1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/CallingConv.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/CtorUtils.h" 43 #include "llvm/Transforms/Utils/GlobalStatus.h" 44 #include "llvm/Transforms/Utils/ModuleUtils.h" 45 #include <algorithm> 46 #include <deque> 47 using namespace llvm; 48 49 #define DEBUG_TYPE "globalopt" 50 51 STATISTIC(NumMarked , "Number of globals marked constant"); 52 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 53 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 54 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 55 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 56 STATISTIC(NumDeleted , "Number of globals deleted"); 57 STATISTIC(NumFnDeleted , "Number of functions deleted"); 58 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 59 STATISTIC(NumLocalized , "Number of globals localized"); 60 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 61 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 62 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 63 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 64 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 65 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 66 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 67 68 namespace { 69 struct GlobalOpt : public ModulePass { 70 void getAnalysisUsage(AnalysisUsage &AU) const override { 71 AU.addRequired<TargetLibraryInfoWrapperPass>(); 72 } 73 static char ID; // Pass identification, replacement for typeid 74 GlobalOpt() : ModulePass(ID) { 75 initializeGlobalOptPass(*PassRegistry::getPassRegistry()); 76 } 77 78 bool runOnModule(Module &M) override; 79 80 private: 81 bool OptimizeFunctions(Module &M); 82 bool OptimizeGlobalVars(Module &M); 83 bool OptimizeGlobalAliases(Module &M); 84 bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI); 85 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI, 86 const GlobalStatus &GS); 87 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn); 88 89 TargetLibraryInfo *TLI; 90 SmallSet<const Comdat *, 8> NotDiscardableComdats; 91 }; 92 } 93 94 char GlobalOpt::ID = 0; 95 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt", 96 "Global Variable Optimizer", false, false) 97 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 98 INITIALIZE_PASS_END(GlobalOpt, "globalopt", 99 "Global Variable Optimizer", false, false) 100 101 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } 102 103 /// isLeakCheckerRoot - Is this global variable possibly used by a leak checker 104 /// as a root? If so, we might not really want to eliminate the stores to it. 105 static bool isLeakCheckerRoot(GlobalVariable *GV) { 106 // A global variable is a root if it is a pointer, or could plausibly contain 107 // a pointer. There are two challenges; one is that we could have a struct 108 // the has an inner member which is a pointer. We recurse through the type to 109 // detect these (up to a point). The other is that we may actually be a union 110 // of a pointer and another type, and so our LLVM type is an integer which 111 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 112 // potentially contained here. 113 114 if (GV->hasPrivateLinkage()) 115 return false; 116 117 SmallVector<Type *, 4> Types; 118 Types.push_back(cast<PointerType>(GV->getType())->getElementType()); 119 120 unsigned Limit = 20; 121 do { 122 Type *Ty = Types.pop_back_val(); 123 switch (Ty->getTypeID()) { 124 default: break; 125 case Type::PointerTyID: return true; 126 case Type::ArrayTyID: 127 case Type::VectorTyID: { 128 SequentialType *STy = cast<SequentialType>(Ty); 129 Types.push_back(STy->getElementType()); 130 break; 131 } 132 case Type::StructTyID: { 133 StructType *STy = cast<StructType>(Ty); 134 if (STy->isOpaque()) return true; 135 for (StructType::element_iterator I = STy->element_begin(), 136 E = STy->element_end(); I != E; ++I) { 137 Type *InnerTy = *I; 138 if (isa<PointerType>(InnerTy)) return true; 139 if (isa<CompositeType>(InnerTy)) 140 Types.push_back(InnerTy); 141 } 142 break; 143 } 144 } 145 if (--Limit == 0) return true; 146 } while (!Types.empty()); 147 return false; 148 } 149 150 /// Given a value that is stored to a global but never read, determine whether 151 /// it's safe to remove the store and the chain of computation that feeds the 152 /// store. 153 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 154 do { 155 if (isa<Constant>(V)) 156 return true; 157 if (!V->hasOneUse()) 158 return false; 159 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 160 isa<GlobalValue>(V)) 161 return false; 162 if (isAllocationFn(V, TLI)) 163 return true; 164 165 Instruction *I = cast<Instruction>(V); 166 if (I->mayHaveSideEffects()) 167 return false; 168 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 169 if (!GEP->hasAllConstantIndices()) 170 return false; 171 } else if (I->getNumOperands() != 1) { 172 return false; 173 } 174 175 V = I->getOperand(0); 176 } while (1); 177 } 178 179 /// CleanupPointerRootUsers - This GV is a pointer root. Loop over all users 180 /// of the global and clean up any that obviously don't assign the global a 181 /// value that isn't dynamically allocated. 182 /// 183 static bool CleanupPointerRootUsers(GlobalVariable *GV, 184 const TargetLibraryInfo *TLI) { 185 // A brief explanation of leak checkers. The goal is to find bugs where 186 // pointers are forgotten, causing an accumulating growth in memory 187 // usage over time. The common strategy for leak checkers is to whitelist the 188 // memory pointed to by globals at exit. This is popular because it also 189 // solves another problem where the main thread of a C++ program may shut down 190 // before other threads that are still expecting to use those globals. To 191 // handle that case, we expect the program may create a singleton and never 192 // destroy it. 193 194 bool Changed = false; 195 196 // If Dead[n].first is the only use of a malloc result, we can delete its 197 // chain of computation and the store to the global in Dead[n].second. 198 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 199 200 // Constants can't be pointers to dynamically allocated memory. 201 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 202 UI != E;) { 203 User *U = *UI++; 204 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 205 Value *V = SI->getValueOperand(); 206 if (isa<Constant>(V)) { 207 Changed = true; 208 SI->eraseFromParent(); 209 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 210 if (I->hasOneUse()) 211 Dead.push_back(std::make_pair(I, SI)); 212 } 213 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 214 if (isa<Constant>(MSI->getValue())) { 215 Changed = true; 216 MSI->eraseFromParent(); 217 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 218 if (I->hasOneUse()) 219 Dead.push_back(std::make_pair(I, MSI)); 220 } 221 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 222 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 223 if (MemSrc && MemSrc->isConstant()) { 224 Changed = true; 225 MTI->eraseFromParent(); 226 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 227 if (I->hasOneUse()) 228 Dead.push_back(std::make_pair(I, MTI)); 229 } 230 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 231 if (CE->use_empty()) { 232 CE->destroyConstant(); 233 Changed = true; 234 } 235 } else if (Constant *C = dyn_cast<Constant>(U)) { 236 if (isSafeToDestroyConstant(C)) { 237 C->destroyConstant(); 238 // This could have invalidated UI, start over from scratch. 239 Dead.clear(); 240 CleanupPointerRootUsers(GV, TLI); 241 return true; 242 } 243 } 244 } 245 246 for (int i = 0, e = Dead.size(); i != e; ++i) { 247 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 248 Dead[i].second->eraseFromParent(); 249 Instruction *I = Dead[i].first; 250 do { 251 if (isAllocationFn(I, TLI)) 252 break; 253 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 254 if (!J) 255 break; 256 I->eraseFromParent(); 257 I = J; 258 } while (1); 259 I->eraseFromParent(); 260 } 261 } 262 263 return Changed; 264 } 265 266 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all 267 /// users of the global, cleaning up the obvious ones. This is largely just a 268 /// quick scan over the use list to clean up the easy and obvious cruft. This 269 /// returns true if it made a change. 270 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 271 const DataLayout &DL, 272 TargetLibraryInfo *TLI) { 273 bool Changed = false; 274 // Note that we need to use a weak value handle for the worklist items. When 275 // we delete a constant array, we may also be holding pointer to one of its 276 // elements (or an element of one of its elements if we're dealing with an 277 // array of arrays) in the worklist. 278 SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end()); 279 while (!WorkList.empty()) { 280 Value *UV = WorkList.pop_back_val(); 281 if (!UV) 282 continue; 283 284 User *U = cast<User>(UV); 285 286 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 287 if (Init) { 288 // Replace the load with the initializer. 289 LI->replaceAllUsesWith(Init); 290 LI->eraseFromParent(); 291 Changed = true; 292 } 293 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 294 // Store must be unreachable or storing Init into the global. 295 SI->eraseFromParent(); 296 Changed = true; 297 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 298 if (CE->getOpcode() == Instruction::GetElementPtr) { 299 Constant *SubInit = nullptr; 300 if (Init) 301 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 302 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 303 } else if ((CE->getOpcode() == Instruction::BitCast && 304 CE->getType()->isPointerTy()) || 305 CE->getOpcode() == Instruction::AddrSpaceCast) { 306 // Pointer cast, delete any stores and memsets to the global. 307 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 308 } 309 310 if (CE->use_empty()) { 311 CE->destroyConstant(); 312 Changed = true; 313 } 314 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 315 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 316 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 317 // and will invalidate our notion of what Init is. 318 Constant *SubInit = nullptr; 319 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 320 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 321 ConstantFoldInstruction(GEP, DL, TLI)); 322 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 323 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 324 325 // If the initializer is an all-null value and we have an inbounds GEP, 326 // we already know what the result of any load from that GEP is. 327 // TODO: Handle splats. 328 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 329 SubInit = Constant::getNullValue(GEP->getType()->getElementType()); 330 } 331 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 332 333 if (GEP->use_empty()) { 334 GEP->eraseFromParent(); 335 Changed = true; 336 } 337 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 338 if (MI->getRawDest() == V) { 339 MI->eraseFromParent(); 340 Changed = true; 341 } 342 343 } else if (Constant *C = dyn_cast<Constant>(U)) { 344 // If we have a chain of dead constantexprs or other things dangling from 345 // us, and if they are all dead, nuke them without remorse. 346 if (isSafeToDestroyConstant(C)) { 347 C->destroyConstant(); 348 CleanupConstantGlobalUsers(V, Init, DL, TLI); 349 return true; 350 } 351 } 352 } 353 return Changed; 354 } 355 356 /// isSafeSROAElementUse - Return true if the specified instruction is a safe 357 /// user of a derived expression from a global that we want to SROA. 358 static bool isSafeSROAElementUse(Value *V) { 359 // We might have a dead and dangling constant hanging off of here. 360 if (Constant *C = dyn_cast<Constant>(V)) 361 return isSafeToDestroyConstant(C); 362 363 Instruction *I = dyn_cast<Instruction>(V); 364 if (!I) return false; 365 366 // Loads are ok. 367 if (isa<LoadInst>(I)) return true; 368 369 // Stores *to* the pointer are ok. 370 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 371 return SI->getOperand(0) != V; 372 373 // Otherwise, it must be a GEP. 374 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 375 if (!GEPI) return false; 376 377 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 378 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 379 return false; 380 381 for (User *U : GEPI->users()) 382 if (!isSafeSROAElementUse(U)) 383 return false; 384 return true; 385 } 386 387 388 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value. 389 /// Look at it and its uses and decide whether it is safe to SROA this global. 390 /// 391 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 392 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 393 if (!isa<GetElementPtrInst>(U) && 394 (!isa<ConstantExpr>(U) || 395 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 396 return false; 397 398 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 399 // don't like < 3 operand CE's, and we don't like non-constant integer 400 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 401 // value of C. 402 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 403 !cast<Constant>(U->getOperand(1))->isNullValue() || 404 !isa<ConstantInt>(U->getOperand(2))) 405 return false; 406 407 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 408 ++GEPI; // Skip over the pointer index. 409 410 // If this is a use of an array allocation, do a bit more checking for sanity. 411 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 412 uint64_t NumElements = AT->getNumElements(); 413 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 414 415 // Check to make sure that index falls within the array. If not, 416 // something funny is going on, so we won't do the optimization. 417 // 418 if (Idx->getZExtValue() >= NumElements) 419 return false; 420 421 // We cannot scalar repl this level of the array unless any array 422 // sub-indices are in-range constants. In particular, consider: 423 // A[0][i]. We cannot know that the user isn't doing invalid things like 424 // allowing i to index an out-of-range subscript that accesses A[1]. 