1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms simple global variables that never have their address
11 // taken.  If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/GlobalOpt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/IR/CallSite.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/DIBuilder.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/IPO.h"
46 #include "llvm/Transforms/Utils/CtorUtils.h"
47 #include "llvm/Transforms/Utils/Evaluator.h"
48 #include "llvm/Transforms/Utils/GlobalStatus.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include <algorithm>
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "globalopt"
54 
55 STATISTIC(NumMarked    , "Number of globals marked constant");
56 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
57 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
58 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
59 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
60 STATISTIC(NumDeleted   , "Number of globals deleted");
61 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
62 STATISTIC(NumLocalized , "Number of globals localized");
63 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
64 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
65 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
66 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
67 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
68 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
69 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
70 
71 /// Is this global variable possibly used by a leak checker as a root?  If so,
72 /// we might not really want to eliminate the stores to it.
73 static bool isLeakCheckerRoot(GlobalVariable *GV) {
74   // A global variable is a root if it is a pointer, or could plausibly contain
75   // a pointer.  There are two challenges; one is that we could have a struct
76   // the has an inner member which is a pointer.  We recurse through the type to
77   // detect these (up to a point).  The other is that we may actually be a union
78   // of a pointer and another type, and so our LLVM type is an integer which
79   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
80   // potentially contained here.
81 
82   if (GV->hasPrivateLinkage())
83     return false;
84 
85   SmallVector<Type *, 4> Types;
86   Types.push_back(GV->getValueType());
87 
88   unsigned Limit = 20;
89   do {
90     Type *Ty = Types.pop_back_val();
91     switch (Ty->getTypeID()) {
92       default: break;
93       case Type::PointerTyID: return true;
94       case Type::ArrayTyID:
95       case Type::VectorTyID: {
96         SequentialType *STy = cast<SequentialType>(Ty);
97         Types.push_back(STy->getElementType());
98         break;
99       }
100       case Type::StructTyID: {
101         StructType *STy = cast<StructType>(Ty);
102         if (STy->isOpaque()) return true;
103         for (StructType::element_iterator I = STy->element_begin(),
104                  E = STy->element_end(); I != E; ++I) {
105           Type *InnerTy = *I;
106           if (isa<PointerType>(InnerTy)) return true;
107           if (isa<CompositeType>(InnerTy))
108             Types.push_back(InnerTy);
109         }
110         break;
111       }
112     }
113     if (--Limit == 0) return true;
114   } while (!Types.empty());
115   return false;
116 }
117 
118 /// Given a value that is stored to a global but never read, determine whether
119 /// it's safe to remove the store and the chain of computation that feeds the
120 /// store.
121 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
122   do {
123     if (isa<Constant>(V))
124       return true;
125     if (!V->hasOneUse())
126       return false;
127     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
128         isa<GlobalValue>(V))
129       return false;
130     if (isAllocationFn(V, TLI))
131       return true;
132 
133     Instruction *I = cast<Instruction>(V);
134     if (I->mayHaveSideEffects())
135       return false;
136     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
137       if (!GEP->hasAllConstantIndices())
138         return false;
139     } else if (I->getNumOperands() != 1) {
140       return false;
141     }
142 
143     V = I->getOperand(0);
144   } while (1);
145 }
146 
147 /// This GV is a pointer root.  Loop over all users of the global and clean up
148 /// any that obviously don't assign the global a value that isn't dynamically
149 /// allocated.
150 static bool CleanupPointerRootUsers(GlobalVariable *GV,
151                                     const TargetLibraryInfo *TLI) {
152   // A brief explanation of leak checkers.  The goal is to find bugs where
153   // pointers are forgotten, causing an accumulating growth in memory
154   // usage over time.  The common strategy for leak checkers is to whitelist the
155   // memory pointed to by globals at exit.  This is popular because it also
156   // solves another problem where the main thread of a C++ program may shut down
157   // before other threads that are still expecting to use those globals.  To
158   // handle that case, we expect the program may create a singleton and never
159   // destroy it.
160 
161   bool Changed = false;
162 
163   // If Dead[n].first is the only use of a malloc result, we can delete its
164   // chain of computation and the store to the global in Dead[n].second.
165   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
166 
167   // Constants can't be pointers to dynamically allocated memory.
168   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
169        UI != E;) {
170     User *U = *UI++;
171     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
172       Value *V = SI->getValueOperand();
173       if (isa<Constant>(V)) {
174         Changed = true;
175         SI->eraseFromParent();
176       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
177         if (I->hasOneUse())
178           Dead.push_back(std::make_pair(I, SI));
179       }
180     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
181       if (isa<Constant>(MSI->getValue())) {
182         Changed = true;
183         MSI->eraseFromParent();
184       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
185         if (I->hasOneUse())
186           Dead.push_back(std::make_pair(I, MSI));
187       }
188     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
189       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
190       if (MemSrc && MemSrc->isConstant()) {
191         Changed = true;
192         MTI->eraseFromParent();
193       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
194         if (I->hasOneUse())
195           Dead.push_back(std::make_pair(I, MTI));
196       }
197     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
198       if (CE->use_empty()) {
199         CE->destroyConstant();
200         Changed = true;
201       }
202     } else if (Constant *C = dyn_cast<Constant>(U)) {
203       if (isSafeToDestroyConstant(C)) {
204         C->destroyConstant();
205         // This could have invalidated UI, start over from scratch.
206         Dead.clear();
207         CleanupPointerRootUsers(GV, TLI);
208         return true;
209       }
210     }
211   }
212 
213   for (int i = 0, e = Dead.size(); i != e; ++i) {
214     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
215       Dead[i].second->eraseFromParent();
216       Instruction *I = Dead[i].first;
217       do {
218         if (isAllocationFn(I, TLI))
219           break;
220         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
221         if (!J)
222           break;
223         I->eraseFromParent();
224         I = J;
225       } while (1);
226       I->eraseFromParent();
227     }
228   }
229 
230   return Changed;
231 }
232 
233 /// We just marked GV constant.  Loop over all users of the global, cleaning up
234 /// the obvious ones.  This is largely just a quick scan over the use list to
235 /// clean up the easy and obvious cruft.  This returns true if it made a change.
236 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
237                                        const DataLayout &DL,
238                                        TargetLibraryInfo *TLI) {
239   bool Changed = false;
240   // Note that we need to use a weak value handle for the worklist items. When
241   // we delete a constant array, we may also be holding pointer to one of its
242   // elements (or an element of one of its elements if we're dealing with an
243   // array of arrays) in the worklist.
244   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
245   while (!WorkList.empty()) {
246     Value *UV = WorkList.pop_back_val();
247     if (!UV)
248       continue;
249 
250     User *U = cast<User>(UV);
251 
252     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
253       if (Init) {
254         // Replace the load with the initializer.
255         LI->replaceAllUsesWith(Init);
256         LI->eraseFromParent();
257         Changed = true;
258       }
259     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
260       // Store must be unreachable or storing Init into the global.
261       SI->eraseFromParent();
262       Changed = true;
263     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
264       if (CE->getOpcode() == Instruction::GetElementPtr) {
265         Constant *SubInit = nullptr;
266         if (Init)
267           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
268         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
269       } else if ((CE->getOpcode() == Instruction::BitCast &&
270                   CE->getType()->isPointerTy()) ||
271                  CE->getOpcode() == Instruction::AddrSpaceCast) {
272         // Pointer cast, delete any stores and memsets to the global.
273         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
274       }
275 
276       if (CE->use_empty()) {
277         CE->destroyConstant();
278         Changed = true;
279       }
280     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
281       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
282       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
283       // and will invalidate our notion of what Init is.
284       Constant *SubInit = nullptr;
285       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
286         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
287             ConstantFoldInstruction(GEP, DL, TLI));
288         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
289           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
290 
291         // If the initializer is an all-null value and we have an inbounds GEP,
292         // we already know what the result of any load from that GEP is.
293         // TODO: Handle splats.
294         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
295           SubInit = Constant::getNullValue(GEP->getResultElementType());
296       }
297       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
298 
299       if (GEP->use_empty()) {
300         GEP->eraseFromParent();
301         Changed = true;
302       }
303     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
304       if (MI->getRawDest() == V) {
305         MI->eraseFromParent();
306         Changed = true;
307       }
308 
309     } else if (Constant *C = dyn_cast<Constant>(U)) {
310       // If we have a chain of dead constantexprs or other things dangling from
311       // us, and if they are all dead, nuke them without remorse.
312       if (isSafeToDestroyConstant(C)) {
313         C->destroyConstant();
314         CleanupConstantGlobalUsers(V, Init, DL, TLI);
315         return true;
316       }
317     }
318   }
319   return Changed;
320 }
321 
322 /// Return true if the specified instruction is a safe user of a derived
323 /// expression from a global that we want to SROA.
324 static bool isSafeSROAElementUse(Value *V) {
325   // We might have a dead and dangling constant hanging off of here.
326   if (Constant *C = dyn_cast<Constant>(V))
327     return isSafeToDestroyConstant(C);
328 
329   Instruction *I = dyn_cast<Instruction>(V);
330   if (!I) return false;
331 
332   // Loads are ok.
333   if (isa<LoadInst>(I)) return true;
334 
335   // Stores *to* the pointer are ok.
336   if (StoreInst *SI = dyn_cast<StoreInst>(I))
337     return SI->getOperand(0) != V;
338 
339   // Otherwise, it must be a GEP.
340   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
341   if (!GEPI) return false;
342 
343   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
344       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
345     return false;
346 
347   for (User *U : GEPI->users())
348     if (!isSafeSROAElementUse(U))
349       return false;
350   return true;
351 }
352 
353 
354 /// U is a direct user of the specified global value.  Look at it and its uses
355 /// and decide whether it is safe to SROA this global.
356 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
357   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
358   if (!isa<GetElementPtrInst>(U) &&
359       (!isa<ConstantExpr>(U) ||
360        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
361     return false;
362 
363   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
364   // don't like < 3 operand CE's, and we don't like non-constant integer
365   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
366   // value of C.
367   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
368       !cast<Constant>(U->getOperand(1))->isNullValue() ||
369       !isa<ConstantInt>(U->getOperand(2)))
370     return false;
371 
372   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
373   ++GEPI;  // Skip over the pointer index.
