1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/CallingConv.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/CtorUtils.h" 43 #include "llvm/Transforms/Utils/GlobalStatus.h" 44 #include "llvm/Transforms/Utils/ModuleUtils.h" 45 #include <algorithm> 46 #include <deque> 47 using namespace llvm; 48 49 #define DEBUG_TYPE "globalopt" 50 51 STATISTIC(NumMarked , "Number of globals marked constant"); 52 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 53 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 54 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 55 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 56 STATISTIC(NumDeleted , "Number of globals deleted"); 57 STATISTIC(NumFnDeleted , "Number of functions deleted"); 58 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 59 STATISTIC(NumLocalized , "Number of globals localized"); 60 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 61 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 62 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 63 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 64 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 65 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 66 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 67 68 namespace { 69 struct GlobalOpt : public ModulePass { 70 void getAnalysisUsage(AnalysisUsage &AU) const override { 71 AU.addRequired<TargetLibraryInfoWrapperPass>(); 72 } 73 static char ID; // Pass identification, replacement for typeid 74 GlobalOpt() : ModulePass(ID) { 75 initializeGlobalOptPass(*PassRegistry::getPassRegistry()); 76 } 77 78 bool runOnModule(Module &M) override; 79 80 private: 81 bool OptimizeFunctions(Module &M); 82 bool OptimizeGlobalVars(Module &M); 83 bool OptimizeGlobalAliases(Module &M); 84 bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI); 85 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI, 86 const GlobalStatus &GS); 87 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn); 88 89 TargetLibraryInfo *TLI; 90 SmallSet<const Comdat *, 8> NotDiscardableComdats; 91 }; 92 } 93 94 char GlobalOpt::ID = 0; 95 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt", 96 "Global Variable Optimizer", false, false) 97 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 98 INITIALIZE_PASS_END(GlobalOpt, "globalopt", 99 "Global Variable Optimizer", false, false) 100 101 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } 102 103 /// isLeakCheckerRoot - Is this global variable possibly used by a leak checker 104 /// as a root? If so, we might not really want to eliminate the stores to it. 105 static bool isLeakCheckerRoot(GlobalVariable *GV) { 106 // A global variable is a root if it is a pointer, or could plausibly contain 107 // a pointer. There are two challenges; one is that we could have a struct 108 // the has an inner member which is a pointer. We recurse through the type to 109 // detect these (up to a point). The other is that we may actually be a union 110 // of a pointer and another type, and so our LLVM type is an integer which 111 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 112 // potentially contained here. 113 114 if (GV->hasPrivateLinkage()) 115 return false; 116 117 SmallVector<Type *, 4> Types; 118 Types.push_back(cast<PointerType>(GV->getType())->getElementType()); 119 120 unsigned Limit = 20; 121 do { 122 Type *Ty = Types.pop_back_val(); 123 switch (Ty->getTypeID()) { 124 default: break; 125 case Type::PointerTyID: return true; 126 case Type::ArrayTyID: 127 case Type::VectorTyID: { 128 SequentialType *STy = cast<SequentialType>(Ty); 129 Types.push_back(STy->getElementType()); 130 break; 131 } 132 case Type::StructTyID: { 133 StructType *STy = cast<StructType>(Ty); 134 if (STy->isOpaque()) return true; 135 for (StructType::element_iterator I = STy->element_begin(), 136 E = STy->element_end(); I != E; ++I) { 137 Type *InnerTy = *I; 138 if (isa<PointerType>(InnerTy)) return true; 139 if (isa<CompositeType>(InnerTy)) 140 Types.push_back(InnerTy); 141 } 142 break; 143 } 144 } 145 if (--Limit == 0) return true; 146 } while (!Types.empty()); 147 return false; 148 } 149 150 /// Given a value that is stored to a global but never read, determine whether 151 /// it's safe to remove the store and the chain of computation that feeds the 152 /// store. 153 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 154 do { 155 if (isa<Constant>(V)) 156 return true; 157 if (!V->hasOneUse()) 158 return false; 159 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 160 isa<GlobalValue>(V)) 161 return false; 162 if (isAllocationFn(V, TLI)) 163 return true; 164 165 Instruction *I = cast<Instruction>(V); 166 if (I->mayHaveSideEffects()) 167 return false; 168 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 169 if (!GEP->hasAllConstantIndices()) 170 return false; 171 } else if (I->getNumOperands() != 1) { 172 return false; 173 } 174 175 V = I->getOperand(0); 176 } while (1); 177 } 178 179 /// CleanupPointerRootUsers - This GV is a pointer root. Loop over all users 180 /// of the global and clean up any that obviously don't assign the global a 181 /// value that isn't dynamically allocated. 182 /// 183 static bool CleanupPointerRootUsers(GlobalVariable *GV, 184 const TargetLibraryInfo *TLI) { 185 // A brief explanation of leak checkers. The goal is to find bugs where 186 // pointers are forgotten, causing an accumulating growth in memory 187 // usage over time. The common strategy for leak checkers is to whitelist the 188 // memory pointed to by globals at exit. This is popular because it also 189 // solves another problem where the main thread of a C++ program may shut down 190 // before other threads that are still expecting to use those globals. To 191 // handle that case, we expect the program may create a singleton and never 192 // destroy it. 193 194 bool Changed = false; 195 196 // If Dead[n].first is the only use of a malloc result, we can delete its 197 // chain of computation and the store to the global in Dead[n].second. 198 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 199 200 // Constants can't be pointers to dynamically allocated memory. 201 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 202 UI != E;) { 203 User *U = *UI++; 204 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 205 Value *V = SI->getValueOperand(); 206 if (isa<Constant>(V)) { 207 Changed = true; 208 SI->eraseFromParent(); 209 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 210 if (I->hasOneUse()) 211 Dead.push_back(std::make_pair(I, SI)); 212 } 213 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 214 if (isa<Constant>(MSI->getValue())) { 215 Changed = true; 216 MSI->eraseFromParent(); 217 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 218 if (I->hasOneUse()) 219 Dead.push_back(std::make_pair(I, MSI)); 220 } 221 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 222 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 223 if (MemSrc && MemSrc->isConstant()) { 224 Changed = true; 225 MTI->eraseFromParent(); 226 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 227 if (I->hasOneUse()) 228 Dead.push_back(std::make_pair(I, MTI)); 229 } 230 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 231 if (CE->use_empty()) { 232 CE->destroyConstant(); 233 Changed = true; 234 } 235 } else if (Constant *C = dyn_cast<Constant>(U)) { 236 if (isSafeToDestroyConstant(C)) { 237 C->destroyConstant(); 238 // This could have invalidated UI, start over from scratch. 239 Dead.clear(); 240 CleanupPointerRootUsers(GV, TLI); 241 return true; 242 } 243 } 244 } 245 246 for (int i = 0, e = Dead.size(); i != e; ++i) { 247 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 248 Dead[i].second->eraseFromParent(); 249 Instruction *I = Dead[i].first; 250 do { 251 if (isAllocationFn(I, TLI)) 252 break; 253 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 254 if (!J) 255 break; 256 I->eraseFromParent(); 257 I = J; 258 } while (1); 259 I->eraseFromParent(); 260 } 261 } 262 263 return Changed; 264 } 265 266 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all 267 /// users of the global, cleaning up the obvious ones. This is largely just a 268 /// quick scan over the use list to clean up the easy and obvious cruft. This 269 /// returns true if it made a change. 270 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 271 const DataLayout &DL, 272 TargetLibraryInfo *TLI) { 273 bool Changed = false; 274 // Note that we need to use a weak value handle for the worklist items. When 275 // we delete a constant array, we may also be holding pointer to one of its 276 // elements (or an element of one of its elements if we're dealing with an 277 // array of arrays) in the worklist. 278 SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end()); 279 while (!WorkList.empty()) { 280 Value *UV = WorkList.pop_back_val(); 281 if (!UV) 282 continue; 283 284 User *U = cast<User>(UV); 285 286 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 287 if (Init) { 288 // Replace the load with the initializer. 289 LI->replaceAllUsesWith(Init); 290 LI->eraseFromParent(); 291 Changed = true; 292 } 293 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 294 // Store must be unreachable or storing Init into the global. 295 SI->eraseFromParent(); 296 Changed = true; 297 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 298 if (CE->getOpcode() == Instruction::GetElementPtr) { 299 Constant *SubInit = nullptr; 300 if (Init) 301 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 302 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 303 } else if ((CE->getOpcode() == Instruction::BitCast && 304 CE->getType()->isPointerTy()) || 305 CE->getOpcode() == Instruction::AddrSpaceCast) { 306 // Pointer cast, delete any stores and memsets to the global. 307 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 308 } 309 310 if (CE->use_empty()) { 311 CE->destroyConstant(); 312 Changed = true; 313 } 314 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 315 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 316 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 317 // and will invalidate our notion of what Init is. 318 Constant *SubInit = nullptr; 319 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 320 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 321 ConstantFoldInstruction(GEP, DL, TLI)); 322 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 323 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 324 325 // If the initializer is an all-null value and we have an inbounds GEP, 326 // we already know what the result of any load from that GEP is. 327 // TODO: Handle splats. 328 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 329 SubInit = Constant::getNullValue(GEP->getType()->getElementType()); 330 } 331 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 332 333 if (GEP->use_empty()) { 334 GEP->eraseFromParent(); 335 Changed = true; 336 } 337 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 338 if (MI->getRawDest() == V) { 339 MI->eraseFromParent(); 340 Changed = true; 341 } 342 343 } else if (Constant *C = dyn_cast<Constant>(U)) { 344 // If we have a chain of dead constantexprs or other things dangling from 345 // us, and if they are all dead, nuke them without remorse. 346 if (isSafeToDestroyConstant(C)) { 347 C->destroyConstant(); 348 CleanupConstantGlobalUsers(V, Init, DL, TLI); 349 return true; 350 } 351 } 352 } 353 return Changed; 354 } 355 356 /// isSafeSROAElementUse - Return true if the specified instruction is a safe 357 /// user of a derived expression from a global that we want to SROA. 358 static bool isSafeSROAElementUse(Value *V) { 359 // We might have a dead and dangling constant hanging off of here. 360 if (Constant *C = dyn_cast<Constant>(V)) 361 return isSafeToDestroyConstant(C); 362 363 Instruction *I = dyn_cast<Instruction>(V); 364 if (!I) return false; 365 366 // Loads are ok. 367 if (isa<LoadInst>(I)) return true; 368 369 // Stores *to* the pointer are ok. 370 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 371 return SI->getOperand(0) != V; 372 373 // Otherwise, it must be a GEP. 374 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 375 if (!GEPI) return false; 376 377 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 378 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 379 return false; 380 381 for (User *U : GEPI->users()) 382 if (!isSafeSROAElementUse(U)) 383 return false; 384 return true; 385 } 386 387 388 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value. 389 /// Look at it and its uses and decide whether it is safe to SROA this global. 390 /// 391 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 392 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 393 if (!isa<GetElementPtrInst>(U) && 394 (!isa<ConstantExpr>(U) || 395 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 396 return false; 397 398 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 399 // don't like < 3 operand CE's, and we don't like non-constant integer 400 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 401 // value of C. 402 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 403 !cast<Constant>(U->getOperand(1))->isNullValue() || 404 !isa<ConstantInt>(U->getOperand(2))) 405 return false; 406 407 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 408 ++GEPI; // Skip over the pointer index. 409 410 // If this is a use of an array allocation, do a bit more checking for sanity. 411 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 412 uint64_t NumElements = AT->getNumElements(); 413 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 414 415 // Check to make sure that index falls within the array. If not, 416 // something funny is going on, so we won't do the optimization. 417 // 418 if (Idx->getZExtValue() >= NumElements) 419 return false; 420 421 // We cannot scalar repl this level of the array unless any array 422 // sub-indices are in-range constants. In particular, consider: 423 // A[0][i]. We cannot know that the user isn't doing invalid things like 424 // allowing i to index an out-of-range subscript that accesses A[1]. 