1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/GlobalOpt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/CallingConv.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfoMetadata.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/DIBuilder.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/IPO.h" 46 #include "llvm/Transforms/Utils/CtorUtils.h" 47 #include "llvm/Transforms/Utils/Evaluator.h" 48 #include "llvm/Transforms/Utils/GlobalStatus.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include <algorithm> 51 using namespace llvm; 52 53 #define DEBUG_TYPE "globalopt" 54 55 STATISTIC(NumMarked , "Number of globals marked constant"); 56 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 57 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 58 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 59 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 60 STATISTIC(NumDeleted , "Number of globals deleted"); 61 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 62 STATISTIC(NumLocalized , "Number of globals localized"); 63 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 64 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 65 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 66 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 67 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 68 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 69 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 70 71 /// Is this global variable possibly used by a leak checker as a root? If so, 72 /// we might not really want to eliminate the stores to it. 73 static bool isLeakCheckerRoot(GlobalVariable *GV) { 74 // A global variable is a root if it is a pointer, or could plausibly contain 75 // a pointer. There are two challenges; one is that we could have a struct 76 // the has an inner member which is a pointer. We recurse through the type to 77 // detect these (up to a point). The other is that we may actually be a union 78 // of a pointer and another type, and so our LLVM type is an integer which 79 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 80 // potentially contained here. 81 82 if (GV->hasPrivateLinkage()) 83 return false; 84 85 SmallVector<Type *, 4> Types; 86 Types.push_back(GV->getValueType()); 87 88 unsigned Limit = 20; 89 do { 90 Type *Ty = Types.pop_back_val(); 91 switch (Ty->getTypeID()) { 92 default: break; 93 case Type::PointerTyID: return true; 94 case Type::ArrayTyID: 95 case Type::VectorTyID: { 96 SequentialType *STy = cast<SequentialType>(Ty); 97 Types.push_back(STy->getElementType()); 98 break; 99 } 100 case Type::StructTyID: { 101 StructType *STy = cast<StructType>(Ty); 102 if (STy->isOpaque()) return true; 103 for (StructType::element_iterator I = STy->element_begin(), 104 E = STy->element_end(); I != E; ++I) { 105 Type *InnerTy = *I; 106 if (isa<PointerType>(InnerTy)) return true; 107 if (isa<CompositeType>(InnerTy)) 108 Types.push_back(InnerTy); 109 } 110 break; 111 } 112 } 113 if (--Limit == 0) return true; 114 } while (!Types.empty()); 115 return false; 116 } 117 118 /// Given a value that is stored to a global but never read, determine whether 119 /// it's safe to remove the store and the chain of computation that feeds the 120 /// store. 121 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 122 do { 123 if (isa<Constant>(V)) 124 return true; 125 if (!V->hasOneUse()) 126 return false; 127 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 128 isa<GlobalValue>(V)) 129 return false; 130 if (isAllocationFn(V, TLI)) 131 return true; 132 133 Instruction *I = cast<Instruction>(V); 134 if (I->mayHaveSideEffects()) 135 return false; 136 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 137 if (!GEP->hasAllConstantIndices()) 138 return false; 139 } else if (I->getNumOperands() != 1) { 140 return false; 141 } 142 143 V = I->getOperand(0); 144 } while (1); 145 } 146 147 /// This GV is a pointer root. Loop over all users of the global and clean up 148 /// any that obviously don't assign the global a value that isn't dynamically 149 /// allocated. 150 static bool CleanupPointerRootUsers(GlobalVariable *GV, 151 const TargetLibraryInfo *TLI) { 152 // A brief explanation of leak checkers. The goal is to find bugs where 153 // pointers are forgotten, causing an accumulating growth in memory 154 // usage over time. The common strategy for leak checkers is to whitelist the 155 // memory pointed to by globals at exit. This is popular because it also 156 // solves another problem where the main thread of a C++ program may shut down 157 // before other threads that are still expecting to use those globals. To 158 // handle that case, we expect the program may create a singleton and never 159 // destroy it. 160 161 bool Changed = false; 162 163 // If Dead[n].first is the only use of a malloc result, we can delete its 164 // chain of computation and the store to the global in Dead[n].second. 165 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 166 167 // Constants can't be pointers to dynamically allocated memory. 168 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 169 UI != E;) { 170 User *U = *UI++; 171 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 172 Value *V = SI->getValueOperand(); 173 if (isa<Constant>(V)) { 174 Changed = true; 175 SI->eraseFromParent(); 176 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 177 if (I->hasOneUse()) 178 Dead.push_back(std::make_pair(I, SI)); 179 } 180 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 181 if (isa<Constant>(MSI->getValue())) { 182 Changed = true; 183 MSI->eraseFromParent(); 184 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 185 if (I->hasOneUse()) 186 Dead.push_back(std::make_pair(I, MSI)); 187 } 188 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 189 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 190 if (MemSrc && MemSrc->isConstant()) { 191 Changed = true; 192 MTI->eraseFromParent(); 193 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 194 if (I->hasOneUse()) 195 Dead.push_back(std::make_pair(I, MTI)); 196 } 197 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 198 if (CE->use_empty()) { 199 CE->destroyConstant(); 200 Changed = true; 201 } 202 } else if (Constant *C = dyn_cast<Constant>(U)) { 203 if (isSafeToDestroyConstant(C)) { 204 C->destroyConstant(); 205 // This could have invalidated UI, start over from scratch. 206 Dead.clear(); 207 CleanupPointerRootUsers(GV, TLI); 208 return true; 209 } 210 } 211 } 212 213 for (int i = 0, e = Dead.size(); i != e; ++i) { 214 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 215 Dead[i].second->eraseFromParent(); 216 Instruction *I = Dead[i].first; 217 do { 218 if (isAllocationFn(I, TLI)) 219 break; 220 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 221 if (!J) 222 break; 223 I->eraseFromParent(); 224 I = J; 225 } while (1); 226 I->eraseFromParent(); 227 } 228 } 229 230 return Changed; 231 } 232 233 /// We just marked GV constant. Loop over all users of the global, cleaning up 234 /// the obvious ones. This is largely just a quick scan over the use list to 235 /// clean up the easy and obvious cruft. This returns true if it made a change. 236 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 237 const DataLayout &DL, 238 TargetLibraryInfo *TLI) { 239 bool Changed = false; 240 // Note that we need to use a weak value handle for the worklist items. When 241 // we delete a constant array, we may also be holding pointer to one of its 242 // elements (or an element of one of its elements if we're dealing with an 243 // array of arrays) in the worklist. 244 SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end()); 245 while (!WorkList.empty()) { 246 Value *UV = WorkList.pop_back_val(); 247 if (!UV) 248 continue; 249 250 User *U = cast<User>(UV); 251 252 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 253 if (Init) { 254 // Replace the load with the initializer. 255 LI->replaceAllUsesWith(Init); 256 LI->eraseFromParent(); 257 Changed = true; 258 } 259 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 260 // Store must be unreachable or storing Init into the global. 261 SI->eraseFromParent(); 262 Changed = true; 263 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 264 if (CE->getOpcode() == Instruction::GetElementPtr) { 265 Constant *SubInit = nullptr; 266 if (Init) 267 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 268 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 269 } else if ((CE->getOpcode() == Instruction::BitCast && 270 CE->getType()->isPointerTy()) || 271 CE->getOpcode() == Instruction::AddrSpaceCast) { 272 // Pointer cast, delete any stores and memsets to the global. 273 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 274 } 275 276 if (CE->use_empty()) { 277 CE->destroyConstant(); 278 Changed = true; 279 } 280 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 281 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 282 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 283 // and will invalidate our notion of what Init is. 284 Constant *SubInit = nullptr; 285 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 286 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 287 ConstantFoldInstruction(GEP, DL, TLI)); 288 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 289 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 290 291 // If the initializer is an all-null value and we have an inbounds GEP, 292 // we already know what the result of any load from that GEP is. 293 // TODO: Handle splats. 294 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 295 SubInit = Constant::getNullValue(GEP->getResultElementType()); 296 } 297 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 298 299 if (GEP->use_empty()) { 300 GEP->eraseFromParent(); 301 Changed = true; 302 } 303 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 304 if (MI->getRawDest() == V) { 305 MI->eraseFromParent(); 306 Changed = true; 307 } 308 309 } else if (Constant *C = dyn_cast<Constant>(U)) { 310 // If we have a chain of dead constantexprs or other things dangling from 311 // us, and if they are all dead, nuke them without remorse. 