1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/BinaryFormat/Dwarf.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83 STATISTIC(NumDeleted   , "Number of globals deleted");
84 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
85 STATISTIC(NumLocalized , "Number of globals localized");
86 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
87 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93 STATISTIC(NumInternalFunc, "Number of internal functions");
94 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 
96 static cl::opt<bool>
97     EnableColdCCStressTest("enable-coldcc-stress-test",
98                            cl::desc("Enable stress test of coldcc by adding "
99                                     "calling conv to all internal functions."),
100                            cl::init(false), cl::Hidden);
101 
102 static cl::opt<int> ColdCCRelFreq(
103     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
104     cl::desc(
105         "Maximum block frequency, expressed as a percentage of caller's "
106         "entry frequency, for a call site to be considered cold for enabling"
107         "coldcc"));
108 
109 /// Is this global variable possibly used by a leak checker as a root?  If so,
110 /// we might not really want to eliminate the stores to it.
111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112   // A global variable is a root if it is a pointer, or could plausibly contain
113   // a pointer.  There are two challenges; one is that we could have a struct
114   // the has an inner member which is a pointer.  We recurse through the type to
115   // detect these (up to a point).  The other is that we may actually be a union
116   // of a pointer and another type, and so our LLVM type is an integer which
117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118   // potentially contained here.
119 
120   if (GV->hasPrivateLinkage())
121     return false;
122 
123   SmallVector<Type *, 4> Types;
124   Types.push_back(GV->getValueType());
125 
126   unsigned Limit = 20;
127   do {
128     Type *Ty = Types.pop_back_val();
129     switch (Ty->getTypeID()) {
130       default: break;
131       case Type::PointerTyID: return true;
132       case Type::ArrayTyID:
133       case Type::VectorTyID: {
134         SequentialType *STy = cast<SequentialType>(Ty);
135         Types.push_back(STy->getElementType());
136         break;
137       }
138       case Type::StructTyID: {
139         StructType *STy = cast<StructType>(Ty);
140         if (STy->isOpaque()) return true;
141         for (StructType::element_iterator I = STy->element_begin(),
142                  E = STy->element_end(); I != E; ++I) {
143           Type *InnerTy = *I;
144           if (isa<PointerType>(InnerTy)) return true;
145           if (isa<CompositeType>(InnerTy))
146             Types.push_back(InnerTy);
147         }
148         break;
149       }
150     }
151     if (--Limit == 0) return true;
152   } while (!Types.empty());
153   return false;
154 }
155 
156 /// Given a value that is stored to a global but never read, determine whether
157 /// it's safe to remove the store and the chain of computation that feeds the
158 /// store.
159 static bool IsSafeComputationToRemove(
160     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
161   do {
162     if (isa<Constant>(V))
163       return true;
164     if (!V->hasOneUse())
165       return false;
166     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
167         isa<GlobalValue>(V))
168       return false;
169     if (isAllocationFn(V, GetTLI))
170       return true;
171 
172     Instruction *I = cast<Instruction>(V);
173     if (I->mayHaveSideEffects())
174       return false;
175     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
176       if (!GEP->hasAllConstantIndices())
177         return false;
178     } else if (I->getNumOperands() != 1) {
179       return false;
180     }
181 
182     V = I->getOperand(0);
183   } while (true);
184 }
185 
186 /// This GV is a pointer root.  Loop over all users of the global and clean up
187 /// any that obviously don't assign the global a value that isn't dynamically
188 /// allocated.
189 static bool
190 CleanupPointerRootUsers(GlobalVariable *GV,
191                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
192   // A brief explanation of leak checkers.  The goal is to find bugs where
193   // pointers are forgotten, causing an accumulating growth in memory
194   // usage over time.  The common strategy for leak checkers is to whitelist the
195   // memory pointed to by globals at exit.  This is popular because it also
196   // solves another problem where the main thread of a C++ program may shut down
197   // before other threads that are still expecting to use those globals.  To
198   // handle that case, we expect the program may create a singleton and never
199   // destroy it.
200 
201   bool Changed = false;
202 
203   // If Dead[n].first is the only use of a malloc result, we can delete its
204   // chain of computation and the store to the global in Dead[n].second.
205   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
206 
207   // Constants can't be pointers to dynamically allocated memory.
208   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
209        UI != E;) {
210     User *U = *UI++;
211     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
212       Value *V = SI->getValueOperand();
213       if (isa<Constant>(V)) {
214         Changed = true;
215         SI->eraseFromParent();
216       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
217         if (I->hasOneUse())
218           Dead.push_back(std::make_pair(I, SI));
219       }
220     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
221       if (isa<Constant>(MSI->getValue())) {
222         Changed = true;
223         MSI->eraseFromParent();
224       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
225         if (I->hasOneUse())
226           Dead.push_back(std::make_pair(I, MSI));
227       }
228     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
229       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
230       if (MemSrc && MemSrc->isConstant()) {
231         Changed = true;
232         MTI->eraseFromParent();
233       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
234         if (I->hasOneUse())
235           Dead.push_back(std::make_pair(I, MTI));
236       }
237     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
238       if (CE->use_empty()) {
239         CE->destroyConstant();
240         Changed = true;
241       }
242     } else if (Constant *C = dyn_cast<Constant>(U)) {
243       if (isSafeToDestroyConstant(C)) {
244         C->destroyConstant();
245         // This could have invalidated UI, start over from scratch.
246         Dead.clear();
247         CleanupPointerRootUsers(GV, GetTLI);
248         return true;
249       }
250     }
251   }
252 
253   for (int i = 0, e = Dead.size(); i != e; ++i) {
254     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
255       Dead[i].second->eraseFromParent();
256       Instruction *I = Dead[i].first;
257       do {
258         if (isAllocationFn(I, GetTLI))
259           break;
260         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
261         if (!J)
262           break;
263         I->eraseFromParent();
264         I = J;
265       } while (true);
266       I->eraseFromParent();
267     }
268   }
269 
270   return Changed;
271 }
272 
273 /// We just marked GV constant.  Loop over all users of the global, cleaning up
274 /// the obvious ones.  This is largely just a quick scan over the use list to
275 /// clean up the easy and obvious cruft.  This returns true if it made a change.
276 static bool CleanupConstantGlobalUsers(
277     Value *V, Constant *Init, const DataLayout &DL,
278     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
279   bool Changed = false;
280   // Note that we need to use a weak value handle for the worklist items. When
281   // we delete a constant array, we may also be holding pointer to one of its
282   // elements (or an element of one of its elements if we're dealing with an
283   // array of arrays) in the worklist.
284   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
285   while (!WorkList.empty()) {
286     Value *UV = WorkList.pop_back_val();
287     if (!UV)
288       continue;
289 
290     User *U = cast<User>(UV);
291 
292     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
293       if (Init) {
294         // Replace the load with the initializer.
295         LI->replaceAllUsesWith(Init);
296         LI->eraseFromParent();
297         Changed = true;
298       }
299     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
300       // Store must be unreachable or storing Init into the global.
301       SI->eraseFromParent();
302       Changed = true;
303     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
304       if (CE->getOpcode() == Instruction::GetElementPtr) {
305         Constant *SubInit = nullptr;
306         if (Init)
307           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
308         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
309       } else if ((CE->getOpcode() == Instruction::BitCast &&
310                   CE->getType()->isPointerTy()) ||
311                  CE->getOpcode() == Instruction::AddrSpaceCast) {
312         // Pointer cast, delete any stores and memsets to the global.
313         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
314       }
315 
316       if (CE->use_empty()) {
317         CE->destroyConstant();
318         Changed = true;
319       }
320     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
321       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
322       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
323       // and will invalidate our notion of what Init is.
324       Constant *SubInit = nullptr;
325       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
326         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
327             ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
328         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
329           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
330 
331         // If the initializer is an all-null value and we have an inbounds GEP,
332         // we already know what the result of any load from that GEP is.
333         // TODO: Handle splats.
334         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
335           SubInit = Constant::getNullValue(GEP->getResultElementType());
336       }
337       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
338 
339       if (GEP->use_empty()) {
340         GEP->eraseFromParent();
341         Changed = true;
342       }
343     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
344       if (MI->getRawDest() == V) {
345         MI->eraseFromParent();
346         Changed = true;
347       }
348 
349     } else if (Constant *C = dyn_cast<Constant>(U)) {
350       // If we have a chain of dead constantexprs or other things dangling from
351       // us, and if they are all dead, nuke them without remorse.
352       if (isSafeToDestroyConstant(C)) {
353         C->destroyConstant();
354         CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
355         return true;
356       }
357     }
358   }
359   return Changed;
360 }
361 
362 static bool isSafeSROAElementUse(Value *V);
363 
364 /// Return true if the specified GEP is a safe user of a derived
365 /// expression from a global that we want to SROA.
366 static bool isSafeSROAGEP(User *U) {
367   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
368   // don't like < 3 operand CE's, and we don't like non-constant integer
369   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
370   // value of C.
371   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
372       !cast<Constant>(U->getOperand(1))->isNullValue())
373     return false;
374 
375   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
376   ++GEPI; // Skip over the pointer index.
377 
378   // For all other level we require that the indices are constant and inrange.
379   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
380   // invalid things like allowing i to index an out-of-range subscript that
381   // accesses A[1]. This can also happen between different members of a struct
382   // in llvm IR.
383   for (; GEPI != E; ++GEPI) {
384     if (GEPI.isStruct())
385       continue;
386 
387     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
388     if (!IdxVal || (GEPI.isBoundedSequential() &&
389                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
390       return false;
391   }
392 
393   return llvm::all_of(U->users(),
394                       [](User *UU) { return isSafeSROAElementUse(UU); });
395 }
396 
397 /// Return true if the specified instruction is a safe user of a derived
398 /// expression from a global that we want to SROA.
399 static bool isSafeSROAElementUse(Value *V) {
400   // We might have a dead and dangling constant hanging off of here.
401   if (Constant *C = dyn_cast<Constant>(V))
402     return isSafeToDestroyConstant(C);
403 
404   Instruction *I = dyn_cast<Instruction>(V);
405   if (!I) return false;
406 
407   // Loads are ok.
408   if (isa<LoadInst>(I)) return true;
409 
410   // Stores *to* the pointer are ok.
411   if (StoreInst *SI = dyn_cast<StoreInst>(I))
412     return SI->getOperand(0) != V;
413 
414   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
415   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
416 }
417 
418 /// Look at all uses of the global and decide whether it is safe for us to
419 /// perform this transformation.
420 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
421   for (User *U : GV->users()) {
422     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
423     if (!isa<GetElementPtrInst>(U) &&
424         (!isa<ConstantExpr>(U) ||
425         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
426       return false;
427 
428     // Check the gep and it's users are safe to SRA
429     if (!isSafeSROAGEP(U))
430       return false;
431   }
432 
433   return true;
434 }
435 
436 /// Copy over the debug info for a variable to its SRA replacements.
437 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
438                                  uint64_t FragmentOffsetInBits,
439                                  uint64_t FragmentSizeInBits,
440                                  unsigned NumElements) {
441   SmallVector<DIGlobalVariableExpression *, 1> GVs;
442   GV->getDebugInfo(GVs);
443   for (auto *GVE : GVs) {
444     DIVariable *Var = GVE->getVariable();
445     DIExpression *Expr = GVE->getExpression();
446     if (NumElements > 1) {
447       if (auto E = DIExpression::createFragmentExpression(
448               Expr, FragmentOffsetInBits, FragmentSizeInBits))
449         Expr = *E;
450       else
451         return;
452     }
453     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
454     NGV->addDebugInfo(NGVE);
455   }
456 }
457 
458 /// Perform scalar replacement of aggregates on the specified global variable.