425 // 426 // Scalar replacing *just* the outer index of the array is probably not 427 // going to be a win anyway, so just give up. 428 for (++GEPI; // Skip array index. 429 GEPI != E; 430 ++GEPI) { 431 uint64_t NumElements; 432 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 433 NumElements = SubArrayTy->getNumElements(); 434 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 435 NumElements = SubVectorTy->getNumElements(); 436 else { 437 assert((*GEPI)->isStructTy() && 438 "Indexed GEP type is not array, vector, or struct!"); 439 continue; 440 } 441 442 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 443 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 444 return false; 445 } 446 } 447 448 for (User *UU : U->users()) 449 if (!isSafeSROAElementUse(UU)) 450 return false; 451 452 return true; 453 } 454 455 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it 456 /// is safe for us to perform this transformation. 457 /// 458 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 459 for (User *U : GV->users()) 460 if (!IsUserOfGlobalSafeForSRA(U, GV)) 461 return false; 462 463 return true; 464 } 465 466 467 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global 468 /// variable. This opens the door for other optimizations by exposing the 469 /// behavior of the program in a more fine-grained way. We have determined that 470 /// this transformation is safe already. We return the first global variable we 471 /// insert so that the caller can reprocess it. 472 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 473 // Make sure this global only has simple uses that we can SRA. 474 if (!GlobalUsersSafeToSRA(GV)) 475 return nullptr; 476 477 assert(GV->hasLocalLinkage() && !GV->isConstant()); 478 Constant *Init = GV->getInitializer(); 479 Type *Ty = Init->getType(); 480 481 std::vector<GlobalVariable*> NewGlobals; 482 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 483 484 // Get the alignment of the global, either explicit or target-specific. 485 unsigned StartAlignment = GV->getAlignment(); 486 if (StartAlignment == 0) 487 StartAlignment = DL.getABITypeAlignment(GV->getType()); 488 489 if (StructType *STy = dyn_cast<StructType>(Ty)) { 490 NewGlobals.reserve(STy->getNumElements()); 491 const StructLayout &Layout = *DL.getStructLayout(STy); 492 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 493 Constant *In = Init->getAggregateElement(i); 494 assert(In && "Couldn't get element of initializer?"); 495 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 496 GlobalVariable::InternalLinkage, 497 In, GV->getName()+"."+Twine(i), 498 GV->getThreadLocalMode(), 499 GV->getType()->getAddressSpace()); 500 Globals.insert(GV->getIterator(), NGV); 501 NewGlobals.push_back(NGV); 502 503 // Calculate the known alignment of the field. If the original aggregate 504 // had 256 byte alignment for example, something might depend on that: 505 // propagate info to each field. 506 uint64_t FieldOffset = Layout.getElementOffset(i); 507 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 508 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 509 NGV->setAlignment(NewAlign); 510 } 511 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 512 unsigned NumElements = 0; 513 if (ArrayType *ATy = dyn_cast<ArrayType>(STy)) 514 NumElements = ATy->getNumElements(); 515 else 516 NumElements = cast<VectorType>(STy)->getNumElements(); 517 518 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 519 return nullptr; // It's not worth it. 520 NewGlobals.reserve(NumElements); 521 522 uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType()); 523 unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType()); 524 for (unsigned i = 0, e = NumElements; i != e; ++i) { 525 Constant *In = Init->getAggregateElement(i); 526 assert(In && "Couldn't get element of initializer?"); 527 528 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 529 GlobalVariable::InternalLinkage, 530 In, GV->getName()+"."+Twine(i), 531 GV->getThreadLocalMode(), 532 GV->getType()->getAddressSpace()); 533 Globals.insert(GV->getIterator(), NGV); 534 NewGlobals.push_back(NGV); 535 536 // Calculate the known alignment of the field. If the original aggregate 537 // had 256 byte alignment for example, something might depend on that: 538 // propagate info to each field. 539 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 540 if (NewAlign > EltAlign) 541 NGV->setAlignment(NewAlign); 542 } 543 } 544 545 if (NewGlobals.empty()) 546 return nullptr; 547 548 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 549 550 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 551 552 // Loop over all of the uses of the global, replacing the constantexpr geps, 553 // with smaller constantexpr geps or direct references. 554 while (!GV->use_empty()) { 555 User *GEP = GV->user_back(); 556 assert(((isa<ConstantExpr>(GEP) && 557 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 558 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 559 560 // Ignore the 1th operand, which has to be zero or else the program is quite 561 // broken (undefined). Get the 2nd operand, which is the structure or array 562 // index. 563 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 564 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 565 566 Value *NewPtr = NewGlobals[Val]; 567 Type *NewTy = NewGlobals[Val]->getValueType(); 568 569 // Form a shorter GEP if needed. 570 if (GEP->getNumOperands() > 3) { 571 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 572 SmallVector<Constant*, 8> Idxs; 573 Idxs.push_back(NullInt); 574 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 575 Idxs.push_back(CE->getOperand(i)); 576 NewPtr = 577 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 578 } else { 579 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 580 SmallVector<Value*, 8> Idxs; 581 Idxs.push_back(NullInt); 582 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 583 Idxs.push_back(GEPI->getOperand(i)); 584 NewPtr = GetElementPtrInst::Create( 585 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 586 } 587 } 588 GEP->replaceAllUsesWith(NewPtr); 589 590 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 591 GEPI->eraseFromParent(); 592 else 593 cast<ConstantExpr>(GEP)->destroyConstant(); 594 } 595 596 // Delete the old global, now that it is dead. 597 Globals.erase(GV); 598 ++NumSRA; 599 600 // Loop over the new globals array deleting any globals that are obviously 601 // dead. This can arise due to scalarization of a structure or an array that 602 // has elements that are dead. 603 unsigned FirstGlobal = 0; 604 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 605 if (NewGlobals[i]->use_empty()) { 606 Globals.erase(NewGlobals[i]); 607 if (FirstGlobal == i) ++FirstGlobal; 608 } 609 610 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 611 } 612 613 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified 614 /// value will trap if the value is dynamically null. PHIs keeps track of any 615 /// phi nodes we've seen to avoid reprocessing them. 616 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 617 SmallPtrSetImpl<const PHINode*> &PHIs) { 618 for (const User *U : V->users()) 619 if (isa<LoadInst>(U)) { 620 // Will trap. 621 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 622 if (SI->getOperand(0) == V) { 623 //cerr << "NONTRAPPING USE: " << *U; 624 return false; // Storing the value. 625 } 626 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 627 if (CI->getCalledValue() != V) { 628 //cerr << "NONTRAPPING USE: " << *U; 629 return false; // Not calling the ptr 630 } 631 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 632 if (II->getCalledValue() != V) { 633 //cerr << "NONTRAPPING USE: " << *U; 634 return false; // Not calling the ptr 635 } 636 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 637 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 638 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 639 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 640 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 641 // If we've already seen this phi node, ignore it, it has already been 642 // checked. 643 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 644 return false; 645 } else if (isa<ICmpInst>(U) && 646 isa<ConstantPointerNull>(U->getOperand(1))) { 647 // Ignore icmp X, null 648 } else { 649 //cerr << "NONTRAPPING USE: " << *U; 650 return false; 651 } 652 653 return true; 654 } 655 656 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads 657 /// from GV will trap if the loaded value is null. Note that this also permits 658 /// comparisons of the loaded value against null, as a special case. 659 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 660 for (const User *U : GV->users()) 661 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 662 SmallPtrSet<const PHINode*, 8> PHIs; 663 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 664 return false; 665 } else if (isa<StoreInst>(U)) { 666 // Ignore stores to the global. 667 } else { 668 // We don't know or understand this user, bail out. 669 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 670 return false; 671 } 672 return true; 673 } 674 675 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 676 bool Changed = false; 677 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 678 Instruction *I = cast<Instruction>(*UI++); 679 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 680 LI->setOperand(0, NewV); 681 Changed = true; 682 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 683 if (SI->getOperand(1) == V) { 684 SI->setOperand(1, NewV); 685 Changed = true; 686 } 687 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 688 CallSite CS(I); 689 if (CS.getCalledValue() == V) { 690 // Calling through the pointer! Turn into a direct call, but be careful 691 // that the pointer is not also being passed as an argument. 692 CS.setCalledFunction(NewV); 693 Changed = true; 694 bool PassedAsArg = false; 695 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 696 if (CS.getArgument(i) == V) { 697 PassedAsArg = true; 698 CS.setArgument(i, NewV); 699 } 700 701 if (PassedAsArg) { 702 // Being passed as an argument also. Be careful to not invalidate UI! 703 UI = V->user_begin(); 704 } 705 } 706 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 707 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 708 ConstantExpr::getCast(CI->getOpcode(), 709 NewV, CI->getType())); 710 if (CI->use_empty()) { 711 Changed = true; 712 CI->eraseFromParent(); 713 } 714 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 715 // Should handle GEP here. 716 SmallVector<Constant*, 8> Idxs; 717 Idxs.reserve(GEPI->getNumOperands()-1); 718 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 719 i != e; ++i) 720 if (Constant *C = dyn_cast<Constant>(*i)) 721 Idxs.push_back(C); 722 else 723 break; 724 if (Idxs.size() == GEPI->getNumOperands()-1) 725 Changed |= OptimizeAwayTrappingUsesOfValue( 726 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 727 if (GEPI->use_empty()) { 728 Changed = true; 729 GEPI->eraseFromParent(); 730 } 731 } 732 } 733 734 return Changed; 735 } 736 737 738 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null 739 /// value stored into it. If there are uses of the loaded value that would trap 740 /// if the loaded value is dynamically null, then we know that they cannot be 741 /// reachable with a null optimize away the load. 742 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 743 const DataLayout &DL, 744 TargetLibraryInfo *TLI) { 745 bool Changed = false; 746 747 // Keep track of whether we are able to remove all the uses of the global 748 // other than the store that defines it. 749 bool AllNonStoreUsesGone = true; 750 751 // Replace all uses of loads with uses of uses of the stored value. 752 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 753 User *GlobalUser = *GUI++; 754 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 755 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 756 // If we were able to delete all uses of the loads 757 if (LI->use_empty()) { 758 LI->eraseFromParent(); 759 Changed = true; 760 } else { 761 AllNonStoreUsesGone = false; 762 } 763 } else if (isa<StoreInst>(GlobalUser)) { 764 // Ignore the store that stores "LV" to the global. 765 assert(GlobalUser->getOperand(1) == GV && 766 "Must be storing *to* the global"); 767 } else { 768 AllNonStoreUsesGone = false; 769 770 // If we get here we could have other crazy uses that are transitively 771 // loaded. 772 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 773 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 774 isa<BitCastInst>(GlobalUser) || 775 isa<GetElementPtrInst>(GlobalUser)) && 776 "Only expect load and stores!"); 777 } 778 } 779 780 if (Changed) { 781 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n"); 782 ++NumGlobUses; 783 } 784 785 // If we nuked all of the loads, then none of the stores are needed either, 786 // nor is the global. 787 if (AllNonStoreUsesGone) { 788 if (isLeakCheckerRoot(GV)) { 789 Changed |= CleanupPointerRootUsers(GV, TLI); 790 } else { 791 Changed = true; 792 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 793 } 794 if (GV->use_empty()) { 795 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 796 Changed = true; 797 GV->eraseFromParent(); 798 ++NumDeleted; 799 } 800 } 801 return Changed; 802 } 803 804 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the 805 /// instructions that are foldable. 806 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 807 TargetLibraryInfo *TLI) { 808 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 809 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 810 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 811 I->replaceAllUsesWith(NewC); 812 813 // Advance UI to the next non-I use to avoid invalidating it! 814 // Instructions could multiply use V. 815 while (UI != E && *UI == I) 816 ++UI; 817 I->eraseFromParent(); 818 } 819 } 820 821 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global 822 /// variable, and transforms the program as if it always contained the result of 823 /// the specified malloc. Because it is always the result of the specified 824 /// malloc, there is no reason to actually DO the malloc. Instead, turn the 825 /// malloc into a global, and any loads of GV as uses of the new global. 