312 if (isSafeToDestroyConstant(C)) { 313 C->destroyConstant(); 314 CleanupConstantGlobalUsers(V, Init, DL, TLI); 315 return true; 316 } 317 } 318 } 319 return Changed; 320 } 321 322 /// Return true if the specified instruction is a safe user of a derived 323 /// expression from a global that we want to SROA. 324 static bool isSafeSROAElementUse(Value *V) { 325 // We might have a dead and dangling constant hanging off of here. 326 if (Constant *C = dyn_cast<Constant>(V)) 327 return isSafeToDestroyConstant(C); 328 329 Instruction *I = dyn_cast<Instruction>(V); 330 if (!I) return false; 331 332 // Loads are ok. 333 if (isa<LoadInst>(I)) return true; 334 335 // Stores *to* the pointer are ok. 336 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 337 return SI->getOperand(0) != V; 338 339 // Otherwise, it must be a GEP. 340 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 341 if (!GEPI) return false; 342 343 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 344 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 345 return false; 346 347 for (User *U : GEPI->users()) 348 if (!isSafeSROAElementUse(U)) 349 return false; 350 return true; 351 } 352 353 354 /// U is a direct user of the specified global value. Look at it and its uses 355 /// and decide whether it is safe to SROA this global. 356 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 357 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 358 if (!isa<GetElementPtrInst>(U) && 359 (!isa<ConstantExpr>(U) || 360 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 361 return false; 362 363 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 364 // don't like < 3 operand CE's, and we don't like non-constant integer 365 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 366 // value of C. 367 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 368 !cast<Constant>(U->getOperand(1))->isNullValue() || 369 !isa<ConstantInt>(U->getOperand(2))) 370 return false; 371 372 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 373 ++GEPI; // Skip over the pointer index. 374 375 // If this is a use of an array allocation, do a bit more checking for sanity. 376 if (GEPI.isSequential()) { 377 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 378 379 // Check to make sure that index falls within the array. If not, 380 // something funny is going on, so we won't do the optimization. 381 // 382 if (GEPI.isBoundedSequential() && 383 Idx->getZExtValue() >= GEPI.getSequentialNumElements()) 384 return false; 385 386 // We cannot scalar repl this level of the array unless any array 387 // sub-indices are in-range constants. In particular, consider: 388 // A[0][i]. We cannot know that the user isn't doing invalid things like 389 // allowing i to index an out-of-range subscript that accesses A[1]. 390 // 391 // Scalar replacing *just* the outer index of the array is probably not 392 // going to be a win anyway, so just give up. 393 for (++GEPI; // Skip array index. 394 GEPI != E; 395 ++GEPI) { 396 if (GEPI.isStruct()) 397 continue; 398 399 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 400 if (!IdxVal || 401 (GEPI.isBoundedSequential() && 402 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 403 return false; 404 } 405 } 406 407 return llvm::all_of(U->users(), 408 [](User *UU) { return isSafeSROAElementUse(UU); }); 409 } 410 411 /// Look at all uses of the global and decide whether it is safe for us to 412 /// perform this transformation. 413 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 414 for (User *U : GV->users()) 415 if (!IsUserOfGlobalSafeForSRA(U, GV)) 416 return false; 417 418 return true; 419 } 420 421 /// Copy over the debug info for a variable to its SRA replacements. 422 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 423 uint64_t FragmentOffsetInBits, 424 uint64_t FragmentSizeInBits) { 425 DIBuilder DIB(*GV->getParent(), /*AllowUnresolved*/ false); 426 SmallVector<DIGlobalVariableExpression *, 1> GVs; 427 GV->getDebugInfo(GVs); 428 for (auto *GVE : GVs) { 429 DIVariable *Var = GVE->getVariable(); 430 DIExpression *Expr = GVE->getExpression(); 431 DIExpression *NExpr = DIB.createFragmentExpression( 432 FragmentOffsetInBits, FragmentSizeInBits, Expr); 433 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, NExpr); 434 NGV->addDebugInfo(NGVE); 435 } 436 } 437 438 439 /// Perform scalar replacement of aggregates on the specified global variable. 440 /// This opens the door for other optimizations by exposing the behavior of the 441 /// program in a more fine-grained way. We have determined that this 442 /// transformation is safe already. We return the first global variable we 443 /// insert so that the caller can reprocess it. 444 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 445 // Make sure this global only has simple uses that we can SRA. 446 if (!GlobalUsersSafeToSRA(GV)) 447 return nullptr; 448 449 assert(GV->hasLocalLinkage()); 450 Constant *Init = GV->getInitializer(); 451 Type *Ty = Init->getType(); 452 453 std::vector<GlobalVariable*> NewGlobals; 454 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 455 456 // Get the alignment of the global, either explicit or target-specific. 457 unsigned StartAlignment = GV->getAlignment(); 458 if (StartAlignment == 0) 459 StartAlignment = DL.getABITypeAlignment(GV->getType()); 460 461 if (StructType *STy = dyn_cast<StructType>(Ty)) { 462 uint64_t FragmentOffset = 0; 463 NewGlobals.reserve(STy->getNumElements()); 464 const StructLayout &Layout = *DL.getStructLayout(STy); 465 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 466 Constant *In = Init->getAggregateElement(i); 467 assert(In && "Couldn't get element of initializer?"); 468 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 469 GlobalVariable::InternalLinkage, 470 In, GV->getName()+"."+Twine(i), 471 GV->getThreadLocalMode(), 472 GV->getType()->getAddressSpace()); 473 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 474 NGV->copyAttributesFrom(GV); 475 Globals.push_back(NGV); 476 NewGlobals.push_back(NGV); 477 478 // Calculate the known alignment of the field. If the original aggregate 479 // had 256 byte alignment for example, something might depend on that: 480 // propagate info to each field. 481 uint64_t FieldOffset = Layout.getElementOffset(i); 482 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 483 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 484 NGV->setAlignment(NewAlign); 485 486 // Copy over the debug info for the variable. 487 FragmentOffset = alignTo(FragmentOffset, NewAlign); 488 uint64_t Size = DL.getTypeSizeInBits(NGV->getValueType()); 489 transferSRADebugInfo(GV, NGV, FragmentOffset, Size); 490 FragmentOffset += Size; 491 } 492 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 493 unsigned NumElements = STy->getNumElements(); 494 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 495 return nullptr; // It's not worth it. 496 NewGlobals.reserve(NumElements); 497 auto ElTy = STy->getElementType(); 498 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 499 unsigned EltAlign = DL.getABITypeAlignment(ElTy); 500 uint64_t FragmentSizeInBits = DL.getTypeSizeInBits(ElTy); 501 for (unsigned i = 0, e = NumElements; i != e; ++i) { 502 Constant *In = Init->getAggregateElement(i); 503 assert(In && "Couldn't get element of initializer?"); 504 505 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 506 GlobalVariable::InternalLinkage, 507 In, GV->getName()+"."+Twine(i), 508 GV->getThreadLocalMode(), 509 GV->getType()->getAddressSpace()); 510 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 511 NGV->copyAttributesFrom(GV); 512 Globals.push_back(NGV); 513 NewGlobals.push_back(NGV); 514 515 // Calculate the known alignment of the field. If the original aggregate 516 // had 256 byte alignment for example, something might depend on that: 517 // propagate info to each field. 518 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 519 if (NewAlign > EltAlign) 520 NGV->setAlignment(NewAlign); 521 522 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits); 523 } 524 } 525 526 if (NewGlobals.empty()) 527 return nullptr; 528 529 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 530 531 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 532 533 // Loop over all of the uses of the global, replacing the constantexpr geps, 534 // with smaller constantexpr geps or direct references. 535 while (!GV->use_empty()) { 536 User *GEP = GV->user_back(); 537 assert(((isa<ConstantExpr>(GEP) && 538 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 539 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 540 541 // Ignore the 1th operand, which has to be zero or else the program is quite 542 // broken (undefined). Get the 2nd operand, which is the structure or array 543 // index. 544 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 545 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 546 547 Value *NewPtr = NewGlobals[Val]; 548 Type *NewTy = NewGlobals[Val]->getValueType(); 549 550 // Form a shorter GEP if needed. 551 if (GEP->getNumOperands() > 3) { 552 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 553 SmallVector<Constant*, 8> Idxs; 554 Idxs.push_back(NullInt); 555 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 556 Idxs.push_back(CE->getOperand(i)); 557 NewPtr = 558 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 559 } else { 560 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 561 SmallVector<Value*, 8> Idxs; 562 Idxs.push_back(NullInt); 563 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 564 Idxs.push_back(GEPI->getOperand(i)); 565 NewPtr = GetElementPtrInst::Create( 566 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 567 } 568 } 569 GEP->replaceAllUsesWith(NewPtr); 570 571 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 572 GEPI->eraseFromParent(); 573 else 574 cast<ConstantExpr>(GEP)->destroyConstant(); 575 } 576 577 // Delete the old global, now that it is dead. 578 Globals.erase(GV); 579 ++NumSRA; 580 581 // Loop over the new globals array deleting any globals that are obviously 582 // dead. This can arise due to scalarization of a structure or an array that 583 // has elements that are dead. 584 unsigned FirstGlobal = 0; 585 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 586 if (NewGlobals[i]->use_empty()) { 587 Globals.erase(NewGlobals[i]); 588 if (FirstGlobal == i) ++FirstGlobal; 589 } 590 591 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 592 } 593 594 /// Return true if all users of the specified value will trap if the value is 595 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 596 /// reprocessing them. 597 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 598 SmallPtrSetImpl<const PHINode*> &PHIs) { 599 for (const User *U : V->users()) 600 if (isa<LoadInst>(U)) { 601 // Will trap. 602 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 603 if (SI->getOperand(0) == V) { 604 //cerr << "NONTRAPPING USE: " << *U; 605 return false; // Storing the value. 