewGlobals[Val]->getValueType(); 573 574 // Form a shorter GEP if needed. 575 if (GEP->getNumOperands() > 3) { 576 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 577 SmallVector<Constant*, 8> Idxs; 578 Idxs.push_back(NullInt); 579 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 580 Idxs.push_back(CE->getOperand(i)); 581 NewPtr = 582 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 583 } else { 584 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 585 SmallVector<Value*, 8> Idxs; 586 Idxs.push_back(NullInt); 587 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 588 Idxs.push_back(GEPI->getOperand(i)); 589 NewPtr = GetElementPtrInst::Create( 590 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 591 } 592 } 593 GEP->replaceAllUsesWith(NewPtr); 594 595 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 596 GEPI->eraseFromParent(); 597 else 598 cast<ConstantExpr>(GEP)->destroyConstant(); 599 } 600 601 // Delete the old global, now that it is dead. 602 Globals.erase(GV); 603 ++NumSRA; 604 605 // Loop over the new globals array deleting any globals that are obviously 606 // dead. This can arise due to scalarization of a structure or an array that 607 // has elements that are dead. 608 unsigned FirstGlobal = 0; 609 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 610 if (NewGlobals[i]->use_empty()) { 611 Globals.erase(NewGlobals[i]); 612 if (FirstGlobal == i) ++FirstGlobal; 613 } 614 615 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 616 } 617 618 /// Return true if all users of the specified value will trap if the value is 619 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 620 /// reprocessing them. 621 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 622 SmallPtrSetImpl<const PHINode*> &PHIs) { 623 for (const User *U : V->users()) 624 if (isa<LoadInst>(U)) { 625 // Will trap. 626 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 627 if (SI->getOperand(0) == V) { 628 //cerr << "NONTRAPPING USE: " << *U; 629 return false; // Storing the value. 630 } 631 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 632 if (CI->getCalledValue() != V) { 633 //cerr << "NONTRAPPING USE: " << *U; 634 return false; // Not calling the ptr 635 } 636 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 637 if (II->getCalledValue() != V) { 638 //cerr << "NONTRAPPING USE: " << *U; 639 return false; // Not calling the ptr 640 } 641 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 642 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 643 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 644 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 645 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 646 // If we've already seen this phi node, ignore it, it has already been 647 // checked. 648 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 649 return false; 650 } else if (isa<ICmpInst>(U) && 651 isa<ConstantPointerNull>(U->getOperand(1))) { 652 // Ignore icmp X, null 653 } else { 654 //cerr << "NONTRAPPING USE: " << *U; 655 return false; 656 } 657 658 return true; 659 } 660 661 /// Return true if all uses of any loads from GV will trap if the loaded value 662 /// is null. Note that this also permits comparisons of the loaded value 663 /// against null, as a special case. 664 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 665 for (const User *U : GV->users()) 666 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 667 SmallPtrSet<const PHINode*, 8> PHIs; 668 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 669 return false; 670 } else if (isa<StoreInst>(U)) { 671 // Ignore stores to the global. 672 } else { 673 // We don't know or understand this user, bail out. 674 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 675 return false; 676 } 677 return true; 678 } 679 680 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 681 bool Changed = false; 682 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 683 Instruction *I = cast<Instruction>(*UI++); 684 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 685 LI->setOperand(0, NewV); 686 Changed = true; 687 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 688 if (SI->getOperand(1) == V) { 689 SI->setOperand(1, NewV); 690 Changed = true; 691 } 692 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 693 CallSite CS(I); 694 if (CS.getCalledValue() == V) { 695 // Calling through the pointer! Turn into a direct call, but be careful 696 // that the pointer is not also being passed as an argument. 697 CS.setCalledFunction(NewV); 698 Changed = true; 699 bool PassedAsArg = false; 700 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 701 if (CS.getArgument(i) == V) { 702 PassedAsArg = true; 703 CS.setArgument(i, NewV); 704 } 705 706 if (PassedAsArg) { 707 // Being passed as an argument also. Be careful to not invalidate UI! 708 UI = V->user_begin(); 709 } 710 } 711 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 712 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 713 ConstantExpr::getCast(CI->getOpcode(), 714 NewV, CI->getType())); 715 if (CI->use_empty()) { 716 Changed = true; 717 CI->eraseFromParent(); 718 } 719 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 720 // Should handle GEP here. 721 SmallVector<Constant*, 8> Idxs; 722 Idxs.reserve(GEPI->getNumOperands()-1); 723 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 724 i != e; ++i) 725 if (Constant *C = dyn_cast<Constant>(*i)) 726 Idxs.push_back(C); 727 else 728 break; 729 if (Idxs.size() == GEPI->getNumOperands()-1) 730 Changed |= OptimizeAwayTrappingUsesOfValue( 731 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 732 if (GEPI->use_empty()) { 733 Changed = true; 734 GEPI->eraseFromParent(); 735 } 736 } 737 } 738 739 return Changed; 740 } 741 742 743 /// The specified global has only one non-null value stored into it. If there 744 /// are uses of the loaded value that would trap if the loaded value is 745 /// dynamically null, then we know that they cannot be reachable with a null 746 /// optimize away the load. 747 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 748 const DataLayout &DL, 749 TargetLibraryInfo *TLI) { 750 bool Changed = false; 751 752 // Keep track of whether we are able to remove all the uses of the global 753 // other than the store that defines it. 754 bool AllNonStoreUsesGone = true; 755 756 // Replace all uses of loads with uses of uses of the stored value. 757 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 758 User *GlobalUser = *GUI++; 759 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 760 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 761 // If we were able to delete all uses of the loads 762 if (LI->use_empty()) { 763 LI->eraseFromParent(); 764 Changed = true; 765 } else { 766 AllNonStoreUsesGone = false; 767 } 768 } else if (isa<StoreInst>(GlobalUser)) { 769 // Ignore the store that stores "LV" to the global. 770 assert(GlobalUser->getOperand(1) == GV && 771 "Must be storing *to* the global"); 772 } else { 773 AllNonStoreUsesGone = false; 774 775 // If we get here we could have other crazy uses that are transitively 776 // loaded. 777 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 778 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 779 isa<BitCastInst>(GlobalUser) || 780 isa<GetElementPtrInst>(GlobalUser)) && 781 "Only expect load and stores!"); 782 } 783 } 784 785 if (Changed) { 786 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n"); 787 ++NumGlobUses; 788 } 789 790 // If we nuked all of the loads, then none of the stores are needed either, 791 // nor is the global. 792 if (AllNonStoreUsesGone) { 793 if (isLeakCheckerRoot(GV)) { 794 Changed |= CleanupPointerRootUsers(GV, TLI); 795 } else { 796 Changed = true; 797 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 798 } 799 if (GV->use_empty()) { 800 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 801 Changed = true; 802 GV->eraseFromParent(); 803 ++NumDeleted; 804 } 805 } 806 return Changed; 807 } 808 809 /// Walk the use list of V, constant folding all of the instructions that are 810 /// foldable. 811 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 812 TargetLibraryInfo *TLI) { 813 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 814 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 815 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 816 I->replaceAllUsesWith(NewC); 817 818 // Advance UI to the next non-I use to avoid invalidating it! 819 // Instructions could multiply use V. 820 while (UI != E && *UI == I) 821 ++UI; 822 I->eraseFromParent(); 823 } 824 } 825 826 /// This function takes the specified global variable, and transforms the 827 /// program as if it always contained the result of the specified malloc. 828 /// Because it is always the result of the specified malloc, there is no reason 829 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 830 /// loads of GV as uses of the new global. 