1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "globalopt" 17 #include "llvm/Transforms/IPO.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/CallingConv.h" 26 #include "llvm/Constants.h" 27 #include "llvm/DataLayout.h" 28 #include "llvm/DerivedTypes.h" 29 #include "llvm/Instructions.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/Module.h" 32 #include "llvm/Operator.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/CallSite.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GetElementPtrTypeIterator.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetLibraryInfo.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 STATISTIC(NumMarked , "Number of globals marked constant"); 45 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 46 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 47 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 48 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 49 STATISTIC(NumDeleted , "Number of globals deleted"); 50 STATISTIC(NumFnDeleted , "Number of functions deleted"); 51 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 52 STATISTIC(NumLocalized , "Number of globals localized"); 53 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 54 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 55 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 56 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 57 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 58 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 59 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 60 61 namespace { 62 struct GlobalStatus; 63 struct GlobalOpt : public ModulePass { 64 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 65 AU.addRequired<TargetLibraryInfo>(); 66 } 67 static char ID; // Pass identification, replacement for typeid 68 GlobalOpt() : ModulePass(ID) { 69 initializeGlobalOptPass(*PassRegistry::getPassRegistry()); 70 } 71 72 bool runOnModule(Module &M); 73 74 private: 75 GlobalVariable *FindGlobalCtors(Module &M); 76 bool OptimizeFunctions(Module &M); 77 bool OptimizeGlobalVars(Module &M); 78 bool OptimizeGlobalAliases(Module &M); 79 bool OptimizeGlobalCtorsList(GlobalVariable *&GCL); 80 bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI); 81 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI, 82 const SmallPtrSet<const PHINode*, 16> &PHIUsers, 83 const GlobalStatus &GS); 84 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn); 85 86 DataLayout *TD; 87 TargetLibraryInfo *TLI; 88 }; 89 } 90 91 char GlobalOpt::ID = 0; 92 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt", 93 "Global Variable Optimizer", false, false) 94 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 95 INITIALIZE_PASS_END(GlobalOpt, "globalopt", 96 "Global Variable Optimizer", false, false) 97 98 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } 99 100 namespace { 101 102 /// GlobalStatus - As we analyze each global, keep track of some information 103 /// about it. If we find out that the address of the global is taken, none of 104 /// this info will be accurate. 105 struct GlobalStatus { 106 /// isCompared - True if the global's address is used in a comparison. 107 bool isCompared; 108 109 /// isLoaded - True if the global is ever loaded. If the global isn't ever 110 /// loaded it can be deleted. 111 bool isLoaded; 112 113 /// StoredType - Keep track of what stores to the global look like. 114 /// 115 enum StoredType { 116 /// NotStored - There is no store to this global. It can thus be marked 117 /// constant. 118 NotStored, 119 120 /// isInitializerStored - This global is stored to, but the only thing 121 /// stored is the constant it was initialized with. This is only tracked 122 /// for scalar globals. 123 isInitializerStored, 124 125 /// isStoredOnce - This global is stored to, but only its initializer and 126 /// one other value is ever stored to it. If this global isStoredOnce, we 127 /// track the value stored to it in StoredOnceValue below. This is only 128 /// tracked for scalar globals. 129 isStoredOnce, 130 131 /// isStored - This global is stored to by multiple values or something else 132 /// that we cannot track. 133 isStored 134 } StoredType; 135 136 /// StoredOnceValue - If only one value (besides the initializer constant) is 137 /// ever stored to this global, keep track of what value it is. 138 Value *StoredOnceValue; 139 140 /// AccessingFunction/HasMultipleAccessingFunctions - These start out 141 /// null/false. When the first accessing function is noticed, it is recorded. 142 /// When a second different accessing function is noticed, 143 /// HasMultipleAccessingFunctions is set to true. 144 const Function *AccessingFunction; 145 bool HasMultipleAccessingFunctions; 146 147 /// HasNonInstructionUser - Set to true if this global has a user that is not 148 /// an instruction (e.g. a constant expr or GV initializer). 149 bool HasNonInstructionUser; 150 151 /// AtomicOrdering - Set to the strongest atomic ordering requirement. 152 AtomicOrdering Ordering; 153 154 GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored), 155 StoredOnceValue(0), AccessingFunction(0), 156 HasMultipleAccessingFunctions(false), 157 HasNonInstructionUser(false), Ordering(NotAtomic) {} 158 }; 159 160 } 161 162 /// StrongerOrdering - Return the stronger of the two ordering. If the two 163 /// orderings are acquire and release, then return AcquireRelease. 164 /// 165 static AtomicOrdering StrongerOrdering(AtomicOrdering X, AtomicOrdering Y) { 166 if (X == Acquire && Y == Release) return AcquireRelease; 167 if (Y == Acquire && X == Release) return AcquireRelease; 168 return (AtomicOrdering)std::max(X, Y); 169 } 170 171 /// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used 172 /// by constants itself. Note that constants cannot be cyclic, so this test is 173 /// pretty easy to implement recursively. 174 /// 175 static bool SafeToDestroyConstant(const Constant *C) { 176 if (isa<GlobalValue>(C)) return false; 177 178 for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; 179 ++UI) 180 if (const Constant *CU = dyn_cast<Constant>(*UI)) { 181 if (!SafeToDestroyConstant(CU)) return false; 182 } else 183 return false; 184 return true; 185 } 186 187 188 /// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus 189 /// structure. If the global has its address taken, return true to indicate we 190 /// can't do anything with it. 191 /// 192 static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS, 193 SmallPtrSet<const PHINode*, 16> &PHIUsers) { 194 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 195 ++UI) { 196 const User *U = *UI; 197 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 198 GS.HasNonInstructionUser = true; 199 200 // If the result of the constantexpr isn't pointer type, then we won't 201 // know to expect it in various places. Just reject early. 202 if (!isa<PointerType>(CE->getType())) return true; 203 204 if (AnalyzeGlobal(CE, GS, PHIUsers)) return true; 205 } else if (const Instruction *I = dyn_cast<Instruction>(U)) { 206 if (!GS.HasMultipleAccessingFunctions) { 207 const Function *F = I->getParent()->getParent(); 208 if (GS.AccessingFunction == 0) 209 GS.AccessingFunction = F; 210 else if (GS.AccessingFunction != F) 211 GS.HasMultipleAccessingFunctions = true; 212 } 213 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 214 GS.isLoaded = true; 215 // Don't hack on volatile loads. 216 if (LI->isVolatile()) return true; 217 GS.Ordering = StrongerOrdering(GS.Ordering, LI->getOrdering()); 218 } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 219 // Don't allow a store OF the address, only stores TO the address. 220 if (SI->getOperand(0) == V) return true; 221 222 // Don't hack on volatile stores. 223 if (SI->isVolatile()) return true; 224 225 GS.Ordering = StrongerOrdering(GS.Ordering, SI->getOrdering()); 226 227 // If this is a direct store to the global (i.e., the global is a scalar 228 // value, not an aggregate), keep more specific information about 229 // stores. 230 if (GS.StoredType != GlobalStatus::isStored) { 231 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>( 232 SI->getOperand(1))) { 233 Value *StoredVal = SI->getOperand(0); 234 235 if (Constant *C = dyn_cast<Constant>(StoredVal)) { 236 if (C->isThreadDependent()) { 237 // The stored value changes between threads; don't track it. 238 return true; 239 } 240 } 241 242 if (StoredVal == GV->getInitializer()) { 243 if (GS.StoredType < GlobalStatus::isInitializerStored) 244 GS.StoredType = GlobalStatus::isInitializerStored; 245 } else if (isa<LoadInst>(StoredVal) && 246 cast<LoadInst>(StoredVal)->getOperand(0) == GV) { 247 if (GS.StoredType < GlobalStatus::isInitializerStored) 248 GS.StoredType = GlobalStatus::isInitializerStored; 249 } else if (GS.StoredType < GlobalStatus::isStoredOnce) { 250 GS.StoredType = GlobalStatus::isStoredOnce; 251 GS.StoredOnceValue = StoredVal; 252 } else if (GS.StoredType == GlobalStatus::isStoredOnce && 253 GS.StoredOnceValue == StoredVal) { 254 // noop. 255 } else { 256 GS.StoredType = GlobalStatus::isStored; 257 } 258 } else { 259 GS.StoredType = GlobalStatus::isStored; 260 } 261 } 262 } else if (isa<BitCastInst>(I)) { 263 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 264 } else if (isa<GetElementPtrInst>(I)) { 265 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 266 } else if (isa<SelectInst>(I)) { 267 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 268 } else if (const PHINode *PN = dyn_cast<PHINode>(I)) { 269 // PHI nodes we can check just like select or GEP instructions, but we 270 // have to be careful about infinite recursion. 271 if (PHIUsers.insert(PN)) // Not already visited. 272 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 273 } else if (isa<CmpInst>(I)) { 274 GS.isCompared = true; 275 } else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) { 276 if (MTI->isVolatile()) return true; 277 if (MTI->getArgOperand(0) == V) 278 GS.StoredType = GlobalStatus::isStored; 279 if (MTI->getArgOperand(1) == V) 280 GS.isLoaded = true; 281 } else if (const MemSetInst *MSI = dyn_cast<MemSetInst>(I)) { 282 assert(MSI->getArgOperand(0) == V && "Memset only takes one pointer!"); 283 if (MSI->isVolatile()) return true; 284 GS.StoredType = GlobalStatus::isStored; 285 } else { 286 return true; // Any other non-load instruction might take address! 287 } 288 } else if (const Constant *C = dyn_cast<Constant>(U)) { 289 GS.HasNonInstructionUser = true; 290 // We might have a dead and dangling constant hanging off of here. 291 if (!SafeToDestroyConstant(C)) 292 return true; 293 } else { 294 GS.HasNonInstructionUser = true; 295 // Otherwise must be some other user. 296 return true; 297 } 298 } 299 300 return false; 301 } 302 303 /// isLeakCheckerRoot - Is this global variable possibly used by a leak checker 304 /// as a root? If so, we might not really want to eliminate the stores to it. 305 static bool isLeakCheckerRoot(GlobalVariable *GV) { 306 // A global variable is a root if it is a pointer, or could plausibly contain 307 // a pointer. There are two challenges; one is that we could have a struct 308 // the has an inner member which is a pointer. We recurse through the type to 309 // detect these (up to a point). The other is that we may actually be a union 310 // of a pointer and another type, and so our LLVM type is an integer which 311 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 312 // potentially contained here. 313 314 if (GV->hasPrivateLinkage()) 315 return false; 316 317 SmallVector<Type *, 4> Types; 318 Types.push_back(cast<PointerType>(GV->getType())->getElementType()); 319 320 unsigned Limit = 20; 321 do { 322 Type *Ty = Types.pop_back_val(); 323 switch (Ty->getTypeID()) { 324 default: break; 325 case Type::PointerTyID: return true; 326 case Type::ArrayTyID: 327 case Type::VectorTyID: { 328 SequentialType *STy = cast<SequentialType>(Ty); 329 Types.push_back(STy->getElementType()); 330 break; 331 } 332 case Type::StructTyID: { 333 StructType *STy = cast<StructType>(Ty); 334 if (STy->isOpaque()) return true; 335 for (StructType::element_iterator I = STy->element_begin(), 336 E = STy->element_end(); I != E; ++I) { 337 Type *InnerTy = *I; 338 if (isa<PointerType>(InnerTy)) return true; 339 if (isa<CompositeType>(InnerTy)) 340 Types.push_back(InnerTy); 341 } 342 break; 343 } 344 } 345 if (--Limit == 0) return true; 346 } while (!Types.empty()); 347 return false; 348 } 349 350 /// Given a value that is stored to a global but never read, determine whether 351 /// it's safe to remove the store and the chain of computation that feeds the 352 /// store. 353 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 354 do { 355 if (isa<Constant>(V)) 356 return true; 357 if (!V->hasOneUse()) 358 return false; 359 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 360 isa<GlobalValue>(V)) 361 return false; 362 if (isAllocationFn(V, TLI)) 363 return true; 364 365 Instruction *I = cast<Instruction>(V); 366 if (I->mayHaveSideEffects()) 367 return false; 368 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 369 if (!GEP->hasAllConstantIndices()) 370 return false; 371 } else if (I->getNumOperands() != 1) { 372 return false; 373 } 374 375 V = I->getOperand(0); 376 } while (1); 377 } 378 379 /// CleanupPointerRootUsers - This GV is a pointer root. Loop over all users 380 /// of the global and clean up any that obviously don't assign the global a 381 /// value that isn't dynamically allocated. 382 /// 383 static bool CleanupPointerRootUsers(GlobalVariable *GV, 384 const TargetLibraryInfo *TLI) { 385 // A brief explanation of leak checkers. The goal is to find bugs where 386 // pointers are forgotten, causing an accumulating growth in memory 387 // usage over time. The common strategy for leak checkers is to whitelist the 388 // memory pointed to by globals at exit. This is popular because it also 389 // solves another problem where the main thread of a C++ program may shut down 390 // before other threads that are still expecting to use those globals. To 391 // handle that case, we expect the program may create a singleton and never 392 // destroy it. 393 394 bool Changed = false; 395 396 // If Dead[n].first is the only use of a malloc result, we can delete its 397 // chain of computation and the store to the global in Dead[n].second. 398 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 399 400 // Constants can't be pointers to dynamically allocated memory. 