1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms simple global variables that never have their address
11 // taken.  If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/GlobalOpt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/Utils/Local.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GetElementPtrTypeIterator.h"
44 #include "llvm/IR/GlobalAlias.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Operator.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueHandle.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/AtomicOrdering.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Transforms/IPO.h"
67 #include "llvm/Transforms/Utils/CtorUtils.h"
68 #include "llvm/Transforms/Utils/Evaluator.h"
69 #include "llvm/Transforms/Utils/GlobalStatus.h"
70 #include <cassert>
71 #include <cstdint>
72 #include <utility>
73 #include <vector>
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "globalopt"
78 
79 STATISTIC(NumMarked    , "Number of globals marked constant");
80 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
81 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
82 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
83 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
84 STATISTIC(NumDeleted   , "Number of globals deleted");
85 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
86 STATISTIC(NumLocalized , "Number of globals localized");
87 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
88 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
89 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
90 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
91 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
92 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
93 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
94 STATISTIC(NumInternalFunc, "Number of internal functions");
95 STATISTIC(NumColdCC, "Number of functions marked coldcc");
96 
97 static cl::opt<bool>
98     EnableColdCCStressTest("enable-coldcc-stress-test",
99                            cl::desc("Enable stress test of coldcc by adding "
100                                     "calling conv to all internal functions."),
101                            cl::init(false), cl::Hidden);
102 
103 static cl::opt<int> ColdCCRelFreq(
104     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
105     cl::desc(
106         "Maximum block frequency, expressed as a percentage of caller's "
107         "entry frequency, for a call site to be considered cold for enabling"
108         "coldcc"));
109 
110 /// Is this global variable possibly used by a leak checker as a root?  If so,
111 /// we might not really want to eliminate the stores to it.
112 static bool isLeakCheckerRoot(GlobalVariable *GV) {
113   // A global variable is a root if it is a pointer, or could plausibly contain
114   // a pointer.  There are two challenges; one is that we could have a struct
115   // the has an inner member which is a pointer.  We recurse through the type to
116   // detect these (up to a point).  The other is that we may actually be a union
117   // of a pointer and another type, and so our LLVM type is an integer which
118   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
119   // potentially contained here.
120 
121   if (GV->hasPrivateLinkage())
122     return false;
123 
124   SmallVector<Type *, 4> Types;
125   Types.push_back(GV->getValueType());
126 
127   unsigned Limit = 20;
128   do {
129     Type *Ty = Types.pop_back_val();
130     switch (Ty->getTypeID()) {
131       default: break;
132       case Type::PointerTyID: return true;
133       case Type::ArrayTyID:
134       case Type::VectorTyID: {
135         SequentialType *STy = cast<SequentialType>(Ty);
136         Types.push_back(STy->getElementType());
137         break;
138       }
139       case Type::StructTyID: {
140         StructType *STy = cast<StructType>(Ty);
141         if (STy->isOpaque()) return true;
142         for (StructType::element_iterator I = STy->element_begin(),
143                  E = STy->element_end(); I != E; ++I) {
144           Type *InnerTy = *I;
145           if (isa<PointerType>(InnerTy)) return true;
146           if (isa<CompositeType>(InnerTy))
147             Types.push_back(InnerTy);
148         }
149         break;
150       }
151     }
152     if (--Limit == 0) return true;
153   } while (!Types.empty());
154   return false;
155 }
156 
157 /// Given a value that is stored to a global but never read, determine whether
158 /// it's safe to remove the store and the chain of computation that feeds the
159 /// store.
160 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
161   do {
162     if (isa<Constant>(V))
163       return true;
164     if (!V->hasOneUse())
165       return false;
166     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
167         isa<GlobalValue>(V))
168       return false;
169     if (isAllocationFn(V, TLI))
170       return true;
171 
172     Instruction *I = cast<Instruction>(V);
173     if (I->mayHaveSideEffects())
174       return false;
175     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
176       if (!GEP->hasAllConstantIndices())
177         return false;
178     } else if (I->getNumOperands() != 1) {
179       return false;
180     }
181 
182     V = I->getOperand(0);
183   } while (true);
184 }
185 
186 /// This GV is a pointer root.  Loop over all users of the global and clean up
187 /// any that obviously don't assign the global a value that isn't dynamically
188 /// allocated.
189 static bool CleanupPointerRootUsers(GlobalVariable *GV,
190                                     const TargetLibraryInfo *TLI) {
191   // A brief explanation of leak checkers.  The goal is to find bugs where
192   // pointers are forgotten, causing an accumulating growth in memory
193   // usage over time.  The common strategy for leak checkers is to whitelist the
194   // memory pointed to by globals at exit.  This is popular because it also
195   // solves another problem where the main thread of a C++ program may shut down
196   // before other threads that are still expecting to use those globals.  To
197   // handle that case, we expect the program may create a singleton and never
198   // destroy it.
199 
200   bool Changed = false;
201 
202   // If Dead[n].first is the only use of a malloc result, we can delete its
203   // chain of computation and the store to the global in Dead[n].second.
204   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
205 
206   // Constants can't be pointers to dynamically allocated memory.
207   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
208        UI != E;) {
209     User *U = *UI++;
210     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
211       Value *V = SI->getValueOperand();
212       if (isa<Constant>(V)) {
213         Changed = true;
214         SI->eraseFromParent();
215       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
216         if (I->hasOneUse())
217           Dead.push_back(std::make_pair(I, SI));
218       }
219     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
220       if (isa<Constant>(MSI->getValue())) {
221         Changed = true;
222         MSI->eraseFromParent();
223       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
224         if (I->hasOneUse())
225           Dead.push_back(std::make_pair(I, MSI));
226       }
227     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
228       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
229       if (MemSrc && MemSrc->isConstant()) {
230         Changed = true;
231         MTI->eraseFromParent();
232       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
233         if (I->hasOneUse())
234           Dead.push_back(std::make_pair(I, MTI));
235       }
236     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
237       if (CE->use_empty()) {
238         CE->destroyConstant();
239         Changed = true;
240       }
241     } else if (Constant *C = dyn_cast<Constant>(U)) {
242       if (isSafeToDestroyConstant(C)) {
243         C->destroyConstant();
244         // This could have invalidated UI, start over from scratch.
245         Dead.clear();
246         CleanupPointerRootUsers(GV, TLI);
247         return true;
248       }
249     }
250   }
251 
252   for (int i = 0, e = Dead.size(); i != e; ++i) {
253     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
254       Dead[i].second->eraseFromParent();
255       Instruction *I = Dead[i].first;
256       do {
257         if (isAllocationFn(I, TLI))
258           break;
259         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
260         if (!J)
261           break;
262         I->eraseFromParent();
263         I = J;
264       } while (true);
265       I->eraseFromParent();
266     }
267   }
268 
269   return Changed;
270 }
271 
272 /// We just marked GV constant.  Loop over all users of the global, cleaning up
273 /// the obvious ones.  This is largely just a quick scan over the use list to
274 /// clean up the easy and obvious cruft.  This returns true if it made a change.
275 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
276                                        const DataLayout &DL,
277                                        TargetLibraryInfo *TLI) {
278   bool Changed = false;
279   // Note that we need to use a weak value handle for the worklist items. When
280   // we delete a constant array, we may also be holding pointer to one of its
281   // elements (or an element of one of its elements if we're dealing with an
282   // array of arrays) in the worklist.
283   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
284   while (!WorkList.empty()) {
285     Value *UV = WorkList.pop_back_val();
286     if (!UV)
287       continue;
288 
289     User *U = cast<User>(UV);
290 
291     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
292       if (Init) {
293         // Replace the load with the initializer.
294         LI->replaceAllUsesWith(Init);
295         LI->eraseFromParent();
296         Changed = true;
297       }
298     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
299       // Store must be unreachable or storing Init into the global.
300       SI->eraseFromParent();
301       Changed = true;
302     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
303       if (CE->getOpcode() == Instruction::GetElementPtr) {
304         Constant *SubInit = nullptr;
305         if (Init)
306           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
307         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
308       } else if ((CE->getOpcode() == Instruction::BitCast &&
309                   CE->getType()->isPointerTy()) ||
310                  CE->getOpcode() == Instruction::AddrSpaceCast) {
311         // Pointer cast, delete any stores and memsets to the global.
312         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
313       }
314 
315       if (CE->use_empty()) {
316         CE->destroyConstant();
317         Changed = true;
318       }
319     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
320       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
321       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
322       // and will invalidate our notion of what Init is.
323       Constant *SubInit = nullptr;
324       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
325         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
326             ConstantFoldInstruction(GEP, DL, TLI));
327         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
328           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
329 
330         // If the initializer is an all-null value and we have an inbounds GEP,
331         // we already know what the result of any load from that GEP is.
332         // TODO: Handle splats.
333         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
334           SubInit = Constant::getNullValue(GEP->getResultElementType());
335       }
336       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
337 
338       if (GEP->use_empty()) {
339         GEP->eraseFromParent();
340         Changed = true;
341       }
342     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
343       if (MI->getRawDest() == V) {
344         MI->eraseFromParent();
345         Changed = true;
346       }
347 
348     } else if (Constant *C = dyn_cast<Constant>(U)) {
349       // If we have a chain of dead constantexprs or other things dangling from
350       // us, and if they are all dead, nuke them without remorse.
351       if (isSafeToDestroyConstant(C)) {
352         C->destroyConstant();
353         CleanupConstantGlobalUsers(V, Init, DL, TLI);
354         return true;
355       }
356     }
357   }
358   return Changed;
359 }
360 
361 /// Return true if the specified instruction is a safe user of a derived
362 /// expression from a global that we want to SROA.
363 static bool isSafeSROAElementUse(Value *V) {
364   // We might have a dead and dangling constant hanging off of here.
365   if (Constant *C = dyn_cast<Constant>(V))
366     return isSafeToDestroyConstant(C);
367 
368   Instruction *I = dyn_cast<Instruction>(V);
369   if (!I) return false;
370 
371   // Loads are ok.
372   if (isa<LoadInst>(I)) return true;
373 
374   // Stores *to* the pointer are ok.
375   if (StoreInst *SI = dyn_cast<StoreInst>(I))
376     return SI->getOperand(0) != V;
377 
378   // Otherwise, it must be a GEP.
379   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
380   if (!GEPI) return false;
381 
382   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
383       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
384     return false;
385 
386   for (User *U : GEPI->users())
387     if (!isSafeSROAElementUse(U))
388       return false;
389   return true;
390 }
391 
392 /// U is a direct user of the specified global value.  Look at it and its uses
393 /// and decide whether it is safe to SROA this global.
394 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
395   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
396   if (!isa<GetElementPtrInst>(U) &&
397       (!isa<ConstantExpr>(U) ||
398        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
399     return false;
400 
401   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
402   // don't like < 3 operand CE's, and we don't like non-constant integer
403   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
404   // value of C.
405   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
406       !cast<Constant>(U->getOperand(1))->isNullValue() ||
407       !isa<ConstantInt>(U->getOperand(2)))
408     return false;
409 
410   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
411   ++GEPI;  // Skip over the pointer index.
412 
413   // If this is a use of an array allocation, do a bit more checking for sanity.
414   if (GEPI.isSequential()) {
415     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
416 
417     // Check to make sure that index falls within the array.  If not,
418     // something funny is going on, so we won't do the optimization.
419     //
420     if (GEPI.isBoundedSequential() &&
421         Idx->getZExtValue() >= GEPI.getSequentialNumElements())
422       return false;
423 
424     // We cannot scalar repl this level of the array unless any array
425     // sub-indices are in-range constants.  In particular, consider:
426     // A[0][i].  We cannot know that the user isn't doing invalid things like
427     // allowing i to index an out-of-range subscript that accesses A[1].