826 static GlobalVariable * 827 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 828 ConstantInt *NElements, const DataLayout &DL, 829 TargetLibraryInfo *TLI) { 830 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 831 832 Type *GlobalType; 833 if (NElements->getZExtValue() == 1) 834 GlobalType = AllocTy; 835 else 836 // If we have an array allocation, the global variable is of an array. 837 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 838 839 // Create the new global variable. The contents of the malloc'd memory is 840 // undefined, so initialize with an undef value. 841 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(), 842 GlobalType, false, 843 GlobalValue::InternalLinkage, 844 UndefValue::get(GlobalType), 845 GV->getName()+".body", 846 GV, 847 GV->getThreadLocalMode()); 848 849 // If there are bitcast users of the malloc (which is typical, usually we have 850 // a malloc + bitcast) then replace them with uses of the new global. Update 851 // other users to use the global as well. 852 BitCastInst *TheBC = nullptr; 853 while (!CI->use_empty()) { 854 Instruction *User = cast<Instruction>(CI->user_back()); 855 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 856 if (BCI->getType() == NewGV->getType()) { 857 BCI->replaceAllUsesWith(NewGV); 858 BCI->eraseFromParent(); 859 } else { 860 BCI->setOperand(0, NewGV); 861 } 862 } else { 863 if (!TheBC) 864 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 865 User->replaceUsesOfWith(CI, TheBC); 866 } 867 } 868 869 Constant *RepValue = NewGV; 870 if (NewGV->getType() != GV->getType()->getElementType()) 871 RepValue = ConstantExpr::getBitCast(RepValue, 872 GV->getType()->getElementType()); 873 874 // If there is a comparison against null, we will insert a global bool to 875 // keep track of whether the global was initialized yet or not. 876 GlobalVariable *InitBool = 877 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 878 GlobalValue::InternalLinkage, 879 ConstantInt::getFalse(GV->getContext()), 880 GV->getName()+".init", GV->getThreadLocalMode()); 881 bool InitBoolUsed = false; 882 883 // Loop over all uses of GV, processing them in turn. 884 while (!GV->use_empty()) { 885 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 886 // The global is initialized when the store to it occurs. 887 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 888 SI->getOrdering(), SI->getSynchScope(), SI); 889 SI->eraseFromParent(); 890 continue; 891 } 892 893 LoadInst *LI = cast<LoadInst>(GV->user_back()); 894 while (!LI->use_empty()) { 895 Use &LoadUse = *LI->use_begin(); 896 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 897 if (!ICI) { 898 LoadUse = RepValue; 899 continue; 900 } 901 902 // Replace the cmp X, 0 with a use of the bool value. 903 // Sink the load to where the compare was, if atomic rules allow us to. 904 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 905 LI->getOrdering(), LI->getSynchScope(), 906 LI->isUnordered() ? (Instruction*)ICI : LI); 907 InitBoolUsed = true; 908 switch (ICI->getPredicate()) { 909 default: llvm_unreachable("Unknown ICmp Predicate!"); 910 case ICmpInst::ICMP_ULT: 911 case ICmpInst::ICMP_SLT: // X < null -> always false 912 LV = ConstantInt::getFalse(GV->getContext()); 913 break; 914 case ICmpInst::ICMP_ULE: 915 case ICmpInst::ICMP_SLE: 916 case ICmpInst::ICMP_EQ: 917 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 918 break; 919 case ICmpInst::ICMP_NE: 920 case ICmpInst::ICMP_UGE: 921 case ICmpInst::ICMP_SGE: 922 case ICmpInst::ICMP_UGT: 923 case ICmpInst::ICMP_SGT: 924 break; // no change. 925 } 926 ICI->replaceAllUsesWith(LV); 927 ICI->eraseFromParent(); 928 } 929 LI->eraseFromParent(); 930 } 931 932 // If the initialization boolean was used, insert it, otherwise delete it. 933 if (!InitBoolUsed) { 934 while (!InitBool->use_empty()) // Delete initializations 935 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 936 delete InitBool; 937 } else 938 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 939 940 // Now the GV is dead, nuke it and the malloc.. 941 GV->eraseFromParent(); 942 CI->eraseFromParent(); 943 944 // To further other optimizations, loop over all users of NewGV and try to 945 // constant prop them. This will promote GEP instructions with constant 946 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 947 ConstantPropUsersOf(NewGV, DL, TLI); 948 if (RepValue != NewGV) 949 ConstantPropUsersOf(RepValue, DL, TLI); 950 951 return NewGV; 952 } 953 954 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking 955 /// to make sure that there are no complex uses of V. We permit simple things 956 /// like dereferencing the pointer, but not storing through the address, unless 957 /// it is to the specified global. 958 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 959 const GlobalVariable *GV, 960 SmallPtrSetImpl<const PHINode*> &PHIs) { 961 for (const User *U : V->users()) { 962 const Instruction *Inst = cast<Instruction>(U); 963 964 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 965 continue; // Fine, ignore. 966 } 967 968 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 969 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 970 return false; // Storing the pointer itself... bad. 971 continue; // Otherwise, storing through it, or storing into GV... fine. 972 } 973 974 // Must index into the array and into the struct. 975 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 976 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 977 return false; 978 continue; 979 } 980 981 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 982 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 983 // cycles. 984 if (PHIs.insert(PN).second) 985 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 986 return false; 987 continue; 988 } 989 990 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 991 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 992 return false; 993 continue; 994 } 995 996 return false; 997 } 998 return true; 999 } 1000 1001 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV 1002 /// somewhere. Transform all uses of the allocation into loads from the 1003 /// global and uses of the resultant pointer. Further, delete the store into 1004 /// GV. This assumes that these value pass the 1005 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1006 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1007 GlobalVariable *GV) { 1008 while (!Alloc->use_empty()) { 1009 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 1010 Instruction *InsertPt = U; 1011 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1012 // If this is the store of the allocation into the global, remove it. 1013 if (SI->getOperand(1) == GV) { 1014 SI->eraseFromParent(); 1015 continue; 1016 } 1017 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1018 // Insert the load in the corresponding predecessor, not right before the 1019 // PHI. 1020 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 1021 } else if (isa<BitCastInst>(U)) { 1022 // Must be bitcast between the malloc and store to initialize the global. 1023 ReplaceUsesOfMallocWithGlobal(U, GV); 1024 U->eraseFromParent(); 1025 continue; 1026 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1027 // If this is a "GEP bitcast" and the user is a store to the global, then 1028 // just process it as a bitcast. 1029 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1030 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1031 if (SI->getOperand(1) == GV) { 1032 // Must be bitcast GEP between the malloc and store to initialize 1033 // the global. 1034 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1035 GEPI->eraseFromParent(); 1036 continue; 1037 } 1038 } 1039 1040 // Insert a load from the global, and use it instead of the malloc. 1041 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1042 U->replaceUsesOfWith(Alloc, NL); 1043 } 1044 } 1045 1046 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi 1047 /// of a load) are simple enough to perform heap SRA on. This permits GEP's 1048 /// that index through the array and struct field, icmps of null, and PHIs. 1049 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1050 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1051 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1052 // We permit two users of the load: setcc comparing against the null 1053 // pointer, and a getelementptr of a specific form. 1054 for (const User *U : V->users()) { 1055 const Instruction *UI = cast<Instruction>(U); 1056 1057 // Comparison against null is ok. 1058 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1059 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1060 return false; 1061 continue; 1062 } 1063 1064 // getelementptr is also ok, but only a simple form. 1065 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1066 // Must index into the array and into the struct. 1067 if (GEPI->getNumOperands() < 3) 1068 return false; 1069 1070 // Otherwise the GEP is ok. 1071 continue; 1072 } 1073 1074 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1075 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1076 // This means some phi nodes are dependent on each other. 1077 // Avoid infinite looping! 1078 return false; 1079 if (!LoadUsingPHIs.insert(PN).second) 1080 // If we have already analyzed this PHI, then it is safe. 1081 continue; 1082 1083 // Make sure all uses of the PHI are simple enough to transform. 1084 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1085 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1086 return false; 1087 1088 continue; 1089 } 1090 1091 // Otherwise we don't know what this is, not ok. 1092 return false; 1093 } 1094 1095 return true; 1096 } 1097 1098 1099 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from 1100 /// GV are simple enough to perform HeapSRA, return true. 1101 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1102 Instruction *StoredVal) { 1103 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1104 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1105 for (const User *U : GV->users()) 1106 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1107 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1108 LoadUsingPHIsPerLoad)) 1109 return false; 1110 LoadUsingPHIsPerLoad.clear(); 1111 } 1112 1113 // If we reach here, we know that all uses of the loads and transitive uses 1114 // (through PHI nodes) are simple enough to transform. However, we don't know 1115 // that all inputs the to the PHI nodes are in the same equivalence sets. 1116 // Check to verify that all operands of the PHIs are either PHIS that can be 1117 // transformed, loads from GV, or MI itself. 1118 for (const PHINode *PN : LoadUsingPHIs) { 1119 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1120 Value *InVal = PN->getIncomingValue(op); 1121 1122 // PHI of the stored value itself is ok. 1123 if (InVal == StoredVal) continue; 1124 1125 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1126 // One of the PHIs in our set is (optimistically) ok. 1127 if (LoadUsingPHIs.count(InPN)) 1128 continue; 1129 return false; 1130 } 1131 1132 // Load from GV is ok. 1133 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1134 if (LI->getOperand(0) == GV) 1135 continue; 1136 1137 // UNDEF? NULL? 1138 1139 // Anything else is rejected. 1140 return false; 1141 } 1142 } 1143 1144 return true; 1145 } 1146 1147 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1148 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1149 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1150 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1151 1152 if (FieldNo >= FieldVals.size()) 1153 FieldVals.resize(FieldNo+1); 1154 1155 // If we already have this value, just reuse the previously scalarized 1156 // version. 1157 if (Value *FieldVal = FieldVals[FieldNo]) 1158 return FieldVal; 1159 1160 // Depending on what instruction this is, we have several cases. 1161 Value *Result; 1162 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1163 // This is a scalarized version of the load from the global. Just create 1164 // a new Load of the scalarized global. 1165 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1166 InsertedScalarizedValues, 1167 PHIsToRewrite), 1168 LI->getName()+".f"+Twine(FieldNo), LI); 1169 } else { 1170 PHINode *PN = cast<PHINode>(V); 1171 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1172 // field. 1173 1174 PointerType *PTy = cast<PointerType>(PN->getType()); 1175 StructType *ST = cast<StructType>(PTy->getElementType()); 1176 1177 unsigned AS = PTy->getAddressSpace(); 1178 PHINode *NewPN = 1179 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1180 PN->getNumIncomingValues(), 1181 PN->getName()+".f"+Twine(FieldNo), PN); 1182 Result = NewPN; 1183 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1184 } 1185 1186 return FieldVals[FieldNo] = Result; 1187 } 1188 1189 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from 1190 /// the load, rewrite the derived value to use the HeapSRoA'd load. 1191 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1192 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1193 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1194 // If this is a comparison against null, handle it. 1195 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1196 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1197 // If we have a setcc of the loaded pointer, we can use a setcc of any 1198 // field. 