374 
375   // If this is a use of an array allocation, do a bit more checking for sanity.
376   if (GEPI.isSequential()) {
377     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
378 
379     // Check to make sure that index falls within the array.  If not,
380     // something funny is going on, so we won't do the optimization.
381     //
382     if (GEPI.isBoundedSequential() &&
383         Idx->getZExtValue() >= GEPI.getSequentialNumElements())
384       return false;
385 
386     // We cannot scalar repl this level of the array unless any array
387     // sub-indices are in-range constants.  In particular, consider:
388     // A[0][i].  We cannot know that the user isn't doing invalid things like
389     // allowing i to index an out-of-range subscript that accesses A[1].
390     //
391     // Scalar replacing *just* the outer index of the array is probably not
392     // going to be a win anyway, so just give up.
393     for (++GEPI; // Skip array index.
394          GEPI != E;
395          ++GEPI) {
396       if (GEPI.isStruct())
397         continue;
398 
399       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
400       if (!IdxVal ||
401           (GEPI.isBoundedSequential() &&
402            IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
403         return false;
404     }
405   }
406 
407   return llvm::all_of(U->users(),
408                       [](User *UU) { return isSafeSROAElementUse(UU); });
409 }
410 
411 /// Look at all uses of the global and decide whether it is safe for us to
412 /// perform this transformation.
413 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
414   for (User *U : GV->users())
415     if (!IsUserOfGlobalSafeForSRA(U, GV))
416       return false;
417 
418   return true;
419 }
420 
421 /// Copy over the debug info for a variable to its SRA replacements.
422 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
423                                  uint64_t FragmentOffsetInBits,
424                                  uint64_t FragmentSizeInBits) {
425   DIBuilder DIB(*GV->getParent(), /*AllowUnresolved*/ false);
426   SmallVector<DIGlobalVariableExpression *, 1> GVs;
427   GV->getDebugInfo(GVs);
428   for (auto *GVE : GVs) {
429     DIVariable *Var = GVE->getVariable();
430     DIExpression *Expr = GVE->getExpression();
431     DIExpression *NExpr = DIB.createFragmentExpression(
432         FragmentOffsetInBits, FragmentSizeInBits, Expr);
433     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, NExpr);
434     NGV->addDebugInfo(NGVE);
435   }
436 }
437 
438 
439 /// Perform scalar replacement of aggregates on the specified global variable.
440 /// This opens the door for other optimizations by exposing the behavior of the
441 /// program in a more fine-grained way.  We have determined that this
442 /// transformation is safe already.  We return the first global variable we
443 /// insert so that the caller can reprocess it.
444 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
445   // Make sure this global only has simple uses that we can SRA.
446   if (!GlobalUsersSafeToSRA(GV))
447     return nullptr;
448 
449   assert(GV->hasLocalLinkage());
450   Constant *Init = GV->getInitializer();
451   Type *Ty = Init->getType();
452 
453   std::vector<GlobalVariable*> NewGlobals;
454   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
455 
456   // Get the alignment of the global, either explicit or target-specific.
457   unsigned StartAlignment = GV->getAlignment();
458   if (StartAlignment == 0)
459     StartAlignment = DL.getABITypeAlignment(GV->getType());
460 
461   if (StructType *STy = dyn_cast<StructType>(Ty)) {
462     uint64_t FragmentOffset = 0;
463     NewGlobals.reserve(STy->getNumElements());
464     const StructLayout &Layout = *DL.getStructLayout(STy);
465     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
466       Constant *In = Init->getAggregateElement(i);
467       assert(In && "Couldn't get element of initializer?");
468       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
469                                                GlobalVariable::InternalLinkage,
470                                                In, GV->getName()+"."+Twine(i),
471                                                GV->getThreadLocalMode(),
472                                               GV->getType()->getAddressSpace());
473       NGV->setExternallyInitialized(GV->isExternallyInitialized());
474       NGV->copyAttributesFrom(GV);
475       Globals.push_back(NGV);
476       NewGlobals.push_back(NGV);
477 
478       // Calculate the known alignment of the field.  If the original aggregate
479       // had 256 byte alignment for example, something might depend on that:
480       // propagate info to each field.
481       uint64_t FieldOffset = Layout.getElementOffset(i);
482       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
483       if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
484         NGV->setAlignment(NewAlign);
485 
486       // Copy over the debug info for the variable.
487       FragmentOffset = alignTo(FragmentOffset, NewAlign);
488       uint64_t Size = DL.getTypeSizeInBits(NGV->getValueType());
489       transferSRADebugInfo(GV, NGV, FragmentOffset, Size);
490       FragmentOffset += Size;
491     }
492   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
493     unsigned NumElements = STy->getNumElements();
494     if (NumElements > 16 && GV->hasNUsesOrMore(16))
495       return nullptr; // It's not worth it.
496     NewGlobals.reserve(NumElements);
497     auto ElTy = STy->getElementType();
498     uint64_t EltSize = DL.getTypeAllocSize(ElTy);
499     unsigned EltAlign = DL.getABITypeAlignment(ElTy);
500     uint64_t FragmentSizeInBits = DL.getTypeSizeInBits(ElTy);
501     for (unsigned i = 0, e = NumElements; i != e; ++i) {
502       Constant *In = Init->getAggregateElement(i);
503       assert(In && "Couldn't get element of initializer?");
504 
505       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
506                                                GlobalVariable::InternalLinkage,
507                                                In, GV->getName()+"."+Twine(i),
508                                                GV->getThreadLocalMode(),
509                                               GV->getType()->getAddressSpace());
510       NGV->setExternallyInitialized(GV->isExternallyInitialized());
511       NGV->copyAttributesFrom(GV);
512       Globals.push_back(NGV);
513       NewGlobals.push_back(NGV);
514 
515       // Calculate the known alignment of the field.  If the original aggregate
516       // had 256 byte alignment for example, something might depend on that:
517       // propagate info to each field.
518       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
519       if (NewAlign > EltAlign)
520         NGV->setAlignment(NewAlign);
521 
522       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits);
523     }
524   }
525 
526   if (NewGlobals.empty())
527     return nullptr;
528 
529   DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
530 
531   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
532 
533   // Loop over all of the uses of the global, replacing the constantexpr geps,
534   // with smaller constantexpr geps or direct references.
535   while (!GV->use_empty()) {
536     User *GEP = GV->user_back();
537     assert(((isa<ConstantExpr>(GEP) &&
538              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
539             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
540 
541     // Ignore the 1th operand, which has to be zero or else the program is quite
542     // broken (undefined).  Get the 2nd operand, which is the structure or array
543     // index.
544     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
545     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
546 
547     Value *NewPtr = NewGlobals[Val];
548     Type *NewTy = NewGlobals[Val]->getValueType();
549 
550     // Form a shorter GEP if needed.
551     if (GEP->getNumOperands() > 3) {
552       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
553         SmallVector<Constant*, 8> Idxs;
554         Idxs.push_back(NullInt);
555         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
556           Idxs.push_back(CE->getOperand(i));
557         NewPtr =
558             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
559       } else {
560         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
561         SmallVector<Value*, 8> Idxs;
562         Idxs.push_back(NullInt);
563         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
564           Idxs.push_back(GEPI->getOperand(i));
565         NewPtr = GetElementPtrInst::Create(
566             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
567       }
568     }
569     GEP->replaceAllUsesWith(NewPtr);
570 
571     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
572       GEPI->eraseFromParent();
573     else
574       cast<ConstantExpr>(GEP)->destroyConstant();
575   }
576 
577   // Delete the old global, now that it is dead.
578   Globals.erase(GV);
579   ++NumSRA;
580 
581   // Loop over the new globals array deleting any globals that are obviously
582   // dead.  This can arise due to scalarization of a structure or an array that
583   // has elements that are dead.
584   unsigned FirstGlobal = 0;
585   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
586     if (NewGlobals[i]->use_empty()) {
587       Globals.erase(NewGlobals[i]);
588       if (FirstGlobal == i) ++FirstGlobal;
589     }
590 
591   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
592 }
593 
594 /// Return true if all users of the specified value will trap if the value is
595 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
596 /// reprocessing them.
597 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
598                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
599   for (const User *U : V->users())
600     if (isa<LoadInst>(U)) {
601       // Will trap.
602     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
603       if (SI->getOperand(0) == V) {
604         //cerr << "NONTRAPPING USE: " << *U;
605         return false;  // Storing the value.
606       }
607     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
608       if (CI->getCalledValue() != V) {
609         //cerr << "NONTRAPPING USE: " << *U;
610         return false;  // Not calling the ptr
611       }
612     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
613       if (II->getCalledValue() != V) {
614         //cerr << "NONTRAPPING USE: " << *U;
615         return false;  // Not calling the ptr
616       }
617     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
618       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
619     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
620       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
621     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
622       // If we've already seen this phi node, ignore it, it has already been
623       // checked.
624       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
625         return false;
626     } else if (isa<ICmpInst>(U) &&
627                isa<ConstantPointerNull>(U->getOperand(1))) {
628       // Ignore icmp X, null
629     } else {
630       //cerr << "NONTRAPPING USE: " << *U;
631       return false;
632     }
633 
634   return true;
635 }
636 
637 /// Return true if all uses of any loads from GV will trap if the loaded value
638 /// is null.  Note that this also permits comparisons of the loaded value
639 /// against null, as a special case.
640 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
641   for (const User *U : GV->users())
642     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
643       SmallPtrSet<const PHINode*, 8> PHIs;
644       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
645         return false;
646     } else if (isa<StoreInst>(U)) {
647       // Ignore stores to the global.
648     } else {
649       // We don't know or understand this user, bail out.
650       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
651       return false;
652     }
653   return true;
654 }
655 
656 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
657   bool Changed = false;
658   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
659     Instruction *I = cast<Instruction>(*UI++);
660     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
661       LI->setOperand(0, NewV);
662       Changed = true;
663     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
664       if (SI->getOperand(1) == V) {
665         SI->setOperand(1, NewV);
666         Changed = true;
667       }
668     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
669       CallSite CS(I);
670       if (CS.getCalledValue() == V) {
671         // Calling through the pointer!  Turn into a direct call, but be careful
672         // that the pointer is not also being passed as an argument.