428     //
429     // Scalar replacing *just* the outer index of the array is probably not
430     // going to be a win anyway, so just give up.
431     for (++GEPI; // Skip array index.
432          GEPI != E;
433          ++GEPI) {
434       if (GEPI.isStruct())
435         continue;
436 
437       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
438       if (!IdxVal ||
439           (GEPI.isBoundedSequential() &&
440            IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
441         return false;
442     }
443   }
444 
445   return llvm::all_of(U->users(),
446                       [](User *UU) { return isSafeSROAElementUse(UU); });
447 }
448 
449 /// Look at all uses of the global and decide whether it is safe for us to
450 /// perform this transformation.
451 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
452   for (User *U : GV->users())
453     if (!IsUserOfGlobalSafeForSRA(U, GV))
454       return false;
455 
456   return true;
457 }
458 
459 /// Copy over the debug info for a variable to its SRA replacements.
460 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
461                                  uint64_t FragmentOffsetInBits,
462                                  uint64_t FragmentSizeInBits,
463                                  unsigned NumElements) {
464   SmallVector<DIGlobalVariableExpression *, 1> GVs;
465   GV->getDebugInfo(GVs);
466   for (auto *GVE : GVs) {
467     DIVariable *Var = GVE->getVariable();
468     DIExpression *Expr = GVE->getExpression();
469     if (NumElements > 1) {
470       if (auto E = DIExpression::createFragmentExpression(
471               Expr, FragmentOffsetInBits, FragmentSizeInBits))
472         Expr = *E;
473       else
474         return;
475     }
476     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
477     NGV->addDebugInfo(NGVE);
478   }
479 }
480 
481 /// Perform scalar replacement of aggregates on the specified global variable.
482 /// This opens the door for other optimizations by exposing the behavior of the
483 /// program in a more fine-grained way.  We have determined that this
484 /// transformation is safe already.  We return the first global variable we
485 /// insert so that the caller can reprocess it.
486 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
487   // Make sure this global only has simple uses that we can SRA.
488   if (!GlobalUsersSafeToSRA(GV))
489     return nullptr;
490 
491   assert(GV->hasLocalLinkage());
492   Constant *Init = GV->getInitializer();
493   Type *Ty = Init->getType();
494 
495   std::vector<GlobalVariable *> NewGlobals;
496   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
497 
498   // Get the alignment of the global, either explicit or target-specific.
499   unsigned StartAlignment = GV->getAlignment();
500   if (StartAlignment == 0)
501     StartAlignment = DL.getABITypeAlignment(GV->getType());
502 
503   if (StructType *STy = dyn_cast<StructType>(Ty)) {
504     unsigned NumElements = STy->getNumElements();
505     NewGlobals.reserve(NumElements);
506     const StructLayout &Layout = *DL.getStructLayout(STy);
507     for (unsigned i = 0, e = NumElements; i != e; ++i) {
508       Constant *In = Init->getAggregateElement(i);
509       assert(In && "Couldn't get element of initializer?");
510       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
511                                                GlobalVariable::InternalLinkage,
512                                                In, GV->getName()+"."+Twine(i),
513                                                GV->getThreadLocalMode(),
514                                               GV->getType()->getAddressSpace());
515       NGV->setExternallyInitialized(GV->isExternallyInitialized());
516       NGV->copyAttributesFrom(GV);
517       Globals.push_back(NGV);
518       NewGlobals.push_back(NGV);
519 
520       // Calculate the known alignment of the field.  If the original aggregate
521       // had 256 byte alignment for example, something might depend on that:
522       // propagate info to each field.
523       uint64_t FieldOffset = Layout.getElementOffset(i);
524       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
525       if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
526         NGV->setAlignment(NewAlign);
527 
528       // Copy over the debug info for the variable.
529       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
530       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i);
531       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements);
532     }
533   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
534     unsigned NumElements = STy->getNumElements();
535     if (NumElements > 16 && GV->hasNUsesOrMore(16))
536       return nullptr; // It's not worth it.
537     NewGlobals.reserve(NumElements);
538     auto ElTy = STy->getElementType();
539     uint64_t EltSize = DL.getTypeAllocSize(ElTy);
540     unsigned EltAlign = DL.getABITypeAlignment(ElTy);
541     uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
542     for (unsigned i = 0, e = NumElements; i != e; ++i) {
543       Constant *In = Init->getAggregateElement(i);
544       assert(In && "Couldn't get element of initializer?");
545 
546       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
547                                                GlobalVariable::InternalLinkage,
548                                                In, GV->getName()+"."+Twine(i),
549                                                GV->getThreadLocalMode(),
550                                               GV->getType()->getAddressSpace());
551       NGV->setExternallyInitialized(GV->isExternallyInitialized());
552       NGV->copyAttributesFrom(GV);
553       Globals.push_back(NGV);
554       NewGlobals.push_back(NGV);
555 
556       // Calculate the known alignment of the field.  If the original aggregate
557       // had 256 byte alignment for example, something might depend on that:
558       // propagate info to each field.
559       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
560       if (NewAlign > EltAlign)
561         NGV->setAlignment(NewAlign);
562       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits,
563                            NumElements);
564     }
565   }
566 
567   if (NewGlobals.empty())
568     return nullptr;
569 
570   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
571 
572   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
573 
574   // Loop over all of the uses of the global, replacing the constantexpr geps,
575   // with smaller constantexpr geps or direct references.
576   while (!GV->use_empty()) {
577     User *GEP = GV->user_back();
578     assert(((isa<ConstantExpr>(GEP) &&
579              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
580             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
581 
582     // Ignore the 1th operand, which has to be zero or else the program is quite
583     // broken (undefined).  Get the 2nd operand, which is the structure or array
584     // index.
585     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
586     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
587 
588     Value *NewPtr = NewGlobals[Val];
589     Type *NewTy = NewGlobals[Val]->getValueType();
590 
591     // Form a shorter GEP if needed.
592     if (GEP->getNumOperands() > 3) {
593       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
594         SmallVector<Constant*, 8> Idxs;
595         Idxs.push_back(NullInt);
596         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
597           Idxs.push_back(CE->getOperand(i));
598         NewPtr =
599             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
600       } else {
601         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
602         SmallVector<Value*, 8> Idxs;
603         Idxs.push_back(NullInt);
604         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
605           Idxs.push_back(GEPI->getOperand(i));
606         NewPtr = GetElementPtrInst::Create(
607             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
608       }
609     }
610     GEP->replaceAllUsesWith(NewPtr);
611 
612     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
613       GEPI->eraseFromParent();
614     else
615       cast<ConstantExpr>(GEP)->destroyConstant();
616   }
617 
618   // Delete the old global, now that it is dead.
619   Globals.erase(GV);
620   ++NumSRA;
621 
622   // Loop over the new globals array deleting any globals that are obviously
623   // dead.  This can arise due to scalarization of a structure or an array that
624   // has elements that are dead.
625   unsigned FirstGlobal = 0;
626   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
627     if (NewGlobals[i]->use_empty()) {
628       Globals.erase(NewGlobals[i]);
629       if (FirstGlobal == i) ++FirstGlobal;
630     }
631 
632   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
633 }
634 
635 /// Return true if all users of the specified value will trap if the value is
636 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
637 /// reprocessing them.
638 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
639                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
640   for (const User *U : V->users())
641     if (isa<LoadInst>(U)) {
642       // Will trap.
643     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
644       if (SI->getOperand(0) == V) {
645         //cerr << "NONTRAPPING USE: " << *U;
646         return false;  // Storing the value.
647       }
648     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
649       if (CI->getCalledValue() != V) {
650         //cerr << "NONTRAPPING USE: " << *U;
651         return false;  // Not calling the ptr
652       }
653     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
654       if (II->getCalledValue() != V) {
655         //cerr << "NONTRAPPING USE: " << *U;
656         return false;  // Not calling the ptr
657       }
658     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
659       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
660     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
661       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
662     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
663       // If we've already seen this phi node, ignore it, it has already been
664       // checked.
665       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
666         return false;
667     } else if (isa<ICmpInst>(U) &&
668                isa<ConstantPointerNull>(U->getOperand(1))) {
669       // Ignore icmp X, null
670     } else {
671       //cerr << "NONTRAPPING USE: " << *U;
672       return false;
673     }
674 
675   return true;
676 }
677 
678 /// Return true if all uses of any loads from GV will trap if the loaded value
679 /// is null.  Note that this also permits comparisons of the loaded value
680 /// against null, as a special case.
681 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
682   for (const User *U : GV->users())
683     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
684       SmallPtrSet<const PHINode*, 8> PHIs;
685       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
686         return false;
687     } else if (isa<StoreInst>(U)) {
688       // Ignore stores to the global.
689     } else {
690       // We don't know or understand this user, bail out.
691       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
692       return false;
693     }
694   return true;
695 }
696 
697 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
698   bool Changed = false;
699   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
700     Instruction *I = cast<Instruction>(*UI++);
701     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
702       LI->setOperand(0, NewV);
703       Changed = true;
704     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
705       if (SI->getOperand(1) == V) {
706         SI->setOperand(1, NewV);
707         Changed = true;
708       }
709     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
710       CallSite CS(I);
711       if (CS.getCalledValue() == V) {
712         // Calling through the pointer!  Turn into a direct call, but be careful
713         // that the pointer is not also being passed as an argument.
714         CS.setCalledFunction(NewV);
715         Changed = true;
716         bool PassedAsArg = false;
717         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
718           if (CS.getArgument(i) == V) {
719             PassedAsArg = true;
720             CS.setArgument(i, NewV);
721           }
722 
723         if (PassedAsArg) {
724           // Being passed as an argument also.  Be careful to not invalidate UI!
725           UI = V->user_begin();
726         }
727       }
728     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
729       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
730                                 ConstantExpr::getCast(CI->getOpcode(),
731                                                       NewV, CI->getType()));
732       if (CI->use_empty()) {
733         Changed = true;
734         CI->eraseFromParent();
735       }
736     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
737       // Should handle GEP here.
738       SmallVector<Constant*, 8> Idxs;
739       Idxs.reserve(GEPI->getNumOperands()-1);
740       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
741            i != e; ++i)
742         if (Constant *C = dyn_cast<Constant>(*i))
743           Idxs.push_back(C);
744         else
745           break;
746       if (Idxs.size() == GEPI->getNumOperands()-1)
747         Changed |= OptimizeAwayTrappingUsesOfValue(
748             GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
749       if (GEPI->use_empty()) {
750         Changed = true;
751         GEPI->eraseFromParent();
752       }
753     }
754   }
755 
756   return Changed;
757 }
758 
759 /// The specified global has only one non-null value stored into it.  If there
760 /// are uses of the loaded value that would trap if the loaded value is
761 /// dynamically null, then we know that they cannot be reachable with a null
762 /// optimize away the load.
763 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
764                                             const DataLayout &DL,
765                                             TargetLibraryInfo *TLI) {
766   bool Changed = false;
767 
768   // Keep track of whether we are able to remove all the uses of the global
769   // other than the store that defines it.
770   bool AllNonStoreUsesGone = true;
771 
772   // Replace all uses of loads with uses of uses of the stored value.
773   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
774     User *GlobalUser = *GUI++;
775     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
776       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
777       // If we were able to delete all uses of the loads
778       if (LI->use_empty()) {
779         LI->eraseFromParent();
780         Changed = true;
781       } else {
782         AllNonStoreUsesGone = false;
783       }
784     } else if (isa<StoreInst>(GlobalUser)) {
785       // Ignore the store that stores "LV" to the global.
786       assert(GlobalUser->getOperand(1) == GV &&
787              "Must be storing *to* the global");
788     } else {
789       AllNonStoreUsesGone = false;
790 
791       // If we get here we could have other crazy uses that are transitively
792       // loaded.