401 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 402 UI != E;) { 403 User *U = *UI++; 404 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 405 Value *V = SI->getValueOperand(); 406 if (isa<Constant>(V)) { 407 Changed = true; 408 SI->eraseFromParent(); 409 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 410 if (I->hasOneUse()) 411 Dead.push_back(std::make_pair(I, SI)); 412 } 413 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 414 if (isa<Constant>(MSI->getValue())) { 415 Changed = true; 416 MSI->eraseFromParent(); 417 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 418 if (I->hasOneUse()) 419 Dead.push_back(std::make_pair(I, MSI)); 420 } 421 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 422 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 423 if (MemSrc && MemSrc->isConstant()) { 424 Changed = true; 425 MTI->eraseFromParent(); 426 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 427 if (I->hasOneUse()) 428 Dead.push_back(std::make_pair(I, MTI)); 429 } 430 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 431 if (CE->use_empty()) { 432 CE->destroyConstant(); 433 Changed = true; 434 } 435 } else if (Constant *C = dyn_cast<Constant>(U)) { 436 if (SafeToDestroyConstant(C)) { 437 C->destroyConstant(); 438 // This could have invalidated UI, start over from scratch. 439 Dead.clear(); 440 CleanupPointerRootUsers(GV, TLI); 441 return true; 442 } 443 } 444 } 445 446 for (int i = 0, e = Dead.size(); i != e; ++i) { 447 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 448 Dead[i].second->eraseFromParent(); 449 Instruction *I = Dead[i].first; 450 do { 451 if (isAllocationFn(I, TLI)) 452 break; 453 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 454 if (!J) 455 break; 456 I->eraseFromParent(); 457 I = J; 458 } while (1); 459 I->eraseFromParent(); 460 } 461 } 462 463 return Changed; 464 } 465 466 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all 467 /// users of the global, cleaning up the obvious ones. This is largely just a 468 /// quick scan over the use list to clean up the easy and obvious cruft. This 469 /// returns true if it made a change. 470 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 471 DataLayout *TD, TargetLibraryInfo *TLI) { 472 bool Changed = false; 473 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) { 474 User *U = *UI++; 475 476 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 477 if (Init) { 478 // Replace the load with the initializer. 479 LI->replaceAllUsesWith(Init); 480 LI->eraseFromParent(); 481 Changed = true; 482 } 483 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 484 // Store must be unreachable or storing Init into the global. 485 SI->eraseFromParent(); 486 Changed = true; 487 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 488 if (CE->getOpcode() == Instruction::GetElementPtr) { 489 Constant *SubInit = 0; 490 if (Init) 491 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 492 Changed |= CleanupConstantGlobalUsers(CE, SubInit, TD, TLI); 493 } else if (CE->getOpcode() == Instruction::BitCast && 494 CE->getType()->isPointerTy()) { 495 // Pointer cast, delete any stores and memsets to the global. 496 Changed |= CleanupConstantGlobalUsers(CE, 0, TD, TLI); 497 } 498 499 if (CE->use_empty()) { 500 CE->destroyConstant(); 501 Changed = true; 502 } 503 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 504 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 505 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 506 // and will invalidate our notion of what Init is. 507 Constant *SubInit = 0; 508 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 509 ConstantExpr *CE = 510 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, TD, TLI)); 511 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 512 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 513 514 // If the initializer is an all-null value and we have an inbounds GEP, 515 // we already know what the result of any load from that GEP is. 516 // TODO: Handle splats. 517 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 518 SubInit = Constant::getNullValue(GEP->getType()->getElementType()); 519 } 520 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, TD, TLI); 521 522 if (GEP->use_empty()) { 523 GEP->eraseFromParent(); 524 Changed = true; 525 } 526 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 527 if (MI->getRawDest() == V) { 528 MI->eraseFromParent(); 529 Changed = true; 530 } 531 532 } else if (Constant *C = dyn_cast<Constant>(U)) { 533 // If we have a chain of dead constantexprs or other things dangling from 534 // us, and if they are all dead, nuke them without remorse. 535 if (SafeToDestroyConstant(C)) { 536 C->destroyConstant(); 537 // This could have invalidated UI, start over from scratch. 538 CleanupConstantGlobalUsers(V, Init, TD, TLI); 539 return true; 540 } 541 } 542 } 543 return Changed; 544 } 545 546 /// isSafeSROAElementUse - Return true if the specified instruction is a safe 547 /// user of a derived expression from a global that we want to SROA. 548 static bool isSafeSROAElementUse(Value *V) { 549 // We might have a dead and dangling constant hanging off of here. 550 if (Constant *C = dyn_cast<Constant>(V)) 551 return SafeToDestroyConstant(C); 552 553 Instruction *I = dyn_cast<Instruction>(V); 554 if (!I) return false; 555 556 // Loads are ok. 557 if (isa<LoadInst>(I)) return true; 558 559 // Stores *to* the pointer are ok. 560 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 561 return SI->getOperand(0) != V; 562 563 // Otherwise, it must be a GEP. 564 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 565 if (GEPI == 0) return false; 566 567 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 568 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 569 return false; 570 571 for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end(); 572 I != E; ++I) 573 if (!isSafeSROAElementUse(*I)) 574 return false; 575 return true; 576 } 577 578 579 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value. 580 /// Look at it and its uses and decide whether it is safe to SROA this global. 581 /// 582 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 583 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 584 if (!isa<GetElementPtrInst>(U) && 585 (!isa<ConstantExpr>(U) || 586 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 587 return false; 588 589 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 590 // don't like < 3 operand CE's, and we don't like non-constant integer 591 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 592 // value of C. 593 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 594 !cast<Constant>(U->getOperand(1))->isNullValue() || 595 !isa<ConstantInt>(U->getOperand(2))) 596 return false; 597 598 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 599 ++GEPI; // Skip over the pointer index. 600 601 // If this is a use of an array allocation, do a bit more checking for sanity. 602 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 603 uint64_t NumElements = AT->getNumElements(); 604 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 605 606 // Check to make sure that index falls within the array. If not, 607 // something funny is going on, so we won't do the optimization. 608 // 609 if (Idx->getZExtValue() >= NumElements) 610 return false; 611 612 // We cannot scalar repl this level of the array unless any array 613 // sub-indices are in-range constants. In particular, consider: 614 // A[0][i]. We cannot know that the user isn't doing invalid things like 615 // allowing i to index an out-of-range subscript that accesses A[1]. 616 // 617 // Scalar replacing *just* the outer index of the array is probably not 618 // going to be a win anyway, so just give up. 619 for (++GEPI; // Skip array index. 620 GEPI != E; 621 ++GEPI) { 622 uint64_t NumElements; 623 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 624 NumElements = SubArrayTy->getNumElements(); 625 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 626 NumElements = SubVectorTy->getNumElements(); 627 else { 628 assert((*GEPI)->isStructTy() && 629 "Indexed GEP type is not array, vector, or struct!"); 630 continue; 631 } 632 633 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 634 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 635 return false; 636 } 637 } 638 639 for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I) 640 if (!isSafeSROAElementUse(*I)) 641 return false; 642 return true; 643 } 644 645 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it 646 /// is safe for us to perform this transformation. 647 /// 648 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 649 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 650 UI != E; ++UI) { 651 if (!IsUserOfGlobalSafeForSRA(*UI, GV)) 652 return false; 653 } 654 return true; 655 } 656 657 658 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global 659 /// variable. This opens the door for other optimizations by exposing the 660 /// behavior of the program in a more fine-grained way. We have determined that 661 /// this transformation is safe already. We return the first global variable we 662 /// insert so that the caller can reprocess it. 663 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &TD) { 664 // Make sure this global only has simple uses that we can SRA. 665 if (!GlobalUsersSafeToSRA(GV)) 666 return 0; 667 668 assert(GV->hasLocalLinkage() && !GV->isConstant()); 669 Constant *Init = GV->getInitializer(); 670 Type *Ty = Init->getType(); 671 672 std::vector<GlobalVariable*> NewGlobals; 673 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 674 675 // Get the alignment of the global, either explicit or target-specific. 676 unsigned StartAlignment = GV->getAlignment(); 677 if (StartAlignment == 0) 678 StartAlignment = TD.getABITypeAlignment(GV->getType()); 679 680 if (StructType *STy = dyn_cast<StructType>(Ty)) { 681 NewGlobals.reserve(STy->getNumElements()); 682 const StructLayout &Layout = *TD.getStructLayout(STy); 683 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 684 Constant *In = Init->getAggregateElement(i); 685 assert(In && "Couldn't get element of initializer?"); 686 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 687 GlobalVariable::InternalLinkage, 688 In, GV->getName()+"."+Twine(i), 689 GV->getThreadLocalMode(), 690 GV->getType()->getAddressSpace()); 691 Globals.insert(GV, NGV); 692 NewGlobals.push_back(NGV); 693 694 // Calculate the known alignment of the field. If the original aggregate 695 // had 256 byte alignment for example, something might depend on that: 696 // propagate info to each field. 697 uint64_t FieldOffset = Layout.getElementOffset(i); 698 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 699 if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i))) 700 NGV->setAlignment(NewAlign); 701 } 702 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 703 unsigned NumElements = 0; 704 if (ArrayType *ATy = dyn_cast<ArrayType>(STy)) 705 NumElements = ATy->getNumElements(); 706 else 707 NumElements = cast<VectorType>(STy)->getNumElements(); 708 709 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 710 return 0; // It's not worth it. 711 NewGlobals.reserve(NumElements); 712 713 uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType()); 714 unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType()); 715 for (unsigned i = 0, e = NumElements; i != e; ++i) { 716 Constant *In = Init->getAggregateElement(i); 717 assert(In && "Couldn't get element of initializer?"); 718 719 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 720 GlobalVariable::InternalLinkage, 721 In, GV->getName()+"."+Twine(i), 722 GV->getThreadLocalMode(), 723 GV->getType()->getAddressSpace()); 724 Globals.insert(GV, NGV); 725 NewGlobals.push_back(NGV); 726 727 // Calculate the known alignment of the field. If the original aggregate 728 // had 256 byte alignment for example, something might depend on that: 729 // propagate info to each field. 730 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 731 if (NewAlign > EltAlign) 732 NGV->setAlignment(NewAlign); 733 } 734 } 735 736 if (NewGlobals.empty()) 737 return 0; 738 739 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV); 740 741 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 742 743 // Loop over all of the uses of the global, replacing the constantexpr geps, 744 // with smaller constantexpr geps or direct references. 745 while (!GV->use_empty()) { 746 User *GEP = GV->use_back(); 747 assert(((isa<ConstantExpr>(GEP) && 748 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 749 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 750 751 // Ignore the 1th operand, which has to be zero or else the program is quite 752 // broken (undefined). Get the 2nd operand, which is the structure or array 753 // index. 754 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 755 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 756 757 Value *NewPtr = NewGlobals[Val]; 758 759 // Form a shorter GEP if needed. 760 if (GEP->getNumOperands() > 3) { 761 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 762 SmallVector<Constant*, 8> Idxs; 763 Idxs.push_back(NullInt); 764 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 765 Idxs.push_back(CE->getOperand(i)); 766 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs); 767 } else { 768 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 769 SmallVector<Value*, 8> Idxs; 770 Idxs.push_back(NullInt); 771 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 772 Idxs.push_back(GEPI->getOperand(i)); 773 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs, 774 GEPI->getName()+"."+Twine(Val),GEPI); 775 } 776 } 777 GEP->replaceAllUsesWith(NewPtr); 778 779 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 780 GEPI->eraseFromParent(); 781 else 782 cast<ConstantExpr>(GEP)->destroyConstant(); 783 } 784 785 // Delete the old global, now that it is dead. 786 Globals.erase(GV); 787 ++NumSRA; 788 789 // Loop over the new globals array deleting any globals that are obviously 790 // dead. This can arise due to scalarization of a structure or an array that 791 // has elements that are dead. 792 unsigned FirstGlobal = 0; 793 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 794 if (NewGlobals[i]->use_empty()) { 795 Globals.erase(NewGlobals[i]); 796 if (FirstGlobal == i) ++FirstGlobal; 797 } 798 799 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0; 800 } 801 802 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified 803 /// value will trap if the value is dynamically null. PHIs keeps track of any 804 /// phi nodes we've seen to avoid reprocessing them. 805 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 806 SmallPtrSet<const PHINode*, 8> &PHIs) { 807 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 808 ++UI) { 809 const User *U = *UI; 810 811 if (isa<LoadInst>(U)) { 812 // Will trap. 813 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 814 if (SI->getOperand(0) == V) { 815 //cerr << "NONTRAPPING USE: " << *U; 816 return false; // Storing the value. 