1199 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1200 InsertedScalarizedValues, PHIsToRewrite); 1201 1202 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1203 Constant::getNullValue(NPtr->getType()), 1204 SCI->getName()); 1205 SCI->replaceAllUsesWith(New); 1206 SCI->eraseFromParent(); 1207 return; 1208 } 1209 1210 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1211 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1212 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1213 && "Unexpected GEPI!"); 1214 1215 // Load the pointer for this field. 1216 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1217 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1218 InsertedScalarizedValues, PHIsToRewrite); 1219 1220 // Create the new GEP idx vector. 1221 SmallVector<Value*, 8> GEPIdx; 1222 GEPIdx.push_back(GEPI->getOperand(1)); 1223 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1224 1225 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1226 GEPI->getName(), GEPI); 1227 GEPI->replaceAllUsesWith(NGEPI); 1228 GEPI->eraseFromParent(); 1229 return; 1230 } 1231 1232 // Recursively transform the users of PHI nodes. This will lazily create the 1233 // PHIs that are needed for individual elements. Keep track of what PHIs we 1234 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1235 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1236 // already been seen first by another load, so its uses have already been 1237 // processed. 1238 PHINode *PN = cast<PHINode>(LoadUser); 1239 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1240 std::vector<Value*>())).second) 1241 return; 1242 1243 // If this is the first time we've seen this PHI, recursively process all 1244 // users. 1245 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1246 Instruction *User = cast<Instruction>(*UI++); 1247 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1248 } 1249 } 1250 1251 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr 1252 /// is a value loaded from the global. Eliminate all uses of Ptr, making them 1253 /// use FieldGlobals instead. All uses of loaded values satisfy 1254 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1255 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1256 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1257 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1258 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1259 Instruction *User = cast<Instruction>(*UI++); 1260 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1261 } 1262 1263 if (Load->use_empty()) { 1264 Load->eraseFromParent(); 1265 InsertedScalarizedValues.erase(Load); 1266 } 1267 } 1268 1269 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break 1270 /// it up into multiple allocations of arrays of the fields. 1271 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1272 Value *NElems, const DataLayout &DL, 1273 const TargetLibraryInfo *TLI) { 1274 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1275 Type *MAT = getMallocAllocatedType(CI, TLI); 1276 StructType *STy = cast<StructType>(MAT); 1277 1278 // There is guaranteed to be at least one use of the malloc (storing 1279 // it into GV). If there are other uses, change them to be uses of 1280 // the global to simplify later code. This also deletes the store 1281 // into GV. 1282 ReplaceUsesOfMallocWithGlobal(CI, GV); 1283 1284 // Okay, at this point, there are no users of the malloc. Insert N 1285 // new mallocs at the same place as CI, and N globals. 1286 std::vector<Value*> FieldGlobals; 1287 std::vector<Value*> FieldMallocs; 1288 1289 unsigned AS = GV->getType()->getPointerAddressSpace(); 1290 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1291 Type *FieldTy = STy->getElementType(FieldNo); 1292 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1293 1294 GlobalVariable *NGV = 1295 new GlobalVariable(*GV->getParent(), 1296 PFieldTy, false, GlobalValue::InternalLinkage, 1297 Constant::getNullValue(PFieldTy), 1298 GV->getName() + ".f" + Twine(FieldNo), GV, 1299 GV->getThreadLocalMode()); 1300 FieldGlobals.push_back(NGV); 1301 1302 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1303 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1304 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1305 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1306 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1307 ConstantInt::get(IntPtrTy, TypeSize), 1308 NElems, nullptr, 1309 CI->getName() + ".f" + Twine(FieldNo)); 1310 FieldMallocs.push_back(NMI); 1311 new StoreInst(NMI, NGV, CI); 1312 } 1313 1314 // The tricky aspect of this transformation is handling the case when malloc 1315 // fails. In the original code, malloc failing would set the result pointer 1316 // of malloc to null. In this case, some mallocs could succeed and others 1317 // could fail. As such, we emit code that looks like this: 1318 // F0 = malloc(field0) 1319 // F1 = malloc(field1) 1320 // F2 = malloc(field2) 1321 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1322 // if (F0) { free(F0); F0 = 0; } 1323 // if (F1) { free(F1); F1 = 0; } 1324 // if (F2) { free(F2); F2 = 0; } 1325 // } 1326 // The malloc can also fail if its argument is too large. 1327 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1328 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1329 ConstantZero, "isneg"); 1330 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1331 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1332 Constant::getNullValue(FieldMallocs[i]->getType()), 1333 "isnull"); 1334 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1335 } 1336 1337 // Split the basic block at the old malloc. 1338 BasicBlock *OrigBB = CI->getParent(); 1339 BasicBlock *ContBB = 1340 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1341 1342 // Create the block to check the first condition. Put all these blocks at the 1343 // end of the function as they are unlikely to be executed. 1344 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1345 "malloc_ret_null", 1346 OrigBB->getParent()); 1347 1348 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1349 // branch on RunningOr. 1350 OrigBB->getTerminator()->eraseFromParent(); 1351 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1352 1353 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1354 // pointer, because some may be null while others are not. 1355 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1356 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1357 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1358 Constant::getNullValue(GVVal->getType())); 1359 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1360 OrigBB->getParent()); 1361 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1362 OrigBB->getParent()); 1363 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1364 Cmp, NullPtrBlock); 1365 1366 // Fill in FreeBlock. 1367 CallInst::CreateFree(GVVal, BI); 1368 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1369 FreeBlock); 1370 BranchInst::Create(NextBlock, FreeBlock); 1371 1372 NullPtrBlock = NextBlock; 1373 } 1374 1375 BranchInst::Create(ContBB, NullPtrBlock); 1376 1377 // CI is no longer needed, remove it. 1378 CI->eraseFromParent(); 1379 1380 /// InsertedScalarizedLoads - As we process loads, if we can't immediately 1381 /// update all uses of the load, keep track of what scalarized loads are 1382 /// inserted for a given load. 1383 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1384 InsertedScalarizedValues[GV] = FieldGlobals; 1385 1386 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1387 1388 // Okay, the malloc site is completely handled. All of the uses of GV are now 1389 // loads, and all uses of those loads are simple. Rewrite them to use loads 1390 // of the per-field globals instead. 1391 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1392 Instruction *User = cast<Instruction>(*UI++); 1393 1394 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1395 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1396 continue; 1397 } 1398 1399 // Must be a store of null. 1400 StoreInst *SI = cast<StoreInst>(User); 1401 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1402 "Unexpected heap-sra user!"); 1403 1404 // Insert a store of null into each global. 1405 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1406 PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType()); 1407 Constant *Null = Constant::getNullValue(PT->getElementType()); 1408 new StoreInst(Null, FieldGlobals[i], SI); 1409 } 1410 // Erase the original store. 1411 SI->eraseFromParent(); 1412 } 1413 1414 // While we have PHIs that are interesting to rewrite, do it. 1415 while (!PHIsToRewrite.empty()) { 1416 PHINode *PN = PHIsToRewrite.back().first; 1417 unsigned FieldNo = PHIsToRewrite.back().second; 1418 PHIsToRewrite.pop_back(); 1419 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1420 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1421 1422 // Add all the incoming values. This can materialize more phis. 1423 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1424 Value *InVal = PN->getIncomingValue(i); 1425 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1426 PHIsToRewrite); 1427 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1428 } 1429 } 1430 1431 // Drop all inter-phi links and any loads that made it this far. 1432 for (DenseMap<Value*, std::vector<Value*> >::iterator 1433 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1434 I != E; ++I) { 1435 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1436 PN->dropAllReferences(); 1437 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1438 LI->dropAllReferences(); 1439 } 1440 1441 // Delete all the phis and loads now that inter-references are dead. 1442 for (DenseMap<Value*, std::vector<Value*> >::iterator 1443 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1444 I != E; ++I) { 1445 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1446 PN->eraseFromParent(); 1447 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1448 LI->eraseFromParent(); 1449 } 1450 1451 // The old global is now dead, remove it. 1452 GV->eraseFromParent(); 1453 1454 ++NumHeapSRA; 1455 return cast<GlobalVariable>(FieldGlobals[0]); 1456 } 1457 1458 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a 1459 /// pointer global variable with a single value stored it that is a malloc or 1460 /// cast of malloc. 1461 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1462 Type *AllocTy, 1463 AtomicOrdering Ordering, 1464 Module::global_iterator &GVI, 1465 const DataLayout &DL, 1466 TargetLibraryInfo *TLI) { 1467 // If this is a malloc of an abstract type, don't touch it. 1468 if (!AllocTy->isSized()) 1469 return false; 1470 1471 // We can't optimize this global unless all uses of it are *known* to be 1472 // of the malloc value, not of the null initializer value (consider a use 1473 // that compares the global's value against zero to see if the malloc has 1474 // been reached). To do this, we check to see if all uses of the global 1475 // would trap if the global were null: this proves that they must all 1476 // happen after the malloc. 1477 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1478 return false; 1479 1480 // We can't optimize this if the malloc itself is used in a complex way, 1481 // for example, being stored into multiple globals. This allows the 1482 // malloc to be stored into the specified global, loaded icmp'd, and 1483 // GEP'd. These are all things we could transform to using the global 1484 // for. 1485 SmallPtrSet<const PHINode*, 8> PHIs; 1486 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1487 return false; 1488 1489 // If we have a global that is only initialized with a fixed size malloc, 1490 // transform the program to use global memory instead of malloc'd memory. 1491 // This eliminates dynamic allocation, avoids an indirection accessing the 1492 // data, and exposes the resultant global to further GlobalOpt. 1493 // We cannot optimize the malloc if we cannot determine malloc array size. 1494 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1495 if (!NElems) 1496 return false; 1497 1498 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1499 // Restrict this transformation to only working on small allocations 1500 // (2048 bytes currently), as we don't want to introduce a 16M global or 1501 // something. 1502 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1503 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI) 1504 ->getIterator(); 1505 return true; 1506 } 1507 1508 // If the allocation is an array of structures, consider transforming this 1509 // into multiple malloc'd arrays, one for each field. This is basically 1510 // SRoA for malloc'd memory. 1511 1512 if (Ordering != NotAtomic) 1513 return false; 1514 1515 // If this is an allocation of a fixed size array of structs, analyze as a 1516 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1517 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1518 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1519 AllocTy = AT->getElementType(); 1520 1521 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1522 if (!AllocSTy) 1523 return false; 1524 1525 // This the structure has an unreasonable number of fields, leave it 1526 // alone. 1527 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1528 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1529 1530 // If this is a fixed size array, transform the Malloc to be an alloc of 1531 // structs. malloc [100 x struct],1 -> malloc struct, 100 1532 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1533 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1534 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1535 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1536 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1537 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, 1538 AllocSize, NumElements, 1539 nullptr, CI->getName()); 1540 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1541 CI->replaceAllUsesWith(Cast); 1542 CI->eraseFromParent(); 1543 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1544 CI = cast<CallInst>(BCI->getOperand(0)); 1545 else 1546 CI = cast<CallInst>(Malloc); 1547 } 1548 1549 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), 1550 DL, TLI) 1551 ->getIterator(); 1552 return true; 1553 } 1554 1555 return false; 1556 } 1557 1558 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge 1559 // that only one value (besides its initializer) is ever stored to the global. 