425 // 426 // Scalar replacing *just* the outer index of the array is probably not 427 // going to be a win anyway, so just give up. 428 for (++GEPI; // Skip array index. 429 GEPI != E; 430 ++GEPI) { 431 uint64_t NumElements; 432 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 433 NumElements = SubArrayTy->getNumElements(); 434 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 435 NumElements = SubVectorTy->getNumElements(); 436 else { 437 assert((*GEPI)->isStructTy() && 438 "Indexed GEP type is not array, vector, or struct!"); 439 continue; 440 } 441 442 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 443 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 444 return false; 445 } 446 } 447 448 for (User *UU : U->users()) 449 if (!isSafeSROAElementUse(UU)) 450 return false; 451 452 return true; 453 } 454 455 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it 456 /// is safe for us to perform this transformation. 457 /// 458 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 459 for (User *U : GV->users()) 460 if (!IsUserOfGlobalSafeForSRA(U, GV)) 461 return false; 462 463 return true; 464 } 465 466 467 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global 468 /// variable. This opens the door for other optimizations by exposing the 469 /// behavior of the program in a more fine-grained way. We have determined that 470 /// this transformation is safe already. We return the first global variable we 471 /// insert so that the caller can reprocess it. 472 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 473 // Make sure this global only has simple uses that we can SRA. 474 if (!GlobalUsersSafeToSRA(GV)) 475 return nullptr; 476 477 assert(GV->hasLocalLinkage() && !GV->isConstant()); 478 Constant *Init = GV->getInitializer(); 479 Type *Ty = Init->getType(); 480 481 std::vector<GlobalVariable*> NewGlobals; 482 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 483 484 // Get the alignment of the global, either explicit or target-specific. 485 unsigned StartAlignment = GV->getAlignment(); 486 if (StartAlignment == 0) 487 StartAlignment = DL.getABITypeAlignment(GV->getType()); 488 489 if (StructType *STy = dyn_cast<StructType>(Ty)) { 490 NewGlobals.reserve(STy->getNumElements()); 491 const StructLayout &Layout = *DL.getStructLayout(STy); 492 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 493 Constant *In = Init->getAggregateElement(i); 494 assert(In && "Couldn't get element of initializer?"); 495 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 496 GlobalVariable::InternalLinkage, 497 In, GV->getName()+"."+Twine(i), 498 GV->getThreadLocalMode(), 499 GV->getType()->getAddressSpace()); 500 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 501 Globals.insert(GV->getIterator(), NGV); 502 NewGlobals.push_back(NGV); 503 504 // Calculate the known alignment of the field. If the original aggregate 505 // had 256 byte alignment for example, something might depend on that: 506 // propagate info to each field. 507 uint64_t FieldOffset = Layout.getElementOffset(i); 508 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 509 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 510 NGV->setAlignment(NewAlign); 511 } 512 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 513 unsigned NumElements = 0; 514 if (ArrayType *ATy = dyn_cast<ArrayType>(STy)) 515 NumElements = ATy->getNumElements(); 516 else 517 NumElements = cast<VectorType>(STy)->getNumElements(); 518 519 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 520 return nullptr; // It's not worth it. 521 NewGlobals.reserve(NumElements); 522 523 uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType()); 524 unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType()); 525 for (unsigned i = 0, e = NumElements; i != e; ++i) { 526 Constant *In = Init->getAggregateElement(i); 527 assert(In && "Couldn't get element of initializer?"); 528 529 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 530 GlobalVariable::InternalLinkage, 531 In, GV->getName()+"."+Twine(i), 532 GV->getThreadLocalMode(), 533 GV->getType()->getAddressSpace()); 534 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 535 Globals.insert(GV->getIterator(), NGV); 536 NewGlobals.push_back(NGV); 537 538 // Calculate the known alignment of the field. If the original aggregate 539 // had 256 byte alignment for example, something might depend on that: 540 // propagate info to each field. 541 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 542 if (NewAlign > EltAlign) 543 NGV->setAlignment(NewAlign); 544 } 545 } 546 547 if (NewGlobals.empty()) 548 return nullptr; 549 550 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 551 552 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 553 554 // Loop over all of the uses of the global, replacing the constantexpr geps, 555 // with smaller constantexpr geps or direct references. 556 while (!GV->use_empty()) { 557 User *GEP = GV->user_back(); 558 assert(((isa<ConstantExpr>(GEP) && 559 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 560 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 561 562 // Ignore the 1th operand, which has to be zero or else the program is quite 563 // broken (undefined). Get the 2nd operand, which is the structure or array 564 // index. 565 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 566 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 567 568 Value *NewPtr = NewGlobals[Val]; 569 Type *NewTy = NewGlobals[Val]->getValueType(); 570 571 // Form a shorter GEP if needed. 572 if (GEP->getNumOperands() > 3) { 573 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 574 SmallVector<Constant*, 8> Idxs; 575 Idxs.push_back(NullInt); 576 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 577 Idxs.push_back(CE->getOperand(i)); 578 NewPtr = 579 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 580 } else { 581 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 582 SmallVector<Value*, 8> Idxs; 583 Idxs.push_back(NullInt); 584 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 585 Idxs.push_back(GEPI->getOperand(i)); 586 NewPtr = GetElementPtrInst::Create( 587 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 588 } 589 } 590 GEP->replaceAllUsesWith(NewPtr); 591 592 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 593 GEPI->eraseFromParent(); 594 else 595 cast<ConstantExpr>(GEP)->destroyConstant(); 596 } 597 598 // Delete the old global, now that it is dead. 599 Globals.erase(GV); 600 ++NumSRA; 601 602 // Loop over the new globals array deleting any globals that are obviously 603 // dead. This can arise due to scalarization of a structure or an array that 604 // has elements that are dead. 605 unsigned FirstGlobal = 0; 606 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 607 if (NewGlobals[i]->use_empty()) { 608 Globals.erase(NewGlobals[i]); 609 if (FirstGlobal == i) ++FirstGlobal; 610 } 611 612 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 613 } 614 615 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified 616 /// value will trap if the value is dynamically null. PHIs keeps track of any 617 /// phi nodes we've seen to avoid reprocessing them. 618 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 619 SmallPtrSetImpl<const PHINode*> &PHIs) { 620 for (const User *U : V->users()) 621 if (isa<LoadInst>(U)) { 622 // Will trap. 623 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 624 if (SI->getOperand(0) == V) { 625 //cerr << "NONTRAPPING USE: " << *U; 626 return false; // Storing the value. 627 } 628 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 629 if (CI->getCalledValue() != V) { 630 //cerr << "NONTRAPPING USE: " << *U; 631 return false; // Not calling the ptr 632 } 633 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 634 if (II->getCalledValue() != V) { 635 //cerr << "NONTRAPPING USE: " << *U; 636 return false; // Not calling the ptr 637 } 638 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 639 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 640 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 641 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 642 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 643 // If we've already seen this phi node, ignore it, it has already been 644 // checked. 645 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 646 return false; 647 } else if (isa<ICmpInst>(U) && 648 isa<ConstantPointerNull>(U->getOperand(1))) { 649 // Ignore icmp X, null 650 } else { 651 //cerr << "NONTRAPPING USE: " << *U; 652 return false; 653 } 654 655 return true; 656 } 657 658 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads 659 /// from GV will trap if the loaded value is null. Note that this also permits 660 /// comparisons of the loaded value against null, as a special case. 661 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 662 for (const User *U : GV->users()) 663 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 664 SmallPtrSet<const PHINode*, 8> PHIs; 665 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 666 return false; 667 } else if (isa<StoreInst>(U)) { 668 // Ignore stores to the global. 669 } else { 670 // We don't know or understand this user, bail out. 671 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 672 return false; 673 } 674 return true; 675 } 676 677 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 678 bool Changed = false; 679 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 680 Instruction *I = cast<Instruction>(*UI++); 681 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 682 LI->setOperand(0, NewV); 683 Changed = true; 684 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 685 if (SI->getOperand(1) == V) { 686 SI->setOperand(1, NewV); 687 Changed = true; 688 } 689 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 690 CallSite CS(I); 691 if (CS.getCalledValue() == V) { 692 // Calling through the pointer! Turn into a direct call, but be careful 693 // that the pointer is not also being passed as an argument. 694 CS.setCalledFunction(NewV); 695 Changed = true; 696 bool PassedAsArg = false; 697 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 698 if (CS.getArgument(i) == V) { 699 PassedAsArg = true; 700 CS.setArgument(i, NewV); 701 } 702 703 if (PassedAsArg) { 704 // Being passed as an argument also. Be careful to not invalidate UI! 705 UI = V->user_begin(); 706 } 707 } 708 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 709 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 710 ConstantExpr::getCast(CI->getOpcode(), 711 NewV, CI->getType())); 712 if (CI->use_empty()) { 713 Changed = true; 714 CI->eraseFromParent(); 715 } 716 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 717 // Should handle GEP here. 718 SmallVector<Constant*, 8> Idxs; 719 Idxs.reserve(GEPI->getNumOperands()-1); 720 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 721 i != e; ++i) 722 if (Constant *C = dyn_cast<Constant>(*i)) 723 Idxs.push_back(C); 724 else 725 break; 726 if (Idxs.size() == GEPI->getNumOperands()-1) 727 Changed |= OptimizeAwayTrappingUsesOfValue( 728 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 729 if (GEPI->use_empty()) { 730 Changed = true; 731 GEPI->eraseFromParent(); 732 } 733 } 734 } 735 736 return Changed; 737 } 738 739 740 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null 741 /// value stored into it. If there are uses of the loaded value that would trap 742 /// if the loaded value is dynamically null, then we know that they cannot be 743 /// reachable with a null optimize away the load. 744 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 745 const DataLayout &DL, 746 TargetLibraryInfo *TLI) { 747 bool Changed = false; 748 749 // Keep track of whether we are able to remove all the uses of the global 750 // other than the store that defines it. 751 bool AllNonStoreUsesGone = true; 752 753 // Replace all uses of loads with uses of uses of the stored value. 754 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 755 User *GlobalUser = *GUI++; 756 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 757 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 758 // If we were able to delete all uses of the loads 759 if (LI->use_empty()) { 760 LI->eraseFromParent(); 761 Changed = true; 762 } else { 763 AllNonStoreUsesGone = false; 764 } 765 } else if (isa<StoreInst>(GlobalUser)) { 766 // Ignore the store that stores "LV" to the global. 767 assert(GlobalUser->getOperand(1) == GV && 768 "Must be storing *to* the global"); 769 } else { 770 AllNonStoreUsesGone = false; 771 772 // If we get here we could have other crazy uses that are transitively 773 // loaded. 774 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 775 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 776 isa<BitCastInst>(GlobalUser) || 777 isa<GetElementPtrInst>(GlobalUser)) && 778 "Only expect load and stores!"); 779 } 780 } 781 782 if (Changed) { 783 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n"); 784 ++NumGlobUses; 785 } 786 787 // If we nuked all of the loads, then none of the stores are needed either, 788 // nor is the global. 789 if (AllNonStoreUsesGone) { 790 if (isLeakCheckerRoot(GV)) { 791 Changed |= CleanupPointerRootUsers(GV, TLI); 792 } else { 793 Changed = true; 794 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 795 } 796 if (GV->use_empty()) { 797 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 798 Changed = true; 799 GV->eraseFromParent(); 800 ++NumDeleted; 801 } 802 } 803 return Changed; 804 } 805 806 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the 807 /// instructions that are foldable. 