817 } 818 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 819 if (CI->getCalledValue() != V) { 820 //cerr << "NONTRAPPING USE: " << *U; 821 return false; // Not calling the ptr 822 } 823 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 824 if (II->getCalledValue() != V) { 825 //cerr << "NONTRAPPING USE: " << *U; 826 return false; // Not calling the ptr 827 } 828 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 829 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 830 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 831 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 832 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 833 // If we've already seen this phi node, ignore it, it has already been 834 // checked. 835 if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 836 return false; 837 } else if (isa<ICmpInst>(U) && 838 isa<ConstantPointerNull>(UI->getOperand(1))) { 839 // Ignore icmp X, null 840 } else { 841 //cerr << "NONTRAPPING USE: " << *U; 842 return false; 843 } 844 } 845 return true; 846 } 847 848 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads 849 /// from GV will trap if the loaded value is null. Note that this also permits 850 /// comparisons of the loaded value against null, as a special case. 851 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 852 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 853 UI != E; ++UI) { 854 const User *U = *UI; 855 856 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 857 SmallPtrSet<const PHINode*, 8> PHIs; 858 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 859 return false; 860 } else if (isa<StoreInst>(U)) { 861 // Ignore stores to the global. 862 } else { 863 // We don't know or understand this user, bail out. 864 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 865 return false; 866 } 867 } 868 return true; 869 } 870 871 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 872 bool Changed = false; 873 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) { 874 Instruction *I = cast<Instruction>(*UI++); 875 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 876 LI->setOperand(0, NewV); 877 Changed = true; 878 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 879 if (SI->getOperand(1) == V) { 880 SI->setOperand(1, NewV); 881 Changed = true; 882 } 883 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 884 CallSite CS(I); 885 if (CS.getCalledValue() == V) { 886 // Calling through the pointer! Turn into a direct call, but be careful 887 // that the pointer is not also being passed as an argument. 888 CS.setCalledFunction(NewV); 889 Changed = true; 890 bool PassedAsArg = false; 891 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 892 if (CS.getArgument(i) == V) { 893 PassedAsArg = true; 894 CS.setArgument(i, NewV); 895 } 896 897 if (PassedAsArg) { 898 // Being passed as an argument also. Be careful to not invalidate UI! 899 UI = V->use_begin(); 900 } 901 } 902 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 903 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 904 ConstantExpr::getCast(CI->getOpcode(), 905 NewV, CI->getType())); 906 if (CI->use_empty()) { 907 Changed = true; 908 CI->eraseFromParent(); 909 } 910 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 911 // Should handle GEP here. 912 SmallVector<Constant*, 8> Idxs; 913 Idxs.reserve(GEPI->getNumOperands()-1); 914 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 915 i != e; ++i) 916 if (Constant *C = dyn_cast<Constant>(*i)) 917 Idxs.push_back(C); 918 else 919 break; 920 if (Idxs.size() == GEPI->getNumOperands()-1) 921 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI, 922 ConstantExpr::getGetElementPtr(NewV, Idxs)); 923 if (GEPI->use_empty()) { 924 Changed = true; 925 GEPI->eraseFromParent(); 926 } 927 } 928 } 929 930 return Changed; 931 } 932 933 934 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null 935 /// value stored into it. If there are uses of the loaded value that would trap 936 /// if the loaded value is dynamically null, then we know that they cannot be 937 /// reachable with a null optimize away the load. 938 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 939 DataLayout *TD, 940 TargetLibraryInfo *TLI) { 941 bool Changed = false; 942 943 // Keep track of whether we are able to remove all the uses of the global 944 // other than the store that defines it. 945 bool AllNonStoreUsesGone = true; 946 947 // Replace all uses of loads with uses of uses of the stored value. 948 for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){ 949 User *GlobalUser = *GUI++; 950 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 951 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 952 // If we were able to delete all uses of the loads 953 if (LI->use_empty()) { 954 LI->eraseFromParent(); 955 Changed = true; 956 } else { 957 AllNonStoreUsesGone = false; 958 } 959 } else if (isa<StoreInst>(GlobalUser)) { 960 // Ignore the store that stores "LV" to the global. 961 assert(GlobalUser->getOperand(1) == GV && 962 "Must be storing *to* the global"); 963 } else { 964 AllNonStoreUsesGone = false; 965 966 // If we get here we could have other crazy uses that are transitively 967 // loaded. 968 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 969 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 970 isa<BitCastInst>(GlobalUser) || 971 isa<GetElementPtrInst>(GlobalUser)) && 972 "Only expect load and stores!"); 973 } 974 } 975 976 if (Changed) { 977 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV); 978 ++NumGlobUses; 979 } 980 981 // If we nuked all of the loads, then none of the stores are needed either, 982 // nor is the global. 983 if (AllNonStoreUsesGone) { 984 if (isLeakCheckerRoot(GV)) { 985 Changed |= CleanupPointerRootUsers(GV, TLI); 986 } else { 987 Changed = true; 988 CleanupConstantGlobalUsers(GV, 0, TD, TLI); 989 } 990 if (GV->use_empty()) { 991 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 992 Changed = true; 993 GV->eraseFromParent(); 994 ++NumDeleted; 995 } 996 } 997 return Changed; 998 } 999 1000 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the 1001 /// instructions that are foldable. 1002 static void ConstantPropUsersOf(Value *V, 1003 DataLayout *TD, TargetLibraryInfo *TLI) { 1004 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) 1005 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 1006 if (Constant *NewC = ConstantFoldInstruction(I, TD, TLI)) { 1007 I->replaceAllUsesWith(NewC); 1008 1009 // Advance UI to the next non-I use to avoid invalidating it! 1010 // Instructions could multiply use V. 1011 while (UI != E && *UI == I) 1012 ++UI; 1013 I->eraseFromParent(); 1014 } 1015 } 1016 1017 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global 1018 /// variable, and transforms the program as if it always contained the result of 1019 /// the specified malloc. Because it is always the result of the specified 1020 /// malloc, there is no reason to actually DO the malloc. Instead, turn the 1021 /// malloc into a global, and any loads of GV as uses of the new global. 1022 static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, 1023 CallInst *CI, 1024 Type *AllocTy, 1025 ConstantInt *NElements, 1026 DataLayout *TD, 1027 TargetLibraryInfo *TLI) { 1028 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 1029 1030 Type *GlobalType; 1031 if (NElements->getZExtValue() == 1) 1032 GlobalType = AllocTy; 1033 else 1034 // If we have an array allocation, the global variable is of an array. 1035 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 1036 1037 // Create the new global variable. The contents of the malloc'd memory is 1038 // undefined, so initialize with an undef value. 1039 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(), 1040 GlobalType, false, 1041 GlobalValue::InternalLinkage, 1042 UndefValue::get(GlobalType), 1043 GV->getName()+".body", 1044 GV, 1045 GV->getThreadLocalMode()); 1046 1047 // If there are bitcast users of the malloc (which is typical, usually we have 1048 // a malloc + bitcast) then replace them with uses of the new global. Update 1049 // other users to use the global as well. 1050 BitCastInst *TheBC = 0; 1051 while (!CI->use_empty()) { 1052 Instruction *User = cast<Instruction>(CI->use_back()); 1053 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 1054 if (BCI->getType() == NewGV->getType()) { 1055 BCI->replaceAllUsesWith(NewGV); 1056 BCI->eraseFromParent(); 1057 } else { 1058 BCI->setOperand(0, NewGV); 1059 } 1060 } else { 1061 if (TheBC == 0) 1062 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 1063 User->replaceUsesOfWith(CI, TheBC); 1064 } 1065 } 1066 1067 Constant *RepValue = NewGV; 1068 if (NewGV->getType() != GV->getType()->getElementType()) 1069 RepValue = ConstantExpr::getBitCast(RepValue, 1070 GV->getType()->getElementType()); 1071 1072 // If there is a comparison against null, we will insert a global bool to 1073 // keep track of whether the global was initialized yet or not. 1074 GlobalVariable *InitBool = 1075 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 1076 GlobalValue::InternalLinkage, 1077 ConstantInt::getFalse(GV->getContext()), 1078 GV->getName()+".init", GV->getThreadLocalMode()); 1079 bool InitBoolUsed = false; 1080 1081 // Loop over all uses of GV, processing them in turn. 1082 while (!GV->use_empty()) { 1083 if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) { 1084 // The global is initialized when the store to it occurs. 1085 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 1086 SI->getOrdering(), SI->getSynchScope(), SI); 1087 SI->eraseFromParent(); 1088 continue; 1089 } 1090 1091 LoadInst *LI = cast<LoadInst>(GV->use_back()); 1092 while (!LI->use_empty()) { 1093 Use &LoadUse = LI->use_begin().getUse(); 1094 if (!isa<ICmpInst>(LoadUse.getUser())) { 1095 LoadUse = RepValue; 1096 continue; 1097 } 1098 1099 ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser()); 1100 // Replace the cmp X, 0 with a use of the bool value. 1101 // Sink the load to where the compare was, if atomic rules allow us to. 1102 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 1103 LI->getOrdering(), LI->getSynchScope(), 1104 LI->isUnordered() ? (Instruction*)ICI : LI); 1105 InitBoolUsed = true; 1106 switch (ICI->getPredicate()) { 1107 default: llvm_unreachable("Unknown ICmp Predicate!"); 1108 case ICmpInst::ICMP_ULT: 1109 case ICmpInst::ICMP_SLT: // X < null -> always false 1110 LV = ConstantInt::getFalse(GV->getContext()); 1111 break; 1112 case ICmpInst::ICMP_ULE: 1113 case ICmpInst::ICMP_SLE: 1114 case ICmpInst::ICMP_EQ: 1115 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 1116 break; 1117 case ICmpInst::ICMP_NE: 1118 case ICmpInst::ICMP_UGE: 1119 case ICmpInst::ICMP_SGE: 1120 case ICmpInst::ICMP_UGT: 1121 case ICmpInst::ICMP_SGT: 1122 break; // no change. 1123 } 1124 ICI->replaceAllUsesWith(LV); 1125 ICI->eraseFromParent(); 1126 } 1127 LI->eraseFromParent(); 1128 } 1129 1130 // If the initialization boolean was used, insert it, otherwise delete it. 1131 if (!InitBoolUsed) { 1132 while (!InitBool->use_empty()) // Delete initializations 1133 cast<StoreInst>(InitBool->use_back())->eraseFromParent(); 1134 delete InitBool; 1135 } else 1136 GV->getParent()->getGlobalList().insert(GV, InitBool); 1137 1138 // Now the GV is dead, nuke it and the malloc.. 1139 GV->eraseFromParent(); 1140 CI->eraseFromParent(); 1141 1142 // To further other optimizations, loop over all users of NewGV and try to 1143 // constant prop them. This will promote GEP instructions with constant 1144 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 1145 ConstantPropUsersOf(NewGV, TD, TLI); 1146 if (RepValue != NewGV) 1147 ConstantPropUsersOf(RepValue, TD, TLI); 1148 1149 return NewGV; 1150 } 1151 1152 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking 1153 /// to make sure that there are no complex uses of V. We permit simple things 1154 /// like dereferencing the pointer, but not storing through the address, unless 1155 /// it is to the specified global. 1156 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 1157 const GlobalVariable *GV, 1158 SmallPtrSet<const PHINode*, 8> &PHIs) { 1159 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 1160 UI != E; ++UI) { 1161 const Instruction *Inst = cast<Instruction>(*UI); 1162 1163 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 1164 continue; // Fine, ignore. 1165 } 1166 1167 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 1168 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 1169 return false; // Storing the pointer itself... bad. 1170 continue; // Otherwise, storing through it, or storing into GV... fine. 1171 } 1172 1173 // Must index into the array and into the struct. 1174 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 1175 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 1176 return false; 1177 continue; 1178 } 1179 1180 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 1181 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 1182 // cycles. 1183 if (PHIs.insert(PN)) 1184 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 1185 return false; 1186 continue; 1187 } 1188 1189 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 1190 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 1191 return false; 1192 continue; 1193 } 1194 1195 return false; 1196 } 1197 return true; 1198 } 1199 1200 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV 1201 /// somewhere. Transform all uses of the allocation into loads from the 1202 /// global and uses of the resultant pointer. Further, delete the store into 1203 /// GV. This assumes that these value pass the 1204 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1205 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1206 GlobalVariable *GV) { 1207 while (!Alloc->use_empty()) { 1208 Instruction *U = cast<Instruction>(*Alloc->use_begin()); 1209 Instruction *InsertPt = U; 1210 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1211 // If this is the store of the allocation into the global, remove it. 1212 if (SI->getOperand(1) == GV) { 1213 SI->eraseFromParent(); 1214 continue; 1215 } 1216 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1217 // Insert the load in the corresponding predecessor, not right before the 1218 // PHI. 1219 InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator(); 1220 } else if (isa<BitCastInst>(U)) { 1221 // Must be bitcast between the malloc and store to initialize the global. 