1560 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1561 AtomicOrdering Ordering, 1562 Module::global_iterator &GVI, 1563 const DataLayout &DL, 1564 TargetLibraryInfo *TLI) { 1565 // Ignore no-op GEPs and bitcasts. 1566 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1567 1568 // If we are dealing with a pointer global that is initialized to null and 1569 // only has one (non-null) value stored into it, then we can optimize any 1570 // users of the loaded value (often calls and loads) that would trap if the 1571 // value was null. 1572 if (GV->getInitializer()->getType()->isPointerTy() && 1573 GV->getInitializer()->isNullValue()) { 1574 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1575 if (GV->getInitializer()->getType() != SOVC->getType()) 1576 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1577 1578 // Optimize away any trapping uses of the loaded value. 1579 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1580 return true; 1581 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1582 Type *MallocType = getMallocAllocatedType(CI, TLI); 1583 if (MallocType && 1584 TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI, 1585 DL, TLI)) 1586 return true; 1587 } 1588 } 1589 1590 return false; 1591 } 1592 1593 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only 1594 /// two values ever stored into GV are its initializer and OtherVal. See if we 1595 /// can shrink the global into a boolean and select between the two values 1596 /// whenever it is used. This exposes the values to other scalar optimizations. 1597 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1598 Type *GVElType = GV->getType()->getElementType(); 1599 1600 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1601 // an FP value, pointer or vector, don't do this optimization because a select 1602 // between them is very expensive and unlikely to lead to later 1603 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1604 // where v1 and v2 both require constant pool loads, a big loss. 1605 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1606 GVElType->isFloatingPointTy() || 1607 GVElType->isPointerTy() || GVElType->isVectorTy()) 1608 return false; 1609 1610 // Walk the use list of the global seeing if all the uses are load or store. 1611 // If there is anything else, bail out. 1612 for (User *U : GV->users()) 1613 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1614 return false; 1615 1616 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1617 1618 // Create the new global, initializing it to false. 1619 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1620 false, 1621 GlobalValue::InternalLinkage, 1622 ConstantInt::getFalse(GV->getContext()), 1623 GV->getName()+".b", 1624 GV->getThreadLocalMode(), 1625 GV->getType()->getAddressSpace()); 1626 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1627 1628 Constant *InitVal = GV->getInitializer(); 1629 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1630 "No reason to shrink to bool!"); 1631 1632 // If initialized to zero and storing one into the global, we can use a cast 1633 // instead of a select to synthesize the desired value. 1634 bool IsOneZero = false; 1635 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1636 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1637 1638 while (!GV->use_empty()) { 1639 Instruction *UI = cast<Instruction>(GV->user_back()); 1640 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1641 // Change the store into a boolean store. 1642 bool StoringOther = SI->getOperand(0) == OtherVal; 1643 // Only do this if we weren't storing a loaded value. 1644 Value *StoreVal; 1645 if (StoringOther || SI->getOperand(0) == InitVal) { 1646 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1647 StoringOther); 1648 } else { 1649 // Otherwise, we are storing a previously loaded copy. To do this, 1650 // change the copy from copying the original value to just copying the 1651 // bool. 1652 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1653 1654 // If we've already replaced the input, StoredVal will be a cast or 1655 // select instruction. If not, it will be a load of the original 1656 // global. 1657 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1658 assert(LI->getOperand(0) == GV && "Not a copy!"); 1659 // Insert a new load, to preserve the saved value. 1660 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1661 LI->getOrdering(), LI->getSynchScope(), LI); 1662 } else { 1663 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1664 "This is not a form that we understand!"); 1665 StoreVal = StoredVal->getOperand(0); 1666 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1667 } 1668 } 1669 new StoreInst(StoreVal, NewGV, false, 0, 1670 SI->getOrdering(), SI->getSynchScope(), SI); 1671 } else { 1672 // Change the load into a load of bool then a select. 1673 LoadInst *LI = cast<LoadInst>(UI); 1674 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1675 LI->getOrdering(), LI->getSynchScope(), LI); 1676 Value *NSI; 1677 if (IsOneZero) 1678 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1679 else 1680 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1681 NSI->takeName(LI); 1682 LI->replaceAllUsesWith(NSI); 1683 } 1684 UI->eraseFromParent(); 1685 } 1686 1687 // Retain the name of the old global variable. People who are debugging their 1688 // programs may expect these variables to be named the same. 1689 NewGV->takeName(GV); 1690 GV->eraseFromParent(); 1691 return true; 1692 } 1693 1694 1695 /// ProcessGlobal - Analyze the specified global variable and optimize it if 1696 /// possible. If we make a change, return true. 1697 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV, 1698 Module::global_iterator &GVI) { 1699 // Do more involved optimizations if the global is internal. 1700 GV->removeDeadConstantUsers(); 1701 1702 if (GV->use_empty()) { 1703 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV << "\n"); 1704 GV->eraseFromParent(); 1705 ++NumDeleted; 1706 return true; 1707 } 1708 1709 if (!GV->hasLocalLinkage()) 1710 return false; 1711 1712 GlobalStatus GS; 1713 1714 if (GlobalStatus::analyzeGlobal(GV, GS)) 1715 return false; 1716 1717 if (!GS.IsCompared && !GV->hasUnnamedAddr()) { 1718 GV->setUnnamedAddr(true); 1719 NumUnnamed++; 1720 } 1721 1722 if (GV->isConstant() || !GV->hasInitializer()) 1723 return false; 1724 1725 return ProcessInternalGlobal(GV, GVI, GS); 1726 } 1727 1728 /// ProcessInternalGlobal - Analyze the specified global variable and optimize 1729 /// it if possible. If we make a change, return true. 1730 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, 1731 Module::global_iterator &GVI, 1732 const GlobalStatus &GS) { 1733 auto &DL = GV->getParent()->getDataLayout(); 1734 // If this is a first class global and has only one accessing function 1735 // and this function is main (which we know is not recursive), we replace 1736 // the global with a local alloca in this function. 1737 // 1738 // NOTE: It doesn't make sense to promote non-single-value types since we 1739 // are just replacing static memory to stack memory. 1740 // 1741 // If the global is in different address space, don't bring it to stack. 1742 if (!GS.HasMultipleAccessingFunctions && 1743 GS.AccessingFunction && !GS.HasNonInstructionUser && 1744 GV->getType()->getElementType()->isSingleValueType() && 1745 GS.AccessingFunction->getName() == "main" && 1746 GS.AccessingFunction->hasExternalLinkage() && 1747 GV->getType()->getAddressSpace() == 0) { 1748 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV); 1749 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1750 ->getEntryBlock().begin()); 1751 Type *ElemTy = GV->getType()->getElementType(); 1752 // FIXME: Pass Global's alignment when globals have alignment 1753 AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr, 1754 GV->getName(), &FirstI); 1755 if (!isa<UndefValue>(GV->getInitializer())) 1756 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1757 1758 GV->replaceAllUsesWith(Alloca); 1759 GV->eraseFromParent(); 1760 ++NumLocalized; 1761 return true; 1762 } 1763 1764 // If the global is never loaded (but may be stored to), it is dead. 1765 // Delete it now. 1766 if (!GS.IsLoaded) { 1767 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV); 1768 1769 bool Changed; 1770 if (isLeakCheckerRoot(GV)) { 1771 // Delete any constant stores to the global. 1772 Changed = CleanupPointerRootUsers(GV, TLI); 1773 } else { 1774 // Delete any stores we can find to the global. We may not be able to 1775 // make it completely dead though. 1776 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1777 } 1778 1779 // If the global is dead now, delete it. 1780 if (GV->use_empty()) { 1781 GV->eraseFromParent(); 1782 ++NumDeleted; 1783 Changed = true; 1784 } 1785 return Changed; 1786 1787 } else if (GS.StoredType <= GlobalStatus::InitializerStored) { 1788 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1789 GV->setConstant(true); 1790 1791 // Clean up any obviously simplifiable users now. 1792 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1793 1794 // If the global is dead now, just nuke it. 1795 if (GV->use_empty()) { 1796 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1797 << "all users and delete global!\n"); 1798 GV->eraseFromParent(); 1799 ++NumDeleted; 1800 } 1801 1802 ++NumMarked; 1803 return true; 1804 } else if (!GV->getInitializer()->getType()->isSingleValueType()) { 1805 const DataLayout &DL = GV->getParent()->getDataLayout(); 1806 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, DL)) { 1807 GVI = FirstNewGV->getIterator(); // Don't skip the newly produced globals! 1808 return true; 1809 } 1810 } else if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1811 // If the initial value for the global was an undef value, and if only 1812 // one other value was stored into it, we can just change the 1813 // initializer to be the stored value, then delete all stores to the 1814 // global. This allows us to mark it constant. 1815 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1816 if (isa<UndefValue>(GV->getInitializer())) { 1817 // Change the initial value here. 1818 GV->setInitializer(SOVConstant); 1819 1820 // Clean up any obviously simplifiable users now. 1821 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1822 1823 if (GV->use_empty()) { 1824 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1825 << "simplify all users and delete global!\n"); 1826 GV->eraseFromParent(); 1827 ++NumDeleted; 1828 } else { 1829 GVI = GV->getIterator(); 1830 } 1831 ++NumSubstitute; 1832 return true; 1833 } 1834 1835 // Try to optimize globals based on the knowledge that only one value 1836 // (besides its initializer) is ever stored to the global. 1837 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI, 1838 DL, TLI)) 1839 return true; 1840 1841 // Otherwise, if the global was not a boolean, we can shrink it to be a 1842 // boolean. 1843 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 1844 if (GS.Ordering == NotAtomic) { 1845 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1846 ++NumShrunkToBool; 1847 return true; 1848 } 1849 } 1850 } 1851 } 1852 1853 return false; 1854 } 1855 1856 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified 1857 /// function, changing them to FastCC. 1858 static void ChangeCalleesToFastCall(Function *F) { 1859 for (User *U : F->users()) { 1860 if (isa<BlockAddress>(U)) 1861 continue; 1862 CallSite CS(cast<Instruction>(U)); 1863 CS.setCallingConv(CallingConv::Fast); 1864 } 1865 } 1866 1867 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) { 1868 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1869 unsigned Index = Attrs.getSlotIndex(i); 1870 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest)) 1871 continue; 1872 1873 // There can be only one. 1874 return Attrs.removeAttribute(C, Index, Attribute::Nest); 1875 } 1876 1877 return Attrs; 1878 } 1879 1880 static void RemoveNestAttribute(Function *F) { 1881 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 1882 for (User *U : F->users()) { 1883 if (isa<BlockAddress>(U)) 1884 continue; 1885 CallSite CS(cast<Instruction>(U)); 1886 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 1887 } 1888 } 1889 1890 /// Return true if this is a calling convention that we'd like to change. The 1891 /// idea here is that we don't want to mess with the convention if the user 1892 /// explicitly requested something with performance implications like coldcc, 1893 /// GHC, or anyregcc. 1894 static bool isProfitableToMakeFastCC(Function *F) { 1895 CallingConv::ID CC = F->getCallingConv(); 1896 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 1897 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall; 1898 } 1899 1900 bool GlobalOpt::OptimizeFunctions(Module &M) { 1901 bool Changed = false; 1902 // Optimize functions. 1903 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 1904 Function *F = &*FI++; 1905 // Functions without names cannot be referenced outside this module. 1906 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 1907 F->setLinkage(GlobalValue::InternalLinkage); 1908 1909 const Comdat *C = F->getComdat(); 1910 bool inComdat = C && NotDiscardableComdats.count(C); 1911 F->removeDeadConstantUsers(); 1912 if ((!inComdat || F->hasLocalLinkage()) && F->isDefTriviallyDead()) { 1913 F->eraseFromParent(); 1914 Changed = true; 1915 ++NumFnDeleted; 1916 } else if (F->hasLocalLinkage()) { 1917 if (isProfitableToMakeFastCC(F) && !F->isVarArg() && 1918 !F->hasAddressTaken()) { 1919 // If this function has a calling convention worth changing, is not a 1920 // varargs function, and is only called directly, promote it to use the 1921 // Fast calling convention. 