459 /// This opens the door for other optimizations by exposing the behavior of the
460 /// program in a more fine-grained way.  We have determined that this
461 /// transformation is safe already.  We return the first global variable we
462 /// insert so that the caller can reprocess it.
463 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
464   // Make sure this global only has simple uses that we can SRA.
465   if (!GlobalUsersSafeToSRA(GV))
466     return nullptr;
467 
468   assert(GV->hasLocalLinkage());
469   Constant *Init = GV->getInitializer();
470   Type *Ty = Init->getType();
471 
472   std::vector<GlobalVariable *> NewGlobals;
473   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
474 
475   // Get the alignment of the global, either explicit or target-specific.
476   unsigned StartAlignment = GV->getAlignment();
477   if (StartAlignment == 0)
478     StartAlignment = DL.getABITypeAlignment(GV->getType());
479 
480   if (StructType *STy = dyn_cast<StructType>(Ty)) {
481     unsigned NumElements = STy->getNumElements();
482     NewGlobals.reserve(NumElements);
483     const StructLayout &Layout = *DL.getStructLayout(STy);
484     for (unsigned i = 0, e = NumElements; i != e; ++i) {
485       Constant *In = Init->getAggregateElement(i);
486       assert(In && "Couldn't get element of initializer?");
487       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
488                                                GlobalVariable::InternalLinkage,
489                                                In, GV->getName()+"."+Twine(i),
490                                                GV->getThreadLocalMode(),
491                                               GV->getType()->getAddressSpace());
492       NGV->setExternallyInitialized(GV->isExternallyInitialized());
493       NGV->copyAttributesFrom(GV);
494       Globals.push_back(NGV);
495       NewGlobals.push_back(NGV);
496 
497       // Calculate the known alignment of the field.  If the original aggregate
498       // had 256 byte alignment for example, something might depend on that:
499       // propagate info to each field.
500       uint64_t FieldOffset = Layout.getElementOffset(i);
501       Align NewAlign(MinAlign(StartAlignment, FieldOffset));
502       if (NewAlign > Align(DL.getABITypeAlignment(STy->getElementType(i))))
503         NGV->setAlignment(NewAlign);
504 
505       // Copy over the debug info for the variable.
506       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
507       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i);
508       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements);
509     }
510   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
511     unsigned NumElements = STy->getNumElements();
512     if (NumElements > 16 && GV->hasNUsesOrMore(16))
513       return nullptr; // It's not worth it.
514     NewGlobals.reserve(NumElements);
515     auto ElTy = STy->getElementType();
516     uint64_t EltSize = DL.getTypeAllocSize(ElTy);
517     Align EltAlign(DL.getABITypeAlignment(ElTy));
518     uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
519     for (unsigned i = 0, e = NumElements; i != e; ++i) {
520       Constant *In = Init->getAggregateElement(i);
521       assert(In && "Couldn't get element of initializer?");
522 
523       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
524                                                GlobalVariable::InternalLinkage,
525                                                In, GV->getName()+"."+Twine(i),
526                                                GV->getThreadLocalMode(),
527                                               GV->getType()->getAddressSpace());
528       NGV->setExternallyInitialized(GV->isExternallyInitialized());
529       NGV->copyAttributesFrom(GV);
530       Globals.push_back(NGV);
531       NewGlobals.push_back(NGV);
532 
533       // Calculate the known alignment of the field.  If the original aggregate
534       // had 256 byte alignment for example, something might depend on that:
535       // propagate info to each field.
536       Align NewAlign(MinAlign(StartAlignment, EltSize * i));
537       if (NewAlign > EltAlign)
538         NGV->setAlignment(NewAlign);
539       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits,
540                            NumElements);
541     }
542   }
543 
544   if (NewGlobals.empty())
545     return nullptr;
546 
547   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
548 
549   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
550 
551   // Loop over all of the uses of the global, replacing the constantexpr geps,
552   // with smaller constantexpr geps or direct references.
553   while (!GV->use_empty()) {
554     User *GEP = GV->user_back();
555     assert(((isa<ConstantExpr>(GEP) &&
556              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
557             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
558 
559     // Ignore the 1th operand, which has to be zero or else the program is quite
560     // broken (undefined).  Get the 2nd operand, which is the structure or array
561     // index.
562     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
563     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
564 
565     Value *NewPtr = NewGlobals[Val];
566     Type *NewTy = NewGlobals[Val]->getValueType();
567 
568     // Form a shorter GEP if needed.
569     if (GEP->getNumOperands() > 3) {
570       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
571         SmallVector<Constant*, 8> Idxs;
572         Idxs.push_back(NullInt);
573         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
574           Idxs.push_back(CE->getOperand(i));
575         NewPtr =
576             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
577       } else {
578         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
579         SmallVector<Value*, 8> Idxs;
580         Idxs.push_back(NullInt);
581         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
582           Idxs.push_back(GEPI->getOperand(i));
583         NewPtr = GetElementPtrInst::Create(
584             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
585       }
586     }
587     GEP->replaceAllUsesWith(NewPtr);
588 
589     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
590       GEPI->eraseFromParent();
591     else
592       cast<ConstantExpr>(GEP)->destroyConstant();
593   }
594 
595   // Delete the old global, now that it is dead.
596   Globals.erase(GV);
597   ++NumSRA;
598 
599   // Loop over the new globals array deleting any globals that are obviously
600   // dead.  This can arise due to scalarization of a structure or an array that
601   // has elements that are dead.
602   unsigned FirstGlobal = 0;
603   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
604     if (NewGlobals[i]->use_empty()) {
605       Globals.erase(NewGlobals[i]);
606       if (FirstGlobal == i) ++FirstGlobal;
607     }
608 
609   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
610 }
611 
612 /// Return true if all users of the specified value will trap if the value is
613 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
614 /// reprocessing them.
615 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
616                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
617   for (const User *U : V->users()) {
618     if (const Instruction *I = dyn_cast<Instruction>(U)) {
619       // If null pointer is considered valid, then all uses are non-trapping.
620       // Non address-space 0 globals have already been pruned by the caller.
621       if (NullPointerIsDefined(I->getFunction()))
622         return false;
623     }
624     if (isa<LoadInst>(U)) {
625       // Will trap.
626     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
627       if (SI->getOperand(0) == V) {
628         //cerr << "NONTRAPPING USE: " << *U;
629         return false;  // Storing the value.
630       }
631     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
632       if (CI->getCalledValue() != V) {
633         //cerr << "NONTRAPPING USE: " << *U;
634         return false;  // Not calling the ptr
635       }
636     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
637       if (II->getCalledValue() != V) {
638         //cerr << "NONTRAPPING USE: " << *U;
639         return false;  // Not calling the ptr
640       }
641     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
642       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
643     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
644       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
645     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
646       // If we've already seen this phi node, ignore it, it has already been
647       // checked.
648       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
649         return false;
650     } else if (isa<ICmpInst>(U) &&
651                isa<ConstantPointerNull>(U->getOperand(1))) {
652       // Ignore icmp X, null
653     } else {
654       //cerr << "NONTRAPPING USE: " << *U;
655       return false;
656     }
657   }
658   return true;
659 }
660 
661 /// Return true if all uses of any loads from GV will trap if the loaded value
662 /// is null.  Note that this also permits comparisons of the loaded value
663 /// against null, as a special case.
664 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
665   for (const User *U : GV->users())
666     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
667       SmallPtrSet<const PHINode*, 8> PHIs;
668       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
669         return false;
670     } else if (isa<StoreInst>(U)) {
671       // Ignore stores to the global.
672     } else {
673       // We don't know or understand this user, bail out.
674       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
675       return false;
676     }
677   return true;
678 }
679 
680 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
681   bool Changed = false;
682   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
683     Instruction *I = cast<Instruction>(*UI++);
684     // Uses are non-trapping if null pointer is considered valid.
685     // Non address-space 0 globals are already pruned by the caller.
686     if (NullPointerIsDefined(I->getFunction()))
687       return false;
688     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
689       LI->setOperand(0, NewV);
690       Changed = true;
691     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
692       if (SI->getOperand(1) == V) {
693         SI->setOperand(1, NewV);
694         Changed = true;
695       }
696     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
697       CallSite CS(I);
698       if (CS.getCalledValue() == V) {
699         // Calling through the pointer!  Turn into a direct call, but be careful
700         // that the pointer is not also being passed as an argument.
701         CS.setCalledFunction(NewV);
702         Changed = true;
703         bool PassedAsArg = false;
704         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
705           if (CS.getArgument(i) == V) {
706             PassedAsArg = true;
707             CS.setArgument(i, NewV);
708           }
709 
710         if (PassedAsArg) {
711           // Being passed as an argument also.  Be careful to not invalidate UI!
712           UI = V->user_begin();
713         }
714       }
715     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
716       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
717                                 ConstantExpr::getCast(CI->getOpcode(),
718                                                       NewV, CI->getType()));
719       if (CI->use_empty()) {
720         Changed = true;
721         CI->eraseFromParent();
722       }
723     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
724       // Should handle GEP here.
725       SmallVector<Constant*, 8> Idxs;
726       Idxs.reserve(GEPI->getNumOperands()-1);
727       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
728            i != e; ++i)
729         if (Constant *C = dyn_cast<Constant>(*i))
730           Idxs.push_back(C);
731         else
732           break;
733       if (Idxs.size() == GEPI->getNumOperands()-1)
734         Changed |= OptimizeAwayTrappingUsesOfValue(
735             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
736                                                  NewV, Idxs));
737       if (GEPI->use_empty()) {
738         Changed = true;
739         GEPI->eraseFromParent();
740       }
741     }
742   }
743 
744   return Changed;
745 }
746 
747 /// The specified global has only one non-null value stored into it.  If there
748 /// are uses of the loaded value that would trap if the loaded value is
749 /// dynamically null, then we know that they cannot be reachable with a null
750 /// optimize away the load.
751 static bool OptimizeAwayTrappingUsesOfLoads(
752     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
753     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
754   bool Changed = false;
755 
756   // Keep track of whether we are able to remove all the uses of the global
757   // other than the store that defines it.
758   bool AllNonStoreUsesGone = true;
759 
760   // Replace all uses of loads with uses of uses of the stored value.
761   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
762     User *GlobalUser = *GUI++;
763     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
764       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
765       // If we were able to delete all uses of the loads
766       if (LI->use_empty()) {
767         LI->eraseFromParent();
768         Changed = true;
769       } else {
770         AllNonStoreUsesGone = false;
771       }
772     } else if (isa<StoreInst>(GlobalUser)) {
773       // Ignore the store that stores "LV" to the global.
774       assert(GlobalUser->getOperand(1) == GV &&
775              "Must be storing *to* the global");
776     } else {
777       AllNonStoreUsesGone = false;
778 
779       // If we get here we could have other crazy uses that are transitively
780       // loaded.
781       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
782               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
783               isa<BitCastInst>(GlobalUser) ||
784               isa<GetElementPtrInst>(GlobalUser)) &&
785              "Only expect load and stores!");
786     }
787   }
788 
789   if (Changed) {
790     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
791                       << "\n");
792     ++NumGlobUses;
793   }
794 
795   // If we nuked all of the loads, then none of the stores are needed either,
796   // nor is the global.
797   if (AllNonStoreUsesGone) {
798     if (isLeakCheckerRoot(GV)) {
799       Changed |= CleanupPointerRootUsers(GV, GetTLI);
800     } else {
801       Changed = true;
802       CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
803     }
804     if (GV->use_empty()) {
805       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
806       Changed = true;
807       GV->eraseFromParent();
808       ++NumDeleted;
809     }
810   }
811   return Changed;
812 }
813 
814 /// Walk the use list of V, constant folding all of the instructions that are
815 /// foldable.