793       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
794               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
795               isa<BitCastInst>(GlobalUser) ||
796               isa<GetElementPtrInst>(GlobalUser)) &&
797              "Only expect load and stores!");
798     }
799   }
800 
801   if (Changed) {
802     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
803                       << "\n");
804     ++NumGlobUses;
805   }
806 
807   // If we nuked all of the loads, then none of the stores are needed either,
808   // nor is the global.
809   if (AllNonStoreUsesGone) {
810     if (isLeakCheckerRoot(GV)) {
811       Changed |= CleanupPointerRootUsers(GV, TLI);
812     } else {
813       Changed = true;
814       CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
815     }
816     if (GV->use_empty()) {
817       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
818       Changed = true;
819       GV->eraseFromParent();
820       ++NumDeleted;
821     }
822   }
823   return Changed;
824 }
825 
826 /// Walk the use list of V, constant folding all of the instructions that are
827 /// foldable.
828 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
829                                 TargetLibraryInfo *TLI) {
830   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
831     if (Instruction *I = dyn_cast<Instruction>(*UI++))
832       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
833         I->replaceAllUsesWith(NewC);
834 
835         // Advance UI to the next non-I use to avoid invalidating it!
836         // Instructions could multiply use V.
837         while (UI != E && *UI == I)
838           ++UI;
839         if (isInstructionTriviallyDead(I, TLI))
840           I->eraseFromParent();
841       }
842 }
843 
844 /// This function takes the specified global variable, and transforms the
845 /// program as if it always contained the result of the specified malloc.
846 /// Because it is always the result of the specified malloc, there is no reason
847 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
848 /// loads of GV as uses of the new global.
849 static GlobalVariable *
850 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
851                               ConstantInt *NElements, const DataLayout &DL,
852                               TargetLibraryInfo *TLI) {
853   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
854                     << '\n');
855 
856   Type *GlobalType;
857   if (NElements->getZExtValue() == 1)
858     GlobalType = AllocTy;
859   else
860     // If we have an array allocation, the global variable is of an array.
861     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
862 
863   // Create the new global variable.  The contents of the malloc'd memory is
864   // undefined, so initialize with an undef value.
865   GlobalVariable *NewGV = new GlobalVariable(
866       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
867       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
868       GV->getThreadLocalMode());
869 
870   // If there are bitcast users of the malloc (which is typical, usually we have
871   // a malloc + bitcast) then replace them with uses of the new global.  Update
872   // other users to use the global as well.
873   BitCastInst *TheBC = nullptr;
874   while (!CI->use_empty()) {
875     Instruction *User = cast<Instruction>(CI->user_back());
876     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
877       if (BCI->getType() == NewGV->getType()) {
878         BCI->replaceAllUsesWith(NewGV);
879         BCI->eraseFromParent();
880       } else {
881         BCI->setOperand(0, NewGV);
882       }
883     } else {
884       if (!TheBC)
885         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
886       User->replaceUsesOfWith(CI, TheBC);
887     }
888   }
889 
890   Constant *RepValue = NewGV;
891   if (NewGV->getType() != GV->getValueType())
892     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
893 
894   // If there is a comparison against null, we will insert a global bool to
895   // keep track of whether the global was initialized yet or not.
896   GlobalVariable *InitBool =
897     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
898                        GlobalValue::InternalLinkage,
899                        ConstantInt::getFalse(GV->getContext()),
900                        GV->getName()+".init", GV->getThreadLocalMode());
901   bool InitBoolUsed = false;
902 
903   // Loop over all uses of GV, processing them in turn.
904   while (!GV->use_empty()) {
905     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
906       // The global is initialized when the store to it occurs.
907       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
908                     SI->getOrdering(), SI->getSyncScopeID(), SI);
909       SI->eraseFromParent();
910       continue;
911     }
912 
913     LoadInst *LI = cast<LoadInst>(GV->user_back());
914     while (!LI->use_empty()) {
915       Use &LoadUse = *LI->use_begin();
916       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
917       if (!ICI) {
918         LoadUse = RepValue;
919         continue;
920       }
921 
922       // Replace the cmp X, 0 with a use of the bool value.
923       // Sink the load to where the compare was, if atomic rules allow us to.
924       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
925                                LI->getOrdering(), LI->getSyncScopeID(),
926                                LI->isUnordered() ? (Instruction*)ICI : LI);
927       InitBoolUsed = true;
928       switch (ICI->getPredicate()) {
929       default: llvm_unreachable("Unknown ICmp Predicate!");
930       case ICmpInst::ICMP_ULT:
931       case ICmpInst::ICMP_SLT:   // X < null -> always false
932         LV = ConstantInt::getFalse(GV->getContext());
933         break;
934       case ICmpInst::ICMP_ULE:
935       case ICmpInst::ICMP_SLE:
936       case ICmpInst::ICMP_EQ:
937         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
938         break;
939       case ICmpInst::ICMP_NE:
940       case ICmpInst::ICMP_UGE:
941       case ICmpInst::ICMP_SGE:
942       case ICmpInst::ICMP_UGT:
943       case ICmpInst::ICMP_SGT:
944         break;  // no change.
945       }
946       ICI->replaceAllUsesWith(LV);
947       ICI->eraseFromParent();
948     }
949     LI->eraseFromParent();
950   }
951 
952   // If the initialization boolean was used, insert it, otherwise delete it.
953   if (!InitBoolUsed) {
954     while (!InitBool->use_empty())  // Delete initializations
955       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
956     delete InitBool;
957   } else
958     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
959 
960   // Now the GV is dead, nuke it and the malloc..
961   GV->eraseFromParent();
962   CI->eraseFromParent();
963 
964   // To further other optimizations, loop over all users of NewGV and try to
965   // constant prop them.  This will promote GEP instructions with constant
966   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
967   ConstantPropUsersOf(NewGV, DL, TLI);
968   if (RepValue != NewGV)
969     ConstantPropUsersOf(RepValue, DL, TLI);
970 
971   return NewGV;
972 }
973 
974 /// Scan the use-list of V checking to make sure that there are no complex uses
975 /// of V.  We permit simple things like dereferencing the pointer, but not
976 /// storing through the address, unless it is to the specified global.
977 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
978                                                       const GlobalVariable *GV,
979                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
980   for (const User *U : V->users()) {
981     const Instruction *Inst = cast<Instruction>(U);
982 
983     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
984       continue; // Fine, ignore.
985     }
986 
987     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
988       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
989         return false;  // Storing the pointer itself... bad.
990       continue; // Otherwise, storing through it, or storing into GV... fine.
991     }
992 
993     // Must index into the array and into the struct.
994     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
995       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
996         return false;
997       continue;
998     }
999 
1000     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1001       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1002       // cycles.
1003       if (PHIs.insert(PN).second)
1004         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1005           return false;
1006       continue;
1007     }
1008 
1009     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1010       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1011         return false;
1012       continue;
1013     }
1014 
1015     return false;
1016   }
1017   return true;
1018 }
1019 
1020 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1021 /// allocation into loads from the global and uses of the resultant pointer.
1022 /// Further, delete the store into GV.  This assumes that these value pass the
1023 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1024 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1025                                           GlobalVariable *GV) {
1026   while (!Alloc->use_empty()) {
1027     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1028     Instruction *InsertPt = U;
1029     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1030       // If this is the store of the allocation into the global, remove it.
1031       if (SI->getOperand(1) == GV) {
1032         SI->eraseFromParent();
1033         continue;
1034       }
1035     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1036       // Insert the load in the corresponding predecessor, not right before the
1037       // PHI.
1038       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1039     } else if (isa<BitCastInst>(U)) {
1040       // Must be bitcast between the malloc and store to initialize the global.
1041       ReplaceUsesOfMallocWithGlobal(U, GV);
1042       U->eraseFromParent();
1043       continue;
1044     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1045       // If this is a "GEP bitcast" and the user is a store to the global, then
1046       // just process it as a bitcast.
1047       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1048         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1049           if (SI->getOperand(1) == GV) {
1050             // Must be bitcast GEP between the malloc and store to initialize
1051             // the global.
1052             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1053             GEPI->eraseFromParent();
1054             continue;
1055           }
1056     }
1057 
1058     // Insert a load from the global, and use it instead of the malloc.
1059     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1060     U->replaceUsesOfWith(Alloc, NL);
1061   }
1062 }
1063 
1064 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1065 /// perform heap SRA on.  This permits GEP's that index through the array and
1066 /// struct field, icmps of null, and PHIs.
1067 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1068                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1069                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1070   // We permit two users of the load: setcc comparing against the null
1071   // pointer, and a getelementptr of a specific form.
1072   for (const User *U : V->users()) {
1073     const Instruction *UI = cast<Instruction>(U);
1074 
1075     // Comparison against null is ok.
1076     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1077       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1078         return false;
1079       continue;
1080     }
1081 
1082     // getelementptr is also ok, but only a simple form.
1083     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1084       // Must index into the array and into the struct.
1085       if (GEPI->getNumOperands() < 3)
1086         return false;
1087 
1088       // Otherwise the GEP is ok.
1089       continue;
1090     }
1091 
1092     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1093       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1094         // This means some phi nodes are dependent on each other.
1095         // Avoid infinite looping!
1096         return false;
1097       if (!LoadUsingPHIs.insert(PN).second)
1098         // If we have already analyzed this PHI, then it is safe.
1099         continue;
1100 
1101       // Make sure all uses of the PHI are simple enough to transform.
1102       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1103                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1104         return false;
1105 
1106       continue;
1107     }
1108 
1109     // Otherwise we don't know what this is, not ok.
1110     return false;
1111   }
1112 
1113   return true;
1114 }
1115 
1116 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1117 /// return true.
1118 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1119                                                     Instruction *StoredVal) {
1120   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1121   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1122   for (const User *U : GV->users())
1123     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1124       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1125                                           LoadUsingPHIsPerLoad))
1126         return false;
1127       LoadUsingPHIsPerLoad.clear();
1128     }
1129 
1130   // If we reach here, we know that all uses of the loads and transitive uses
1131   // (through PHI nodes) are simple enough to transform.  However, we don't know
1132   // that all inputs the to the PHI nodes are in the same equivalence sets.
1133   // Check to verify that all operands of the PHIs are either PHIS that can be
1134   // transformed, loads from GV, or MI itself.
1135   for (const PHINode *PN : LoadUsingPHIs) {
1136     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1137       Value *InVal = PN->getIncomingValue(op);
1138 
1139       // PHI of the stored value itself is ok.
1140       if (InVal == StoredVal) continue;
1141 
1142       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1143         // One of the PHIs in our set is (optimistically) ok.
1144         if (LoadUsingPHIs.count(InPN))
1145           continue;
1146         return false;
1147       }
1148 
1149       // Load from GV is ok.
1150       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1151         if (LI->getOperand(0) == GV)
1152           continue;
1153 
1154       // UNDEF? NULL?
1155 
1156       // Anything else is rejected.
1157       return false;
1158     }
1159   }
1160 
1161   return true;
1162 }
1163 
1164 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1165               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1166                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1167   std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1168 
1169   if (FieldNo >= FieldVals.size())
1170     FieldVals.resize(FieldNo+1);
1171 
1172   // If we already have this value, just reuse the previously scalarized
1173   // version.
1174   if (Value *FieldVal = FieldVals[FieldNo])
1175     return FieldVal;
1176 
1177   // Depending on what instruction this is, we have several cases.
1178   Value *Result;
1179   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1180     // This is a scalarized version of the load from the global.  Just create
1181     // a new Load of the scalarized global.
1182     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1183                                            InsertedScalarizedValues,
1184                                            PHIsToRewrite),
1185                           LI->getName()+".f"+Twine(FieldNo), LI);
1186   } else {
1187     PHINode *PN = cast<PHINode>(V);
1188     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1189     // field.