831 static GlobalVariable * 832 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 833 ConstantInt *NElements, const DataLayout &DL, 834 TargetLibraryInfo *TLI) { 835 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 836 837 Type *GlobalType; 838 if (NElements->getZExtValue() == 1) 839 GlobalType = AllocTy; 840 else 841 // If we have an array allocation, the global variable is of an array. 842 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 843 844 // Create the new global variable. The contents of the malloc'd memory is 845 // undefined, so initialize with an undef value. 846 GlobalVariable *NewGV = new GlobalVariable( 847 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 848 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 849 GV->getThreadLocalMode()); 850 851 // If there are bitcast users of the malloc (which is typical, usually we have 852 // a malloc + bitcast) then replace them with uses of the new global. Update 853 // other users to use the global as well. 854 BitCastInst *TheBC = nullptr; 855 while (!CI->use_empty()) { 856 Instruction *User = cast<Instruction>(CI->user_back()); 857 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 858 if (BCI->getType() == NewGV->getType()) { 859 BCI->replaceAllUsesWith(NewGV); 860 BCI->eraseFromParent(); 861 } else { 862 BCI->setOperand(0, NewGV); 863 } 864 } else { 865 if (!TheBC) 866 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 867 User->replaceUsesOfWith(CI, TheBC); 868 } 869 } 870 871 Constant *RepValue = NewGV; 872 if (NewGV->getType() != GV->getValueType()) 873 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 874 875 // If there is a comparison against null, we will insert a global bool to 876 // keep track of whether the global was initialized yet or not. 877 GlobalVariable *InitBool = 878 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 879 GlobalValue::InternalLinkage, 880 ConstantInt::getFalse(GV->getContext()), 881 GV->getName()+".init", GV->getThreadLocalMode()); 882 bool InitBoolUsed = false; 883 884 // Loop over all uses of GV, processing them in turn. 885 while (!GV->use_empty()) { 886 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 887 // The global is initialized when the store to it occurs. 888 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 889 SI->getOrdering(), SI->getSynchScope(), SI); 890 SI->eraseFromParent(); 891 continue; 892 } 893 894 LoadInst *LI = cast<LoadInst>(GV->user_back()); 895 while (!LI->use_empty()) { 896 Use &LoadUse = *LI->use_begin(); 897 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 898 if (!ICI) { 899 LoadUse = RepValue; 900 continue; 901 } 902 903 // Replace the cmp X, 0 with a use of the bool value. 904 // Sink the load to where the compare was, if atomic rules allow us to. 905 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 906 LI->getOrdering(), LI->getSynchScope(), 907 LI->isUnordered() ? (Instruction*)ICI : LI); 908 InitBoolUsed = true; 909 switch (ICI->getPredicate()) { 910 default: llvm_unreachable("Unknown ICmp Predicate!"); 911 case ICmpInst::ICMP_ULT: 912 case ICmpInst::ICMP_SLT: // X < null -> always false 913 LV = ConstantInt::getFalse(GV->getContext()); 914 break; 915 case ICmpInst::ICMP_ULE: 916 case ICmpInst::ICMP_SLE: 917 case ICmpInst::ICMP_EQ: 918 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 919 break; 920 case ICmpInst::ICMP_NE: 921 case ICmpInst::ICMP_UGE: 922 case ICmpInst::ICMP_SGE: 923 case ICmpInst::ICMP_UGT: 924 case ICmpInst::ICMP_SGT: 925 break; // no change. 926 } 927 ICI->replaceAllUsesWith(LV); 928 ICI->eraseFromParent(); 929 } 930 LI->eraseFromParent(); 931 } 932 933 // If the initialization boolean was used, insert it, otherwise delete it. 934 if (!InitBoolUsed) { 935 while (!InitBool->use_empty()) // Delete initializations 936 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 937 delete InitBool; 938 } else 939 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 940 941 // Now the GV is dead, nuke it and the malloc.. 942 GV->eraseFromParent(); 943 CI->eraseFromParent(); 944 945 // To further other optimizations, loop over all users of NewGV and try to 946 // constant prop them. This will promote GEP instructions with constant 947 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 948 ConstantPropUsersOf(NewGV, DL, TLI); 949 if (RepValue != NewGV) 950 ConstantPropUsersOf(RepValue, DL, TLI); 951 952 return NewGV; 953 } 954 955 /// Scan the use-list of V checking to make sure that there are no complex uses 956 /// of V. We permit simple things like dereferencing the pointer, but not 957 /// storing through the address, unless it is to the specified global. 958 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 959 const GlobalVariable *GV, 960 SmallPtrSetImpl<const PHINode*> &PHIs) { 961 for (const User *U : V->users()) { 962 const Instruction *Inst = cast<Instruction>(U); 963 964 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 965 continue; // Fine, ignore. 966 } 967 968 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 969 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 970 return false; // Storing the pointer itself... bad. 971 continue; // Otherwise, storing through it, or storing into GV... fine. 972 } 973 974 // Must index into the array and into the struct. 975 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 976 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 977 return false; 978 continue; 979 } 980 981 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 982 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 983 // cycles. 984 if (PHIs.insert(PN).second) 985 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 986 return false; 987 continue; 988 } 989 990 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 991 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 992 return false; 993 continue; 994 } 995 996 return false; 997 } 998 return true; 999 } 1000 1001 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the 1002 /// allocation into loads from the global and uses of the resultant pointer. 1003 /// Further, delete the store into GV. This assumes that these value pass the 1004 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1005 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1006 GlobalVariable *GV) { 1007 while (!Alloc->use_empty()) { 1008 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 1009 Instruction *InsertPt = U; 1010 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1011 // If this is the store of the allocation into the global, remove it. 1012 if (SI->getOperand(1) == GV) { 1013 SI->eraseFromParent(); 1014 continue; 1015 } 1016 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1017 // Insert the load in the corresponding predecessor, not right before the 1018 // PHI. 1019 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 1020 } else if (isa<BitCastInst>(U)) { 1021 // Must be bitcast between the malloc and store to initialize the global. 1022 ReplaceUsesOfMallocWithGlobal(U, GV); 1023 U->eraseFromParent(); 1024 continue; 1025 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1026 // If this is a "GEP bitcast" and the user is a store to the global, then 1027 // just process it as a bitcast. 1028 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1029 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1030 if (SI->getOperand(1) == GV) { 1031 // Must be bitcast GEP between the malloc and store to initialize 1032 // the global. 1033 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1034 GEPI->eraseFromParent(); 1035 continue; 1036 } 1037 } 1038 1039 // Insert a load from the global, and use it instead of the malloc. 1040 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1041 U->replaceUsesOfWith(Alloc, NL); 1042 } 1043 } 1044 1045 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to 1046 /// perform heap SRA on. This permits GEP's that index through the array and 1047 /// struct field, icmps of null, and PHIs. 1048 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1049 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1050 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1051 // We permit two users of the load: setcc comparing against the null 1052 // pointer, and a getelementptr of a specific form. 1053 for (const User *U : V->users()) { 1054 const Instruction *UI = cast<Instruction>(U); 1055 1056 // Comparison against null is ok. 1057 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1058 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1059 return false; 1060 continue; 1061 } 1062 1063 // getelementptr is also ok, but only a simple form. 1064 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1065 // Must index into the array and into the struct. 1066 if (GEPI->getNumOperands() < 3) 1067 return false; 1068 1069 // Otherwise the GEP is ok. 1070 continue; 1071 } 1072 1073 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1074 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1075 // This means some phi nodes are dependent on each other. 1076 // Avoid infinite looping! 1077 return false; 1078 if (!LoadUsingPHIs.insert(PN).second) 1079 // If we have already analyzed this PHI, then it is safe. 1080 continue; 1081 1082 // Make sure all uses of the PHI are simple enough to transform. 