816 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
817                                 TargetLibraryInfo *TLI) {
818   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
819     if (Instruction *I = dyn_cast<Instruction>(*UI++))
820       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
821         I->replaceAllUsesWith(NewC);
822 
823         // Advance UI to the next non-I use to avoid invalidating it!
824         // Instructions could multiply use V.
825         while (UI != E && *UI == I)
826           ++UI;
827         if (isInstructionTriviallyDead(I, TLI))
828           I->eraseFromParent();
829       }
830 }
831 
832 /// This function takes the specified global variable, and transforms the
833 /// program as if it always contained the result of the specified malloc.
834 /// Because it is always the result of the specified malloc, there is no reason
835 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
836 /// loads of GV as uses of the new global.
837 static GlobalVariable *
838 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
839                               ConstantInt *NElements, const DataLayout &DL,
840                               TargetLibraryInfo *TLI) {
841   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
842                     << '\n');
843 
844   Type *GlobalType;
845   if (NElements->getZExtValue() == 1)
846     GlobalType = AllocTy;
847   else
848     // If we have an array allocation, the global variable is of an array.
849     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
850 
851   // Create the new global variable.  The contents of the malloc'd memory is
852   // undefined, so initialize with an undef value.
853   GlobalVariable *NewGV = new GlobalVariable(
854       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
855       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
856       GV->getThreadLocalMode());
857 
858   // If there are bitcast users of the malloc (which is typical, usually we have
859   // a malloc + bitcast) then replace them with uses of the new global.  Update
860   // other users to use the global as well.
861   BitCastInst *TheBC = nullptr;
862   while (!CI->use_empty()) {
863     Instruction *User = cast<Instruction>(CI->user_back());
864     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
865       if (BCI->getType() == NewGV->getType()) {
866         BCI->replaceAllUsesWith(NewGV);
867         BCI->eraseFromParent();
868       } else {
869         BCI->setOperand(0, NewGV);
870       }
871     } else {
872       if (!TheBC)
873         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
874       User->replaceUsesOfWith(CI, TheBC);
875     }
876   }
877 
878   Constant *RepValue = NewGV;
879   if (NewGV->getType() != GV->getValueType())
880     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
881 
882   // If there is a comparison against null, we will insert a global bool to
883   // keep track of whether the global was initialized yet or not.
884   GlobalVariable *InitBool =
885     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
886                        GlobalValue::InternalLinkage,
887                        ConstantInt::getFalse(GV->getContext()),
888                        GV->getName()+".init", GV->getThreadLocalMode());
889   bool InitBoolUsed = false;
890 
891   // Loop over all uses of GV, processing them in turn.
892   while (!GV->use_empty()) {
893     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
894       // The global is initialized when the store to it occurs.
895       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false,
896                     None, SI->getOrdering(), SI->getSyncScopeID(), SI);
897       SI->eraseFromParent();
898       continue;
899     }
900 
901     LoadInst *LI = cast<LoadInst>(GV->user_back());
902     while (!LI->use_empty()) {
903       Use &LoadUse = *LI->use_begin();
904       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
905       if (!ICI) {
906         LoadUse = RepValue;
907         continue;
908       }
909 
910       // Replace the cmp X, 0 with a use of the bool value.
911       // Sink the load to where the compare was, if atomic rules allow us to.
912       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
913                                InitBool->getName() + ".val", false, None,
914                                LI->getOrdering(), LI->getSyncScopeID(),
915                                LI->isUnordered() ? (Instruction *)ICI : LI);
916       InitBoolUsed = true;
917       switch (ICI->getPredicate()) {
918       default: llvm_unreachable("Unknown ICmp Predicate!");
919       case ICmpInst::ICMP_ULT:
920       case ICmpInst::ICMP_SLT:   // X < null -> always false
921         LV = ConstantInt::getFalse(GV->getContext());
922         break;
923       case ICmpInst::ICMP_ULE:
924       case ICmpInst::ICMP_SLE:
925       case ICmpInst::ICMP_EQ:
926         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
927         break;
928       case ICmpInst::ICMP_NE:
929       case ICmpInst::ICMP_UGE:
930       case ICmpInst::ICMP_SGE:
931       case ICmpInst::ICMP_UGT:
932       case ICmpInst::ICMP_SGT:
933         break;  // no change.
934       }
935       ICI->replaceAllUsesWith(LV);
936       ICI->eraseFromParent();
937     }
938     LI->eraseFromParent();
939   }
940 
941   // If the initialization boolean was used, insert it, otherwise delete it.
942   if (!InitBoolUsed) {
943     while (!InitBool->use_empty())  // Delete initializations
944       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
945     delete InitBool;
946   } else
947     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
948 
949   // Now the GV is dead, nuke it and the malloc..
950   GV->eraseFromParent();
951   CI->eraseFromParent();
952 
953   // To further other optimizations, loop over all users of NewGV and try to
954   // constant prop them.  This will promote GEP instructions with constant
955   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
956   ConstantPropUsersOf(NewGV, DL, TLI);
957   if (RepValue != NewGV)
958     ConstantPropUsersOf(RepValue, DL, TLI);
959 
960   return NewGV;
961 }
962 
963 /// Scan the use-list of V checking to make sure that there are no complex uses
964 /// of V.  We permit simple things like dereferencing the pointer, but not
965 /// storing through the address, unless it is to the specified global.
966 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
967                                                       const GlobalVariable *GV,
968                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
969   for (const User *U : V->users()) {
970     const Instruction *Inst = cast<Instruction>(U);
971 
972     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
973       continue; // Fine, ignore.
974     }
975 
976     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
977       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
978         return false;  // Storing the pointer itself... bad.
979       continue; // Otherwise, storing through it, or storing into GV... fine.
980     }
981 
982     // Must index into the array and into the struct.
983     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
984       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
985         return false;
986       continue;
987     }
988 
989     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
990       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
991       // cycles.
992       if (PHIs.insert(PN).second)
993         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
994           return false;
995       continue;
996     }
997 
998     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
999       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1000         return false;
1001       continue;
1002     }
1003 
1004     return false;
1005   }
1006   return true;
1007 }
1008 
1009 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1010 /// allocation into loads from the global and uses of the resultant pointer.
1011 /// Further, delete the store into GV.  This assumes that these value pass the
1012 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1013 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1014                                           GlobalVariable *GV) {
1015   while (!Alloc->use_empty()) {
1016     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1017     Instruction *InsertPt = U;
1018     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1019       // If this is the store of the allocation into the global, remove it.
1020       if (SI->getOperand(1) == GV) {
1021         SI->eraseFromParent();
1022         continue;
1023       }
1024     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1025       // Insert the load in the corresponding predecessor, not right before the
1026       // PHI.
1027       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1028     } else if (isa<BitCastInst>(U)) {
1029       // Must be bitcast between the malloc and store to initialize the global.
1030       ReplaceUsesOfMallocWithGlobal(U, GV);
1031       U->eraseFromParent();
1032       continue;
1033     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1034       // If this is a "GEP bitcast" and the user is a store to the global, then
1035       // just process it as a bitcast.
1036       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1037         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1038           if (SI->getOperand(1) == GV) {
1039             // Must be bitcast GEP between the malloc and store to initialize
1040             // the global.
1041             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1042             GEPI->eraseFromParent();
1043             continue;
1044           }
1045     }
1046 
1047     // Insert a load from the global, and use it instead of the malloc.
1048     Value *NL =
1049         new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt);
1050     U->replaceUsesOfWith(Alloc, NL);
1051   }
1052 }
1053 
1054 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1055 /// perform heap SRA on.  This permits GEP's that index through the array and
1056 /// struct field, icmps of null, and PHIs.
1057 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1058                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1059                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1060   // We permit two users of the load: setcc comparing against the null
1061   // pointer, and a getelementptr of a specific form.
1062   for (const User *U : V->users()) {
1063     const Instruction *UI = cast<Instruction>(U);
1064 
1065     // Comparison against null is ok.
1066     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1067       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1068         return false;
1069       continue;
1070     }
1071 
1072     // getelementptr is also ok, but only a simple form.
1073     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1074       // Must index into the array and into the struct.
1075       if (GEPI->getNumOperands() < 3)
1076         return false;
1077 
1078       // Otherwise the GEP is ok.
1079       continue;
1080     }
1081 
1082     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1083       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1084         // This means some phi nodes are dependent on each other.
1085         // Avoid infinite looping!
1086         return false;
1087       if (!LoadUsingPHIs.insert(PN).second)
1088         // If we have already analyzed this PHI, then it is safe.
1089         continue;
1090 
1091       // Make sure all uses of the PHI are simple enough to transform.
1092       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1093                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1094         return false;
1095 
1096       continue;
1097     }
1098 
1099     // Otherwise we don't know what this is, not ok.
1100     return false;
1101   }
1102 
1103   return true;
1104 }
1105 
1106 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1107 /// return true.
1108 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1109                                                     Instruction *StoredVal) {
1110   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1111   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1112   for (const User *U : GV->users())
1113     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1114       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1115                                           LoadUsingPHIsPerLoad))
1116         return false;
1117       LoadUsingPHIsPerLoad.clear();
1118     }
1119 
1120   // If we reach here, we know that all uses of the loads and transitive uses
1121   // (through PHI nodes) are simple enough to transform.  However, we don't know
1122   // that all inputs the to the PHI nodes are in the same equivalence sets.
1123   // Check to verify that all operands of the PHIs are either PHIS that can be
1124   // transformed, loads from GV, or MI itself.
1125   for (const PHINode *PN : LoadUsingPHIs) {
1126     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1127       Value *InVal = PN->getIncomingValue(op);
1128 
1129       // PHI of the stored value itself is ok.
1130       if (InVal == StoredVal) continue;
1131 
1132       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1133         // One of the PHIs in our set is (optimistically) ok.
1134         if (LoadUsingPHIs.count(InPN))
1135           continue;
1136         return false;
1137       }
1138 
1139       // Load from GV is ok.
1140       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1141         if (LI->getOperand(0) == GV)
1142           continue;
1143 
1144       // UNDEF? NULL?
1145 
1146       // Anything else is rejected.
1147       return false;
1148     }
1149   }
1150 
1151   return true;
1152 }
1153 
1154 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1155               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1156                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1157   std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1158 
1159   if (FieldNo >= FieldVals.size())
1160     FieldVals.resize(FieldNo+1);
1161 
1162   // If we already have this value, just reuse the previously scalarized
1163   // version.
1164   if (Value *FieldVal = FieldVals[FieldNo])
1165     return FieldVal;
1166 
1167   // Depending on what instruction this is, we have several cases.
1168   Value *Result;
1169   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1170     // This is a scalarized version of the load from the global.  Just create
1171     // a new Load of the scalarized global.
1172     Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo,
1173                                 InsertedScalarizedValues, PHIsToRewrite);
1174     Result = new LoadInst(V->getType()->getPointerElementType(), V,
1175                           LI->getName() + ".f" + Twine(FieldNo), LI);
1176   } else {
1177     PHINode *PN = cast<PHINode>(V);
1178     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1179     // field.
1180 
1181     PointerType *PTy = cast<PointerType>(PN->getType());
1182     StructType *ST = cast<StructType>(PTy->getElementType());
1183 
1184     unsigned AS = PTy->getAddressSpace();
1185     PHINode *NewPN =
1186       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1187                      PN->getNumIncomingValues(),
1188                      PN->getName()+".f"+Twine(FieldNo), PN);
1189     Result = NewPN;
1190     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1191   }
1192 
1193   return FieldVals[FieldNo] = Result;
1194 }
1195 
1196 /// Given a load instruction and a value derived from the load, rewrite the
1197 /// derived value to use the HeapSRoA'd load.
1198 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1199               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1200                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1201   // If this is a comparison against null, handle it.