606 } 607 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 608 if (CI->getCalledValue() != V) { 609 //cerr << "NONTRAPPING USE: " << *U; 610 return false; // Not calling the ptr 611 } 612 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 613 if (II->getCalledValue() != V) { 614 //cerr << "NONTRAPPING USE: " << *U; 615 return false; // Not calling the ptr 616 } 617 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 618 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 619 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 620 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 621 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 622 // If we've already seen this phi node, ignore it, it has already been 623 // checked. 624 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 625 return false; 626 } else if (isa<ICmpInst>(U) && 627 isa<ConstantPointerNull>(U->getOperand(1))) { 628 // Ignore icmp X, null 629 } else { 630 //cerr << "NONTRAPPING USE: " << *U; 631 return false; 632 } 633 634 return true; 635 } 636 637 /// Return true if all uses of any loads from GV will trap if the loaded value 638 /// is null. Note that this also permits comparisons of the loaded value 639 /// against null, as a special case. 640 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 641 for (const User *U : GV->users()) 642 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 643 SmallPtrSet<const PHINode*, 8> PHIs; 644 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 645 return false; 646 } else if (isa<StoreInst>(U)) { 647 // Ignore stores to the global. 648 } else { 649 // We don't know or understand this user, bail out. 650 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 651 return false; 652 } 653 return true; 654 } 655 656 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 657 bool Changed = false; 658 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 659 Instruction *I = cast<Instruction>(*UI++); 660 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 661 LI->setOperand(0, NewV); 662 Changed = true; 663 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 664 if (SI->getOperand(1) == V) { 665 SI->setOperand(1, NewV); 666 Changed = true; 667 } 668 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 669 CallSite CS(I); 670 if (CS.getCalledValue() == V) { 671 // Calling through the pointer! Turn into a direct call, but be careful 672 // that the pointer is not also being passed as an argument. 673 CS.setCalledFunction(NewV); 674 Changed = true; 675 bool PassedAsArg = false; 676 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 677 if (CS.getArgument(i) == V) { 678 PassedAsArg = true; 679 CS.setArgument(i, NewV); 680 } 681 682 if (PassedAsArg) { 683 // Being passed as an argument also. Be careful to not invalidate UI! 684 UI = V->user_begin(); 685 } 686 } 687 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 688 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 689 ConstantExpr::getCast(CI->getOpcode(), 690 NewV, CI->getType())); 691 if (CI->use_empty()) { 692 Changed = true; 693 CI->eraseFromParent(); 694 } 695 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 696 // Should handle GEP here. 697 SmallVector<Constant*, 8> Idxs; 698 Idxs.reserve(GEPI->getNumOperands()-1); 699 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 700 i != e; ++i) 701 if (Constant *C = dyn_cast<Constant>(*i)) 702 Idxs.push_back(C); 703 else 704 break; 705 if (Idxs.size() == GEPI->getNumOperands()-1) 706 Changed |= OptimizeAwayTrappingUsesOfValue( 707 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 708 if (GEPI->use_empty()) { 709 Changed = true; 710 GEPI->eraseFromParent(); 711 } 712 } 713 } 714 715 return Changed; 716 } 717 718 719 /// The specified global has only one non-null value stored into it. If there 720 /// are uses of the loaded value that would trap if the loaded value is 721 /// dynamically null, then we know that they cannot be reachable with a null 722 /// optimize away the load. 723 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 724 const DataLayout &DL, 725 TargetLibraryInfo *TLI) { 726 bool Changed = false; 727 728 // Keep track of whether we are able to remove all the uses of the global 729 // other than the store that defines it. 730 bool AllNonStoreUsesGone = true; 731 732 // Replace all uses of loads with uses of uses of the stored value. 733 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 734 User *GlobalUser = *GUI++; 735 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 736 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 737 // If we were able to delete all uses of the loads 738 if (LI->use_empty()) { 739 LI->eraseFromParent(); 740 Changed = true; 741 } else { 742 AllNonStoreUsesGone = false; 743 } 744 } else if (isa<StoreInst>(GlobalUser)) { 745 // Ignore the store that stores "LV" to the global. 746 assert(GlobalUser->getOperand(1) == GV && 747 "Must be storing *to* the global"); 748 } else { 749 AllNonStoreUsesGone = false; 750 751 // If we get here we could have other crazy uses that are transitively 752 // loaded. 753 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 754 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 755 isa<BitCastInst>(GlobalUser) || 756 isa<GetElementPtrInst>(GlobalUser)) && 757 "Only expect load and stores!"); 758 } 759 } 760 761 if (Changed) { 762 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n"); 763 ++NumGlobUses; 764 } 765 766 // If we nuked all of the loads, then none of the stores are needed either, 767 // nor is the global. 768 if (AllNonStoreUsesGone) { 769 if (isLeakCheckerRoot(GV)) { 770 Changed |= CleanupPointerRootUsers(GV, TLI); 771 } else { 772 Changed = true; 773 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 774 } 775 if (GV->use_empty()) { 776 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 777 Changed = true; 778 GV->eraseFromParent(); 779 ++NumDeleted; 780 } 781 } 782 return Changed; 783 } 784 785 /// Walk the use list of V, constant folding all of the instructions that are 786 /// foldable. 787 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 788 TargetLibraryInfo *TLI) { 789 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 790 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 791 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 792 I->replaceAllUsesWith(NewC); 793 794 // Advance UI to the next non-I use to avoid invalidating it! 795 // Instructions could multiply use V. 796 while (UI != E && *UI == I) 797 ++UI; 798 if (isInstructionTriviallyDead(I, TLI)) 799 I->eraseFromParent(); 800 } 801 } 802 803 /// This function takes the specified global variable, and transforms the 804 /// program as if it always contained the result of the specified malloc. 805 /// Because it is always the result of the specified malloc, there is no reason 806 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 807 /// loads of GV as uses of the new global. 808 static GlobalVariable * 809 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 810 ConstantInt *NElements, const DataLayout &DL, 811 TargetLibraryInfo *TLI) { 812 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 813 814 Type *GlobalType; 815 if (NElements->getZExtValue() == 1) 816 GlobalType = AllocTy; 817 else 818 // If we have an array allocation, the global variable is of an array. 819 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 820 821 // Create the new global variable. The contents of the malloc'd memory is 822 // undefined, so initialize with an undef value. 823 GlobalVariable *NewGV = new GlobalVariable( 824 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 825 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 826 GV->getThreadLocalMode()); 827 828 // If there are bitcast users of the malloc (which is typical, usually we have 829 // a malloc + bitcast) then replace them with uses of the new global. Update 830 // other users to use the global as well. 831 BitCastInst *TheBC = nullptr; 832 while (!CI->use_empty()) { 833 Instruction *User = cast<Instruction>(CI->user_back()); 834 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 835 if (BCI->getType() == NewGV->getType()) { 836 BCI->replaceAllUsesWith(NewGV); 837 BCI->eraseFromParent(); 838 } else { 839 BCI->setOperand(0, NewGV); 840 } 841 } else { 842 if (!TheBC) 843 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 844 User->replaceUsesOfWith(CI, TheBC); 845 } 846 } 847 848 Constant *RepValue = NewGV; 849 if (NewGV->getType() != GV->getValueType()) 850 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 851 852 // If there is a comparison against null, we will insert a global bool to 853 // keep track of whether the global was initialized yet or not. 854 GlobalVariable *InitBool = 855 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 856 GlobalValue::InternalLinkage, 857 ConstantInt::getFalse(GV->getContext()), 858 GV->getName()+".init", GV->getThreadLocalMode()); 859 bool InitBoolUsed = false; 860 861 // Loop over all uses of GV, processing them in turn. 862 while (!GV->use_empty()) { 863 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 864 // The global is initialized when the store to it occurs. 865 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 866 SI->getOrdering(), SI->getSyncScopeID(), SI); 867 SI->eraseFromParent(); 868 continue; 869 } 870 871 LoadInst *LI = cast<LoadInst>(GV->user_back()); 872 while (!LI->use_empty()) { 873 Use &LoadUse = *LI->use_begin(); 874 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 875 if (!ICI) { 876 LoadUse = RepValue; 877 continue; 878 } 879 880 // Replace the cmp X, 0 with a use of the bool value. 881 // Sink the load to where the compare was, if atomic rules allow us to. 882 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 883 LI->getOrdering(), LI->getSyncScopeID(), 884 LI->isUnordered() ? (Instruction*)ICI : LI); 885 InitBoolUsed = true; 886 switch (ICI->getPredicate()) { 887 default: llvm_unreachable("Unknown ICmp Predicate!"); 888 case ICmpInst::ICMP_ULT: 889 case ICmpInst::ICMP_SLT: // X < null -> always false 890 LV = ConstantInt::getFalse(GV->getContext()); 891 break; 892 case ICmpInst::ICMP_ULE: 893 case ICmpInst::ICMP_SLE: 894 case ICmpInst::ICMP_EQ: 895 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 896 break; 897 case ICmpInst::ICMP_NE: 898 case ICmpInst::ICMP_UGE: 899 case ICmpInst::ICMP_SGE: 900 case ICmpInst::ICMP_UGT: 901 case ICmpInst::ICMP_SGT: 902 break; // no change. 903 } 904 ICI->replaceAllUsesWith(LV); 905 ICI->eraseFromParent(); 906 } 907 LI->eraseFromParent(); 908 } 909 910 // If the initialization boolean was used, insert it, otherwise delete it. 911 if (!InitBoolUsed) { 912 while (!InitBool->use_empty()) // Delete initializations 913 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 914 delete InitBool; 915 } else 916 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 917 918 // Now the GV is dead, nuke it and the malloc.. 