1083 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1084 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1085 return false; 1086 1087 continue; 1088 } 1089 1090 // Otherwise we don't know what this is, not ok. 1091 return false; 1092 } 1093 1094 return true; 1095 } 1096 1097 1098 /// If all users of values loaded from GV are simple enough to perform HeapSRA, 1099 /// return true. 1100 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1101 Instruction *StoredVal) { 1102 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1103 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1104 for (const User *U : GV->users()) 1105 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1106 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1107 LoadUsingPHIsPerLoad)) 1108 return false; 1109 LoadUsingPHIsPerLoad.clear(); 1110 } 1111 1112 // If we reach here, we know that all uses of the loads and transitive uses 1113 // (through PHI nodes) are simple enough to transform. However, we don't know 1114 // that all inputs the to the PHI nodes are in the same equivalence sets. 1115 // Check to verify that all operands of the PHIs are either PHIS that can be 1116 // transformed, loads from GV, or MI itself. 1117 for (const PHINode *PN : LoadUsingPHIs) { 1118 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1119 Value *InVal = PN->getIncomingValue(op); 1120 1121 // PHI of the stored value itself is ok. 1122 if (InVal == StoredVal) continue; 1123 1124 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1125 // One of the PHIs in our set is (optimistically) ok. 1126 if (LoadUsingPHIs.count(InPN)) 1127 continue; 1128 return false; 1129 } 1130 1131 // Load from GV is ok. 1132 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1133 if (LI->getOperand(0) == GV) 1134 continue; 1135 1136 // UNDEF? NULL? 1137 1138 // Anything else is rejected. 1139 return false; 1140 } 1141 } 1142 1143 return true; 1144 } 1145 1146 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1147 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1148 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1149 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1150 1151 if (FieldNo >= FieldVals.size()) 1152 FieldVals.resize(FieldNo+1); 1153 1154 // If we already have this value, just reuse the previously scalarized 1155 // version. 1156 if (Value *FieldVal = FieldVals[FieldNo]) 1157 return FieldVal; 1158 1159 // Depending on what instruction this is, we have several cases. 1160 Value *Result; 1161 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1162 // This is a scalarized version of the load from the global. Just create 1163 // a new Load of the scalarized global. 1164 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1165 InsertedScalarizedValues, 1166 PHIsToRewrite), 1167 LI->getName()+".f"+Twine(FieldNo), LI); 1168 } else { 1169 PHINode *PN = cast<PHINode>(V); 1170 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1171 // field. 1172 1173 PointerType *PTy = cast<PointerType>(PN->getType()); 1174 StructType *ST = cast<StructType>(PTy->getElementType()); 1175 1176 unsigned AS = PTy->getAddressSpace(); 1177 PHINode *NewPN = 1178 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1179 PN->getNumIncomingValues(), 1180 PN->getName()+".f"+Twine(FieldNo), PN); 1181 Result = NewPN; 1182 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1183 } 1184 1185 return FieldVals[FieldNo] = Result; 1186 } 1187 1188 /// Given a load instruction and a value derived from the load, rewrite the 1189 /// derived value to use the HeapSRoA'd load. 1190 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1191 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1192 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1193 // If this is a comparison against null, handle it. 1194 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1195 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1196 // If we have a setcc of the loaded pointer, we can use a setcc of any 1197 // field. 1198 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1199 InsertedScalarizedValues, PHIsToRewrite); 1200 1201 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1202 Constant::getNullValue(NPtr->getType()), 1203 SCI->getName()); 1204 SCI->replaceAllUsesWith(New); 1205 SCI->eraseFromParent(); 1206 return; 1207 } 1208 1209 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1210 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1211 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1212 && "Unexpected GEPI!"); 1213 1214 // Load the pointer for this field. 1215 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1216 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1217 InsertedScalarizedValues, PHIsToRewrite); 1218 1219 // Create the new GEP idx vector. 1220 SmallVector<Value*, 8> GEPIdx; 1221 GEPIdx.push_back(GEPI->getOperand(1)); 1222 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1223 1224 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1225 GEPI->getName(), GEPI); 1226 GEPI->replaceAllUsesWith(NGEPI); 1227 GEPI->eraseFromParent(); 1228 return; 1229 } 1230 1231 // Recursively transform the users of PHI nodes. This will lazily create the 1232 // PHIs that are needed for individual elements. Keep track of what PHIs we 1233 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1234 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1235 // already been seen first by another load, so its uses have already been 1236 // processed. 1237 PHINode *PN = cast<PHINode>(LoadUser); 1238 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1239 std::vector<Value*>())).second) 1240 return; 1241 1242 // If this is the first time we've seen this PHI, recursively process all 1243 // users. 1244 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1245 Instruction *User = cast<Instruction>(*UI++); 1246 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1247 } 1248 } 1249 1250 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1251 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1252 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1253 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1254 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1255 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1256 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1257 Instruction *User = cast<Instruction>(*UI++); 1258 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1259 } 1260 1261 if (Load->use_empty()) { 1262 Load->eraseFromParent(); 1263 InsertedScalarizedValues.erase(Load); 1264 } 1265 } 1266 1267 /// CI is an allocation of an array of structures. Break it up into multiple 1268 /// allocations of arrays of the fields. 1269 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1270 Value *NElems, const DataLayout &DL, 1271 const TargetLibraryInfo *TLI) { 1272 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1273 Type *MAT = getMallocAllocatedType(CI, TLI); 1274 StructType *STy = cast<StructType>(MAT); 1275 1276 // There is guaranteed to be at least one use of the malloc (storing 1277 // it into GV). If there are other uses, change them to be uses of 1278 // the global to simplify later code. This also deletes the store 1279 // into GV. 1280 ReplaceUsesOfMallocWithGlobal(CI, GV); 1281 1282 // Okay, at this point, there are no users of the malloc. Insert N 1283 // new mallocs at the same place as CI, and N globals. 1284 std::vector<Value*> FieldGlobals; 1285 std::vector<Value*> FieldMallocs; 1286 1287 unsigned AS = GV->getType()->getPointerAddressSpace(); 1288 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1289 Type *FieldTy = STy->getElementType(FieldNo); 1290 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1291 1292 GlobalVariable *NGV = new GlobalVariable( 1293 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1294 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1295 nullptr, GV->getThreadLocalMode()); 1296 NGV->copyAttributesFrom(GV); 1297 FieldGlobals.push_back(NGV); 1298 1299 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1300 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1301 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1302 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1303 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1304 ConstantInt::get(IntPtrTy, TypeSize), 1305 NElems, nullptr, 1306 CI->getName() + ".f" + Twine(FieldNo)); 1307 FieldMallocs.push_back(NMI); 1308 new StoreInst(NMI, NGV, CI); 1309 } 1310 1311 // The tricky aspect of this transformation is handling the case when malloc 1312 // fails. In the original code, malloc failing would set the result pointer 1313 // of malloc to null. In this case, some mallocs could succeed and others 1314 // could fail. As such, we emit code that looks like this: 1315 // F0 = malloc(field0) 1316 // F1 = malloc(field1) 1317 // F2 = malloc(field2) 1318 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1319 // if (F0) { free(F0); F0 = 0; } 1320 // if (F1) { free(F1); F1 = 0; } 1321 // if (F2) { free(F2); F2 = 0; } 1322 // } 1323 // The malloc can also fail if its argument is too large. 