1202   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1203     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1204     // If we have a setcc of the loaded pointer, we can use a setcc of any
1205     // field.
1206     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1207                                    InsertedScalarizedValues, PHIsToRewrite);
1208 
1209     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1210                               Constant::getNullValue(NPtr->getType()),
1211                               SCI->getName());
1212     SCI->replaceAllUsesWith(New);
1213     SCI->eraseFromParent();
1214     return;
1215   }
1216 
1217   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1218   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1219     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1220            && "Unexpected GEPI!");
1221 
1222     // Load the pointer for this field.
1223     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1224     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1225                                      InsertedScalarizedValues, PHIsToRewrite);
1226 
1227     // Create the new GEP idx vector.
1228     SmallVector<Value*, 8> GEPIdx;
1229     GEPIdx.push_back(GEPI->getOperand(1));
1230     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1231 
1232     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1233                                              GEPI->getName(), GEPI);
1234     GEPI->replaceAllUsesWith(NGEPI);
1235     GEPI->eraseFromParent();
1236     return;
1237   }
1238 
1239   // Recursively transform the users of PHI nodes.  This will lazily create the
1240   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1241   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1242   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1243   // already been seen first by another load, so its uses have already been
1244   // processed.
1245   PHINode *PN = cast<PHINode>(LoadUser);
1246   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1247                                               std::vector<Value *>())).second)
1248     return;
1249 
1250   // If this is the first time we've seen this PHI, recursively process all
1251   // users.
1252   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1253     Instruction *User = cast<Instruction>(*UI++);
1254     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1255   }
1256 }
1257 
1258 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1259 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1260 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1261 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1262               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1263                   std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1264   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1265     Instruction *User = cast<Instruction>(*UI++);
1266     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1267   }
1268 
1269   if (Load->use_empty()) {
1270     Load->eraseFromParent();
1271     InsertedScalarizedValues.erase(Load);
1272   }
1273 }
1274 
1275 /// CI is an allocation of an array of structures.  Break it up into multiple
1276 /// allocations of arrays of the fields.
1277 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1278                                             Value *NElems, const DataLayout &DL,
1279                                             const TargetLibraryInfo *TLI) {
1280   LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
1281                     << '\n');
1282   Type *MAT = getMallocAllocatedType(CI, TLI);
1283   StructType *STy = cast<StructType>(MAT);
1284 
1285   // There is guaranteed to be at least one use of the malloc (storing
1286   // it into GV).  If there are other uses, change them to be uses of
1287   // the global to simplify later code.  This also deletes the store
1288   // into GV.
1289   ReplaceUsesOfMallocWithGlobal(CI, GV);
1290 
1291   // Okay, at this point, there are no users of the malloc.  Insert N
1292   // new mallocs at the same place as CI, and N globals.
1293   std::vector<Value *> FieldGlobals;
1294   std::vector<Value *> FieldMallocs;
1295 
1296   SmallVector<OperandBundleDef, 1> OpBundles;
1297   CI->getOperandBundlesAsDefs(OpBundles);
1298 
1299   unsigned AS = GV->getType()->getPointerAddressSpace();
1300   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1301     Type *FieldTy = STy->getElementType(FieldNo);
1302     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1303 
1304     GlobalVariable *NGV = new GlobalVariable(
1305         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1306         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1307         nullptr, GV->getThreadLocalMode());
1308     NGV->copyAttributesFrom(GV);
1309     FieldGlobals.push_back(NGV);
1310 
1311     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1312     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1313       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1314     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1315     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1316                                         ConstantInt::get(IntPtrTy, TypeSize),
1317                                         NElems, OpBundles, nullptr,
1318                                         CI->getName() + ".f" + Twine(FieldNo));
1319     FieldMallocs.push_back(NMI);
1320     new StoreInst(NMI, NGV, CI);
1321   }
1322 
1323   // The tricky aspect of this transformation is handling the case when malloc
1324   // fails.  In the original code, malloc failing would set the result pointer
1325   // of malloc to null.  In this case, some mallocs could succeed and others
1326   // could fail.  As such, we emit code that looks like this:
1327   //    F0 = malloc(field0)
1328   //    F1 = malloc(field1)
1329   //    F2 = malloc(field2)
1330   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1331   //      if (F0) { free(F0); F0 = 0; }
1332   //      if (F1) { free(F1); F1 = 0; }
1333   //      if (F2) { free(F2); F2 = 0; }
1334   //    }
1335   // The malloc can also fail if its argument is too large.
1336   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1337   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1338                                   ConstantZero, "isneg");
1339   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1340     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1341                              Constant::getNullValue(FieldMallocs[i]->getType()),
1342                                "isnull");
1343     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1344   }
1345 
1346   // Split the basic block at the old malloc.
1347   BasicBlock *OrigBB = CI->getParent();
1348   BasicBlock *ContBB =
1349       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1350 
1351   // Create the block to check the first condition.  Put all these blocks at the
1352   // end of the function as they are unlikely to be executed.
1353   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1354                                                 "malloc_ret_null",
1355                                                 OrigBB->getParent());
1356 
1357   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1358   // branch on RunningOr.
1359   OrigBB->getTerminator()->eraseFromParent();
1360   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1361 
1362   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1363   // pointer, because some may be null while others are not.
1364   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1365     Value *GVVal =
1366         new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(),
1367                      FieldGlobals[i], "tmp", NullPtrBlock);
1368     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1369                               Constant::getNullValue(GVVal->getType()));
1370     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1371                                                OrigBB->getParent());
1372     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1373                                                OrigBB->getParent());
1374     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1375                                          Cmp, NullPtrBlock);
1376 
1377     // Fill in FreeBlock.
1378     CallInst::CreateFree(GVVal, OpBundles, BI);
1379     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1380                   FreeBlock);
1381     BranchInst::Create(NextBlock, FreeBlock);
1382 
1383     NullPtrBlock = NextBlock;
1384   }
1385 
1386   BranchInst::Create(ContBB, NullPtrBlock);
1387 
1388   // CI is no longer needed, remove it.
1389   CI->eraseFromParent();
1390 
1391   /// As we process loads, if we can't immediately update all uses of the load,
1392   /// keep track of what scalarized loads are inserted for a given load.
1393   DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1394   InsertedScalarizedValues[GV] = FieldGlobals;
1395 
1396   std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1397 
1398   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1399   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1400   // of the per-field globals instead.
1401   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1402     Instruction *User = cast<Instruction>(*UI++);
1403 
1404     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1405       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1406       continue;
1407     }
1408 
1409     // Must be a store of null.
1410     StoreInst *SI = cast<StoreInst>(User);
1411     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1412            "Unexpected heap-sra user!");
1413 
1414     // Insert a store of null into each global.
1415     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1416       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1417       Constant *Null = Constant::getNullValue(ValTy);
1418       new StoreInst(Null, FieldGlobals[i], SI);
1419     }
1420     // Erase the original store.
1421     SI->eraseFromParent();
1422   }
1423 
1424   // While we have PHIs that are interesting to rewrite, do it.
1425   while (!PHIsToRewrite.empty()) {
1426     PHINode *PN = PHIsToRewrite.back().first;
1427     unsigned FieldNo = PHIsToRewrite.back().second;
1428     PHIsToRewrite.pop_back();
1429     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1430     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1431 
1432     // Add all the incoming values.  This can materialize more phis.
1433     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1434       Value *InVal = PN->getIncomingValue(i);
1435       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1436                                PHIsToRewrite);
1437       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1438     }
1439   }
1440 
1441   // Drop all inter-phi links and any loads that made it this far.
1442   for (DenseMap<Value *, std::vector<Value *>>::iterator
1443        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1444        I != E; ++I) {
1445     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1446       PN->dropAllReferences();
1447     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1448       LI->dropAllReferences();
1449   }
1450 
1451   // Delete all the phis and loads now that inter-references are dead.
1452   for (DenseMap<Value *, std::vector<Value *>>::iterator
1453        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1454        I != E; ++I) {
1455     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1456       PN->eraseFromParent();
1457     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1458       LI->eraseFromParent();
1459   }
1460 
1461   // The old global is now dead, remove it.
1462   GV->eraseFromParent();
1463 
1464   ++NumHeapSRA;
1465   return cast<GlobalVariable>(FieldGlobals[0]);
1466 }
1467 
1468 /// This function is called when we see a pointer global variable with a single
1469 /// value stored it that is a malloc or cast of malloc.
1470 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1471                                                Type *AllocTy,
1472                                                AtomicOrdering Ordering,
1473                                                const DataLayout &DL,
1474                                                TargetLibraryInfo *TLI) {
1475   // If this is a malloc of an abstract type, don't touch it.
1476   if (!AllocTy->isSized())
1477     return false;
1478 
1479   // We can't optimize this global unless all uses of it are *known* to be
1480   // of the malloc value, not of the null initializer value (consider a use
1481   // that compares the global's value against zero to see if the malloc has
1482   // been reached).  To do this, we check to see if all uses of the global
1483   // would trap if the global were null: this proves that they must all
1484   // happen after the malloc.
1485   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1486     return false;
1487 
1488   // We can't optimize this if the malloc itself is used in a complex way,
1489   // for example, being stored into multiple globals.  This allows the
1490   // malloc to be stored into the specified global, loaded icmp'd, and
1491   // GEP'd.  These are all things we could transform to using the global
1492   // for.
1493   SmallPtrSet<const PHINode*, 8> PHIs;
1494   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1495     return false;
1496 
1497   // If we have a global that is only initialized with a fixed size malloc,
1498   // transform the program to use global memory instead of malloc'd memory.
1499   // This eliminates dynamic allocation, avoids an indirection accessing the
1500   // data, and exposes the resultant global to further GlobalOpt.
1501   // We cannot optimize the malloc if we cannot determine malloc array size.
1502   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1503   if (!NElems)
1504     return false;
1505 
1506   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1507     // Restrict this transformation to only working on small allocations
1508     // (2048 bytes currently), as we don't want to introduce a 16M global or
1509     // something.
1510     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1511       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1512       return true;
1513     }
1514 
1515   // If the allocation is an array of structures, consider transforming this
1516   // into multiple malloc'd arrays, one for each field.  This is basically
1517   // SRoA for malloc'd memory.
1518 
1519   if (Ordering != AtomicOrdering::NotAtomic)
1520     return false;
1521 
1522   // If this is an allocation of a fixed size array of structs, analyze as a
1523   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1524   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1525     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1526       AllocTy = AT->getElementType();
1527 
1528   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1529   if (!AllocSTy)
1530     return false;
1531 
1532   // This the structure has an unreasonable number of fields, leave it
1533   // alone.
1534   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1535       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1536 
1537     // If this is a fixed size array, transform the Malloc to be an alloc of
1538     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1539     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1540       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1541       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1542       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1543       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1544       SmallVector<OperandBundleDef, 1> OpBundles;
1545       CI->getOperandBundlesAsDefs(OpBundles);
1546       Instruction *Malloc =
1547           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1548                                  OpBundles, nullptr, CI->getName());
1549       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1550       CI->replaceAllUsesWith(Cast);
1551       CI->eraseFromParent();
1552       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1553         CI = cast<CallInst>(BCI->getOperand(0));
1554       else
1555         CI = cast<CallInst>(Malloc);
1556     }
1557 
1558     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1559                          TLI);
1560     return true;
1561   }
1562 
1563   return false;
1564 }
1565 
1566 // Try to optimize globals based on the knowledge that only one value (besides
1567 // its initializer) is ever stored to the global.
1568 static bool
1569 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1570                          AtomicOrdering Ordering, const DataLayout &DL,
1571                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1572   // Ignore no-op GEPs and bitcasts.