1922 F->setCallingConv(CallingConv::Fast); 1923 ChangeCalleesToFastCall(F); 1924 ++NumFastCallFns; 1925 Changed = true; 1926 } 1927 1928 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 1929 !F->hasAddressTaken()) { 1930 // The function is not used by a trampoline intrinsic, so it is safe 1931 // to remove the 'nest' attribute. 1932 RemoveNestAttribute(F); 1933 ++NumNestRemoved; 1934 Changed = true; 1935 } 1936 } 1937 } 1938 return Changed; 1939 } 1940 1941 bool GlobalOpt::OptimizeGlobalVars(Module &M) { 1942 bool Changed = false; 1943 1944 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 1945 GVI != E; ) { 1946 GlobalVariable *GV = &*GVI++; 1947 // Global variables without names cannot be referenced outside this module. 1948 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 1949 GV->setLinkage(GlobalValue::InternalLinkage); 1950 // Simplify the initializer. 1951 if (GV->hasInitializer()) 1952 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) { 1953 auto &DL = M.getDataLayout(); 1954 Constant *New = ConstantFoldConstantExpression(CE, DL, TLI); 1955 if (New && New != CE) 1956 GV->setInitializer(New); 1957 } 1958 1959 if (GV->isDiscardableIfUnused()) { 1960 if (const Comdat *C = GV->getComdat()) 1961 if (NotDiscardableComdats.count(C) && !GV->hasLocalLinkage()) 1962 continue; 1963 Changed |= ProcessGlobal(GV, GVI); 1964 } 1965 } 1966 return Changed; 1967 } 1968 1969 static inline bool 1970 isSimpleEnoughValueToCommit(Constant *C, 1971 SmallPtrSetImpl<Constant *> &SimpleConstants, 1972 const DataLayout &DL); 1973 1974 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be 1975 /// handled by the code generator. We don't want to generate something like: 1976 /// void *X = &X/42; 1977 /// because the code generator doesn't have a relocation that can handle that. 1978 /// 1979 /// This function should be called if C was not found (but just got inserted) 1980 /// in SimpleConstants to avoid having to rescan the same constants all the 1981 /// time. 1982 static bool 1983 isSimpleEnoughValueToCommitHelper(Constant *C, 1984 SmallPtrSetImpl<Constant *> &SimpleConstants, 1985 const DataLayout &DL) { 1986 // Simple global addresses are supported, do not allow dllimport or 1987 // thread-local globals. 1988 if (auto *GV = dyn_cast<GlobalValue>(C)) 1989 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); 1990 1991 // Simple integer, undef, constant aggregate zero, etc are all supported. 1992 if (C->getNumOperands() == 0 || isa<BlockAddress>(C)) 1993 return true; 1994 1995 // Aggregate values are safe if all their elements are. 1996 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1997 isa<ConstantVector>(C)) { 1998 for (Value *Op : C->operands()) 1999 if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL)) 2000 return false; 2001 return true; 2002 } 2003 2004 // We don't know exactly what relocations are allowed in constant expressions, 2005 // so we allow &global+constantoffset, which is safe and uniformly supported 2006 // across targets. 2007 ConstantExpr *CE = cast<ConstantExpr>(C); 2008 switch (CE->getOpcode()) { 2009 case Instruction::BitCast: 2010 // Bitcast is fine if the casted value is fine. 2011 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2012 2013 case Instruction::IntToPtr: 2014 case Instruction::PtrToInt: 2015 // int <=> ptr is fine if the int type is the same size as the 2016 // pointer type. 2017 if (DL.getTypeSizeInBits(CE->getType()) != 2018 DL.getTypeSizeInBits(CE->getOperand(0)->getType())) 2019 return false; 2020 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2021 2022 // GEP is fine if it is simple + constant offset. 2023 case Instruction::GetElementPtr: 2024 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 2025 if (!isa<ConstantInt>(CE->getOperand(i))) 2026 return false; 2027 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2028 2029 case Instruction::Add: 2030 // We allow simple+cst. 2031 if (!isa<ConstantInt>(CE->getOperand(1))) 2032 return false; 2033 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2034 } 2035 return false; 2036 } 2037 2038 static inline bool 2039 isSimpleEnoughValueToCommit(Constant *C, 2040 SmallPtrSetImpl<Constant *> &SimpleConstants, 2041 const DataLayout &DL) { 2042 // If we already checked this constant, we win. 2043 if (!SimpleConstants.insert(C).second) 2044 return true; 2045 // Check the constant. 2046 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); 2047 } 2048 2049 2050 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple 2051 /// enough for us to understand. In particular, if it is a cast to anything 2052 /// other than from one pointer type to another pointer type, we punt. 2053 /// We basically just support direct accesses to globals and GEP's of 2054 /// globals. This should be kept up to date with CommitValueTo. 2055 static bool isSimpleEnoughPointerToCommit(Constant *C) { 2056 // Conservatively, avoid aggregate types. This is because we don't 2057 // want to worry about them partially overlapping other stores. 2058 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) 2059 return false; 2060 2061 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 2062 // Do not allow weak/*_odr/linkonce linkage or external globals. 2063 return GV->hasUniqueInitializer(); 2064 2065 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2066 // Handle a constantexpr gep. 2067 if (CE->getOpcode() == Instruction::GetElementPtr && 2068 isa<GlobalVariable>(CE->getOperand(0)) && 2069 cast<GEPOperator>(CE)->isInBounds()) { 2070 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2071 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2072 // external globals. 2073 if (!GV->hasUniqueInitializer()) 2074 return false; 2075 2076 // The first index must be zero. 2077 ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin())); 2078 if (!CI || !CI->isZero()) return false; 2079 2080 // The remaining indices must be compile-time known integers within the 2081 // notional bounds of the corresponding static array types. 2082 if (!CE->isGEPWithNoNotionalOverIndexing()) 2083 return false; 2084 2085 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2086 2087 // A constantexpr bitcast from a pointer to another pointer is a no-op, 2088 // and we know how to evaluate it by moving the bitcast from the pointer 2089 // operand to the value operand. 2090 } else if (CE->getOpcode() == Instruction::BitCast && 2091 isa<GlobalVariable>(CE->getOperand(0))) { 2092 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2093 // external globals. 2094 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); 2095 } 2096 } 2097 2098 return false; 2099 } 2100 2101 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global 2102 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it. 2103 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into. 2104 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2105 ConstantExpr *Addr, unsigned OpNo) { 2106 // Base case of the recursion. 2107 if (OpNo == Addr->getNumOperands()) { 2108 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2109 return Val; 2110 } 2111 2112 SmallVector<Constant*, 32> Elts; 2113 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2114 // Break up the constant into its elements. 2115 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2116 Elts.push_back(Init->getAggregateElement(i)); 2117 2118 // Replace the element that we are supposed to. 2119 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2120 unsigned Idx = CU->getZExtValue(); 2121 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2122 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2123 2124 // Return the modified struct. 2125 return ConstantStruct::get(STy, Elts); 2126 } 2127 2128 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2129 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2130 2131 uint64_t NumElts; 2132 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy)) 2133 NumElts = ATy->getNumElements(); 2134 else 2135 NumElts = InitTy->getVectorNumElements(); 2136 2137 // Break up the array into elements. 2138 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2139 Elts.push_back(Init->getAggregateElement(i)); 2140 2141 assert(CI->getZExtValue() < NumElts); 2142 Elts[CI->getZExtValue()] = 2143 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2144 2145 if (Init->getType()->isArrayTy()) 2146 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2147 return ConstantVector::get(Elts); 2148 } 2149 2150 /// CommitValueTo - We have decided that Addr (which satisfies the predicate 2151 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2152 static void CommitValueTo(Constant *Val, Constant *Addr) { 2153 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2154 assert(GV->hasInitializer()); 2155 GV->setInitializer(Val); 2156 return; 2157 } 2158 2159 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2160 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2161 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2162 } 2163 2164 namespace { 2165 2166 /// Evaluator - This class evaluates LLVM IR, producing the Constant 2167 /// representing each SSA instruction. Changes to global variables are stored 2168 /// in a mapping that can be iterated over after the evaluation is complete. 2169 /// Once an evaluation call fails, the evaluation object should not be reused. 2170 class Evaluator { 2171 public: 2172 Evaluator(const DataLayout &DL, const TargetLibraryInfo *TLI) 2173 : DL(DL), TLI(TLI) { 2174 ValueStack.emplace_back(); 2175 } 2176 2177 ~Evaluator() { 2178 for (auto &Tmp : AllocaTmps) 2179 // If there are still users of the alloca, the program is doing something 2180 // silly, e.g. storing the address of the alloca somewhere and using it 2181 // later. Since this is undefined, we'll just make it be null. 2182 if (!Tmp->use_empty()) 2183 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType())); 2184 } 2185 2186 /// EvaluateFunction - Evaluate a call to function F, returning true if 2187 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2188 /// arguments for the function. 2189 bool EvaluateFunction(Function *F, Constant *&RetVal, 2190 const SmallVectorImpl<Constant*> &ActualArgs); 2191 2192 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2193 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2194 /// control flows into, or null upon return. 2195 bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB); 2196 2197 Constant *getVal(Value *V) { 2198 if (Constant *CV = dyn_cast<Constant>(V)) return CV; 2199 Constant *R = ValueStack.back().lookup(V); 2200 assert(R && "Reference to an uncomputed value!"); 2201 return R; 2202 } 2203 2204 void setVal(Value *V, Constant *C) { 2205 ValueStack.back()[V] = C; 2206 } 2207 2208 const DenseMap<Constant*, Constant*> &getMutatedMemory() const { 2209 return MutatedMemory; 2210 } 2211 2212 const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const { 2213 return Invariants; 2214 } 2215 2216 private: 2217 Constant *ComputeLoadResult(Constant *P); 2218 2219 /// ValueStack - As we compute SSA register values, we store their contents 2220 /// here. The back of the deque contains the current function and the stack 2221 /// contains the values in the calling frames. 2222 std::deque<DenseMap<Value*, Constant*>> ValueStack; 2223 2224 /// CallStack - This is used to detect recursion. In pathological situations 2225 /// we could hit exponential behavior, but at least there is nothing 2226 /// unbounded. 2227 SmallVector<Function*, 4> CallStack; 2228 2229 /// MutatedMemory - For each store we execute, we update this map. Loads 2230 /// check this to get the most up-to-date value. If evaluation is successful, 2231 /// this state is committed to the process. 2232 DenseMap<Constant*, Constant*> MutatedMemory; 2233 2234 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable 2235 /// to represent its body. This vector is needed so we can delete the 2236 /// temporary globals when we are done. 2237 SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps; 2238 2239 /// Invariants - These global variables have been marked invariant by the 2240 /// static constructor. 2241 SmallPtrSet<GlobalVariable*, 8> Invariants; 2242 2243 /// SimpleConstants - These are constants we have checked and know to be 2244 /// simple enough to live in a static initializer of a global. 2245 SmallPtrSet<Constant*, 8> SimpleConstants; 2246 2247 const DataLayout &DL; 2248 const TargetLibraryInfo *TLI; 2249 }; 2250 2251 } // anonymous namespace 2252 2253 /// ComputeLoadResult - Return the value that would be computed by a load from 2254 /// P after the stores reflected by 'memory' have been performed. If we can't 2255 /// decide, return null. 2256 Constant *Evaluator::ComputeLoadResult(Constant *P) { 2257 // If this memory location has been recently stored, use the stored value: it 2258 // is the most up-to-date. 2259 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P); 2260 if (I != MutatedMemory.end()) return I->second; 2261 2262 // Access it. 2263 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 2264 if (GV->hasDefinitiveInitializer()) 2265 return GV->getInitializer(); 2266 return nullptr; 2267 } 2268 2269 // Handle a constantexpr getelementptr. 2270 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) 2271 if (CE->getOpcode() == Instruction::GetElementPtr && 2272 isa<GlobalVariable>(CE->getOperand(0))) { 2273 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2274 if (GV->hasDefinitiveInitializer()) 2275 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2276 } 2277 2278 return nullptr; // don't know how to evaluate. 2279 } 2280 2281 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2282 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2283 /// control flows into, or null upon return. 2284 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, 2285 BasicBlock *&NextBB) { 2286 // This is the main evaluation loop. 2287 while (1) { 2288 Constant *InstResult = nullptr; 2289 2290 DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); 2291 2292 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 2293 if (!SI->isSimple()) { 2294 DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n"); 2295 return false; // no volatile/atomic accesses. 