1324 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1325 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1326 ConstantZero, "isneg"); 1327 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1328 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1329 Constant::getNullValue(FieldMallocs[i]->getType()), 1330 "isnull"); 1331 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1332 } 1333 1334 // Split the basic block at the old malloc. 1335 BasicBlock *OrigBB = CI->getParent(); 1336 BasicBlock *ContBB = 1337 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1338 1339 // Create the block to check the first condition. Put all these blocks at the 1340 // end of the function as they are unlikely to be executed. 1341 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1342 "malloc_ret_null", 1343 OrigBB->getParent()); 1344 1345 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1346 // branch on RunningOr. 1347 OrigBB->getTerminator()->eraseFromParent(); 1348 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1349 1350 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1351 // pointer, because some may be null while others are not. 1352 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1353 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1354 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1355 Constant::getNullValue(GVVal->getType())); 1356 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1357 OrigBB->getParent()); 1358 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1359 OrigBB->getParent()); 1360 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1361 Cmp, NullPtrBlock); 1362 1363 // Fill in FreeBlock. 1364 CallInst::CreateFree(GVVal, BI); 1365 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1366 FreeBlock); 1367 BranchInst::Create(NextBlock, FreeBlock); 1368 1369 NullPtrBlock = NextBlock; 1370 } 1371 1372 BranchInst::Create(ContBB, NullPtrBlock); 1373 1374 // CI is no longer needed, remove it. 1375 CI->eraseFromParent(); 1376 1377 /// As we process loads, if we can't immediately update all uses of the load, 1378 /// keep track of what scalarized loads are inserted for a given load. 1379 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1380 InsertedScalarizedValues[GV] = FieldGlobals; 1381 1382 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1383 1384 // Okay, the malloc site is completely handled. All of the uses of GV are now 1385 // loads, and all uses of those loads are simple. Rewrite them to use loads 1386 // of the per-field globals instead. 1387 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1388 Instruction *User = cast<Instruction>(*UI++); 1389 1390 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1391 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1392 continue; 1393 } 1394 1395 // Must be a store of null. 1396 StoreInst *SI = cast<StoreInst>(User); 1397 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1398 "Unexpected heap-sra user!"); 1399 1400 // Insert a store of null into each global. 1401 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1402 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1403 Constant *Null = Constant::getNullValue(ValTy); 1404 new StoreInst(Null, FieldGlobals[i], SI); 1405 } 1406 // Erase the original store. 1407 SI->eraseFromParent(); 1408 } 1409 1410 // While we have PHIs that are interesting to rewrite, do it. 1411 while (!PHIsToRewrite.empty()) { 1412 PHINode *PN = PHIsToRewrite.back().first; 1413 unsigned FieldNo = PHIsToRewrite.back().second; 1414 PHIsToRewrite.pop_back(); 1415 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1416 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1417 1418 // Add all the incoming values. This can materialize more phis. 1419 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1420 Value *InVal = PN->getIncomingValue(i); 1421 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1422 PHIsToRewrite); 1423 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1424 } 1425 } 1426 1427 // Drop all inter-phi links and any loads that made it this far. 1428 for (DenseMap<Value*, std::vector<Value*> >::iterator 1429 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1430 I != E; ++I) { 1431 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1432 PN->dropAllReferences(); 1433 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1434 LI->dropAllReferences(); 1435 } 1436 1437 // Delete all the phis and loads now that inter-references are dead. 1438 for (DenseMap<Value*, std::vector<Value*> >::iterator 1439 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1440 I != E; ++I) { 1441 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1442 PN->eraseFromParent(); 1443 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1444 LI->eraseFromParent(); 1445 } 1446 1447 // The old global is now dead, remove it. 1448 GV->eraseFromParent(); 1449 1450 ++NumHeapSRA; 1451 return cast<GlobalVariable>(FieldGlobals[0]); 1452 } 1453 1454 /// This function is called when we see a pointer global variable with a single 1455 /// value stored it that is a malloc or cast of malloc. 1456 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1457 Type *AllocTy, 1458 AtomicOrdering Ordering, 1459 const DataLayout &DL, 1460 TargetLibraryInfo *TLI) { 1461 // If this is a malloc of an abstract type, don't touch it. 1462 if (!AllocTy->isSized()) 1463 return false; 1464 1465 // We can't optimize this global unless all uses of it are *known* to be 1466 // of the malloc value, not of the null initializer value (consider a use 1467 // that compares the global's value against zero to see if the malloc has 1468 // been reached). To do this, we check to see if all uses of the global 1469 // would trap if the global were null: this proves that they must all 1470 // happen after the malloc. 1471 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1472 return false; 1473 1474 // We can't optimize this if the malloc itself is used in a complex way, 1475 // for example, being stored into multiple globals. This allows the 1476 // malloc to be stored into the specified global, loaded icmp'd, and 1477 // GEP'd. These are all things we could transform to using the global 1478 // for. 1479 SmallPtrSet<const PHINode*, 8> PHIs; 1480 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1481 return false; 1482 1483 // If we have a global that is only initialized with a fixed size malloc, 1484 // transform the program to use global memory instead of malloc'd memory. 1485 // This eliminates dynamic allocation, avoids an indirection accessing the 1486 // data, and exposes the resultant global to further GlobalOpt. 1487 // We cannot optimize the malloc if we cannot determine malloc array size. 1488 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1489 if (!NElems) 1490 return false; 1491 1492 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1493 // Restrict this transformation to only working on small allocations 1494 // (2048 bytes currently), as we don't want to introduce a 16M global or 1495 // something. 1496 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1497 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1498 return true; 1499 } 1500 1501 // If the allocation is an array of structures, consider transforming this 1502 // into multiple malloc'd arrays, one for each field. This is basically 1503 // SRoA for malloc'd memory. 1504 1505 if (Ordering != AtomicOrdering::NotAtomic) 1506 return false; 1507 1508 // If this is an allocation of a fixed size array of structs, analyze as a 1509 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1510 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1511 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1512 AllocTy = AT->getElementType(); 1513 1514 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1515 if (!AllocSTy) 1516 return false; 1517 1518 // This the structure has an unreasonable number of fields, leave it 1519 // alone. 1520 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1521 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1522 1523 // If this is a fixed size array, transform the Malloc to be an alloc of 1524 // structs. malloc [100 x struct],1 -> malloc struct, 100 1525 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1526 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1527 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1528 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1529 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1530 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, 1531 AllocSize, NumElements, 1532 nullptr, CI->getName()); 1533 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1534 CI->replaceAllUsesWith(Cast); 1535 CI->eraseFromParent(); 1536 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1537 CI = cast<CallInst>(BCI->getOperand(0)); 1538 else 1539 CI = cast<CallInst>(Malloc); 1540 } 1541 1542 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1543 TLI); 1544 return true; 1545 } 1546 1547 return false; 1548 } 1549 1550 // Try to optimize globals based on the knowledge that only one value (besides 1551 // its initializer) is ever stored to the global. 