673         CS.setCalledFunction(NewV);
674         Changed = true;
675         bool PassedAsArg = false;
676         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
677           if (CS.getArgument(i) == V) {
678             PassedAsArg = true;
679             CS.setArgument(i, NewV);
680           }
681 
682         if (PassedAsArg) {
683           // Being passed as an argument also.  Be careful to not invalidate UI!
684           UI = V->user_begin();
685         }
686       }
687     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
688       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
689                                 ConstantExpr::getCast(CI->getOpcode(),
690                                                       NewV, CI->getType()));
691       if (CI->use_empty()) {
692         Changed = true;
693         CI->eraseFromParent();
694       }
695     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
696       // Should handle GEP here.
697       SmallVector<Constant*, 8> Idxs;
698       Idxs.reserve(GEPI->getNumOperands()-1);
699       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
700            i != e; ++i)
701         if (Constant *C = dyn_cast<Constant>(*i))
702           Idxs.push_back(C);
703         else
704           break;
705       if (Idxs.size() == GEPI->getNumOperands()-1)
706         Changed |= OptimizeAwayTrappingUsesOfValue(
707             GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
708       if (GEPI->use_empty()) {
709         Changed = true;
710         GEPI->eraseFromParent();
711       }
712     }
713   }
714 
715   return Changed;
716 }
717 
718 
719 /// The specified global has only one non-null value stored into it.  If there
720 /// are uses of the loaded value that would trap if the loaded value is
721 /// dynamically null, then we know that they cannot be reachable with a null
722 /// optimize away the load.
723 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
724                                             const DataLayout &DL,
725                                             TargetLibraryInfo *TLI) {
726   bool Changed = false;
727 
728   // Keep track of whether we are able to remove all the uses of the global
729   // other than the store that defines it.
730   bool AllNonStoreUsesGone = true;
731 
732   // Replace all uses of loads with uses of uses of the stored value.
733   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
734     User *GlobalUser = *GUI++;
735     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
736       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
737       // If we were able to delete all uses of the loads
738       if (LI->use_empty()) {
739         LI->eraseFromParent();
740         Changed = true;
741       } else {
742         AllNonStoreUsesGone = false;
743       }
744     } else if (isa<StoreInst>(GlobalUser)) {
745       // Ignore the store that stores "LV" to the global.
746       assert(GlobalUser->getOperand(1) == GV &&
747              "Must be storing *to* the global");
748     } else {
749       AllNonStoreUsesGone = false;
750 
751       // If we get here we could have other crazy uses that are transitively
752       // loaded.
753       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
754               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
755               isa<BitCastInst>(GlobalUser) ||
756               isa<GetElementPtrInst>(GlobalUser)) &&
757              "Only expect load and stores!");
758     }
759   }
760 
761   if (Changed) {
762     DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n");
763     ++NumGlobUses;
764   }
765 
766   // If we nuked all of the loads, then none of the stores are needed either,
767   // nor is the global.
768   if (AllNonStoreUsesGone) {
769     if (isLeakCheckerRoot(GV)) {
770       Changed |= CleanupPointerRootUsers(GV, TLI);
771     } else {
772       Changed = true;
773       CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
774     }
775     if (GV->use_empty()) {
776       DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
777       Changed = true;
778       GV->eraseFromParent();
779       ++NumDeleted;
780     }
781   }
782   return Changed;
783 }
784 
785 /// Walk the use list of V, constant folding all of the instructions that are
786 /// foldable.
787 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
788                                 TargetLibraryInfo *TLI) {
789   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
790     if (Instruction *I = dyn_cast<Instruction>(*UI++))
791       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
792         I->replaceAllUsesWith(NewC);
793 
794         // Advance UI to the next non-I use to avoid invalidating it!
795         // Instructions could multiply use V.
796         while (UI != E && *UI == I)
797           ++UI;
798         if (isInstructionTriviallyDead(I, TLI))
799           I->eraseFromParent();
800       }
801 }
802 
803 /// This function takes the specified global variable, and transforms the
804 /// program as if it always contained the result of the specified malloc.
805 /// Because it is always the result of the specified malloc, there is no reason
806 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
807 /// loads of GV as uses of the new global.
808 static GlobalVariable *
809 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
810                               ConstantInt *NElements, const DataLayout &DL,
811                               TargetLibraryInfo *TLI) {
812   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
813 
814   Type *GlobalType;
815   if (NElements->getZExtValue() == 1)
816     GlobalType = AllocTy;
817   else
818     // If we have an array allocation, the global variable is of an array.
819     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
820 
821   // Create the new global variable.  The contents of the malloc'd memory is
822   // undefined, so initialize with an undef value.
823   GlobalVariable *NewGV = new GlobalVariable(
824       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
825       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
826       GV->getThreadLocalMode());
827 
828   // If there are bitcast users of the malloc (which is typical, usually we have
829   // a malloc + bitcast) then replace them with uses of the new global.  Update
830   // other users to use the global as well.
831   BitCastInst *TheBC = nullptr;
832   while (!CI->use_empty()) {
833     Instruction *User = cast<Instruction>(CI->user_back());
834     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
835       if (BCI->getType() == NewGV->getType()) {
836         BCI->replaceAllUsesWith(NewGV);
837         BCI->eraseFromParent();
838       } else {
839         BCI->setOperand(0, NewGV);
840       }
841     } else {
842       if (!TheBC)
843         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
844       User->replaceUsesOfWith(CI, TheBC);
845     }
846   }
847 
848   Constant *RepValue = NewGV;
849   if (NewGV->getType() != GV->getValueType())
850     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
851 
852   // If there is a comparison against null, we will insert a global bool to
853   // keep track of whether the global was initialized yet or not.
854   GlobalVariable *InitBool =
855     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
856                        GlobalValue::InternalLinkage,
857                        ConstantInt::getFalse(GV->getContext()),
858                        GV->getName()+".init", GV->getThreadLocalMode());
859   bool InitBoolUsed = false;
860 
861   // Loop over all uses of GV, processing them in turn.
862   while (!GV->use_empty()) {
863     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
864       // The global is initialized when the store to it occurs.
865       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
866                     SI->getOrdering(), SI->getSyncScopeID(), SI);
867       SI->eraseFromParent();
868       continue;
869     }
870 
871     LoadInst *LI = cast<LoadInst>(GV->user_back());
872     while (!LI->use_empty()) {
873       Use &LoadUse = *LI->use_begin();
874       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
875       if (!ICI) {
876         LoadUse = RepValue;
877         continue;
878       }
879 
880       // Replace the cmp X, 0 with a use of the bool value.
881       // Sink the load to where the compare was, if atomic rules allow us to.
882       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
883                                LI->getOrdering(), LI->getSyncScopeID(),
884                                LI->isUnordered() ? (Instruction*)ICI : LI);
885       InitBoolUsed = true;
886       switch (ICI->getPredicate()) {
887       default: llvm_unreachable("Unknown ICmp Predicate!");
888       case ICmpInst::ICMP_ULT:
889       case ICmpInst::ICMP_SLT:   // X < null -> always false
890         LV = ConstantInt::getFalse(GV->getContext());
891         break;
892       case ICmpInst::ICMP_ULE:
893       case ICmpInst::ICMP_SLE:
894       case ICmpInst::ICMP_EQ:
895         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
896         break;
897       case ICmpInst::ICMP_NE:
898       case ICmpInst::ICMP_UGE:
899       case ICmpInst::ICMP_SGE:
900       case ICmpInst::ICMP_UGT:
901       case ICmpInst::ICMP_SGT:
902         break;  // no change.
903       }
904       ICI->replaceAllUsesWith(LV);
905       ICI->eraseFromParent();
906     }
907     LI->eraseFromParent();
908   }
909 
910   // If the initialization boolean was used, insert it, otherwise delete it.
911   if (!InitBoolUsed) {
912     while (!InitBool->use_empty())  // Delete initializations
913       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
914     delete InitBool;
915   } else
916     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
917 
918   // Now the GV is dead, nuke it and the malloc..
919   GV->eraseFromParent();
920   CI->eraseFromParent();
921 
922   // To further other optimizations, loop over all users of NewGV and try to
923   // constant prop them.  This will promote GEP instructions with constant
924   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
925   ConstantPropUsersOf(NewGV, DL, TLI);
926   if (RepValue != NewGV)
927     ConstantPropUsersOf(RepValue, DL, TLI);
928 
929   return NewGV;
930 }
931 
932 /// Scan the use-list of V checking to make sure that there are no complex uses
933 /// of V.  We permit simple things like dereferencing the pointer, but not
934 /// storing through the address, unless it is to the specified global.
935 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
936                                                       const GlobalVariable *GV,
937                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
938   for (const User *U : V->users()) {
939     const Instruction *Inst = cast<Instruction>(U);
940 
941     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
942       continue; // Fine, ignore.
943     }
944 
945     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
946       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
947         return false;  // Storing the pointer itself... bad.
948       continue; // Otherwise, storing through it, or storing into GV... fine.
949     }
950 
951     // Must index into the array and into the struct.
952     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
953       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
954         return false;
955       continue;
956     }
957 
958     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
959       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
960       // cycles.
961       if (PHIs.insert(PN).second)
962         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
963           return false;
964       continue;
965     }
966 
967     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
968       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
969         return false;
970       continue;
971     }
972 
973     return false;
974   }
975   return true;
976 }
977 
978 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
979 /// allocation into loads from the global and uses of the resultant pointer.
980 /// Further, delete the store into GV.  This assumes that these value pass the
981 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
982 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
983                                           GlobalVariable *GV) {
984   while (!Alloc->use_empty()) {
985     Instruction *U = cast<Instruction>(*Alloc->user_begin());
986     Instruction *InsertPt = U;
987     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
988       // If this is the store of the allocation into the global, remove it.
989       if (SI->getOperand(1) == GV) {
990         SI->eraseFromParent();
991         continue;
992       }
993     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
994       // Insert the load in the corresponding predecessor, not right before the
995       // PHI.
996       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
997     } else if (isa<BitCastInst>(U)) {
998       // Must be bitcast between the malloc and store to initialize the global.
999       ReplaceUsesOfMallocWithGlobal(U, GV);
1000       U->eraseFromParent();
1001       continue;
1002     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1003       // If this is a "GEP bitcast" and the user is a store to the global, then
1004       // just process it as a bitcast.