1573   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1574 
1575   // If we are dealing with a pointer global that is initialized to null and
1576   // only has one (non-null) value stored into it, then we can optimize any
1577   // users of the loaded value (often calls and loads) that would trap if the
1578   // value was null.
1579   if (GV->getInitializer()->getType()->isPointerTy() &&
1580       GV->getInitializer()->isNullValue() &&
1581       !NullPointerIsDefined(
1582           nullptr /* F */,
1583           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1584     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1585       if (GV->getInitializer()->getType() != SOVC->getType())
1586         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1587 
1588       // Optimize away any trapping uses of the loaded value.
1589       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1590         return true;
1591     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1592       auto *TLI = &GetTLI(*CI->getFunction());
1593       Type *MallocType = getMallocAllocatedType(CI, TLI);
1594       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1595                                                            Ordering, DL, TLI))
1596         return true;
1597     }
1598   }
1599 
1600   return false;
1601 }
1602 
1603 /// At this point, we have learned that the only two values ever stored into GV
1604 /// are its initializer and OtherVal.  See if we can shrink the global into a
1605 /// boolean and select between the two values whenever it is used.  This exposes
1606 /// the values to other scalar optimizations.
1607 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1608   Type *GVElType = GV->getValueType();
1609 
1610   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1611   // an FP value, pointer or vector, don't do this optimization because a select
1612   // between them is very expensive and unlikely to lead to later
1613   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1614   // where v1 and v2 both require constant pool loads, a big loss.
1615   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1616       GVElType->isFloatingPointTy() ||
1617       GVElType->isPointerTy() || GVElType->isVectorTy())
1618     return false;
1619 
1620   // Walk the use list of the global seeing if all the uses are load or store.
1621   // If there is anything else, bail out.
1622   for (User *U : GV->users())
1623     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1624       return false;
1625 
1626   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1627 
1628   // Create the new global, initializing it to false.
1629   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1630                                              false,
1631                                              GlobalValue::InternalLinkage,
1632                                         ConstantInt::getFalse(GV->getContext()),
1633                                              GV->getName()+".b",
1634                                              GV->getThreadLocalMode(),
1635                                              GV->getType()->getAddressSpace());
1636   NewGV->copyAttributesFrom(GV);
1637   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1638 
1639   Constant *InitVal = GV->getInitializer();
1640   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1641          "No reason to shrink to bool!");
1642 
1643   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1644   GV->getDebugInfo(GVs);
1645 
1646   // If initialized to zero and storing one into the global, we can use a cast
1647   // instead of a select to synthesize the desired value.
1648   bool IsOneZero = false;
1649   bool EmitOneOrZero = true;
1650   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1651   if (CI && CI->getValue().getActiveBits() <= 64) {
1652     IsOneZero = InitVal->isNullValue() && CI->isOne();
1653 
1654     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1655     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1656       uint64_t ValInit = CIInit->getZExtValue();
1657       uint64_t ValOther = CI->getZExtValue();
1658       uint64_t ValMinus = ValOther - ValInit;
1659 
1660       for(auto *GVe : GVs){
1661         DIGlobalVariable *DGV = GVe->getVariable();
1662         DIExpression *E = GVe->getExpression();
1663         const DataLayout &DL = GV->getParent()->getDataLayout();
1664         unsigned SizeInOctets =
1665           DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8;
1666 
1667         // It is expected that the address of global optimized variable is on
1668         // top of the stack. After optimization, value of that variable will
1669         // be ether 0 for initial value or 1 for other value. The following
1670         // expression should return constant integer value depending on the
1671         // value at global object address:
1672         // val * (ValOther - ValInit) + ValInit:
1673         // DW_OP_deref DW_OP_constu <ValMinus>
1674         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1675         SmallVector<uint64_t, 12> Ops = {
1676             dwarf::DW_OP_deref_size, SizeInOctets,
1677             dwarf::DW_OP_constu, ValMinus,
1678             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1679             dwarf::DW_OP_plus};
1680         bool WithStackValue = true;
1681         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1682         DIGlobalVariableExpression *DGVE =
1683           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1684         NewGV->addDebugInfo(DGVE);
1685      }
1686      EmitOneOrZero = false;
1687     }
1688   }
1689 
1690   if (EmitOneOrZero) {
1691      // FIXME: This will only emit address for debugger on which will
1692      // be written only 0 or 1.
1693      for(auto *GV : GVs)
1694        NewGV->addDebugInfo(GV);
1695    }
1696 
1697   while (!GV->use_empty()) {
1698     Instruction *UI = cast<Instruction>(GV->user_back());
1699     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1700       // Change the store into a boolean store.
1701       bool StoringOther = SI->getOperand(0) == OtherVal;
1702       // Only do this if we weren't storing a loaded value.
1703       Value *StoreVal;
1704       if (StoringOther || SI->getOperand(0) == InitVal) {
1705         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1706                                     StoringOther);
1707       } else {
1708         // Otherwise, we are storing a previously loaded copy.  To do this,
1709         // change the copy from copying the original value to just copying the
1710         // bool.
1711         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1712 
1713         // If we've already replaced the input, StoredVal will be a cast or
1714         // select instruction.  If not, it will be a load of the original
1715         // global.
1716         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1717           assert(LI->getOperand(0) == GV && "Not a copy!");
1718           // Insert a new load, to preserve the saved value.
1719           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1720                                   LI->getName() + ".b", false, None,
1721                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1722         } else {
1723           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1724                  "This is not a form that we understand!");
1725           StoreVal = StoredVal->getOperand(0);
1726           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1727         }
1728       }
1729       StoreInst *NSI =
1730           new StoreInst(StoreVal, NewGV, false, None, SI->getOrdering(),
1731                         SI->getSyncScopeID(), SI);
1732       NSI->setDebugLoc(SI->getDebugLoc());
1733     } else {
1734       // Change the load into a load of bool then a select.
1735       LoadInst *LI = cast<LoadInst>(UI);
1736       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1737                                    LI->getName() + ".b", false, None,
1738                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1739       Instruction *NSI;
1740       if (IsOneZero)
1741         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1742       else
1743         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1744       NSI->takeName(LI);
1745       // Since LI is split into two instructions, NLI and NSI both inherit the
1746       // same DebugLoc
1747       NLI->setDebugLoc(LI->getDebugLoc());
1748       NSI->setDebugLoc(LI->getDebugLoc());
1749       LI->replaceAllUsesWith(NSI);
1750     }
1751     UI->eraseFromParent();
1752   }
1753 
1754   // Retain the name of the old global variable. People who are debugging their
1755   // programs may expect these variables to be named the same.
1756   NewGV->takeName(GV);
1757   GV->eraseFromParent();
1758   return true;
1759 }
1760 
1761 static bool deleteIfDead(
1762     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1763   GV.removeDeadConstantUsers();
1764 
1765   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1766     return false;
1767 
1768   if (const Comdat *C = GV.getComdat())
1769     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1770       return false;
1771 
1772   bool Dead;
1773   if (auto *F = dyn_cast<Function>(&GV))
1774     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1775   else
1776     Dead = GV.use_empty();
1777   if (!Dead)
1778     return false;
1779 
1780   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1781   GV.eraseFromParent();
1782   ++NumDeleted;
1783   return true;
1784 }
1785 
1786 static bool isPointerValueDeadOnEntryToFunction(
1787     const Function *F, GlobalValue *GV,
1788     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1789   // Find all uses of GV. We expect them all to be in F, and if we can't
1790   // identify any of the uses we bail out.
1791   //
1792   // On each of these uses, identify if the memory that GV points to is
1793   // used/required/live at the start of the function. If it is not, for example
1794   // if the first thing the function does is store to the GV, the GV can
1795   // possibly be demoted.
1796   //
1797   // We don't do an exhaustive search for memory operations - simply look
1798   // through bitcasts as they're quite common and benign.
1799   const DataLayout &DL = GV->getParent()->getDataLayout();
1800   SmallVector<LoadInst *, 4> Loads;
1801   SmallVector<StoreInst *, 4> Stores;
1802   for (auto *U : GV->users()) {
1803     if (Operator::getOpcode(U) == Instruction::BitCast) {
1804       for (auto *UU : U->users()) {
1805         if (auto *LI = dyn_cast<LoadInst>(UU))
1806           Loads.push_back(LI);
1807         else if (auto *SI = dyn_cast<StoreInst>(UU))
1808           Stores.push_back(SI);
1809         else
1810           return false;
1811       }
1812       continue;
1813     }
1814 
1815     Instruction *I = dyn_cast<Instruction>(U);
1816     if (!I)
1817       return false;
1818     assert(I->getParent()->getParent() == F);
1819 
1820     if (auto *LI = dyn_cast<LoadInst>(I))
1821       Loads.push_back(LI);
1822     else if (auto *SI = dyn_cast<StoreInst>(I))
1823       Stores.push_back(SI);
1824     else
1825       return false;
1826   }
1827 
1828   // We have identified all uses of GV into loads and stores. Now check if all
1829   // of them are known not to depend on the value of the global at the function
1830   // entry point. We do this by ensuring that every load is dominated by at
1831   // least one store.
1832   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1833 
1834   // The below check is quadratic. Check we're not going to do too many tests.
1835   // FIXME: Even though this will always have worst-case quadratic time, we
1836   // could put effort into minimizing the average time by putting stores that
1837   // have been shown to dominate at least one load at the beginning of the
1838   // Stores array, making subsequent dominance checks more likely to succeed
1839   // early.
1840   //
1841   // The threshold here is fairly large because global->local demotion is a
1842   // very powerful optimization should it fire.
1843   const unsigned Threshold = 100;
1844   if (Loads.size() * Stores.size() > Threshold)
1845     return false;
1846 
1847   for (auto *L : Loads) {
1848     auto *LTy = L->getType();
1849     if (none_of(Stores, [&](const StoreInst *S) {
1850           auto *STy = S->getValueOperand()->getType();
1851           // The load is only dominated by the store if DomTree says so
1852           // and the number of bits loaded in L is less than or equal to
1853           // the number of bits stored in S.
1854           return DT.dominates(S, L) &&
1855                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1856         }))
1857       return false;
1858   }
1859   // All loads have known dependences inside F, so the global can be localized.
1860   return true;
1861 }
1862 
1863 /// C may have non-instruction users. Can all of those users be turned into
1864 /// instructions?
1865 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1866   // We don't do this exhaustively. The most common pattern that we really need
1867   // to care about is a constant GEP or constant bitcast - so just looking
1868   // through one single ConstantExpr.
1869   //
1870   // The set of constants that this function returns true for must be able to be
1871   // handled by makeAllConstantUsesInstructions.
1872   for (auto *U : C->users()) {
1873     if (isa<Instruction>(U))
1874       continue;
1875     if (!isa<ConstantExpr>(U))
1876       // Non instruction, non-constantexpr user; cannot convert this.
1877       return false;
1878     for (auto *UU : U->users())
1879       if (!isa<Instruction>(UU))
1880         // A constantexpr used by another constant. We don't try and recurse any
1881         // further but just bail out at this point.
1882         return false;
1883   }
1884 
1885   return true;
1886 }
1887 
1888 /// C may have non-instruction users, and
1889 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1890 /// non-instruction users to instructions.
1891 static void makeAllConstantUsesInstructions(Constant *C) {
1892   SmallVector<ConstantExpr*,4> Users;
1893   for (auto *U : C->users()) {
1894     if (isa<ConstantExpr>(U))
1895       Users.push_back(cast<ConstantExpr>(U));
1896     else
1897       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1898       // should not have returned true for C.