1552 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1553 AtomicOrdering Ordering, 1554 const DataLayout &DL, 1555 TargetLibraryInfo *TLI) { 1556 // Ignore no-op GEPs and bitcasts. 1557 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1558 1559 // If we are dealing with a pointer global that is initialized to null and 1560 // only has one (non-null) value stored into it, then we can optimize any 1561 // users of the loaded value (often calls and loads) that would trap if the 1562 // value was null. 1563 if (GV->getInitializer()->getType()->isPointerTy() && 1564 GV->getInitializer()->isNullValue()) { 1565 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1566 if (GV->getInitializer()->getType() != SOVC->getType()) 1567 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1568 1569 // Optimize away any trapping uses of the loaded value. 1570 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1571 return true; 1572 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1573 Type *MallocType = getMallocAllocatedType(CI, TLI); 1574 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1575 Ordering, DL, TLI)) 1576 return true; 1577 } 1578 } 1579 1580 return false; 1581 } 1582 1583 /// At this point, we have learned that the only two values ever stored into GV 1584 /// are its initializer and OtherVal. See if we can shrink the global into a 1585 /// boolean and select between the two values whenever it is used. This exposes 1586 /// the values to other scalar optimizations. 1587 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1588 Type *GVElType = GV->getValueType(); 1589 1590 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1591 // an FP value, pointer or vector, don't do this optimization because a select 1592 // between them is very expensive and unlikely to lead to later 1593 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1594 // where v1 and v2 both require constant pool loads, a big loss. 1595 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1596 GVElType->isFloatingPointTy() || 1597 GVElType->isPointerTy() || GVElType->isVectorTy()) 1598 return false; 1599 1600 // Walk the use list of the global seeing if all the uses are load or store. 1601 // If there is anything else, bail out. 1602 for (User *U : GV->users()) 1603 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1604 return false; 1605 1606 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1607 1608 // Create the new global, initializing it to false. 1609 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1610 false, 1611 GlobalValue::InternalLinkage, 1612 ConstantInt::getFalse(GV->getContext()), 1613 GV->getName()+".b", 1614 GV->getThreadLocalMode(), 1615 GV->getType()->getAddressSpace()); 1616 NewGV->copyAttributesFrom(GV); 1617 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1618 1619 Constant *InitVal = GV->getInitializer(); 1620 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1621 "No reason to shrink to bool!"); 1622 1623 // If initialized to zero and storing one into the global, we can use a cast 1624 // instead of a select to synthesize the desired value. 1625 bool IsOneZero = false; 1626 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1627 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1628 1629 while (!GV->use_empty()) { 1630 Instruction *UI = cast<Instruction>(GV->user_back()); 1631 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1632 // Change the store into a boolean store. 1633 bool StoringOther = SI->getOperand(0) == OtherVal; 1634 // Only do this if we weren't storing a loaded value. 1635 Value *StoreVal; 1636 if (StoringOther || SI->getOperand(0) == InitVal) { 1637 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1638 StoringOther); 1639 } else { 1640 // Otherwise, we are storing a previously loaded copy. To do this, 1641 // change the copy from copying the original value to just copying the 1642 // bool. 1643 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1644 1645 // If we've already replaced the input, StoredVal will be a cast or 1646 // select instruction. If not, it will be a load of the original 1647 // global. 1648 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1649 assert(LI->getOperand(0) == GV && "Not a copy!"); 1650 // Insert a new load, to preserve the saved value. 1651 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1652 LI->getOrdering(), LI->getSynchScope(), LI); 1653 } else { 1654 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1655 "This is not a form that we understand!"); 1656 StoreVal = StoredVal->getOperand(0); 1657 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1658 } 1659 } 1660 new StoreInst(StoreVal, NewGV, false, 0, 1661 SI->getOrdering(), SI->getSynchScope(), SI); 1662 } else { 1663 // Change the load into a load of bool then a select. 1664 LoadInst *LI = cast<LoadInst>(UI); 1665 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1666 LI->getOrdering(), LI->getSynchScope(), LI); 1667 Value *NSI; 1668 if (IsOneZero) 1669 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1670 else 1671 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1672 NSI->takeName(LI); 1673 LI->replaceAllUsesWith(NSI); 1674 } 1675 UI->eraseFromParent(); 1676 } 1677 1678 // Retain the name of the old global variable. People who are debugging their 1679 // programs may expect these variables to be named the same. 1680 NewGV->takeName(GV); 1681 GV->eraseFromParent(); 1682 return true; 1683 } 1684 1685 bool GlobalOpt::deleteIfDead(GlobalValue &GV) { 1686 GV.removeDeadConstantUsers(); 1687 1688 if (!GV.isDiscardableIfUnused()) 1689 return false; 1690 1691 if (const Comdat *C = GV.getComdat()) 1692 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1693 return false; 1694 1695 bool Dead; 1696 if (auto *F = dyn_cast<Function>(&GV)) 1697 Dead = F->isDefTriviallyDead(); 1698 else 1699 Dead = GV.use_empty(); 1700 if (!Dead) 1701 return false; 1702 1703 DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1704 GV.eraseFromParent(); 1705 ++NumDeleted; 1706 return true; 1707 } 1708 1709 /// Analyze the specified global variable and optimize it if possible. If we 1710 /// make a change, return true. 1711 bool GlobalOpt::processGlobal(GlobalValue &GV) { 1712 // Do more involved optimizations if the global is internal. 1713 if (!GV.hasLocalLinkage()) 1714 return false; 1715 1716 GlobalStatus GS; 1717 1718 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1719 return false; 1720 1721 bool Changed = false; 1722 if (!GS.IsCompared && !GV.hasUnnamedAddr()) { 1723 GV.setUnnamedAddr(true); 1724 NumUnnamed++; 1725 Changed = true; 1726 } 1727 1728 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1729 if (!GVar) 1730 return Changed; 1731 1732 if (GVar->isConstant() || !GVar->hasInitializer()) 1733 return Changed; 1734 1735 return processInternalGlobal(GVar, GS) || Changed; 1736 } 1737 1738 bool GlobalOpt::isPointerValueDeadOnEntryToFunction(const Function *F, GlobalValue *GV) { 1739 // Find all uses of GV. We expect them all to be in F, and if we can't 1740 // identify any of the uses we bail out. 1741 // 1742 // On each of these uses, identify if the memory that GV points to is 1743 // used/required/live at the start of the function. If it is not, for example 1744 // if the first thing the function does is store to the GV, the GV can 1745 // possibly be demoted. 1746 // 1747 // We don't do an exhaustive search for memory operations - simply look 1748 // through bitcasts as they're quite common and benign. 1749 const DataLayout &DL = GV->getParent()->getDataLayout(); 1750 SmallVector<LoadInst *, 4> Loads; 1751 SmallVector<StoreInst *, 4> Stores; 1752 for (auto *U : GV->users()) { 1753 if (Operator::getOpcode(U) == Instruction::BitCast) { 1754 for (auto *UU : U->users()) { 1755 if (auto *LI = dyn_cast<LoadInst>(UU)) 1756 Loads.push_back(LI); 1757 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1758 Stores.push_back(SI); 1759 else 1760 return false; 1761 } 1762 continue; 1763 } 1764 1765 Instruction *I = dyn_cast<Instruction>(U); 1766 if (!I) 1767 return false; 1768 assert(I->getParent()->getParent() == F); 1769 1770 if (auto *LI = dyn_cast<LoadInst>(I)) 1771 Loads.push_back(LI); 1772 else if (auto *SI = dyn_cast<StoreInst>(I)) 1773 Stores.push_back(SI); 1774 else 1775 return false; 1776 } 1777 1778 // We have identified all uses of GV into loads and stores. Now check if all 1779 // of them are known not to depend on the value of the global at the function 1780 // entry point. We do this by ensuring that every load is dominated by at 1781 // least one store. 1782 auto &DT = getAnalysis<DominatorTreeWrapperPass>(*const_cast<Function *>(F)) 1783 .getDomTree(); 1784 1785 // The below check is quadratic. Check we're not going to do too many tests. 