919 GV->eraseFromParent(); 920 CI->eraseFromParent(); 921 922 // To further other optimizations, loop over all users of NewGV and try to 923 // constant prop them. This will promote GEP instructions with constant 924 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 925 ConstantPropUsersOf(NewGV, DL, TLI); 926 if (RepValue != NewGV) 927 ConstantPropUsersOf(RepValue, DL, TLI); 928 929 return NewGV; 930 } 931 932 /// Scan the use-list of V checking to make sure that there are no complex uses 933 /// of V. We permit simple things like dereferencing the pointer, but not 934 /// storing through the address, unless it is to the specified global. 935 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 936 const GlobalVariable *GV, 937 SmallPtrSetImpl<const PHINode*> &PHIs) { 938 for (const User *U : V->users()) { 939 const Instruction *Inst = cast<Instruction>(U); 940 941 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 942 continue; // Fine, ignore. 943 } 944 945 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 946 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 947 return false; // Storing the pointer itself... bad. 948 continue; // Otherwise, storing through it, or storing into GV... fine. 949 } 950 951 // Must index into the array and into the struct. 952 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 953 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 954 return false; 955 continue; 956 } 957 958 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 959 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 960 // cycles. 961 if (PHIs.insert(PN).second) 962 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 963 return false; 964 continue; 965 } 966 967 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 968 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 969 return false; 970 continue; 971 } 972 973 return false; 974 } 975 return true; 976 } 977 978 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the 979 /// allocation into loads from the global and uses of the resultant pointer. 980 /// Further, delete the store into GV. This assumes that these value pass the 981 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 982 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 983 GlobalVariable *GV) { 984 while (!Alloc->use_empty()) { 985 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 986 Instruction *InsertPt = U; 987 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 988 // If this is the store of the allocation into the global, remove it. 989 if (SI->getOperand(1) == GV) { 990 SI->eraseFromParent(); 991 continue; 992 } 993 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 994 // Insert the load in the corresponding predecessor, not right before the 995 // PHI. 996 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 997 } else if (isa<BitCastInst>(U)) { 998 // Must be bitcast between the malloc and store to initialize the global. 999 ReplaceUsesOfMallocWithGlobal(U, GV); 1000 U->eraseFromParent(); 1001 continue; 1002 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1003 // If this is a "GEP bitcast" and the user is a store to the global, then 1004 // just process it as a bitcast. 1005 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1006 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1007 if (SI->getOperand(1) == GV) { 1008 // Must be bitcast GEP between the malloc and store to initialize 1009 // the global. 1010 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1011 GEPI->eraseFromParent(); 1012 continue; 1013 } 1014 } 1015 1016 // Insert a load from the global, and use it instead of the malloc. 1017 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1018 U->replaceUsesOfWith(Alloc, NL); 1019 } 1020 } 1021 1022 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to 1023 /// perform heap SRA on. This permits GEP's that index through the array and 1024 /// struct field, icmps of null, and PHIs. 1025 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1026 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1027 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1028 // We permit two users of the load: setcc comparing against the null 1029 // pointer, and a getelementptr of a specific form. 1030 for (const User *U : V->users()) { 1031 const Instruction *UI = cast<Instruction>(U); 1032 1033 // Comparison against null is ok. 1034 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1035 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1036 return false; 1037 continue; 1038 } 1039 1040 // getelementptr is also ok, but only a simple form. 1041 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1042 // Must index into the array and into the struct. 1043 if (GEPI->getNumOperands() < 3) 1044 return false; 1045 1046 // Otherwise the GEP is ok. 1047 continue; 1048 } 1049 1050 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1051 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1052 // This means some phi nodes are dependent on each other. 1053 // Avoid infinite looping! 1054 return false; 1055 if (!LoadUsingPHIs.insert(PN).second) 1056 // If we have already analyzed this PHI, then it is safe. 1057 continue; 1058 1059 // Make sure all uses of the PHI are simple enough to transform. 1060 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1061 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1062 return false; 1063 1064 continue; 1065 } 1066 1067 // Otherwise we don't know what this is, not ok. 1068 return false; 1069 } 1070 1071 return true; 1072 } 1073 1074 1075 /// If all users of values loaded from GV are simple enough to perform HeapSRA, 1076 /// return true. 1077 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1078 Instruction *StoredVal) { 1079 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1080 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1081 for (const User *U : GV->users()) 1082 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1083 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1084 LoadUsingPHIsPerLoad)) 1085 return false; 1086 LoadUsingPHIsPerLoad.clear(); 1087 } 1088 1089 // If we reach here, we know that all uses of the loads and transitive uses 1090 // (through PHI nodes) are simple enough to transform. However, we don't know 1091 // that all inputs the to the PHI nodes are in the same equivalence sets. 1092 // Check to verify that all operands of the PHIs are either PHIS that can be 1093 // transformed, loads from GV, or MI itself. 1094 for (const PHINode *PN : LoadUsingPHIs) { 1095 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1096 Value *InVal = PN->getIncomingValue(op); 1097 1098 // PHI of the stored value itself is ok. 1099 if (InVal == StoredVal) continue; 1100 1101 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1102 // One of the PHIs in our set is (optimistically) ok. 1103 if (LoadUsingPHIs.count(InPN)) 1104 continue; 1105 return false; 1106 } 1107 1108 // Load from GV is ok. 1109 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1110 if (LI->getOperand(0) == GV) 1111 continue; 1112 1113 // UNDEF? NULL? 1114 1115 // Anything else is rejected. 1116 return false; 1117 } 1118 } 1119 1120 return true; 1121 } 1122 1123 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1124 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1125 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1126 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1127 1128 if (FieldNo >= FieldVals.size()) 1129 FieldVals.resize(FieldNo+1); 1130 1131 // If we already have this value, just reuse the previously scalarized 1132 // version. 1133 if (Value *FieldVal = FieldVals[FieldNo]) 1134 return FieldVal; 1135 1136 // Depending on what instruction this is, we have several cases. 1137 Value *Result; 1138 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1139 // This is a scalarized version of the load from the global. Just create 1140 // a new Load of the scalarized global. 1141 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1142 InsertedScalarizedValues, 1143 PHIsToRewrite), 1144 LI->getName()+".f"+Twine(FieldNo), LI); 1145 } else { 1146 PHINode *PN = cast<PHINode>(V); 1147 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1148 // field. 1149 1150 PointerType *PTy = cast<PointerType>(PN->getType()); 1151 StructType *ST = cast<StructType>(PTy->getElementType()); 1152 1153 unsigned AS = PTy->getAddressSpace(); 1154 PHINode *NewPN = 1155 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1156 PN->getNumIncomingValues(), 1157 PN->getName()+".f"+Twine(FieldNo), PN); 1158 Result = NewPN; 1159 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1160 } 1161 1162 return FieldVals[FieldNo] = Result; 1163 } 1164 1165 /// Given a load instruction and a value derived from the load, rewrite the 1166 /// derived value to use the HeapSRoA'd load. 1167 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1168 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1169 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1170 // If this is a comparison against null, handle it. 1171 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1172 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1173 // If we have a setcc of the loaded pointer, we can use a setcc of any 1174 // field. 1175 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1176 InsertedScalarizedValues, PHIsToRewrite); 1177 1178 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1179 Constant::getNullValue(NPtr->getType()), 1180 SCI->getName()); 1181 SCI->replaceAllUsesWith(New); 1182 SCI->eraseFromParent(); 1183 return; 1184 } 1185 1186 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1187 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1188 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1189 && "Unexpected GEPI!"); 1190 1191 // Load the pointer for this field. 1192 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1193 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1194 InsertedScalarizedValues, PHIsToRewrite); 1195 1196 // Create the new GEP idx vector. 1197 SmallVector<Value*, 8> GEPIdx; 1198 GEPIdx.push_back(GEPI->getOperand(1)); 1199 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1200 1201 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1202 GEPI->getName(), GEPI); 1203 GEPI->replaceAllUsesWith(NGEPI); 1204 GEPI->eraseFromParent(); 1205 return; 1206 } 1207 1208 // Recursively transform the users of PHI nodes. This will lazily create the 1209 // PHIs that are needed for individual elements. Keep track of what PHIs we 1210 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1211 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1212 // already been seen first by another load, so its uses have already been 1213 // processed. 