1005       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1006         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1007           if (SI->getOperand(1) == GV) {
1008             // Must be bitcast GEP between the malloc and store to initialize
1009             // the global.
1010             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1011             GEPI->eraseFromParent();
1012             continue;
1013           }
1014     }
1015 
1016     // Insert a load from the global, and use it instead of the malloc.
1017     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1018     U->replaceUsesOfWith(Alloc, NL);
1019   }
1020 }
1021 
1022 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1023 /// perform heap SRA on.  This permits GEP's that index through the array and
1024 /// struct field, icmps of null, and PHIs.
1025 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1026                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1027                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1028   // We permit two users of the load: setcc comparing against the null
1029   // pointer, and a getelementptr of a specific form.
1030   for (const User *U : V->users()) {
1031     const Instruction *UI = cast<Instruction>(U);
1032 
1033     // Comparison against null is ok.
1034     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1035       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1036         return false;
1037       continue;
1038     }
1039 
1040     // getelementptr is also ok, but only a simple form.
1041     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1042       // Must index into the array and into the struct.
1043       if (GEPI->getNumOperands() < 3)
1044         return false;
1045 
1046       // Otherwise the GEP is ok.
1047       continue;
1048     }
1049 
1050     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1051       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1052         // This means some phi nodes are dependent on each other.
1053         // Avoid infinite looping!
1054         return false;
1055       if (!LoadUsingPHIs.insert(PN).second)
1056         // If we have already analyzed this PHI, then it is safe.
1057         continue;
1058 
1059       // Make sure all uses of the PHI are simple enough to transform.
1060       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1061                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1062         return false;
1063 
1064       continue;
1065     }
1066 
1067     // Otherwise we don't know what this is, not ok.
1068     return false;
1069   }
1070 
1071   return true;
1072 }
1073 
1074 
1075 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1076 /// return true.
1077 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1078                                                     Instruction *StoredVal) {
1079   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1080   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1081   for (const User *U : GV->users())
1082     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1083       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1084                                           LoadUsingPHIsPerLoad))
1085         return false;
1086       LoadUsingPHIsPerLoad.clear();
1087     }
1088 
1089   // If we reach here, we know that all uses of the loads and transitive uses
1090   // (through PHI nodes) are simple enough to transform.  However, we don't know
1091   // that all inputs the to the PHI nodes are in the same equivalence sets.
1092   // Check to verify that all operands of the PHIs are either PHIS that can be
1093   // transformed, loads from GV, or MI itself.
1094   for (const PHINode *PN : LoadUsingPHIs) {
1095     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1096       Value *InVal = PN->getIncomingValue(op);
1097 
1098       // PHI of the stored value itself is ok.
1099       if (InVal == StoredVal) continue;
1100 
1101       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1102         // One of the PHIs in our set is (optimistically) ok.
1103         if (LoadUsingPHIs.count(InPN))
1104           continue;
1105         return false;
1106       }
1107 
1108       // Load from GV is ok.
1109       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1110         if (LI->getOperand(0) == GV)
1111           continue;
1112 
1113       // UNDEF? NULL?
1114 
1115       // Anything else is rejected.
1116       return false;
1117     }
1118   }
1119 
1120   return true;
1121 }
1122 
1123 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1124                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1125                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1126   std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1127 
1128   if (FieldNo >= FieldVals.size())
1129     FieldVals.resize(FieldNo+1);
1130 
1131   // If we already have this value, just reuse the previously scalarized
1132   // version.
1133   if (Value *FieldVal = FieldVals[FieldNo])
1134     return FieldVal;
1135 
1136   // Depending on what instruction this is, we have several cases.
1137   Value *Result;
1138   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1139     // This is a scalarized version of the load from the global.  Just create
1140     // a new Load of the scalarized global.
1141     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1142                                            InsertedScalarizedValues,
1143                                            PHIsToRewrite),
1144                           LI->getName()+".f"+Twine(FieldNo), LI);
1145   } else {
1146     PHINode *PN = cast<PHINode>(V);
1147     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1148     // field.
1149 
1150     PointerType *PTy = cast<PointerType>(PN->getType());
1151     StructType *ST = cast<StructType>(PTy->getElementType());
1152 
1153     unsigned AS = PTy->getAddressSpace();
1154     PHINode *NewPN =
1155       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1156                      PN->getNumIncomingValues(),
1157                      PN->getName()+".f"+Twine(FieldNo), PN);
1158     Result = NewPN;
1159     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1160   }
1161 
1162   return FieldVals[FieldNo] = Result;
1163 }
1164 
1165 /// Given a load instruction and a value derived from the load, rewrite the
1166 /// derived value to use the HeapSRoA'd load.
1167 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1168              DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1169                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1170   // If this is a comparison against null, handle it.
1171   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1172     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1173     // If we have a setcc of the loaded pointer, we can use a setcc of any
1174     // field.
1175     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1176                                    InsertedScalarizedValues, PHIsToRewrite);
1177 
1178     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1179                               Constant::getNullValue(NPtr->getType()),
1180                               SCI->getName());
1181     SCI->replaceAllUsesWith(New);
1182     SCI->eraseFromParent();
1183     return;
1184   }
1185 
1186   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1187   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1188     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1189            && "Unexpected GEPI!");
1190 
1191     // Load the pointer for this field.
1192     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1193     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1194                                      InsertedScalarizedValues, PHIsToRewrite);
1195 
1196     // Create the new GEP idx vector.
1197     SmallVector<Value*, 8> GEPIdx;
1198     GEPIdx.push_back(GEPI->getOperand(1));
1199     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1200 
1201     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1202                                              GEPI->getName(), GEPI);
1203     GEPI->replaceAllUsesWith(NGEPI);
1204     GEPI->eraseFromParent();
1205     return;
1206   }
1207 
1208   // Recursively transform the users of PHI nodes.  This will lazily create the
1209   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1210   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1211   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1212   // already been seen first by another load, so its uses have already been
1213   // processed.
1214   PHINode *PN = cast<PHINode>(LoadUser);
1215   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1216                                               std::vector<Value*>())).second)
1217     return;
1218 
1219   // If this is the first time we've seen this PHI, recursively process all
1220   // users.
1221   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1222     Instruction *User = cast<Instruction>(*UI++);
1223     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1224   }
1225 }
1226 
1227 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1228 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1229 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1230 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1231                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1232                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1233   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1234     Instruction *User = cast<Instruction>(*UI++);
1235     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1236   }
1237 
1238   if (Load->use_empty()) {
1239     Load->eraseFromParent();
1240     InsertedScalarizedValues.erase(Load);
1241   }
1242 }
1243 
1244 /// CI is an allocation of an array of structures.  Break it up into multiple
1245 /// allocations of arrays of the fields.
1246 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1247                                             Value *NElems, const DataLayout &DL,
1248                                             const TargetLibraryInfo *TLI) {
1249   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1250   Type *MAT = getMallocAllocatedType(CI, TLI);
1251   StructType *STy = cast<StructType>(MAT);
1252 
1253   // There is guaranteed to be at least one use of the malloc (storing
1254   // it into GV).  If there are other uses, change them to be uses of
1255   // the global to simplify later code.  This also deletes the store
1256   // into GV.
1257   ReplaceUsesOfMallocWithGlobal(CI, GV);
1258 
1259   // Okay, at this point, there are no users of the malloc.  Insert N
1260   // new mallocs at the same place as CI, and N globals.
1261   std::vector<Value*> FieldGlobals;
1262   std::vector<Value*> FieldMallocs;
1263 
1264   SmallVector<OperandBundleDef, 1> OpBundles;
1265   CI->getOperandBundlesAsDefs(OpBundles);
1266 
1267   unsigned AS = GV->getType()->getPointerAddressSpace();
1268   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1269     Type *FieldTy = STy->getElementType(FieldNo);
1270     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1271 
1272     GlobalVariable *NGV = new GlobalVariable(
1273         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1274         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1275         nullptr, GV->getThreadLocalMode());
1276     NGV->copyAttributesFrom(GV);
1277     FieldGlobals.push_back(NGV);
1278 
1279     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1280     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1281       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1282     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1283     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1284                                         ConstantInt::get(IntPtrTy, TypeSize),
1285                                         NElems, OpBundles, nullptr,
1286                                         CI->getName() + ".f" + Twine(FieldNo));
1287     FieldMallocs.push_back(NMI);
1288     new StoreInst(NMI, NGV, CI);
1289   }
1290 
1291   // The tricky aspect of this transformation is handling the case when malloc
1292   // fails.  In the original code, malloc failing would set the result pointer
1293   // of malloc to null.  In this case, some mallocs could succeed and others
1294   // could fail.  As such, we emit code that looks like this:
1295   //    F0 = malloc(field0)
1296   //    F1 = malloc(field1)
1297   //    F2 = malloc(field2)
1298   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1299   //      if (F0) { free(F0); F0 = 0; }
1300   //      if (F1) { free(F1); F1 = 0; }
1301   //      if (F2) { free(F2); F2 = 0; }
1302   //    }
1303   // The malloc can also fail if its argument is too large.
1304   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1305   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1306                                   ConstantZero, "isneg");
1307   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1308     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1309                              Constant::getNullValue(FieldMallocs[i]->getType()),
1310                                "isnull");
1311     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1312   }
1313 
1314   // Split the basic block at the old malloc.
1315   BasicBlock *OrigBB = CI->getParent();
1316   BasicBlock *ContBB =
1317       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1318 
1319   // Create the block to check the first condition.  Put all these blocks at the
1320   // end of the function as they are unlikely to be executed.
1321   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1322                                                 "malloc_ret_null",
1323                                                 OrigBB->getParent());
1324 
1325   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1326   // branch on RunningOr.
1327   OrigBB->getTerminator()->eraseFromParent();
1328   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1329 
1330   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1331   // pointer, because some may be null while others are not.
1332   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1333     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1334     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1335                               Constant::getNullValue(GVVal->getType()));
1336     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1337                                                OrigBB->getParent());
1338     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1339                                                OrigBB->getParent());
1340     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1341                                          Cmp, NullPtrBlock);
1342 
1343     // Fill in FreeBlock.