1786 // FIXME: Even though this will always have worst-case quadratic time, we 1787 // could put effort into minimizing the average time by putting stores that 1788 // have been shown to dominate at least one load at the beginning of the 1789 // Stores array, making subsequent dominance checks more likely to succeed 1790 // early. 1791 // 1792 // The threshold here is fairly large because global->local demotion is a 1793 // very powerful optimization should it fire. 1794 const unsigned Threshold = 100; 1795 if (Loads.size() * Stores.size() > Threshold) 1796 return false; 1797 1798 for (auto *L : Loads) { 1799 auto *LTy = L->getType(); 1800 if (!std::any_of(Stores.begin(), Stores.end(), [&](StoreInst *S) { 1801 auto *STy = S->getValueOperand()->getType(); 1802 // The load is only dominated by the store if DomTree says so 1803 // and the number of bits loaded in L is less than or equal to 1804 // the number of bits stored in S. 1805 return DT.dominates(S, L) && 1806 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1807 })) 1808 return false; 1809 } 1810 // All loads have known dependences inside F, so the global can be localized. 1811 return true; 1812 } 1813 1814 /// C may have non-instruction users. Can all of those users be turned into 1815 /// instructions? 1816 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1817 // We don't do this exhaustively. The most common pattern that we really need 1818 // to care about is a constant GEP or constant bitcast - so just looking 1819 // through one single ConstantExpr. 1820 // 1821 // The set of constants that this function returns true for must be able to be 1822 // handled by makeAllConstantUsesInstructions. 1823 for (auto *U : C->users()) { 1824 if (isa<Instruction>(U)) 1825 continue; 1826 if (!isa<ConstantExpr>(U)) 1827 // Non instruction, non-constantexpr user; cannot convert this. 1828 return false; 1829 for (auto *UU : U->users()) 1830 if (!isa<Instruction>(UU)) 1831 // A constantexpr used by another constant. We don't try and recurse any 1832 // further but just bail out at this point. 1833 return false; 1834 } 1835 1836 return true; 1837 } 1838 1839 /// C may have non-instruction users, and 1840 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1841 /// non-instruction users to instructions. 1842 static void makeAllConstantUsesInstructions(Constant *C) { 1843 SmallVector<ConstantExpr*,4> Users; 1844 for (auto *U : C->users()) { 1845 if (isa<ConstantExpr>(U)) 1846 Users.push_back(cast<ConstantExpr>(U)); 1847 else 1848 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1849 // should not have returned true for C. 1850 assert( 1851 isa<Instruction>(U) && 1852 "Can't transform non-constantexpr non-instruction to instruction!"); 1853 } 1854 1855 SmallVector<Value*,4> UUsers; 1856 for (auto *U : Users) { 1857 UUsers.clear(); 1858 for (auto *UU : U->users()) 1859 UUsers.push_back(UU); 1860 for (auto *UU : UUsers) { 1861 Instruction *UI = cast<Instruction>(UU); 1862 Instruction *NewU = U->getAsInstruction(); 1863 NewU->insertBefore(UI); 1864 UI->replaceUsesOfWith(U, NewU); 1865 } 1866 U->dropAllReferences(); 1867 } 1868 } 1869 1870 /// Analyze the specified global variable and optimize 1871 /// it if possible. If we make a change, return true. 1872 bool GlobalOpt::processInternalGlobal(GlobalVariable *GV, 1873 const GlobalStatus &GS) { 1874 auto &DL = GV->getParent()->getDataLayout(); 1875 // If this is a first class global and has only one accessing function and 1876 // this function is non-recursive, we replace the global with a local alloca 1877 // in this function. 1878 // 1879 // NOTE: It doesn't make sense to promote non-single-value types since we 1880 // are just replacing static memory to stack memory. 1881 // 1882 // If the global is in different address space, don't bring it to stack. 1883 if (!GS.HasMultipleAccessingFunctions && 1884 GS.AccessingFunction && 1885 GV->getValueType()->isSingleValueType() && 1886 GV->getType()->getAddressSpace() == 0 && 1887 !GV->isExternallyInitialized() && 1888 allNonInstructionUsersCanBeMadeInstructions(GV) && 1889 GS.AccessingFunction->doesNotRecurse() && 1890 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV) ) { 1891 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1892 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1893 ->getEntryBlock().begin()); 1894 Type *ElemTy = GV->getValueType(); 1895 // FIXME: Pass Global's alignment when globals have alignment 1896 AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr, 1897 GV->getName(), &FirstI); 1898 if (!isa<UndefValue>(GV->getInitializer())) 1899 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1900 1901 makeAllConstantUsesInstructions(GV); 1902 1903 GV->replaceAllUsesWith(Alloca); 1904 GV->eraseFromParent(); 1905 ++NumLocalized; 1906 return true; 1907 } 1908 1909 // If the global is never loaded (but may be stored to), it is dead. 1910 // Delete it now. 1911 if (!GS.IsLoaded) { 1912 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1913 1914 bool Changed; 1915 if (isLeakCheckerRoot(GV)) { 1916 // Delete any constant stores to the global. 1917 Changed = CleanupPointerRootUsers(GV, TLI); 1918 } else { 1919 // Delete any stores we can find to the global. We may not be able to 1920 // make it completely dead though. 1921 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1922 } 1923 1924 // If the global is dead now, delete it. 1925 if (GV->use_empty()) { 1926 GV->eraseFromParent(); 1927 ++NumDeleted; 1928 Changed = true; 1929 } 1930 return Changed; 1931 1932 } else if (GS.StoredType <= GlobalStatus::InitializerStored) { 1933 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1934 GV->setConstant(true); 1935 1936 // Clean up any obviously simplifiable users now. 1937 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1938 1939 // If the global is dead now, just nuke it. 1940 if (GV->use_empty()) { 1941 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1942 << "all users and delete global!\n"); 1943 GV->eraseFromParent(); 1944 ++NumDeleted; 1945 } 1946 1947 ++NumMarked; 1948 return true; 1949 } else if (!GV->getInitializer()->getType()->isSingleValueType()) { 1950 const DataLayout &DL = GV->getParent()->getDataLayout(); 1951 if (SRAGlobal(GV, DL)) 1952 return true; 1953 } else if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1954 // If the initial value for the global was an undef value, and if only 1955 // one other value was stored into it, we can just change the 1956 // initializer to be the stored value, then delete all stores to the 1957 // global. This allows us to mark it constant. 1958 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1959 if (isa<UndefValue>(GV->getInitializer())) { 1960 // Change the initial value here. 1961 GV->setInitializer(SOVConstant); 1962 1963 // Clean up any obviously simplifiable users now. 1964 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1965 1966 if (GV->use_empty()) { 1967 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1968 << "simplify all users and delete global!\n"); 1969 GV->eraseFromParent(); 1970 ++NumDeleted; 1971 } 1972 ++NumSubstitute; 1973 return true; 1974 } 1975 1976 // Try to optimize globals based on the knowledge that only one value 1977 // (besides its initializer) is ever stored to the global. 1978 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI)) 1979 return true; 1980 1981 // Otherwise, if the global was not a boolean, we can shrink it to be a 1982 // boolean. 1983 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 1984 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1985 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1986 ++NumShrunkToBool; 1987 return true; 1988 } 1989 } 1990 } 1991 } 1992 1993 return false; 1994 } 1995 1996 /// Walk all of the direct calls of the specified function, changing them to 1997 /// FastCC. 1998 static void ChangeCalleesToFastCall(Function *F) { 1999 for (User *U : F->users()) { 2000 if (isa<BlockAddress>(U)) 2001 continue; 2002 CallSite CS(cast<Instruction>(U)); 2003 CS.setCallingConv(CallingConv::Fast); 2004 } 2005 } 2006 2007 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) { 2008 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 2009 unsigned Index = Attrs.getSlotIndex(i); 2010 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest)) 2011 continue; 2012 2013 // There can be only one. 2014 return Attrs.removeAttribute(C, Index, Attribute::Nest); 2015 } 2016 2017 return Attrs; 2018 } 2019 2020 static void RemoveNestAttribute(Function *F) { 2021 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 2022 for (User *U : F->users()) { 2023 if (isa<BlockAddress>(U)) 2024 continue; 2025 CallSite CS(cast<Instruction>(U)); 2026 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 2027 } 2028 } 2029 2030 /// Return true if this is a calling convention that we'd like to change. The 2031 /// idea here is that we don't want to mess with the convention if the user 2032 /// explicitly requested something with performance implications like coldcc, 2033 /// GHC, or anyregcc. 