1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/GlobalOpt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/ADT/iterator_range.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/Utils/Local.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GetElementPtrTypeIterator.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/IntrinsicInst.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Operator.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Use.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueHandle.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/AtomicOrdering.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MathExtras.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Transforms/IPO.h" 67 #include "llvm/Transforms/Utils/CtorUtils.h" 68 #include "llvm/Transforms/Utils/Evaluator.h" 69 #include "llvm/Transforms/Utils/GlobalStatus.h" 70 #include <cassert> 71 #include <cstdint> 72 #include <utility> 73 #include <vector> 74 75 using namespace llvm; 76 77 #define DEBUG_TYPE "globalopt" 78 79 STATISTIC(NumMarked , "Number of globals marked constant"); 80 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 81 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 82 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 83 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 84 STATISTIC(NumDeleted , "Number of globals deleted"); 85 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 86 STATISTIC(NumLocalized , "Number of globals localized"); 87 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 88 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 89 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 90 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 91 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 92 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 93 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 94 STATISTIC(NumInternalFunc, "Number of internal functions"); 95 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 96 97 static cl::opt<bool> 98 EnableColdCCStressTest("enable-coldcc-stress-test", 99 cl::desc("Enable stress test of coldcc by adding " 100 "calling conv to all internal functions."), 101 cl::init(false), cl::Hidden); 102 103 static cl::opt<int> ColdCCRelFreq( 104 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 105 cl::desc( 106 "Maximum block frequency, expressed as a percentage of caller's " 107 "entry frequency, for a call site to be considered cold for enabling" 108 "coldcc")); 109 110 /// Is this global variable possibly used by a leak checker as a root? If so, 111 /// we might not really want to eliminate the stores to it. 112 static bool isLeakCheckerRoot(GlobalVariable *GV) { 113 // A global variable is a root if it is a pointer, or could plausibly contain 114 // a pointer. There are two challenges; one is that we could have a struct 115 // the has an inner member which is a pointer. We recurse through the type to 116 // detect these (up to a point). The other is that we may actually be a union 117 // of a pointer and another type, and so our LLVM type is an integer which 118 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 119 // potentially contained here. 120 121 if (GV->hasPrivateLinkage()) 122 return false; 123 124 SmallVector<Type *, 4> Types; 125 Types.push_back(GV->getValueType()); 126 127 unsigned Limit = 20; 128 do { 129 Type *Ty = Types.pop_back_val(); 130 switch (Ty->getTypeID()) { 131 default: break; 132 case Type::PointerTyID: return true; 133 case Type::ArrayTyID: 134 case Type::VectorTyID: { 135 SequentialType *STy = cast<SequentialType>(Ty); 136 Types.push_back(STy->getElementType()); 137 break; 138 } 139 case Type::StructTyID: { 140 StructType *STy = cast<StructType>(Ty); 141 if (STy->isOpaque()) return true; 142 for (StructType::element_iterator I = STy->element_begin(), 143 E = STy->element_end(); I != E; ++I) { 144 Type *InnerTy = *I; 145 if (isa<PointerType>(InnerTy)) return true; 146 if (isa<CompositeType>(InnerTy)) 147 Types.push_back(InnerTy); 148 } 149 break; 150 } 151 } 152 if (--Limit == 0) return true; 153 } while (!Types.empty()); 154 return false; 155 } 156 157 /// Given a value that is stored to a global but never read, determine whether 158 /// it's safe to remove the store and the chain of computation that feeds the 159 /// store. 160 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 161 do { 162 if (isa<Constant>(V)) 163 return true; 164 if (!V->hasOneUse()) 165 return false; 166 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 167 isa<GlobalValue>(V)) 168 return false; 169 if (isAllocationFn(V, TLI)) 170 return true; 171 172 Instruction *I = cast<Instruction>(V); 173 if (I->mayHaveSideEffects()) 174 return false; 175 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 176 if (!GEP->hasAllConstantIndices()) 177 return false; 178 } else if (I->getNumOperands() != 1) { 179 return false; 180 } 181 182 V = I->getOperand(0); 183 } while (true); 184 } 185 186 /// This GV is a pointer root. Loop over all users of the global and clean up 187 /// any that obviously don't assign the global a value that isn't dynamically 188 /// allocated. 189 static bool CleanupPointerRootUsers(GlobalVariable *GV, 190 const TargetLibraryInfo *TLI) { 191 // A brief explanation of leak checkers. The goal is to find bugs where 192 // pointers are forgotten, causing an accumulating growth in memory 193 // usage over time. The common strategy for leak checkers is to whitelist the 194 // memory pointed to by globals at exit. This is popular because it also 195 // solves another problem where the main thread of a C++ program may shut down 196 // before other threads that are still expecting to use those globals. To 197 // handle that case, we expect the program may create a singleton and never 198 // destroy it. 199 200 bool Changed = false; 201 202 // If Dead[n].first is the only use of a malloc result, we can delete its 203 // chain of computation and the store to the global in Dead[n].second. 204 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 205 206 // Constants can't be pointers to dynamically allocated memory. 207 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 208 UI != E;) { 209 User *U = *UI++; 210 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 211 Value *V = SI->getValueOperand(); 212 if (isa<Constant>(V)) { 213 Changed = true; 214 SI->eraseFromParent(); 215 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 216 if (I->hasOneUse()) 217 Dead.push_back(std::make_pair(I, SI)); 218 } 219 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 220 if (isa<Constant>(MSI->getValue())) { 221 Changed = true; 222 MSI->eraseFromParent(); 223 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 224 if (I->hasOneUse()) 225 Dead.push_back(std::make_pair(I, MSI)); 226 } 227 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 228 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 229 if (MemSrc && MemSrc->isConstant()) { 230 Changed = true; 231 MTI->eraseFromParent(); 232 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 233 if (I->hasOneUse()) 234 Dead.push_back(std::make_pair(I, MTI)); 235 } 236 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 237 if (CE->use_empty()) { 238 CE->destroyConstant(); 239 Changed = true; 240 } 241 } else if (Constant *C = dyn_cast<Constant>(U)) { 242 if (isSafeToDestroyConstant(C)) { 243 C->destroyConstant(); 244 // This could have invalidated UI, start over from scratch. 245 Dead.clear(); 246 CleanupPointerRootUsers(GV, TLI); 247 return true; 248 } 249 } 250 } 251 252 for (int i = 0, e = Dead.size(); i != e; ++i) { 253 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 254 Dead[i].second->eraseFromParent(); 255 Instruction *I = Dead[i].first; 256 do { 257 if (isAllocationFn(I, TLI)) 258 break; 259 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 260 if (!J) 261 break; 262 I->eraseFromParent(); 263 I = J; 264 } while (true); 265 I->eraseFromParent(); 266 } 267 } 268 269 return Changed; 270 } 271 272 /// We just marked GV constant. Loop over all users of the global, cleaning up 273 /// the obvious ones. This is largely just a quick scan over the use list to 274 /// clean up the easy and obvious cruft. This returns true if it made a change. 275 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 276 const DataLayout &DL, 277 TargetLibraryInfo *TLI) { 278 bool Changed = false; 279 // Note that we need to use a weak value handle for the worklist items. When 280 // we delete a constant array, we may also be holding pointer to one of its 281 // elements (or an element of one of its elements if we're dealing with an 282 // array of arrays) in the worklist. 283 SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end()); 284 while (!WorkList.empty()) { 285 Value *UV = WorkList.pop_back_val(); 286 if (!UV) 287 continue; 288 289 User *U = cast<User>(UV); 290 291 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 292 if (Init) { 293 // Replace the load with the initializer. 294 LI->replaceAllUsesWith(Init); 295 LI->eraseFromParent(); 296 Changed = true; 297 } 298 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 299 // Store must be unreachable or storing Init into the global. 300 SI->eraseFromParent(); 301 Changed = true; 302 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 303 if (CE->getOpcode() == Instruction::GetElementPtr) { 304 Constant *SubInit = nullptr; 305 if (Init) 306 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 307 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 308 } else if ((CE->getOpcode() == Instruction::BitCast && 309 CE->getType()->isPointerTy()) || 310 CE->getOpcode() == Instruction::AddrSpaceCast) { 311 // Pointer cast, delete any stores and memsets to the global. 312 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 313 } 314 315 if (CE->use_empty()) { 316 CE->destroyConstant(); 317 Changed = true; 318 } 319 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 320 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 321 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 322 // and will invalidate our notion of what Init is. 323 Constant *SubInit = nullptr; 324 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 325 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 326 ConstantFoldInstruction(GEP, DL, TLI)); 327 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 328 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 329 330 // If the initializer is an all-null value and we have an inbounds GEP, 331 // we already know what the result of any load from that GEP is. 332 // TODO: Handle splats. 333 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 334 SubInit = Constant::getNullValue(GEP->getResultElementType()); 335 } 336 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 337 338 if (GEP->use_empty()) { 339 GEP->eraseFromParent(); 340 Changed = true; 341 } 342 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 343 if (MI->getRawDest() == V) { 344 MI->eraseFromParent(); 345 Changed = true; 346 } 347 348 } else if (Constant *C = dyn_cast<Constant>(U)) { 349 // If we have a chain of dead constantexprs or other things dangling from 350 // us, and if they are all dead, nuke them without remorse. 351 if (isSafeToDestroyConstant(C)) { 352 C->destroyConstant(); 353 CleanupConstantGlobalUsers(V, Init, DL, TLI); 354 return true; 355 } 356 } 357 } 358 return Changed; 359 } 360 361 /// Return true if the specified instruction is a safe user of a derived 362 /// expression from a global that we want to SROA. 363 static bool isSafeSROAElementUse(Value *V) { 364 // We might have a dead and dangling constant hanging off of here. 365 if (Constant *C = dyn_cast<Constant>(V)) 366 return isSafeToDestroyConstant(C); 367 368 Instruction *I = dyn_cast<Instruction>(V); 369 if (!I) return false; 370 371 // Loads are ok. 372 if (isa<LoadInst>(I)) return true; 373 374 // Stores *to* the pointer are ok. 375 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 376 return SI->getOperand(0) != V; 377 378 // Otherwise, it must be a GEP. 379 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 380 if (!GEPI) return false; 381 382 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 383 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 384 return false; 385 386 for (User *U : GEPI->users()) 387 if (!isSafeSROAElementUse(U)) 388 return false; 389 return true; 390 } 391 392 /// U is a direct user of the specified global value. Look at it and its uses 393 /// and decide whether it is safe to SROA this global. 394 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 395 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 396 if (!isa<GetElementPtrInst>(U) && 397 (!isa<ConstantExpr>(U) || 398 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 399 return false; 400 401 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 402 // don't like < 3 operand CE's, and we don't like non-constant integer 403 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 404 // value of C. 405 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 406 !cast<Constant>(U->getOperand(1))->isNullValue() || 407 !isa<ConstantInt>(U->getOperand(2))) 408 return false; 409 410 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 411 ++GEPI; // Skip over the pointer index. 412 413 // If this is a use of an array allocation, do a bit more checking for sanity. 414 if (GEPI.isSequential()) { 415 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 416 417 // Check to make sure that index falls within the array. If not, 418 // something funny is going on, so we won't do the optimization. 