1214 PHINode *PN = cast<PHINode>(LoadUser); 1215 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1216 std::vector<Value*>())).second) 1217 return; 1218 1219 // If this is the first time we've seen this PHI, recursively process all 1220 // users. 1221 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1222 Instruction *User = cast<Instruction>(*UI++); 1223 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1224 } 1225 } 1226 1227 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1228 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1229 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1230 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1231 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1232 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1233 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1234 Instruction *User = cast<Instruction>(*UI++); 1235 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1236 } 1237 1238 if (Load->use_empty()) { 1239 Load->eraseFromParent(); 1240 InsertedScalarizedValues.erase(Load); 1241 } 1242 } 1243 1244 /// CI is an allocation of an array of structures. Break it up into multiple 1245 /// allocations of arrays of the fields. 1246 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1247 Value *NElems, const DataLayout &DL, 1248 const TargetLibraryInfo *TLI) { 1249 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1250 Type *MAT = getMallocAllocatedType(CI, TLI); 1251 StructType *STy = cast<StructType>(MAT); 1252 1253 // There is guaranteed to be at least one use of the malloc (storing 1254 // it into GV). If there are other uses, change them to be uses of 1255 // the global to simplify later code. This also deletes the store 1256 // into GV. 1257 ReplaceUsesOfMallocWithGlobal(CI, GV); 1258 1259 // Okay, at this point, there are no users of the malloc. Insert N 1260 // new mallocs at the same place as CI, and N globals. 1261 std::vector<Value*> FieldGlobals; 1262 std::vector<Value*> FieldMallocs; 1263 1264 SmallVector<OperandBundleDef, 1> OpBundles; 1265 CI->getOperandBundlesAsDefs(OpBundles); 1266 1267 unsigned AS = GV->getType()->getPointerAddressSpace(); 1268 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1269 Type *FieldTy = STy->getElementType(FieldNo); 1270 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1271 1272 GlobalVariable *NGV = new GlobalVariable( 1273 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1274 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1275 nullptr, GV->getThreadLocalMode()); 1276 NGV->copyAttributesFrom(GV); 1277 FieldGlobals.push_back(NGV); 1278 1279 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1280 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1281 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1282 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1283 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1284 ConstantInt::get(IntPtrTy, TypeSize), 1285 NElems, OpBundles, nullptr, 1286 CI->getName() + ".f" + Twine(FieldNo)); 1287 FieldMallocs.push_back(NMI); 1288 new StoreInst(NMI, NGV, CI); 1289 } 1290 1291 // The tricky aspect of this transformation is handling the case when malloc 1292 // fails. In the original code, malloc failing would set the result pointer 1293 // of malloc to null. In this case, some mallocs could succeed and others 1294 // could fail. As such, we emit code that looks like this: 1295 // F0 = malloc(field0) 1296 // F1 = malloc(field1) 1297 // F2 = malloc(field2) 1298 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1299 // if (F0) { free(F0); F0 = 0; } 1300 // if (F1) { free(F1); F1 = 0; } 1301 // if (F2) { free(F2); F2 = 0; } 1302 // } 1303 // The malloc can also fail if its argument is too large. 1304 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1305 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1306 ConstantZero, "isneg"); 1307 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1308 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1309 Constant::getNullValue(FieldMallocs[i]->getType()), 1310 "isnull"); 1311 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1312 } 1313 1314 // Split the basic block at the old malloc. 1315 BasicBlock *OrigBB = CI->getParent(); 1316 BasicBlock *ContBB = 1317 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1318 1319 // Create the block to check the first condition. Put all these blocks at the 1320 // end of the function as they are unlikely to be executed. 1321 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1322 "malloc_ret_null", 1323 OrigBB->getParent()); 1324 1325 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1326 // branch on RunningOr. 1327 OrigBB->getTerminator()->eraseFromParent(); 1328 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1329 1330 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1331 // pointer, because some may be null while others are not. 1332 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1333 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1334 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1335 Constant::getNullValue(GVVal->getType())); 1336 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1337 OrigBB->getParent()); 1338 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1339 OrigBB->getParent()); 1340 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1341 Cmp, NullPtrBlock); 1342 1343 // Fill in FreeBlock. 1344 CallInst::CreateFree(GVVal, OpBundles, BI); 1345 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1346 FreeBlock); 1347 BranchInst::Create(NextBlock, FreeBlock); 1348 1349 NullPtrBlock = NextBlock; 1350 } 1351 1352 BranchInst::Create(ContBB, NullPtrBlock); 1353 1354 // CI is no longer needed, remove it. 1355 CI->eraseFromParent(); 1356 1357 /// As we process loads, if we can't immediately update all uses of the load, 1358 /// keep track of what scalarized loads are inserted for a given load. 1359 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1360 InsertedScalarizedValues[GV] = FieldGlobals; 1361 1362 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1363 1364 // Okay, the malloc site is completely handled. All of the uses of GV are now 1365 // loads, and all uses of those loads are simple. Rewrite them to use loads 1366 // of the per-field globals instead. 1367 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1368 Instruction *User = cast<Instruction>(*UI++); 1369 1370 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1371 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1372 continue; 1373 } 1374 1375 // Must be a store of null. 1376 StoreInst *SI = cast<StoreInst>(User); 1377 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1378 "Unexpected heap-sra user!"); 1379 1380 // Insert a store of null into each global. 1381 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1382 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1383 Constant *Null = Constant::getNullValue(ValTy); 1384 new StoreInst(Null, FieldGlobals[i], SI); 1385 } 1386 // Erase the original store. 1387 SI->eraseFromParent(); 1388 } 1389 1390 // While we have PHIs that are interesting to rewrite, do it. 1391 while (!PHIsToRewrite.empty()) { 1392 PHINode *PN = PHIsToRewrite.back().first; 1393 unsigned FieldNo = PHIsToRewrite.back().second; 1394 PHIsToRewrite.pop_back(); 1395 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1396 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1397 1398 // Add all the incoming values. This can materialize more phis. 1399 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1400 Value *InVal = PN->getIncomingValue(i); 1401 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1402 PHIsToRewrite); 1403 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1404 } 1405 } 1406 1407 // Drop all inter-phi links and any loads that made it this far. 1408 for (DenseMap<Value*, std::vector<Value*> >::iterator 1409 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1410 I != E; ++I) { 1411 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1412 PN->dropAllReferences(); 1413 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1414 LI->dropAllReferences(); 1415 } 1416 1417 // Delete all the phis and loads now that inter-references are dead. 1418 for (DenseMap<Value*, std::vector<Value*> >::iterator 1419 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1420 I != E; ++I) { 1421 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1422 PN->eraseFromParent(); 1423 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1424 LI->eraseFromParent(); 1425 } 1426 1427 // The old global is now dead, remove it. 1428 GV->eraseFromParent(); 1429 1430 ++NumHeapSRA; 1431 return cast<GlobalVariable>(FieldGlobals[0]); 1432 } 1433 1434 /// This function is called when we see a pointer global variable with a single 1435 /// value stored it that is a malloc or cast of malloc. 1436 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1437 Type *AllocTy, 1438 AtomicOrdering Ordering, 1439 const DataLayout &DL, 1440 TargetLibraryInfo *TLI) { 1441 // If this is a malloc of an abstract type, don't touch it. 1442 if (!AllocTy->isSized()) 1443 return false; 1444 1445 // We can't optimize this global unless all uses of it are *known* to be 1446 // of the malloc value, not of the null initializer value (consider a use 1447 // that compares the global's value against zero to see if the malloc has 1448 // been reached). To do this, we check to see if all uses of the global 1449 // would trap if the global were null: this proves that they must all 1450 // happen after the malloc. 1451 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1452 return false; 1453 1454 // We can't optimize this if the malloc itself is used in a complex way, 1455 // for example, being stored into multiple globals. This allows the 1456 // malloc to be stored into the specified global, loaded icmp'd, and 1457 // GEP'd. These are all things we could transform to using the global 1458 // for. 1459 SmallPtrSet<const PHINode*, 8> PHIs; 1460 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1461 return false; 1462 1463 // If we have a global that is only initialized with a fixed size malloc, 1464 // transform the program to use global memory instead of malloc'd memory. 1465 // This eliminates dynamic allocation, avoids an indirection accessing the 1466 // data, and exposes the resultant global to further GlobalOpt. 