1344     CallInst::CreateFree(GVVal, OpBundles, BI);
1345     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1346                   FreeBlock);
1347     BranchInst::Create(NextBlock, FreeBlock);
1348 
1349     NullPtrBlock = NextBlock;
1350   }
1351 
1352   BranchInst::Create(ContBB, NullPtrBlock);
1353 
1354   // CI is no longer needed, remove it.
1355   CI->eraseFromParent();
1356 
1357   /// As we process loads, if we can't immediately update all uses of the load,
1358   /// keep track of what scalarized loads are inserted for a given load.
1359   DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1360   InsertedScalarizedValues[GV] = FieldGlobals;
1361 
1362   std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1363 
1364   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1365   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1366   // of the per-field globals instead.
1367   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1368     Instruction *User = cast<Instruction>(*UI++);
1369 
1370     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1371       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1372       continue;
1373     }
1374 
1375     // Must be a store of null.
1376     StoreInst *SI = cast<StoreInst>(User);
1377     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1378            "Unexpected heap-sra user!");
1379 
1380     // Insert a store of null into each global.
1381     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1382       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1383       Constant *Null = Constant::getNullValue(ValTy);
1384       new StoreInst(Null, FieldGlobals[i], SI);
1385     }
1386     // Erase the original store.
1387     SI->eraseFromParent();
1388   }
1389 
1390   // While we have PHIs that are interesting to rewrite, do it.
1391   while (!PHIsToRewrite.empty()) {
1392     PHINode *PN = PHIsToRewrite.back().first;
1393     unsigned FieldNo = PHIsToRewrite.back().second;
1394     PHIsToRewrite.pop_back();
1395     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1396     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1397 
1398     // Add all the incoming values.  This can materialize more phis.
1399     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1400       Value *InVal = PN->getIncomingValue(i);
1401       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1402                                PHIsToRewrite);
1403       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1404     }
1405   }
1406 
1407   // Drop all inter-phi links and any loads that made it this far.
1408   for (DenseMap<Value*, std::vector<Value*> >::iterator
1409        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1410        I != E; ++I) {
1411     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1412       PN->dropAllReferences();
1413     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1414       LI->dropAllReferences();
1415   }
1416 
1417   // Delete all the phis and loads now that inter-references are dead.
1418   for (DenseMap<Value*, std::vector<Value*> >::iterator
1419        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1420        I != E; ++I) {
1421     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1422       PN->eraseFromParent();
1423     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1424       LI->eraseFromParent();
1425   }
1426 
1427   // The old global is now dead, remove it.
1428   GV->eraseFromParent();
1429 
1430   ++NumHeapSRA;
1431   return cast<GlobalVariable>(FieldGlobals[0]);
1432 }
1433 
1434 /// This function is called when we see a pointer global variable with a single
1435 /// value stored it that is a malloc or cast of malloc.
1436 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1437                                                Type *AllocTy,
1438                                                AtomicOrdering Ordering,
1439                                                const DataLayout &DL,
1440                                                TargetLibraryInfo *TLI) {
1441   // If this is a malloc of an abstract type, don't touch it.
1442   if (!AllocTy->isSized())
1443     return false;
1444 
1445   // We can't optimize this global unless all uses of it are *known* to be
1446   // of the malloc value, not of the null initializer value (consider a use
1447   // that compares the global's value against zero to see if the malloc has
1448   // been reached).  To do this, we check to see if all uses of the global
1449   // would trap if the global were null: this proves that they must all
1450   // happen after the malloc.
1451   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1452     return false;
1453 
1454   // We can't optimize this if the malloc itself is used in a complex way,
1455   // for example, being stored into multiple globals.  This allows the
1456   // malloc to be stored into the specified global, loaded icmp'd, and
1457   // GEP'd.  These are all things we could transform to using the global
1458   // for.
1459   SmallPtrSet<const PHINode*, 8> PHIs;
1460   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1461     return false;
1462 
1463   // If we have a global that is only initialized with a fixed size malloc,
1464   // transform the program to use global memory instead of malloc'd memory.
1465   // This eliminates dynamic allocation, avoids an indirection accessing the
1466   // data, and exposes the resultant global to further GlobalOpt.
1467   // We cannot optimize the malloc if we cannot determine malloc array size.
1468   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1469   if (!NElems)
1470     return false;
1471 
1472   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1473     // Restrict this transformation to only working on small allocations
1474     // (2048 bytes currently), as we don't want to introduce a 16M global or
1475     // something.
1476     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1477       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1478       return true;
1479     }
1480 
1481   // If the allocation is an array of structures, consider transforming this
1482   // into multiple malloc'd arrays, one for each field.  This is basically
1483   // SRoA for malloc'd memory.
1484 
1485   if (Ordering != AtomicOrdering::NotAtomic)
1486     return false;
1487 
1488   // If this is an allocation of a fixed size array of structs, analyze as a
1489   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1490   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1491     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1492       AllocTy = AT->getElementType();
1493 
1494   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1495   if (!AllocSTy)
1496     return false;
1497 
1498   // This the structure has an unreasonable number of fields, leave it
1499   // alone.
1500   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1501       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1502 
1503     // If this is a fixed size array, transform the Malloc to be an alloc of
1504     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1505     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1506       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1507       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1508       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1509       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1510       SmallVector<OperandBundleDef, 1> OpBundles;
1511       CI->getOperandBundlesAsDefs(OpBundles);
1512       Instruction *Malloc =
1513           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1514                                  OpBundles, nullptr, CI->getName());
1515       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1516       CI->replaceAllUsesWith(Cast);
1517       CI->eraseFromParent();
1518       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1519         CI = cast<CallInst>(BCI->getOperand(0));
1520       else
1521         CI = cast<CallInst>(Malloc);
1522     }
1523 
1524     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1525                          TLI);
1526     return true;
1527   }
1528 
1529   return false;
1530 }
1531 
1532 // Try to optimize globals based on the knowledge that only one value (besides
1533 // its initializer) is ever stored to the global.
1534 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1535                                      AtomicOrdering Ordering,
1536                                      const DataLayout &DL,
1537                                      TargetLibraryInfo *TLI) {
1538   // Ignore no-op GEPs and bitcasts.
1539   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1540 
1541   // If we are dealing with a pointer global that is initialized to null and
1542   // only has one (non-null) value stored into it, then we can optimize any
1543   // users of the loaded value (often calls and loads) that would trap if the
1544   // value was null.
1545   if (GV->getInitializer()->getType()->isPointerTy() &&
1546       GV->getInitializer()->isNullValue()) {
1547     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1548       if (GV->getInitializer()->getType() != SOVC->getType())
1549         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1550 
1551       // Optimize away any trapping uses of the loaded value.
1552       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1553         return true;
1554     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1555       Type *MallocType = getMallocAllocatedType(CI, TLI);
1556       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1557                                                            Ordering, DL, TLI))
1558         return true;
1559     }
1560   }
1561 
1562   return false;
1563 }
1564 
1565 /// At this point, we have learned that the only two values ever stored into GV
1566 /// are its initializer and OtherVal.  See if we can shrink the global into a
1567 /// boolean and select between the two values whenever it is used.  This exposes
1568 /// the values to other scalar optimizations.
1569 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1570   Type *GVElType = GV->getValueType();
1571 
1572   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1573   // an FP value, pointer or vector, don't do this optimization because a select
1574   // between them is very expensive and unlikely to lead to later
1575   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1576   // where v1 and v2 both require constant pool loads, a big loss.
1577   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1578       GVElType->isFloatingPointTy() ||
1579       GVElType->isPointerTy() || GVElType->isVectorTy())
1580     return false;
1581 
1582   // Walk the use list of the global seeing if all the uses are load or store.
1583   // If there is anything else, bail out.
1584   for (User *U : GV->users())
1585     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1586       return false;
1587 
1588   DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1589 
1590   // Create the new global, initializing it to false.
1591   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1592                                              false,
1593                                              GlobalValue::InternalLinkage,
1594                                         ConstantInt::getFalse(GV->getContext()),
1595                                              GV->getName()+".b",
1596                                              GV->getThreadLocalMode(),
1597                                              GV->getType()->getAddressSpace());
1598   NewGV->copyAttributesFrom(GV);
1599   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1600 
1601   Constant *InitVal = GV->getInitializer();
1602   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1603          "No reason to shrink to bool!");
1604 
1605   // If initialized to zero and storing one into the global, we can use a cast
1606   // instead of a select to synthesize the desired value.
1607   bool IsOneZero = false;
1608   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1609     IsOneZero = InitVal->isNullValue() && CI->isOne();
1610 
1611   while (!GV->use_empty()) {
1612     Instruction *UI = cast<Instruction>(GV->user_back());
1613     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1614       // Change the store into a boolean store.
1615       bool StoringOther = SI->getOperand(0) == OtherVal;
1616       // Only do this if we weren't storing a loaded value.
1617       Value *StoreVal;
1618       if (StoringOther || SI->getOperand(0) == InitVal) {
1619         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1620                                     StoringOther);
1621       } else {
1622         // Otherwise, we are storing a previously loaded copy.  To do this,
1623         // change the copy from copying the original value to just copying the
1624         // bool.
1625         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1626 
1627         // If we've already replaced the input, StoredVal will be a cast or
1628         // select instruction.  If not, it will be a load of the original
1629         // global.
1630         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1631           assert(LI->getOperand(0) == GV && "Not a copy!");
1632           // Insert a new load, to preserve the saved value.
1633           StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1634                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1635         } else {
1636           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1637                  "This is not a form that we understand!");
1638           StoreVal = StoredVal->getOperand(0);
1639           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1640         }
1641       }
1642       new StoreInst(StoreVal, NewGV, false, 0,
1643                     SI->getOrdering(), SI->getSyncScopeID(), SI);
1644     } else {
1645       // Change the load into a load of bool then a select.
1646       LoadInst *LI = cast<LoadInst>(UI);
1647       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1648                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1649       Value *NSI;
1650       if (IsOneZero)
1651         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1652       else
1653         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1654       NSI->takeName(LI);
1655       LI->replaceAllUsesWith(NSI);
1656     }
1657     UI->eraseFromParent();
1658   }
1659 
1660   // Retain the name of the old global variable. People who are debugging their
1661   // programs may expect these variables to be named the same.