419 // 420 if (GEPI.isBoundedSequential() && 421 Idx->getZExtValue() >= GEPI.getSequentialNumElements()) 422 return false; 423 424 // We cannot scalar repl this level of the array unless any array 425 // sub-indices are in-range constants. In particular, consider: 426 // A[0][i]. We cannot know that the user isn't doing invalid things like 427 // allowing i to index an out-of-range subscript that accesses A[1]. 428 // 429 // Scalar replacing *just* the outer index of the array is probably not 430 // going to be a win anyway, so just give up. 431 for (++GEPI; // Skip array index. 432 GEPI != E; 433 ++GEPI) { 434 if (GEPI.isStruct()) 435 continue; 436 437 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 438 if (!IdxVal || 439 (GEPI.isBoundedSequential() && 440 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 441 return false; 442 } 443 } 444 445 return llvm::all_of(U->users(), 446 [](User *UU) { return isSafeSROAElementUse(UU); }); 447 } 448 449 /// Look at all uses of the global and decide whether it is safe for us to 450 /// perform this transformation. 451 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 452 for (User *U : GV->users()) 453 if (!IsUserOfGlobalSafeForSRA(U, GV)) 454 return false; 455 456 return true; 457 } 458 459 /// Copy over the debug info for a variable to its SRA replacements. 460 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 461 uint64_t FragmentOffsetInBits, 462 uint64_t FragmentSizeInBits, 463 unsigned NumElements) { 464 SmallVector<DIGlobalVariableExpression *, 1> GVs; 465 GV->getDebugInfo(GVs); 466 for (auto *GVE : GVs) { 467 DIVariable *Var = GVE->getVariable(); 468 DIExpression *Expr = GVE->getExpression(); 469 if (NumElements > 1) { 470 if (auto E = DIExpression::createFragmentExpression( 471 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 472 Expr = *E; 473 else 474 return; 475 } 476 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 477 NGV->addDebugInfo(NGVE); 478 } 479 } 480 481 /// Perform scalar replacement of aggregates on the specified global variable. 482 /// This opens the door for other optimizations by exposing the behavior of the 483 /// program in a more fine-grained way. We have determined that this 484 /// transformation is safe already. We return the first global variable we 485 /// insert so that the caller can reprocess it. 486 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 487 // Make sure this global only has simple uses that we can SRA. 488 if (!GlobalUsersSafeToSRA(GV)) 489 return nullptr; 490 491 assert(GV->hasLocalLinkage()); 492 Constant *Init = GV->getInitializer(); 493 Type *Ty = Init->getType(); 494 495 std::vector<GlobalVariable *> NewGlobals; 496 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 497 498 // Get the alignment of the global, either explicit or target-specific. 499 unsigned StartAlignment = GV->getAlignment(); 500 if (StartAlignment == 0) 501 StartAlignment = DL.getABITypeAlignment(GV->getType()); 502 503 if (StructType *STy = dyn_cast<StructType>(Ty)) { 504 unsigned NumElements = STy->getNumElements(); 505 NewGlobals.reserve(NumElements); 506 const StructLayout &Layout = *DL.getStructLayout(STy); 507 for (unsigned i = 0, e = NumElements; i != e; ++i) { 508 Constant *In = Init->getAggregateElement(i); 509 assert(In && "Couldn't get element of initializer?"); 510 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 511 GlobalVariable::InternalLinkage, 512 In, GV->getName()+"."+Twine(i), 513 GV->getThreadLocalMode(), 514 GV->getType()->getAddressSpace()); 515 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 516 NGV->copyAttributesFrom(GV); 517 Globals.push_back(NGV); 518 NewGlobals.push_back(NGV); 519 520 // Calculate the known alignment of the field. If the original aggregate 521 // had 256 byte alignment for example, something might depend on that: 522 // propagate info to each field. 523 uint64_t FieldOffset = Layout.getElementOffset(i); 524 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 525 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 526 NGV->setAlignment(NewAlign); 527 528 // Copy over the debug info for the variable. 529 uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType()); 530 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i); 531 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements); 532 } 533 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 534 unsigned NumElements = STy->getNumElements(); 535 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 536 return nullptr; // It's not worth it. 537 NewGlobals.reserve(NumElements); 538 auto ElTy = STy->getElementType(); 539 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 540 unsigned EltAlign = DL.getABITypeAlignment(ElTy); 541 uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy); 542 for (unsigned i = 0, e = NumElements; i != e; ++i) { 543 Constant *In = Init->getAggregateElement(i); 544 assert(In && "Couldn't get element of initializer?"); 545 546 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 547 GlobalVariable::InternalLinkage, 548 In, GV->getName()+"."+Twine(i), 549 GV->getThreadLocalMode(), 550 GV->getType()->getAddressSpace()); 551 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 552 NGV->copyAttributesFrom(GV); 553 Globals.push_back(NGV); 554 NewGlobals.push_back(NGV); 555 556 // Calculate the known alignment of the field. If the original aggregate 557 // had 256 byte alignment for example, something might depend on that: 558 // propagate info to each field. 559 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 560 if (NewAlign > EltAlign) 561 NGV->setAlignment(NewAlign); 562 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits, 563 NumElements); 564 } 565 } 566 567 if (NewGlobals.empty()) 568 return nullptr; 569 570 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 571 572 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 573 574 // Loop over all of the uses of the global, replacing the constantexpr geps, 575 // with smaller constantexpr geps or direct references. 576 while (!GV->use_empty()) { 577 User *GEP = GV->user_back(); 578 assert(((isa<ConstantExpr>(GEP) && 579 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 580 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 581 582 // Ignore the 1th operand, which has to be zero or else the program is quite 583 // broken (undefined). Get the 2nd operand, which is the structure or array 584 // index. 585 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 586 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 587 588 Value *NewPtr = NewGlobals[Val]; 589 Type *NewTy = NewGlobals[Val]->getValueType(); 590 591 // Form a shorter GEP if needed. 592 if (GEP->getNumOperands() > 3) { 593 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 594 SmallVector<Constant*, 8> Idxs; 595 Idxs.push_back(NullInt); 596 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 597 Idxs.push_back(CE->getOperand(i)); 598 NewPtr = 599 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 600 } else { 601 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 602 SmallVector<Value*, 8> Idxs; 603 Idxs.push_back(NullInt); 604 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 605 Idxs.push_back(GEPI->getOperand(i)); 606 NewPtr = GetElementPtrInst::Create( 607 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 608 } 609 } 610 GEP->replaceAllUsesWith(NewPtr); 611 612 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 613 GEPI->eraseFromParent(); 614 else 615 cast<ConstantExpr>(GEP)->destroyConstant(); 616 } 617 618 // Delete the old global, now that it is dead. 619 Globals.erase(GV); 620 ++NumSRA; 621 622 // Loop over the new globals array deleting any globals that are obviously 623 // dead. This can arise due to scalarization of a structure or an array that 624 // has elements that are dead. 625 unsigned FirstGlobal = 0; 626 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 627 if (NewGlobals[i]->use_empty()) { 628 Globals.erase(NewGlobals[i]); 629 if (FirstGlobal == i) ++FirstGlobal; 630 } 631 632 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 633 } 634 635 /// Return true if all users of the specified value will trap if the value is 636 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 637 /// reprocessing them. 638 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 639 SmallPtrSetImpl<const PHINode*> &PHIs) { 640 for (const User *U : V->users()) 641 if (isa<LoadInst>(U)) { 642 // Will trap. 643 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 644 if (SI->getOperand(0) == V) { 645 //cerr << "NONTRAPPING USE: " << *U; 646 return false; // Storing the value. 647 } 648 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 649 if (CI->getCalledValue() != V) { 650 //cerr << "NONTRAPPING USE: " << *U; 651 return false; // Not calling the ptr 652 } 653 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 654 if (II->getCalledValue() != V) { 655 //cerr << "NONTRAPPING USE: " << *U; 656 return false; // Not calling the ptr 657 } 658 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 659 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 660 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 661 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 662 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 663 // If we've already seen this phi node, ignore it, it has already been 664 // checked. 665 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 666 return false; 667 } else if (isa<ICmpInst>(U) && 668 isa<ConstantPointerNull>(U->getOperand(1))) { 669 // Ignore icmp X, null 670 } else { 671 //cerr << "NONTRAPPING USE: " << *U; 672 return false; 673 } 674 675 return true; 676 } 677 678 /// Return true if all uses of any loads from GV will trap if the loaded value 679 /// is null. Note that this also permits comparisons of the loaded value 680 /// against null, as a special case. 681 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 682 for (const User *U : GV->users()) 683 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 684 SmallPtrSet<const PHINode*, 8> PHIs; 685 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 686 return false; 687 } else if (isa<StoreInst>(U)) { 688 // Ignore stores to the global. 689 } else { 690 // We don't know or understand this user, bail out. 691 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 692 return false; 693 } 694 return true; 695 } 696 697 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 698 bool Changed = false; 699 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 700 Instruction *I = cast<Instruction>(*UI++); 701 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 702 LI->setOperand(0, NewV); 703 Changed = true; 704 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 705 if (SI->getOperand(1) == V) { 706 SI->setOperand(1, NewV); 707 Changed = true; 708 } 709 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 710 CallSite CS(I); 711 if (CS.getCalledValue() == V) { 712 // Calling through the pointer! Turn into a direct call, but be careful 713 // that the pointer is not also being passed as an argument. 714 CS.setCalledFunction(NewV); 715 Changed = true; 716 bool PassedAsArg = false; 717 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 718 if (CS.getArgument(i) == V) { 719 PassedAsArg = true; 720 CS.setArgument(i, NewV); 721 } 722 723 if (PassedAsArg) { 724 // Being passed as an argument also. Be careful to not invalidate UI! 725 UI = V->user_begin(); 726 } 727 } 728 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 729 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 730 ConstantExpr::getCast(CI->getOpcode(), 731 NewV, CI->getType())); 732 if (CI->use_empty()) { 733 Changed = true; 734 CI->eraseFromParent(); 735 } 736 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 737 // Should handle GEP here. 738 SmallVector<Constant*, 8> Idxs; 739 Idxs.reserve(GEPI->getNumOperands()-1); 740 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 741 i != e; ++i) 742 if (Constant *C = dyn_cast<Constant>(*i)) 743 Idxs.push_back(C); 744 else 745 break; 746 if (Idxs.size() == GEPI->getNumOperands()-1) 747 Changed |= OptimizeAwayTrappingUsesOfValue( 748 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 749 if (GEPI->use_empty()) { 750 Changed = true; 751 GEPI->eraseFromParent(); 752 } 753 } 754 } 755 756 return Changed; 757 } 758 759 /// The specified global has only one non-null value stored into it. If there 760 /// are uses of the loaded value that would trap if the loaded value is 761 /// dynamically null, then we know that they cannot be reachable with a null 762 /// optimize away the load. 763 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 764 const DataLayout &DL, 765 TargetLibraryInfo *TLI) { 766 bool Changed = false; 767 768 // Keep track of whether we are able to remove all the uses of the global 769 // other than the store that defines it. 770 bool AllNonStoreUsesGone = true; 771 772 // Replace all uses of loads with uses of uses of the stored value. 773 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 774 User *GlobalUser = *GUI++; 775 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 776 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 777 // If we were able to delete all uses of the loads 778 if (LI->use_empty()) { 779 LI->eraseFromParent(); 780 Changed = true; 781 } else { 782 AllNonStoreUsesGone = false; 783 } 784 } else if (isa<StoreInst>(GlobalUser)) { 785 // Ignore the store that stores "LV" to the global. 