1467 // We cannot optimize the malloc if we cannot determine malloc array size. 1468 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1469 if (!NElems) 1470 return false; 1471 1472 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1473 // Restrict this transformation to only working on small allocations 1474 // (2048 bytes currently), as we don't want to introduce a 16M global or 1475 // something. 1476 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1477 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1478 return true; 1479 } 1480 1481 // If the allocation is an array of structures, consider transforming this 1482 // into multiple malloc'd arrays, one for each field. This is basically 1483 // SRoA for malloc'd memory. 1484 1485 if (Ordering != AtomicOrdering::NotAtomic) 1486 return false; 1487 1488 // If this is an allocation of a fixed size array of structs, analyze as a 1489 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1490 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1491 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1492 AllocTy = AT->getElementType(); 1493 1494 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1495 if (!AllocSTy) 1496 return false; 1497 1498 // This the structure has an unreasonable number of fields, leave it 1499 // alone. 1500 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1501 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1502 1503 // If this is a fixed size array, transform the Malloc to be an alloc of 1504 // structs. malloc [100 x struct],1 -> malloc struct, 100 1505 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1506 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1507 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1508 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1509 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1510 SmallVector<OperandBundleDef, 1> OpBundles; 1511 CI->getOperandBundlesAsDefs(OpBundles); 1512 Instruction *Malloc = 1513 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements, 1514 OpBundles, nullptr, CI->getName()); 1515 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1516 CI->replaceAllUsesWith(Cast); 1517 CI->eraseFromParent(); 1518 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1519 CI = cast<CallInst>(BCI->getOperand(0)); 1520 else 1521 CI = cast<CallInst>(Malloc); 1522 } 1523 1524 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1525 TLI); 1526 return true; 1527 } 1528 1529 return false; 1530 } 1531 1532 // Try to optimize globals based on the knowledge that only one value (besides 1533 // its initializer) is ever stored to the global. 1534 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1535 AtomicOrdering Ordering, 1536 const DataLayout &DL, 1537 TargetLibraryInfo *TLI) { 1538 // Ignore no-op GEPs and bitcasts. 1539 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1540 1541 // If we are dealing with a pointer global that is initialized to null and 1542 // only has one (non-null) value stored into it, then we can optimize any 1543 // users of the loaded value (often calls and loads) that would trap if the 1544 // value was null. 1545 if (GV->getInitializer()->getType()->isPointerTy() && 1546 GV->getInitializer()->isNullValue()) { 1547 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1548 if (GV->getInitializer()->getType() != SOVC->getType()) 1549 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1550 1551 // Optimize away any trapping uses of the loaded value. 1552 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1553 return true; 1554 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1555 Type *MallocType = getMallocAllocatedType(CI, TLI); 1556 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1557 Ordering, DL, TLI)) 1558 return true; 1559 } 1560 } 1561 1562 return false; 1563 } 1564 1565 /// At this point, we have learned that the only two values ever stored into GV 1566 /// are its initializer and OtherVal. See if we can shrink the global into a 1567 /// boolean and select between the two values whenever it is used. This exposes 1568 /// the values to other scalar optimizations. 1569 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1570 Type *GVElType = GV->getValueType(); 1571 1572 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1573 // an FP value, pointer or vector, don't do this optimization because a select 1574 // between them is very expensive and unlikely to lead to later 1575 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1576 // where v1 and v2 both require constant pool loads, a big loss. 1577 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1578 GVElType->isFloatingPointTy() || 1579 GVElType->isPointerTy() || GVElType->isVectorTy()) 1580 return false; 1581 1582 // Walk the use list of the global seeing if all the uses are load or store. 1583 // If there is anything else, bail out. 1584 for (User *U : GV->users()) 1585 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1586 return false; 1587 1588 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1589 1590 // Create the new global, initializing it to false. 1591 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1592 false, 1593 GlobalValue::InternalLinkage, 1594 ConstantInt::getFalse(GV->getContext()), 1595 GV->getName()+".b", 1596 GV->getThreadLocalMode(), 1597 GV->getType()->getAddressSpace()); 1598 NewGV->copyAttributesFrom(GV); 1599 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1600 1601 Constant *InitVal = GV->getInitializer(); 1602 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1603 "No reason to shrink to bool!"); 1604 1605 // If initialized to zero and storing one into the global, we can use a cast 1606 // instead of a select to synthesize the desired value. 1607 bool IsOneZero = false; 1608 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1609 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1610 1611 while (!GV->use_empty()) { 1612 Instruction *UI = cast<Instruction>(GV->user_back()); 1613 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1614 // Change the store into a boolean store. 1615 bool StoringOther = SI->getOperand(0) == OtherVal; 1616 // Only do this if we weren't storing a loaded value. 1617 Value *StoreVal; 1618 if (StoringOther || SI->getOperand(0) == InitVal) { 1619 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1620 StoringOther); 1621 } else { 1622 // Otherwise, we are storing a previously loaded copy. To do this, 1623 // change the copy from copying the original value to just copying the 1624 // bool. 1625 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1626 1627 // If we've already replaced the input, StoredVal will be a cast or 1628 // select instruction. If not, it will be a load of the original 1629 // global. 1630 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1631 assert(LI->getOperand(0) == GV && "Not a copy!"); 1632 // Insert a new load, to preserve the saved value. 1633 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1634 LI->getOrdering(), LI->getSyncScopeID(), LI); 1635 } else { 1636 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1637 "This is not a form that we understand!"); 1638 StoreVal = StoredVal->getOperand(0); 1639 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1640 } 1641 } 1642 new StoreInst(StoreVal, NewGV, false, 0, 1643 SI->getOrdering(), SI->getSyncScopeID(), SI); 1644 } else { 1645 // Change the load into a load of bool then a select. 1646 LoadInst *LI = cast<LoadInst>(UI); 1647 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1648 LI->getOrdering(), LI->getSyncScopeID(), LI); 1649 Value *NSI; 1650 if (IsOneZero) 1651 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1652 else 1653 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1654 NSI->takeName(LI); 1655 LI->replaceAllUsesWith(NSI); 1656 } 1657 UI->eraseFromParent(); 1658 } 1659 1660 // Retain the name of the old global variable. People who are debugging their 1661 // programs may expect these variables to be named the same. 1662 NewGV->takeName(GV); 1663 GV->eraseFromParent(); 1664 return true; 1665 } 1666 1667 static bool deleteIfDead(GlobalValue &GV, 1668 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 1669 GV.removeDeadConstantUsers(); 1670 1671 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1672 return false; 1673 1674 if (const Comdat *C = GV.getComdat()) 1675 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1676 return false; 1677 1678 bool Dead; 1679 if (auto *F = dyn_cast<Function>(&GV)) 1680 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1681 else 1682 Dead = GV.use_empty(); 1683 if (!Dead) 1684 return false; 1685 1686 DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1687 GV.eraseFromParent(); 1688 ++NumDeleted; 1689 return true; 1690 } 1691 1692 static bool isPointerValueDeadOnEntryToFunction( 1693 const Function *F, GlobalValue *GV, 1694 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1695 // Find all uses of GV. We expect them all to be in F, and if we can't 1696 // identify any of the uses we bail out. 1697 // 1698 // On each of these uses, identify if the memory that GV points to is 1699 // used/required/live at the start of the function. If it is not, for example 1700 // if the first thing the function does is store to the GV, the GV can 1701 // possibly be demoted. 1702 // 1703 // We don't do an exhaustive search for memory operations - simply look 1704 // through bitcasts as they're quite common and benign. 1705 const DataLayout &DL = GV->getParent()->getDataLayout(); 1706 SmallVector<LoadInst *, 4> Loads; 1707 SmallVector<StoreInst *, 4> Stores; 1708 for (auto *U : GV->users()) { 1709 if (Operator::getOpcode(U) == Instruction::BitCast) { 1710 for (auto *UU : U->users()) { 1711 if (auto *LI = dyn_cast<LoadInst>(UU)) 1712 Loads.push_back(LI); 1713 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1714 Stores.push_back(SI); 1715 else 1716 return false; 1717 } 1718 continue; 1719 } 1720 1721 Instruction *I = dyn_cast<Instruction>(U); 1722 if (!I) 1723 return false; 1724 assert(I->getParent()->getParent() == F); 1725 1726 if (auto *LI = dyn_cast<LoadInst>(I)) 1727 Loads.push_back(LI); 1728 else if (auto *SI = dyn_cast<StoreInst>(I)) 1729 Stores.push_back(SI); 1730 else 1731 return false; 1732 } 1733 1734 // We have identified all uses of GV into loads and stores. Now check if all 1735 // of them are known not to depend on the value of the global at the function 1736 // entry point. We do this by ensuring that every load is dominated by at 1737 // least one store. 1738 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1739 1740 // The below check is quadratic. Check we're not going to do too many tests. 