1190 
1191     PointerType *PTy = cast<PointerType>(PN->getType());
1192     StructType *ST = cast<StructType>(PTy->getElementType());
1193 
1194     unsigned AS = PTy->getAddressSpace();
1195     PHINode *NewPN =
1196       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1197                      PN->getNumIncomingValues(),
1198                      PN->getName()+".f"+Twine(FieldNo), PN);
1199     Result = NewPN;
1200     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1201   }
1202 
1203   return FieldVals[FieldNo] = Result;
1204 }
1205 
1206 /// Given a load instruction and a value derived from the load, rewrite the
1207 /// derived value to use the HeapSRoA'd load.
1208 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1209               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1210                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1211   // If this is a comparison against null, handle it.
1212   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1213     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1214     // If we have a setcc of the loaded pointer, we can use a setcc of any
1215     // field.
1216     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1217                                    InsertedScalarizedValues, PHIsToRewrite);
1218 
1219     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1220                               Constant::getNullValue(NPtr->getType()),
1221                               SCI->getName());
1222     SCI->replaceAllUsesWith(New);
1223     SCI->eraseFromParent();
1224     return;
1225   }
1226 
1227   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1228   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1229     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1230            && "Unexpected GEPI!");
1231 
1232     // Load the pointer for this field.
1233     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1234     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1235                                      InsertedScalarizedValues, PHIsToRewrite);
1236 
1237     // Create the new GEP idx vector.
1238     SmallVector<Value*, 8> GEPIdx;
1239     GEPIdx.push_back(GEPI->getOperand(1));
1240     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1241 
1242     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1243                                              GEPI->getName(), GEPI);
1244     GEPI->replaceAllUsesWith(NGEPI);
1245     GEPI->eraseFromParent();
1246     return;
1247   }
1248 
1249   // Recursively transform the users of PHI nodes.  This will lazily create the
1250   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1251   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1252   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1253   // already been seen first by another load, so its uses have already been
1254   // processed.
1255   PHINode *PN = cast<PHINode>(LoadUser);
1256   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1257                                               std::vector<Value *>())).second)
1258     return;
1259 
1260   // If this is the first time we've seen this PHI, recursively process all
1261   // users.
1262   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1263     Instruction *User = cast<Instruction>(*UI++);
1264     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1265   }
1266 }
1267 
1268 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1269 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1270 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1271 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1272               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1273                   std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1274   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1275     Instruction *User = cast<Instruction>(*UI++);
1276     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1277   }
1278 
1279   if (Load->use_empty()) {
1280     Load->eraseFromParent();
1281     InsertedScalarizedValues.erase(Load);
1282   }
1283 }
1284 
1285 /// CI is an allocation of an array of structures.  Break it up into multiple
1286 /// allocations of arrays of the fields.
1287 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1288                                             Value *NElems, const DataLayout &DL,
1289                                             const TargetLibraryInfo *TLI) {
1290   LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
1291                     << '\n');
1292   Type *MAT = getMallocAllocatedType(CI, TLI);
1293   StructType *STy = cast<StructType>(MAT);
1294 
1295   // There is guaranteed to be at least one use of the malloc (storing
1296   // it into GV).  If there are other uses, change them to be uses of
1297   // the global to simplify later code.  This also deletes the store
1298   // into GV.
1299   ReplaceUsesOfMallocWithGlobal(CI, GV);
1300 
1301   // Okay, at this point, there are no users of the malloc.  Insert N
1302   // new mallocs at the same place as CI, and N globals.
1303   std::vector<Value *> FieldGlobals;
1304   std::vector<Value *> FieldMallocs;
1305 
1306   SmallVector<OperandBundleDef, 1> OpBundles;
1307   CI->getOperandBundlesAsDefs(OpBundles);
1308 
1309   unsigned AS = GV->getType()->getPointerAddressSpace();
1310   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1311     Type *FieldTy = STy->getElementType(FieldNo);
1312     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1313 
1314     GlobalVariable *NGV = new GlobalVariable(
1315         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1316         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1317         nullptr, GV->getThreadLocalMode());
1318     NGV->copyAttributesFrom(GV);
1319     FieldGlobals.push_back(NGV);
1320 
1321     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1322     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1323       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1324     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1325     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1326                                         ConstantInt::get(IntPtrTy, TypeSize),
1327                                         NElems, OpBundles, nullptr,
1328                                         CI->getName() + ".f" + Twine(FieldNo));
1329     FieldMallocs.push_back(NMI);
1330     new StoreInst(NMI, NGV, CI);
1331   }
1332 
1333   // The tricky aspect of this transformation is handling the case when malloc
1334   // fails.  In the original code, malloc failing would set the result pointer
1335   // of malloc to null.  In this case, some mallocs could succeed and others
1336   // could fail.  As such, we emit code that looks like this:
1337   //    F0 = malloc(field0)
1338   //    F1 = malloc(field1)
1339   //    F2 = malloc(field2)
1340   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1341   //      if (F0) { free(F0); F0 = 0; }
1342   //      if (F1) { free(F1); F1 = 0; }
1343   //      if (F2) { free(F2); F2 = 0; }
1344   //    }
1345   // The malloc can also fail if its argument is too large.
1346   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1347   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1348                                   ConstantZero, "isneg");
1349   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1350     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1351                              Constant::getNullValue(FieldMallocs[i]->getType()),
1352                                "isnull");
1353     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1354   }
1355 
1356   // Split the basic block at the old malloc.
1357   BasicBlock *OrigBB = CI->getParent();
1358   BasicBlock *ContBB =
1359       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1360 
1361   // Create the block to check the first condition.  Put all these blocks at the
1362   // end of the function as they are unlikely to be executed.
1363   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1364                                                 "malloc_ret_null",
1365                                                 OrigBB->getParent());
1366 
1367   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1368   // branch on RunningOr.
1369   OrigBB->getTerminator()->eraseFromParent();
1370   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1371 
1372   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1373   // pointer, because some may be null while others are not.
1374   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1375     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1376     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1377                               Constant::getNullValue(GVVal->getType()));
1378     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1379                                                OrigBB->getParent());
1380     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1381                                                OrigBB->getParent());
1382     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1383                                          Cmp, NullPtrBlock);
1384 
1385     // Fill in FreeBlock.
1386     CallInst::CreateFree(GVVal, OpBundles, BI);
1387     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1388                   FreeBlock);
1389     BranchInst::Create(NextBlock, FreeBlock);
1390 
1391     NullPtrBlock = NextBlock;
1392   }
1393 
1394   BranchInst::Create(ContBB, NullPtrBlock);
1395 
1396   // CI is no longer needed, remove it.
1397   CI->eraseFromParent();
1398 
1399   /// As we process loads, if we can't immediately update all uses of the load,
1400   /// keep track of what scalarized loads are inserted for a given load.
1401   DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1402   InsertedScalarizedValues[GV] = FieldGlobals;
1403 
1404   std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1405 
1406   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1407   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1408   // of the per-field globals instead.
1409   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1410     Instruction *User = cast<Instruction>(*UI++);
1411 
1412     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1413       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1414       continue;
1415     }
1416 
1417     // Must be a store of null.
1418     StoreInst *SI = cast<StoreInst>(User);
1419     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1420            "Unexpected heap-sra user!");
1421 
1422     // Insert a store of null into each global.
1423     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1424       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1425       Constant *Null = Constant::getNullValue(ValTy);
1426       new StoreInst(Null, FieldGlobals[i], SI);
1427     }
1428     // Erase the original store.
1429     SI->eraseFromParent();
1430   }
1431 
1432   // While we have PHIs that are interesting to rewrite, do it.
1433   while (!PHIsToRewrite.empty()) {
1434     PHINode *PN = PHIsToRewrite.back().first;
1435     unsigned FieldNo = PHIsToRewrite.back().second;
1436     PHIsToRewrite.pop_back();
1437     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1438     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1439 
1440     // Add all the incoming values.  This can materialize more phis.
1441     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1442       Value *InVal = PN->getIncomingValue(i);
1443       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1444                                PHIsToRewrite);
1445       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1446     }
1447   }
1448 
1449   // Drop all inter-phi links and any loads that made it this far.
1450   for (DenseMap<Value *, std::vector<Value *>>::iterator
1451        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1452        I != E; ++I) {
1453     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1454       PN->dropAllReferences();
1455     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1456       LI->dropAllReferences();
1457   }
1458 
1459   // Delete all the phis and loads now that inter-references are dead.
1460   for (DenseMap<Value *, std::vector<Value *>>::iterator
1461        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1462        I != E; ++I) {
1463     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1464       PN->eraseFromParent();
1465     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1466       LI->eraseFromParent();
1467   }
1468 
1469   // The old global is now dead, remove it.
1470   GV->eraseFromParent();
1471 
1472   ++NumHeapSRA;
1473   return cast<GlobalVariable>(FieldGlobals[0]);
1474 }
1475 
1476 /// This function is called when we see a pointer global variable with a single
1477 /// value stored it that is a malloc or cast of malloc.
1478 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1479                                                Type *AllocTy,
1480                                                AtomicOrdering Ordering,
1481                                                const DataLayout &DL,
1482                                                TargetLibraryInfo *TLI) {
1483   // If this is a malloc of an abstract type, don't touch it.
1484   if (!AllocTy->isSized())
1485     return false;
1486 
1487   // We can't optimize this global unless all uses of it are *known* to be
1488   // of the malloc value, not of the null initializer value (consider a use
1489   // that compares the global's value against zero to see if the malloc has
1490   // been reached).  To do this, we check to see if all uses of the global
1491   // would trap if the global were null: this proves that they must all
1492   // happen after the malloc.
1493   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1494     return false;
1495 
1496   // We can't optimize this if the malloc itself is used in a complex way,
1497   // for example, being stored into multiple globals.  This allows the
1498   // malloc to be stored into the specified global, loaded icmp'd, and
1499   // GEP'd.  These are all things we could transform to using the global
1500   // for.
1501   SmallPtrSet<const PHINode*, 8> PHIs;
1502   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1503     return false;
1504 
1505   // If we have a global that is only initialized with a fixed size malloc,
1506   // transform the program to use global memory instead of malloc'd memory.
1507   // This eliminates dynamic allocation, avoids an indirection accessing the
1508   // data, and exposes the resultant global to further GlobalOpt.
1509   // We cannot optimize the malloc if we cannot determine malloc array size.
1510   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1511   if (!NElems)
1512     return false;
1513 
1514   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1515     // Restrict this transformation to only working on small allocations
1516     // (2048 bytes currently), as we don't want to introduce a 16M global or
1517     // something.
1518     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1519       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1520       return true;
1521     }
1522 
1523   // If the allocation is an array of structures, consider transforming this
1524   // into multiple malloc'd arrays, one for each field.  This is basically
1525   // SRoA for malloc'd memory.
1526 
1527   if (Ordering != AtomicOrdering::NotAtomic)
1528     return false;
1529 
1530   // If this is an allocation of a fixed size array of structs, analyze as a
1531   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1532   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1533     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1534       AllocTy = AT->getElementType();
1535 
1536   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1537   if (!AllocSTy)
1538     return false;
1539 
1540   // This the structure has an unreasonable number of fields, leave it
1541   // alone.
1542   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1543       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1544 
1545     // If this is a fixed size array, transform the Malloc to be an alloc of
1546     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1547     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1548       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1549       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1550       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1551       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1552       SmallVector<OperandBundleDef, 1> OpBundles;
1553       CI->getOperandBundlesAsDefs(OpBundles);
1554       Instruction *Malloc =
1555           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1556                                  OpBundles, nullptr, CI->getName());
1557       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1558       CI->replaceAllUsesWith(Cast);
1559       CI->eraseFromParent();
1560       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1561         CI = cast<CallInst>(BCI->getOperand(0));
1562       else
1563         CI = cast<CallInst>(Malloc);
1564     }
1565 
1566     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1567                          TLI);
1568     return true;
1569   }
1570 
1571   return false;
1572 }
1573 
1574 // Try to optimize globals based on the knowledge that only one value (besides
1575 // its initializer) is ever stored to the global.