786 assert(GlobalUser->getOperand(1) == GV && 787 "Must be storing *to* the global"); 788 } else { 789 AllNonStoreUsesGone = false; 790 791 // If we get here we could have other crazy uses that are transitively 792 // loaded. 793 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 794 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 795 isa<BitCastInst>(GlobalUser) || 796 isa<GetElementPtrInst>(GlobalUser)) && 797 "Only expect load and stores!"); 798 } 799 } 800 801 if (Changed) { 802 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV 803 << "\n"); 804 ++NumGlobUses; 805 } 806 807 // If we nuked all of the loads, then none of the stores are needed either, 808 // nor is the global. 809 if (AllNonStoreUsesGone) { 810 if (isLeakCheckerRoot(GV)) { 811 Changed |= CleanupPointerRootUsers(GV, TLI); 812 } else { 813 Changed = true; 814 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 815 } 816 if (GV->use_empty()) { 817 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 818 Changed = true; 819 GV->eraseFromParent(); 820 ++NumDeleted; 821 } 822 } 823 return Changed; 824 } 825 826 /// Walk the use list of V, constant folding all of the instructions that are 827 /// foldable. 828 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 829 TargetLibraryInfo *TLI) { 830 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 831 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 832 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 833 I->replaceAllUsesWith(NewC); 834 835 // Advance UI to the next non-I use to avoid invalidating it! 836 // Instructions could multiply use V. 837 while (UI != E && *UI == I) 838 ++UI; 839 if (isInstructionTriviallyDead(I, TLI)) 840 I->eraseFromParent(); 841 } 842 } 843 844 /// This function takes the specified global variable, and transforms the 845 /// program as if it always contained the result of the specified malloc. 846 /// Because it is always the result of the specified malloc, there is no reason 847 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 848 /// loads of GV as uses of the new global. 849 static GlobalVariable * 850 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 851 ConstantInt *NElements, const DataLayout &DL, 852 TargetLibraryInfo *TLI) { 853 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI 854 << '\n'); 855 856 Type *GlobalType; 857 if (NElements->getZExtValue() == 1) 858 GlobalType = AllocTy; 859 else 860 // If we have an array allocation, the global variable is of an array. 861 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 862 863 // Create the new global variable. The contents of the malloc'd memory is 864 // undefined, so initialize with an undef value. 865 GlobalVariable *NewGV = new GlobalVariable( 866 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 867 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 868 GV->getThreadLocalMode()); 869 870 // If there are bitcast users of the malloc (which is typical, usually we have 871 // a malloc + bitcast) then replace them with uses of the new global. Update 872 // other users to use the global as well. 873 BitCastInst *TheBC = nullptr; 874 while (!CI->use_empty()) { 875 Instruction *User = cast<Instruction>(CI->user_back()); 876 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 877 if (BCI->getType() == NewGV->getType()) { 878 BCI->replaceAllUsesWith(NewGV); 879 BCI->eraseFromParent(); 880 } else { 881 BCI->setOperand(0, NewGV); 882 } 883 } else { 884 if (!TheBC) 885 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 886 User->replaceUsesOfWith(CI, TheBC); 887 } 888 } 889 890 Constant *RepValue = NewGV; 891 if (NewGV->getType() != GV->getValueType()) 892 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 893 894 // If there is a comparison against null, we will insert a global bool to 895 // keep track of whether the global was initialized yet or not. 896 GlobalVariable *InitBool = 897 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 898 GlobalValue::InternalLinkage, 899 ConstantInt::getFalse(GV->getContext()), 900 GV->getName()+".init", GV->getThreadLocalMode()); 901 bool InitBoolUsed = false; 902 903 // Loop over all uses of GV, processing them in turn. 904 while (!GV->use_empty()) { 905 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 906 // The global is initialized when the store to it occurs. 907 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 908 SI->getOrdering(), SI->getSyncScopeID(), SI); 909 SI->eraseFromParent(); 910 continue; 911 } 912 913 LoadInst *LI = cast<LoadInst>(GV->user_back()); 914 while (!LI->use_empty()) { 915 Use &LoadUse = *LI->use_begin(); 916 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 917 if (!ICI) { 918 LoadUse = RepValue; 919 continue; 920 } 921 922 // Replace the cmp X, 0 with a use of the bool value. 923 // Sink the load to where the compare was, if atomic rules allow us to. 924 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 925 LI->getOrdering(), LI->getSyncScopeID(), 926 LI->isUnordered() ? (Instruction*)ICI : LI); 927 InitBoolUsed = true; 928 switch (ICI->getPredicate()) { 929 default: llvm_unreachable("Unknown ICmp Predicate!"); 930 case ICmpInst::ICMP_ULT: 931 case ICmpInst::ICMP_SLT: // X < null -> always false 932 LV = ConstantInt::getFalse(GV->getContext()); 933 break; 934 case ICmpInst::ICMP_ULE: 935 case ICmpInst::ICMP_SLE: 936 case ICmpInst::ICMP_EQ: 937 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 938 break; 939 case ICmpInst::ICMP_NE: 940 case ICmpInst::ICMP_UGE: 941 case ICmpInst::ICMP_SGE: 942 case ICmpInst::ICMP_UGT: 943 case ICmpInst::ICMP_SGT: 944 break; // no change. 945 } 946 ICI->replaceAllUsesWith(LV); 947 ICI->eraseFromParent(); 948 } 949 LI->eraseFromParent(); 950 } 951 952 // If the initialization boolean was used, insert it, otherwise delete it. 953 if (!InitBoolUsed) { 954 while (!InitBool->use_empty()) // Delete initializations 955 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 956 delete InitBool; 957 } else 958 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 959 960 // Now the GV is dead, nuke it and the malloc.. 961 GV->eraseFromParent(); 962 CI->eraseFromParent(); 963 964 // To further other optimizations, loop over all users of NewGV and try to 965 // constant prop them. This will promote GEP instructions with constant 966 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 967 ConstantPropUsersOf(NewGV, DL, TLI); 968 if (RepValue != NewGV) 969 ConstantPropUsersOf(RepValue, DL, TLI); 970 971 return NewGV; 972 } 973 974 /// Scan the use-list of V checking to make sure that there are no complex uses 975 /// of V. We permit simple things like dereferencing the pointer, but not 976 /// storing through the address, unless it is to the specified global. 977 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 978 const GlobalVariable *GV, 979 SmallPtrSetImpl<const PHINode*> &PHIs) { 980 for (const User *U : V->users()) { 981 const Instruction *Inst = cast<Instruction>(U); 982 983 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 984 continue; // Fine, ignore. 985 } 986 987 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 988 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 989 return false; // Storing the pointer itself... bad. 990 continue; // Otherwise, storing through it, or storing into GV... fine. 991 } 992 993 // Must index into the array and into the struct. 994 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 995 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 996 return false; 997 continue; 998 } 999 1000 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 1001 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 1002 // cycles. 1003 if (PHIs.insert(PN).second) 1004 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 1005 return false; 1006 continue; 1007 } 1008 1009 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 1010 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 1011 return false; 1012 continue; 1013 } 1014 1015 return false; 1016 } 1017 return true; 1018 } 1019 1020 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the 1021 /// allocation into loads from the global and uses of the resultant pointer. 1022 /// Further, delete the store into GV. This assumes that these value pass the 1023 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1024 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1025 GlobalVariable *GV) { 1026 while (!Alloc->use_empty()) { 1027 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 1028 Instruction *InsertPt = U; 1029 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1030 // If this is the store of the allocation into the global, remove it. 1031 if (SI->getOperand(1) == GV) { 1032 SI->eraseFromParent(); 1033 continue; 1034 } 1035 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1036 // Insert the load in the corresponding predecessor, not right before the 1037 // PHI. 1038 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 1039 } else if (isa<BitCastInst>(U)) { 1040 // Must be bitcast between the malloc and store to initialize the global. 1041 ReplaceUsesOfMallocWithGlobal(U, GV); 1042 U->eraseFromParent(); 1043 continue; 1044 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1045 // If this is a "GEP bitcast" and the user is a store to the global, then 1046 // just process it as a bitcast. 1047 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1048 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1049 if (SI->getOperand(1) == GV) { 1050 // Must be bitcast GEP between the malloc and store to initialize 1051 // the global. 1052 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1053 GEPI->eraseFromParent(); 1054 continue; 1055 } 1056 } 1057 1058 // Insert a load from the global, and use it instead of the malloc. 1059 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1060 U->replaceUsesOfWith(Alloc, NL); 1061 } 1062 } 1063 1064 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to 1065 /// perform heap SRA on. This permits GEP's that index through the array and 1066 /// struct field, icmps of null, and PHIs. 1067 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1068 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1069 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1070 // We permit two users of the load: setcc comparing against the null 1071 // pointer, and a getelementptr of a specific form. 1072 for (const User *U : V->users()) { 1073 const Instruction *UI = cast<Instruction>(U); 1074 1075 // Comparison against null is ok. 1076 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1077 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1078 return false; 1079 continue; 1080 } 1081 1082 // getelementptr is also ok, but only a simple form. 1083 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1084 // Must index into the array and into the struct. 1085 if (GEPI->getNumOperands() < 3) 1086 return false; 1087 1088 // Otherwise the GEP is ok. 1089 continue; 1090 } 1091 1092 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1093 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1094 // This means some phi nodes are dependent on each other. 1095 // Avoid infinite looping! 1096 return false; 1097 if (!LoadUsingPHIs.insert(PN).second) 1098 // If we have already analyzed this PHI, then it is safe. 1099 continue; 1100 1101 // Make sure all uses of the PHI are simple enough to transform. 1102 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1103 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1104 return false; 1105 1106 continue; 1107 } 1108 1109 // Otherwise we don't know what this is, not ok. 1110 return false; 1111 } 1112 1113 return true; 1114 } 1115 1116 /// If all users of values loaded from GV are simple enough to perform HeapSRA, 1117 /// return true. 1118 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1119 Instruction *StoredVal) { 1120 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1121 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1122 for (const User *U : GV->users()) 1123 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1124 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1125 LoadUsingPHIsPerLoad)) 1126 return false; 1127 LoadUsingPHIsPerLoad.clear(); 1128 } 1129 1130 // If we reach here, we know that all uses of the loads and transitive uses 1131 // (through PHI nodes) are simple enough to transform. However, we don't know 1132 // that all inputs the to the PHI nodes are in the same equivalence sets. 1133 // Check to verify that all operands of the PHIs are either PHIS that can be 1134 // transformed, loads from GV, or MI itself. 1135 for (const PHINode *PN : LoadUsingPHIs) { 1136 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1137 Value *InVal = PN->getIncomingValue(op); 1138 1139 // PHI of the stored value itself is ok. 1140 if (InVal == StoredVal) continue; 1141 1142 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1143 // One of the PHIs in our set is (optimistically) ok. 1144 if (LoadUsingPHIs.count(InPN)) 1145 continue; 1146 return false; 1147 } 1148 1149 // Load from GV is ok. 1150 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1151 if (LI->getOperand(0) == GV) 1152 continue; 1153 1154 // UNDEF? NULL? 1155 1156 // Anything else is rejected. 1157 return false; 1158 } 1159 } 1160 1161 return true; 1162 } 1163 1164 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1165 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1166 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1167 std::vector<Value *> &FieldVals = InsertedScalarizedValues[V]; 1168 1169 if (FieldNo >= FieldVals.size()) 1170 FieldVals.resize(FieldNo+1); 1171 1172 // If we already have this value, just reuse the previously scalarized 1173 // version. 