1741 // FIXME: Even though this will always have worst-case quadratic time, we 1742 // could put effort into minimizing the average time by putting stores that 1743 // have been shown to dominate at least one load at the beginning of the 1744 // Stores array, making subsequent dominance checks more likely to succeed 1745 // early. 1746 // 1747 // The threshold here is fairly large because global->local demotion is a 1748 // very powerful optimization should it fire. 1749 const unsigned Threshold = 100; 1750 if (Loads.size() * Stores.size() > Threshold) 1751 return false; 1752 1753 for (auto *L : Loads) { 1754 auto *LTy = L->getType(); 1755 if (none_of(Stores, [&](const StoreInst *S) { 1756 auto *STy = S->getValueOperand()->getType(); 1757 // The load is only dominated by the store if DomTree says so 1758 // and the number of bits loaded in L is less than or equal to 1759 // the number of bits stored in S. 1760 return DT.dominates(S, L) && 1761 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1762 })) 1763 return false; 1764 } 1765 // All loads have known dependences inside F, so the global can be localized. 1766 return true; 1767 } 1768 1769 /// C may have non-instruction users. Can all of those users be turned into 1770 /// instructions? 1771 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1772 // We don't do this exhaustively. The most common pattern that we really need 1773 // to care about is a constant GEP or constant bitcast - so just looking 1774 // through one single ConstantExpr. 1775 // 1776 // The set of constants that this function returns true for must be able to be 1777 // handled by makeAllConstantUsesInstructions. 1778 for (auto *U : C->users()) { 1779 if (isa<Instruction>(U)) 1780 continue; 1781 if (!isa<ConstantExpr>(U)) 1782 // Non instruction, non-constantexpr user; cannot convert this. 1783 return false; 1784 for (auto *UU : U->users()) 1785 if (!isa<Instruction>(UU)) 1786 // A constantexpr used by another constant. We don't try and recurse any 1787 // further but just bail out at this point. 1788 return false; 1789 } 1790 1791 return true; 1792 } 1793 1794 /// C may have non-instruction users, and 1795 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1796 /// non-instruction users to instructions. 1797 static void makeAllConstantUsesInstructions(Constant *C) { 1798 SmallVector<ConstantExpr*,4> Users; 1799 for (auto *U : C->users()) { 1800 if (isa<ConstantExpr>(U)) 1801 Users.push_back(cast<ConstantExpr>(U)); 1802 else 1803 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1804 // should not have returned true for C. 1805 assert( 1806 isa<Instruction>(U) && 1807 "Can't transform non-constantexpr non-instruction to instruction!"); 1808 } 1809 1810 SmallVector<Value*,4> UUsers; 1811 for (auto *U : Users) { 1812 UUsers.clear(); 1813 for (auto *UU : U->users()) 1814 UUsers.push_back(UU); 1815 for (auto *UU : UUsers) { 1816 Instruction *UI = cast<Instruction>(UU); 1817 Instruction *NewU = U->getAsInstruction(); 1818 NewU->insertBefore(UI); 1819 UI->replaceUsesOfWith(U, NewU); 1820 } 1821 // We've replaced all the uses, so destroy the constant. (destroyConstant 1822 // will update value handles and metadata.) 1823 U->destroyConstant(); 1824 } 1825 } 1826 1827 /// Analyze the specified global variable and optimize 1828 /// it if possible. If we make a change, return true. 1829 static bool processInternalGlobal( 1830 GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI, 1831 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1832 auto &DL = GV->getParent()->getDataLayout(); 1833 // If this is a first class global and has only one accessing function and 1834 // this function is non-recursive, we replace the global with a local alloca 1835 // in this function. 1836 // 1837 // NOTE: It doesn't make sense to promote non-single-value types since we 1838 // are just replacing static memory to stack memory. 1839 // 1840 // If the global is in different address space, don't bring it to stack. 1841 if (!GS.HasMultipleAccessingFunctions && 1842 GS.AccessingFunction && 1843 GV->getValueType()->isSingleValueType() && 1844 GV->getType()->getAddressSpace() == 0 && 1845 !GV->isExternallyInitialized() && 1846 allNonInstructionUsersCanBeMadeInstructions(GV) && 1847 GS.AccessingFunction->doesNotRecurse() && 1848 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1849 LookupDomTree)) { 1850 const DataLayout &DL = GV->getParent()->getDataLayout(); 1851 1852 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1853 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1854 ->getEntryBlock().begin()); 1855 Type *ElemTy = GV->getValueType(); 1856 // FIXME: Pass Global's alignment when globals have alignment 1857 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1858 GV->getName(), &FirstI); 1859 if (!isa<UndefValue>(GV->getInitializer())) 1860 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1861 1862 makeAllConstantUsesInstructions(GV); 1863 1864 GV->replaceAllUsesWith(Alloca); 1865 GV->eraseFromParent(); 1866 ++NumLocalized; 1867 return true; 1868 } 1869 1870 // If the global is never loaded (but may be stored to), it is dead. 1871 // Delete it now. 1872 if (!GS.IsLoaded) { 1873 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1874 1875 bool Changed; 1876 if (isLeakCheckerRoot(GV)) { 1877 // Delete any constant stores to the global. 1878 Changed = CleanupPointerRootUsers(GV, TLI); 1879 } else { 1880 // Delete any stores we can find to the global. We may not be able to 1881 // make it completely dead though. 1882 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1883 } 1884 1885 // If the global is dead now, delete it. 1886 if (GV->use_empty()) { 1887 GV->eraseFromParent(); 1888 ++NumDeleted; 1889 Changed = true; 1890 } 1891 return Changed; 1892 1893 } 1894 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1895 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1896 GV->setConstant(true); 1897 1898 // Clean up any obviously simplifiable users now. 1899 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1900 1901 // If the global is dead now, just nuke it. 1902 if (GV->use_empty()) { 1903 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1904 << "all users and delete global!\n"); 1905 GV->eraseFromParent(); 1906 ++NumDeleted; 1907 return true; 1908 } 1909 1910 // Fall through to the next check; see if we can optimize further. 1911 ++NumMarked; 1912 } 1913 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1914 const DataLayout &DL = GV->getParent()->getDataLayout(); 1915 if (SRAGlobal(GV, DL)) 1916 return true; 1917 } 1918 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1919 // If the initial value for the global was an undef value, and if only 1920 // one other value was stored into it, we can just change the 1921 // initializer to be the stored value, then delete all stores to the 1922 // global. This allows us to mark it constant. 1923 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1924 if (isa<UndefValue>(GV->getInitializer())) { 1925 // Change the initial value here. 1926 GV->setInitializer(SOVConstant); 1927 1928 // Clean up any obviously simplifiable users now. 1929 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1930 1931 if (GV->use_empty()) { 1932 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1933 << "simplify all users and delete global!\n"); 1934 GV->eraseFromParent(); 1935 ++NumDeleted; 1936 } 1937 ++NumSubstitute; 1938 return true; 1939 } 1940 1941 // Try to optimize globals based on the knowledge that only one value 1942 // (besides its initializer) is ever stored to the global. 1943 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI)) 1944 return true; 1945 1946 // Otherwise, if the global was not a boolean, we can shrink it to be a 1947 // boolean. 1948 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 1949 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1950 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1951 ++NumShrunkToBool; 1952 return true; 1953 } 1954 } 1955 } 1956 } 1957 1958 return false; 1959 } 1960 1961 /// Analyze the specified global variable and optimize it if possible. If we 1962 /// make a change, return true. 1963 static bool 1964 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI, 1965 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1966 if (GV.getName().startswith("llvm.")) 1967 return false; 1968 1969 GlobalStatus GS; 1970 1971 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1972 return false; 1973 1974 bool Changed = false; 1975 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 1976 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 1977 : GlobalValue::UnnamedAddr::Local; 1978 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 1979 GV.setUnnamedAddr(NewUnnamedAddr); 1980 NumUnnamed++; 1981 Changed = true; 1982 } 1983 } 1984 1985 // Do more involved optimizations if the global is internal. 1986 if (!GV.hasLocalLinkage()) 1987 return Changed; 1988 1989 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1990 if (!GVar) 1991 return Changed; 1992 1993 if (GVar->isConstant() || !GVar->hasInitializer()) 1994 return Changed; 1995 1996 return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed; 1997 } 1998 1999 /// Walk all of the direct calls of the specified function, changing them to 2000 /// FastCC. 2001 static void ChangeCalleesToFastCall(Function *F) { 2002 for (User *U : F->users()) { 2003 if (isa<BlockAddress>(U)) 2004 continue; 2005 CallSite CS(cast<Instruction>(U)); 2006 CS.setCallingConv(CallingConv::Fast); 2007 } 2008 } 2009 2010 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) { 2011 // There can be at most one attribute set with a nest attribute. 2012 unsigned NestIndex; 2013 if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex)) 2014 return Attrs.removeAttribute(C, NestIndex, Attribute::Nest); 2015 return Attrs; 2016 } 2017 2018 static void RemoveNestAttribute(Function *F) { 2019 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 2020 for (User *U : F->users()) { 2021 if (isa<BlockAddress>(U)) 2022 continue; 2023 CallSite CS(cast<Instruction>(U)); 2024 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 2025 } 2026 } 2027 2028 /// Return true if this is a calling convention that we'd like to change. The 2029 /// idea here is that we don't want to mess with the convention if the user 2030 /// explicitly requested something with performance implications like coldcc, 2031 /// GHC, or anyregcc. 