1576 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1577                                      AtomicOrdering Ordering,
1578                                      const DataLayout &DL,
1579                                      TargetLibraryInfo *TLI) {
1580   // Ignore no-op GEPs and bitcasts.
1581   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1582 
1583   // If we are dealing with a pointer global that is initialized to null and
1584   // only has one (non-null) value stored into it, then we can optimize any
1585   // users of the loaded value (often calls and loads) that would trap if the
1586   // value was null.
1587   if (GV->getInitializer()->getType()->isPointerTy() &&
1588       GV->getInitializer()->isNullValue()) {
1589     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1590       if (GV->getInitializer()->getType() != SOVC->getType())
1591         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1592 
1593       // Optimize away any trapping uses of the loaded value.
1594       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1595         return true;
1596     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1597       Type *MallocType = getMallocAllocatedType(CI, TLI);
1598       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1599                                                            Ordering, DL, TLI))
1600         return true;
1601     }
1602   }
1603 
1604   return false;
1605 }
1606 
1607 /// At this point, we have learned that the only two values ever stored into GV
1608 /// are its initializer and OtherVal.  See if we can shrink the global into a
1609 /// boolean and select between the two values whenever it is used.  This exposes
1610 /// the values to other scalar optimizations.
1611 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1612   Type *GVElType = GV->getValueType();
1613 
1614   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1615   // an FP value, pointer or vector, don't do this optimization because a select
1616   // between them is very expensive and unlikely to lead to later
1617   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1618   // where v1 and v2 both require constant pool loads, a big loss.
1619   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1620       GVElType->isFloatingPointTy() ||
1621       GVElType->isPointerTy() || GVElType->isVectorTy())
1622     return false;
1623 
1624   // Walk the use list of the global seeing if all the uses are load or store.
1625   // If there is anything else, bail out.
1626   for (User *U : GV->users())
1627     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1628       return false;
1629 
1630   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1631 
1632   // Create the new global, initializing it to false.
1633   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1634                                              false,
1635                                              GlobalValue::InternalLinkage,
1636                                         ConstantInt::getFalse(GV->getContext()),
1637                                              GV->getName()+".b",
1638                                              GV->getThreadLocalMode(),
1639                                              GV->getType()->getAddressSpace());
1640   NewGV->copyAttributesFrom(GV);
1641   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1642 
1643   Constant *InitVal = GV->getInitializer();
1644   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1645          "No reason to shrink to bool!");
1646 
1647   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1648   GV->getDebugInfo(GVs);
1649 
1650   // If initialized to zero and storing one into the global, we can use a cast
1651   // instead of a select to synthesize the desired value.
1652   bool IsOneZero = false;
1653   bool EmitOneOrZero = true;
1654   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)){
1655     IsOneZero = InitVal->isNullValue() && CI->isOne();
1656 
1657     if (ConstantInt *CIInit = dyn_cast<ConstantInt>(GV->getInitializer())){
1658       uint64_t ValInit = CIInit->getZExtValue();
1659       uint64_t ValOther = CI->getZExtValue();
1660       uint64_t ValMinus = ValOther - ValInit;
1661 
1662       for(auto *GVe : GVs){
1663         DIGlobalVariable *DGV = GVe->getVariable();
1664         DIExpression *E = GVe->getExpression();
1665 
1666         // It is expected that the address of global optimized variable is on
1667         // top of the stack. After optimization, value of that variable will
1668         // be ether 0 for initial value or 1 for other value. The following
1669         // expression should return constant integer value depending on the
1670         // value at global object address:
1671         // val * (ValOther - ValInit) + ValInit:
1672         // DW_OP_deref DW_OP_constu <ValMinus>
1673         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1674         SmallVector<uint64_t, 12> Ops = {
1675             dwarf::DW_OP_deref, dwarf::DW_OP_constu, ValMinus,
1676             dwarf::DW_OP_mul,   dwarf::DW_OP_constu, ValInit,
1677             dwarf::DW_OP_plus};
1678         E = DIExpression::prependOpcodes(E, Ops, DIExpression::WithStackValue);
1679         DIGlobalVariableExpression *DGVE =
1680           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1681         NewGV->addDebugInfo(DGVE);
1682      }
1683      EmitOneOrZero = false;
1684     }
1685   }
1686 
1687   if (EmitOneOrZero) {
1688      // FIXME: This will only emit address for debugger on which will
1689      // be written only 0 or 1.
1690      for(auto *GV : GVs)
1691        NewGV->addDebugInfo(GV);
1692    }
1693 
1694   while (!GV->use_empty()) {
1695     Instruction *UI = cast<Instruction>(GV->user_back());
1696     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1697       // Change the store into a boolean store.
1698       bool StoringOther = SI->getOperand(0) == OtherVal;
1699       // Only do this if we weren't storing a loaded value.
1700       Value *StoreVal;
1701       if (StoringOther || SI->getOperand(0) == InitVal) {
1702         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1703                                     StoringOther);
1704       } else {
1705         // Otherwise, we are storing a previously loaded copy.  To do this,
1706         // change the copy from copying the original value to just copying the
1707         // bool.
1708         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1709 
1710         // If we've already replaced the input, StoredVal will be a cast or
1711         // select instruction.  If not, it will be a load of the original
1712         // global.
1713         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1714           assert(LI->getOperand(0) == GV && "Not a copy!");
1715           // Insert a new load, to preserve the saved value.
1716           StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1717                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1718         } else {
1719           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1720                  "This is not a form that we understand!");
1721           StoreVal = StoredVal->getOperand(0);
1722           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1723         }
1724       }
1725       new StoreInst(StoreVal, NewGV, false, 0,
1726                     SI->getOrdering(), SI->getSyncScopeID(), SI);
1727     } else {
1728       // Change the load into a load of bool then a select.
1729       LoadInst *LI = cast<LoadInst>(UI);
1730       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1731                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1732       Value *NSI;
1733       if (IsOneZero)
1734         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1735       else
1736         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1737       NSI->takeName(LI);
1738       LI->replaceAllUsesWith(NSI);
1739     }
1740     UI->eraseFromParent();
1741   }
1742 
1743   // Retain the name of the old global variable. People who are debugging their
1744   // programs may expect these variables to be named the same.
1745   NewGV->takeName(GV);
1746   GV->eraseFromParent();
1747   return true;
1748 }
1749 
1750 static bool deleteIfDead(GlobalValue &GV,
1751                          SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
1752   GV.removeDeadConstantUsers();
1753 
1754   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1755     return false;
1756 
1757   if (const Comdat *C = GV.getComdat())
1758     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1759       return false;
1760 
1761   bool Dead;
1762   if (auto *F = dyn_cast<Function>(&GV))
1763     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1764   else
1765     Dead = GV.use_empty();
1766   if (!Dead)
1767     return false;
1768 
1769   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1770   GV.eraseFromParent();
1771   ++NumDeleted;
1772   return true;
1773 }
1774 
1775 static bool isPointerValueDeadOnEntryToFunction(
1776     const Function *F, GlobalValue *GV,
1777     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1778   // Find all uses of GV. We expect them all to be in F, and if we can't
1779   // identify any of the uses we bail out.
1780   //
1781   // On each of these uses, identify if the memory that GV points to is
1782   // used/required/live at the start of the function. If it is not, for example
1783   // if the first thing the function does is store to the GV, the GV can
1784   // possibly be demoted.
1785   //
1786   // We don't do an exhaustive search for memory operations - simply look
1787   // through bitcasts as they're quite common and benign.
1788   const DataLayout &DL = GV->getParent()->getDataLayout();
1789   SmallVector<LoadInst *, 4> Loads;
1790   SmallVector<StoreInst *, 4> Stores;
1791   for (auto *U : GV->users()) {
1792     if (Operator::getOpcode(U) == Instruction::BitCast) {
1793       for (auto *UU : U->users()) {
1794         if (auto *LI = dyn_cast<LoadInst>(UU))
1795           Loads.push_back(LI);
1796         else if (auto *SI = dyn_cast<StoreInst>(UU))
1797           Stores.push_back(SI);
1798         else
1799           return false;
1800       }
1801       continue;
1802     }
1803 
1804     Instruction *I = dyn_cast<Instruction>(U);
1805     if (!I)
1806       return false;
1807     assert(I->getParent()->getParent() == F);
1808 
1809     if (auto *LI = dyn_cast<LoadInst>(I))
1810       Loads.push_back(LI);
1811     else if (auto *SI = dyn_cast<StoreInst>(I))
1812       Stores.push_back(SI);
1813     else
1814       return false;
1815   }
1816 
1817   // We have identified all uses of GV into loads and stores. Now check if all
1818   // of them are known not to depend on the value of the global at the function
1819   // entry point. We do this by ensuring that every load is dominated by at
1820   // least one store.
1821   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1822 
1823   // The below check is quadratic. Check we're not going to do too many tests.
1824   // FIXME: Even though this will always have worst-case quadratic time, we
1825   // could put effort into minimizing the average time by putting stores that
1826   // have been shown to dominate at least one load at the beginning of the
1827   // Stores array, making subsequent dominance checks more likely to succeed
1828   // early.
1829   //
1830   // The threshold here is fairly large because global->local demotion is a
1831   // very powerful optimization should it fire.
1832   const unsigned Threshold = 100;
1833   if (Loads.size() * Stores.size() > Threshold)
1834     return false;
1835 
1836   for (auto *L : Loads) {
1837     auto *LTy = L->getType();
1838     if (none_of(Stores, [&](const StoreInst *S) {
1839           auto *STy = S->getValueOperand()->getType();
1840           // The load is only dominated by the store if DomTree says so
1841           // and the number of bits loaded in L is less than or equal to
1842           // the number of bits stored in S.
1843           return DT.dominates(S, L) &&
1844                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1845         }))
1846       return false;
1847   }
1848   // All loads have known dependences inside F, so the global can be localized.
1849   return true;
1850 }
1851 
1852 /// C may have non-instruction users. Can all of those users be turned into
1853 /// instructions?
1854 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1855   // We don't do this exhaustively. The most common pattern that we really need
1856   // to care about is a constant GEP or constant bitcast - so just looking
1857   // through one single ConstantExpr.
1858   //
1859   // The set of constants that this function returns true for must be able to be
1860   // handled by makeAllConstantUsesInstructions.
1861   for (auto *U : C->users()) {
1862     if (isa<Instruction>(U))
1863       continue;
1864     if (!isa<ConstantExpr>(U))
1865       // Non instruction, non-constantexpr user; cannot convert this.
1866       return false;
1867     for (auto *UU : U->users())
1868       if (!isa<Instruction>(UU))
1869         // A constantexpr used by another constant. We don't try and recurse any
1870         // further but just bail out at this point.
1871         return false;
1872   }
1873 
1874   return true;
1875 }
1876 
1877 /// C may have non-instruction users, and
1878 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1879 /// non-instruction users to instructions.
1880 static void makeAllConstantUsesInstructions(Constant *C) {
1881   SmallVector<ConstantExpr*,4> Users;
1882   for (auto *U : C->users()) {
1883     if (isa<ConstantExpr>(U))
1884       Users.push_back(cast<ConstantExpr>(U));
1885     else
1886       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1887       // should not have returned true for C.