1222 ReplaceUsesOfMallocWithGlobal(U, GV); 1223 U->eraseFromParent(); 1224 continue; 1225 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1226 // If this is a "GEP bitcast" and the user is a store to the global, then 1227 // just process it as a bitcast. 1228 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1229 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back())) 1230 if (SI->getOperand(1) == GV) { 1231 // Must be bitcast GEP between the malloc and store to initialize 1232 // the global. 1233 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1234 GEPI->eraseFromParent(); 1235 continue; 1236 } 1237 } 1238 1239 // Insert a load from the global, and use it instead of the malloc. 1240 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1241 U->replaceUsesOfWith(Alloc, NL); 1242 } 1243 } 1244 1245 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi 1246 /// of a load) are simple enough to perform heap SRA on. This permits GEP's 1247 /// that index through the array and struct field, icmps of null, and PHIs. 1248 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1249 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs, 1250 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) { 1251 // We permit two users of the load: setcc comparing against the null 1252 // pointer, and a getelementptr of a specific form. 1253 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 1254 ++UI) { 1255 const Instruction *User = cast<Instruction>(*UI); 1256 1257 // Comparison against null is ok. 1258 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) { 1259 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1260 return false; 1261 continue; 1262 } 1263 1264 // getelementptr is also ok, but only a simple form. 1265 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { 1266 // Must index into the array and into the struct. 1267 if (GEPI->getNumOperands() < 3) 1268 return false; 1269 1270 // Otherwise the GEP is ok. 1271 continue; 1272 } 1273 1274 if (const PHINode *PN = dyn_cast<PHINode>(User)) { 1275 if (!LoadUsingPHIsPerLoad.insert(PN)) 1276 // This means some phi nodes are dependent on each other. 1277 // Avoid infinite looping! 1278 return false; 1279 if (!LoadUsingPHIs.insert(PN)) 1280 // If we have already analyzed this PHI, then it is safe. 1281 continue; 1282 1283 // Make sure all uses of the PHI are simple enough to transform. 1284 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1285 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1286 return false; 1287 1288 continue; 1289 } 1290 1291 // Otherwise we don't know what this is, not ok. 1292 return false; 1293 } 1294 1295 return true; 1296 } 1297 1298 1299 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from 1300 /// GV are simple enough to perform HeapSRA, return true. 1301 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1302 Instruction *StoredVal) { 1303 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1304 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1305 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 1306 UI != E; ++UI) 1307 if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1308 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1309 LoadUsingPHIsPerLoad)) 1310 return false; 1311 LoadUsingPHIsPerLoad.clear(); 1312 } 1313 1314 // If we reach here, we know that all uses of the loads and transitive uses 1315 // (through PHI nodes) are simple enough to transform. However, we don't know 1316 // that all inputs the to the PHI nodes are in the same equivalence sets. 1317 // Check to verify that all operands of the PHIs are either PHIS that can be 1318 // transformed, loads from GV, or MI itself. 1319 for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin() 1320 , E = LoadUsingPHIs.end(); I != E; ++I) { 1321 const PHINode *PN = *I; 1322 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1323 Value *InVal = PN->getIncomingValue(op); 1324 1325 // PHI of the stored value itself is ok. 1326 if (InVal == StoredVal) continue; 1327 1328 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1329 // One of the PHIs in our set is (optimistically) ok. 1330 if (LoadUsingPHIs.count(InPN)) 1331 continue; 1332 return false; 1333 } 1334 1335 // Load from GV is ok. 1336 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1337 if (LI->getOperand(0) == GV) 1338 continue; 1339 1340 // UNDEF? NULL? 1341 1342 // Anything else is rejected. 1343 return false; 1344 } 1345 } 1346 1347 return true; 1348 } 1349 1350 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1351 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1352 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1353 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1354 1355 if (FieldNo >= FieldVals.size()) 1356 FieldVals.resize(FieldNo+1); 1357 1358 // If we already have this value, just reuse the previously scalarized 1359 // version. 1360 if (Value *FieldVal = FieldVals[FieldNo]) 1361 return FieldVal; 1362 1363 // Depending on what instruction this is, we have several cases. 1364 Value *Result; 1365 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1366 // This is a scalarized version of the load from the global. Just create 1367 // a new Load of the scalarized global. 1368 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1369 InsertedScalarizedValues, 1370 PHIsToRewrite), 1371 LI->getName()+".f"+Twine(FieldNo), LI); 1372 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1373 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1374 // field. 1375 StructType *ST = 1376 cast<StructType>(cast<PointerType>(PN->getType())->getElementType()); 1377 1378 PHINode *NewPN = 1379 PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)), 1380 PN->getNumIncomingValues(), 1381 PN->getName()+".f"+Twine(FieldNo), PN); 1382 Result = NewPN; 1383 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1384 } else { 1385 llvm_unreachable("Unknown usable value"); 1386 } 1387 1388 return FieldVals[FieldNo] = Result; 1389 } 1390 1391 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from 1392 /// the load, rewrite the derived value to use the HeapSRoA'd load. 1393 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1394 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1395 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1396 // If this is a comparison against null, handle it. 1397 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1398 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1399 // If we have a setcc of the loaded pointer, we can use a setcc of any 1400 // field. 1401 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1402 InsertedScalarizedValues, PHIsToRewrite); 1403 1404 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1405 Constant::getNullValue(NPtr->getType()), 1406 SCI->getName()); 1407 SCI->replaceAllUsesWith(New); 1408 SCI->eraseFromParent(); 1409 return; 1410 } 1411 1412 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1413 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1414 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1415 && "Unexpected GEPI!"); 1416 1417 // Load the pointer for this field. 1418 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1419 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1420 InsertedScalarizedValues, PHIsToRewrite); 1421 1422 // Create the new GEP idx vector. 1423 SmallVector<Value*, 8> GEPIdx; 1424 GEPIdx.push_back(GEPI->getOperand(1)); 1425 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1426 1427 Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx, 1428 GEPI->getName(), GEPI); 1429 GEPI->replaceAllUsesWith(NGEPI); 1430 GEPI->eraseFromParent(); 1431 return; 1432 } 1433 1434 // Recursively transform the users of PHI nodes. This will lazily create the 1435 // PHIs that are needed for individual elements. Keep track of what PHIs we 1436 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1437 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1438 // already been seen first by another load, so its uses have already been 1439 // processed. 1440 PHINode *PN = cast<PHINode>(LoadUser); 1441 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1442 std::vector<Value*>())).second) 1443 return; 1444 1445 // If this is the first time we've seen this PHI, recursively process all 1446 // users. 1447 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) { 1448 Instruction *User = cast<Instruction>(*UI++); 1449 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1450 } 1451 } 1452 1453 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr 1454 /// is a value loaded from the global. Eliminate all uses of Ptr, making them 1455 /// use FieldGlobals instead. All uses of loaded values satisfy 1456 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1457 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1458 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1459 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1460 for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end(); 1461 UI != E; ) { 1462 Instruction *User = cast<Instruction>(*UI++); 1463 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1464 } 1465 1466 if (Load->use_empty()) { 1467 Load->eraseFromParent(); 1468 InsertedScalarizedValues.erase(Load); 1469 } 1470 } 1471 1472 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break 1473 /// it up into multiple allocations of arrays of the fields. 1474 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1475 Value *NElems, DataLayout *TD, 1476 const TargetLibraryInfo *TLI) { 1477 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1478 Type *MAT = getMallocAllocatedType(CI, TLI); 1479 StructType *STy = cast<StructType>(MAT); 1480 1481 // There is guaranteed to be at least one use of the malloc (storing 1482 // it into GV). If there are other uses, change them to be uses of 1483 // the global to simplify later code. This also deletes the store 1484 // into GV. 1485 ReplaceUsesOfMallocWithGlobal(CI, GV); 1486 1487 // Okay, at this point, there are no users of the malloc. Insert N 1488 // new mallocs at the same place as CI, and N globals. 1489 std::vector<Value*> FieldGlobals; 1490 std::vector<Value*> FieldMallocs; 1491 1492 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1493 Type *FieldTy = STy->getElementType(FieldNo); 1494 PointerType *PFieldTy = PointerType::getUnqual(FieldTy); 1495 1496 GlobalVariable *NGV = 1497 new GlobalVariable(*GV->getParent(), 1498 PFieldTy, false, GlobalValue::InternalLinkage, 1499 Constant::getNullValue(PFieldTy), 1500 GV->getName() + ".f" + Twine(FieldNo), GV, 1501 GV->getThreadLocalMode()); 1502 FieldGlobals.push_back(NGV); 1503 1504 unsigned TypeSize = TD->getTypeAllocSize(FieldTy); 1505 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1506 TypeSize = TD->getStructLayout(ST)->getSizeInBytes(); 1507 Type *IntPtrTy = TD->getIntPtrType(CI->getContext()); 1508 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1509 ConstantInt::get(IntPtrTy, TypeSize), 1510 NElems, 0, 1511 CI->getName() + ".f" + Twine(FieldNo)); 1512 FieldMallocs.push_back(NMI); 1513 new StoreInst(NMI, NGV, CI); 1514 } 1515 1516 // The tricky aspect of this transformation is handling the case when malloc 1517 // fails. In the original code, malloc failing would set the result pointer 1518 // of malloc to null. In this case, some mallocs could succeed and others 1519 // could fail. As such, we emit code that looks like this: 1520 // F0 = malloc(field0) 1521 // F1 = malloc(field1) 1522 // F2 = malloc(field2) 1523 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1524 // if (F0) { free(F0); F0 = 0; } 1525 // if (F1) { free(F1); F1 = 0; } 1526 // if (F2) { free(F2); F2 = 0; } 1527 // } 1528 // The malloc can also fail if its argument is too large. 1529 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1530 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1531 ConstantZero, "isneg"); 1532 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1533 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1534 Constant::getNullValue(FieldMallocs[i]->getType()), 1535 "isnull"); 1536 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1537 } 1538 1539 // Split the basic block at the old malloc. 1540 BasicBlock *OrigBB = CI->getParent(); 1541 BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont"); 1542 1543 // Create the block to check the first condition. Put all these blocks at the 1544 // end of the function as they are unlikely to be executed. 1545 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1546 "malloc_ret_null", 1547 OrigBB->getParent()); 1548 1549 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1550 // branch on RunningOr. 1551 OrigBB->getTerminator()->eraseFromParent(); 1552 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1553 1554 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1555 // pointer, because some may be null while others are not. 1556 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1557 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1558 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1559 Constant::getNullValue(GVVal->getType())); 1560 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1561 OrigBB->getParent()); 1562 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1563 OrigBB->getParent()); 1564 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1565 Cmp, NullPtrBlock); 1566 1567 // Fill in FreeBlock. 1568 CallInst::CreateFree(GVVal, BI); 1569 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1570 FreeBlock); 1571 BranchInst::Create(NextBlock, FreeBlock); 1572 1573 NullPtrBlock = NextBlock; 1574 } 1575 1576 BranchInst::Create(ContBB, NullPtrBlock); 1577 1578 // CI is no longer needed, remove it. 1579 CI->eraseFromParent(); 1580 1581 /// InsertedScalarizedLoads - As we process loads, if we can't immediately 1582 /// update all uses of the load, keep track of what scalarized loads are 1583 /// inserted for a given load. 1584 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1585 InsertedScalarizedValues[GV] = FieldGlobals; 1586 1587 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1588 1589 // Okay, the malloc site is completely handled. All of the uses of GV are now 1590 // loads, and all uses of those loads are simple. Rewrite them to use loads 1591 // of the per-field globals instead. 