1662   NewGV->takeName(GV);
1663   GV->eraseFromParent();
1664   return true;
1665 }
1666 
1667 static bool deleteIfDead(GlobalValue &GV,
1668                          SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
1669   GV.removeDeadConstantUsers();
1670 
1671   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1672     return false;
1673 
1674   if (const Comdat *C = GV.getComdat())
1675     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1676       return false;
1677 
1678   bool Dead;
1679   if (auto *F = dyn_cast<Function>(&GV))
1680     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1681   else
1682     Dead = GV.use_empty();
1683   if (!Dead)
1684     return false;
1685 
1686   DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1687   GV.eraseFromParent();
1688   ++NumDeleted;
1689   return true;
1690 }
1691 
1692 static bool isPointerValueDeadOnEntryToFunction(
1693     const Function *F, GlobalValue *GV,
1694     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1695   // Find all uses of GV. We expect them all to be in F, and if we can't
1696   // identify any of the uses we bail out.
1697   //
1698   // On each of these uses, identify if the memory that GV points to is
1699   // used/required/live at the start of the function. If it is not, for example
1700   // if the first thing the function does is store to the GV, the GV can
1701   // possibly be demoted.
1702   //
1703   // We don't do an exhaustive search for memory operations - simply look
1704   // through bitcasts as they're quite common and benign.
1705   const DataLayout &DL = GV->getParent()->getDataLayout();
1706   SmallVector<LoadInst *, 4> Loads;
1707   SmallVector<StoreInst *, 4> Stores;
1708   for (auto *U : GV->users()) {
1709     if (Operator::getOpcode(U) == Instruction::BitCast) {
1710       for (auto *UU : U->users()) {
1711         if (auto *LI = dyn_cast<LoadInst>(UU))
1712           Loads.push_back(LI);
1713         else if (auto *SI = dyn_cast<StoreInst>(UU))
1714           Stores.push_back(SI);
1715         else
1716           return false;
1717       }
1718       continue;
1719     }
1720 
1721     Instruction *I = dyn_cast<Instruction>(U);
1722     if (!I)
1723       return false;
1724     assert(I->getParent()->getParent() == F);
1725 
1726     if (auto *LI = dyn_cast<LoadInst>(I))
1727       Loads.push_back(LI);
1728     else if (auto *SI = dyn_cast<StoreInst>(I))
1729       Stores.push_back(SI);
1730     else
1731       return false;
1732   }
1733 
1734   // We have identified all uses of GV into loads and stores. Now check if all
1735   // of them are known not to depend on the value of the global at the function
1736   // entry point. We do this by ensuring that every load is dominated by at
1737   // least one store.
1738   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1739 
1740   // The below check is quadratic. Check we're not going to do too many tests.
1741   // FIXME: Even though this will always have worst-case quadratic time, we
1742   // could put effort into minimizing the average time by putting stores that
1743   // have been shown to dominate at least one load at the beginning of the
1744   // Stores array, making subsequent dominance checks more likely to succeed
1745   // early.
1746   //
1747   // The threshold here is fairly large because global->local demotion is a
1748   // very powerful optimization should it fire.
1749   const unsigned Threshold = 100;
1750   if (Loads.size() * Stores.size() > Threshold)
1751     return false;
1752 
1753   for (auto *L : Loads) {
1754     auto *LTy = L->getType();
1755     if (none_of(Stores, [&](const StoreInst *S) {
1756           auto *STy = S->getValueOperand()->getType();
1757           // The load is only dominated by the store if DomTree says so
1758           // and the number of bits loaded in L is less than or equal to
1759           // the number of bits stored in S.
1760           return DT.dominates(S, L) &&
1761                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1762         }))
1763       return false;
1764   }
1765   // All loads have known dependences inside F, so the global can be localized.
1766   return true;
1767 }
1768 
1769 /// C may have non-instruction users. Can all of those users be turned into
1770 /// instructions?
1771 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1772   // We don't do this exhaustively. The most common pattern that we really need
1773   // to care about is a constant GEP or constant bitcast - so just looking
1774   // through one single ConstantExpr.
1775   //
1776   // The set of constants that this function returns true for must be able to be
1777   // handled by makeAllConstantUsesInstructions.
1778   for (auto *U : C->users()) {
1779     if (isa<Instruction>(U))
1780       continue;
1781     if (!isa<ConstantExpr>(U))
1782       // Non instruction, non-constantexpr user; cannot convert this.
1783       return false;
1784     for (auto *UU : U->users())
1785       if (!isa<Instruction>(UU))
1786         // A constantexpr used by another constant. We don't try and recurse any
1787         // further but just bail out at this point.
1788         return false;
1789   }
1790 
1791   return true;
1792 }
1793 
1794 /// C may have non-instruction users, and
1795 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1796 /// non-instruction users to instructions.
1797 static void makeAllConstantUsesInstructions(Constant *C) {
1798   SmallVector<ConstantExpr*,4> Users;
1799   for (auto *U : C->users()) {
1800     if (isa<ConstantExpr>(U))
1801       Users.push_back(cast<ConstantExpr>(U));
1802     else
1803       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1804       // should not have returned true for C.
1805       assert(
1806           isa<Instruction>(U) &&
1807           "Can't transform non-constantexpr non-instruction to instruction!");
1808   }
1809 
1810   SmallVector<Value*,4> UUsers;
1811   for (auto *U : Users) {
1812     UUsers.clear();
1813     for (auto *UU : U->users())
1814       UUsers.push_back(UU);
1815     for (auto *UU : UUsers) {
1816       Instruction *UI = cast<Instruction>(UU);
1817       Instruction *NewU = U->getAsInstruction();
1818       NewU->insertBefore(UI);
1819       UI->replaceUsesOfWith(U, NewU);
1820     }
1821     // We've replaced all the uses, so destroy the constant. (destroyConstant
1822     // will update value handles and metadata.)
1823     U->destroyConstant();
1824   }
1825 }
1826 
1827 /// Analyze the specified global variable and optimize
1828 /// it if possible.  If we make a change, return true.
1829 static bool processInternalGlobal(
1830     GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI,
1831     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1832   auto &DL = GV->getParent()->getDataLayout();
1833   // If this is a first class global and has only one accessing function and
1834   // this function is non-recursive, we replace the global with a local alloca
1835   // in this function.
1836   //
1837   // NOTE: It doesn't make sense to promote non-single-value types since we
1838   // are just replacing static memory to stack memory.
1839   //
1840   // If the global is in different address space, don't bring it to stack.
1841   if (!GS.HasMultipleAccessingFunctions &&
1842       GS.AccessingFunction &&
1843       GV->getValueType()->isSingleValueType() &&
1844       GV->getType()->getAddressSpace() == 0 &&
1845       !GV->isExternallyInitialized() &&
1846       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1847       GS.AccessingFunction->doesNotRecurse() &&
1848       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1849                                           LookupDomTree)) {
1850     const DataLayout &DL = GV->getParent()->getDataLayout();
1851 
1852     DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1853     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1854                                                    ->getEntryBlock().begin());
1855     Type *ElemTy = GV->getValueType();
1856     // FIXME: Pass Global's alignment when globals have alignment
1857     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1858                                         GV->getName(), &FirstI);
1859     if (!isa<UndefValue>(GV->getInitializer()))
1860       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1861 
1862     makeAllConstantUsesInstructions(GV);
1863 
1864     GV->replaceAllUsesWith(Alloca);
1865     GV->eraseFromParent();
1866     ++NumLocalized;
1867     return true;
1868   }
1869 
1870   // If the global is never loaded (but may be stored to), it is dead.
1871   // Delete it now.
1872   if (!GS.IsLoaded) {
1873     DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1874 
1875     bool Changed;
1876     if (isLeakCheckerRoot(GV)) {
1877       // Delete any constant stores to the global.
1878       Changed = CleanupPointerRootUsers(GV, TLI);
1879     } else {
1880       // Delete any stores we can find to the global.  We may not be able to
1881       // make it completely dead though.
1882       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1883     }
1884 
1885     // If the global is dead now, delete it.
1886     if (GV->use_empty()) {
1887       GV->eraseFromParent();
1888       ++NumDeleted;
1889       Changed = true;
1890     }
1891     return Changed;
1892 
1893   }
1894   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1895     DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1896     GV->setConstant(true);
1897 
1898     // Clean up any obviously simplifiable users now.
1899     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1900 
1901     // If the global is dead now, just nuke it.
1902     if (GV->use_empty()) {
1903       DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1904             << "all users and delete global!\n");
1905       GV->eraseFromParent();
1906       ++NumDeleted;
1907       return true;
1908     }
1909 
1910     // Fall through to the next check; see if we can optimize further.
1911     ++NumMarked;
1912   }
1913   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1914     const DataLayout &DL = GV->getParent()->getDataLayout();
1915     if (SRAGlobal(GV, DL))
1916       return true;
1917   }
1918   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1919     // If the initial value for the global was an undef value, and if only
1920     // one other value was stored into it, we can just change the
1921     // initializer to be the stored value, then delete all stores to the
1922     // global.  This allows us to mark it constant.
1923     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1924       if (isa<UndefValue>(GV->getInitializer())) {
1925         // Change the initial value here.
1926         GV->setInitializer(SOVConstant);
1927 
1928         // Clean up any obviously simplifiable users now.
1929         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1930 
1931         if (GV->use_empty()) {
1932           DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1933                        << "simplify all users and delete global!\n");
1934           GV->eraseFromParent();
1935           ++NumDeleted;
1936         }
1937         ++NumSubstitute;
1938         return true;
1939       }
1940 
1941     // Try to optimize globals based on the knowledge that only one value
1942     // (besides its initializer) is ever stored to the global.
1943     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
1944       return true;
1945 
1946     // Otherwise, if the global was not a boolean, we can shrink it to be a
1947     // boolean.
1948     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1949       if (GS.Ordering == AtomicOrdering::NotAtomic) {
1950         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1951           ++NumShrunkToBool;
1952           return true;
1953         }
1954       }
1955     }
1956   }
1957 
1958   return false;
1959 }
1960 
1961 /// Analyze the specified global variable and optimize it if possible.  If we
1962 /// make a change, return true.
1963 static bool
1964 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI,
1965               function_ref<DominatorTree &(Function &)> LookupDomTree) {
1966   if (GV.getName().startswith("llvm."))