808 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 809 TargetLibraryInfo *TLI) { 810 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 811 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 812 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 813 I->replaceAllUsesWith(NewC); 814 815 // Advance UI to the next non-I use to avoid invalidating it! 816 // Instructions could multiply use V. 817 while (UI != E && *UI == I) 818 ++UI; 819 I->eraseFromParent(); 820 } 821 } 822 823 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global 824 /// variable, and transforms the program as if it always contained the result of 825 /// the specified malloc. Because it is always the result of the specified 826 /// malloc, there is no reason to actually DO the malloc. Instead, turn the 827 /// malloc into a global, and any loads of GV as uses of the new global. 828 static GlobalVariable * 829 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 830 ConstantInt *NElements, const DataLayout &DL, 831 TargetLibraryInfo *TLI) { 832 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 833 834 Type *GlobalType; 835 if (NElements->getZExtValue() == 1) 836 GlobalType = AllocTy; 837 else 838 // If we have an array allocation, the global variable is of an array. 839 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 840 841 // Create the new global variable. The contents of the malloc'd memory is 842 // undefined, so initialize with an undef value. 843 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(), 844 GlobalType, false, 845 GlobalValue::InternalLinkage, 846 UndefValue::get(GlobalType), 847 GV->getName()+".body", 848 GV, 849 GV->getThreadLocalMode()); 850 851 // If there are bitcast users of the malloc (which is typical, usually we have 852 // a malloc + bitcast) then replace them with uses of the new global. Update 853 // other users to use the global as well. 854 BitCastInst *TheBC = nullptr; 855 while (!CI->use_empty()) { 856 Instruction *User = cast<Instruction>(CI->user_back()); 857 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 858 if (BCI->getType() == NewGV->getType()) { 859 BCI->replaceAllUsesWith(NewGV); 860 BCI->eraseFromParent(); 861 } else { 862 BCI->setOperand(0, NewGV); 863 } 864 } else { 865 if (!TheBC) 866 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 867 User->replaceUsesOfWith(CI, TheBC); 868 } 869 } 870 871 Constant *RepValue = NewGV; 872 if (NewGV->getType() != GV->getType()->getElementType()) 873 RepValue = ConstantExpr::getBitCast(RepValue, 874 GV->getType()->getElementType()); 875 876 // If there is a comparison against null, we will insert a global bool to 877 // keep track of whether the global was initialized yet or not. 878 GlobalVariable *InitBool = 879 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 880 GlobalValue::InternalLinkage, 881 ConstantInt::getFalse(GV->getContext()), 882 GV->getName()+".init", GV->getThreadLocalMode()); 883 bool InitBoolUsed = false; 884 885 // Loop over all uses of GV, processing them in turn. 886 while (!GV->use_empty()) { 887 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 888 // The global is initialized when the store to it occurs. 889 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 890 SI->getOrdering(), SI->getSynchScope(), SI); 891 SI->eraseFromParent(); 892 continue; 893 } 894 895 LoadInst *LI = cast<LoadInst>(GV->user_back()); 896 while (!LI->use_empty()) { 897 Use &LoadUse = *LI->use_begin(); 898 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 899 if (!ICI) { 900 LoadUse = RepValue; 901 continue; 902 } 903 904 // Replace the cmp X, 0 with a use of the bool value. 905 // Sink the load to where the compare was, if atomic rules allow us to. 906 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 907 LI->getOrdering(), LI->getSynchScope(), 908 LI->isUnordered() ? (Instruction*)ICI : LI); 909 InitBoolUsed = true; 910 switch (ICI->getPredicate()) { 911 default: llvm_unreachable("Unknown ICmp Predicate!"); 912 case ICmpInst::ICMP_ULT: 913 case ICmpInst::ICMP_SLT: // X < null -> always false 914 LV = ConstantInt::getFalse(GV->getContext()); 915 break; 916 case ICmpInst::ICMP_ULE: 917 case ICmpInst::ICMP_SLE: 918 case ICmpInst::ICMP_EQ: 919 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 920 break; 921 case ICmpInst::ICMP_NE: 922 case ICmpInst::ICMP_UGE: 923 case ICmpInst::ICMP_SGE: 924 case ICmpInst::ICMP_UGT: 925 case ICmpInst::ICMP_SGT: 926 break; // no change. 927 } 928 ICI->replaceAllUsesWith(LV); 929 ICI->eraseFromParent(); 930 } 931 LI->eraseFromParent(); 932 } 933 934 // If the initialization boolean was used, insert it, otherwise delete it. 935 if (!InitBoolUsed) { 936 while (!InitBool->use_empty()) // Delete initializations 937 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 938 delete InitBool; 939 } else 940 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 941 942 // Now the GV is dead, nuke it and the malloc.. 943 GV->eraseFromParent(); 944 CI->eraseFromParent(); 945 946 // To further other optimizations, loop over all users of NewGV and try to 947 // constant prop them. This will promote GEP instructions with constant 948 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 949 ConstantPropUsersOf(NewGV, DL, TLI); 950 if (RepValue != NewGV) 951 ConstantPropUsersOf(RepValue, DL, TLI); 952 953 return NewGV; 954 } 955 956 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking 957 /// to make sure that there are no complex uses of V. We permit simple things 958 /// like dereferencing the pointer, but not storing through the address, unless 959 /// it is to the specified global. 960 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 961 const GlobalVariable *GV, 962 SmallPtrSetImpl<const PHINode*> &PHIs) { 963 for (const User *U : V->users()) { 964 const Instruction *Inst = cast<Instruction>(U); 965 966 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 967 continue; // Fine, ignore. 968 } 969 970 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 971 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 972 return false; // Storing the pointer itself... bad. 973 continue; // Otherwise, storing through it, or storing into GV... fine. 974 } 975 976 // Must index into the array and into the struct. 977 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 978 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 979 return false; 980 continue; 981 } 982 983 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 984 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 985 // cycles. 986 if (PHIs.insert(PN).second) 987 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 988 return false; 989 continue; 990 } 991 992 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 993 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 994 return false; 995 continue; 996 } 997 998 return false; 999 } 1000 return true; 1001 } 1002 1003 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV 1004 /// somewhere. Transform all uses of the allocation into loads from the 1005 /// global and uses of the resultant pointer. Further, delete the store into 1006 /// GV. This assumes that these value pass the 1007 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1008 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1009 GlobalVariable *GV) { 1010 while (!Alloc->use_empty()) { 1011 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 1012 Instruction *InsertPt = U; 1013 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1014 // If this is the store of the allocation into the global, remove it. 1015 if (SI->getOperand(1) == GV) { 1016 SI->eraseFromParent(); 1017 continue; 1018 } 1019 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1020 // Insert the load in the corresponding predecessor, not right before the 1021 // PHI. 1022 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 1023 } else if (isa<BitCastInst>(U)) { 1024 // Must be bitcast between the malloc and store to initialize the global. 1025 ReplaceUsesOfMallocWithGlobal(U, GV); 1026 U->eraseFromParent(); 1027 continue; 1028 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1029 // If this is a "GEP bitcast" and the user is a store to the global, then 1030 // just process it as a bitcast. 1031 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1032 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1033 if (SI->getOperand(1) == GV) { 1034 // Must be bitcast GEP between the malloc and store to initialize 1035 // the global. 1036 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1037 GEPI->eraseFromParent(); 1038 continue; 1039 } 1040 } 1041 1042 // Insert a load from the global, and use it instead of the malloc. 1043 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1044 U->replaceUsesOfWith(Alloc, NL); 1045 } 1046 } 1047 1048 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi 1049 /// of a load) are simple enough to perform heap SRA on. This permits GEP's 1050 /// that index through the array and struct field, icmps of null, and PHIs. 1051 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1052 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1053 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1054 // We permit two users of the load: setcc comparing against the null 1055 // pointer, and a getelementptr of a specific form. 1056 for (const User *U : V->users()) { 1057 const Instruction *UI = cast<Instruction>(U); 1058 1059 // Comparison against null is ok. 1060 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1061 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1062 return false; 1063 continue; 1064 } 1065 1066 // getelementptr is also ok, but only a simple form. 1067 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1068 // Must index into the array and into the struct. 1069 if (GEPI->getNumOperands() < 3) 1070 return false; 1071 1072 // Otherwise the GEP is ok. 1073 continue; 1074 } 1075 1076 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1077 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1078 // This means some phi nodes are dependent on each other. 1079 // Avoid infinite looping! 1080 return false; 1081 if (!LoadUsingPHIs.insert(PN).second) 1082 // If we have already analyzed this PHI, then it is safe. 1083 continue; 1084 1085 // Make sure all uses of the PHI are simple enough to transform. 1086 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1087 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1088 return false; 1089 1090 continue; 1091 } 1092 1093 // Otherwise we don't know what this is, not ok. 1094 return false; 1095 } 1096 1097 return true; 1098 } 1099 1100 1101 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from 1102 /// GV are simple enough to perform HeapSRA, return true. 1103 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1104 Instruction *StoredVal) { 1105 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1106 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1107 for (const User *U : GV->users()) 1108 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1109 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1110 LoadUsingPHIsPerLoad)) 1111 return false; 1112 LoadUsingPHIsPerLoad.clear(); 1113 } 1114 1115 // If we reach here, we know that all uses of the loads and transitive uses 1116 // (through PHI nodes) are simple enough to transform. However, we don't know 1117 // that all inputs the to the PHI nodes are in the same equivalence sets. 1118 // Check to verify that all operands of the PHIs are either PHIS that can be 1119 // transformed, loads from GV, or MI itself. 1120 for (const PHINode *PN : LoadUsingPHIs) { 1121 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1122 Value *InVal = PN->getIncomingValue(op); 1123 1124 // PHI of the stored value itself is ok. 1125 if (InVal == StoredVal) continue; 1126 1127 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1128 // One of the PHIs in our set is (optimistically) ok. 1129 if (LoadUsingPHIs.count(InPN)) 1130 continue; 1131 return false; 1132 } 1133 1134 // Load from GV is ok. 1135 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1136 if (LI->getOperand(0) == GV) 1137 continue; 1138 1139 // UNDEF? NULL? 1140 1141 // Anything else is rejected. 1142 return false; 1143 } 1144 } 1145 1146 return true; 1147 } 1148 1149 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1150 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1151 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1152 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1153 1154 if (FieldNo >= FieldVals.size()) 1155 FieldVals.resize(FieldNo+1); 1156 1157 // If we already have this value, just reuse the previously scalarized 1158 // version. 1159 if (Value *FieldVal = FieldVals[FieldNo]) 1160 return FieldVal; 1161 1162 // Depending on what instruction this is, we have several cases. 1163 Value *Result; 1164 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1165 // This is a scalarized version of the load from the global. Just create 1166 // a new Load of the scalarized global. 1167 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1168 InsertedScalarizedValues, 1169 PHIsToRewrite), 1170 LI->getName()+".f"+Twine(FieldNo), LI); 1171 } else { 1172 PHINode *PN = cast<PHINode>(V); 1173 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1174 // field. 1175 1176 PointerType *PTy = cast<PointerType>(PN->getType()); 1177 StructType *ST = cast<StructType>(PTy->getElementType()); 1178 1179 unsigned AS = PTy->getAddressSpace(); 1180 PHINode *NewPN = 1181 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1182 PN->getNumIncomingValues(), 1183 PN->getName()+".f"+Twine(FieldNo), PN); 1184 Result = NewPN; 1185 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1186 } 1187 1188 return FieldVals[FieldNo] = Result; 1189 } 1190 1191 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from 1192 /// the load, rewrite the derived value to use the HeapSRoA'd load. 1193 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1194 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1195 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1196 // If this is a comparison against null, handle it. 1197 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1198 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1199 // If we have a setcc of the loaded pointer, we can use a setcc of any 1200 // field. 