1888       assert(
1889           isa<Instruction>(U) &&
1890           "Can't transform non-constantexpr non-instruction to instruction!");
1891   }
1892 
1893   SmallVector<Value*,4> UUsers;
1894   for (auto *U : Users) {
1895     UUsers.clear();
1896     for (auto *UU : U->users())
1897       UUsers.push_back(UU);
1898     for (auto *UU : UUsers) {
1899       Instruction *UI = cast<Instruction>(UU);
1900       Instruction *NewU = U->getAsInstruction();
1901       NewU->insertBefore(UI);
1902       UI->replaceUsesOfWith(U, NewU);
1903     }
1904     // We've replaced all the uses, so destroy the constant. (destroyConstant
1905     // will update value handles and metadata.)
1906     U->destroyConstant();
1907   }
1908 }
1909 
1910 /// Analyze the specified global variable and optimize
1911 /// it if possible.  If we make a change, return true.
1912 static bool processInternalGlobal(
1913     GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI,
1914     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1915   auto &DL = GV->getParent()->getDataLayout();
1916   // If this is a first class global and has only one accessing function and
1917   // this function is non-recursive, we replace the global with a local alloca
1918   // in this function.
1919   //
1920   // NOTE: It doesn't make sense to promote non-single-value types since we
1921   // are just replacing static memory to stack memory.
1922   //
1923   // If the global is in different address space, don't bring it to stack.
1924   if (!GS.HasMultipleAccessingFunctions &&
1925       GS.AccessingFunction &&
1926       GV->getValueType()->isSingleValueType() &&
1927       GV->getType()->getAddressSpace() == 0 &&
1928       !GV->isExternallyInitialized() &&
1929       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1930       GS.AccessingFunction->doesNotRecurse() &&
1931       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1932                                           LookupDomTree)) {
1933     const DataLayout &DL = GV->getParent()->getDataLayout();
1934 
1935     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1936     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1937                                                    ->getEntryBlock().begin());
1938     Type *ElemTy = GV->getValueType();
1939     // FIXME: Pass Global's alignment when globals have alignment
1940     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1941                                         GV->getName(), &FirstI);
1942     if (!isa<UndefValue>(GV->getInitializer()))
1943       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1944 
1945     makeAllConstantUsesInstructions(GV);
1946 
1947     GV->replaceAllUsesWith(Alloca);
1948     GV->eraseFromParent();
1949     ++NumLocalized;
1950     return true;
1951   }
1952 
1953   // If the global is never loaded (but may be stored to), it is dead.
1954   // Delete it now.
1955   if (!GS.IsLoaded) {
1956     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1957 
1958     bool Changed;
1959     if (isLeakCheckerRoot(GV)) {
1960       // Delete any constant stores to the global.
1961       Changed = CleanupPointerRootUsers(GV, TLI);
1962     } else {
1963       // Delete any stores we can find to the global.  We may not be able to
1964       // make it completely dead though.
1965       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1966     }
1967 
1968     // If the global is dead now, delete it.
1969     if (GV->use_empty()) {
1970       GV->eraseFromParent();
1971       ++NumDeleted;
1972       Changed = true;
1973     }
1974     return Changed;
1975 
1976   }
1977   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1978     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1979     GV->setConstant(true);
1980 
1981     // Clean up any obviously simplifiable users now.
1982     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1983 
1984     // If the global is dead now, just nuke it.
1985     if (GV->use_empty()) {
1986       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1987                         << "all users and delete global!\n");
1988       GV->eraseFromParent();
1989       ++NumDeleted;
1990       return true;
1991     }
1992 
1993     // Fall through to the next check; see if we can optimize further.
1994     ++NumMarked;
1995   }
1996   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1997     const DataLayout &DL = GV->getParent()->getDataLayout();
1998     if (SRAGlobal(GV, DL))
1999       return true;
2000   }
2001   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
2002     // If the initial value for the global was an undef value, and if only
2003     // one other value was stored into it, we can just change the
2004     // initializer to be the stored value, then delete all stores to the
2005     // global.  This allows us to mark it constant.
2006     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2007       if (isa<UndefValue>(GV->getInitializer())) {
2008         // Change the initial value here.
2009         GV->setInitializer(SOVConstant);
2010 
2011         // Clean up any obviously simplifiable users now.
2012         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
2013 
2014         if (GV->use_empty()) {
2015           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2016                             << "simplify all users and delete global!\n");
2017           GV->eraseFromParent();
2018           ++NumDeleted;
2019         }
2020         ++NumSubstitute;
2021         return true;
2022       }
2023 
2024     // Try to optimize globals based on the knowledge that only one value
2025     // (besides its initializer) is ever stored to the global.
2026     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
2027       return true;
2028 
2029     // Otherwise, if the global was not a boolean, we can shrink it to be a
2030     // boolean.
2031     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2032       if (GS.Ordering == AtomicOrdering::NotAtomic) {
2033         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2034           ++NumShrunkToBool;
2035           return true;
2036         }
2037       }
2038     }
2039   }
2040 
2041   return false;
2042 }
2043 
2044 /// Analyze the specified global variable and optimize it if possible.  If we
2045 /// make a change, return true.
2046 static bool
2047 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI,
2048               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2049   if (GV.getName().startswith("llvm."))
2050     return false;
2051 
2052   GlobalStatus GS;
2053 
2054   if (GlobalStatus::analyzeGlobal(&GV, GS))
2055     return false;
2056 
2057   bool Changed = false;
2058   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2059     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2060                                                : GlobalValue::UnnamedAddr::Local;
2061     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2062       GV.setUnnamedAddr(NewUnnamedAddr);
2063       NumUnnamed++;
2064       Changed = true;
2065     }
2066   }
2067 
2068   // Do more involved optimizations if the global is internal.
2069   if (!GV.hasLocalLinkage())
2070     return Changed;
2071 
2072   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2073   if (!GVar)
2074     return Changed;
2075 
2076   if (GVar->isConstant() || !GVar->hasInitializer())
2077     return Changed;
2078 
2079   return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed;
2080 }
2081 
2082 /// Walk all of the direct calls of the specified function, changing them to
2083 /// FastCC.
2084 static void ChangeCalleesToFastCall(Function *F) {
2085   for (User *U : F->users()) {
2086     if (isa<BlockAddress>(U))
2087       continue;
2088     CallSite CS(cast<Instruction>(U));
2089     CS.setCallingConv(CallingConv::Fast);
2090   }
2091 }
2092 
2093 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) {
2094   // There can be at most one attribute set with a nest attribute.
2095   unsigned NestIndex;
2096   if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex))
2097     return Attrs.removeAttribute(C, NestIndex, Attribute::Nest);
2098   return Attrs;
2099 }
2100 
2101 static void RemoveNestAttribute(Function *F) {
2102   F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2103   for (User *U : F->users()) {
2104     if (isa<BlockAddress>(U))
2105       continue;
2106     CallSite CS(cast<Instruction>(U));
2107     CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
2108   }
2109 }
2110 
2111 /// Return true if this is a calling convention that we'd like to change.  The
2112 /// idea here is that we don't want to mess with the convention if the user
2113 /// explicitly requested something with performance implications like coldcc,
2114 /// GHC, or anyregcc.
2115 static bool hasChangeableCC(Function *F) {
2116   CallingConv::ID CC = F->getCallingConv();
2117 
2118   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2119   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2120     return false;
2121 
2122   // FIXME: Change CC for the whole chain of musttail calls when possible.
2123   //
2124   // Can't change CC of the function that either has musttail calls, or is a
2125   // musttail callee itself
2126   for (User *U : F->users()) {
2127     if (isa<BlockAddress>(U))
2128       continue;
2129     CallInst* CI = dyn_cast<CallInst>(U);
2130     if (!CI)
2131       continue;
2132 
2133     if (CI->isMustTailCall())
2134       return false;
2135   }
2136 
2137   for (BasicBlock &BB : *F)
2138     if (BB.getTerminatingMustTailCall())
2139       return false;
2140 
2141   return true;
2142 }
2143 
2144 /// Return true if the block containing the call site has a BlockFrequency of
2145 /// less than ColdCCRelFreq% of the entry block.
2146 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
2147   const BranchProbability ColdProb(ColdCCRelFreq, 100);
2148   auto CallSiteBB = CS.getInstruction()->getParent();
2149   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2150   auto CallerEntryFreq =
2151       CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
2152   return CallSiteFreq < CallerEntryFreq * ColdProb;
2153 }
2154 
2155 // This function checks if the input function F is cold at all call sites. It
2156 // also looks each call site's containing function, returning false if the
2157 // caller function contains other non cold calls. The input vector AllCallsCold
2158 // contains a list of functions that only have call sites in cold blocks.
2159 static bool
2160 isValidCandidateForColdCC(Function &F,
2161                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2162                           const std::vector<Function *> &AllCallsCold) {
2163 
2164   if (F.user_empty())
2165     return false;
2166 
2167   for (User *U : F.users()) {
2168     if (isa<BlockAddress>(U))
2169       continue;
2170 
2171     CallSite CS(cast<Instruction>(U));
2172     Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
2173     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2174     if (!isColdCallSite(CS, CallerBFI))
2175       return false;
2176     auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2177     if (It == AllCallsCold.end())
2178       return false;
2179   }
2180   return true;
2181 }
2182 
2183 static void changeCallSitesToColdCC(Function *F) {
2184   for (User *U : F->users()) {
2185     if (isa<BlockAddress>(U))
2186       continue;
2187     CallSite CS(cast<Instruction>(U));
2188     CS.setCallingConv(CallingConv::Cold);
2189   }
2190 }
2191 
2192 // This function iterates over all the call instructions in the input Function
2193 // and checks that all call sites are in cold blocks and are allowed to use the
2194 // coldcc calling convention.
2195 static bool
2196 hasOnlyColdCalls(Function &F,
2197                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2198   for (BasicBlock &BB : F) {
2199     for (Instruction &I : BB) {
2200       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2201         CallSite CS(cast<Instruction>(CI));
2202         // Skip over isline asm instructions since they aren't function calls.
2203         if (CI->isInlineAsm())
2204           continue;
2205         Function *CalledFn = CI->getCalledFunction();
2206         if (!CalledFn)
2207           return false;
2208         if (!CalledFn->hasLocalLinkage())
2209           return false;
2210         // Skip over instrinsics since they won't remain as function calls.
2211         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2212           continue;
2213         // Check if it's valid to use coldcc calling convention.
2214         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2215             CalledFn->hasAddressTaken())
2216           return false;
2217         BlockFrequencyInfo &CallerBFI = GetBFI(F);
2218         if (!isColdCallSite(CS, CallerBFI))
2219           return false;
2220       }
2221     }
2222   }
2223   return true;
2224 }
2225 
2226 static bool
2227 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI,
2228                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
2229                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2230                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2231                   SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2232 
2233   bool Changed = false;
2234 
2235   std::vector<Function *> AllCallsCold;
2236   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2237     Function *F = &*FI++;
2238     if (hasOnlyColdCalls(*F, GetBFI))
2239       AllCallsCold.push_back(F);
2240   }
2241 
2242   // Optimize functions.
2243   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2244     Function *F = &*FI++;
2245 
2246     // Don't perform global opt pass on naked functions; we don't want fast
2247     // calling conventions for naked functions.
2248     if (F->hasFnAttribute(Attribute::Naked))
2249       continue;
2250 
2251     // Functions without names cannot be referenced outside this module.
2252     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2253       F->setLinkage(GlobalValue::InternalLinkage);
2254 
2255     if (deleteIfDead(*F, NotDiscardableComdats)) {
2256       Changed = true;
2257       continue;
2258     }
2259 
2260     // LLVM's definition of dominance allows instructions that are cyclic
2261     // in unreachable blocks, e.g.:
2262     // %pat = select i1 %condition, @global, i16* %pat
2263     // because any instruction dominates an instruction in a block that's
2264     // not reachable from entry.