1967     return false;
1968 
1969   GlobalStatus GS;
1970 
1971   if (GlobalStatus::analyzeGlobal(&GV, GS))
1972     return false;
1973 
1974   bool Changed = false;
1975   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1976     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1977                                                : GlobalValue::UnnamedAddr::Local;
1978     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1979       GV.setUnnamedAddr(NewUnnamedAddr);
1980       NumUnnamed++;
1981       Changed = true;
1982     }
1983   }
1984 
1985   // Do more involved optimizations if the global is internal.
1986   if (!GV.hasLocalLinkage())
1987     return Changed;
1988 
1989   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1990   if (!GVar)
1991     return Changed;
1992 
1993   if (GVar->isConstant() || !GVar->hasInitializer())
1994     return Changed;
1995 
1996   return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed;
1997 }
1998 
1999 /// Walk all of the direct calls of the specified function, changing them to
2000 /// FastCC.
2001 static void ChangeCalleesToFastCall(Function *F) {
2002   for (User *U : F->users()) {
2003     if (isa<BlockAddress>(U))
2004       continue;
2005     CallSite CS(cast<Instruction>(U));
2006     CS.setCallingConv(CallingConv::Fast);
2007   }
2008 }
2009 
2010 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) {
2011   // There can be at most one attribute set with a nest attribute.
2012   unsigned NestIndex;
2013   if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex))
2014     return Attrs.removeAttribute(C, NestIndex, Attribute::Nest);
2015   return Attrs;
2016 }
2017 
2018 static void RemoveNestAttribute(Function *F) {
2019   F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2020   for (User *U : F->users()) {
2021     if (isa<BlockAddress>(U))
2022       continue;
2023     CallSite CS(cast<Instruction>(U));
2024     CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
2025   }
2026 }
2027 
2028 /// Return true if this is a calling convention that we'd like to change.  The
2029 /// idea here is that we don't want to mess with the convention if the user
2030 /// explicitly requested something with performance implications like coldcc,
2031 /// GHC, or anyregcc.
2032 static bool isProfitableToMakeFastCC(Function *F) {
2033   CallingConv::ID CC = F->getCallingConv();
2034   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2035   return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
2036 }
2037 
2038 static bool
2039 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI,
2040                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2041                   SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2042   bool Changed = false;
2043   // Optimize functions.
2044   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2045     Function *F = &*FI++;
2046     // Functions without names cannot be referenced outside this module.
2047     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2048       F->setLinkage(GlobalValue::InternalLinkage);
2049 
2050     if (deleteIfDead(*F, NotDiscardableComdats)) {
2051       Changed = true;
2052       continue;
2053     }
2054 
2055     // LLVM's definition of dominance allows instructions that are cyclic
2056     // in unreachable blocks, e.g.:
2057     // %pat = select i1 %condition, @global, i16* %pat
2058     // because any instruction dominates an instruction in a block that's
2059     // not reachable from entry.
2060     // So, remove unreachable blocks from the function, because a) there's
2061     // no point in analyzing them and b) GlobalOpt should otherwise grow
2062     // some more complicated logic to break these cycles.
2063     // Removing unreachable blocks might invalidate the dominator so we
2064     // recalculate it.
2065     if (!F->isDeclaration()) {
2066       if (removeUnreachableBlocks(*F)) {
2067         auto &DT = LookupDomTree(*F);
2068         DT.recalculate(*F);
2069         Changed = true;
2070       }
2071     }
2072 
2073     Changed |= processGlobal(*F, TLI, LookupDomTree);
2074 
2075     if (!F->hasLocalLinkage())
2076       continue;
2077     if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
2078         !F->hasAddressTaken()) {
2079       // If this function has a calling convention worth changing, is not a
2080       // varargs function, and is only called directly, promote it to use the
2081       // Fast calling convention.
2082       F->setCallingConv(CallingConv::Fast);
2083       ChangeCalleesToFastCall(F);
2084       ++NumFastCallFns;
2085       Changed = true;
2086     }
2087 
2088     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2089         !F->hasAddressTaken()) {
2090       // The function is not used by a trampoline intrinsic, so it is safe
2091       // to remove the 'nest' attribute.
2092       RemoveNestAttribute(F);
2093       ++NumNestRemoved;
2094       Changed = true;
2095     }
2096   }
2097   return Changed;
2098 }
2099 
2100 static bool
2101 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI,
2102                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2103                    SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2104   bool Changed = false;
2105 
2106   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2107        GVI != E; ) {
2108     GlobalVariable *GV = &*GVI++;
2109     // Global variables without names cannot be referenced outside this module.
2110     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2111       GV->setLinkage(GlobalValue::InternalLinkage);
2112     // Simplify the initializer.
2113     if (GV->hasInitializer())
2114       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2115         auto &DL = M.getDataLayout();
2116         Constant *New = ConstantFoldConstant(C, DL, TLI);
2117         if (New && New != C)
2118           GV->setInitializer(New);
2119       }
2120 
2121     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2122       Changed = true;
2123       continue;
2124     }
2125 
2126     Changed |= processGlobal(*GV, TLI, LookupDomTree);
2127   }
2128   return Changed;
2129 }
2130 
2131 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2132 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2133 /// GEP operands of Addr [0, OpNo) have been stepped into.
2134 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2135                                    ConstantExpr *Addr, unsigned OpNo) {
2136   // Base case of the recursion.
2137   if (OpNo == Addr->getNumOperands()) {
2138     assert(Val->getType() == Init->getType() && "Type mismatch!");
2139     return Val;
2140   }
2141 
2142   SmallVector<Constant*, 32> Elts;
2143   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2144     // Break up the constant into its elements.
2145     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2146       Elts.push_back(Init->getAggregateElement(i));
2147 
2148     // Replace the element that we are supposed to.
2149     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2150     unsigned Idx = CU->getZExtValue();
2151     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2152     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2153 
2154     // Return the modified struct.
2155     return ConstantStruct::get(STy, Elts);
2156   }
2157 
2158   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2159   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2160   uint64_t NumElts = InitTy->getNumElements();
2161 
2162   // Break up the array into elements.
2163   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2164     Elts.push_back(Init->getAggregateElement(i));
2165 
2166   assert(CI->getZExtValue() < NumElts);
2167   Elts[CI->getZExtValue()] =
2168     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2169 
2170   if (Init->getType()->isArrayTy())
2171     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2172   return ConstantVector::get(Elts);
2173 }
2174 
2175 /// We have decided that Addr (which satisfies the predicate
2176 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2177 static void CommitValueTo(Constant *Val, Constant *Addr) {
2178   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2179     assert(GV->hasInitializer());
2180     GV->setInitializer(Val);
2181     return;
2182   }
2183 
2184   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2185   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2186   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2187 }
2188 
2189 /// Evaluate static constructors in the function, if we can.  Return true if we
2190 /// can, false otherwise.
2191 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2192                                       TargetLibraryInfo *TLI) {
2193   // Call the function.
2194   Evaluator Eval(DL, TLI);
2195   Constant *RetValDummy;
2196   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2197                                            SmallVector<Constant*, 0>());
2198 
2199   if (EvalSuccess) {
2200     ++NumCtorsEvaluated;
2201 
2202     // We succeeded at evaluation: commit the result.
2203     DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2204           << F->getName() << "' to " << Eval.getMutatedMemory().size()
2205           << " stores.\n");
2206     for (const auto &I : Eval.getMutatedMemory())
2207       CommitValueTo(I.second, I.first);
2208     for (GlobalVariable *GV : Eval.getInvariants())
2209       GV->setConstant(true);
2210   }
2211 
2212   return EvalSuccess;
2213 }
2214 
2215 static int compareNames(Constant *const *A, Constant *const *B) {
2216   Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
2217   Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
2218   return AStripped->getName().compare(BStripped->getName());
2219 }
2220 
2221 static void setUsedInitializer(GlobalVariable &V,
2222                                const SmallPtrSet<GlobalValue *, 8> &Init) {
2223   if (Init.empty()) {
2224     V.eraseFromParent();
2225     return;
2226   }
2227 
2228   // Type of pointer to the array of pointers.
2229   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2230 
2231   SmallVector<llvm::Constant *, 8> UsedArray;
2232   for (GlobalValue *GV : Init) {
2233     Constant *Cast
2234       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2235     UsedArray.push_back(Cast);
2236   }
2237   // Sort to get deterministic order.
2238   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2239   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2240 
2241   Module *M = V.getParent();
2242   V.removeFromParent();
2243   GlobalVariable *NV =
2244       new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
2245                          llvm::ConstantArray::get(ATy, UsedArray), "");
2246   NV->takeName(&V);
2247   NV->setSection("llvm.metadata");
2248   delete &V;
2249 }
2250 
2251 namespace {
2252 /// An easy to access representation of llvm.used and llvm.compiler.used.
2253 class LLVMUsed {
2254   SmallPtrSet<GlobalValue *, 8> Used;
2255   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2256   GlobalVariable *UsedV;
2257   GlobalVariable *CompilerUsedV;
2258 
2259 public:
2260   LLVMUsed(Module &M) {
2261     UsedV = collectUsedGlobalVariables(M, Used, false);
2262     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2263   }
2264   typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
2265   typedef iterator_range<iterator> used_iterator_range;
2266   iterator usedBegin() { return Used.begin(); }
2267   iterator usedEnd() { return Used.end(); }
2268   used_iterator_range used() {
2269     return used_iterator_range(usedBegin(), usedEnd());
2270   }
2271   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2272   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2273   used_iterator_range compilerUsed() {
2274     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2275   }
2276   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2277   bool compilerUsedCount(GlobalValue *GV) const {
2278     return CompilerUsed.count(GV);
2279   }
2280   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2281   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2282   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2283   bool compilerUsedInsert(GlobalValue *GV) {
2284     return CompilerUsed.insert(GV).second;
2285   }
2286 
2287   void syncVariablesAndSets() {
2288     if (UsedV)
2289       setUsedInitializer(*UsedV, Used);
2290     if (CompilerUsedV)
2291       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2292   }
2293 };
2294 }
2295 
2296 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2297   if (GA.use_empty()) // No use at all.
2298     return false;
2299 
2300   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2301          "We should have removed the duplicated "
2302          "element from llvm.compiler.used");
2303   if (!GA.hasOneUse())
2304     // Strictly more than one use. So at least one is not in llvm.used and
2305     // llvm.compiler.used.