1174 if (Value *FieldVal = FieldVals[FieldNo]) 1175 return FieldVal; 1176 1177 // Depending on what instruction this is, we have several cases. 1178 Value *Result; 1179 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1180 // This is a scalarized version of the load from the global. Just create 1181 // a new Load of the scalarized global. 1182 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1183 InsertedScalarizedValues, 1184 PHIsToRewrite), 1185 LI->getName()+".f"+Twine(FieldNo), LI); 1186 } else { 1187 PHINode *PN = cast<PHINode>(V); 1188 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1189 // field. 1190 1191 PointerType *PTy = cast<PointerType>(PN->getType()); 1192 StructType *ST = cast<StructType>(PTy->getElementType()); 1193 1194 unsigned AS = PTy->getAddressSpace(); 1195 PHINode *NewPN = 1196 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1197 PN->getNumIncomingValues(), 1198 PN->getName()+".f"+Twine(FieldNo), PN); 1199 Result = NewPN; 1200 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1201 } 1202 1203 return FieldVals[FieldNo] = Result; 1204 } 1205 1206 /// Given a load instruction and a value derived from the load, rewrite the 1207 /// derived value to use the HeapSRoA'd load. 1208 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1209 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1210 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1211 // If this is a comparison against null, handle it. 1212 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1213 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1214 // If we have a setcc of the loaded pointer, we can use a setcc of any 1215 // field. 1216 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1217 InsertedScalarizedValues, PHIsToRewrite); 1218 1219 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1220 Constant::getNullValue(NPtr->getType()), 1221 SCI->getName()); 1222 SCI->replaceAllUsesWith(New); 1223 SCI->eraseFromParent(); 1224 return; 1225 } 1226 1227 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1228 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1229 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1230 && "Unexpected GEPI!"); 1231 1232 // Load the pointer for this field. 1233 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1234 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1235 InsertedScalarizedValues, PHIsToRewrite); 1236 1237 // Create the new GEP idx vector. 1238 SmallVector<Value*, 8> GEPIdx; 1239 GEPIdx.push_back(GEPI->getOperand(1)); 1240 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1241 1242 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1243 GEPI->getName(), GEPI); 1244 GEPI->replaceAllUsesWith(NGEPI); 1245 GEPI->eraseFromParent(); 1246 return; 1247 } 1248 1249 // Recursively transform the users of PHI nodes. This will lazily create the 1250 // PHIs that are needed for individual elements. Keep track of what PHIs we 1251 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1252 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1253 // already been seen first by another load, so its uses have already been 1254 // processed. 1255 PHINode *PN = cast<PHINode>(LoadUser); 1256 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1257 std::vector<Value *>())).second) 1258 return; 1259 1260 // If this is the first time we've seen this PHI, recursively process all 1261 // users. 1262 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1263 Instruction *User = cast<Instruction>(*UI++); 1264 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1265 } 1266 } 1267 1268 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1269 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1270 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1271 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1272 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1273 std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) { 1274 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1275 Instruction *User = cast<Instruction>(*UI++); 1276 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1277 } 1278 1279 if (Load->use_empty()) { 1280 Load->eraseFromParent(); 1281 InsertedScalarizedValues.erase(Load); 1282 } 1283 } 1284 1285 /// CI is an allocation of an array of structures. Break it up into multiple 1286 /// allocations of arrays of the fields. 1287 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1288 Value *NElems, const DataLayout &DL, 1289 const TargetLibraryInfo *TLI) { 1290 LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI 1291 << '\n'); 1292 Type *MAT = getMallocAllocatedType(CI, TLI); 1293 StructType *STy = cast<StructType>(MAT); 1294 1295 // There is guaranteed to be at least one use of the malloc (storing 1296 // it into GV). If there are other uses, change them to be uses of 1297 // the global to simplify later code. This also deletes the store 1298 // into GV. 1299 ReplaceUsesOfMallocWithGlobal(CI, GV); 1300 1301 // Okay, at this point, there are no users of the malloc. Insert N 1302 // new mallocs at the same place as CI, and N globals. 1303 std::vector<Value *> FieldGlobals; 1304 std::vector<Value *> FieldMallocs; 1305 1306 SmallVector<OperandBundleDef, 1> OpBundles; 1307 CI->getOperandBundlesAsDefs(OpBundles); 1308 1309 unsigned AS = GV->getType()->getPointerAddressSpace(); 1310 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1311 Type *FieldTy = STy->getElementType(FieldNo); 1312 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1313 1314 GlobalVariable *NGV = new GlobalVariable( 1315 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1316 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1317 nullptr, GV->getThreadLocalMode()); 1318 NGV->copyAttributesFrom(GV); 1319 FieldGlobals.push_back(NGV); 1320 1321 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1322 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1323 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1324 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1325 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1326 ConstantInt::get(IntPtrTy, TypeSize), 1327 NElems, OpBundles, nullptr, 1328 CI->getName() + ".f" + Twine(FieldNo)); 1329 FieldMallocs.push_back(NMI); 1330 new StoreInst(NMI, NGV, CI); 1331 } 1332 1333 // The tricky aspect of this transformation is handling the case when malloc 1334 // fails. In the original code, malloc failing would set the result pointer 1335 // of malloc to null. In this case, some mallocs could succeed and others 1336 // could fail. As such, we emit code that looks like this: 1337 // F0 = malloc(field0) 1338 // F1 = malloc(field1) 1339 // F2 = malloc(field2) 1340 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1341 // if (F0) { free(F0); F0 = 0; } 1342 // if (F1) { free(F1); F1 = 0; } 1343 // if (F2) { free(F2); F2 = 0; } 1344 // } 1345 // The malloc can also fail if its argument is too large. 1346 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1347 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1348 ConstantZero, "isneg"); 1349 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1350 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1351 Constant::getNullValue(FieldMallocs[i]->getType()), 1352 "isnull"); 1353 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1354 } 1355 1356 // Split the basic block at the old malloc. 1357 BasicBlock *OrigBB = CI->getParent(); 1358 BasicBlock *ContBB = 1359 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1360 1361 // Create the block to check the first condition. Put all these blocks at the 1362 // end of the function as they are unlikely to be executed. 1363 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1364 "malloc_ret_null", 1365 OrigBB->getParent()); 1366 1367 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1368 // branch on RunningOr. 1369 OrigBB->getTerminator()->eraseFromParent(); 1370 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1371 1372 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1373 // pointer, because some may be null while others are not. 1374 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1375 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1376 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1377 Constant::getNullValue(GVVal->getType())); 1378 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1379 OrigBB->getParent()); 1380 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1381 OrigBB->getParent()); 1382 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1383 Cmp, NullPtrBlock); 1384 1385 // Fill in FreeBlock. 1386 CallInst::CreateFree(GVVal, OpBundles, BI); 1387 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1388 FreeBlock); 1389 BranchInst::Create(NextBlock, FreeBlock); 1390 1391 NullPtrBlock = NextBlock; 1392 } 1393 1394 BranchInst::Create(ContBB, NullPtrBlock); 1395 1396 // CI is no longer needed, remove it. 1397 CI->eraseFromParent(); 1398 1399 /// As we process loads, if we can't immediately update all uses of the load, 1400 /// keep track of what scalarized loads are inserted for a given load. 1401 DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues; 1402 InsertedScalarizedValues[GV] = FieldGlobals; 1403 1404 std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite; 1405 1406 // Okay, the malloc site is completely handled. All of the uses of GV are now 1407 // loads, and all uses of those loads are simple. Rewrite them to use loads 1408 // of the per-field globals instead. 1409 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1410 Instruction *User = cast<Instruction>(*UI++); 1411 1412 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1413 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1414 continue; 1415 } 1416 1417 // Must be a store of null. 1418 StoreInst *SI = cast<StoreInst>(User); 1419 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1420 "Unexpected heap-sra user!"); 1421 1422 // Insert a store of null into each global. 1423 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1424 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1425 Constant *Null = Constant::getNullValue(ValTy); 1426 new StoreInst(Null, FieldGlobals[i], SI); 1427 } 1428 // Erase the original store. 1429 SI->eraseFromParent(); 1430 } 1431 1432 // While we have PHIs that are interesting to rewrite, do it. 1433 while (!PHIsToRewrite.empty()) { 1434 PHINode *PN = PHIsToRewrite.back().first; 1435 unsigned FieldNo = PHIsToRewrite.back().second; 1436 PHIsToRewrite.pop_back(); 1437 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1438 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1439 1440 // Add all the incoming values. This can materialize more phis. 1441 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1442 Value *InVal = PN->getIncomingValue(i); 1443 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1444 PHIsToRewrite); 1445 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1446 } 1447 } 1448 1449 // Drop all inter-phi links and any loads that made it this far. 1450 for (DenseMap<Value *, std::vector<Value *>>::iterator 1451 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1452 I != E; ++I) { 1453 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1454 PN->dropAllReferences(); 1455 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1456 LI->dropAllReferences(); 1457 } 1458 1459 // Delete all the phis and loads now that inter-references are dead. 1460 for (DenseMap<Value *, std::vector<Value *>>::iterator 1461 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1462 I != E; ++I) { 1463 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1464 PN->eraseFromParent(); 1465 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1466 LI->eraseFromParent(); 1467 } 1468 1469 // The old global is now dead, remove it. 1470 GV->eraseFromParent(); 1471 1472 ++NumHeapSRA; 1473 return cast<GlobalVariable>(FieldGlobals[0]); 1474 } 1475 1476 /// This function is called when we see a pointer global variable with a single 1477 /// value stored it that is a malloc or cast of malloc. 1478 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1479 Type *AllocTy, 1480 AtomicOrdering Ordering, 1481 const DataLayout &DL, 1482 TargetLibraryInfo *TLI) { 1483 // If this is a malloc of an abstract type, don't touch it. 1484 if (!AllocTy->isSized()) 1485 return false; 1486 1487 // We can't optimize this global unless all uses of it are *known* to be 1488 // of the malloc value, not of the null initializer value (consider a use 1489 // that compares the global's value against zero to see if the malloc has 1490 // been reached). To do this, we check to see if all uses of the global 1491 // would trap if the global were null: this proves that they must all 1492 // happen after the malloc. 1493 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1494 return false; 1495 1496 // We can't optimize this if the malloc itself is used in a complex way, 1497 // for example, being stored into multiple globals. This allows the 1498 // malloc to be stored into the specified global, loaded icmp'd, and 1499 // GEP'd. These are all things we could transform to using the global 1500 // for. 1501 SmallPtrSet<const PHINode*, 8> PHIs; 1502 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1503 return false; 1504 1505 // If we have a global that is only initialized with a fixed size malloc, 1506 // transform the program to use global memory instead of malloc'd memory. 1507 // This eliminates dynamic allocation, avoids an indirection accessing the 1508 // data, and exposes the resultant global to further GlobalOpt. 