1201 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1202 InsertedScalarizedValues, PHIsToRewrite); 1203 1204 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1205 Constant::getNullValue(NPtr->getType()), 1206 SCI->getName()); 1207 SCI->replaceAllUsesWith(New); 1208 SCI->eraseFromParent(); 1209 return; 1210 } 1211 1212 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1213 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1214 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1215 && "Unexpected GEPI!"); 1216 1217 // Load the pointer for this field. 1218 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1219 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1220 InsertedScalarizedValues, PHIsToRewrite); 1221 1222 // Create the new GEP idx vector. 1223 SmallVector<Value*, 8> GEPIdx; 1224 GEPIdx.push_back(GEPI->getOperand(1)); 1225 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1226 1227 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1228 GEPI->getName(), GEPI); 1229 GEPI->replaceAllUsesWith(NGEPI); 1230 GEPI->eraseFromParent(); 1231 return; 1232 } 1233 1234 // Recursively transform the users of PHI nodes. This will lazily create the 1235 // PHIs that are needed for individual elements. Keep track of what PHIs we 1236 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1237 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1238 // already been seen first by another load, so its uses have already been 1239 // processed. 1240 PHINode *PN = cast<PHINode>(LoadUser); 1241 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1242 std::vector<Value*>())).second) 1243 return; 1244 1245 // If this is the first time we've seen this PHI, recursively process all 1246 // users. 1247 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1248 Instruction *User = cast<Instruction>(*UI++); 1249 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1250 } 1251 } 1252 1253 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr 1254 /// is a value loaded from the global. Eliminate all uses of Ptr, making them 1255 /// use FieldGlobals instead. All uses of loaded values satisfy 1256 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1257 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1258 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1259 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1260 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1261 Instruction *User = cast<Instruction>(*UI++); 1262 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1263 } 1264 1265 if (Load->use_empty()) { 1266 Load->eraseFromParent(); 1267 InsertedScalarizedValues.erase(Load); 1268 } 1269 } 1270 1271 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break 1272 /// it up into multiple allocations of arrays of the fields. 1273 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1274 Value *NElems, const DataLayout &DL, 1275 const TargetLibraryInfo *TLI) { 1276 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1277 Type *MAT = getMallocAllocatedType(CI, TLI); 1278 StructType *STy = cast<StructType>(MAT); 1279 1280 // There is guaranteed to be at least one use of the malloc (storing 1281 // it into GV). If there are other uses, change them to be uses of 1282 // the global to simplify later code. This also deletes the store 1283 // into GV. 1284 ReplaceUsesOfMallocWithGlobal(CI, GV); 1285 1286 // Okay, at this point, there are no users of the malloc. Insert N 1287 // new mallocs at the same place as CI, and N globals. 1288 std::vector<Value*> FieldGlobals; 1289 std::vector<Value*> FieldMallocs; 1290 1291 unsigned AS = GV->getType()->getPointerAddressSpace(); 1292 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1293 Type *FieldTy = STy->getElementType(FieldNo); 1294 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1295 1296 GlobalVariable *NGV = 1297 new GlobalVariable(*GV->getParent(), 1298 PFieldTy, false, GlobalValue::InternalLinkage, 1299 Constant::getNullValue(PFieldTy), 1300 GV->getName() + ".f" + Twine(FieldNo), GV, 1301 GV->getThreadLocalMode()); 1302 FieldGlobals.push_back(NGV); 1303 1304 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1305 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1306 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1307 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1308 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1309 ConstantInt::get(IntPtrTy, TypeSize), 1310 NElems, nullptr, 1311 CI->getName() + ".f" + Twine(FieldNo)); 1312 FieldMallocs.push_back(NMI); 1313 new StoreInst(NMI, NGV, CI); 1314 } 1315 1316 // The tricky aspect of this transformation is handling the case when malloc 1317 // fails. In the original code, malloc failing would set the result pointer 1318 // of malloc to null. In this case, some mallocs could succeed and others 1319 // could fail. As such, we emit code that looks like this: 1320 // F0 = malloc(field0) 1321 // F1 = malloc(field1) 1322 // F2 = malloc(field2) 1323 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1324 // if (F0) { free(F0); F0 = 0; } 1325 // if (F1) { free(F1); F1 = 0; } 1326 // if (F2) { free(F2); F2 = 0; } 1327 // } 1328 // The malloc can also fail if its argument is too large. 1329 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1330 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1331 ConstantZero, "isneg"); 1332 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1333 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1334 Constant::getNullValue(FieldMallocs[i]->getType()), 1335 "isnull"); 1336 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1337 } 1338 1339 // Split the basic block at the old malloc. 1340 BasicBlock *OrigBB = CI->getParent(); 1341 BasicBlock *ContBB = 1342 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1343 1344 // Create the block to check the first condition. Put all these blocks at the 1345 // end of the function as they are unlikely to be executed. 1346 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1347 "malloc_ret_null", 1348 OrigBB->getParent()); 1349 1350 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1351 // branch on RunningOr. 1352 OrigBB->getTerminator()->eraseFromParent(); 1353 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1354 1355 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1356 // pointer, because some may be null while others are not. 1357 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1358 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1359 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1360 Constant::getNullValue(GVVal->getType())); 1361 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1362 OrigBB->getParent()); 1363 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1364 OrigBB->getParent()); 1365 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1366 Cmp, NullPtrBlock); 1367 1368 // Fill in FreeBlock. 1369 CallInst::CreateFree(GVVal, BI); 1370 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1371 FreeBlock); 1372 BranchInst::Create(NextBlock, FreeBlock); 1373 1374 NullPtrBlock = NextBlock; 1375 } 1376 1377 BranchInst::Create(ContBB, NullPtrBlock); 1378 1379 // CI is no longer needed, remove it. 1380 CI->eraseFromParent(); 1381 1382 /// InsertedScalarizedLoads - As we process loads, if we can't immediately 1383 /// update all uses of the load, keep track of what scalarized loads are 1384 /// inserted for a given load. 1385 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1386 InsertedScalarizedValues[GV] = FieldGlobals; 1387 1388 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1389 1390 // Okay, the malloc site is completely handled. All of the uses of GV are now 1391 // loads, and all uses of those loads are simple. Rewrite them to use loads 1392 // of the per-field globals instead. 1393 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1394 Instruction *User = cast<Instruction>(*UI++); 1395 1396 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1397 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1398 continue; 1399 } 1400 1401 // Must be a store of null. 1402 StoreInst *SI = cast<StoreInst>(User); 1403 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1404 "Unexpected heap-sra user!"); 1405 1406 // Insert a store of null into each global. 1407 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1408 PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType()); 1409 Constant *Null = Constant::getNullValue(PT->getElementType()); 1410 new StoreInst(Null, FieldGlobals[i], SI); 1411 } 1412 // Erase the original store. 1413 SI->eraseFromParent(); 1414 } 1415 1416 // While we have PHIs that are interesting to rewrite, do it. 1417 while (!PHIsToRewrite.empty()) { 1418 PHINode *PN = PHIsToRewrite.back().first; 1419 unsigned FieldNo = PHIsToRewrite.back().second; 1420 PHIsToRewrite.pop_back(); 1421 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1422 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1423 1424 // Add all the incoming values. This can materialize more phis. 1425 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1426 Value *InVal = PN->getIncomingValue(i); 1427 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1428 PHIsToRewrite); 1429 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1430 } 1431 } 1432 1433 // Drop all inter-phi links and any loads that made it this far. 1434 for (DenseMap<Value*, std::vector<Value*> >::iterator 1435 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1436 I != E; ++I) { 1437 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1438 PN->dropAllReferences(); 1439 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1440 LI->dropAllReferences(); 1441 } 1442 1443 // Delete all the phis and loads now that inter-references are dead. 1444 for (DenseMap<Value*, std::vector<Value*> >::iterator 1445 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1446 I != E; ++I) { 1447 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1448 PN->eraseFromParent(); 1449 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1450 LI->eraseFromParent(); 1451 } 1452 1453 // The old global is now dead, remove it. 1454 GV->eraseFromParent(); 1455 1456 ++NumHeapSRA; 1457 return cast<GlobalVariable>(FieldGlobals[0]); 1458 } 1459 1460 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a 1461 /// pointer global variable with a single value stored it that is a malloc or 1462 /// cast of malloc. 1463 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1464 Type *AllocTy, 1465 AtomicOrdering Ordering, 1466 Module::global_iterator &GVI, 1467 const DataLayout &DL, 1468 TargetLibraryInfo *TLI) { 1469 // If this is a malloc of an abstract type, don't touch it. 1470 if (!AllocTy->isSized()) 1471 return false; 1472 1473 // We can't optimize this global unless all uses of it are *known* to be 1474 // of the malloc value, not of the null initializer value (consider a use 1475 // that compares the global's value against zero to see if the malloc has 1476 // been reached). To do this, we check to see if all uses of the global 1477 // would trap if the global were null: this proves that they must all 1478 // happen after the malloc. 1479 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1480 return false; 1481 1482 // We can't optimize this if the malloc itself is used in a complex way, 1483 // for example, being stored into multiple globals. This allows the 1484 // malloc to be stored into the specified global, loaded icmp'd, and 1485 // GEP'd. These are all things we could transform to using the global 1486 // for. 1487 SmallPtrSet<const PHINode*, 8> PHIs; 1488 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1489 return false; 1490 1491 // If we have a global that is only initialized with a fixed size malloc, 1492 // transform the program to use global memory instead of malloc'd memory. 1493 // This eliminates dynamic allocation, avoids an indirection accessing the 1494 // data, and exposes the resultant global to further GlobalOpt. 1495 // We cannot optimize the malloc if we cannot determine malloc array size. 1496 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1497 if (!NElems) 1498 return false; 1499 1500 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1501 // Restrict this transformation to only working on small allocations 1502 // (2048 bytes currently), as we don't want to introduce a 16M global or 1503 // something. 1504 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1505 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI) 1506 ->getIterator(); 1507 return true; 1508 } 1509 1510 // If the allocation is an array of structures, consider transforming this 1511 // into multiple malloc'd arrays, one for each field. This is basically 1512 // SRoA for malloc'd memory. 1513 1514 if (Ordering != NotAtomic) 1515 return false; 1516 1517 // If this is an allocation of a fixed size array of structs, analyze as a 1518 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1519 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1520 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1521 AllocTy = AT->getElementType(); 1522 1523 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1524 if (!AllocSTy) 1525 return false; 1526 1527 // This the structure has an unreasonable number of fields, leave it 1528 // alone. 1529 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1530 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1531 1532 // If this is a fixed size array, transform the Malloc to be an alloc of 1533 // structs. malloc [100 x struct],1 -> malloc struct, 100 1534 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1535 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1536 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1537 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1538 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1539 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, 1540 AllocSize, NumElements, 1541 nullptr, CI->getName()); 1542 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1543 CI->replaceAllUsesWith(Cast); 1544 CI->eraseFromParent(); 1545 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1546 CI = cast<CallInst>(BCI->getOperand(0)); 1547 else 1548 CI = cast<CallInst>(Malloc); 1549 } 1550 1551 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), 1552 DL, TLI) 1553 ->getIterator(); 1554 return true; 1555 } 1556 1557 return false; 1558 } 1559 1560 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge 1561 // that only one value (besides its initializer) is ever stored to the global. 