2296 } 2297 Constant *Ptr = getVal(SI->getOperand(1)); 2298 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2299 DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); 2300 Ptr = ConstantFoldConstantExpression(CE, DL, TLI); 2301 DEBUG(dbgs() << "; To: " << *Ptr << "\n"); 2302 } 2303 if (!isSimpleEnoughPointerToCommit(Ptr)) { 2304 // If this is too complex for us to commit, reject it. 2305 DEBUG(dbgs() << "Pointer is too complex for us to evaluate store."); 2306 return false; 2307 } 2308 2309 Constant *Val = getVal(SI->getOperand(0)); 2310 2311 // If this might be too difficult for the backend to handle (e.g. the addr 2312 // of one global variable divided by another) then we can't commit it. 2313 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { 2314 DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val 2315 << "\n"); 2316 return false; 2317 } 2318 2319 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2320 if (CE->getOpcode() == Instruction::BitCast) { 2321 DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n"); 2322 // If we're evaluating a store through a bitcast, then we need 2323 // to pull the bitcast off the pointer type and push it onto the 2324 // stored value. 2325 Ptr = CE->getOperand(0); 2326 2327 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType(); 2328 2329 // In order to push the bitcast onto the stored value, a bitcast 2330 // from NewTy to Val's type must be legal. If it's not, we can try 2331 // introspecting NewTy to find a legal conversion. 2332 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) { 2333 // If NewTy is a struct, we can convert the pointer to the struct 2334 // into a pointer to its first member. 2335 // FIXME: This could be extended to support arrays as well. 2336 if (StructType *STy = dyn_cast<StructType>(NewTy)) { 2337 NewTy = STy->getTypeAtIndex(0U); 2338 2339 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32); 2340 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); 2341 Constant * const IdxList[] = {IdxZero, IdxZero}; 2342 2343 Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList); 2344 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 2345 Ptr = ConstantFoldConstantExpression(CE, DL, TLI); 2346 2347 // If we can't improve the situation by introspecting NewTy, 2348 // we have to give up. 2349 } else { 2350 DEBUG(dbgs() << "Failed to bitcast constant ptr, can not " 2351 "evaluate.\n"); 2352 return false; 2353 } 2354 } 2355 2356 // If we found compatible types, go ahead and push the bitcast 2357 // onto the stored value. 2358 Val = ConstantExpr::getBitCast(Val, NewTy); 2359 2360 DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n"); 2361 } 2362 } 2363 2364 MutatedMemory[Ptr] = Val; 2365 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 2366 InstResult = ConstantExpr::get(BO->getOpcode(), 2367 getVal(BO->getOperand(0)), 2368 getVal(BO->getOperand(1))); 2369 DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult 2370 << "\n"); 2371 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 2372 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 2373 getVal(CI->getOperand(0)), 2374 getVal(CI->getOperand(1))); 2375 DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult 2376 << "\n"); 2377 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 2378 InstResult = ConstantExpr::getCast(CI->getOpcode(), 2379 getVal(CI->getOperand(0)), 2380 CI->getType()); 2381 DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult 2382 << "\n"); 2383 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 2384 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), 2385 getVal(SI->getOperand(1)), 2386 getVal(SI->getOperand(2))); 2387 DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult 2388 << "\n"); 2389 } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) { 2390 InstResult = ConstantExpr::getExtractValue( 2391 getVal(EVI->getAggregateOperand()), EVI->getIndices()); 2392 DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult 2393 << "\n"); 2394 } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) { 2395 InstResult = ConstantExpr::getInsertValue( 2396 getVal(IVI->getAggregateOperand()), 2397 getVal(IVI->getInsertedValueOperand()), IVI->getIndices()); 2398 DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult 2399 << "\n"); 2400 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 2401 Constant *P = getVal(GEP->getOperand(0)); 2402 SmallVector<Constant*, 8> GEPOps; 2403 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); 2404 i != e; ++i) 2405 GEPOps.push_back(getVal(*i)); 2406 InstResult = 2407 ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps, 2408 cast<GEPOperator>(GEP)->isInBounds()); 2409 DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult 2410 << "\n"); 2411 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 2412 2413 if (!LI->isSimple()) { 2414 DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"); 2415 return false; // no volatile/atomic accesses. 2416 } 2417 2418 Constant *Ptr = getVal(LI->getOperand(0)); 2419 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2420 Ptr = ConstantFoldConstantExpression(CE, DL, TLI); 2421 DEBUG(dbgs() << "Found a constant pointer expression, constant " 2422 "folding: " << *Ptr << "\n"); 2423 } 2424 InstResult = ComputeLoadResult(Ptr); 2425 if (!InstResult) { 2426 DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load." 2427 "\n"); 2428 return false; // Could not evaluate load. 2429 } 2430 2431 DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); 2432 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 2433 if (AI->isArrayAllocation()) { 2434 DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); 2435 return false; // Cannot handle array allocs. 2436 } 2437 Type *Ty = AI->getType()->getElementType(); 2438 AllocaTmps.push_back( 2439 make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage, 2440 UndefValue::get(Ty), AI->getName())); 2441 InstResult = AllocaTmps.back().get(); 2442 DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); 2443 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { 2444 CallSite CS(&*CurInst); 2445 2446 // Debug info can safely be ignored here. 2447 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) { 2448 DEBUG(dbgs() << "Ignoring debug info.\n"); 2449 ++CurInst; 2450 continue; 2451 } 2452 2453 // Cannot handle inline asm. 2454 if (isa<InlineAsm>(CS.getCalledValue())) { 2455 DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); 2456 return false; 2457 } 2458 2459 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { 2460 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { 2461 if (MSI->isVolatile()) { 2462 DEBUG(dbgs() << "Can not optimize a volatile memset " << 2463 "intrinsic.\n"); 2464 return false; 2465 } 2466 Constant *Ptr = getVal(MSI->getDest()); 2467 Constant *Val = getVal(MSI->getValue()); 2468 Constant *DestVal = ComputeLoadResult(getVal(Ptr)); 2469 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { 2470 // This memset is a no-op. 2471 DEBUG(dbgs() << "Ignoring no-op memset.\n"); 2472 ++CurInst; 2473 continue; 2474 } 2475 } 2476 2477 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 2478 II->getIntrinsicID() == Intrinsic::lifetime_end) { 2479 DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); 2480 ++CurInst; 2481 continue; 2482 } 2483 2484 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2485 // We don't insert an entry into Values, as it doesn't have a 2486 // meaningful return value. 2487 if (!II->use_empty()) { 2488 DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n"); 2489 return false; 2490 } 2491 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); 2492 Value *PtrArg = getVal(II->getArgOperand(1)); 2493 Value *Ptr = PtrArg->stripPointerCasts(); 2494 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 2495 Type *ElemTy = cast<PointerType>(GV->getType())->getElementType(); 2496 if (!Size->isAllOnesValue() && 2497 Size->getValue().getLimitedValue() >= 2498 DL.getTypeStoreSize(ElemTy)) { 2499 Invariants.insert(GV); 2500 DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV 2501 << "\n"); 2502 } else { 2503 DEBUG(dbgs() << "Found a global var, but can not treat it as an " 2504 "invariant.\n"); 2505 } 2506 } 2507 // Continue even if we do nothing. 2508 ++CurInst; 2509 continue; 2510 } else if (II->getIntrinsicID() == Intrinsic::assume) { 2511 DEBUG(dbgs() << "Skipping assume intrinsic.\n"); 2512 ++CurInst; 2513 continue; 2514 } 2515 2516 DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n"); 2517 return false; 2518 } 2519 2520 // Resolve function pointers. 2521 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue())); 2522 if (!Callee || Callee->mayBeOverridden()) { 2523 DEBUG(dbgs() << "Can not resolve function pointer.\n"); 2524 return false; // Cannot resolve. 2525 } 2526 2527 SmallVector<Constant*, 8> Formals; 2528 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) 2529 Formals.push_back(getVal(*i)); 2530 2531 if (Callee->isDeclaration()) { 2532 // If this is a function we can constant fold, do it. 2533 if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) { 2534 InstResult = C; 2535 DEBUG(dbgs() << "Constant folded function call. Result: " << 2536 *InstResult << "\n"); 2537 } else { 2538 DEBUG(dbgs() << "Can not constant fold function call.\n"); 2539 return false; 2540 } 2541 } else { 2542 if (Callee->getFunctionType()->isVarArg()) { 2543 DEBUG(dbgs() << "Can not constant fold vararg function call.\n"); 2544 return false; 2545 } 2546 2547 Constant *RetVal = nullptr; 2548 // Execute the call, if successful, use the return value. 2549 ValueStack.emplace_back(); 2550 if (!EvaluateFunction(Callee, RetVal, Formals)) { 2551 DEBUG(dbgs() << "Failed to evaluate function.\n"); 2552 return false; 2553 } 2554 ValueStack.pop_back(); 2555 InstResult = RetVal; 2556 2557 if (InstResult) { 2558 DEBUG(dbgs() << "Successfully evaluated function. Result: " << 2559 InstResult << "\n\n"); 2560 } else { 2561 DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n"); 2562 } 2563 } 2564 } else if (isa<TerminatorInst>(CurInst)) { 2565 DEBUG(dbgs() << "Found a terminator instruction.\n"); 2566 2567 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 2568 if (BI->isUnconditional()) { 2569 NextBB = BI->getSuccessor(0); 2570 } else { 2571 ConstantInt *Cond = 2572 dyn_cast<ConstantInt>(getVal(BI->getCondition())); 2573 if (!Cond) return false; // Cannot determine. 2574 2575 NextBB = BI->getSuccessor(!Cond->getZExtValue()); 2576 } 2577 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 2578 ConstantInt *Val = 2579 dyn_cast<ConstantInt>(getVal(SI->getCondition())); 2580 if (!Val) return false; // Cannot determine. 2581 NextBB = SI->findCaseValue(Val).getCaseSuccessor(); 2582 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 2583 Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); 2584 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 2585 NextBB = BA->getBasicBlock(); 2586 else 2587 return false; // Cannot determine. 2588 } else if (isa<ReturnInst>(CurInst)) { 2589 NextBB = nullptr; 2590 } else { 2591 // invoke, unwind, resume, unreachable. 2592 DEBUG(dbgs() << "Can not handle terminator."); 2593 return false; // Cannot handle this terminator. 2594 } 2595 2596 // We succeeded at evaluating this block! 2597 DEBUG(dbgs() << "Successfully evaluated block.\n"); 2598 return true; 2599 } else { 2600 // Did not know how to evaluate this! 2601 DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction." 2602 "\n"); 2603 return false; 2604 } 2605 2606 if (!CurInst->use_empty()) { 2607 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult)) 2608 InstResult = ConstantFoldConstantExpression(CE, DL, TLI); 2609 2610 setVal(&*CurInst, InstResult); 2611 } 2612 2613 // If we just processed an invoke, we finished evaluating the block. 2614 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { 2615 NextBB = II->getNormalDest(); 2616 DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); 2617 return true; 2618 } 2619 2620 // Advance program counter. 2621 ++CurInst; 2622 } 2623 } 2624 2625 /// EvaluateFunction - Evaluate a call to function F, returning true if 2626 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2627 /// arguments for the function. 2628 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, 2629 const SmallVectorImpl<Constant*> &ActualArgs) { 2630 // Check to see if this function is already executing (recursion). If so, 2631 // bail out. TODO: we might want to accept limited recursion. 2632 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end()) 2633 return false; 2634 2635 CallStack.push_back(F); 2636 2637 // Initialize arguments to the incoming values specified. 2638 unsigned ArgNo = 0; 2639 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 2640 ++AI, ++ArgNo) 2641 setVal(&*AI, ActualArgs[ArgNo]); 2642 2643 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 2644 // we can only evaluate any one basic block at most once. This set keeps 2645 // track of what we have executed so we can detect recursive cases etc. 2646 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 2647 2648 // CurBB - The current basic block we're evaluating. 2649 BasicBlock *CurBB = &F->front(); 2650 2651 BasicBlock::iterator CurInst = CurBB->begin(); 2652 2653 while (1) { 2654 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. 2655 DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); 2656 2657 if (!EvaluateBlock(CurInst, NextBB)) 2658 return false; 2659 2660 if (!NextBB) { 2661 // Successfully running until there's no next block means that we found 2662 // the return. Fill it the return value and pop the call stack. 