1509 // We cannot optimize the malloc if we cannot determine malloc array size. 1510 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1511 if (!NElems) 1512 return false; 1513 1514 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1515 // Restrict this transformation to only working on small allocations 1516 // (2048 bytes currently), as we don't want to introduce a 16M global or 1517 // something. 1518 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1519 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1520 return true; 1521 } 1522 1523 // If the allocation is an array of structures, consider transforming this 1524 // into multiple malloc'd arrays, one for each field. This is basically 1525 // SRoA for malloc'd memory. 1526 1527 if (Ordering != AtomicOrdering::NotAtomic) 1528 return false; 1529 1530 // If this is an allocation of a fixed size array of structs, analyze as a 1531 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1532 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1533 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1534 AllocTy = AT->getElementType(); 1535 1536 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1537 if (!AllocSTy) 1538 return false; 1539 1540 // This the structure has an unreasonable number of fields, leave it 1541 // alone. 1542 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1543 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1544 1545 // If this is a fixed size array, transform the Malloc to be an alloc of 1546 // structs. malloc [100 x struct],1 -> malloc struct, 100 1547 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1548 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1549 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1550 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1551 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1552 SmallVector<OperandBundleDef, 1> OpBundles; 1553 CI->getOperandBundlesAsDefs(OpBundles); 1554 Instruction *Malloc = 1555 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements, 1556 OpBundles, nullptr, CI->getName()); 1557 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1558 CI->replaceAllUsesWith(Cast); 1559 CI->eraseFromParent(); 1560 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1561 CI = cast<CallInst>(BCI->getOperand(0)); 1562 else 1563 CI = cast<CallInst>(Malloc); 1564 } 1565 1566 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1567 TLI); 1568 return true; 1569 } 1570 1571 return false; 1572 } 1573 1574 // Try to optimize globals based on the knowledge that only one value (besides 1575 // its initializer) is ever stored to the global. 1576 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1577 AtomicOrdering Ordering, 1578 const DataLayout &DL, 1579 TargetLibraryInfo *TLI) { 1580 // Ignore no-op GEPs and bitcasts. 1581 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1582 1583 // If we are dealing with a pointer global that is initialized to null and 1584 // only has one (non-null) value stored into it, then we can optimize any 1585 // users of the loaded value (often calls and loads) that would trap if the 1586 // value was null. 1587 if (GV->getInitializer()->getType()->isPointerTy() && 1588 GV->getInitializer()->isNullValue()) { 1589 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1590 if (GV->getInitializer()->getType() != SOVC->getType()) 1591 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1592 1593 // Optimize away any trapping uses of the loaded value. 1594 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1595 return true; 1596 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1597 Type *MallocType = getMallocAllocatedType(CI, TLI); 1598 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1599 Ordering, DL, TLI)) 1600 return true; 1601 } 1602 } 1603 1604 return false; 1605 } 1606 1607 /// At this point, we have learned that the only two values ever stored into GV 1608 /// are its initializer and OtherVal. See if we can shrink the global into a 1609 /// boolean and select between the two values whenever it is used. This exposes 1610 /// the values to other scalar optimizations. 1611 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1612 Type *GVElType = GV->getValueType(); 1613 1614 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1615 // an FP value, pointer or vector, don't do this optimization because a select 1616 // between them is very expensive and unlikely to lead to later 1617 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1618 // where v1 and v2 both require constant pool loads, a big loss. 1619 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1620 GVElType->isFloatingPointTy() || 1621 GVElType->isPointerTy() || GVElType->isVectorTy()) 1622 return false; 1623 1624 // Walk the use list of the global seeing if all the uses are load or store. 1625 // If there is anything else, bail out. 1626 for (User *U : GV->users()) 1627 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1628 return false; 1629 1630 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1631 1632 // Create the new global, initializing it to false. 1633 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1634 false, 1635 GlobalValue::InternalLinkage, 1636 ConstantInt::getFalse(GV->getContext()), 1637 GV->getName()+".b", 1638 GV->getThreadLocalMode(), 1639 GV->getType()->getAddressSpace()); 1640 NewGV->copyAttributesFrom(GV); 1641 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1642 1643 Constant *InitVal = GV->getInitializer(); 1644 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1645 "No reason to shrink to bool!"); 1646 1647 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1648 GV->getDebugInfo(GVs); 1649 1650 // If initialized to zero and storing one into the global, we can use a cast 1651 // instead of a select to synthesize the desired value. 1652 bool IsOneZero = false; 1653 bool EmitOneOrZero = true; 1654 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)){ 1655 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1656 1657 if (ConstantInt *CIInit = dyn_cast<ConstantInt>(GV->getInitializer())){ 1658 uint64_t ValInit = CIInit->getZExtValue(); 1659 uint64_t ValOther = CI->getZExtValue(); 1660 uint64_t ValMinus = ValOther - ValInit; 1661 1662 for(auto *GVe : GVs){ 1663 DIGlobalVariable *DGV = GVe->getVariable(); 1664 DIExpression *E = GVe->getExpression(); 1665 1666 // It is expected that the address of global optimized variable is on 1667 // top of the stack. After optimization, value of that variable will 1668 // be ether 0 for initial value or 1 for other value. The following 1669 // expression should return constant integer value depending on the 1670 // value at global object address: 1671 // val * (ValOther - ValInit) + ValInit: 1672 // DW_OP_deref DW_OP_constu <ValMinus> 1673 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1674 SmallVector<uint64_t, 12> Ops = { 1675 dwarf::DW_OP_deref, dwarf::DW_OP_constu, ValMinus, 1676 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1677 dwarf::DW_OP_plus}; 1678 E = DIExpression::prependOpcodes(E, Ops, DIExpression::WithStackValue); 1679 DIGlobalVariableExpression *DGVE = 1680 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1681 NewGV->addDebugInfo(DGVE); 1682 } 1683 EmitOneOrZero = false; 1684 } 1685 } 1686 1687 if (EmitOneOrZero) { 1688 // FIXME: This will only emit address for debugger on which will 1689 // be written only 0 or 1. 1690 for(auto *GV : GVs) 1691 NewGV->addDebugInfo(GV); 1692 } 1693 1694 while (!GV->use_empty()) { 1695 Instruction *UI = cast<Instruction>(GV->user_back()); 1696 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1697 // Change the store into a boolean store. 1698 bool StoringOther = SI->getOperand(0) == OtherVal; 1699 // Only do this if we weren't storing a loaded value. 1700 Value *StoreVal; 1701 if (StoringOther || SI->getOperand(0) == InitVal) { 1702 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1703 StoringOther); 1704 } else { 1705 // Otherwise, we are storing a previously loaded copy. To do this, 1706 // change the copy from copying the original value to just copying the 1707 // bool. 1708 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1709 1710 // If we've already replaced the input, StoredVal will be a cast or 1711 // select instruction. If not, it will be a load of the original 1712 // global. 1713 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1714 assert(LI->getOperand(0) == GV && "Not a copy!"); 1715 // Insert a new load, to preserve the saved value. 1716 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1717 LI->getOrdering(), LI->getSyncScopeID(), LI); 1718 } else { 1719 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1720 "This is not a form that we understand!"); 1721 StoreVal = StoredVal->getOperand(0); 1722 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1723 } 1724 } 1725 new StoreInst(StoreVal, NewGV, false, 0, 1726 SI->getOrdering(), SI->getSyncScopeID(), SI); 1727 } else { 1728 // Change the load into a load of bool then a select. 1729 LoadInst *LI = cast<LoadInst>(UI); 1730 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1731 LI->getOrdering(), LI->getSyncScopeID(), LI); 1732 Value *NSI; 1733 if (IsOneZero) 1734 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1735 else 1736 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1737 NSI->takeName(LI); 1738 LI->replaceAllUsesWith(NSI); 1739 } 1740 UI->eraseFromParent(); 1741 } 1742 1743 // Retain the name of the old global variable. People who are debugging their 1744 // programs may expect these variables to be named the same. 1745 NewGV->takeName(GV); 1746 GV->eraseFromParent(); 1747 return true; 1748 } 1749 1750 static bool deleteIfDead(GlobalValue &GV, 1751 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 1752 GV.removeDeadConstantUsers(); 1753 1754 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1755 return false; 1756 1757 if (const Comdat *C = GV.getComdat()) 1758 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1759 return false; 1760 1761 bool Dead; 1762 if (auto *F = dyn_cast<Function>(&GV)) 1763 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1764 else 1765 Dead = GV.use_empty(); 1766 if (!Dead) 1767 return false; 1768 1769 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1770 GV.eraseFromParent(); 1771 ++NumDeleted; 1772 return true; 1773 } 1774 1775 static bool isPointerValueDeadOnEntryToFunction( 1776 const Function *F, GlobalValue *GV, 1777 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1778 // Find all uses of GV. We expect them all to be in F, and if we can't 1779 // identify any of the uses we bail out. 1780 // 1781 // On each of these uses, identify if the memory that GV points to is 1782 // used/required/live at the start of the function. If it is not, for example 1783 // if the first thing the function does is store to the GV, the GV can 1784 // possibly be demoted. 1785 // 1786 // We don't do an exhaustive search for memory operations - simply look 1787 // through bitcasts as they're quite common and benign. 1788 const DataLayout &DL = GV->getParent()->getDataLayout(); 1789 SmallVector<LoadInst *, 4> Loads; 1790 SmallVector<StoreInst *, 4> Stores; 1791 for (auto *U : GV->users()) { 1792 if (Operator::getOpcode(U) == Instruction::BitCast) { 1793 for (auto *UU : U->users()) { 1794 if (auto *LI = dyn_cast<LoadInst>(UU)) 1795 Loads.push_back(LI); 1796 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1797 Stores.push_back(SI); 1798 else 1799 return false; 1800 } 1801 continue; 1802 } 1803 1804 Instruction *I = dyn_cast<Instruction>(U); 1805 if (!I) 1806 return false; 1807 assert(I->getParent()->getParent() == F); 1808 1809 if (auto *LI = dyn_cast<LoadInst>(I)) 1810 Loads.push_back(LI); 1811 else if (auto *SI = dyn_cast<StoreInst>(I)) 1812 Stores.push_back(SI); 1813 else 1814 return false; 1815 } 1816 1817 // We have identified all uses of GV into loads and stores. Now check if all 1818 // of them are known not to depend on the value of the global at the function 1819 // entry point. We do this by ensuring that every load is dominated by at 1820 // least one store. 1821 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1822 1823 // The below check is quadratic. Check we're not going to do too many tests. 1824 // FIXME: Even though this will always have worst-case quadratic time, we 1825 // could put effort into minimizing the average time by putting stores that 1826 // have been shown to dominate at least one load at the beginning of the 1827 // Stores array, making subsequent dominance checks more likely to succeed 1828 // early. 1829 // 1830 // The threshold here is fairly large because global->local demotion is a 1831 // very powerful optimization should it fire. 1832 const unsigned Threshold = 100; 1833 if (Loads.size() * Stores.size() > Threshold) 1834 return false; 1835 1836 for (auto *L : Loads) { 1837 auto *LTy = L->getType(); 1838 if (none_of(Stores, [&](const StoreInst *S) { 1839 auto *STy = S->getValueOperand()->getType(); 1840 // The load is only dominated by the store if DomTree says so 1841 // and the number of bits loaded in L is less than or equal to 1842 // the number of bits stored in S. 1843 return DT.dominates(S, L) && 1844 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1845 })) 1846 return false; 1847 } 1848 // All loads have known dependences inside F, so the global can be localized. 1849 return true; 1850 } 1851 1852 /// C may have non-instruction users. Can all of those users be turned into 1853 /// instructions? 