1562 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1563 AtomicOrdering Ordering, 1564 Module::global_iterator &GVI, 1565 const DataLayout &DL, 1566 TargetLibraryInfo *TLI) { 1567 // Ignore no-op GEPs and bitcasts. 1568 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1569 1570 // If we are dealing with a pointer global that is initialized to null and 1571 // only has one (non-null) value stored into it, then we can optimize any 1572 // users of the loaded value (often calls and loads) that would trap if the 1573 // value was null. 1574 if (GV->getInitializer()->getType()->isPointerTy() && 1575 GV->getInitializer()->isNullValue()) { 1576 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1577 if (GV->getInitializer()->getType() != SOVC->getType()) 1578 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1579 1580 // Optimize away any trapping uses of the loaded value. 1581 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1582 return true; 1583 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1584 Type *MallocType = getMallocAllocatedType(CI, TLI); 1585 if (MallocType && 1586 TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI, 1587 DL, TLI)) 1588 return true; 1589 } 1590 } 1591 1592 return false; 1593 } 1594 1595 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only 1596 /// two values ever stored into GV are its initializer and OtherVal. See if we 1597 /// can shrink the global into a boolean and select between the two values 1598 /// whenever it is used. This exposes the values to other scalar optimizations. 1599 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1600 Type *GVElType = GV->getType()->getElementType(); 1601 1602 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1603 // an FP value, pointer or vector, don't do this optimization because a select 1604 // between them is very expensive and unlikely to lead to later 1605 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1606 // where v1 and v2 both require constant pool loads, a big loss. 1607 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1608 GVElType->isFloatingPointTy() || 1609 GVElType->isPointerTy() || GVElType->isVectorTy()) 1610 return false; 1611 1612 // Walk the use list of the global seeing if all the uses are load or store. 1613 // If there is anything else, bail out. 1614 for (User *U : GV->users()) 1615 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1616 return false; 1617 1618 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1619 1620 // Create the new global, initializing it to false. 1621 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1622 false, 1623 GlobalValue::InternalLinkage, 1624 ConstantInt::getFalse(GV->getContext()), 1625 GV->getName()+".b", 1626 GV->getThreadLocalMode(), 1627 GV->getType()->getAddressSpace()); 1628 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1629 1630 Constant *InitVal = GV->getInitializer(); 1631 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1632 "No reason to shrink to bool!"); 1633 1634 // If initialized to zero and storing one into the global, we can use a cast 1635 // instead of a select to synthesize the desired value. 1636 bool IsOneZero = false; 1637 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1638 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1639 1640 while (!GV->use_empty()) { 1641 Instruction *UI = cast<Instruction>(GV->user_back()); 1642 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1643 // Change the store into a boolean store. 1644 bool StoringOther = SI->getOperand(0) == OtherVal; 1645 // Only do this if we weren't storing a loaded value. 1646 Value *StoreVal; 1647 if (StoringOther || SI->getOperand(0) == InitVal) { 1648 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1649 StoringOther); 1650 } else { 1651 // Otherwise, we are storing a previously loaded copy. To do this, 1652 // change the copy from copying the original value to just copying the 1653 // bool. 1654 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1655 1656 // If we've already replaced the input, StoredVal will be a cast or 1657 // select instruction. If not, it will be a load of the original 1658 // global. 1659 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1660 assert(LI->getOperand(0) == GV && "Not a copy!"); 1661 // Insert a new load, to preserve the saved value. 1662 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1663 LI->getOrdering(), LI->getSynchScope(), LI); 1664 } else { 1665 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1666 "This is not a form that we understand!"); 1667 StoreVal = StoredVal->getOperand(0); 1668 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1669 } 1670 } 1671 new StoreInst(StoreVal, NewGV, false, 0, 1672 SI->getOrdering(), SI->getSynchScope(), SI); 1673 } else { 1674 // Change the load into a load of bool then a select. 1675 LoadInst *LI = cast<LoadInst>(UI); 1676 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1677 LI->getOrdering(), LI->getSynchScope(), LI); 1678 Value *NSI; 1679 if (IsOneZero) 1680 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1681 else 1682 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1683 NSI->takeName(LI); 1684 LI->replaceAllUsesWith(NSI); 1685 } 1686 UI->eraseFromParent(); 1687 } 1688 1689 // Retain the name of the old global variable. People who are debugging their 1690 // programs may expect these variables to be named the same. 1691 NewGV->takeName(GV); 1692 GV->eraseFromParent(); 1693 return true; 1694 } 1695 1696 1697 /// ProcessGlobal - Analyze the specified global variable and optimize it if 1698 /// possible. If we make a change, return true. 1699 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV, 1700 Module::global_iterator &GVI) { 1701 // Do more involved optimizations if the global is internal. 1702 GV->removeDeadConstantUsers(); 1703 1704 if (GV->use_empty()) { 1705 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV << "\n"); 1706 GV->eraseFromParent(); 1707 ++NumDeleted; 1708 return true; 1709 } 1710 1711 if (!GV->hasLocalLinkage()) 1712 return false; 1713 1714 GlobalStatus GS; 1715 1716 if (GlobalStatus::analyzeGlobal(GV, GS)) 1717 return false; 1718 1719 if (!GS.IsCompared && !GV->hasUnnamedAddr()) { 1720 GV->setUnnamedAddr(true); 1721 NumUnnamed++; 1722 } 1723 1724 if (GV->isConstant() || !GV->hasInitializer()) 1725 return false; 1726 1727 return ProcessInternalGlobal(GV, GVI, GS); 1728 } 1729 1730 /// ProcessInternalGlobal - Analyze the specified global variable and optimize 1731 /// it if possible. If we make a change, return true. 1732 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, 1733 Module::global_iterator &GVI, 1734 const GlobalStatus &GS) { 1735 auto &DL = GV->getParent()->getDataLayout(); 1736 // If this is a first class global and has only one accessing function 1737 // and this function is main (which we know is not recursive), we replace 1738 // the global with a local alloca in this function. 1739 // 1740 // NOTE: It doesn't make sense to promote non-single-value types since we 1741 // are just replacing static memory to stack memory. 1742 // 1743 // If the global is in different address space, don't bring it to stack. 1744 if (!GS.HasMultipleAccessingFunctions && 1745 GS.AccessingFunction && !GS.HasNonInstructionUser && 1746 GV->getType()->getElementType()->isSingleValueType() && 1747 GS.AccessingFunction->getName() == "main" && 1748 GS.AccessingFunction->hasExternalLinkage() && 1749 GV->getType()->getAddressSpace() == 0) { 1750 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV); 1751 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1752 ->getEntryBlock().begin()); 1753 Type *ElemTy = GV->getType()->getElementType(); 1754 // FIXME: Pass Global's alignment when globals have alignment 1755 AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr, 1756 GV->getName(), &FirstI); 1757 if (!isa<UndefValue>(GV->getInitializer())) 1758 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1759 1760 GV->replaceAllUsesWith(Alloca); 1761 GV->eraseFromParent(); 1762 ++NumLocalized; 1763 return true; 1764 } 1765 1766 // If the global is never loaded (but may be stored to), it is dead. 1767 // Delete it now. 1768 if (!GS.IsLoaded) { 1769 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV); 1770 1771 bool Changed; 1772 if (isLeakCheckerRoot(GV)) { 1773 // Delete any constant stores to the global. 1774 Changed = CleanupPointerRootUsers(GV, TLI); 1775 } else { 1776 // Delete any stores we can find to the global. We may not be able to 1777 // make it completely dead though. 1778 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1779 } 1780 1781 // If the global is dead now, delete it. 1782 if (GV->use_empty()) { 1783 GV->eraseFromParent(); 1784 ++NumDeleted; 1785 Changed = true; 1786 } 1787 return Changed; 1788 1789 } else if (GS.StoredType <= GlobalStatus::InitializerStored) { 1790 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1791 GV->setConstant(true); 1792 1793 // Clean up any obviously simplifiable users now. 1794 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1795 1796 // If the global is dead now, just nuke it. 1797 if (GV->use_empty()) { 1798 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1799 << "all users and delete global!\n"); 1800 GV->eraseFromParent(); 1801 ++NumDeleted; 1802 } 1803 1804 ++NumMarked; 1805 return true; 1806 } else if (!GV->getInitializer()->getType()->isSingleValueType()) { 1807 const DataLayout &DL = GV->getParent()->getDataLayout(); 1808 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, DL)) { 1809 GVI = FirstNewGV->getIterator(); // Don't skip the newly produced globals! 1810 return true; 1811 } 1812 } else if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1813 // If the initial value for the global was an undef value, and if only 1814 // one other value was stored into it, we can just change the 1815 // initializer to be the stored value, then delete all stores to the 1816 // global. This allows us to mark it constant. 1817 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1818 if (isa<UndefValue>(GV->getInitializer())) { 1819 // Change the initial value here. 1820 GV->setInitializer(SOVConstant); 1821 1822 // Clean up any obviously simplifiable users now. 1823 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1824 1825 if (GV->use_empty()) { 1826 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1827 << "simplify all users and delete global!\n"); 1828 GV->eraseFromParent(); 1829 ++NumDeleted; 1830 } else { 1831 GVI = GV->getIterator(); 1832 } 1833 ++NumSubstitute; 1834 return true; 1835 } 1836 1837 // Try to optimize globals based on the knowledge that only one value 1838 // (besides its initializer) is ever stored to the global. 1839 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI, 1840 DL, TLI)) 1841 return true; 1842 1843 // Otherwise, if the global was not a boolean, we can shrink it to be a 1844 // boolean. 1845 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 1846 if (GS.Ordering == NotAtomic) { 1847 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1848 ++NumShrunkToBool; 1849 return true; 1850 } 1851 } 1852 } 1853 } 1854 1855 return false; 1856 } 1857 1858 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified 1859 /// function, changing them to FastCC. 1860 static void ChangeCalleesToFastCall(Function *F) { 1861 for (User *U : F->users()) { 1862 if (isa<BlockAddress>(U)) 1863 continue; 1864 CallSite CS(cast<Instruction>(U)); 1865 CS.setCallingConv(CallingConv::Fast); 1866 } 1867 } 1868 1869 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) { 1870 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1871 unsigned Index = Attrs.getSlotIndex(i); 1872 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest)) 1873 continue; 1874 1875 // There can be only one. 1876 return Attrs.removeAttribute(C, Index, Attribute::Nest); 1877 } 1878 1879 return Attrs; 1880 } 1881 1882 static void RemoveNestAttribute(Function *F) { 1883 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 1884 for (User *U : F->users()) { 1885 if (isa<BlockAddress>(U)) 1886 continue; 1887 CallSite CS(cast<Instruction>(U)); 1888 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 1889 } 1890 } 1891 1892 /// Return true if this is a calling convention that we'd like to change. The 1893 /// idea here is that we don't want to mess with the convention if the user 1894 /// explicitly requested something with performance implications like coldcc, 1895 /// GHC, or anyregcc. 1896 static bool isProfitableToMakeFastCC(Function *F) { 1897 CallingConv::ID CC = F->getCallingConv(); 1898 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 1899 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall; 1900 } 1901 1902 bool GlobalOpt::OptimizeFunctions(Module &M) { 1903 bool Changed = false; 1904 // Optimize functions. 1905 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 1906 Function *F = &*FI++; 1907 // Functions without names cannot be referenced outside this module. 1908 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 1909 F->setLinkage(GlobalValue::InternalLinkage); 1910 1911 const Comdat *C = F->getComdat(); 1912 bool inComdat = C && NotDiscardableComdats.count(C); 1913 F->removeDeadConstantUsers(); 1914 if ((!inComdat || F->hasLocalLinkage()) && F->isDefTriviallyDead()) { 1915 F->eraseFromParent(); 1916 Changed = true; 1917 ++NumFnDeleted; 1918 } else if (F->hasLocalLinkage()) { 1919 if (isProfitableToMakeFastCC(F) && !F->isVarArg() && 1920 !F->hasAddressTaken()) { 1921 // If this function has a calling convention worth changing, is not a 1922 // varargs function, and is only called directly, promote it to use the 1923 // Fast calling convention. 