2034 static bool isProfitableToMakeFastCC(Function *F) { 2035 CallingConv::ID CC = F->getCallingConv(); 2036 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2037 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall; 2038 } 2039 2040 bool GlobalOpt::OptimizeFunctions(Module &M) { 2041 bool Changed = false; 2042 // Optimize functions. 2043 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2044 Function *F = &*FI++; 2045 // Functions without names cannot be referenced outside this module. 2046 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2047 F->setLinkage(GlobalValue::InternalLinkage); 2048 2049 if (deleteIfDead(*F)) { 2050 Changed = true; 2051 continue; 2052 } 2053 2054 Changed |= processGlobal(*F); 2055 2056 if (!F->hasLocalLinkage()) 2057 continue; 2058 if (isProfitableToMakeFastCC(F) && !F->isVarArg() && 2059 !F->hasAddressTaken()) { 2060 // If this function has a calling convention worth changing, is not a 2061 // varargs function, and is only called directly, promote it to use the 2062 // Fast calling convention. 2063 F->setCallingConv(CallingConv::Fast); 2064 ChangeCalleesToFastCall(F); 2065 ++NumFastCallFns; 2066 Changed = true; 2067 } 2068 2069 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2070 !F->hasAddressTaken()) { 2071 // The function is not used by a trampoline intrinsic, so it is safe 2072 // to remove the 'nest' attribute. 2073 RemoveNestAttribute(F); 2074 ++NumNestRemoved; 2075 Changed = true; 2076 } 2077 } 2078 return Changed; 2079 } 2080 2081 bool GlobalOpt::OptimizeGlobalVars(Module &M) { 2082 bool Changed = false; 2083 2084 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2085 GVI != E; ) { 2086 GlobalVariable *GV = &*GVI++; 2087 // Global variables without names cannot be referenced outside this module. 2088 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2089 GV->setLinkage(GlobalValue::InternalLinkage); 2090 // Simplify the initializer. 2091 if (GV->hasInitializer()) 2092 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) { 2093 auto &DL = M.getDataLayout(); 2094 Constant *New = ConstantFoldConstantExpression(CE, DL, TLI); 2095 if (New && New != CE) 2096 GV->setInitializer(New); 2097 } 2098 2099 if (deleteIfDead(*GV)) { 2100 Changed = true; 2101 continue; 2102 } 2103 2104 Changed |= processGlobal(*GV); 2105 } 2106 return Changed; 2107 } 2108 2109 /// Evaluate a piece of a constantexpr store into a global initializer. This 2110 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2111 /// GEP operands of Addr [0, OpNo) have been stepped into. 2112 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2113 ConstantExpr *Addr, unsigned OpNo) { 2114 // Base case of the recursion. 2115 if (OpNo == Addr->getNumOperands()) { 2116 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2117 return Val; 2118 } 2119 2120 SmallVector<Constant*, 32> Elts; 2121 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2122 // Break up the constant into its elements. 2123 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2124 Elts.push_back(Init->getAggregateElement(i)); 2125 2126 // Replace the element that we are supposed to. 2127 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2128 unsigned Idx = CU->getZExtValue(); 2129 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2130 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2131 2132 // Return the modified struct. 2133 return ConstantStruct::get(STy, Elts); 2134 } 2135 2136 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2137 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2138 2139 uint64_t NumElts; 2140 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy)) 2141 NumElts = ATy->getNumElements(); 2142 else 2143 NumElts = InitTy->getVectorNumElements(); 2144 2145 // Break up the array into elements. 2146 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2147 Elts.push_back(Init->getAggregateElement(i)); 2148 2149 assert(CI->getZExtValue() < NumElts); 2150 Elts[CI->getZExtValue()] = 2151 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2152 2153 if (Init->getType()->isArrayTy()) 2154 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2155 return ConstantVector::get(Elts); 2156 } 2157 2158 /// We have decided that Addr (which satisfies the predicate 2159 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2160 static void CommitValueTo(Constant *Val, Constant *Addr) { 2161 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2162 assert(GV->hasInitializer()); 2163 GV->setInitializer(Val); 2164 return; 2165 } 2166 2167 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2168 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2169 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2170 } 2171 2172 /// Evaluate static constructors in the function, if we can. Return true if we 2173 /// can, false otherwise. 2174 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2175 const TargetLibraryInfo *TLI) { 2176 // Call the function. 2177 Evaluator Eval(DL, TLI); 2178 Constant *RetValDummy; 2179 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2180 SmallVector<Constant*, 0>()); 2181 2182 if (EvalSuccess) { 2183 ++NumCtorsEvaluated; 2184 2185 // We succeeded at evaluation: commit the result. 2186 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2187 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2188 << " stores.\n"); 2189 for (DenseMap<Constant*, Constant*>::const_iterator I = 2190 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end(); 2191 I != E; ++I) 2192 CommitValueTo(I->second, I->first); 2193 for (GlobalVariable *GV : Eval.getInvariants()) 2194 GV->setConstant(true); 2195 } 2196 2197 return EvalSuccess; 2198 } 2199 2200 static int compareNames(Constant *const *A, Constant *const *B) { 2201 Value *AStripped = (*A)->stripPointerCastsNoFollowAliases(); 2202 Value *BStripped = (*B)->stripPointerCastsNoFollowAliases(); 2203 return AStripped->getName().compare(BStripped->getName()); 2204 } 2205 2206 static void setUsedInitializer(GlobalVariable &V, 2207 const SmallPtrSet<GlobalValue *, 8> &Init) { 2208 if (Init.empty()) { 2209 V.eraseFromParent(); 2210 return; 2211 } 2212 2213 // Type of pointer to the array of pointers. 2214 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2215 2216 SmallVector<llvm::Constant *, 8> UsedArray; 2217 for (GlobalValue *GV : Init) { 2218 Constant *Cast 2219 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2220 UsedArray.push_back(Cast); 2221 } 2222 // Sort to get deterministic order. 2223 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2224 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2225 2226 Module *M = V.getParent(); 2227 V.removeFromParent(); 2228 GlobalVariable *NV = 2229 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage, 2230 llvm::ConstantArray::get(ATy, UsedArray), ""); 2231 NV->takeName(&V); 2232 NV->setSection("llvm.metadata"); 2233 delete &V; 2234 } 2235 2236 namespace { 2237 /// An easy to access representation of llvm.used and llvm.compiler.used. 2238 class LLVMUsed { 2239 SmallPtrSet<GlobalValue *, 8> Used; 2240 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2241 GlobalVariable *UsedV; 2242 GlobalVariable *CompilerUsedV; 2243 2244 public: 2245 LLVMUsed(Module &M) { 2246 UsedV = collectUsedGlobalVariables(M, Used, false); 2247 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2248 } 2249 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator; 2250 typedef iterator_range<iterator> used_iterator_range; 2251 iterator usedBegin() { return Used.begin(); } 2252 iterator usedEnd() { return Used.end(); } 2253 used_iterator_range used() { 2254 return used_iterator_range(usedBegin(), usedEnd()); 2255 } 2256 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2257 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2258 used_iterator_range compilerUsed() { 2259 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2260 } 2261 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2262 bool compilerUsedCount(GlobalValue *GV) const { 2263 return CompilerUsed.count(GV); 2264 } 2265 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2266 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2267 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2268 bool compilerUsedInsert(GlobalValue *GV) { 2269 return CompilerUsed.insert(GV).second; 2270 } 2271 2272 void syncVariablesAndSets() { 2273 if (UsedV) 2274 setUsedInitializer(*UsedV, Used); 2275 if (CompilerUsedV) 2276 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2277 } 2278 }; 2279 } 2280 2281 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2282 if (GA.use_empty()) // No use at all. 2283 return false; 2284 2285 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2286 "We should have removed the duplicated " 2287 "element from llvm.compiler.used"); 2288 if (!GA.hasOneUse()) 2289 // Strictly more than one use. So at least one is not in llvm.used and 2290 // llvm.compiler.used. 2291 return true; 2292 2293 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2294 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2295 } 2296 2297 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2298 const LLVMUsed &U) { 2299 unsigned N = 2; 2300 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2301 "We should have removed the duplicated " 2302 "element from llvm.compiler.used"); 2303 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2304 ++N; 2305 return V.hasNUsesOrMore(N); 2306 } 2307 2308 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2309 if (!GA.hasLocalLinkage()) 2310 return true; 2311 2312 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2313 } 2314 2315 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2316 bool &RenameTarget) { 2317 RenameTarget = false; 2318 bool Ret = false; 2319 if (hasUseOtherThanLLVMUsed(GA, U)) 2320 Ret = true; 2321 2322 // If the alias is externally visible, we may still be able to simplify it. 2323 if (!mayHaveOtherReferences(GA, U)) 2324 return Ret; 2325 2326 // If the aliasee has internal linkage, give it the name and linkage 2327 // of the alias, and delete the alias. This turns: 2328 // define internal ... @f(...) 