1854 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1855 // We don't do this exhaustively. The most common pattern that we really need 1856 // to care about is a constant GEP or constant bitcast - so just looking 1857 // through one single ConstantExpr. 1858 // 1859 // The set of constants that this function returns true for must be able to be 1860 // handled by makeAllConstantUsesInstructions. 1861 for (auto *U : C->users()) { 1862 if (isa<Instruction>(U)) 1863 continue; 1864 if (!isa<ConstantExpr>(U)) 1865 // Non instruction, non-constantexpr user; cannot convert this. 1866 return false; 1867 for (auto *UU : U->users()) 1868 if (!isa<Instruction>(UU)) 1869 // A constantexpr used by another constant. We don't try and recurse any 1870 // further but just bail out at this point. 1871 return false; 1872 } 1873 1874 return true; 1875 } 1876 1877 /// C may have non-instruction users, and 1878 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1879 /// non-instruction users to instructions. 1880 static void makeAllConstantUsesInstructions(Constant *C) { 1881 SmallVector<ConstantExpr*,4> Users; 1882 for (auto *U : C->users()) { 1883 if (isa<ConstantExpr>(U)) 1884 Users.push_back(cast<ConstantExpr>(U)); 1885 else 1886 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1887 // should not have returned true for C. 1888 assert( 1889 isa<Instruction>(U) && 1890 "Can't transform non-constantexpr non-instruction to instruction!"); 1891 } 1892 1893 SmallVector<Value*,4> UUsers; 1894 for (auto *U : Users) { 1895 UUsers.clear(); 1896 for (auto *UU : U->users()) 1897 UUsers.push_back(UU); 1898 for (auto *UU : UUsers) { 1899 Instruction *UI = cast<Instruction>(UU); 1900 Instruction *NewU = U->getAsInstruction(); 1901 NewU->insertBefore(UI); 1902 UI->replaceUsesOfWith(U, NewU); 1903 } 1904 // We've replaced all the uses, so destroy the constant. (destroyConstant 1905 // will update value handles and metadata.) 1906 U->destroyConstant(); 1907 } 1908 } 1909 1910 /// Analyze the specified global variable and optimize 1911 /// it if possible. If we make a change, return true. 1912 static bool processInternalGlobal( 1913 GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI, 1914 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1915 auto &DL = GV->getParent()->getDataLayout(); 1916 // If this is a first class global and has only one accessing function and 1917 // this function is non-recursive, we replace the global with a local alloca 1918 // in this function. 1919 // 1920 // NOTE: It doesn't make sense to promote non-single-value types since we 1921 // are just replacing static memory to stack memory. 1922 // 1923 // If the global is in different address space, don't bring it to stack. 1924 if (!GS.HasMultipleAccessingFunctions && 1925 GS.AccessingFunction && 1926 GV->getValueType()->isSingleValueType() && 1927 GV->getType()->getAddressSpace() == 0 && 1928 !GV->isExternallyInitialized() && 1929 allNonInstructionUsersCanBeMadeInstructions(GV) && 1930 GS.AccessingFunction->doesNotRecurse() && 1931 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1932 LookupDomTree)) { 1933 const DataLayout &DL = GV->getParent()->getDataLayout(); 1934 1935 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1936 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1937 ->getEntryBlock().begin()); 1938 Type *ElemTy = GV->getValueType(); 1939 // FIXME: Pass Global's alignment when globals have alignment 1940 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1941 GV->getName(), &FirstI); 1942 if (!isa<UndefValue>(GV->getInitializer())) 1943 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1944 1945 makeAllConstantUsesInstructions(GV); 1946 1947 GV->replaceAllUsesWith(Alloca); 1948 GV->eraseFromParent(); 1949 ++NumLocalized; 1950 return true; 1951 } 1952 1953 // If the global is never loaded (but may be stored to), it is dead. 1954 // Delete it now. 1955 if (!GS.IsLoaded) { 1956 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1957 1958 bool Changed; 1959 if (isLeakCheckerRoot(GV)) { 1960 // Delete any constant stores to the global. 1961 Changed = CleanupPointerRootUsers(GV, TLI); 1962 } else { 1963 // Delete any stores we can find to the global. We may not be able to 1964 // make it completely dead though. 1965 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1966 } 1967 1968 // If the global is dead now, delete it. 1969 if (GV->use_empty()) { 1970 GV->eraseFromParent(); 1971 ++NumDeleted; 1972 Changed = true; 1973 } 1974 return Changed; 1975 1976 } 1977 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1978 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1979 GV->setConstant(true); 1980 1981 // Clean up any obviously simplifiable users now. 1982 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1983 1984 // If the global is dead now, just nuke it. 1985 if (GV->use_empty()) { 1986 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1987 << "all users and delete global!\n"); 1988 GV->eraseFromParent(); 1989 ++NumDeleted; 1990 return true; 1991 } 1992 1993 // Fall through to the next check; see if we can optimize further. 1994 ++NumMarked; 1995 } 1996 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1997 const DataLayout &DL = GV->getParent()->getDataLayout(); 1998 if (SRAGlobal(GV, DL)) 1999 return true; 2000 } 2001 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 2002 // If the initial value for the global was an undef value, and if only 2003 // one other value was stored into it, we can just change the 2004 // initializer to be the stored value, then delete all stores to the 2005 // global. This allows us to mark it constant. 2006 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 2007 if (isa<UndefValue>(GV->getInitializer())) { 2008 // Change the initial value here. 2009 GV->setInitializer(SOVConstant); 2010 2011 // Clean up any obviously simplifiable users now. 2012 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 2013 2014 if (GV->use_empty()) { 2015 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " 2016 << "simplify all users and delete global!\n"); 2017 GV->eraseFromParent(); 2018 ++NumDeleted; 2019 } 2020 ++NumSubstitute; 2021 return true; 2022 } 2023 2024 // Try to optimize globals based on the knowledge that only one value 2025 // (besides its initializer) is ever stored to the global. 2026 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI)) 2027 return true; 2028 2029 // Otherwise, if the global was not a boolean, we can shrink it to be a 2030 // boolean. 2031 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 2032 if (GS.Ordering == AtomicOrdering::NotAtomic) { 2033 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 2034 ++NumShrunkToBool; 2035 return true; 2036 } 2037 } 2038 } 2039 } 2040 2041 return false; 2042 } 2043 2044 /// Analyze the specified global variable and optimize it if possible. If we 2045 /// make a change, return true. 2046 static bool 2047 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI, 2048 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2049 if (GV.getName().startswith("llvm.")) 2050 return false; 2051 2052 GlobalStatus GS; 2053 2054 if (GlobalStatus::analyzeGlobal(&GV, GS)) 2055 return false; 2056 2057 bool Changed = false; 2058 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 2059 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 2060 : GlobalValue::UnnamedAddr::Local; 2061 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 2062 GV.setUnnamedAddr(NewUnnamedAddr); 2063 NumUnnamed++; 2064 Changed = true; 2065 } 2066 } 2067 2068 // Do more involved optimizations if the global is internal. 2069 if (!GV.hasLocalLinkage()) 2070 return Changed; 2071 2072 auto *GVar = dyn_cast<GlobalVariable>(&GV); 2073 if (!GVar) 2074 return Changed; 2075 2076 if (GVar->isConstant() || !GVar->hasInitializer()) 2077 return Changed; 2078 2079 return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed; 2080 } 2081 2082 /// Walk all of the direct calls of the specified function, changing them to 2083 /// FastCC. 2084 static void ChangeCalleesToFastCall(Function *F) { 2085 for (User *U : F->users()) { 2086 if (isa<BlockAddress>(U)) 2087 continue; 2088 CallSite CS(cast<Instruction>(U)); 2089 CS.setCallingConv(CallingConv::Fast); 2090 } 2091 } 2092 2093 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) { 2094 // There can be at most one attribute set with a nest attribute. 2095 unsigned NestIndex; 2096 if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex)) 2097 return Attrs.removeAttribute(C, NestIndex, Attribute::Nest); 2098 return Attrs; 2099 } 2100 2101 static void RemoveNestAttribute(Function *F) { 2102 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 2103 for (User *U : F->users()) { 2104 if (isa<BlockAddress>(U)) 2105 continue; 2106 CallSite CS(cast<Instruction>(U)); 2107 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 2108 } 2109 } 2110 2111 /// Return true if this is a calling convention that we'd like to change. The 2112 /// idea here is that we don't want to mess with the convention if the user 2113 /// explicitly requested something with performance implications like coldcc, 2114 /// GHC, or anyregcc. 2115 static bool hasChangeableCC(Function *F) { 2116 CallingConv::ID CC = F->getCallingConv(); 2117 2118 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2119 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 2120 return false; 2121 2122 // FIXME: Change CC for the whole chain of musttail calls when possible. 2123 // 2124 // Can't change CC of the function that either has musttail calls, or is a 2125 // musttail callee itself 2126 for (User *U : F->users()) { 2127 if (isa<BlockAddress>(U)) 2128 continue; 2129 CallInst* CI = dyn_cast<CallInst>(U); 2130 if (!CI) 2131 continue; 2132 2133 if (CI->isMustTailCall()) 2134 return false; 2135 } 2136 2137 for (BasicBlock &BB : *F) 2138 if (BB.getTerminatingMustTailCall()) 2139 return false; 2140 2141 return true; 2142 } 2143 2144 /// Return true if the block containing the call site has a BlockFrequency of 2145 /// less than ColdCCRelFreq% of the entry block. 2146 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) { 2147 const BranchProbability ColdProb(ColdCCRelFreq, 100); 2148 auto CallSiteBB = CS.getInstruction()->getParent(); 2149 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 2150 auto CallerEntryFreq = 2151 CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock())); 2152 return CallSiteFreq < CallerEntryFreq * ColdProb; 2153 } 2154 2155 // This function checks if the input function F is cold at all call sites. It 2156 // also looks each call site's containing function, returning false if the 2157 // caller function contains other non cold calls. The input vector AllCallsCold 2158 // contains a list of functions that only have call sites in cold blocks. 2159 static bool 2160 isValidCandidateForColdCC(Function &F, 2161 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2162 const std::vector<Function *> &AllCallsCold) { 2163 2164 if (F.user_empty()) 2165 return false; 2166 2167 for (User *U : F.users()) { 2168 if (isa<BlockAddress>(U)) 2169 continue; 2170 2171 CallSite CS(cast<Instruction>(U)); 2172 Function *CallerFunc = CS.getInstruction()->getParent()->getParent(); 2173 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 2174 if (!isColdCallSite(CS, CallerBFI)) 2175 return false; 2176 auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc); 2177 if (It == AllCallsCold.end()) 2178 return false; 2179 } 2180 return true; 2181 } 2182 2183 static void changeCallSitesToColdCC(Function *F) { 2184 for (User *U : F->users()) { 2185 if (isa<BlockAddress>(U)) 2186 continue; 2187 CallSite CS(cast<Instruction>(U)); 2188 CS.setCallingConv(CallingConv::Cold); 2189 } 2190 } 2191 2192 // This function iterates over all the call instructions in the input Function 2193 // and checks that all call sites are in cold blocks and are allowed to use the 2194 // coldcc calling convention. 2195 static bool 2196 hasOnlyColdCalls(Function &F, 2197 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { 2198 for (BasicBlock &BB : F) { 2199 for (Instruction &I : BB) { 2200 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 2201 CallSite CS(cast<Instruction>(CI)); 2202 // Skip over isline asm instructions since they aren't function calls. 2203 if (CI->isInlineAsm()) 2204 continue; 2205 Function *CalledFn = CI->getCalledFunction(); 2206 if (!CalledFn) 2207 return false; 2208 if (!CalledFn->hasLocalLinkage()) 2209 return false; 2210 // Skip over instrinsics since they won't remain as function calls. 2211 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 2212 continue; 2213 // Check if it's valid to use coldcc calling convention. 2214 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || 2215 CalledFn->hasAddressTaken()) 2216 return false; 2217 BlockFrequencyInfo &CallerBFI = GetBFI(F); 2218 if (!isColdCallSite(CS, CallerBFI)) 2219 return false; 2220 } 2221 } 2222 } 2223 return true; 2224 } 2225 2226 static bool 2227 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI, 2228 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2229 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2230 function_ref<DominatorTree &(Function &)> LookupDomTree, 2231 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2232 2233 bool Changed = false; 2234 2235 std::vector<Function *> AllCallsCold; 2236 for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) { 2237 Function *F = &*FI++; 2238 if (hasOnlyColdCalls(*F, GetBFI)) 2239 AllCallsCold.push_back(F); 2240 } 2241 2242 // Optimize functions. 2243 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2244 Function *F = &*FI++; 2245 2246 // Don't perform global opt pass on naked functions; we don't want fast 2247 // calling conventions for naked functions. 