1899       assert(
1900           isa<Instruction>(U) &&
1901           "Can't transform non-constantexpr non-instruction to instruction!");
1902   }
1903 
1904   SmallVector<Value*,4> UUsers;
1905   for (auto *U : Users) {
1906     UUsers.clear();
1907     for (auto *UU : U->users())
1908       UUsers.push_back(UU);
1909     for (auto *UU : UUsers) {
1910       Instruction *UI = cast<Instruction>(UU);
1911       Instruction *NewU = U->getAsInstruction();
1912       NewU->insertBefore(UI);
1913       UI->replaceUsesOfWith(U, NewU);
1914     }
1915     // We've replaced all the uses, so destroy the constant. (destroyConstant
1916     // will update value handles and metadata.)
1917     U->destroyConstant();
1918   }
1919 }
1920 
1921 /// Analyze the specified global variable and optimize
1922 /// it if possible.  If we make a change, return true.
1923 static bool
1924 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1925                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1926                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1927   auto &DL = GV->getParent()->getDataLayout();
1928   // If this is a first class global and has only one accessing function and
1929   // this function is non-recursive, we replace the global with a local alloca
1930   // in this function.
1931   //
1932   // NOTE: It doesn't make sense to promote non-single-value types since we
1933   // are just replacing static memory to stack memory.
1934   //
1935   // If the global is in different address space, don't bring it to stack.
1936   if (!GS.HasMultipleAccessingFunctions &&
1937       GS.AccessingFunction &&
1938       GV->getValueType()->isSingleValueType() &&
1939       GV->getType()->getAddressSpace() == 0 &&
1940       !GV->isExternallyInitialized() &&
1941       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1942       GS.AccessingFunction->doesNotRecurse() &&
1943       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1944                                           LookupDomTree)) {
1945     const DataLayout &DL = GV->getParent()->getDataLayout();
1946 
1947     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1948     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1949                                                    ->getEntryBlock().begin());
1950     Type *ElemTy = GV->getValueType();
1951     // FIXME: Pass Global's alignment when globals have alignment
1952     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1953                                         GV->getName(), &FirstI);
1954     if (!isa<UndefValue>(GV->getInitializer()))
1955       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1956 
1957     makeAllConstantUsesInstructions(GV);
1958 
1959     GV->replaceAllUsesWith(Alloca);
1960     GV->eraseFromParent();
1961     ++NumLocalized;
1962     return true;
1963   }
1964 
1965   // If the global is never loaded (but may be stored to), it is dead.
1966   // Delete it now.
1967   if (!GS.IsLoaded) {
1968     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1969 
1970     bool Changed;
1971     if (isLeakCheckerRoot(GV)) {
1972       // Delete any constant stores to the global.
1973       Changed = CleanupPointerRootUsers(GV, GetTLI);
1974     } else {
1975       // Delete any stores we can find to the global.  We may not be able to
1976       // make it completely dead though.
1977       Changed =
1978           CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1979     }
1980 
1981     // If the global is dead now, delete it.
1982     if (GV->use_empty()) {
1983       GV->eraseFromParent();
1984       ++NumDeleted;
1985       Changed = true;
1986     }
1987     return Changed;
1988 
1989   }
1990   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1991     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1992 
1993     // Don't actually mark a global constant if it's atomic because atomic loads
1994     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1995     // requires write access to the variable even if it's not actually changed.
1996     if (GS.Ordering == AtomicOrdering::NotAtomic)
1997       GV->setConstant(true);
1998 
1999     // Clean up any obviously simplifiable users now.
2000     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2001 
2002     // If the global is dead now, just nuke it.
2003     if (GV->use_empty()) {
2004       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
2005                         << "all users and delete global!\n");
2006       GV->eraseFromParent();
2007       ++NumDeleted;
2008       return true;
2009     }
2010 
2011     // Fall through to the next check; see if we can optimize further.
2012     ++NumMarked;
2013   }
2014   if (!GV->getInitializer()->getType()->isSingleValueType()) {
2015     const DataLayout &DL = GV->getParent()->getDataLayout();
2016     if (SRAGlobal(GV, DL))
2017       return true;
2018   }
2019   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
2020     // If the initial value for the global was an undef value, and if only
2021     // one other value was stored into it, we can just change the
2022     // initializer to be the stored value, then delete all stores to the
2023     // global.  This allows us to mark it constant.
2024     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2025       if (isa<UndefValue>(GV->getInitializer())) {
2026         // Change the initial value here.
2027         GV->setInitializer(SOVConstant);
2028 
2029         // Clean up any obviously simplifiable users now.
2030         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2031 
2032         if (GV->use_empty()) {
2033           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2034                             << "simplify all users and delete global!\n");
2035           GV->eraseFromParent();
2036           ++NumDeleted;
2037         }
2038         ++NumSubstitute;
2039         return true;
2040       }
2041 
2042     // Try to optimize globals based on the knowledge that only one value
2043     // (besides its initializer) is ever stored to the global.
2044     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
2045                                  GetTLI))
2046       return true;
2047 
2048     // Otherwise, if the global was not a boolean, we can shrink it to be a
2049     // boolean.
2050     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2051       if (GS.Ordering == AtomicOrdering::NotAtomic) {
2052         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2053           ++NumShrunkToBool;
2054           return true;
2055         }
2056       }
2057     }
2058   }
2059 
2060   return false;
2061 }
2062 
2063 /// Analyze the specified global variable and optimize it if possible.  If we
2064 /// make a change, return true.
2065 static bool
2066 processGlobal(GlobalValue &GV,
2067               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2068               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2069   if (GV.getName().startswith("llvm."))
2070     return false;
2071 
2072   GlobalStatus GS;
2073 
2074   if (GlobalStatus::analyzeGlobal(&GV, GS))
2075     return false;
2076 
2077   bool Changed = false;
2078   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2079     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2080                                                : GlobalValue::UnnamedAddr::Local;
2081     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2082       GV.setUnnamedAddr(NewUnnamedAddr);
2083       NumUnnamed++;
2084       Changed = true;
2085     }
2086   }
2087 
2088   // Do more involved optimizations if the global is internal.
2089   if (!GV.hasLocalLinkage())
2090     return Changed;
2091 
2092   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2093   if (!GVar)
2094     return Changed;
2095 
2096   if (GVar->isConstant() || !GVar->hasInitializer())
2097     return Changed;
2098 
2099   return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
2100 }
2101 
2102 /// Walk all of the direct calls of the specified function, changing them to
2103 /// FastCC.
2104 static void ChangeCalleesToFastCall(Function *F) {
2105   for (User *U : F->users()) {
2106     if (isa<BlockAddress>(U))
2107       continue;
2108     CallSite CS(cast<Instruction>(U));
2109     CS.setCallingConv(CallingConv::Fast);
2110   }
2111 }
2112 
2113 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
2114                                Attribute::AttrKind A) {
2115   unsigned AttrIndex;
2116   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
2117     return Attrs.removeAttribute(C, AttrIndex, A);
2118   return Attrs;
2119 }
2120 
2121 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
2122   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
2123   for (User *U : F->users()) {
2124     if (isa<BlockAddress>(U))
2125       continue;
2126     CallSite CS(cast<Instruction>(U));
2127     CS.setAttributes(StripAttr(F->getContext(), CS.getAttributes(), A));
2128   }
2129 }
2130 
2131 /// Return true if this is a calling convention that we'd like to change.  The
2132 /// idea here is that we don't want to mess with the convention if the user
2133 /// explicitly requested something with performance implications like coldcc,
2134 /// GHC, or anyregcc.
2135 static bool hasChangeableCC(Function *F) {
2136   CallingConv::ID CC = F->getCallingConv();
2137 
2138   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2139   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2140     return false;
2141 
2142   // FIXME: Change CC for the whole chain of musttail calls when possible.
2143   //
2144   // Can't change CC of the function that either has musttail calls, or is a
2145   // musttail callee itself
2146   for (User *U : F->users()) {
2147     if (isa<BlockAddress>(U))
2148       continue;
2149     CallInst* CI = dyn_cast<CallInst>(U);
2150     if (!CI)
2151       continue;
2152 
2153     if (CI->isMustTailCall())
2154       return false;
2155   }
2156 
2157   for (BasicBlock &BB : *F)
2158     if (BB.getTerminatingMustTailCall())
2159       return false;
2160 
2161   return true;
2162 }
2163 
2164 /// Return true if the block containing the call site has a BlockFrequency of
2165 /// less than ColdCCRelFreq% of the entry block.
2166 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
2167   const BranchProbability ColdProb(ColdCCRelFreq, 100);
2168   auto CallSiteBB = CS.getInstruction()->getParent();
2169   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2170   auto CallerEntryFreq =
2171       CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
2172   return CallSiteFreq < CallerEntryFreq * ColdProb;
2173 }
2174 
2175 // This function checks if the input function F is cold at all call sites. It
2176 // also looks each call site's containing function, returning false if the
2177 // caller function contains other non cold calls. The input vector AllCallsCold
2178 // contains a list of functions that only have call sites in cold blocks.
2179 static bool
2180 isValidCandidateForColdCC(Function &F,
2181                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2182                           const std::vector<Function *> &AllCallsCold) {
2183 
2184   if (F.user_empty())
2185     return false;
2186 
2187   for (User *U : F.users()) {
2188     if (isa<BlockAddress>(U))
2189       continue;
2190 
2191     CallSite CS(cast<Instruction>(U));
2192     Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
2193     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2194     if (!isColdCallSite(CS, CallerBFI))
2195       return false;
2196     auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2197     if (It == AllCallsCold.end())
2198       return false;
2199   }
2200   return true;
2201 }
2202 
2203 static void changeCallSitesToColdCC(Function *F) {
2204   for (User *U : F->users()) {
2205     if (isa<BlockAddress>(U))
2206       continue;
2207     CallSite CS(cast<Instruction>(U));
2208     CS.setCallingConv(CallingConv::Cold);
2209   }
2210 }
2211 
2212 // This function iterates over all the call instructions in the input Function
2213 // and checks that all call sites are in cold blocks and are allowed to use the
2214 // coldcc calling convention.
2215 static bool
2216 hasOnlyColdCalls(Function &F,
2217                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2218   for (BasicBlock &BB : F) {
2219     for (Instruction &I : BB) {
2220       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2221         CallSite CS(cast<Instruction>(CI));
2222         // Skip over isline asm instructions since they aren't function calls.
2223         if (CI->isInlineAsm())
2224           continue;
2225         Function *CalledFn = CI->getCalledFunction();
2226         if (!CalledFn)
2227           return false;
2228         if (!CalledFn->hasLocalLinkage())
2229           return false;
2230         // Skip over instrinsics since they won't remain as function calls.
2231         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2232           continue;
2233         // Check if it's valid to use coldcc calling convention.
2234         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2235             CalledFn->hasAddressTaken())
2236           return false;
2237         BlockFrequencyInfo &CallerBFI = GetBFI(F);
2238         if (!isColdCallSite(CS, CallerBFI))
2239           return false;
2240       }
2241     }
2242   }
2243   return true;
2244 }
2245 
2246 static bool
2247 OptimizeFunctions(Module &M,
2248                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2249                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
2250                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2251                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2252                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2253 
2254   bool Changed = false;
2255 
2256   std::vector<Function *> AllCallsCold;
2257   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2258     Function *F = &*FI++;
2259     if (hasOnlyColdCalls(*F, GetBFI))
2260       AllCallsCold.push_back(F);
2261   }
2262 
2263   // Optimize functions.
2264   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2265     Function *F = &*FI++;
2266 
2267     // Don't perform global opt pass on naked functions; we don't want fast
2268     // calling conventions for naked functions.
2269     if (F->hasFnAttribute(Attribute::Naked))
2270       continue;
2271 
2272     // Functions without names cannot be referenced outside this module.