1924 F->setCallingConv(CallingConv::Fast); 1925 ChangeCalleesToFastCall(F); 1926 ++NumFastCallFns; 1927 Changed = true; 1928 } 1929 1930 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 1931 !F->hasAddressTaken()) { 1932 // The function is not used by a trampoline intrinsic, so it is safe 1933 // to remove the 'nest' attribute. 1934 RemoveNestAttribute(F); 1935 ++NumNestRemoved; 1936 Changed = true; 1937 } 1938 } 1939 } 1940 return Changed; 1941 } 1942 1943 bool GlobalOpt::OptimizeGlobalVars(Module &M) { 1944 bool Changed = false; 1945 1946 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 1947 GVI != E; ) { 1948 GlobalVariable *GV = &*GVI++; 1949 // Global variables without names cannot be referenced outside this module. 1950 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 1951 GV->setLinkage(GlobalValue::InternalLinkage); 1952 // Simplify the initializer. 1953 if (GV->hasInitializer()) 1954 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) { 1955 auto &DL = M.getDataLayout(); 1956 Constant *New = ConstantFoldConstantExpression(CE, DL, TLI); 1957 if (New && New != CE) 1958 GV->setInitializer(New); 1959 } 1960 1961 if (GV->isDiscardableIfUnused()) { 1962 if (const Comdat *C = GV->getComdat()) 1963 if (NotDiscardableComdats.count(C) && !GV->hasLocalLinkage()) 1964 continue; 1965 Changed |= ProcessGlobal(GV, GVI); 1966 } 1967 } 1968 return Changed; 1969 } 1970 1971 static inline bool 1972 isSimpleEnoughValueToCommit(Constant *C, 1973 SmallPtrSetImpl<Constant *> &SimpleConstants, 1974 const DataLayout &DL); 1975 1976 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be 1977 /// handled by the code generator. We don't want to generate something like: 1978 /// void *X = &X/42; 1979 /// because the code generator doesn't have a relocation that can handle that. 1980 /// 1981 /// This function should be called if C was not found (but just got inserted) 1982 /// in SimpleConstants to avoid having to rescan the same constants all the 1983 /// time. 1984 static bool 1985 isSimpleEnoughValueToCommitHelper(Constant *C, 1986 SmallPtrSetImpl<Constant *> &SimpleConstants, 1987 const DataLayout &DL) { 1988 // Simple global addresses are supported, do not allow dllimport or 1989 // thread-local globals. 1990 if (auto *GV = dyn_cast<GlobalValue>(C)) 1991 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); 1992 1993 // Simple integer, undef, constant aggregate zero, etc are all supported. 1994 if (C->getNumOperands() == 0 || isa<BlockAddress>(C)) 1995 return true; 1996 1997 // Aggregate values are safe if all their elements are. 1998 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1999 isa<ConstantVector>(C)) { 2000 for (Value *Op : C->operands()) 2001 if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL)) 2002 return false; 2003 return true; 2004 } 2005 2006 // We don't know exactly what relocations are allowed in constant expressions, 2007 // so we allow &global+constantoffset, which is safe and uniformly supported 2008 // across targets. 2009 ConstantExpr *CE = cast<ConstantExpr>(C); 2010 switch (CE->getOpcode()) { 2011 case Instruction::BitCast: 2012 // Bitcast is fine if the casted value is fine. 2013 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2014 2015 case Instruction::IntToPtr: 2016 case Instruction::PtrToInt: 2017 // int <=> ptr is fine if the int type is the same size as the 2018 // pointer type. 2019 if (DL.getTypeSizeInBits(CE->getType()) != 2020 DL.getTypeSizeInBits(CE->getOperand(0)->getType())) 2021 return false; 2022 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2023 2024 // GEP is fine if it is simple + constant offset. 2025 case Instruction::GetElementPtr: 2026 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 2027 if (!isa<ConstantInt>(CE->getOperand(i))) 2028 return false; 2029 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2030 2031 case Instruction::Add: 2032 // We allow simple+cst. 2033 if (!isa<ConstantInt>(CE->getOperand(1))) 2034 return false; 2035 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2036 } 2037 return false; 2038 } 2039 2040 static inline bool 2041 isSimpleEnoughValueToCommit(Constant *C, 2042 SmallPtrSetImpl<Constant *> &SimpleConstants, 2043 const DataLayout &DL) { 2044 // If we already checked this constant, we win. 2045 if (!SimpleConstants.insert(C).second) 2046 return true; 2047 // Check the constant. 2048 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); 2049 } 2050 2051 2052 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple 2053 /// enough for us to understand. In particular, if it is a cast to anything 2054 /// other than from one pointer type to another pointer type, we punt. 2055 /// We basically just support direct accesses to globals and GEP's of 2056 /// globals. This should be kept up to date with CommitValueTo. 2057 static bool isSimpleEnoughPointerToCommit(Constant *C) { 2058 // Conservatively, avoid aggregate types. This is because we don't 2059 // want to worry about them partially overlapping other stores. 2060 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) 2061 return false; 2062 2063 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 2064 // Do not allow weak/*_odr/linkonce linkage or external globals. 2065 return GV->hasUniqueInitializer(); 2066 2067 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2068 // Handle a constantexpr gep. 2069 if (CE->getOpcode() == Instruction::GetElementPtr && 2070 isa<GlobalVariable>(CE->getOperand(0)) && 2071 cast<GEPOperator>(CE)->isInBounds()) { 2072 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2073 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2074 // external globals. 2075 if (!GV->hasUniqueInitializer()) 2076 return false; 2077 2078 // The first index must be zero. 2079 ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin())); 2080 if (!CI || !CI->isZero()) return false; 2081 2082 // The remaining indices must be compile-time known integers within the 2083 // notional bounds of the corresponding static array types. 2084 if (!CE->isGEPWithNoNotionalOverIndexing()) 2085 return false; 2086 2087 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2088 2089 // A constantexpr bitcast from a pointer to another pointer is a no-op, 2090 // and we know how to evaluate it by moving the bitcast from the pointer 2091 // operand to the value operand. 2092 } else if (CE->getOpcode() == Instruction::BitCast && 2093 isa<GlobalVariable>(CE->getOperand(0))) { 2094 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2095 // external globals. 2096 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); 2097 } 2098 } 2099 2100 return false; 2101 } 2102 2103 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global 2104 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it. 2105 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into. 2106 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2107 ConstantExpr *Addr, unsigned OpNo) { 2108 // Base case of the recursion. 2109 if (OpNo == Addr->getNumOperands()) { 2110 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2111 return Val; 2112 } 2113 2114 SmallVector<Constant*, 32> Elts; 2115 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2116 // Break up the constant into its elements. 2117 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2118 Elts.push_back(Init->getAggregateElement(i)); 2119 2120 // Replace the element that we are supposed to. 2121 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2122 unsigned Idx = CU->getZExtValue(); 2123 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2124 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2125 2126 // Return the modified struct. 2127 return ConstantStruct::get(STy, Elts); 2128 } 2129 2130 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2131 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2132 2133 uint64_t NumElts; 2134 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy)) 2135 NumElts = ATy->getNumElements(); 2136 else 2137 NumElts = InitTy->getVectorNumElements(); 2138 2139 // Break up the array into elements. 2140 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2141 Elts.push_back(Init->getAggregateElement(i)); 2142 2143 assert(CI->getZExtValue() < NumElts); 2144 Elts[CI->getZExtValue()] = 2145 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2146 2147 if (Init->getType()->isArrayTy()) 2148 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2149 return ConstantVector::get(Elts); 2150 } 2151 2152 /// CommitValueTo - We have decided that Addr (which satisfies the predicate 2153 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2154 static void CommitValueTo(Constant *Val, Constant *Addr) { 2155 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2156 assert(GV->hasInitializer()); 2157 GV->setInitializer(Val); 2158 return; 2159 } 2160 2161 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2162 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2163 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2164 } 2165 2166 namespace { 2167 2168 /// Evaluator - This class evaluates LLVM IR, producing the Constant 2169 /// representing each SSA instruction. Changes to global variables are stored 2170 /// in a mapping that can be iterated over after the evaluation is complete. 2171 /// Once an evaluation call fails, the evaluation object should not be reused. 2172 class Evaluator { 2173 public: 2174 Evaluator(const DataLayout &DL, const TargetLibraryInfo *TLI) 2175 : DL(DL), TLI(TLI) { 2176 ValueStack.emplace_back(); 2177 } 2178 2179 ~Evaluator() { 2180 for (auto &Tmp : AllocaTmps) 2181 // If there are still users of the alloca, the program is doing something 2182 // silly, e.g. storing the address of the alloca somewhere and using it 2183 // later. Since this is undefined, we'll just make it be null. 2184 if (!Tmp->use_empty()) 2185 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType())); 2186 } 2187 2188 /// EvaluateFunction - Evaluate a call to function F, returning true if 2189 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2190 /// arguments for the function. 2191 bool EvaluateFunction(Function *F, Constant *&RetVal, 2192 const SmallVectorImpl<Constant*> &ActualArgs); 2193 2194 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2195 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2196 /// control flows into, or null upon return. 2197 bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB); 2198 2199 Constant *getVal(Value *V) { 2200 if (Constant *CV = dyn_cast<Constant>(V)) return CV; 2201 Constant *R = ValueStack.back().lookup(V); 2202 assert(R && "Reference to an uncomputed value!"); 2203 return R; 2204 } 2205 2206 void setVal(Value *V, Constant *C) { 2207 ValueStack.back()[V] = C; 2208 } 2209 2210 const DenseMap<Constant*, Constant*> &getMutatedMemory() const { 2211 return MutatedMemory; 2212 } 2213 2214 const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const { 2215 return Invariants; 2216 } 2217 2218 private: 2219 Constant *ComputeLoadResult(Constant *P); 2220 2221 /// ValueStack - As we compute SSA register values, we store their contents 2222 /// here. The back of the deque contains the current function and the stack 2223 /// contains the values in the calling frames. 2224 std::deque<DenseMap<Value*, Constant*>> ValueStack; 2225 2226 /// CallStack - This is used to detect recursion. In pathological situations 2227 /// we could hit exponential behavior, but at least there is nothing 2228 /// unbounded. 2229 SmallVector<Function*, 4> CallStack; 2230 2231 /// MutatedMemory - For each store we execute, we update this map. Loads 2232 /// check this to get the most up-to-date value. If evaluation is successful, 2233 /// this state is committed to the process. 2234 DenseMap<Constant*, Constant*> MutatedMemory; 2235 2236 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable 2237 /// to represent its body. This vector is needed so we can delete the 2238 /// temporary globals when we are done. 2239 SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps; 2240 2241 /// Invariants - These global variables have been marked invariant by the 2242 /// static constructor. 2243 SmallPtrSet<GlobalVariable*, 8> Invariants; 2244 2245 /// SimpleConstants - These are constants we have checked and know to be 2246 /// simple enough to live in a static initializer of a global. 2247 SmallPtrSet<Constant*, 8> SimpleConstants; 2248 2249 const DataLayout &DL; 2250 const TargetLibraryInfo *TLI; 2251 }; 2252 2253 } // anonymous namespace 2254 2255 /// ComputeLoadResult - Return the value that would be computed by a load from 2256 /// P after the stores reflected by 'memory' have been performed. If we can't 2257 /// decide, return null. 2258 Constant *Evaluator::ComputeLoadResult(Constant *P) { 2259 // If this memory location has been recently stored, use the stored value: it 2260 // is the most up-to-date. 2261 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P); 2262 if (I != MutatedMemory.end()) return I->second; 2263 2264 // Access it. 2265 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 2266 if (GV->hasDefinitiveInitializer()) 2267 return GV->getInitializer(); 2268 return nullptr; 2269 } 2270 2271 // Handle a constantexpr getelementptr. 2272 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) 2273 if (CE->getOpcode() == Instruction::GetElementPtr && 2274 isa<GlobalVariable>(CE->getOperand(0))) { 2275 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2276 if (GV->hasDefinitiveInitializer()) 2277 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2278 } 2279 2280 return nullptr; // don't know how to evaluate. 2281 } 2282 2283 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2284 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2285 /// control flows into, or null upon return. 