2248 if (F->hasFnAttribute(Attribute::Naked)) 2249 continue; 2250 2251 // Functions without names cannot be referenced outside this module. 2252 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2253 F->setLinkage(GlobalValue::InternalLinkage); 2254 2255 if (deleteIfDead(*F, NotDiscardableComdats)) { 2256 Changed = true; 2257 continue; 2258 } 2259 2260 // LLVM's definition of dominance allows instructions that are cyclic 2261 // in unreachable blocks, e.g.: 2262 // %pat = select i1 %condition, @global, i16* %pat 2263 // because any instruction dominates an instruction in a block that's 2264 // not reachable from entry. 2265 // So, remove unreachable blocks from the function, because a) there's 2266 // no point in analyzing them and b) GlobalOpt should otherwise grow 2267 // some more complicated logic to break these cycles. 2268 // Removing unreachable blocks might invalidate the dominator so we 2269 // recalculate it. 2270 if (!F->isDeclaration()) { 2271 if (removeUnreachableBlocks(*F)) { 2272 auto &DT = LookupDomTree(*F); 2273 DT.recalculate(*F); 2274 Changed = true; 2275 } 2276 } 2277 2278 Changed |= processGlobal(*F, TLI, LookupDomTree); 2279 2280 if (!F->hasLocalLinkage()) 2281 continue; 2282 2283 if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) { 2284 NumInternalFunc++; 2285 TargetTransformInfo &TTI = GetTTI(*F); 2286 // Change the calling convention to coldcc if either stress testing is 2287 // enabled or the target would like to use coldcc on functions which are 2288 // cold at all call sites and the callers contain no other non coldcc 2289 // calls. 2290 if (EnableColdCCStressTest || 2291 (isValidCandidateForColdCC(*F, GetBFI, AllCallsCold) && 2292 TTI.useColdCCForColdCall(*F))) { 2293 F->setCallingConv(CallingConv::Cold); 2294 changeCallSitesToColdCC(F); 2295 Changed = true; 2296 NumColdCC++; 2297 } 2298 } 2299 2300 if (hasChangeableCC(F) && !F->isVarArg() && 2301 !F->hasAddressTaken()) { 2302 // If this function has a calling convention worth changing, is not a 2303 // varargs function, and is only called directly, promote it to use the 2304 // Fast calling convention. 2305 F->setCallingConv(CallingConv::Fast); 2306 ChangeCalleesToFastCall(F); 2307 ++NumFastCallFns; 2308 Changed = true; 2309 } 2310 2311 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2312 !F->hasAddressTaken()) { 2313 // The function is not used by a trampoline intrinsic, so it is safe 2314 // to remove the 'nest' attribute. 2315 RemoveNestAttribute(F); 2316 ++NumNestRemoved; 2317 Changed = true; 2318 } 2319 } 2320 return Changed; 2321 } 2322 2323 static bool 2324 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI, 2325 function_ref<DominatorTree &(Function &)> LookupDomTree, 2326 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2327 bool Changed = false; 2328 2329 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2330 GVI != E; ) { 2331 GlobalVariable *GV = &*GVI++; 2332 // Global variables without names cannot be referenced outside this module. 2333 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2334 GV->setLinkage(GlobalValue::InternalLinkage); 2335 // Simplify the initializer. 2336 if (GV->hasInitializer()) 2337 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 2338 auto &DL = M.getDataLayout(); 2339 Constant *New = ConstantFoldConstant(C, DL, TLI); 2340 if (New && New != C) 2341 GV->setInitializer(New); 2342 } 2343 2344 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2345 Changed = true; 2346 continue; 2347 } 2348 2349 Changed |= processGlobal(*GV, TLI, LookupDomTree); 2350 } 2351 return Changed; 2352 } 2353 2354 /// Evaluate a piece of a constantexpr store into a global initializer. This 2355 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2356 /// GEP operands of Addr [0, OpNo) have been stepped into. 2357 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2358 ConstantExpr *Addr, unsigned OpNo) { 2359 // Base case of the recursion. 2360 if (OpNo == Addr->getNumOperands()) { 2361 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2362 return Val; 2363 } 2364 2365 SmallVector<Constant*, 32> Elts; 2366 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2367 // Break up the constant into its elements. 2368 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2369 Elts.push_back(Init->getAggregateElement(i)); 2370 2371 // Replace the element that we are supposed to. 2372 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2373 unsigned Idx = CU->getZExtValue(); 2374 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2375 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2376 2377 // Return the modified struct. 2378 return ConstantStruct::get(STy, Elts); 2379 } 2380 2381 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2382 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2383 uint64_t NumElts = InitTy->getNumElements(); 2384 2385 // Break up the array into elements. 2386 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2387 Elts.push_back(Init->getAggregateElement(i)); 2388 2389 assert(CI->getZExtValue() < NumElts); 2390 Elts[CI->getZExtValue()] = 2391 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2392 2393 if (Init->getType()->isArrayTy()) 2394 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2395 return ConstantVector::get(Elts); 2396 } 2397 2398 /// We have decided that Addr (which satisfies the predicate 2399 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2400 static void CommitValueTo(Constant *Val, Constant *Addr) { 2401 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2402 assert(GV->hasInitializer()); 2403 GV->setInitializer(Val); 2404 return; 2405 } 2406 2407 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2408 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2409 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2410 } 2411 2412 /// Given a map of address -> value, where addresses are expected to be some form 2413 /// of either a global or a constant GEP, set the initializer for the address to 2414 /// be the value. This performs mostly the same function as CommitValueTo() 2415 /// and EvaluateStoreInto() but is optimized to be more efficient for the common 2416 /// case where the set of addresses are GEPs sharing the same underlying global, 2417 /// processing the GEPs in batches rather than individually. 2418 /// 2419 /// To give an example, consider the following C++ code adapted from the clang 2420 /// regression tests: 2421 /// struct S { 2422 /// int n = 10; 2423 /// int m = 2 * n; 2424 /// S(int a) : n(a) {} 2425 /// }; 2426 /// 2427 /// template<typename T> 2428 /// struct U { 2429 /// T *r = &q; 2430 /// T q = 42; 2431 /// U *p = this; 2432 /// }; 2433 /// 2434 /// U<S> e; 2435 /// 2436 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of 2437 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm' 2438 /// members. This batch algorithm will simply use general CommitValueTo() method 2439 /// to handle the complex nested S struct initialization of 'q', before 2440 /// processing the outermost members in a single batch. Using CommitValueTo() to 2441 /// handle member in the outer struct is inefficient when the struct/array is 2442 /// very large as we end up creating and destroy constant arrays for each 2443 /// initialization. 2444 /// For the above case, we expect the following IR to be generated: 2445 /// 2446 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* } 2447 /// %struct.S = type { i32, i32 } 2448 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e, 2449 /// i64 0, i32 1), 2450 /// %struct.S { i32 42, i32 84 }, %struct.U* @e } 2451 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex 2452 /// constant expression, while the other two elements of @e are "simple". 2453 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) { 2454 SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs; 2455 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs; 2456 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs; 2457 SimpleCEs.reserve(Mem.size()); 2458 2459 for (const auto &I : Mem) { 2460 if (auto *GV = dyn_cast<GlobalVariable>(I.first)) { 2461 GVs.push_back(std::make_pair(GV, I.second)); 2462 } else { 2463 ConstantExpr *GEP = cast<ConstantExpr>(I.first); 2464 // We don't handle the deeply recursive case using the batch method. 2465 if (GEP->getNumOperands() > 3) 2466 ComplexCEs.push_back(std::make_pair(GEP, I.second)); 2467 else 2468 SimpleCEs.push_back(std::make_pair(GEP, I.second)); 2469 } 2470 } 2471 2472 // The algorithm below doesn't handle cases like nested structs, so use the 2473 // slower fully general method if we have to. 2474 for (auto ComplexCE : ComplexCEs) 2475 CommitValueTo(ComplexCE.second, ComplexCE.first); 2476 2477 for (auto GVPair : GVs) { 2478 assert(GVPair.first->hasInitializer()); 2479 GVPair.first->setInitializer(GVPair.second); 2480 } 2481 2482 if (SimpleCEs.empty()) 2483 return; 2484 2485 // We cache a single global's initializer elements in the case where the 2486 // subsequent address/val pair uses the same one. This avoids throwing away and 2487 // rebuilding the constant struct/vector/array just because one element is 2488 // modified at a time. 2489 SmallVector<Constant *, 32> Elts; 2490 Elts.reserve(SimpleCEs.size()); 2491 GlobalVariable *CurrentGV = nullptr; 2492 2493 auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) { 2494 Constant *Init = GV->getInitializer(); 2495 Type *Ty = Init->getType(); 2496 if (Update) { 2497 if (CurrentGV) { 2498 assert(CurrentGV && "Expected a GV to commit to!"); 2499 Type *CurrentInitTy = CurrentGV->getInitializer()->getType(); 2500 // We have a valid cache that needs to be committed. 2501 if (StructType *STy = dyn_cast<StructType>(CurrentInitTy)) 2502 CurrentGV->setInitializer(ConstantStruct::get(STy, Elts)); 2503 else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy)) 2504 CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts)); 2505 else 2506 CurrentGV->setInitializer(ConstantVector::get(Elts)); 2507 } 2508 if (CurrentGV == GV) 2509 return; 2510 // Need to clear and set up cache for new initializer. 2511 CurrentGV = GV; 2512 Elts.clear(); 2513 unsigned NumElts; 2514 if (auto *STy = dyn_cast<StructType>(Ty)) 2515 NumElts = STy->getNumElements(); 2516 else 2517 NumElts = cast<SequentialType>(Ty)->getNumElements(); 2518 for (unsigned i = 0, e = NumElts; i != e; ++i) 2519 Elts.push_back(Init->getAggregateElement(i)); 2520 } 2521 }; 2522 2523 for (auto CEPair : SimpleCEs) { 2524 ConstantExpr *GEP = CEPair.first; 2525 Constant *Val = CEPair.second; 2526 2527 GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0)); 2528 commitAndSetupCache(GV, GV != CurrentGV); 2529 ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2)); 2530 Elts[CI->getZExtValue()] = Val; 2531 } 2532 // The last initializer in the list needs to be committed, others 2533 // will be committed on a new initializer being processed. 2534 commitAndSetupCache(CurrentGV, true); 2535 } 2536 2537 /// Evaluate static constructors in the function, if we can. Return true if we 2538 /// can, false otherwise. 2539 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2540 TargetLibraryInfo *TLI) { 2541 // Call the function. 2542 Evaluator Eval(DL, TLI); 2543 Constant *RetValDummy; 2544 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2545 SmallVector<Constant*, 0>()); 2546 2547 if (EvalSuccess) { 2548 ++NumCtorsEvaluated; 2549 2550 // We succeeded at evaluation: commit the result. 2551 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2552 << F->getName() << "' to " 2553 << Eval.getMutatedMemory().size() << " stores.\n"); 2554 BatchCommitValueTo(Eval.getMutatedMemory()); 2555 for (GlobalVariable *GV : Eval.getInvariants()) 2556 GV->setConstant(true); 2557 } 2558 2559 return EvalSuccess; 2560 } 2561 2562 static int compareNames(Constant *const *A, Constant *const *B) { 2563 Value *AStripped = (*A)->stripPointerCastsNoFollowAliases(); 2564 Value *BStripped = (*B)->stripPointerCastsNoFollowAliases(); 2565 return AStripped->getName().compare(BStripped->getName()); 2566 } 2567 2568 static void setUsedInitializer(GlobalVariable &V, 2569 const SmallPtrSet<GlobalValue *, 8> &Init) { 2570 if (Init.empty()) { 2571 V.eraseFromParent(); 2572 return; 2573 } 2574 2575 // Type of pointer to the array of pointers. 2576 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2577 2578 SmallVector<Constant *, 8> UsedArray; 2579 for (GlobalValue *GV : Init) { 2580 Constant *Cast 2581 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2582 UsedArray.push_back(Cast); 2583 } 2584 // Sort to get deterministic order. 