1592 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) { 1593 Instruction *User = cast<Instruction>(*UI++); 1594 1595 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1596 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1597 continue; 1598 } 1599 1600 // Must be a store of null. 1601 StoreInst *SI = cast<StoreInst>(User); 1602 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1603 "Unexpected heap-sra user!"); 1604 1605 // Insert a store of null into each global. 1606 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1607 PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType()); 1608 Constant *Null = Constant::getNullValue(PT->getElementType()); 1609 new StoreInst(Null, FieldGlobals[i], SI); 1610 } 1611 // Erase the original store. 1612 SI->eraseFromParent(); 1613 } 1614 1615 // While we have PHIs that are interesting to rewrite, do it. 1616 while (!PHIsToRewrite.empty()) { 1617 PHINode *PN = PHIsToRewrite.back().first; 1618 unsigned FieldNo = PHIsToRewrite.back().second; 1619 PHIsToRewrite.pop_back(); 1620 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1621 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1622 1623 // Add all the incoming values. This can materialize more phis. 1624 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1625 Value *InVal = PN->getIncomingValue(i); 1626 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1627 PHIsToRewrite); 1628 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1629 } 1630 } 1631 1632 // Drop all inter-phi links and any loads that made it this far. 1633 for (DenseMap<Value*, std::vector<Value*> >::iterator 1634 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1635 I != E; ++I) { 1636 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1637 PN->dropAllReferences(); 1638 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1639 LI->dropAllReferences(); 1640 } 1641 1642 // Delete all the phis and loads now that inter-references are dead. 1643 for (DenseMap<Value*, std::vector<Value*> >::iterator 1644 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1645 I != E; ++I) { 1646 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1647 PN->eraseFromParent(); 1648 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1649 LI->eraseFromParent(); 1650 } 1651 1652 // The old global is now dead, remove it. 1653 GV->eraseFromParent(); 1654 1655 ++NumHeapSRA; 1656 return cast<GlobalVariable>(FieldGlobals[0]); 1657 } 1658 1659 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a 1660 /// pointer global variable with a single value stored it that is a malloc or 1661 /// cast of malloc. 1662 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, 1663 CallInst *CI, 1664 Type *AllocTy, 1665 AtomicOrdering Ordering, 1666 Module::global_iterator &GVI, 1667 DataLayout *TD, 1668 TargetLibraryInfo *TLI) { 1669 if (!TD) 1670 return false; 1671 1672 // If this is a malloc of an abstract type, don't touch it. 1673 if (!AllocTy->isSized()) 1674 return false; 1675 1676 // We can't optimize this global unless all uses of it are *known* to be 1677 // of the malloc value, not of the null initializer value (consider a use 1678 // that compares the global's value against zero to see if the malloc has 1679 // been reached). To do this, we check to see if all uses of the global 1680 // would trap if the global were null: this proves that they must all 1681 // happen after the malloc. 1682 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1683 return false; 1684 1685 // We can't optimize this if the malloc itself is used in a complex way, 1686 // for example, being stored into multiple globals. This allows the 1687 // malloc to be stored into the specified global, loaded icmp'd, and 1688 // GEP'd. These are all things we could transform to using the global 1689 // for. 1690 SmallPtrSet<const PHINode*, 8> PHIs; 1691 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1692 return false; 1693 1694 // If we have a global that is only initialized with a fixed size malloc, 1695 // transform the program to use global memory instead of malloc'd memory. 1696 // This eliminates dynamic allocation, avoids an indirection accessing the 1697 // data, and exposes the resultant global to further GlobalOpt. 1698 // We cannot optimize the malloc if we cannot determine malloc array size. 1699 Value *NElems = getMallocArraySize(CI, TD, TLI, true); 1700 if (!NElems) 1701 return false; 1702 1703 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1704 // Restrict this transformation to only working on small allocations 1705 // (2048 bytes currently), as we don't want to introduce a 16M global or 1706 // something. 1707 if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) { 1708 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD, TLI); 1709 return true; 1710 } 1711 1712 // If the allocation is an array of structures, consider transforming this 1713 // into multiple malloc'd arrays, one for each field. This is basically 1714 // SRoA for malloc'd memory. 1715 1716 if (Ordering != NotAtomic) 1717 return false; 1718 1719 // If this is an allocation of a fixed size array of structs, analyze as a 1720 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1721 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1722 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1723 AllocTy = AT->getElementType(); 1724 1725 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1726 if (!AllocSTy) 1727 return false; 1728 1729 // This the structure has an unreasonable number of fields, leave it 1730 // alone. 1731 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1732 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1733 1734 // If this is a fixed size array, transform the Malloc to be an alloc of 1735 // structs. malloc [100 x struct],1 -> malloc struct, 100 1736 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1737 Type *IntPtrTy = TD->getIntPtrType(CI->getContext()); 1738 unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes(); 1739 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1740 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1741 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, 1742 AllocSize, NumElements, 1743 0, CI->getName()); 1744 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1745 CI->replaceAllUsesWith(Cast); 1746 CI->eraseFromParent(); 1747 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1748 CI = cast<CallInst>(BCI->getOperand(0)); 1749 else 1750 CI = cast<CallInst>(Malloc); 1751 } 1752 1753 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, TLI, true), 1754 TD, TLI); 1755 return true; 1756 } 1757 1758 return false; 1759 } 1760 1761 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge 1762 // that only one value (besides its initializer) is ever stored to the global. 1763 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1764 AtomicOrdering Ordering, 1765 Module::global_iterator &GVI, 1766 DataLayout *TD, TargetLibraryInfo *TLI) { 1767 // Ignore no-op GEPs and bitcasts. 1768 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1769 1770 // If we are dealing with a pointer global that is initialized to null and 1771 // only has one (non-null) value stored into it, then we can optimize any 1772 // users of the loaded value (often calls and loads) that would trap if the 1773 // value was null. 1774 if (GV->getInitializer()->getType()->isPointerTy() && 1775 GV->getInitializer()->isNullValue()) { 1776 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1777 if (GV->getInitializer()->getType() != SOVC->getType()) 1778 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1779 1780 // Optimize away any trapping uses of the loaded value. 1781 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, TD, TLI)) 1782 return true; 1783 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1784 Type *MallocType = getMallocAllocatedType(CI, TLI); 1785 if (MallocType && 1786 TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI, 1787 TD, TLI)) 1788 return true; 1789 } 1790 } 1791 1792 return false; 1793 } 1794 1795 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only 1796 /// two values ever stored into GV are its initializer and OtherVal. See if we 1797 /// can shrink the global into a boolean and select between the two values 1798 /// whenever it is used. This exposes the values to other scalar optimizations. 1799 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1800 Type *GVElType = GV->getType()->getElementType(); 1801 1802 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1803 // an FP value, pointer or vector, don't do this optimization because a select 1804 // between them is very expensive and unlikely to lead to later 1805 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1806 // where v1 and v2 both require constant pool loads, a big loss. 1807 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1808 GVElType->isFloatingPointTy() || 1809 GVElType->isPointerTy() || GVElType->isVectorTy()) 1810 return false; 1811 1812 // Walk the use list of the global seeing if all the uses are load or store. 1813 // If there is anything else, bail out. 1814 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){ 1815 User *U = *I; 1816 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1817 return false; 1818 } 1819 1820 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV); 1821 1822 // Create the new global, initializing it to false. 1823 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1824 false, 1825 GlobalValue::InternalLinkage, 1826 ConstantInt::getFalse(GV->getContext()), 1827 GV->getName()+".b", 1828 GV->getThreadLocalMode()); 1829 GV->getParent()->getGlobalList().insert(GV, NewGV); 1830 1831 Constant *InitVal = GV->getInitializer(); 1832 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1833 "No reason to shrink to bool!"); 1834 1835 // If initialized to zero and storing one into the global, we can use a cast 1836 // instead of a select to synthesize the desired value. 1837 bool IsOneZero = false; 1838 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1839 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1840 1841 while (!GV->use_empty()) { 1842 Instruction *UI = cast<Instruction>(GV->use_back()); 1843 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1844 // Change the store into a boolean store. 1845 bool StoringOther = SI->getOperand(0) == OtherVal; 1846 // Only do this if we weren't storing a loaded value. 1847 Value *StoreVal; 1848 if (StoringOther || SI->getOperand(0) == InitVal) 1849 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1850 StoringOther); 1851 else { 1852 // Otherwise, we are storing a previously loaded copy. To do this, 1853 // change the copy from copying the original value to just copying the 1854 // bool. 1855 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1856 1857 // If we've already replaced the input, StoredVal will be a cast or 1858 // select instruction. If not, it will be a load of the original 1859 // global. 1860 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1861 assert(LI->getOperand(0) == GV && "Not a copy!"); 1862 // Insert a new load, to preserve the saved value. 1863 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1864 LI->getOrdering(), LI->getSynchScope(), LI); 1865 } else { 1866 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1867 "This is not a form that we understand!"); 1868 StoreVal = StoredVal->getOperand(0); 1869 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1870 } 1871 } 1872 new StoreInst(StoreVal, NewGV, false, 0, 1873 SI->getOrdering(), SI->getSynchScope(), SI); 1874 } else { 1875 // Change the load into a load of bool then a select. 1876 LoadInst *LI = cast<LoadInst>(UI); 1877 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1878 LI->getOrdering(), LI->getSynchScope(), LI); 1879 Value *NSI; 1880 if (IsOneZero) 1881 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1882 else 1883 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1884 NSI->takeName(LI); 1885 LI->replaceAllUsesWith(NSI); 1886 } 1887 UI->eraseFromParent(); 1888 } 1889 1890 GV->eraseFromParent(); 1891 return true; 1892 } 1893 1894 1895 /// ProcessGlobal - Analyze the specified global variable and optimize it if 1896 /// possible. If we make a change, return true. 1897 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV, 1898 Module::global_iterator &GVI) { 1899 if (!GV->isDiscardableIfUnused()) 1900 return false; 1901 1902 // Do more involved optimizations if the global is internal. 1903 GV->removeDeadConstantUsers(); 1904 1905 if (GV->use_empty()) { 1906 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV); 1907 GV->eraseFromParent(); 1908 ++NumDeleted; 1909 return true; 1910 } 1911 1912 if (!GV->hasLocalLinkage()) 1913 return false; 1914 1915 SmallPtrSet<const PHINode*, 16> PHIUsers; 1916 GlobalStatus GS; 1917 1918 if (AnalyzeGlobal(GV, GS, PHIUsers)) 1919 return false; 1920 1921 if (!GS.isCompared && !GV->hasUnnamedAddr()) { 1922 GV->setUnnamedAddr(true); 1923 NumUnnamed++; 1924 } 1925 1926 if (GV->isConstant() || !GV->hasInitializer()) 1927 return false; 1928 1929 return ProcessInternalGlobal(GV, GVI, PHIUsers, GS); 1930 } 1931 1932 /// ProcessInternalGlobal - Analyze the specified global variable and optimize 1933 /// it if possible. If we make a change, return true. 1934 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, 1935 Module::global_iterator &GVI, 1936 const SmallPtrSet<const PHINode*, 16> &PHIUsers, 1937 const GlobalStatus &GS) { 1938 // If this is a first class global and has only one accessing function 1939 // and this function is main (which we know is not recursive we can make 1940 // this global a local variable) we replace the global with a local alloca 1941 // in this function. 1942 // 1943 // NOTE: It doesn't make sense to promote non single-value types since we 1944 // are just replacing static memory to stack memory. 1945 // 1946 // If the global is in different address space, don't bring it to stack. 