2273     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2274       F->setLinkage(GlobalValue::InternalLinkage);
2275 
2276     if (deleteIfDead(*F, NotDiscardableComdats)) {
2277       Changed = true;
2278       continue;
2279     }
2280 
2281     // LLVM's definition of dominance allows instructions that are cyclic
2282     // in unreachable blocks, e.g.:
2283     // %pat = select i1 %condition, @global, i16* %pat
2284     // because any instruction dominates an instruction in a block that's
2285     // not reachable from entry.
2286     // So, remove unreachable blocks from the function, because a) there's
2287     // no point in analyzing them and b) GlobalOpt should otherwise grow
2288     // some more complicated logic to break these cycles.
2289     if (!F->isDeclaration()) {
2290       auto &DT = LookupDomTree(*F);
2291       DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2292       Changed |= removeUnreachableBlocks(*F, &DTU);
2293     }
2294 
2295     Changed |= processGlobal(*F, GetTLI, LookupDomTree);
2296 
2297     if (!F->hasLocalLinkage())
2298       continue;
2299 
2300     // If we have an inalloca parameter that we can safely remove the
2301     // inalloca attribute from, do so. This unlocks optimizations that
2302     // wouldn't be safe in the presence of inalloca.
2303     // FIXME: We should also hoist alloca affected by this to the entry
2304     // block if possible.
2305     if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2306         !F->hasAddressTaken()) {
2307       RemoveAttribute(F, Attribute::InAlloca);
2308       Changed = true;
2309     }
2310 
2311     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2312       NumInternalFunc++;
2313       TargetTransformInfo &TTI = GetTTI(*F);
2314       // Change the calling convention to coldcc if either stress testing is
2315       // enabled or the target would like to use coldcc on functions which are
2316       // cold at all call sites and the callers contain no other non coldcc
2317       // calls.
2318       if (EnableColdCCStressTest ||
2319           (TTI.useColdCCForColdCall(*F) &&
2320            isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
2321         F->setCallingConv(CallingConv::Cold);
2322         changeCallSitesToColdCC(F);
2323         Changed = true;
2324         NumColdCC++;
2325       }
2326     }
2327 
2328     if (hasChangeableCC(F) && !F->isVarArg() &&
2329         !F->hasAddressTaken()) {
2330       // If this function has a calling convention worth changing, is not a
2331       // varargs function, and is only called directly, promote it to use the
2332       // Fast calling convention.
2333       F->setCallingConv(CallingConv::Fast);
2334       ChangeCalleesToFastCall(F);
2335       ++NumFastCallFns;
2336       Changed = true;
2337     }
2338 
2339     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2340         !F->hasAddressTaken()) {
2341       // The function is not used by a trampoline intrinsic, so it is safe
2342       // to remove the 'nest' attribute.
2343       RemoveAttribute(F, Attribute::Nest);
2344       ++NumNestRemoved;
2345       Changed = true;
2346     }
2347   }
2348   return Changed;
2349 }
2350 
2351 static bool
2352 OptimizeGlobalVars(Module &M,
2353                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2354                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2355                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2356   bool Changed = false;
2357 
2358   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2359        GVI != E; ) {
2360     GlobalVariable *GV = &*GVI++;
2361     // Global variables without names cannot be referenced outside this module.
2362     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2363       GV->setLinkage(GlobalValue::InternalLinkage);
2364     // Simplify the initializer.
2365     if (GV->hasInitializer())
2366       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2367         auto &DL = M.getDataLayout();
2368         // TLI is not used in the case of a Constant, so use default nullptr
2369         // for that optional parameter, since we don't have a Function to
2370         // provide GetTLI anyway.
2371         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2372         if (New && New != C)
2373           GV->setInitializer(New);
2374       }
2375 
2376     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2377       Changed = true;
2378       continue;
2379     }
2380 
2381     Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
2382   }
2383   return Changed;
2384 }
2385 
2386 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2387 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2388 /// GEP operands of Addr [0, OpNo) have been stepped into.
2389 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2390                                    ConstantExpr *Addr, unsigned OpNo) {
2391   // Base case of the recursion.
2392   if (OpNo == Addr->getNumOperands()) {
2393     assert(Val->getType() == Init->getType() && "Type mismatch!");
2394     return Val;
2395   }
2396 
2397   SmallVector<Constant*, 32> Elts;
2398   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2399     // Break up the constant into its elements.
2400     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2401       Elts.push_back(Init->getAggregateElement(i));
2402 
2403     // Replace the element that we are supposed to.
2404     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2405     unsigned Idx = CU->getZExtValue();
2406     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2407     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2408 
2409     // Return the modified struct.
2410     return ConstantStruct::get(STy, Elts);
2411   }
2412 
2413   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2414   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2415   uint64_t NumElts = InitTy->getNumElements();
2416 
2417   // Break up the array into elements.
2418   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2419     Elts.push_back(Init->getAggregateElement(i));
2420 
2421   assert(CI->getZExtValue() < NumElts);
2422   Elts[CI->getZExtValue()] =
2423     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2424 
2425   if (Init->getType()->isArrayTy())
2426     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2427   return ConstantVector::get(Elts);
2428 }
2429 
2430 /// We have decided that Addr (which satisfies the predicate
2431 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2432 static void CommitValueTo(Constant *Val, Constant *Addr) {
2433   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2434     assert(GV->hasInitializer());
2435     GV->setInitializer(Val);
2436     return;
2437   }
2438 
2439   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2440   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2441   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2442 }
2443 
2444 /// Given a map of address -> value, where addresses are expected to be some form
2445 /// of either a global or a constant GEP, set the initializer for the address to
2446 /// be the value. This performs mostly the same function as CommitValueTo()
2447 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2448 /// case where the set of addresses are GEPs sharing the same underlying global,
2449 /// processing the GEPs in batches rather than individually.
2450 ///
2451 /// To give an example, consider the following C++ code adapted from the clang
2452 /// regression tests:
2453 /// struct S {
2454 ///  int n = 10;
2455 ///  int m = 2 * n;
2456 ///  S(int a) : n(a) {}
2457 /// };
2458 ///
2459 /// template<typename T>
2460 /// struct U {
2461 ///  T *r = &q;
2462 ///  T q = 42;
2463 ///  U *p = this;
2464 /// };
2465 ///
2466 /// U<S> e;
2467 ///
2468 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2469 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2470 /// members. This batch algorithm will simply use general CommitValueTo() method
2471 /// to handle the complex nested S struct initialization of 'q', before
2472 /// processing the outermost members in a single batch. Using CommitValueTo() to
2473 /// handle member in the outer struct is inefficient when the struct/array is
2474 /// very large as we end up creating and destroy constant arrays for each
2475 /// initialization.
2476 /// For the above case, we expect the following IR to be generated:
2477 ///
2478 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2479 /// %struct.S = type { i32, i32 }
2480 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2481 ///                                                  i64 0, i32 1),
2482 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2483 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2484 /// constant expression, while the other two elements of @e are "simple".
2485 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2486   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2487   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2488   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2489   SimpleCEs.reserve(Mem.size());
2490 
2491   for (const auto &I : Mem) {
2492     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2493       GVs.push_back(std::make_pair(GV, I.second));
2494     } else {
2495       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2496       // We don't handle the deeply recursive case using the batch method.
2497       if (GEP->getNumOperands() > 3)
2498         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2499       else
2500         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2501     }
2502   }
2503 
2504   // The algorithm below doesn't handle cases like nested structs, so use the
2505   // slower fully general method if we have to.
2506   for (auto ComplexCE : ComplexCEs)
2507     CommitValueTo(ComplexCE.second, ComplexCE.first);
2508 
2509   for (auto GVPair : GVs) {
2510     assert(GVPair.first->hasInitializer());
2511     GVPair.first->setInitializer(GVPair.second);
2512   }
2513 
2514   if (SimpleCEs.empty())
2515     return;
2516 
2517   // We cache a single global's initializer elements in the case where the
2518   // subsequent address/val pair uses the same one. This avoids throwing away and
2519   // rebuilding the constant struct/vector/array just because one element is
2520   // modified at a time.
2521   SmallVector<Constant *, 32> Elts;
2522   Elts.reserve(SimpleCEs.size());
2523   GlobalVariable *CurrentGV = nullptr;
2524 
2525   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2526     Constant *Init = GV->getInitializer();
2527     Type *Ty = Init->getType();
2528     if (Update) {
2529       if (CurrentGV) {
2530         assert(CurrentGV && "Expected a GV to commit to!");
2531         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2532         // We have a valid cache that needs to be committed.
2533         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2534           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2535         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2536           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2537         else
2538           CurrentGV->setInitializer(ConstantVector::get(Elts));
2539       }
2540       if (CurrentGV == GV)
2541         return;
2542       // Need to clear and set up cache for new initializer.
2543       CurrentGV = GV;
2544       Elts.clear();
2545       unsigned NumElts;
2546       if (auto *STy = dyn_cast<StructType>(Ty))
2547         NumElts = STy->getNumElements();
2548       else
2549         NumElts = cast<SequentialType>(Ty)->getNumElements();
2550       for (unsigned i = 0, e = NumElts; i != e; ++i)
2551         Elts.push_back(Init->getAggregateElement(i));
2552     }
2553   };
2554 
2555   for (auto CEPair : SimpleCEs) {
2556     ConstantExpr *GEP = CEPair.first;
2557     Constant *Val = CEPair.second;
2558 
2559     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2560     commitAndSetupCache(GV, GV != CurrentGV);
2561     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2562     Elts[CI->getZExtValue()] = Val;
2563   }
2564   // The last initializer in the list needs to be committed, others
2565   // will be committed on a new initializer being processed.
2566   commitAndSetupCache(CurrentGV, true);
2567 }
2568 
2569 /// Evaluate static constructors in the function, if we can.  Return true if we
2570 /// can, false otherwise.
2571 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2572                                       TargetLibraryInfo *TLI) {
2573   // Call the function.
2574   Evaluator Eval(DL, TLI);
2575   Constant *RetValDummy;
2576   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2577                                            SmallVector<Constant*, 0>());
2578 
2579   if (EvalSuccess) {
2580     ++NumCtorsEvaluated;
2581 
2582     // We succeeded at evaluation: commit the result.
2583     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2584                       << F->getName() << "' to "
2585                       << Eval.getMutatedMemory().size() << " stores.\n");
2586     BatchCommitValueTo(Eval.getMutatedMemory());
2587     for (GlobalVariable *GV : Eval.getInvariants())
2588       GV->setConstant(true);
2589   }
2590 
2591   return EvalSuccess;
2592 }
2593 
2594 static int compareNames(Constant *const *A, Constant *const *B) {
2595   Value *AStripped = (*A)->stripPointerCasts();
2596   Value *BStripped = (*B)->stripPointerCasts();
2597   return AStripped->getName().compare(BStripped->getName());
2598 }
2599 
2600 static void setUsedInitializer(GlobalVariable &V,
2601                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2602   if (Init.empty()) {
2603     V.eraseFromParent();
2604     return;
2605   }
2606 
2607   // Type of pointer to the array of pointers.
2608   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2609 
2610   SmallVector<Constant *, 8> UsedArray;
2611   for (GlobalValue *GV : Init) {
2612     Constant *Cast
2613       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2614     UsedArray.push_back(Cast);
2615   }
2616   // Sort to get deterministic order.
2617   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2618   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2619 
2620   Module *M = V.getParent();
2621   V.removeFromParent();
2622   GlobalVariable *NV =
2623       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2624                          ConstantArray::get(ATy, UsedArray), "");
2625   NV->takeName(&V);
2626   NV->setSection("llvm.metadata");
2627   delete &V;
2628 }
2629 
2630 namespace {
2631 
2632 /// An easy to access representation of llvm.used and llvm.compiler.used.