2585 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2586 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2587 2588 Module *M = V.getParent(); 2589 V.removeFromParent(); 2590 GlobalVariable *NV = 2591 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2592 ConstantArray::get(ATy, UsedArray), ""); 2593 NV->takeName(&V); 2594 NV->setSection("llvm.metadata"); 2595 delete &V; 2596 } 2597 2598 namespace { 2599 2600 /// An easy to access representation of llvm.used and llvm.compiler.used. 2601 class LLVMUsed { 2602 SmallPtrSet<GlobalValue *, 8> Used; 2603 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2604 GlobalVariable *UsedV; 2605 GlobalVariable *CompilerUsedV; 2606 2607 public: 2608 LLVMUsed(Module &M) { 2609 UsedV = collectUsedGlobalVariables(M, Used, false); 2610 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2611 } 2612 2613 using iterator = SmallPtrSet<GlobalValue *, 8>::iterator; 2614 using used_iterator_range = iterator_range<iterator>; 2615 2616 iterator usedBegin() { return Used.begin(); } 2617 iterator usedEnd() { return Used.end(); } 2618 2619 used_iterator_range used() { 2620 return used_iterator_range(usedBegin(), usedEnd()); 2621 } 2622 2623 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2624 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2625 2626 used_iterator_range compilerUsed() { 2627 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2628 } 2629 2630 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2631 2632 bool compilerUsedCount(GlobalValue *GV) const { 2633 return CompilerUsed.count(GV); 2634 } 2635 2636 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2637 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2638 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2639 2640 bool compilerUsedInsert(GlobalValue *GV) { 2641 return CompilerUsed.insert(GV).second; 2642 } 2643 2644 void syncVariablesAndSets() { 2645 if (UsedV) 2646 setUsedInitializer(*UsedV, Used); 2647 if (CompilerUsedV) 2648 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2649 } 2650 }; 2651 2652 } // end anonymous namespace 2653 2654 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2655 if (GA.use_empty()) // No use at all. 2656 return false; 2657 2658 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2659 "We should have removed the duplicated " 2660 "element from llvm.compiler.used"); 2661 if (!GA.hasOneUse()) 2662 // Strictly more than one use. So at least one is not in llvm.used and 2663 // llvm.compiler.used. 2664 return true; 2665 2666 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2667 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2668 } 2669 2670 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2671 const LLVMUsed &U) { 2672 unsigned N = 2; 2673 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2674 "We should have removed the duplicated " 2675 "element from llvm.compiler.used"); 2676 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2677 ++N; 2678 return V.hasNUsesOrMore(N); 2679 } 2680 2681 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2682 if (!GA.hasLocalLinkage()) 2683 return true; 2684 2685 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2686 } 2687 2688 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2689 bool &RenameTarget) { 2690 RenameTarget = false; 2691 bool Ret = false; 2692 if (hasUseOtherThanLLVMUsed(GA, U)) 2693 Ret = true; 2694 2695 // If the alias is externally visible, we may still be able to simplify it. 2696 if (!mayHaveOtherReferences(GA, U)) 2697 return Ret; 2698 2699 // If the aliasee has internal linkage, give it the name and linkage 2700 // of the alias, and delete the alias. This turns: 2701 // define internal ... @f(...) 2702 // @a = alias ... @f 2703 // into: 2704 // define ... @a(...) 2705 Constant *Aliasee = GA.getAliasee(); 2706 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2707 if (!Target->hasLocalLinkage()) 2708 return Ret; 2709 2710 // Do not perform the transform if multiple aliases potentially target the 2711 // aliasee. This check also ensures that it is safe to replace the section 2712 // and other attributes of the aliasee with those of the alias. 2713 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2714 return Ret; 2715 2716 RenameTarget = true; 2717 return true; 2718 } 2719 2720 static bool 2721 OptimizeGlobalAliases(Module &M, 2722 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2723 bool Changed = false; 2724 LLVMUsed Used(M); 2725 2726 for (GlobalValue *GV : Used.used()) 2727 Used.compilerUsedErase(GV); 2728 2729 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2730 I != E;) { 2731 GlobalAlias *J = &*I++; 2732 2733 // Aliases without names cannot be referenced outside this module. 2734 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2735 J->setLinkage(GlobalValue::InternalLinkage); 2736 2737 if (deleteIfDead(*J, NotDiscardableComdats)) { 2738 Changed = true; 2739 continue; 2740 } 2741 2742 // If the alias can change at link time, nothing can be done - bail out. 2743 if (J->isInterposable()) 2744 continue; 2745 2746 Constant *Aliasee = J->getAliasee(); 2747 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2748 // We can't trivially replace the alias with the aliasee if the aliasee is 2749 // non-trivial in some way. 2750 // TODO: Try to handle non-zero GEPs of local aliasees. 2751 if (!Target) 2752 continue; 2753 Target->removeDeadConstantUsers(); 2754 2755 // Make all users of the alias use the aliasee instead. 2756 bool RenameTarget; 2757 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2758 continue; 2759 2760 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2761 ++NumAliasesResolved; 2762 Changed = true; 2763 2764 if (RenameTarget) { 2765 // Give the aliasee the name, linkage and other attributes of the alias. 2766 Target->takeName(&*J); 2767 Target->setLinkage(J->getLinkage()); 2768 Target->setDSOLocal(J->isDSOLocal()); 2769 Target->setVisibility(J->getVisibility()); 2770 Target->setDLLStorageClass(J->getDLLStorageClass()); 2771 2772 if (Used.usedErase(&*J)) 2773 Used.usedInsert(Target); 2774 2775 if (Used.compilerUsedErase(&*J)) 2776 Used.compilerUsedInsert(Target); 2777 } else if (mayHaveOtherReferences(*J, Used)) 2778 continue; 2779 2780 // Delete the alias. 2781 M.getAliasList().erase(J); 2782 ++NumAliasesRemoved; 2783 Changed = true; 2784 } 2785 2786 Used.syncVariablesAndSets(); 2787 2788 return Changed; 2789 } 2790 2791 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2792 LibFunc F = LibFunc_cxa_atexit; 2793 if (!TLI->has(F)) 2794 return nullptr; 2795 2796 Function *Fn = M.getFunction(TLI->getName(F)); 2797 if (!Fn) 2798 return nullptr; 2799 2800 // Make sure that the function has the correct prototype. 2801 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2802 return nullptr; 2803 2804 return Fn; 2805 } 2806 2807 /// Returns whether the given function is an empty C++ destructor and can 2808 /// therefore be eliminated. 2809 /// Note that we assume that other optimization passes have already simplified 2810 /// the code so we only look for a function with a single basic block, where 2811 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2812 /// other side-effect free instructions. 2813 static bool cxxDtorIsEmpty(const Function &Fn, 2814 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2815 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2816 // nounwind, but that doesn't seem worth doing. 2817 if (Fn.isDeclaration()) 2818 return false; 2819 2820 if (++Fn.begin() != Fn.end()) 2821 return false; 2822 2823 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2824 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2825 I != E; ++I) { 2826 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2827 // Ignore debug intrinsics. 2828 if (isa<DbgInfoIntrinsic>(CI)) 2829 continue; 2830 2831 const Function *CalledFn = CI->getCalledFunction(); 2832 2833 if (!CalledFn) 2834 return false; 2835 2836 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2837 2838 // Don't treat recursive functions as empty. 2839 if (!NewCalledFunctions.insert(CalledFn).second) 2840 return false; 2841 2842 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2843 return false; 2844 } else if (isa<ReturnInst>(*I)) 2845 return true; // We're done. 2846 else if (I->mayHaveSideEffects()) 2847 return false; // Destructor with side effects, bail. 2848 } 2849 2850 return false; 2851 } 2852 2853 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2854 /// Itanium C++ ABI p3.3.5: 2855 /// 2856 /// After constructing a global (or local static) object, that will require 2857 /// destruction on exit, a termination function is registered as follows: 2858 /// 2859 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2860 /// 2861 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2862 /// call f(p) when DSO d is unloaded, before all such termination calls 2863 /// registered before this one. It returns zero if registration is 2864 /// successful, nonzero on failure. 2865 2866 // This pass will look for calls to __cxa_atexit where the function is trivial 2867 // and remove them. 2868 bool Changed = false; 2869 2870 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2871 I != E;) { 2872 // We're only interested in calls. Theoretically, we could handle invoke 2873 // instructions as well, but neither llvm-gcc nor clang generate invokes 2874 // to __cxa_atexit. 2875 CallInst *CI = dyn_cast<CallInst>(*I++); 2876 if (!CI) 2877 continue; 2878 2879 Function *DtorFn = 2880 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2881 if (!DtorFn) 2882 continue; 2883 2884 SmallPtrSet<const Function *, 8> CalledFunctions; 2885 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 2886 continue; 2887 2888 // Just remove the call. 2889 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2890 CI->eraseFromParent(); 2891 2892 ++NumCXXDtorsRemoved; 2893 2894 Changed |= true; 2895 } 2896 2897 return Changed; 2898 } 2899 2900 static bool optimizeGlobalsInModule( 2901 Module &M, const DataLayout &DL, TargetLibraryInfo *TLI, 2902 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2903 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2904 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2905 SmallSet<const Comdat *, 8> NotDiscardableComdats; 2906 bool Changed = false; 2907 bool LocalChange = true; 2908 while (LocalChange) { 2909 LocalChange = false; 2910 2911 NotDiscardableComdats.clear(); 2912 for (const GlobalVariable &GV : M.globals()) 2913 if (const Comdat *C = GV.getComdat()) 2914 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2915 NotDiscardableComdats.insert(C); 2916 for (Function &F : M) 2917 if (const Comdat *C = F.getComdat()) 2918 if (!F.isDefTriviallyDead()) 2919 NotDiscardableComdats.insert(C); 2920 for (GlobalAlias &GA : M.aliases()) 2921 if (const Comdat *C = GA.getComdat()) 2922 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2923 NotDiscardableComdats.insert(C); 2924 2925 // Delete functions that are trivially dead, ccc -> fastcc 2926 LocalChange |= OptimizeFunctions(M, TLI, GetTTI, GetBFI, LookupDomTree, 2927 NotDiscardableComdats); 2928 2929 // Optimize global_ctors list. 2930 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2931 return EvaluateStaticConstructor(F, DL, TLI); 2932 }); 2933 2934 // Optimize non-address-taken globals. 2935 LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree, 2936 NotDiscardableComdats); 2937 2938 // Resolve aliases, when possible. 2939 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2940 2941 // Try to remove trivial global destructors if they are not removed 2942 // already. 2943 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 2944 if (CXAAtExitFn) 2945 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2946 2947 Changed |= LocalChange; 2948 } 2949 2950 // TODO: Move all global ctors functions to the end of the module for code 2951 // layout. 2952 2953 return Changed; 2954 } 2955 2956 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2957 auto &DL = M.getDataLayout(); 2958 auto &TLI = AM.getResult<TargetLibraryAnalysis>(M); 2959 auto &FAM = 2960 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2961 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2962 return FAM.getResult<DominatorTreeAnalysis>(F); 2963 }; 2964 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 2965 return FAM.getResult<TargetIRAnalysis>(F); 2966 }; 2967 2968 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 2969 return FAM.getResult<BlockFrequencyAnalysis>(F); 2970 }; 2971 2972 if (!optimizeGlobalsInModule(M, DL, &TLI, GetTTI, GetBFI, LookupDomTree)) 2973 return PreservedAnalyses::all(); 2974 return PreservedAnalyses::none(); 2975 } 2976 2977 namespace { 2978 2979 struct GlobalOptLegacyPass : public ModulePass { 2980 static char ID; // Pass identification, replacement for typeid 2981 2982 GlobalOptLegacyPass() : ModulePass(ID) { 2983 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2984 } 2985 2986 bool runOnModule(Module &M) override { 2987 if (skipModule(M)) 2988 return false; 2989 2990 auto &DL = M.getDataLayout(); 2991 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2992 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2993 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2994 }; 2995 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 2996 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2997 }; 2998 2999 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { 3000 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 3001 }; 3002 3003 return optimizeGlobalsInModule(M, DL, TLI, GetTTI, GetBFI, LookupDomTree); 3004 } 3005 3006 void getAnalysisUsage(AnalysisUsage &AU) const override { 3007 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3008 AU.addRequired<TargetTransformInfoWrapperPass>(); 3009 AU.addRequired<DominatorTreeWrapperPass>(); 3010 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 3011 } 3012 }; 3013 3014 } // end anonymous namespace 3015 3016 char GlobalOptLegacyPass::ID = 0; 3017 3018 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 3019 "Global Variable Optimizer", false, false) 3020 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3021 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3022 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 3023 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3024 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 3025 "Global Variable Optimizer", false, false) 3026 3027 ModulePass *llvm::createGlobalOptimizerPass() { 3028 return new GlobalOptLegacyPass(); 3029 } 3030