2265     // So, remove unreachable blocks from the function, because a) there's
2266     // no point in analyzing them and b) GlobalOpt should otherwise grow
2267     // some more complicated logic to break these cycles.
2268     // Removing unreachable blocks might invalidate the dominator so we
2269     // recalculate it.
2270     if (!F->isDeclaration()) {
2271       if (removeUnreachableBlocks(*F)) {
2272         auto &DT = LookupDomTree(*F);
2273         DT.recalculate(*F);
2274         Changed = true;
2275       }
2276     }
2277 
2278     Changed |= processGlobal(*F, TLI, LookupDomTree);
2279 
2280     if (!F->hasLocalLinkage())
2281       continue;
2282 
2283     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2284       NumInternalFunc++;
2285       TargetTransformInfo &TTI = GetTTI(*F);
2286       // Change the calling convention to coldcc if either stress testing is
2287       // enabled or the target would like to use coldcc on functions which are
2288       // cold at all call sites and the callers contain no other non coldcc
2289       // calls.
2290       if (EnableColdCCStressTest ||
2291           (isValidCandidateForColdCC(*F, GetBFI, AllCallsCold) &&
2292            TTI.useColdCCForColdCall(*F))) {
2293         F->setCallingConv(CallingConv::Cold);
2294         changeCallSitesToColdCC(F);
2295         Changed = true;
2296         NumColdCC++;
2297       }
2298     }
2299 
2300     if (hasChangeableCC(F) && !F->isVarArg() &&
2301         !F->hasAddressTaken()) {
2302       // If this function has a calling convention worth changing, is not a
2303       // varargs function, and is only called directly, promote it to use the
2304       // Fast calling convention.
2305       F->setCallingConv(CallingConv::Fast);
2306       ChangeCalleesToFastCall(F);
2307       ++NumFastCallFns;
2308       Changed = true;
2309     }
2310 
2311     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2312         !F->hasAddressTaken()) {
2313       // The function is not used by a trampoline intrinsic, so it is safe
2314       // to remove the 'nest' attribute.
2315       RemoveNestAttribute(F);
2316       ++NumNestRemoved;
2317       Changed = true;
2318     }
2319   }
2320   return Changed;
2321 }
2322 
2323 static bool
2324 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI,
2325                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2326                    SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2327   bool Changed = false;
2328 
2329   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2330        GVI != E; ) {
2331     GlobalVariable *GV = &*GVI++;
2332     // Global variables without names cannot be referenced outside this module.
2333     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2334       GV->setLinkage(GlobalValue::InternalLinkage);
2335     // Simplify the initializer.
2336     if (GV->hasInitializer())
2337       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2338         auto &DL = M.getDataLayout();
2339         Constant *New = ConstantFoldConstant(C, DL, TLI);
2340         if (New && New != C)
2341           GV->setInitializer(New);
2342       }
2343 
2344     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2345       Changed = true;
2346       continue;
2347     }
2348 
2349     Changed |= processGlobal(*GV, TLI, LookupDomTree);
2350   }
2351   return Changed;
2352 }
2353 
2354 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2355 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2356 /// GEP operands of Addr [0, OpNo) have been stepped into.
2357 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2358                                    ConstantExpr *Addr, unsigned OpNo) {
2359   // Base case of the recursion.
2360   if (OpNo == Addr->getNumOperands()) {
2361     assert(Val->getType() == Init->getType() && "Type mismatch!");
2362     return Val;
2363   }
2364 
2365   SmallVector<Constant*, 32> Elts;
2366   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2367     // Break up the constant into its elements.
2368     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2369       Elts.push_back(Init->getAggregateElement(i));
2370 
2371     // Replace the element that we are supposed to.
2372     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2373     unsigned Idx = CU->getZExtValue();
2374     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2375     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2376 
2377     // Return the modified struct.
2378     return ConstantStruct::get(STy, Elts);
2379   }
2380 
2381   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2382   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2383   uint64_t NumElts = InitTy->getNumElements();
2384 
2385   // Break up the array into elements.
2386   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2387     Elts.push_back(Init->getAggregateElement(i));
2388 
2389   assert(CI->getZExtValue() < NumElts);
2390   Elts[CI->getZExtValue()] =
2391     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2392 
2393   if (Init->getType()->isArrayTy())
2394     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2395   return ConstantVector::get(Elts);
2396 }
2397 
2398 /// We have decided that Addr (which satisfies the predicate
2399 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2400 static void CommitValueTo(Constant *Val, Constant *Addr) {
2401   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2402     assert(GV->hasInitializer());
2403     GV->setInitializer(Val);
2404     return;
2405   }
2406 
2407   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2408   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2409   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2410 }
2411 
2412 /// Given a map of address -> value, where addresses are expected to be some form
2413 /// of either a global or a constant GEP, set the initializer for the address to
2414 /// be the value. This performs mostly the same function as CommitValueTo()
2415 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2416 /// case where the set of addresses are GEPs sharing the same underlying global,
2417 /// processing the GEPs in batches rather than individually.
2418 ///
2419 /// To give an example, consider the following C++ code adapted from the clang
2420 /// regression tests:
2421 /// struct S {
2422 ///  int n = 10;
2423 ///  int m = 2 * n;
2424 ///  S(int a) : n(a) {}
2425 /// };
2426 ///
2427 /// template<typename T>
2428 /// struct U {
2429 ///  T *r = &q;
2430 ///  T q = 42;
2431 ///  U *p = this;
2432 /// };
2433 ///
2434 /// U<S> e;
2435 ///
2436 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2437 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2438 /// members. This batch algorithm will simply use general CommitValueTo() method
2439 /// to handle the complex nested S struct initialization of 'q', before
2440 /// processing the outermost members in a single batch. Using CommitValueTo() to
2441 /// handle member in the outer struct is inefficient when the struct/array is
2442 /// very large as we end up creating and destroy constant arrays for each
2443 /// initialization.
2444 /// For the above case, we expect the following IR to be generated:
2445 ///
2446 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2447 /// %struct.S = type { i32, i32 }
2448 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2449 ///                                                  i64 0, i32 1),
2450 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2451 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2452 /// constant expression, while the other two elements of @e are "simple".
2453 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2454   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2455   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2456   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2457   SimpleCEs.reserve(Mem.size());
2458 
2459   for (const auto &I : Mem) {
2460     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2461       GVs.push_back(std::make_pair(GV, I.second));
2462     } else {
2463       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2464       // We don't handle the deeply recursive case using the batch method.
2465       if (GEP->getNumOperands() > 3)
2466         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2467       else
2468         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2469     }
2470   }
2471 
2472   // The algorithm below doesn't handle cases like nested structs, so use the
2473   // slower fully general method if we have to.
2474   for (auto ComplexCE : ComplexCEs)
2475     CommitValueTo(ComplexCE.second, ComplexCE.first);
2476 
2477   for (auto GVPair : GVs) {
2478     assert(GVPair.first->hasInitializer());
2479     GVPair.first->setInitializer(GVPair.second);
2480   }
2481 
2482   if (SimpleCEs.empty())
2483     return;
2484 
2485   // We cache a single global's initializer elements in the case where the
2486   // subsequent address/val pair uses the same one. This avoids throwing away and
2487   // rebuilding the constant struct/vector/array just because one element is
2488   // modified at a time.
2489   SmallVector<Constant *, 32> Elts;
2490   Elts.reserve(SimpleCEs.size());
2491   GlobalVariable *CurrentGV = nullptr;
2492 
2493   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2494     Constant *Init = GV->getInitializer();
2495     Type *Ty = Init->getType();
2496     if (Update) {
2497       if (CurrentGV) {
2498         assert(CurrentGV && "Expected a GV to commit to!");
2499         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2500         // We have a valid cache that needs to be committed.
2501         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2502           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2503         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2504           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2505         else
2506           CurrentGV->setInitializer(ConstantVector::get(Elts));
2507       }
2508       if (CurrentGV == GV)
2509         return;
2510       // Need to clear and set up cache for new initializer.
2511       CurrentGV = GV;
2512       Elts.clear();
2513       unsigned NumElts;
2514       if (auto *STy = dyn_cast<StructType>(Ty))
2515         NumElts = STy->getNumElements();
2516       else
2517         NumElts = cast<SequentialType>(Ty)->getNumElements();
2518       for (unsigned i = 0, e = NumElts; i != e; ++i)
2519         Elts.push_back(Init->getAggregateElement(i));
2520     }
2521   };
2522 
2523   for (auto CEPair : SimpleCEs) {
2524     ConstantExpr *GEP = CEPair.first;
2525     Constant *Val = CEPair.second;
2526 
2527     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2528     commitAndSetupCache(GV, GV != CurrentGV);
2529     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2530     Elts[CI->getZExtValue()] = Val;
2531   }
2532   // The last initializer in the list needs to be committed, others
2533   // will be committed on a new initializer being processed.
2534   commitAndSetupCache(CurrentGV, true);
2535 }
2536 
2537 /// Evaluate static constructors in the function, if we can.  Return true if we
2538 /// can, false otherwise.
2539 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2540                                       TargetLibraryInfo *TLI) {
2541   // Call the function.
2542   Evaluator Eval(DL, TLI);
2543   Constant *RetValDummy;
2544   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2545                                            SmallVector<Constant*, 0>());
2546 
2547   if (EvalSuccess) {
2548     ++NumCtorsEvaluated;
2549 
2550     // We succeeded at evaluation: commit the result.
2551     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2552                       << F->getName() << "' to "
2553                       << Eval.getMutatedMemory().size() << " stores.\n");
2554     BatchCommitValueTo(Eval.getMutatedMemory());
2555     for (GlobalVariable *GV : Eval.getInvariants())
2556       GV->setConstant(true);
2557   }
2558 
2559   return EvalSuccess;
2560 }
2561 
2562 static int compareNames(Constant *const *A, Constant *const *B) {
2563   Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
2564   Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
2565   return AStripped->getName().compare(BStripped->getName());
2566 }
2567 
2568 static void setUsedInitializer(GlobalVariable &V,
2569                                const SmallPtrSet<GlobalValue *, 8> &Init) {
2570   if (Init.empty()) {
2571     V.eraseFromParent();
2572     return;
2573   }
2574 
2575   // Type of pointer to the array of pointers.
2576   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2577 
2578   SmallVector<Constant *, 8> UsedArray;
2579   for (GlobalValue *GV : Init) {
2580     Constant *Cast
2581       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2582     UsedArray.push_back(Cast);
2583   }
2584   // Sort to get deterministic order.
2585   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2586   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2587 
2588   Module *M = V.getParent();
2589   V.removeFromParent();
2590   GlobalVariable *NV =
2591       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2592                          ConstantArray::get(ATy, UsedArray), "");
2593   NV->takeName(&V);
2594   NV->setSection("llvm.metadata");
2595   delete &V;
2596 }
2597 
2598 namespace {
2599 
2600 /// An easy to access representation of llvm.used and llvm.compiler.used.
2601 class LLVMUsed {
2602   SmallPtrSet<GlobalValue *, 8> Used;
2603   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2604   GlobalVariable *UsedV;
2605   GlobalVariable *CompilerUsedV;
2606 
2607 public:
2608   LLVMUsed(Module &M) {
2609     UsedV = collectUsedGlobalVariables(M, Used, false);
2610     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2611   }
2612 
2613   using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2614   using used_iterator_range = iterator_range<iterator>;
2615 
2616   iterator usedBegin() { return Used.begin(); }
2617   iterator usedEnd() { return Used.end(); }
2618 
2619   used_iterator_range used() {
2620     return used_iterator_range(usedBegin(), usedEnd());
2621   }
2622 
2623   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2624   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2625 
2626   used_iterator_range compilerUsed() {
2627     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2628   }
2629 
2630   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2631 
2632   bool compilerUsedCount(GlobalValue *GV) const {
2633     return CompilerUsed.count(GV);
2634   }
2635 
2636   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2637   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2638   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2639 
2640   bool compilerUsedInsert(GlobalValue *GV) {
2641     return CompilerUsed.insert(GV).second;
2642   }
2643 
2644   void syncVariablesAndSets() {
2645     if (UsedV)
2646       setUsedInitializer(*UsedV, Used);
2647     if (CompilerUsedV)
2648       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2649   }
2650 };
2651 
2652 } // end anonymous namespace
2653 
2654 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2655   if (GA.use_empty()) // No use at all.