1947 if (!GS.HasMultipleAccessingFunctions && 1948 GS.AccessingFunction && !GS.HasNonInstructionUser && 1949 GV->getType()->getElementType()->isSingleValueType() && 1950 GS.AccessingFunction->getName() == "main" && 1951 GS.AccessingFunction->hasExternalLinkage() && 1952 GV->getType()->getAddressSpace() == 0) { 1953 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV); 1954 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1955 ->getEntryBlock().begin()); 1956 Type *ElemTy = GV->getType()->getElementType(); 1957 // FIXME: Pass Global's alignment when globals have alignment 1958 AllocaInst *Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI); 1959 if (!isa<UndefValue>(GV->getInitializer())) 1960 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1961 1962 GV->replaceAllUsesWith(Alloca); 1963 GV->eraseFromParent(); 1964 ++NumLocalized; 1965 return true; 1966 } 1967 1968 // If the global is never loaded (but may be stored to), it is dead. 1969 // Delete it now. 1970 if (!GS.isLoaded) { 1971 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV); 1972 1973 bool Changed; 1974 if (isLeakCheckerRoot(GV)) { 1975 // Delete any constant stores to the global. 1976 Changed = CleanupPointerRootUsers(GV, TLI); 1977 } else { 1978 // Delete any stores we can find to the global. We may not be able to 1979 // make it completely dead though. 1980 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI); 1981 } 1982 1983 // If the global is dead now, delete it. 1984 if (GV->use_empty()) { 1985 GV->eraseFromParent(); 1986 ++NumDeleted; 1987 Changed = true; 1988 } 1989 return Changed; 1990 1991 } else if (GS.StoredType <= GlobalStatus::isInitializerStored) { 1992 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV); 1993 GV->setConstant(true); 1994 1995 // Clean up any obviously simplifiable users now. 1996 CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI); 1997 1998 // If the global is dead now, just nuke it. 1999 if (GV->use_empty()) { 2000 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 2001 << "all users and delete global!\n"); 2002 GV->eraseFromParent(); 2003 ++NumDeleted; 2004 } 2005 2006 ++NumMarked; 2007 return true; 2008 } else if (!GV->getInitializer()->getType()->isSingleValueType()) { 2009 if (DataLayout *TD = getAnalysisIfAvailable<DataLayout>()) 2010 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) { 2011 GVI = FirstNewGV; // Don't skip the newly produced globals! 2012 return true; 2013 } 2014 } else if (GS.StoredType == GlobalStatus::isStoredOnce) { 2015 // If the initial value for the global was an undef value, and if only 2016 // one other value was stored into it, we can just change the 2017 // initializer to be the stored value, then delete all stores to the 2018 // global. This allows us to mark it constant. 2019 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 2020 if (isa<UndefValue>(GV->getInitializer())) { 2021 // Change the initial value here. 2022 GV->setInitializer(SOVConstant); 2023 2024 // Clean up any obviously simplifiable users now. 2025 CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI); 2026 2027 if (GV->use_empty()) { 2028 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 2029 << "simplify all users and delete global!\n"); 2030 GV->eraseFromParent(); 2031 ++NumDeleted; 2032 } else { 2033 GVI = GV; 2034 } 2035 ++NumSubstitute; 2036 return true; 2037 } 2038 2039 // Try to optimize globals based on the knowledge that only one value 2040 // (besides its initializer) is ever stored to the global. 2041 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI, 2042 TD, TLI)) 2043 return true; 2044 2045 // Otherwise, if the global was not a boolean, we can shrink it to be a 2046 // boolean. 2047 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 2048 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 2049 ++NumShrunkToBool; 2050 return true; 2051 } 2052 } 2053 2054 return false; 2055 } 2056 2057 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified 2058 /// function, changing them to FastCC. 2059 static void ChangeCalleesToFastCall(Function *F) { 2060 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 2061 if (isa<BlockAddress>(*UI)) 2062 continue; 2063 CallSite User(cast<Instruction>(*UI)); 2064 User.setCallingConv(CallingConv::Fast); 2065 } 2066 } 2067 2068 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) { 2069 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 2070 if (!Attrs.getSlot(i).Attrs.hasAttribute(Attributes::Nest)) 2071 continue; 2072 2073 // There can be only one. 2074 return Attrs.removeAttr(C, Attrs.getSlot(i).Index, 2075 Attributes::get(C, Attributes::Nest)); 2076 } 2077 2078 return Attrs; 2079 } 2080 2081 static void RemoveNestAttribute(Function *F) { 2082 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 2083 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 2084 if (isa<BlockAddress>(*UI)) 2085 continue; 2086 CallSite User(cast<Instruction>(*UI)); 2087 User.setAttributes(StripNest(F->getContext(), User.getAttributes())); 2088 } 2089 } 2090 2091 bool GlobalOpt::OptimizeFunctions(Module &M) { 2092 bool Changed = false; 2093 // Optimize functions. 2094 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2095 Function *F = FI++; 2096 // Functions without names cannot be referenced outside this module. 2097 if (!F->hasName() && !F->isDeclaration()) 2098 F->setLinkage(GlobalValue::InternalLinkage); 2099 F->removeDeadConstantUsers(); 2100 if (F->isDefTriviallyDead()) { 2101 F->eraseFromParent(); 2102 Changed = true; 2103 ++NumFnDeleted; 2104 } else if (F->hasLocalLinkage()) { 2105 if (F->getCallingConv() == CallingConv::C && !F->isVarArg() && 2106 !F->hasAddressTaken()) { 2107 // If this function has C calling conventions, is not a varargs 2108 // function, and is only called directly, promote it to use the Fast 2109 // calling convention. 2110 F->setCallingConv(CallingConv::Fast); 2111 ChangeCalleesToFastCall(F); 2112 ++NumFastCallFns; 2113 Changed = true; 2114 } 2115 2116 if (F->getAttributes().hasAttrSomewhere(Attributes::Nest) && 2117 !F->hasAddressTaken()) { 2118 // The function is not used by a trampoline intrinsic, so it is safe 2119 // to remove the 'nest' attribute. 2120 RemoveNestAttribute(F); 2121 ++NumNestRemoved; 2122 Changed = true; 2123 } 2124 } 2125 } 2126 return Changed; 2127 } 2128 2129 bool GlobalOpt::OptimizeGlobalVars(Module &M) { 2130 bool Changed = false; 2131 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2132 GVI != E; ) { 2133 GlobalVariable *GV = GVI++; 2134 // Global variables without names cannot be referenced outside this module. 2135 if (!GV->hasName() && !GV->isDeclaration()) 2136 GV->setLinkage(GlobalValue::InternalLinkage); 2137 // Simplify the initializer. 2138 if (GV->hasInitializer()) 2139 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) { 2140 Constant *New = ConstantFoldConstantExpression(CE, TD, TLI); 2141 if (New && New != CE) 2142 GV->setInitializer(New); 2143 } 2144 2145 Changed |= ProcessGlobal(GV, GVI); 2146 } 2147 return Changed; 2148 } 2149 2150 /// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all 2151 /// initializers have an init priority of 65535. 2152 GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) { 2153 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 2154 if (GV == 0) return 0; 2155 2156 // Verify that the initializer is simple enough for us to handle. We are 2157 // only allowed to optimize the initializer if it is unique. 2158 if (!GV->hasUniqueInitializer()) return 0; 2159 2160 if (isa<ConstantAggregateZero>(GV->getInitializer())) 2161 return GV; 2162 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 2163 2164 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) { 2165 if (isa<ConstantAggregateZero>(*i)) 2166 continue; 2167 ConstantStruct *CS = cast<ConstantStruct>(*i); 2168 if (isa<ConstantPointerNull>(CS->getOperand(1))) 2169 continue; 2170 2171 // Must have a function or null ptr. 2172 if (!isa<Function>(CS->getOperand(1))) 2173 return 0; 2174 2175 // Init priority must be standard. 2176 ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0)); 2177 if (CI->getZExtValue() != 65535) 2178 return 0; 2179 } 2180 2181 return GV; 2182 } 2183 2184 /// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand, 2185 /// return a list of the functions and null terminator as a vector. 2186 static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) { 2187 if (GV->getInitializer()->isNullValue()) 2188 return std::vector<Function*>(); 2189 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 2190 std::vector<Function*> Result; 2191 Result.reserve(CA->getNumOperands()); 2192 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) { 2193 ConstantStruct *CS = cast<ConstantStruct>(*i); 2194 Result.push_back(dyn_cast<Function>(CS->getOperand(1))); 2195 } 2196 return Result; 2197 } 2198 2199 /// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the 2200 /// specified array, returning the new global to use. 2201 static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL, 2202 const std::vector<Function*> &Ctors) { 2203 // If we made a change, reassemble the initializer list. 2204 Constant *CSVals[2]; 2205 CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535); 2206 CSVals[1] = 0; 2207 2208 StructType *StructTy = 2209 cast <StructType>( 2210 cast<ArrayType>(GCL->getType()->getElementType())->getElementType()); 2211 2212 // Create the new init list. 2213 std::vector<Constant*> CAList; 2214 for (unsigned i = 0, e = Ctors.size(); i != e; ++i) { 2215 if (Ctors[i]) { 2216 CSVals[1] = Ctors[i]; 2217 } else { 2218 Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()), 2219 false); 2220 PointerType *PFTy = PointerType::getUnqual(FTy); 2221 CSVals[1] = Constant::getNullValue(PFTy); 2222 CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 2223 0x7fffffff); 2224 } 2225 CAList.push_back(ConstantStruct::get(StructTy, CSVals)); 2226 } 2227 2228 // Create the array initializer. 2229 Constant *CA = ConstantArray::get(ArrayType::get(StructTy, 2230 CAList.size()), CAList); 2231 2232 // If we didn't change the number of elements, don't create a new GV. 2233 if (CA->getType() == GCL->getInitializer()->getType()) { 2234 GCL->setInitializer(CA); 2235 return GCL; 2236 } 2237 2238 // Create the new global and insert it next to the existing list. 2239 GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(), 2240 GCL->getLinkage(), CA, "", 2241 GCL->getThreadLocalMode()); 2242 GCL->getParent()->getGlobalList().insert(GCL, NGV); 2243 NGV->takeName(GCL); 2244 2245 // Nuke the old list, replacing any uses with the new one. 2246 if (!GCL->use_empty()) { 2247 Constant *V = NGV; 2248 if (V->getType() != GCL->getType()) 2249 V = ConstantExpr::getBitCast(V, GCL->getType()); 2250 GCL->replaceAllUsesWith(V); 2251 } 2252 GCL->eraseFromParent(); 2253 2254 if (Ctors.size()) 2255 return NGV; 2256 else 2257 return 0; 2258 } 2259 2260 2261 static inline bool 2262 isSimpleEnoughValueToCommit(Constant *C, 2263 SmallPtrSet<Constant*, 8> &SimpleConstants, 2264 const DataLayout *TD); 2265 2266 2267 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be 2268 /// handled by the code generator. We don't want to generate something like: 2269 /// void *X = &X/42; 2270 /// because the code generator doesn't have a relocation that can handle that. 2271 /// 2272 /// This function should be called if C was not found (but just got inserted) 2273 /// in SimpleConstants to avoid having to rescan the same constants all the 2274 /// time. 2275 static bool isSimpleEnoughValueToCommitHelper(Constant *C, 2276 SmallPtrSet<Constant*, 8> &SimpleConstants, 2277 const DataLayout *TD) { 2278 // Simple integer, undef, constant aggregate zero, global addresses, etc are 2279 // all supported. 2280 if (C->getNumOperands() == 0 || isa<BlockAddress>(C) || 2281 isa<GlobalValue>(C)) 2282 return true; 2283 2284 // Aggregate values are safe if all their elements are. 2285 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2286 isa<ConstantVector>(C)) { 2287 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 2288 Constant *Op = cast<Constant>(C->getOperand(i)); 2289 if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, TD)) 2290 return false; 2291 } 2292 return true; 2293 } 2294 2295 // We don't know exactly what relocations are allowed in constant expressions, 2296 // so we allow &global+constantoffset, which is safe and uniformly supported 2297 // across targets. 2298 ConstantExpr *CE = cast<ConstantExpr>(C); 2299 switch (CE->getOpcode()) { 2300 case Instruction::BitCast: 2301 // Bitcast is fine if the casted value is fine. 2302 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2303 2304 case Instruction::IntToPtr: 2305 case Instruction::PtrToInt: 2306 // int <=> ptr is fine if the int type is the same size as the 2307 // pointer type. 2308 if (!TD || TD->getTypeSizeInBits(CE->getType()) != 2309 TD->getTypeSizeInBits(CE->getOperand(0)->getType())) 2310 return false; 2311 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2312 2313 // GEP is fine if it is simple + constant offset. 2314 case Instruction::GetElementPtr: 2315 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 2316 if (!isa<ConstantInt>(CE->getOperand(i))) 2317 return false; 2318 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2319 2320 case Instruction::Add: 2321 // We allow simple+cst. 2322 if (!isa<ConstantInt>(CE->getOperand(1))) 2323 return false; 2324 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2325 } 2326 return false; 2327 } 2328 2329 static inline bool 2330 isSimpleEnoughValueToCommit(Constant *C, 2331 SmallPtrSet<Constant*, 8> &SimpleConstants, 2332 const DataLayout *TD) { 2333 // If we already checked this constant, we win. 2334 if (!SimpleConstants.insert(C)) return true; 2335 // Check the constant. 2336 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, TD); 2337 } 2338 2339 2340 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple 2341 /// enough for us to understand. In particular, if it is a cast to anything 2342 /// other than from one pointer type to another pointer type, we punt. 2343 /// We basically just support direct accesses to globals and GEP's of 2344 /// globals. This should be kept up to date with CommitValueTo. 2345 static bool isSimpleEnoughPointerToCommit(Constant *C) { 2346 // Conservatively, avoid aggregate types. This is because we don't 2347 // want to worry about them partially overlapping other stores. 2348 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) 2349 return false; 2350 2351 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 2352 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2353 // external globals. 