2306     return true;
2307 
2308   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2309   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2310 }
2311 
2312 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2313                                                const LLVMUsed &U) {
2314   unsigned N = 2;
2315   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2316          "We should have removed the duplicated "
2317          "element from llvm.compiler.used");
2318   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2319     ++N;
2320   return V.hasNUsesOrMore(N);
2321 }
2322 
2323 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2324   if (!GA.hasLocalLinkage())
2325     return true;
2326 
2327   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2328 }
2329 
2330 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2331                              bool &RenameTarget) {
2332   RenameTarget = false;
2333   bool Ret = false;
2334   if (hasUseOtherThanLLVMUsed(GA, U))
2335     Ret = true;
2336 
2337   // If the alias is externally visible, we may still be able to simplify it.
2338   if (!mayHaveOtherReferences(GA, U))
2339     return Ret;
2340 
2341   // If the aliasee has internal linkage, give it the name and linkage
2342   // of the alias, and delete the alias.  This turns:
2343   //   define internal ... @f(...)
2344   //   @a = alias ... @f
2345   // into:
2346   //   define ... @a(...)
2347   Constant *Aliasee = GA.getAliasee();
2348   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2349   if (!Target->hasLocalLinkage())
2350     return Ret;
2351 
2352   // Do not perform the transform if multiple aliases potentially target the
2353   // aliasee. This check also ensures that it is safe to replace the section
2354   // and other attributes of the aliasee with those of the alias.
2355   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2356     return Ret;
2357 
2358   RenameTarget = true;
2359   return true;
2360 }
2361 
2362 static bool
2363 OptimizeGlobalAliases(Module &M,
2364                       SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2365   bool Changed = false;
2366   LLVMUsed Used(M);
2367 
2368   for (GlobalValue *GV : Used.used())
2369     Used.compilerUsedErase(GV);
2370 
2371   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2372        I != E;) {
2373     GlobalAlias *J = &*I++;
2374 
2375     // Aliases without names cannot be referenced outside this module.
2376     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2377       J->setLinkage(GlobalValue::InternalLinkage);
2378 
2379     if (deleteIfDead(*J, NotDiscardableComdats)) {
2380       Changed = true;
2381       continue;
2382     }
2383 
2384     // If the aliasee may change at link time, nothing can be done - bail out.
2385     if (J->isInterposable())
2386       continue;
2387 
2388     Constant *Aliasee = J->getAliasee();
2389     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2390     // We can't trivially replace the alias with the aliasee if the aliasee is
2391     // non-trivial in some way.
2392     // TODO: Try to handle non-zero GEPs of local aliasees.
2393     if (!Target)
2394       continue;
2395     Target->removeDeadConstantUsers();
2396 
2397     // Make all users of the alias use the aliasee instead.
2398     bool RenameTarget;
2399     if (!hasUsesToReplace(*J, Used, RenameTarget))
2400       continue;
2401 
2402     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2403     ++NumAliasesResolved;
2404     Changed = true;
2405 
2406     if (RenameTarget) {
2407       // Give the aliasee the name, linkage and other attributes of the alias.
2408       Target->takeName(&*J);
2409       Target->setLinkage(J->getLinkage());
2410       Target->setVisibility(J->getVisibility());
2411       Target->setDLLStorageClass(J->getDLLStorageClass());
2412 
2413       if (Used.usedErase(&*J))
2414         Used.usedInsert(Target);
2415 
2416       if (Used.compilerUsedErase(&*J))
2417         Used.compilerUsedInsert(Target);
2418     } else if (mayHaveOtherReferences(*J, Used))
2419       continue;
2420 
2421     // Delete the alias.
2422     M.getAliasList().erase(J);
2423     ++NumAliasesRemoved;
2424     Changed = true;
2425   }
2426 
2427   Used.syncVariablesAndSets();
2428 
2429   return Changed;
2430 }
2431 
2432 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2433   LibFunc F = LibFunc_cxa_atexit;
2434   if (!TLI->has(F))
2435     return nullptr;
2436 
2437   Function *Fn = M.getFunction(TLI->getName(F));
2438   if (!Fn)
2439     return nullptr;
2440 
2441   // Make sure that the function has the correct prototype.
2442   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2443     return nullptr;
2444 
2445   return Fn;
2446 }
2447 
2448 /// Returns whether the given function is an empty C++ destructor and can
2449 /// therefore be eliminated.
2450 /// Note that we assume that other optimization passes have already simplified
2451 /// the code so we only look for a function with a single basic block, where
2452 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2453 /// other side-effect free instructions.
2454 static bool cxxDtorIsEmpty(const Function &Fn,
2455                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
2456   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2457   // nounwind, but that doesn't seem worth doing.
2458   if (Fn.isDeclaration())
2459     return false;
2460 
2461   if (++Fn.begin() != Fn.end())
2462     return false;
2463 
2464   const BasicBlock &EntryBlock = Fn.getEntryBlock();
2465   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2466        I != E; ++I) {
2467     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2468       // Ignore debug intrinsics.
2469       if (isa<DbgInfoIntrinsic>(CI))
2470         continue;
2471 
2472       const Function *CalledFn = CI->getCalledFunction();
2473 
2474       if (!CalledFn)
2475         return false;
2476 
2477       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2478 
2479       // Don't treat recursive functions as empty.
2480       if (!NewCalledFunctions.insert(CalledFn).second)
2481         return false;
2482 
2483       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2484         return false;
2485     } else if (isa<ReturnInst>(*I))
2486       return true; // We're done.
2487     else if (I->mayHaveSideEffects())
2488       return false; // Destructor with side effects, bail.
2489   }
2490 
2491   return false;
2492 }
2493 
2494 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2495   /// Itanium C++ ABI p3.3.5:
2496   ///
2497   ///   After constructing a global (or local static) object, that will require
2498   ///   destruction on exit, a termination function is registered as follows:
2499   ///
2500   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2501   ///
2502   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2503   ///   call f(p) when DSO d is unloaded, before all such termination calls
2504   ///   registered before this one. It returns zero if registration is
2505   ///   successful, nonzero on failure.
2506 
2507   // This pass will look for calls to __cxa_atexit where the function is trivial
2508   // and remove them.
2509   bool Changed = false;
2510 
2511   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2512        I != E;) {
2513     // We're only interested in calls. Theoretically, we could handle invoke
2514     // instructions as well, but neither llvm-gcc nor clang generate invokes
2515     // to __cxa_atexit.
2516     CallInst *CI = dyn_cast<CallInst>(*I++);
2517     if (!CI)
2518       continue;
2519 
2520     Function *DtorFn =
2521       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2522     if (!DtorFn)
2523       continue;
2524 
2525     SmallPtrSet<const Function *, 8> CalledFunctions;
2526     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2527       continue;
2528 
2529     // Just remove the call.
2530     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2531     CI->eraseFromParent();
2532 
2533     ++NumCXXDtorsRemoved;
2534 
2535     Changed |= true;
2536   }
2537 
2538   return Changed;
2539 }
2540 
2541 static bool optimizeGlobalsInModule(
2542     Module &M, const DataLayout &DL, TargetLibraryInfo *TLI,
2543     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2544   SmallSet<const Comdat *, 8> NotDiscardableComdats;
2545   bool Changed = false;
2546   bool LocalChange = true;
2547   while (LocalChange) {
2548     LocalChange = false;
2549 
2550     NotDiscardableComdats.clear();
2551     for (const GlobalVariable &GV : M.globals())
2552       if (const Comdat *C = GV.getComdat())
2553         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2554           NotDiscardableComdats.insert(C);
2555     for (Function &F : M)
2556       if (const Comdat *C = F.getComdat())
2557         if (!F.isDefTriviallyDead())
2558           NotDiscardableComdats.insert(C);
2559     for (GlobalAlias &GA : M.aliases())
2560       if (const Comdat *C = GA.getComdat())
2561         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2562           NotDiscardableComdats.insert(C);
2563 
2564     // Delete functions that are trivially dead, ccc -> fastcc
2565     LocalChange |=
2566         OptimizeFunctions(M, TLI, LookupDomTree, NotDiscardableComdats);
2567 
2568     // Optimize global_ctors list.
2569     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2570       return EvaluateStaticConstructor(F, DL, TLI);
2571     });
2572 
2573     // Optimize non-address-taken globals.
2574     LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree,
2575                                       NotDiscardableComdats);
2576 
2577     // Resolve aliases, when possible.
2578     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2579 
2580     // Try to remove trivial global destructors if they are not removed
2581     // already.
2582     Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
2583     if (CXAAtExitFn)
2584       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2585 
2586     Changed |= LocalChange;
2587   }
2588 
2589   // TODO: Move all global ctors functions to the end of the module for code
2590   // layout.
2591 
2592   return Changed;
2593 }
2594 
2595 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2596     auto &DL = M.getDataLayout();
2597     auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
2598     auto &FAM =
2599         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2600     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2601       return FAM.getResult<DominatorTreeAnalysis>(F);
2602     };
2603     if (!optimizeGlobalsInModule(M, DL, &TLI, LookupDomTree))
2604       return PreservedAnalyses::all();
2605     return PreservedAnalyses::none();
2606 }
2607 
2608 namespace {
2609 struct GlobalOptLegacyPass : public ModulePass {
2610   static char ID; // Pass identification, replacement for typeid
2611   GlobalOptLegacyPass() : ModulePass(ID) {
2612     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2613   }
2614 
2615   bool runOnModule(Module &M) override {
2616     if (skipModule(M))
2617       return false;
2618 
2619     auto &DL = M.getDataLayout();
2620     auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2621     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2622       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2623     };
2624     return optimizeGlobalsInModule(M, DL, TLI, LookupDomTree);
2625   }
2626 
2627   void getAnalysisUsage(AnalysisUsage &AU) const override {
2628     AU.addRequired<TargetLibraryInfoWrapperPass>();
2629     AU.addRequired<DominatorTreeWrapperPass>();
2630   }
2631 };
2632 }
2633 
2634 char GlobalOptLegacyPass::ID = 0;
2635 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2636                       "Global Variable Optimizer", false, false)
2637 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2638 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2639 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2640                     "Global Variable Optimizer", false, false)
2641 
2642 ModulePass *llvm::createGlobalOptimizerPass() {
2643   return new GlobalOptLegacyPass();
2644 }
2645