2633 class LLVMUsed {
2634   SmallPtrSet<GlobalValue *, 8> Used;
2635   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2636   GlobalVariable *UsedV;
2637   GlobalVariable *CompilerUsedV;
2638 
2639 public:
2640   LLVMUsed(Module &M) {
2641     UsedV = collectUsedGlobalVariables(M, Used, false);
2642     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2643   }
2644 
2645   using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2646   using used_iterator_range = iterator_range<iterator>;
2647 
2648   iterator usedBegin() { return Used.begin(); }
2649   iterator usedEnd() { return Used.end(); }
2650 
2651   used_iterator_range used() {
2652     return used_iterator_range(usedBegin(), usedEnd());
2653   }
2654 
2655   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2656   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2657 
2658   used_iterator_range compilerUsed() {
2659     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2660   }
2661 
2662   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2663 
2664   bool compilerUsedCount(GlobalValue *GV) const {
2665     return CompilerUsed.count(GV);
2666   }
2667 
2668   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2669   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2670   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2671 
2672   bool compilerUsedInsert(GlobalValue *GV) {
2673     return CompilerUsed.insert(GV).second;
2674   }
2675 
2676   void syncVariablesAndSets() {
2677     if (UsedV)
2678       setUsedInitializer(*UsedV, Used);
2679     if (CompilerUsedV)
2680       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2681   }
2682 };
2683 
2684 } // end anonymous namespace
2685 
2686 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2687   if (GA.use_empty()) // No use at all.
2688     return false;
2689 
2690   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2691          "We should have removed the duplicated "
2692          "element from llvm.compiler.used");
2693   if (!GA.hasOneUse())
2694     // Strictly more than one use. So at least one is not in llvm.used and
2695     // llvm.compiler.used.
2696     return true;
2697 
2698   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2699   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2700 }
2701 
2702 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2703                                                const LLVMUsed &U) {
2704   unsigned N = 2;
2705   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2706          "We should have removed the duplicated "
2707          "element from llvm.compiler.used");
2708   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2709     ++N;
2710   return V.hasNUsesOrMore(N);
2711 }
2712 
2713 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2714   if (!GA.hasLocalLinkage())
2715     return true;
2716 
2717   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2718 }
2719 
2720 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2721                              bool &RenameTarget) {
2722   RenameTarget = false;
2723   bool Ret = false;
2724   if (hasUseOtherThanLLVMUsed(GA, U))
2725     Ret = true;
2726 
2727   // If the alias is externally visible, we may still be able to simplify it.
2728   if (!mayHaveOtherReferences(GA, U))
2729     return Ret;
2730 
2731   // If the aliasee has internal linkage, give it the name and linkage
2732   // of the alias, and delete the alias.  This turns:
2733   //   define internal ... @f(...)
2734   //   @a = alias ... @f
2735   // into:
2736   //   define ... @a(...)
2737   Constant *Aliasee = GA.getAliasee();
2738   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2739   if (!Target->hasLocalLinkage())
2740     return Ret;
2741 
2742   // Do not perform the transform if multiple aliases potentially target the
2743   // aliasee. This check also ensures that it is safe to replace the section
2744   // and other attributes of the aliasee with those of the alias.
2745   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2746     return Ret;
2747 
2748   RenameTarget = true;
2749   return true;
2750 }
2751 
2752 static bool
2753 OptimizeGlobalAliases(Module &M,
2754                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2755   bool Changed = false;
2756   LLVMUsed Used(M);
2757 
2758   for (GlobalValue *GV : Used.used())
2759     Used.compilerUsedErase(GV);
2760 
2761   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2762        I != E;) {
2763     GlobalAlias *J = &*I++;
2764 
2765     // Aliases without names cannot be referenced outside this module.
2766     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2767       J->setLinkage(GlobalValue::InternalLinkage);
2768 
2769     if (deleteIfDead(*J, NotDiscardableComdats)) {
2770       Changed = true;
2771       continue;
2772     }
2773 
2774     // If the alias can change at link time, nothing can be done - bail out.
2775     if (J->isInterposable())
2776       continue;
2777 
2778     Constant *Aliasee = J->getAliasee();
2779     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2780     // We can't trivially replace the alias with the aliasee if the aliasee is
2781     // non-trivial in some way.
2782     // TODO: Try to handle non-zero GEPs of local aliasees.
2783     if (!Target)
2784       continue;
2785     Target->removeDeadConstantUsers();
2786 
2787     // Make all users of the alias use the aliasee instead.
2788     bool RenameTarget;
2789     if (!hasUsesToReplace(*J, Used, RenameTarget))
2790       continue;
2791 
2792     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2793     ++NumAliasesResolved;
2794     Changed = true;
2795 
2796     if (RenameTarget) {
2797       // Give the aliasee the name, linkage and other attributes of the alias.
2798       Target->takeName(&*J);
2799       Target->setLinkage(J->getLinkage());
2800       Target->setDSOLocal(J->isDSOLocal());
2801       Target->setVisibility(J->getVisibility());
2802       Target->setDLLStorageClass(J->getDLLStorageClass());
2803 
2804       if (Used.usedErase(&*J))
2805         Used.usedInsert(Target);
2806 
2807       if (Used.compilerUsedErase(&*J))
2808         Used.compilerUsedInsert(Target);
2809     } else if (mayHaveOtherReferences(*J, Used))
2810       continue;
2811 
2812     // Delete the alias.
2813     M.getAliasList().erase(J);
2814     ++NumAliasesRemoved;
2815     Changed = true;
2816   }
2817 
2818   Used.syncVariablesAndSets();
2819 
2820   return Changed;
2821 }
2822 
2823 static Function *
2824 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2825   // Hack to get a default TLI before we have actual Function.
2826   auto FuncIter = M.begin();
2827   if (FuncIter == M.end())
2828     return nullptr;
2829   auto *TLI = &GetTLI(*FuncIter);
2830 
2831   LibFunc F = LibFunc_cxa_atexit;
2832   if (!TLI->has(F))
2833     return nullptr;
2834 
2835   Function *Fn = M.getFunction(TLI->getName(F));
2836   if (!Fn)
2837     return nullptr;
2838 
2839   // Now get the actual TLI for Fn.
2840   TLI = &GetTLI(*Fn);
2841 
2842   // Make sure that the function has the correct prototype.
2843   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2844     return nullptr;
2845 
2846   return Fn;
2847 }
2848 
2849 /// Returns whether the given function is an empty C++ destructor and can
2850 /// therefore be eliminated.
2851 /// Note that we assume that other optimization passes have already simplified
2852 /// the code so we simply check for 'ret'.
2853 static bool cxxDtorIsEmpty(const Function &Fn) {
2854   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2855   // nounwind, but that doesn't seem worth doing.
2856   if (Fn.isDeclaration())
2857     return false;
2858 
2859   for (auto &I : Fn.getEntryBlock()) {
2860     if (isa<DbgInfoIntrinsic>(I))
2861       continue;
2862     if (isa<ReturnInst>(I))
2863       return true;
2864     break;
2865   }
2866   return false;
2867 }
2868 
2869 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2870   /// Itanium C++ ABI p3.3.5:
2871   ///
2872   ///   After constructing a global (or local static) object, that will require
2873   ///   destruction on exit, a termination function is registered as follows:
2874   ///
2875   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2876   ///
2877   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2878   ///   call f(p) when DSO d is unloaded, before all such termination calls
2879   ///   registered before this one. It returns zero if registration is
2880   ///   successful, nonzero on failure.
2881 
2882   // This pass will look for calls to __cxa_atexit where the function is trivial
2883   // and remove them.
2884   bool Changed = false;
2885 
2886   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2887        I != E;) {
2888     // We're only interested in calls. Theoretically, we could handle invoke
2889     // instructions as well, but neither llvm-gcc nor clang generate invokes
2890     // to __cxa_atexit.
2891     CallInst *CI = dyn_cast<CallInst>(*I++);
2892     if (!CI)
2893       continue;
2894 
2895     Function *DtorFn =
2896       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2897     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2898       continue;
2899 
2900     // Just remove the call.
2901     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2902     CI->eraseFromParent();
2903 
2904     ++NumCXXDtorsRemoved;
2905 
2906     Changed |= true;
2907   }
2908 
2909   return Changed;
2910 }
2911 
2912 static bool optimizeGlobalsInModule(
2913     Module &M, const DataLayout &DL,
2914     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2915     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2916     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2917     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2918   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2919   bool Changed = false;
2920   bool LocalChange = true;
2921   while (LocalChange) {
2922     LocalChange = false;
2923 
2924     NotDiscardableComdats.clear();
2925     for (const GlobalVariable &GV : M.globals())
2926       if (const Comdat *C = GV.getComdat())
2927         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2928           NotDiscardableComdats.insert(C);
2929     for (Function &F : M)
2930       if (const Comdat *C = F.getComdat())
2931         if (!F.isDefTriviallyDead())
2932           NotDiscardableComdats.insert(C);
2933     for (GlobalAlias &GA : M.aliases())
2934       if (const Comdat *C = GA.getComdat())
2935         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2936           NotDiscardableComdats.insert(C);
2937 
2938     // Delete functions that are trivially dead, ccc -> fastcc
2939     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2940                                      NotDiscardableComdats);
2941 
2942     // Optimize global_ctors list.
2943     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2944       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2945     });
2946 
2947     // Optimize non-address-taken globals.
2948     LocalChange |=
2949         OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);
2950 
2951     // Resolve aliases, when possible.
2952     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2953 
2954     // Try to remove trivial global destructors if they are not removed
2955     // already.
2956     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2957     if (CXAAtExitFn)
2958       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2959 
2960     Changed |= LocalChange;
2961   }
2962 
2963   // TODO: Move all global ctors functions to the end of the module for code
2964   // layout.
2965 
2966   return Changed;
2967 }
2968 
2969 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2970     auto &DL = M.getDataLayout();
2971     auto &FAM =
2972         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2973     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2974       return FAM.getResult<DominatorTreeAnalysis>(F);
2975     };
2976     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2977       return FAM.getResult<TargetLibraryAnalysis>(F);
2978     };
2979     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2980       return FAM.getResult<TargetIRAnalysis>(F);
2981     };
2982 
2983     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2984       return FAM.getResult<BlockFrequencyAnalysis>(F);
2985     };
2986 
2987     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
2988       return PreservedAnalyses::all();
2989     return PreservedAnalyses::none();
2990 }
2991 
2992 namespace {
2993 
2994 struct GlobalOptLegacyPass : public ModulePass {
2995   static char ID; // Pass identification, replacement for typeid
2996 
2997   GlobalOptLegacyPass() : ModulePass(ID) {
2998     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2999   }
3000 
3001   bool runOnModule(Module &M) override {
3002     if (skipModule(M))
3003       return false;
3004 
3005     auto &DL = M.getDataLayout();
3006     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
3007       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
3008     };
3009     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
3010       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3011     };
3012     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
3013       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3014     };
3015 
3016     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3017       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3018     };
3019 
3020     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
3021                                    LookupDomTree);
3022   }
3023 
3024   void getAnalysisUsage(AnalysisUsage &AU) const override {
3025     AU.addRequired<TargetLibraryInfoWrapperPass>();
3026     AU.addRequired<TargetTransformInfoWrapperPass>();
3027     AU.addRequired<DominatorTreeWrapperPass>();
3028     AU.addRequired<BlockFrequencyInfoWrapperPass>();
3029   }
3030 };
3031 
3032 } // end anonymous namespace
3033 
3034 char GlobalOptLegacyPass::ID = 0;
3035 
3036 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3037                       "Global Variable Optimizer", false, false)
3038 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3039 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3040 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3041 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3042 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3043                     "Global Variable Optimizer", false, false)
3044 
3045 ModulePass *llvm::createGlobalOptimizerPass() {
3046   return new GlobalOptLegacyPass();
3047 }
3048