2663 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); 2664 if (RI->getNumOperands()) 2665 RetVal = getVal(RI->getOperand(0)); 2666 CallStack.pop_back(); 2667 return true; 2668 } 2669 2670 // Okay, we succeeded in evaluating this control flow. See if we have 2671 // executed the new block before. If so, we have a looping function, 2672 // which we cannot evaluate in reasonable time. 2673 if (!ExecutedBlocks.insert(NextBB).second) 2674 return false; // looped! 2675 2676 // Okay, we have never been in this block before. Check to see if there 2677 // are any PHI nodes. If so, evaluate them with information about where 2678 // we came from. 2679 PHINode *PN = nullptr; 2680 for (CurInst = NextBB->begin(); 2681 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 2682 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); 2683 2684 // Advance to the next block. 2685 CurBB = NextBB; 2686 } 2687 } 2688 2689 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if 2690 /// we can. Return true if we can, false otherwise. 2691 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2692 const TargetLibraryInfo *TLI) { 2693 // Call the function. 2694 Evaluator Eval(DL, TLI); 2695 Constant *RetValDummy; 2696 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2697 SmallVector<Constant*, 0>()); 2698 2699 if (EvalSuccess) { 2700 ++NumCtorsEvaluated; 2701 2702 // We succeeded at evaluation: commit the result. 2703 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2704 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2705 << " stores.\n"); 2706 for (DenseMap<Constant*, Constant*>::const_iterator I = 2707 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end(); 2708 I != E; ++I) 2709 CommitValueTo(I->second, I->first); 2710 for (GlobalVariable *GV : Eval.getInvariants()) 2711 GV->setConstant(true); 2712 } 2713 2714 return EvalSuccess; 2715 } 2716 2717 static int compareNames(Constant *const *A, Constant *const *B) { 2718 return (*A)->stripPointerCasts()->getName().compare( 2719 (*B)->stripPointerCasts()->getName()); 2720 } 2721 2722 static void setUsedInitializer(GlobalVariable &V, 2723 const SmallPtrSet<GlobalValue *, 8> &Init) { 2724 if (Init.empty()) { 2725 V.eraseFromParent(); 2726 return; 2727 } 2728 2729 // Type of pointer to the array of pointers. 2730 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2731 2732 SmallVector<llvm::Constant *, 8> UsedArray; 2733 for (GlobalValue *GV : Init) { 2734 Constant *Cast 2735 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2736 UsedArray.push_back(Cast); 2737 } 2738 // Sort to get deterministic order. 2739 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2740 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2741 2742 Module *M = V.getParent(); 2743 V.removeFromParent(); 2744 GlobalVariable *NV = 2745 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage, 2746 llvm::ConstantArray::get(ATy, UsedArray), ""); 2747 NV->takeName(&V); 2748 NV->setSection("llvm.metadata"); 2749 delete &V; 2750 } 2751 2752 namespace { 2753 /// \brief An easy to access representation of llvm.used and llvm.compiler.used. 2754 class LLVMUsed { 2755 SmallPtrSet<GlobalValue *, 8> Used; 2756 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2757 GlobalVariable *UsedV; 2758 GlobalVariable *CompilerUsedV; 2759 2760 public: 2761 LLVMUsed(Module &M) { 2762 UsedV = collectUsedGlobalVariables(M, Used, false); 2763 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2764 } 2765 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator; 2766 typedef iterator_range<iterator> used_iterator_range; 2767 iterator usedBegin() { return Used.begin(); } 2768 iterator usedEnd() { return Used.end(); } 2769 used_iterator_range used() { 2770 return used_iterator_range(usedBegin(), usedEnd()); 2771 } 2772 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2773 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2774 used_iterator_range compilerUsed() { 2775 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2776 } 2777 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2778 bool compilerUsedCount(GlobalValue *GV) const { 2779 return CompilerUsed.count(GV); 2780 } 2781 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2782 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2783 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2784 bool compilerUsedInsert(GlobalValue *GV) { 2785 return CompilerUsed.insert(GV).second; 2786 } 2787 2788 void syncVariablesAndSets() { 2789 if (UsedV) 2790 setUsedInitializer(*UsedV, Used); 2791 if (CompilerUsedV) 2792 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2793 } 2794 }; 2795 } 2796 2797 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2798 if (GA.use_empty()) // No use at all. 2799 return false; 2800 2801 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2802 "We should have removed the duplicated " 2803 "element from llvm.compiler.used"); 2804 if (!GA.hasOneUse()) 2805 // Strictly more than one use. So at least one is not in llvm.used and 2806 // llvm.compiler.used. 2807 return true; 2808 2809 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2810 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2811 } 2812 2813 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2814 const LLVMUsed &U) { 2815 unsigned N = 2; 2816 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2817 "We should have removed the duplicated " 2818 "element from llvm.compiler.used"); 2819 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2820 ++N; 2821 return V.hasNUsesOrMore(N); 2822 } 2823 2824 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2825 if (!GA.hasLocalLinkage()) 2826 return true; 2827 2828 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2829 } 2830 2831 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2832 bool &RenameTarget) { 2833 RenameTarget = false; 2834 bool Ret = false; 2835 if (hasUseOtherThanLLVMUsed(GA, U)) 2836 Ret = true; 2837 2838 // If the alias is externally visible, we may still be able to simplify it. 2839 if (!mayHaveOtherReferences(GA, U)) 2840 return Ret; 2841 2842 // If the aliasee has internal linkage, give it the name and linkage 2843 // of the alias, and delete the alias. This turns: 2844 // define internal ... @f(...) 2845 // @a = alias ... @f 2846 // into: 2847 // define ... @a(...) 2848 Constant *Aliasee = GA.getAliasee(); 2849 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2850 if (!Target->hasLocalLinkage()) 2851 return Ret; 2852 2853 // Do not perform the transform if multiple aliases potentially target the 2854 // aliasee. This check also ensures that it is safe to replace the section 2855 // and other attributes of the aliasee with those of the alias. 2856 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2857 return Ret; 2858 2859 RenameTarget = true; 2860 return true; 2861 } 2862 2863 bool GlobalOpt::OptimizeGlobalAliases(Module &M) { 2864 bool Changed = false; 2865 LLVMUsed Used(M); 2866 2867 for (GlobalValue *GV : Used.used()) 2868 Used.compilerUsedErase(GV); 2869 2870 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2871 I != E;) { 2872 Module::alias_iterator J = I++; 2873 // Aliases without names cannot be referenced outside this module. 2874 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2875 J->setLinkage(GlobalValue::InternalLinkage); 2876 // If the aliasee may change at link time, nothing can be done - bail out. 2877 if (J->mayBeOverridden()) 2878 continue; 2879 2880 Constant *Aliasee = J->getAliasee(); 2881 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2882 // We can't trivially replace the alias with the aliasee if the aliasee is 2883 // non-trivial in some way. 2884 // TODO: Try to handle non-zero GEPs of local aliasees. 2885 if (!Target) 2886 continue; 2887 Target->removeDeadConstantUsers(); 2888 2889 // Make all users of the alias use the aliasee instead. 2890 bool RenameTarget; 2891 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2892 continue; 2893 2894 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2895 ++NumAliasesResolved; 2896 Changed = true; 2897 2898 if (RenameTarget) { 2899 // Give the aliasee the name, linkage and other attributes of the alias. 2900 Target->takeName(&*J); 2901 Target->setLinkage(J->getLinkage()); 2902 Target->setVisibility(J->getVisibility()); 2903 Target->setDLLStorageClass(J->getDLLStorageClass()); 2904 2905 if (Used.usedErase(&*J)) 2906 Used.usedInsert(Target); 2907 2908 if (Used.compilerUsedErase(&*J)) 2909 Used.compilerUsedInsert(Target); 2910 } else if (mayHaveOtherReferences(*J, Used)) 2911 continue; 2912 2913 // Delete the alias. 2914 M.getAliasList().erase(J); 2915 ++NumAliasesRemoved; 2916 Changed = true; 2917 } 2918 2919 Used.syncVariablesAndSets(); 2920 2921 return Changed; 2922 } 2923 2924 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2925 if (!TLI->has(LibFunc::cxa_atexit)) 2926 return nullptr; 2927 2928 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit)); 2929 2930 if (!Fn) 2931 return nullptr; 2932 2933 FunctionType *FTy = Fn->getFunctionType(); 2934 2935 // Checking that the function has the right return type, the right number of 2936 // parameters and that they all have pointer types should be enough. 2937 if (!FTy->getReturnType()->isIntegerTy() || 2938 FTy->getNumParams() != 3 || 2939 !FTy->getParamType(0)->isPointerTy() || 2940 !FTy->getParamType(1)->isPointerTy() || 2941 !FTy->getParamType(2)->isPointerTy()) 2942 return nullptr; 2943 2944 return Fn; 2945 } 2946 2947 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++ 2948 /// destructor and can therefore be eliminated. 2949 /// Note that we assume that other optimization passes have already simplified 2950 /// the code so we only look for a function with a single basic block, where 2951 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2952 /// other side-effect free instructions. 2953 static bool cxxDtorIsEmpty(const Function &Fn, 2954 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2955 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2956 // nounwind, but that doesn't seem worth doing. 2957 if (Fn.isDeclaration()) 2958 return false; 2959 2960 if (++Fn.begin() != Fn.end()) 2961 return false; 2962 2963 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2964 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2965 I != E; ++I) { 2966 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2967 // Ignore debug intrinsics. 2968 if (isa<DbgInfoIntrinsic>(CI)) 2969 continue; 2970 2971 const Function *CalledFn = CI->getCalledFunction(); 2972 2973 if (!CalledFn) 2974 return false; 2975 2976 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2977 2978 // Don't treat recursive functions as empty. 2979 if (!NewCalledFunctions.insert(CalledFn).second) 2980 return false; 2981 2982 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2983 return false; 2984 } else if (isa<ReturnInst>(*I)) 2985 return true; // We're done. 2986 else if (I->mayHaveSideEffects()) 2987 return false; // Destructor with side effects, bail. 2988 } 2989 2990 return false; 2991 } 2992 2993 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2994 /// Itanium C++ ABI p3.3.5: 2995 /// 2996 /// After constructing a global (or local static) object, that will require 2997 /// destruction on exit, a termination function is registered as follows: 2998 /// 2999 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 3000 /// 3001 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 3002 /// call f(p) when DSO d is unloaded, before all such termination calls 3003 /// registered before this one. It returns zero if registration is 3004 /// successful, nonzero on failure. 3005 3006 // This pass will look for calls to __cxa_atexit where the function is trivial 3007 // and remove them. 3008 bool Changed = false; 3009 3010 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 3011 I != E;) { 3012 // We're only interested in calls. Theoretically, we could handle invoke 3013 // instructions as well, but neither llvm-gcc nor clang generate invokes 3014 // to __cxa_atexit. 3015 CallInst *CI = dyn_cast<CallInst>(*I++); 3016 if (!CI) 3017 continue; 3018 3019 Function *DtorFn = 3020 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 3021 if (!DtorFn) 3022 continue; 3023 3024 SmallPtrSet<const Function *, 8> CalledFunctions; 3025 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 3026 continue; 3027 3028 // Just remove the call. 3029 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 3030 CI->eraseFromParent(); 3031 3032 ++NumCXXDtorsRemoved; 3033 3034 Changed |= true; 3035 } 3036 3037 return Changed; 3038 } 3039 3040 bool GlobalOpt::runOnModule(Module &M) { 3041 bool Changed = false; 3042 3043 auto &DL = M.getDataLayout(); 3044 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3045 3046 bool LocalChange = true; 3047 while (LocalChange) { 3048 LocalChange = false; 3049 3050 NotDiscardableComdats.clear(); 3051 for (const GlobalVariable &GV : M.globals()) 3052 if (const Comdat *C = GV.getComdat()) 3053 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 3054 NotDiscardableComdats.insert(C); 3055 for (Function &F : M) 3056 if (const Comdat *C = F.getComdat()) 3057 if (!F.isDefTriviallyDead()) 3058 NotDiscardableComdats.insert(C); 3059 for (GlobalAlias &GA : M.aliases()) 3060 if (const Comdat *C = GA.getComdat()) 3061 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 3062 NotDiscardableComdats.insert(C); 3063 3064 // Delete functions that are trivially dead, ccc -> fastcc 3065 LocalChange |= OptimizeFunctions(M); 3066 3067 // Optimize global_ctors list. 3068 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 3069 return EvaluateStaticConstructor(F, DL, TLI); 3070 }); 3071 3072 // Optimize non-address-taken globals. 3073 LocalChange |= OptimizeGlobalVars(M); 3074 3075 // Resolve aliases, when possible. 3076 LocalChange |= OptimizeGlobalAliases(M); 3077 3078 // Try to remove trivial global destructors if they are not removed 3079 // already. 3080 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 3081 if (CXAAtExitFn) 3082 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 3083 3084 Changed |= LocalChange; 3085 } 3086 3087 // TODO: Move all global ctors functions to the end of the module for code 3088 // layout. 3089 3090 return Changed; 3091 } 3092 3093