2286 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, 2287 BasicBlock *&NextBB) { 2288 // This is the main evaluation loop. 2289 while (1) { 2290 Constant *InstResult = nullptr; 2291 2292 DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); 2293 2294 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 2295 if (!SI->isSimple()) { 2296 DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n"); 2297 return false; // no volatile/atomic accesses. 2298 } 2299 Constant *Ptr = getVal(SI->getOperand(1)); 2300 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2301 DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); 2302 Ptr = ConstantFoldConstantExpression(CE, DL, TLI); 2303 DEBUG(dbgs() << "; To: " << *Ptr << "\n"); 2304 } 2305 if (!isSimpleEnoughPointerToCommit(Ptr)) { 2306 // If this is too complex for us to commit, reject it. 2307 DEBUG(dbgs() << "Pointer is too complex for us to evaluate store."); 2308 return false; 2309 } 2310 2311 Constant *Val = getVal(SI->getOperand(0)); 2312 2313 // If this might be too difficult for the backend to handle (e.g. the addr 2314 // of one global variable divided by another) then we can't commit it. 2315 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { 2316 DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val 2317 << "\n"); 2318 return false; 2319 } 2320 2321 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2322 if (CE->getOpcode() == Instruction::BitCast) { 2323 DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n"); 2324 // If we're evaluating a store through a bitcast, then we need 2325 // to pull the bitcast off the pointer type and push it onto the 2326 // stored value. 2327 Ptr = CE->getOperand(0); 2328 2329 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType(); 2330 2331 // In order to push the bitcast onto the stored value, a bitcast 2332 // from NewTy to Val's type must be legal. If it's not, we can try 2333 // introspecting NewTy to find a legal conversion. 2334 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) { 2335 // If NewTy is a struct, we can convert the pointer to the struct 2336 // into a pointer to its first member. 2337 // FIXME: This could be extended to support arrays as well. 2338 if (StructType *STy = dyn_cast<StructType>(NewTy)) { 2339 NewTy = STy->getTypeAtIndex(0U); 2340 2341 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32); 2342 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); 2343 Constant * const IdxList[] = {IdxZero, IdxZero}; 2344 2345 Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList); 2346 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 2347 Ptr = ConstantFoldConstantExpression(CE, DL, TLI); 2348 2349 // If we can't improve the situation by introspecting NewTy, 2350 // we have to give up. 2351 } else { 2352 DEBUG(dbgs() << "Failed to bitcast constant ptr, can not " 2353 "evaluate.\n"); 2354 return false; 2355 } 2356 } 2357 2358 // If we found compatible types, go ahead and push the bitcast 2359 // onto the stored value. 2360 Val = ConstantExpr::getBitCast(Val, NewTy); 2361 2362 DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n"); 2363 } 2364 } 2365 2366 MutatedMemory[Ptr] = Val; 2367 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 2368 InstResult = ConstantExpr::get(BO->getOpcode(), 2369 getVal(BO->getOperand(0)), 2370 getVal(BO->getOperand(1))); 2371 DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult 2372 << "\n"); 2373 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 2374 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 2375 getVal(CI->getOperand(0)), 2376 getVal(CI->getOperand(1))); 2377 DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult 2378 << "\n"); 2379 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 2380 InstResult = ConstantExpr::getCast(CI->getOpcode(), 2381 getVal(CI->getOperand(0)), 2382 CI->getType()); 2383 DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult 2384 << "\n"); 2385 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 2386 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), 2387 getVal(SI->getOperand(1)), 2388 getVal(SI->getOperand(2))); 2389 DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult 2390 << "\n"); 2391 } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) { 2392 InstResult = ConstantExpr::getExtractValue( 2393 getVal(EVI->getAggregateOperand()), EVI->getIndices()); 2394 DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult 2395 << "\n"); 2396 } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) { 2397 InstResult = ConstantExpr::getInsertValue( 2398 getVal(IVI->getAggregateOperand()), 2399 getVal(IVI->getInsertedValueOperand()), IVI->getIndices()); 2400 DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult 2401 << "\n"); 2402 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 2403 Constant *P = getVal(GEP->getOperand(0)); 2404 SmallVector<Constant*, 8> GEPOps; 2405 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); 2406 i != e; ++i) 2407 GEPOps.push_back(getVal(*i)); 2408 InstResult = 2409 ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps, 2410 cast<GEPOperator>(GEP)->isInBounds()); 2411 DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult 2412 << "\n"); 2413 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 2414 2415 if (!LI->isSimple()) { 2416 DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"); 2417 return false; // no volatile/atomic accesses. 2418 } 2419 2420 Constant *Ptr = getVal(LI->getOperand(0)); 2421 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2422 Ptr = ConstantFoldConstantExpression(CE, DL, TLI); 2423 DEBUG(dbgs() << "Found a constant pointer expression, constant " 2424 "folding: " << *Ptr << "\n"); 2425 } 2426 InstResult = ComputeLoadResult(Ptr); 2427 if (!InstResult) { 2428 DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load." 2429 "\n"); 2430 return false; // Could not evaluate load. 2431 } 2432 2433 DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); 2434 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 2435 if (AI->isArrayAllocation()) { 2436 DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); 2437 return false; // Cannot handle array allocs. 2438 } 2439 Type *Ty = AI->getType()->getElementType(); 2440 AllocaTmps.push_back( 2441 make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage, 2442 UndefValue::get(Ty), AI->getName())); 2443 InstResult = AllocaTmps.back().get(); 2444 DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); 2445 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { 2446 CallSite CS(&*CurInst); 2447 2448 // Debug info can safely be ignored here. 2449 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) { 2450 DEBUG(dbgs() << "Ignoring debug info.\n"); 2451 ++CurInst; 2452 continue; 2453 } 2454 2455 // Cannot handle inline asm. 2456 if (isa<InlineAsm>(CS.getCalledValue())) { 2457 DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); 2458 return false; 2459 } 2460 2461 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { 2462 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { 2463 if (MSI->isVolatile()) { 2464 DEBUG(dbgs() << "Can not optimize a volatile memset " << 2465 "intrinsic.\n"); 2466 return false; 2467 } 2468 Constant *Ptr = getVal(MSI->getDest()); 2469 Constant *Val = getVal(MSI->getValue()); 2470 Constant *DestVal = ComputeLoadResult(getVal(Ptr)); 2471 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { 2472 // This memset is a no-op. 2473 DEBUG(dbgs() << "Ignoring no-op memset.\n"); 2474 ++CurInst; 2475 continue; 2476 } 2477 } 2478 2479 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 2480 II->getIntrinsicID() == Intrinsic::lifetime_end) { 2481 DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); 2482 ++CurInst; 2483 continue; 2484 } 2485 2486 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2487 // We don't insert an entry into Values, as it doesn't have a 2488 // meaningful return value. 2489 if (!II->use_empty()) { 2490 DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n"); 2491 return false; 2492 } 2493 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); 2494 Value *PtrArg = getVal(II->getArgOperand(1)); 2495 Value *Ptr = PtrArg->stripPointerCasts(); 2496 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 2497 Type *ElemTy = cast<PointerType>(GV->getType())->getElementType(); 2498 if (!Size->isAllOnesValue() && 2499 Size->getValue().getLimitedValue() >= 2500 DL.getTypeStoreSize(ElemTy)) { 2501 Invariants.insert(GV); 2502 DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV 2503 << "\n"); 2504 } else { 2505 DEBUG(dbgs() << "Found a global var, but can not treat it as an " 2506 "invariant.\n"); 2507 } 2508 } 2509 // Continue even if we do nothing. 2510 ++CurInst; 2511 continue; 2512 } else if (II->getIntrinsicID() == Intrinsic::assume) { 2513 DEBUG(dbgs() << "Skipping assume intrinsic.\n"); 2514 ++CurInst; 2515 continue; 2516 } 2517 2518 DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n"); 2519 return false; 2520 } 2521 2522 // Resolve function pointers. 2523 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue())); 2524 if (!Callee || Callee->mayBeOverridden()) { 2525 DEBUG(dbgs() << "Can not resolve function pointer.\n"); 2526 return false; // Cannot resolve. 2527 } 2528 2529 SmallVector<Constant*, 8> Formals; 2530 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) 2531 Formals.push_back(getVal(*i)); 2532 2533 if (Callee->isDeclaration()) { 2534 // If this is a function we can constant fold, do it. 2535 if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) { 2536 InstResult = C; 2537 DEBUG(dbgs() << "Constant folded function call. Result: " << 2538 *InstResult << "\n"); 2539 } else { 2540 DEBUG(dbgs() << "Can not constant fold function call.\n"); 2541 return false; 2542 } 2543 } else { 2544 if (Callee->getFunctionType()->isVarArg()) { 2545 DEBUG(dbgs() << "Can not constant fold vararg function call.\n"); 2546 return false; 2547 } 2548 2549 Constant *RetVal = nullptr; 2550 // Execute the call, if successful, use the return value. 2551 ValueStack.emplace_back(); 2552 if (!EvaluateFunction(Callee, RetVal, Formals)) { 2553 DEBUG(dbgs() << "Failed to evaluate function.\n"); 2554 return false; 2555 } 2556 ValueStack.pop_back(); 2557 InstResult = RetVal; 2558 2559 if (InstResult) { 2560 DEBUG(dbgs() << "Successfully evaluated function. Result: " << 2561 InstResult << "\n\n"); 2562 } else { 2563 DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n"); 2564 } 2565 } 2566 } else if (isa<TerminatorInst>(CurInst)) { 2567 DEBUG(dbgs() << "Found a terminator instruction.\n"); 2568 2569 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 2570 if (BI->isUnconditional()) { 2571 NextBB = BI->getSuccessor(0); 2572 } else { 2573 ConstantInt *Cond = 2574 dyn_cast<ConstantInt>(getVal(BI->getCondition())); 2575 if (!Cond) return false; // Cannot determine. 2576 2577 NextBB = BI->getSuccessor(!Cond->getZExtValue()); 2578 } 2579 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 2580 ConstantInt *Val = 2581 dyn_cast<ConstantInt>(getVal(SI->getCondition())); 2582 if (!Val) return false; // Cannot determine. 2583 NextBB = SI->findCaseValue(Val).getCaseSuccessor(); 2584 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 2585 Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); 2586 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 2587 NextBB = BA->getBasicBlock(); 2588 else 2589 return false; // Cannot determine. 2590 } else if (isa<ReturnInst>(CurInst)) { 2591 NextBB = nullptr; 2592 } else { 2593 // invoke, unwind, resume, unreachable. 2594 DEBUG(dbgs() << "Can not handle terminator."); 2595 return false; // Cannot handle this terminator. 2596 } 2597 2598 // We succeeded at evaluating this block! 2599 DEBUG(dbgs() << "Successfully evaluated block.\n"); 2600 return true; 2601 } else { 2602 // Did not know how to evaluate this! 2603 DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction." 2604 "\n"); 2605 return false; 2606 } 2607 2608 if (!CurInst->use_empty()) { 2609 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult)) 2610 InstResult = ConstantFoldConstantExpression(CE, DL, TLI); 2611 2612 setVal(&*CurInst, InstResult); 2613 } 2614 2615 // If we just processed an invoke, we finished evaluating the block. 2616 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { 2617 NextBB = II->getNormalDest(); 2618 DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); 2619 return true; 2620 } 2621 2622 // Advance program counter. 2623 ++CurInst; 2624 } 2625 } 2626 2627 /// EvaluateFunction - Evaluate a call to function F, returning true if 2628 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2629 /// arguments for the function. 2630 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, 2631 const SmallVectorImpl<Constant*> &ActualArgs) { 2632 // Check to see if this function is already executing (recursion). If so, 2633 // bail out. TODO: we might want to accept limited recursion. 2634 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end()) 2635 return false; 2636 2637 CallStack.push_back(F); 2638 2639 // Initialize arguments to the incoming values specified. 2640 unsigned ArgNo = 0; 2641 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 2642 ++AI, ++ArgNo) 2643 setVal(&*AI, ActualArgs[ArgNo]); 2644 2645 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 2646 // we can only evaluate any one basic block at most once. This set keeps 2647 // track of what we have executed so we can detect recursive cases etc. 2648 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 2649 2650 // CurBB - The current basic block we're evaluating. 2651 BasicBlock *CurBB = &F->front(); 2652 2653 BasicBlock::iterator CurInst = CurBB->begin(); 2654 2655 while (1) { 2656 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. 2657 DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); 2658 2659 if (!EvaluateBlock(CurInst, NextBB)) 2660 return false; 2661 2662 if (!NextBB) { 2663 // Successfully running until there's no next block means that we found 2664 // the return. Fill it the return value and pop the call stack. 