2354 return GV->hasUniqueInitializer(); 2355 2356 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2357 // Handle a constantexpr gep. 2358 if (CE->getOpcode() == Instruction::GetElementPtr && 2359 isa<GlobalVariable>(CE->getOperand(0)) && 2360 cast<GEPOperator>(CE)->isInBounds()) { 2361 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2362 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2363 // external globals. 2364 if (!GV->hasUniqueInitializer()) 2365 return false; 2366 2367 // The first index must be zero. 2368 ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin())); 2369 if (!CI || !CI->isZero()) return false; 2370 2371 // The remaining indices must be compile-time known integers within the 2372 // notional bounds of the corresponding static array types. 2373 if (!CE->isGEPWithNoNotionalOverIndexing()) 2374 return false; 2375 2376 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2377 2378 // A constantexpr bitcast from a pointer to another pointer is a no-op, 2379 // and we know how to evaluate it by moving the bitcast from the pointer 2380 // operand to the value operand. 2381 } else if (CE->getOpcode() == Instruction::BitCast && 2382 isa<GlobalVariable>(CE->getOperand(0))) { 2383 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2384 // external globals. 2385 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); 2386 } 2387 } 2388 2389 return false; 2390 } 2391 2392 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global 2393 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it. 2394 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into. 2395 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2396 ConstantExpr *Addr, unsigned OpNo) { 2397 // Base case of the recursion. 2398 if (OpNo == Addr->getNumOperands()) { 2399 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2400 return Val; 2401 } 2402 2403 SmallVector<Constant*, 32> Elts; 2404 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2405 // Break up the constant into its elements. 2406 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2407 Elts.push_back(Init->getAggregateElement(i)); 2408 2409 // Replace the element that we are supposed to. 2410 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2411 unsigned Idx = CU->getZExtValue(); 2412 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2413 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2414 2415 // Return the modified struct. 2416 return ConstantStruct::get(STy, Elts); 2417 } 2418 2419 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2420 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2421 2422 uint64_t NumElts; 2423 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy)) 2424 NumElts = ATy->getNumElements(); 2425 else 2426 NumElts = InitTy->getVectorNumElements(); 2427 2428 // Break up the array into elements. 2429 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2430 Elts.push_back(Init->getAggregateElement(i)); 2431 2432 assert(CI->getZExtValue() < NumElts); 2433 Elts[CI->getZExtValue()] = 2434 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2435 2436 if (Init->getType()->isArrayTy()) 2437 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2438 return ConstantVector::get(Elts); 2439 } 2440 2441 /// CommitValueTo - We have decided that Addr (which satisfies the predicate 2442 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2443 static void CommitValueTo(Constant *Val, Constant *Addr) { 2444 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2445 assert(GV->hasInitializer()); 2446 GV->setInitializer(Val); 2447 return; 2448 } 2449 2450 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2451 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2452 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2453 } 2454 2455 namespace { 2456 2457 /// Evaluator - This class evaluates LLVM IR, producing the Constant 2458 /// representing each SSA instruction. Changes to global variables are stored 2459 /// in a mapping that can be iterated over after the evaluation is complete. 2460 /// Once an evaluation call fails, the evaluation object should not be reused. 2461 class Evaluator { 2462 public: 2463 Evaluator(const DataLayout *TD, const TargetLibraryInfo *TLI) 2464 : TD(TD), TLI(TLI) { 2465 ValueStack.push_back(new DenseMap<Value*, Constant*>); 2466 } 2467 2468 ~Evaluator() { 2469 DeleteContainerPointers(ValueStack); 2470 while (!AllocaTmps.empty()) { 2471 GlobalVariable *Tmp = AllocaTmps.back(); 2472 AllocaTmps.pop_back(); 2473 2474 // If there are still users of the alloca, the program is doing something 2475 // silly, e.g. storing the address of the alloca somewhere and using it 2476 // later. Since this is undefined, we'll just make it be null. 2477 if (!Tmp->use_empty()) 2478 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType())); 2479 delete Tmp; 2480 } 2481 } 2482 2483 /// EvaluateFunction - Evaluate a call to function F, returning true if 2484 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2485 /// arguments for the function. 2486 bool EvaluateFunction(Function *F, Constant *&RetVal, 2487 const SmallVectorImpl<Constant*> &ActualArgs); 2488 2489 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2490 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2491 /// control flows into, or null upon return. 2492 bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB); 2493 2494 Constant *getVal(Value *V) { 2495 if (Constant *CV = dyn_cast<Constant>(V)) return CV; 2496 Constant *R = ValueStack.back()->lookup(V); 2497 assert(R && "Reference to an uncomputed value!"); 2498 return R; 2499 } 2500 2501 void setVal(Value *V, Constant *C) { 2502 ValueStack.back()->operator[](V) = C; 2503 } 2504 2505 const DenseMap<Constant*, Constant*> &getMutatedMemory() const { 2506 return MutatedMemory; 2507 } 2508 2509 const SmallPtrSet<GlobalVariable*, 8> &getInvariants() const { 2510 return Invariants; 2511 } 2512 2513 private: 2514 Constant *ComputeLoadResult(Constant *P); 2515 2516 /// ValueStack - As we compute SSA register values, we store their contents 2517 /// here. The back of the vector contains the current function and the stack 2518 /// contains the values in the calling frames. 2519 SmallVector<DenseMap<Value*, Constant*>*, 4> ValueStack; 2520 2521 /// CallStack - This is used to detect recursion. In pathological situations 2522 /// we could hit exponential behavior, but at least there is nothing 2523 /// unbounded. 2524 SmallVector<Function*, 4> CallStack; 2525 2526 /// MutatedMemory - For each store we execute, we update this map. Loads 2527 /// check this to get the most up-to-date value. If evaluation is successful, 2528 /// this state is committed to the process. 2529 DenseMap<Constant*, Constant*> MutatedMemory; 2530 2531 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable 2532 /// to represent its body. This vector is needed so we can delete the 2533 /// temporary globals when we are done. 2534 SmallVector<GlobalVariable*, 32> AllocaTmps; 2535 2536 /// Invariants - These global variables have been marked invariant by the 2537 /// static constructor. 2538 SmallPtrSet<GlobalVariable*, 8> Invariants; 2539 2540 /// SimpleConstants - These are constants we have checked and know to be 2541 /// simple enough to live in a static initializer of a global. 2542 SmallPtrSet<Constant*, 8> SimpleConstants; 2543 2544 const DataLayout *TD; 2545 const TargetLibraryInfo *TLI; 2546 }; 2547 2548 } // anonymous namespace 2549 2550 /// ComputeLoadResult - Return the value that would be computed by a load from 2551 /// P after the stores reflected by 'memory' have been performed. If we can't 2552 /// decide, return null. 2553 Constant *Evaluator::ComputeLoadResult(Constant *P) { 2554 // If this memory location has been recently stored, use the stored value: it 2555 // is the most up-to-date. 2556 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P); 2557 if (I != MutatedMemory.end()) return I->second; 2558 2559 // Access it. 2560 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 2561 if (GV->hasDefinitiveInitializer()) 2562 return GV->getInitializer(); 2563 return 0; 2564 } 2565 2566 // Handle a constantexpr getelementptr. 2567 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) 2568 if (CE->getOpcode() == Instruction::GetElementPtr && 2569 isa<GlobalVariable>(CE->getOperand(0))) { 2570 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2571 if (GV->hasDefinitiveInitializer()) 2572 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2573 } 2574 2575 return 0; // don't know how to evaluate. 2576 } 2577 2578 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2579 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2580 /// control flows into, or null upon return. 2581 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, 2582 BasicBlock *&NextBB) { 2583 // This is the main evaluation loop. 2584 while (1) { 2585 Constant *InstResult = 0; 2586 2587 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 2588 if (!SI->isSimple()) return false; // no volatile/atomic accesses. 2589 Constant *Ptr = getVal(SI->getOperand(1)); 2590 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 2591 Ptr = ConstantFoldConstantExpression(CE, TD, TLI); 2592 if (!isSimpleEnoughPointerToCommit(Ptr)) 2593 // If this is too complex for us to commit, reject it. 2594 return false; 2595 2596 Constant *Val = getVal(SI->getOperand(0)); 2597 2598 // If this might be too difficult for the backend to handle (e.g. the addr 2599 // of one global variable divided by another) then we can't commit it. 2600 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD)) 2601 return false; 2602 2603 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 2604 if (CE->getOpcode() == Instruction::BitCast) { 2605 // If we're evaluating a store through a bitcast, then we need 2606 // to pull the bitcast off the pointer type and push it onto the 2607 // stored value. 2608 Ptr = CE->getOperand(0); 2609 2610 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType(); 2611 2612 // In order to push the bitcast onto the stored value, a bitcast 2613 // from NewTy to Val's type must be legal. If it's not, we can try 2614 // introspecting NewTy to find a legal conversion. 2615 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) { 2616 // If NewTy is a struct, we can convert the pointer to the struct 2617 // into a pointer to its first member. 2618 // FIXME: This could be extended to support arrays as well. 2619 if (StructType *STy = dyn_cast<StructType>(NewTy)) { 2620 NewTy = STy->getTypeAtIndex(0U); 2621 2622 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32); 2623 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); 2624 Constant * const IdxList[] = {IdxZero, IdxZero}; 2625 2626 Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList); 2627 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 2628 Ptr = ConstantFoldConstantExpression(CE, TD, TLI); 2629 2630 // If we can't improve the situation by introspecting NewTy, 2631 // we have to give up. 2632 } else { 2633 return false; 2634 } 2635 } 2636 2637 // If we found compatible types, go ahead and push the bitcast 2638 // onto the stored value. 2639 Val = ConstantExpr::getBitCast(Val, NewTy); 2640 } 2641 2642 MutatedMemory[Ptr] = Val; 2643 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 2644 InstResult = ConstantExpr::get(BO->getOpcode(), 2645 getVal(BO->getOperand(0)), 2646 getVal(BO->getOperand(1))); 2647 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 2648 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 2649 getVal(CI->getOperand(0)), 2650 getVal(CI->getOperand(1))); 2651 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 2652 InstResult = ConstantExpr::getCast(CI->getOpcode(), 2653 getVal(CI->getOperand(0)), 2654 CI->getType()); 2655 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 2656 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), 2657 getVal(SI->getOperand(1)), 2658 getVal(SI->getOperand(2))); 2659 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 2660 Constant *P = getVal(GEP->getOperand(0)); 2661 SmallVector<Constant*, 8> GEPOps; 2662 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); 2663 i != e; ++i) 2664 GEPOps.push_back(getVal(*i)); 2665 InstResult = 2666 ConstantExpr::getGetElementPtr(P, GEPOps, 2667 cast<GEPOperator>(GEP)->isInBounds()); 2668 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 2669 if (!LI->isSimple()) return false; // no volatile/atomic accesses. 2670 Constant *Ptr = getVal(LI->getOperand(0)); 2671 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 2672 Ptr = ConstantFoldConstantExpression(CE, TD, TLI); 2673 InstResult = ComputeLoadResult(Ptr); 2674 if (InstResult == 0) return false; // Could not evaluate load. 2675 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 2676 if (AI->isArrayAllocation()) return false; // Cannot handle array allocs. 2677 Type *Ty = AI->getType()->getElementType(); 2678 AllocaTmps.push_back(new GlobalVariable(Ty, false, 2679 GlobalValue::InternalLinkage, 2680 UndefValue::get(Ty), 2681 AI->getName())); 2682 InstResult = AllocaTmps.back(); 2683 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { 2684 CallSite CS(CurInst); 2685 2686 // Debug info can safely be ignored here. 2687 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) { 2688 ++CurInst; 2689 continue; 2690 } 2691 2692 // Cannot handle inline asm. 2693 if (isa<InlineAsm>(CS.getCalledValue())) return false; 2694 2695 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { 2696 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { 2697 if (MSI->isVolatile()) return false; 2698 Constant *Ptr = getVal(MSI->getDest()); 2699 Constant *Val = getVal(MSI->getValue()); 2700 Constant *DestVal = ComputeLoadResult(getVal(Ptr)); 2701 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { 2702 // This memset is a no-op. 2703 ++CurInst; 2704 continue; 2705 } 2706 } 2707 2708 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 2709 II->getIntrinsicID() == Intrinsic::lifetime_end) { 2710 ++CurInst; 2711 continue; 2712 } 2713 2714 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2715 // We don't insert an entry into Values, as it doesn't have a 2716 // meaningful return value. 2717 if (!II->use_empty()) 2718 return false; 2719 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); 2720 Value *PtrArg = getVal(II->getArgOperand(1)); 2721 Value *Ptr = PtrArg->stripPointerCasts(); 2722 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 2723 Type *ElemTy = cast<PointerType>(GV->getType())->getElementType(); 2724 if (!Size->isAllOnesValue() && 2725 Size->getValue().getLimitedValue() >= 2726 TD->getTypeStoreSize(ElemTy)) 2727 Invariants.insert(GV); 2728 } 2729 // Continue even if we do nothing. 