2329 // @a = alias ... @f 2330 // into: 2331 // define ... @a(...) 2332 Constant *Aliasee = GA.getAliasee(); 2333 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2334 if (!Target->hasLocalLinkage()) 2335 return Ret; 2336 2337 // Do not perform the transform if multiple aliases potentially target the 2338 // aliasee. This check also ensures that it is safe to replace the section 2339 // and other attributes of the aliasee with those of the alias. 2340 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2341 return Ret; 2342 2343 RenameTarget = true; 2344 return true; 2345 } 2346 2347 bool GlobalOpt::OptimizeGlobalAliases(Module &M) { 2348 bool Changed = false; 2349 LLVMUsed Used(M); 2350 2351 for (GlobalValue *GV : Used.used()) 2352 Used.compilerUsedErase(GV); 2353 2354 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2355 I != E;) { 2356 GlobalAlias *J = &*I++; 2357 2358 // Aliases without names cannot be referenced outside this module. 2359 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2360 J->setLinkage(GlobalValue::InternalLinkage); 2361 2362 if (deleteIfDead(*J)) { 2363 Changed = true; 2364 continue; 2365 } 2366 2367 // If the aliasee may change at link time, nothing can be done - bail out. 2368 if (J->isInterposable()) 2369 continue; 2370 2371 Constant *Aliasee = J->getAliasee(); 2372 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2373 // We can't trivially replace the alias with the aliasee if the aliasee is 2374 // non-trivial in some way. 2375 // TODO: Try to handle non-zero GEPs of local aliasees. 2376 if (!Target) 2377 continue; 2378 Target->removeDeadConstantUsers(); 2379 2380 // Make all users of the alias use the aliasee instead. 2381 bool RenameTarget; 2382 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2383 continue; 2384 2385 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2386 ++NumAliasesResolved; 2387 Changed = true; 2388 2389 if (RenameTarget) { 2390 // Give the aliasee the name, linkage and other attributes of the alias. 2391 Target->takeName(&*J); 2392 Target->setLinkage(J->getLinkage()); 2393 Target->setVisibility(J->getVisibility()); 2394 Target->setDLLStorageClass(J->getDLLStorageClass()); 2395 2396 if (Used.usedErase(&*J)) 2397 Used.usedInsert(Target); 2398 2399 if (Used.compilerUsedErase(&*J)) 2400 Used.compilerUsedInsert(Target); 2401 } else if (mayHaveOtherReferences(*J, Used)) 2402 continue; 2403 2404 // Delete the alias. 2405 M.getAliasList().erase(J); 2406 ++NumAliasesRemoved; 2407 Changed = true; 2408 } 2409 2410 Used.syncVariablesAndSets(); 2411 2412 return Changed; 2413 } 2414 2415 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2416 if (!TLI->has(LibFunc::cxa_atexit)) 2417 return nullptr; 2418 2419 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit)); 2420 2421 if (!Fn) 2422 return nullptr; 2423 2424 FunctionType *FTy = Fn->getFunctionType(); 2425 2426 // Checking that the function has the right return type, the right number of 2427 // parameters and that they all have pointer types should be enough. 2428 if (!FTy->getReturnType()->isIntegerTy() || 2429 FTy->getNumParams() != 3 || 2430 !FTy->getParamType(0)->isPointerTy() || 2431 !FTy->getParamType(1)->isPointerTy() || 2432 !FTy->getParamType(2)->isPointerTy()) 2433 return nullptr; 2434 2435 return Fn; 2436 } 2437 2438 /// Returns whether the given function is an empty C++ destructor and can 2439 /// therefore be eliminated. 2440 /// Note that we assume that other optimization passes have already simplified 2441 /// the code so we only look for a function with a single basic block, where 2442 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2443 /// other side-effect free instructions. 2444 static bool cxxDtorIsEmpty(const Function &Fn, 2445 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2446 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2447 // nounwind, but that doesn't seem worth doing. 2448 if (Fn.isDeclaration()) 2449 return false; 2450 2451 if (++Fn.begin() != Fn.end()) 2452 return false; 2453 2454 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2455 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2456 I != E; ++I) { 2457 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2458 // Ignore debug intrinsics. 2459 if (isa<DbgInfoIntrinsic>(CI)) 2460 continue; 2461 2462 const Function *CalledFn = CI->getCalledFunction(); 2463 2464 if (!CalledFn) 2465 return false; 2466 2467 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2468 2469 // Don't treat recursive functions as empty. 2470 if (!NewCalledFunctions.insert(CalledFn).second) 2471 return false; 2472 2473 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2474 return false; 2475 } else if (isa<ReturnInst>(*I)) 2476 return true; // We're done. 2477 else if (I->mayHaveSideEffects()) 2478 return false; // Destructor with side effects, bail. 2479 } 2480 2481 return false; 2482 } 2483 2484 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2485 /// Itanium C++ ABI p3.3.5: 2486 /// 2487 /// After constructing a global (or local static) object, that will require 2488 /// destruction on exit, a termination function is registered as follows: 2489 /// 2490 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2491 /// 2492 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2493 /// call f(p) when DSO d is unloaded, before all such termination calls 2494 /// registered before this one. It returns zero if registration is 2495 /// successful, nonzero on failure. 2496 2497 // This pass will look for calls to __cxa_atexit where the function is trivial 2498 // and remove them. 2499 bool Changed = false; 2500 2501 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2502 I != E;) { 2503 // We're only interested in calls. Theoretically, we could handle invoke 2504 // instructions as well, but neither llvm-gcc nor clang generate invokes 2505 // to __cxa_atexit. 2506 CallInst *CI = dyn_cast<CallInst>(*I++); 2507 if (!CI) 2508 continue; 2509 2510 Function *DtorFn = 2511 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2512 if (!DtorFn) 2513 continue; 2514 2515 SmallPtrSet<const Function *, 8> CalledFunctions; 2516 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 2517 continue; 2518 2519 // Just remove the call. 2520 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2521 CI->eraseFromParent(); 2522 2523 ++NumCXXDtorsRemoved; 2524 2525 Changed |= true; 2526 } 2527 2528 return Changed; 2529 } 2530 2531 bool GlobalOpt::runOnModule(Module &M) { 2532 bool Changed = false; 2533 2534 auto &DL = M.getDataLayout(); 2535 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2536 2537 bool LocalChange = true; 2538 while (LocalChange) { 2539 LocalChange = false; 2540 2541 NotDiscardableComdats.clear(); 2542 for (const GlobalVariable &GV : M.globals()) 2543 if (const Comdat *C = GV.getComdat()) 2544 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2545 NotDiscardableComdats.insert(C); 2546 for (Function &F : M) 2547 if (const Comdat *C = F.getComdat()) 2548 if (!F.isDefTriviallyDead()) 2549 NotDiscardableComdats.insert(C); 2550 for (GlobalAlias &GA : M.aliases()) 2551 if (const Comdat *C = GA.getComdat()) 2552 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2553 NotDiscardableComdats.insert(C); 2554 2555 // Delete functions that are trivially dead, ccc -> fastcc 2556 LocalChange |= OptimizeFunctions(M); 2557 2558 // Optimize global_ctors list. 2559 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2560 return EvaluateStaticConstructor(F, DL, TLI); 2561 }); 2562 2563 // Optimize non-address-taken globals. 2564 LocalChange |= OptimizeGlobalVars(M); 2565 2566 // Resolve aliases, when possible. 2567 LocalChange |= OptimizeGlobalAliases(M); 2568 2569 // Try to remove trivial global destructors if they are not removed 2570 // already. 2571 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 2572 if (CXAAtExitFn) 2573 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2574 2575 Changed |= LocalChange; 2576 } 2577 2578 // TODO: Move all global ctors functions to the end of the module for code 2579 // layout. 2580 2581 return Changed; 2582 } 2583