2665 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); 2666 if (RI->getNumOperands()) 2667 RetVal = getVal(RI->getOperand(0)); 2668 CallStack.pop_back(); 2669 return true; 2670 } 2671 2672 // Okay, we succeeded in evaluating this control flow. See if we have 2673 // executed the new block before. If so, we have a looping function, 2674 // which we cannot evaluate in reasonable time. 2675 if (!ExecutedBlocks.insert(NextBB).second) 2676 return false; // looped! 2677 2678 // Okay, we have never been in this block before. Check to see if there 2679 // are any PHI nodes. If so, evaluate them with information about where 2680 // we came from. 2681 PHINode *PN = nullptr; 2682 for (CurInst = NextBB->begin(); 2683 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 2684 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); 2685 2686 // Advance to the next block. 2687 CurBB = NextBB; 2688 } 2689 } 2690 2691 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if 2692 /// we can. Return true if we can, false otherwise. 2693 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2694 const TargetLibraryInfo *TLI) { 2695 // Call the function. 2696 Evaluator Eval(DL, TLI); 2697 Constant *RetValDummy; 2698 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2699 SmallVector<Constant*, 0>()); 2700 2701 if (EvalSuccess) { 2702 ++NumCtorsEvaluated; 2703 2704 // We succeeded at evaluation: commit the result. 2705 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2706 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2707 << " stores.\n"); 2708 for (DenseMap<Constant*, Constant*>::const_iterator I = 2709 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end(); 2710 I != E; ++I) 2711 CommitValueTo(I->second, I->first); 2712 for (GlobalVariable *GV : Eval.getInvariants()) 2713 GV->setConstant(true); 2714 } 2715 2716 return EvalSuccess; 2717 } 2718 2719 static int compareNames(Constant *const *A, Constant *const *B) { 2720 return (*A)->stripPointerCasts()->getName().compare( 2721 (*B)->stripPointerCasts()->getName()); 2722 } 2723 2724 static void setUsedInitializer(GlobalVariable &V, 2725 const SmallPtrSet<GlobalValue *, 8> &Init) { 2726 if (Init.empty()) { 2727 V.eraseFromParent(); 2728 return; 2729 } 2730 2731 // Type of pointer to the array of pointers. 2732 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2733 2734 SmallVector<llvm::Constant *, 8> UsedArray; 2735 for (GlobalValue *GV : Init) { 2736 Constant *Cast 2737 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2738 UsedArray.push_back(Cast); 2739 } 2740 // Sort to get deterministic order. 2741 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2742 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2743 2744 Module *M = V.getParent(); 2745 V.removeFromParent(); 2746 GlobalVariable *NV = 2747 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage, 2748 llvm::ConstantArray::get(ATy, UsedArray), ""); 2749 NV->takeName(&V); 2750 NV->setSection("llvm.metadata"); 2751 delete &V; 2752 } 2753 2754 namespace { 2755 /// \brief An easy to access representation of llvm.used and llvm.compiler.used. 2756 class LLVMUsed { 2757 SmallPtrSet<GlobalValue *, 8> Used; 2758 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2759 GlobalVariable *UsedV; 2760 GlobalVariable *CompilerUsedV; 2761 2762 public: 2763 LLVMUsed(Module &M) { 2764 UsedV = collectUsedGlobalVariables(M, Used, false); 2765 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2766 } 2767 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator; 2768 typedef iterator_range<iterator> used_iterator_range; 2769 iterator usedBegin() { return Used.begin(); } 2770 iterator usedEnd() { return Used.end(); } 2771 used_iterator_range used() { 2772 return used_iterator_range(usedBegin(), usedEnd()); 2773 } 2774 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2775 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2776 used_iterator_range compilerUsed() { 2777 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2778 } 2779 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2780 bool compilerUsedCount(GlobalValue *GV) const { 2781 return CompilerUsed.count(GV); 2782 } 2783 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2784 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2785 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2786 bool compilerUsedInsert(GlobalValue *GV) { 2787 return CompilerUsed.insert(GV).second; 2788 } 2789 2790 void syncVariablesAndSets() { 2791 if (UsedV) 2792 setUsedInitializer(*UsedV, Used); 2793 if (CompilerUsedV) 2794 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2795 } 2796 }; 2797 } 2798 2799 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2800 if (GA.use_empty()) // No use at all. 2801 return false; 2802 2803 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2804 "We should have removed the duplicated " 2805 "element from llvm.compiler.used"); 2806 if (!GA.hasOneUse()) 2807 // Strictly more than one use. So at least one is not in llvm.used and 2808 // llvm.compiler.used. 2809 return true; 2810 2811 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2812 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2813 } 2814 2815 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2816 const LLVMUsed &U) { 2817 unsigned N = 2; 2818 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2819 "We should have removed the duplicated " 2820 "element from llvm.compiler.used"); 2821 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2822 ++N; 2823 return V.hasNUsesOrMore(N); 2824 } 2825 2826 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2827 if (!GA.hasLocalLinkage()) 2828 return true; 2829 2830 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2831 } 2832 2833 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2834 bool &RenameTarget) { 2835 RenameTarget = false; 2836 bool Ret = false; 2837 if (hasUseOtherThanLLVMUsed(GA, U)) 2838 Ret = true; 2839 2840 // If the alias is externally visible, we may still be able to simplify it. 2841 if (!mayHaveOtherReferences(GA, U)) 2842 return Ret; 2843 2844 // If the aliasee has internal linkage, give it the name and linkage 2845 // of the alias, and delete the alias. This turns: 2846 // define internal ... @f(...) 2847 // @a = alias ... @f 2848 // into: 2849 // define ... @a(...) 2850 Constant *Aliasee = GA.getAliasee(); 2851 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2852 if (!Target->hasLocalLinkage()) 2853 return Ret; 2854 2855 // Do not perform the transform if multiple aliases potentially target the 2856 // aliasee. This check also ensures that it is safe to replace the section 2857 // and other attributes of the aliasee with those of the alias. 2858 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2859 return Ret; 2860 2861 RenameTarget = true; 2862 return true; 2863 } 2864 2865 bool GlobalOpt::OptimizeGlobalAliases(Module &M) { 2866 bool Changed = false; 2867 LLVMUsed Used(M); 2868 2869 for (GlobalValue *GV : Used.used()) 2870 Used.compilerUsedErase(GV); 2871 2872 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2873 I != E;) { 2874 Module::alias_iterator J = I++; 2875 // Aliases without names cannot be referenced outside this module. 2876 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2877 J->setLinkage(GlobalValue::InternalLinkage); 2878 // If the aliasee may change at link time, nothing can be done - bail out. 2879 if (J->mayBeOverridden()) 2880 continue; 2881 2882 Constant *Aliasee = J->getAliasee(); 2883 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2884 // We can't trivially replace the alias with the aliasee if the aliasee is 2885 // non-trivial in some way. 2886 // TODO: Try to handle non-zero GEPs of local aliasees. 2887 if (!Target) 2888 continue; 2889 Target->removeDeadConstantUsers(); 2890 2891 // Make all users of the alias use the aliasee instead. 2892 bool RenameTarget; 2893 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2894 continue; 2895 2896 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2897 ++NumAliasesResolved; 2898 Changed = true; 2899 2900 if (RenameTarget) { 2901 // Give the aliasee the name, linkage and other attributes of the alias. 2902 Target->takeName(&*J); 2903 Target->setLinkage(J->getLinkage()); 2904 Target->setVisibility(J->getVisibility()); 2905 Target->setDLLStorageClass(J->getDLLStorageClass()); 2906 2907 if (Used.usedErase(&*J)) 2908 Used.usedInsert(Target); 2909 2910 if (Used.compilerUsedErase(&*J)) 2911 Used.compilerUsedInsert(Target); 2912 } else if (mayHaveOtherReferences(*J, Used)) 2913 continue; 2914 2915 // Delete the alias. 2916 M.getAliasList().erase(J); 2917 ++NumAliasesRemoved; 2918 Changed = true; 2919 } 2920 2921 Used.syncVariablesAndSets(); 2922 2923 return Changed; 2924 } 2925 2926 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2927 if (!TLI->has(LibFunc::cxa_atexit)) 2928 return nullptr; 2929 2930 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit)); 2931 2932 if (!Fn) 2933 return nullptr; 2934 2935 FunctionType *FTy = Fn->getFunctionType(); 2936 2937 // Checking that the function has the right return type, the right number of 2938 // parameters and that they all have pointer types should be enough. 2939 if (!FTy->getReturnType()->isIntegerTy() || 2940 FTy->getNumParams() != 3 || 2941 !FTy->getParamType(0)->isPointerTy() || 2942 !FTy->getParamType(1)->isPointerTy() || 2943 !FTy->getParamType(2)->isPointerTy()) 2944 return nullptr; 2945 2946 return Fn; 2947 } 2948 2949 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++ 2950 /// destructor and can therefore be eliminated. 2951 /// Note that we assume that other optimization passes have already simplified 2952 /// the code so we only look for a function with a single basic block, where 2953 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2954 /// other side-effect free instructions. 2955 static bool cxxDtorIsEmpty(const Function &Fn, 2956 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2957 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2958 // nounwind, but that doesn't seem worth doing. 2959 if (Fn.isDeclaration()) 2960 return false; 2961 2962 if (++Fn.begin() != Fn.end()) 2963 return false; 2964 2965 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2966 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2967 I != E; ++I) { 2968 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2969 // Ignore debug intrinsics. 2970 if (isa<DbgInfoIntrinsic>(CI)) 2971 continue; 2972 2973 const Function *CalledFn = CI->getCalledFunction(); 2974 2975 if (!CalledFn) 2976 return false; 2977 2978 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2979 2980 // Don't treat recursive functions as empty. 2981 if (!NewCalledFunctions.insert(CalledFn).second) 2982 return false; 2983 2984 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2985 return false; 2986 } else if (isa<ReturnInst>(*I)) 2987 return true; // We're done. 2988 else if (I->mayHaveSideEffects()) 2989 return false; // Destructor with side effects, bail. 2990 } 2991 2992 return false; 2993 } 2994 2995 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2996 /// Itanium C++ ABI p3.3.5: 2997 /// 2998 /// After constructing a global (or local static) object, that will require 2999 /// destruction on exit, a termination function is registered as follows: 3000 /// 3001 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 3002 /// 3003 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 3004 /// call f(p) when DSO d is unloaded, before all such termination calls 3005 /// registered before this one. It returns zero if registration is 3006 /// successful, nonzero on failure. 3007 3008 // This pass will look for calls to __cxa_atexit where the function is trivial 3009 // and remove them. 3010 bool Changed = false; 3011 3012 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 3013 I != E;) { 3014 // We're only interested in calls. Theoretically, we could handle invoke 3015 // instructions as well, but neither llvm-gcc nor clang generate invokes 3016 // to __cxa_atexit. 3017 CallInst *CI = dyn_cast<CallInst>(*I++); 3018 if (!CI) 3019 continue; 3020 3021 Function *DtorFn = 3022 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 3023 if (!DtorFn) 3024 continue; 3025 3026 SmallPtrSet<const Function *, 8> CalledFunctions; 3027 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 3028 continue; 3029 3030 // Just remove the call. 3031 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 3032 CI->eraseFromParent(); 3033 3034 ++NumCXXDtorsRemoved; 3035 3036 Changed |= true; 3037 } 3038 3039 return Changed; 3040 } 3041 3042 bool GlobalOpt::runOnModule(Module &M) { 3043 bool Changed = false; 3044 3045 auto &DL = M.getDataLayout(); 3046 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3047 3048 bool LocalChange = true; 3049 while (LocalChange) { 3050 LocalChange = false; 3051 3052 NotDiscardableComdats.clear(); 3053 for (const GlobalVariable &GV : M.globals()) 3054 if (const Comdat *C = GV.getComdat()) 3055 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 3056 NotDiscardableComdats.insert(C); 3057 for (Function &F : M) 3058 if (const Comdat *C = F.getComdat()) 3059 if (!F.isDefTriviallyDead()) 3060 NotDiscardableComdats.insert(C); 3061 for (GlobalAlias &GA : M.aliases()) 3062 if (const Comdat *C = GA.getComdat()) 3063 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 3064 NotDiscardableComdats.insert(C); 3065 3066 // Delete functions that are trivially dead, ccc -> fastcc 3067 LocalChange |= OptimizeFunctions(M); 3068 3069 // Optimize global_ctors list. 3070 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 3071 return EvaluateStaticConstructor(F, DL, TLI); 3072 }); 3073 3074 // Optimize non-address-taken globals. 3075 LocalChange |= OptimizeGlobalVars(M); 3076 3077 // Resolve aliases, when possible. 3078 LocalChange |= OptimizeGlobalAliases(M); 3079 3080 // Try to remove trivial global destructors if they are not removed 3081 // already. 3082 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 3083 if (CXAAtExitFn) 3084 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 3085 3086 Changed |= LocalChange; 3087 } 3088 3089 // TODO: Move all global ctors functions to the end of the module for code 3090 // layout. 3091 3092 return Changed; 3093 } 3094 3095