2730 ++CurInst; 2731 continue; 2732 } 2733 return false; 2734 } 2735 2736 // Resolve function pointers. 2737 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue())); 2738 if (!Callee || Callee->mayBeOverridden()) 2739 return false; // Cannot resolve. 2740 2741 SmallVector<Constant*, 8> Formals; 2742 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) 2743 Formals.push_back(getVal(*i)); 2744 2745 if (Callee->isDeclaration()) { 2746 // If this is a function we can constant fold, do it. 2747 if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) { 2748 InstResult = C; 2749 } else { 2750 return false; 2751 } 2752 } else { 2753 if (Callee->getFunctionType()->isVarArg()) 2754 return false; 2755 2756 Constant *RetVal; 2757 // Execute the call, if successful, use the return value. 2758 ValueStack.push_back(new DenseMap<Value*, Constant*>); 2759 if (!EvaluateFunction(Callee, RetVal, Formals)) 2760 return false; 2761 delete ValueStack.pop_back_val(); 2762 InstResult = RetVal; 2763 } 2764 } else if (isa<TerminatorInst>(CurInst)) { 2765 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 2766 if (BI->isUnconditional()) { 2767 NextBB = BI->getSuccessor(0); 2768 } else { 2769 ConstantInt *Cond = 2770 dyn_cast<ConstantInt>(getVal(BI->getCondition())); 2771 if (!Cond) return false; // Cannot determine. 2772 2773 NextBB = BI->getSuccessor(!Cond->getZExtValue()); 2774 } 2775 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 2776 ConstantInt *Val = 2777 dyn_cast<ConstantInt>(getVal(SI->getCondition())); 2778 if (!Val) return false; // Cannot determine. 2779 NextBB = SI->findCaseValue(Val).getCaseSuccessor(); 2780 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 2781 Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); 2782 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 2783 NextBB = BA->getBasicBlock(); 2784 else 2785 return false; // Cannot determine. 2786 } else if (isa<ReturnInst>(CurInst)) { 2787 NextBB = 0; 2788 } else { 2789 // invoke, unwind, resume, unreachable. 2790 return false; // Cannot handle this terminator. 2791 } 2792 2793 // We succeeded at evaluating this block! 2794 return true; 2795 } else { 2796 // Did not know how to evaluate this! 2797 return false; 2798 } 2799 2800 if (!CurInst->use_empty()) { 2801 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult)) 2802 InstResult = ConstantFoldConstantExpression(CE, TD, TLI); 2803 2804 setVal(CurInst, InstResult); 2805 } 2806 2807 // If we just processed an invoke, we finished evaluating the block. 2808 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { 2809 NextBB = II->getNormalDest(); 2810 return true; 2811 } 2812 2813 // Advance program counter. 2814 ++CurInst; 2815 } 2816 } 2817 2818 /// EvaluateFunction - Evaluate a call to function F, returning true if 2819 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2820 /// arguments for the function. 2821 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, 2822 const SmallVectorImpl<Constant*> &ActualArgs) { 2823 // Check to see if this function is already executing (recursion). If so, 2824 // bail out. TODO: we might want to accept limited recursion. 2825 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end()) 2826 return false; 2827 2828 CallStack.push_back(F); 2829 2830 // Initialize arguments to the incoming values specified. 2831 unsigned ArgNo = 0; 2832 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 2833 ++AI, ++ArgNo) 2834 setVal(AI, ActualArgs[ArgNo]); 2835 2836 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 2837 // we can only evaluate any one basic block at most once. This set keeps 2838 // track of what we have executed so we can detect recursive cases etc. 2839 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 2840 2841 // CurBB - The current basic block we're evaluating. 2842 BasicBlock *CurBB = F->begin(); 2843 2844 BasicBlock::iterator CurInst = CurBB->begin(); 2845 2846 while (1) { 2847 BasicBlock *NextBB = 0; // Initialized to avoid compiler warnings. 2848 if (!EvaluateBlock(CurInst, NextBB)) 2849 return false; 2850 2851 if (NextBB == 0) { 2852 // Successfully running until there's no next block means that we found 2853 // the return. Fill it the return value and pop the call stack. 2854 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); 2855 if (RI->getNumOperands()) 2856 RetVal = getVal(RI->getOperand(0)); 2857 CallStack.pop_back(); 2858 return true; 2859 } 2860 2861 // Okay, we succeeded in evaluating this control flow. See if we have 2862 // executed the new block before. If so, we have a looping function, 2863 // which we cannot evaluate in reasonable time. 2864 if (!ExecutedBlocks.insert(NextBB)) 2865 return false; // looped! 2866 2867 // Okay, we have never been in this block before. Check to see if there 2868 // are any PHI nodes. If so, evaluate them with information about where 2869 // we came from. 2870 PHINode *PN = 0; 2871 for (CurInst = NextBB->begin(); 2872 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 2873 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); 2874 2875 // Advance to the next block. 2876 CurBB = NextBB; 2877 } 2878 } 2879 2880 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if 2881 /// we can. Return true if we can, false otherwise. 2882 static bool EvaluateStaticConstructor(Function *F, const DataLayout *TD, 2883 const TargetLibraryInfo *TLI) { 2884 // Call the function. 2885 Evaluator Eval(TD, TLI); 2886 Constant *RetValDummy; 2887 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2888 SmallVector<Constant*, 0>()); 2889 2890 if (EvalSuccess) { 2891 // We succeeded at evaluation: commit the result. 2892 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2893 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2894 << " stores.\n"); 2895 for (DenseMap<Constant*, Constant*>::const_iterator I = 2896 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end(); 2897 I != E; ++I) 2898 CommitValueTo(I->second, I->first); 2899 for (SmallPtrSet<GlobalVariable*, 8>::const_iterator I = 2900 Eval.getInvariants().begin(), E = Eval.getInvariants().end(); 2901 I != E; ++I) 2902 (*I)->setConstant(true); 2903 } 2904 2905 return EvalSuccess; 2906 } 2907 2908 /// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible. 2909 /// Return true if anything changed. 2910 bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) { 2911 std::vector<Function*> Ctors = ParseGlobalCtors(GCL); 2912 bool MadeChange = false; 2913 if (Ctors.empty()) return false; 2914 2915 // Loop over global ctors, optimizing them when we can. 2916 for (unsigned i = 0; i != Ctors.size(); ++i) { 2917 Function *F = Ctors[i]; 2918 // Found a null terminator in the middle of the list, prune off the rest of 2919 // the list. 2920 if (F == 0) { 2921 if (i != Ctors.size()-1) { 2922 Ctors.resize(i+1); 2923 MadeChange = true; 2924 } 2925 break; 2926 } 2927 2928 // We cannot simplify external ctor functions. 2929 if (F->empty()) continue; 2930 2931 // If we can evaluate the ctor at compile time, do. 2932 if (EvaluateStaticConstructor(F, TD, TLI)) { 2933 Ctors.erase(Ctors.begin()+i); 2934 MadeChange = true; 2935 --i; 2936 ++NumCtorsEvaluated; 2937 continue; 2938 } 2939 } 2940 2941 if (!MadeChange) return false; 2942 2943 GCL = InstallGlobalCtors(GCL, Ctors); 2944 return true; 2945 } 2946 2947 bool GlobalOpt::OptimizeGlobalAliases(Module &M) { 2948 bool Changed = false; 2949 2950 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2951 I != E;) { 2952 Module::alias_iterator J = I++; 2953 // Aliases without names cannot be referenced outside this module. 2954 if (!J->hasName() && !J->isDeclaration()) 2955 J->setLinkage(GlobalValue::InternalLinkage); 2956 // If the aliasee may change at link time, nothing can be done - bail out. 2957 if (J->mayBeOverridden()) 2958 continue; 2959 2960 Constant *Aliasee = J->getAliasee(); 2961 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2962 Target->removeDeadConstantUsers(); 2963 bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse(); 2964 2965 // Make all users of the alias use the aliasee instead. 2966 if (!J->use_empty()) { 2967 J->replaceAllUsesWith(Aliasee); 2968 ++NumAliasesResolved; 2969 Changed = true; 2970 } 2971 2972 // If the alias is externally visible, we may still be able to simplify it. 2973 if (!J->hasLocalLinkage()) { 2974 // If the aliasee has internal linkage, give it the name and linkage 2975 // of the alias, and delete the alias. This turns: 2976 // define internal ... @f(...) 2977 // @a = alias ... @f 2978 // into: 2979 // define ... @a(...) 2980 if (!Target->hasLocalLinkage()) 2981 continue; 2982 2983 // Do not perform the transform if multiple aliases potentially target the 2984 // aliasee. This check also ensures that it is safe to replace the section 2985 // and other attributes of the aliasee with those of the alias. 2986 if (!hasOneUse) 2987 continue; 2988 2989 // Give the aliasee the name, linkage and other attributes of the alias. 2990 Target->takeName(J); 2991 Target->setLinkage(J->getLinkage()); 2992 Target->GlobalValue::copyAttributesFrom(J); 2993 } 2994 2995 // Delete the alias. 2996 M.getAliasList().erase(J); 2997 ++NumAliasesRemoved; 2998 Changed = true; 2999 } 3000 3001 return Changed; 3002 } 3003 3004 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 3005 if (!TLI->has(LibFunc::cxa_atexit)) 3006 return 0; 3007 3008 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit)); 3009 3010 if (!Fn) 3011 return 0; 3012 3013 FunctionType *FTy = Fn->getFunctionType(); 3014 3015 // Checking that the function has the right return type, the right number of 3016 // parameters and that they all have pointer types should be enough. 3017 if (!FTy->getReturnType()->isIntegerTy() || 3018 FTy->getNumParams() != 3 || 3019 !FTy->getParamType(0)->isPointerTy() || 3020 !FTy->getParamType(1)->isPointerTy() || 3021 !FTy->getParamType(2)->isPointerTy()) 3022 return 0; 3023 3024 return Fn; 3025 } 3026 3027 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++ 3028 /// destructor and can therefore be eliminated. 3029 /// Note that we assume that other optimization passes have already simplified 3030 /// the code so we only look for a function with a single basic block, where 3031 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 3032 /// other side-effect free instructions. 3033 static bool cxxDtorIsEmpty(const Function &Fn, 3034 SmallPtrSet<const Function *, 8> &CalledFunctions) { 3035 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 3036 // nounwind, but that doesn't seem worth doing. 3037 if (Fn.isDeclaration()) 3038 return false; 3039 3040 if (++Fn.begin() != Fn.end()) 3041 return false; 3042 3043 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 3044 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 3045 I != E; ++I) { 3046 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 3047 // Ignore debug intrinsics. 3048 if (isa<DbgInfoIntrinsic>(CI)) 3049 continue; 3050 3051 const Function *CalledFn = CI->getCalledFunction(); 3052 3053 if (!CalledFn) 3054 return false; 3055 3056 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 3057 3058 // Don't treat recursive functions as empty. 3059 if (!NewCalledFunctions.insert(CalledFn)) 3060 return false; 3061 3062 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 3063 return false; 3064 } else if (isa<ReturnInst>(*I)) 3065 return true; // We're done. 3066 else if (I->mayHaveSideEffects()) 3067 return false; // Destructor with side effects, bail. 3068 } 3069 3070 return false; 3071 } 3072 3073 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 3074 /// Itanium C++ ABI p3.3.5: 3075 /// 3076 /// After constructing a global (or local static) object, that will require 3077 /// destruction on exit, a termination function is registered as follows: 3078 /// 3079 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 3080 /// 3081 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 3082 /// call f(p) when DSO d is unloaded, before all such termination calls 3083 /// registered before this one. It returns zero if registration is 3084 /// successful, nonzero on failure. 3085 3086 // This pass will look for calls to __cxa_atexit where the function is trivial 3087 // and remove them. 3088 bool Changed = false; 3089 3090 for (Function::use_iterator I = CXAAtExitFn->use_begin(), 3091 E = CXAAtExitFn->use_end(); I != E;) { 3092 // We're only interested in calls. Theoretically, we could handle invoke 3093 // instructions as well, but neither llvm-gcc nor clang generate invokes 3094 // to __cxa_atexit. 3095 CallInst *CI = dyn_cast<CallInst>(*I++); 3096 if (!CI) 3097 continue; 3098 3099 Function *DtorFn = 3100 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 3101 if (!DtorFn) 3102 continue; 3103 3104 SmallPtrSet<const Function *, 8> CalledFunctions; 3105 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 3106 continue; 3107 3108 // Just remove the call. 3109 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 3110 CI->eraseFromParent(); 3111 3112 ++NumCXXDtorsRemoved; 3113 3114 Changed |= true; 3115 } 3116 3117 return Changed; 3118 } 3119 3120 bool GlobalOpt::runOnModule(Module &M) { 3121 bool Changed = false; 3122 3123 TD = getAnalysisIfAvailable<DataLayout>(); 3124 TLI = &getAnalysis<TargetLibraryInfo>(); 3125 3126 // Try to find the llvm.globalctors list. 3127 GlobalVariable *GlobalCtors = FindGlobalCtors(M); 3128 3129 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 3130 3131 bool LocalChange = true; 3132 while (LocalChange) { 3133 LocalChange = false; 3134 3135 // Delete functions that are trivially dead, ccc -> fastcc 3136 LocalChange |= OptimizeFunctions(M); 3137 3138 // Optimize global_ctors list. 3139 if (GlobalCtors) 3140 LocalChange |= OptimizeGlobalCtorsList(GlobalCtors); 3141 3142 // Optimize non-address-taken globals. 3143 LocalChange |= OptimizeGlobalVars(M); 3144 3145 // Resolve aliases, when possible. 3146 LocalChange |= OptimizeGlobalAliases(M); 3147 3148 // Try to remove trivial global destructors. 3149 if (CXAAtExitFn) 3150 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 3151 3152 Changed |= LocalChange; 3153 } 3154 3155 // TODO: Move all global ctors functions to the end of the module for code 3156 // layout. 3157 3158 return Changed; 3159 } 3160