2656     return false;
2657 
2658   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2659          "We should have removed the duplicated "
2660          "element from llvm.compiler.used");
2661   if (!GA.hasOneUse())
2662     // Strictly more than one use. So at least one is not in llvm.used and
2663     // llvm.compiler.used.
2664     return true;
2665 
2666   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2667   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2668 }
2669 
2670 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2671                                                const LLVMUsed &U) {
2672   unsigned N = 2;
2673   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2674          "We should have removed the duplicated "
2675          "element from llvm.compiler.used");
2676   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2677     ++N;
2678   return V.hasNUsesOrMore(N);
2679 }
2680 
2681 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2682   if (!GA.hasLocalLinkage())
2683     return true;
2684 
2685   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2686 }
2687 
2688 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2689                              bool &RenameTarget) {
2690   RenameTarget = false;
2691   bool Ret = false;
2692   if (hasUseOtherThanLLVMUsed(GA, U))
2693     Ret = true;
2694 
2695   // If the alias is externally visible, we may still be able to simplify it.
2696   if (!mayHaveOtherReferences(GA, U))
2697     return Ret;
2698 
2699   // If the aliasee has internal linkage, give it the name and linkage
2700   // of the alias, and delete the alias.  This turns:
2701   //   define internal ... @f(...)
2702   //   @a = alias ... @f
2703   // into:
2704   //   define ... @a(...)
2705   Constant *Aliasee = GA.getAliasee();
2706   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2707   if (!Target->hasLocalLinkage())
2708     return Ret;
2709 
2710   // Do not perform the transform if multiple aliases potentially target the
2711   // aliasee. This check also ensures that it is safe to replace the section
2712   // and other attributes of the aliasee with those of the alias.
2713   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2714     return Ret;
2715 
2716   RenameTarget = true;
2717   return true;
2718 }
2719 
2720 static bool
2721 OptimizeGlobalAliases(Module &M,
2722                       SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2723   bool Changed = false;
2724   LLVMUsed Used(M);
2725 
2726   for (GlobalValue *GV : Used.used())
2727     Used.compilerUsedErase(GV);
2728 
2729   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2730        I != E;) {
2731     GlobalAlias *J = &*I++;
2732 
2733     // Aliases without names cannot be referenced outside this module.
2734     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2735       J->setLinkage(GlobalValue::InternalLinkage);
2736 
2737     if (deleteIfDead(*J, NotDiscardableComdats)) {
2738       Changed = true;
2739       continue;
2740     }
2741 
2742     // If the alias can change at link time, nothing can be done - bail out.
2743     if (J->isInterposable())
2744       continue;
2745 
2746     Constant *Aliasee = J->getAliasee();
2747     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2748     // We can't trivially replace the alias with the aliasee if the aliasee is
2749     // non-trivial in some way.
2750     // TODO: Try to handle non-zero GEPs of local aliasees.
2751     if (!Target)
2752       continue;
2753     Target->removeDeadConstantUsers();
2754 
2755     // Make all users of the alias use the aliasee instead.
2756     bool RenameTarget;
2757     if (!hasUsesToReplace(*J, Used, RenameTarget))
2758       continue;
2759 
2760     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2761     ++NumAliasesResolved;
2762     Changed = true;
2763 
2764     if (RenameTarget) {
2765       // Give the aliasee the name, linkage and other attributes of the alias.
2766       Target->takeName(&*J);
2767       Target->setLinkage(J->getLinkage());
2768       Target->setDSOLocal(J->isDSOLocal());
2769       Target->setVisibility(J->getVisibility());
2770       Target->setDLLStorageClass(J->getDLLStorageClass());
2771 
2772       if (Used.usedErase(&*J))
2773         Used.usedInsert(Target);
2774 
2775       if (Used.compilerUsedErase(&*J))
2776         Used.compilerUsedInsert(Target);
2777     } else if (mayHaveOtherReferences(*J, Used))
2778       continue;
2779 
2780     // Delete the alias.
2781     M.getAliasList().erase(J);
2782     ++NumAliasesRemoved;
2783     Changed = true;
2784   }
2785 
2786   Used.syncVariablesAndSets();
2787 
2788   return Changed;
2789 }
2790 
2791 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2792   LibFunc F = LibFunc_cxa_atexit;
2793   if (!TLI->has(F))
2794     return nullptr;
2795 
2796   Function *Fn = M.getFunction(TLI->getName(F));
2797   if (!Fn)
2798     return nullptr;
2799 
2800   // Make sure that the function has the correct prototype.
2801   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2802     return nullptr;
2803 
2804   return Fn;
2805 }
2806 
2807 /// Returns whether the given function is an empty C++ destructor and can
2808 /// therefore be eliminated.
2809 /// Note that we assume that other optimization passes have already simplified
2810 /// the code so we only look for a function with a single basic block, where
2811 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2812 /// other side-effect free instructions.
2813 static bool cxxDtorIsEmpty(const Function &Fn,
2814                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
2815   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2816   // nounwind, but that doesn't seem worth doing.
2817   if (Fn.isDeclaration())
2818     return false;
2819 
2820   if (++Fn.begin() != Fn.end())
2821     return false;
2822 
2823   const BasicBlock &EntryBlock = Fn.getEntryBlock();
2824   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2825        I != E; ++I) {
2826     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2827       // Ignore debug intrinsics.
2828       if (isa<DbgInfoIntrinsic>(CI))
2829         continue;
2830 
2831       const Function *CalledFn = CI->getCalledFunction();
2832 
2833       if (!CalledFn)
2834         return false;
2835 
2836       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2837 
2838       // Don't treat recursive functions as empty.
2839       if (!NewCalledFunctions.insert(CalledFn).second)
2840         return false;
2841 
2842       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2843         return false;
2844     } else if (isa<ReturnInst>(*I))
2845       return true; // We're done.
2846     else if (I->mayHaveSideEffects())
2847       return false; // Destructor with side effects, bail.
2848   }
2849 
2850   return false;
2851 }
2852 
2853 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2854   /// Itanium C++ ABI p3.3.5:
2855   ///
2856   ///   After constructing a global (or local static) object, that will require
2857   ///   destruction on exit, a termination function is registered as follows:
2858   ///
2859   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2860   ///
2861   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2862   ///   call f(p) when DSO d is unloaded, before all such termination calls
2863   ///   registered before this one. It returns zero if registration is
2864   ///   successful, nonzero on failure.
2865 
2866   // This pass will look for calls to __cxa_atexit where the function is trivial
2867   // and remove them.
2868   bool Changed = false;
2869 
2870   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2871        I != E;) {
2872     // We're only interested in calls. Theoretically, we could handle invoke
2873     // instructions as well, but neither llvm-gcc nor clang generate invokes
2874     // to __cxa_atexit.
2875     CallInst *CI = dyn_cast<CallInst>(*I++);
2876     if (!CI)
2877       continue;
2878 
2879     Function *DtorFn =
2880       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2881     if (!DtorFn)
2882       continue;
2883 
2884     SmallPtrSet<const Function *, 8> CalledFunctions;
2885     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2886       continue;
2887 
2888     // Just remove the call.
2889     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2890     CI->eraseFromParent();
2891 
2892     ++NumCXXDtorsRemoved;
2893 
2894     Changed |= true;
2895   }
2896 
2897   return Changed;
2898 }
2899 
2900 static bool optimizeGlobalsInModule(
2901     Module &M, const DataLayout &DL, TargetLibraryInfo *TLI,
2902     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2903     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2904     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2905   SmallSet<const Comdat *, 8> NotDiscardableComdats;
2906   bool Changed = false;
2907   bool LocalChange = true;
2908   while (LocalChange) {
2909     LocalChange = false;
2910 
2911     NotDiscardableComdats.clear();
2912     for (const GlobalVariable &GV : M.globals())
2913       if (const Comdat *C = GV.getComdat())
2914         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2915           NotDiscardableComdats.insert(C);
2916     for (Function &F : M)
2917       if (const Comdat *C = F.getComdat())
2918         if (!F.isDefTriviallyDead())
2919           NotDiscardableComdats.insert(C);
2920     for (GlobalAlias &GA : M.aliases())
2921       if (const Comdat *C = GA.getComdat())
2922         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2923           NotDiscardableComdats.insert(C);
2924 
2925     // Delete functions that are trivially dead, ccc -> fastcc
2926     LocalChange |= OptimizeFunctions(M, TLI, GetTTI, GetBFI, LookupDomTree,
2927                                      NotDiscardableComdats);
2928 
2929     // Optimize global_ctors list.
2930     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2931       return EvaluateStaticConstructor(F, DL, TLI);
2932     });
2933 
2934     // Optimize non-address-taken globals.
2935     LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree,
2936                                       NotDiscardableComdats);
2937 
2938     // Resolve aliases, when possible.
2939     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2940 
2941     // Try to remove trivial global destructors if they are not removed
2942     // already.
2943     Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
2944     if (CXAAtExitFn)
2945       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2946 
2947     Changed |= LocalChange;
2948   }
2949 
2950   // TODO: Move all global ctors functions to the end of the module for code
2951   // layout.
2952 
2953   return Changed;
2954 }
2955 
2956 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2957     auto &DL = M.getDataLayout();
2958     auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
2959     auto &FAM =
2960         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2961     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2962       return FAM.getResult<DominatorTreeAnalysis>(F);
2963     };
2964     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2965       return FAM.getResult<TargetIRAnalysis>(F);
2966     };
2967 
2968     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2969       return FAM.getResult<BlockFrequencyAnalysis>(F);
2970     };
2971 
2972     if (!optimizeGlobalsInModule(M, DL, &TLI, GetTTI, GetBFI, LookupDomTree))
2973       return PreservedAnalyses::all();
2974     return PreservedAnalyses::none();
2975 }
2976 
2977 namespace {
2978 
2979 struct GlobalOptLegacyPass : public ModulePass {
2980   static char ID; // Pass identification, replacement for typeid
2981 
2982   GlobalOptLegacyPass() : ModulePass(ID) {
2983     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2984   }
2985 
2986   bool runOnModule(Module &M) override {
2987     if (skipModule(M))
2988       return false;
2989 
2990     auto &DL = M.getDataLayout();
2991     auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2992     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2993       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2994     };
2995     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2996       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2997     };
2998 
2999     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3000       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3001     };
3002 
3003     return optimizeGlobalsInModule(M, DL, TLI, GetTTI, GetBFI, LookupDomTree);
3004   }
3005 
3006   void getAnalysisUsage(AnalysisUsage &AU) const override {
3007     AU.addRequired<TargetLibraryInfoWrapperPass>();
3008     AU.addRequired<TargetTransformInfoWrapperPass>();
3009     AU.addRequired<DominatorTreeWrapperPass>();
3010     AU.addRequired<BlockFrequencyInfoWrapperPass>();
3011   }
3012 };
3013 
3014 } // end anonymous namespace
3015 
3016 char GlobalOptLegacyPass::ID = 0;
3017 
3018 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3019                       "Global Variable Optimizer", false, false)
3020 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3021 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3022 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3023 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3024 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3025                     "Global Variable Optimizer", false, false)
3026 
3027 ModulePass *llvm::createGlobalOptimizerPass() {
3028   return new GlobalOptLegacyPass();
3029 }
3030