2032 static bool isProfitableToMakeFastCC(Function *F) { 2033 CallingConv::ID CC = F->getCallingConv(); 2034 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2035 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall; 2036 } 2037 2038 static bool 2039 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI, 2040 function_ref<DominatorTree &(Function &)> LookupDomTree, 2041 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2042 bool Changed = false; 2043 // Optimize functions. 2044 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2045 Function *F = &*FI++; 2046 // Functions without names cannot be referenced outside this module. 2047 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2048 F->setLinkage(GlobalValue::InternalLinkage); 2049 2050 if (deleteIfDead(*F, NotDiscardableComdats)) { 2051 Changed = true; 2052 continue; 2053 } 2054 2055 // LLVM's definition of dominance allows instructions that are cyclic 2056 // in unreachable blocks, e.g.: 2057 // %pat = select i1 %condition, @global, i16* %pat 2058 // because any instruction dominates an instruction in a block that's 2059 // not reachable from entry. 2060 // So, remove unreachable blocks from the function, because a) there's 2061 // no point in analyzing them and b) GlobalOpt should otherwise grow 2062 // some more complicated logic to break these cycles. 2063 // Removing unreachable blocks might invalidate the dominator so we 2064 // recalculate it. 2065 if (!F->isDeclaration()) { 2066 if (removeUnreachableBlocks(*F)) { 2067 auto &DT = LookupDomTree(*F); 2068 DT.recalculate(*F); 2069 Changed = true; 2070 } 2071 } 2072 2073 Changed |= processGlobal(*F, TLI, LookupDomTree); 2074 2075 if (!F->hasLocalLinkage()) 2076 continue; 2077 if (isProfitableToMakeFastCC(F) && !F->isVarArg() && 2078 !F->hasAddressTaken()) { 2079 // If this function has a calling convention worth changing, is not a 2080 // varargs function, and is only called directly, promote it to use the 2081 // Fast calling convention. 2082 F->setCallingConv(CallingConv::Fast); 2083 ChangeCalleesToFastCall(F); 2084 ++NumFastCallFns; 2085 Changed = true; 2086 } 2087 2088 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2089 !F->hasAddressTaken()) { 2090 // The function is not used by a trampoline intrinsic, so it is safe 2091 // to remove the 'nest' attribute. 2092 RemoveNestAttribute(F); 2093 ++NumNestRemoved; 2094 Changed = true; 2095 } 2096 } 2097 return Changed; 2098 } 2099 2100 static bool 2101 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI, 2102 function_ref<DominatorTree &(Function &)> LookupDomTree, 2103 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2104 bool Changed = false; 2105 2106 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2107 GVI != E; ) { 2108 GlobalVariable *GV = &*GVI++; 2109 // Global variables without names cannot be referenced outside this module. 2110 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2111 GV->setLinkage(GlobalValue::InternalLinkage); 2112 // Simplify the initializer. 2113 if (GV->hasInitializer()) 2114 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 2115 auto &DL = M.getDataLayout(); 2116 Constant *New = ConstantFoldConstant(C, DL, TLI); 2117 if (New && New != C) 2118 GV->setInitializer(New); 2119 } 2120 2121 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2122 Changed = true; 2123 continue; 2124 } 2125 2126 Changed |= processGlobal(*GV, TLI, LookupDomTree); 2127 } 2128 return Changed; 2129 } 2130 2131 /// Evaluate a piece of a constantexpr store into a global initializer. This 2132 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2133 /// GEP operands of Addr [0, OpNo) have been stepped into. 2134 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2135 ConstantExpr *Addr, unsigned OpNo) { 2136 // Base case of the recursion. 2137 if (OpNo == Addr->getNumOperands()) { 2138 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2139 return Val; 2140 } 2141 2142 SmallVector<Constant*, 32> Elts; 2143 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2144 // Break up the constant into its elements. 2145 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2146 Elts.push_back(Init->getAggregateElement(i)); 2147 2148 // Replace the element that we are supposed to. 2149 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2150 unsigned Idx = CU->getZExtValue(); 2151 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2152 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2153 2154 // Return the modified struct. 2155 return ConstantStruct::get(STy, Elts); 2156 } 2157 2158 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2159 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2160 uint64_t NumElts = InitTy->getNumElements(); 2161 2162 // Break up the array into elements. 2163 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2164 Elts.push_back(Init->getAggregateElement(i)); 2165 2166 assert(CI->getZExtValue() < NumElts); 2167 Elts[CI->getZExtValue()] = 2168 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2169 2170 if (Init->getType()->isArrayTy()) 2171 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2172 return ConstantVector::get(Elts); 2173 } 2174 2175 /// We have decided that Addr (which satisfies the predicate 2176 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2177 static void CommitValueTo(Constant *Val, Constant *Addr) { 2178 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2179 assert(GV->hasInitializer()); 2180 GV->setInitializer(Val); 2181 return; 2182 } 2183 2184 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2185 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2186 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2187 } 2188 2189 /// Evaluate static constructors in the function, if we can. Return true if we 2190 /// can, false otherwise. 2191 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2192 TargetLibraryInfo *TLI) { 2193 // Call the function. 2194 Evaluator Eval(DL, TLI); 2195 Constant *RetValDummy; 2196 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2197 SmallVector<Constant*, 0>()); 2198 2199 if (EvalSuccess) { 2200 ++NumCtorsEvaluated; 2201 2202 // We succeeded at evaluation: commit the result. 2203 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2204 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2205 << " stores.\n"); 2206 for (const auto &I : Eval.getMutatedMemory()) 2207 CommitValueTo(I.second, I.first); 2208 for (GlobalVariable *GV : Eval.getInvariants()) 2209 GV->setConstant(true); 2210 } 2211 2212 return EvalSuccess; 2213 } 2214 2215 static int compareNames(Constant *const *A, Constant *const *B) { 2216 Value *AStripped = (*A)->stripPointerCastsNoFollowAliases(); 2217 Value *BStripped = (*B)->stripPointerCastsNoFollowAliases(); 2218 return AStripped->getName().compare(BStripped->getName()); 2219 } 2220 2221 static void setUsedInitializer(GlobalVariable &V, 2222 const SmallPtrSet<GlobalValue *, 8> &Init) { 2223 if (Init.empty()) { 2224 V.eraseFromParent(); 2225 return; 2226 } 2227 2228 // Type of pointer to the array of pointers. 2229 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2230 2231 SmallVector<llvm::Constant *, 8> UsedArray; 2232 for (GlobalValue *GV : Init) { 2233 Constant *Cast 2234 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2235 UsedArray.push_back(Cast); 2236 } 2237 // Sort to get deterministic order. 2238 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2239 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2240 2241 Module *M = V.getParent(); 2242 V.removeFromParent(); 2243 GlobalVariable *NV = 2244 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage, 2245 llvm::ConstantArray::get(ATy, UsedArray), ""); 2246 NV->takeName(&V); 2247 NV->setSection("llvm.metadata"); 2248 delete &V; 2249 } 2250 2251 namespace { 2252 /// An easy to access representation of llvm.used and llvm.compiler.used. 2253 class LLVMUsed { 2254 SmallPtrSet<GlobalValue *, 8> Used; 2255 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2256 GlobalVariable *UsedV; 2257 GlobalVariable *CompilerUsedV; 2258 2259 public: 2260 LLVMUsed(Module &M) { 2261 UsedV = collectUsedGlobalVariables(M, Used, false); 2262 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2263 } 2264 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator; 2265 typedef iterator_range<iterator> used_iterator_range; 2266 iterator usedBegin() { return Used.begin(); } 2267 iterator usedEnd() { return Used.end(); } 2268 used_iterator_range used() { 2269 return used_iterator_range(usedBegin(), usedEnd()); 2270 } 2271 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2272 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2273 used_iterator_range compilerUsed() { 2274 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2275 } 2276 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2277 bool compilerUsedCount(GlobalValue *GV) const { 2278 return CompilerUsed.count(GV); 2279 } 2280 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2281 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2282 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2283 bool compilerUsedInsert(GlobalValue *GV) { 2284 return CompilerUsed.insert(GV).second; 2285 } 2286 2287 void syncVariablesAndSets() { 2288 if (UsedV) 2289 setUsedInitializer(*UsedV, Used); 2290 if (CompilerUsedV) 2291 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2292 } 2293 }; 2294 } 2295 2296 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2297 if (GA.use_empty()) // No use at all. 2298 return false; 2299 2300 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2301 "We should have removed the duplicated " 2302 "element from llvm.compiler.used"); 2303 if (!GA.hasOneUse()) 2304 // Strictly more than one use. So at least one is not in llvm.used and 2305 // llvm.compiler.used. 2306 return true; 2307 2308 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2309 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2310 } 2311 2312 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2313 const LLVMUsed &U) { 2314 unsigned N = 2; 2315 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2316 "We should have removed the duplicated " 2317 "element from llvm.compiler.used"); 2318 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2319 ++N; 2320 return V.hasNUsesOrMore(N); 2321 } 2322 2323 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2324 if (!GA.hasLocalLinkage()) 2325 return true; 2326 2327 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2328 } 2329 2330 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2331 bool &RenameTarget) { 2332 RenameTarget = false; 2333 bool Ret = false; 2334 if (hasUseOtherThanLLVMUsed(GA, U)) 2335 Ret = true; 2336 2337 // If the alias is externally visible, we may still be able to simplify it. 2338 if (!mayHaveOtherReferences(GA, U)) 2339 return Ret; 2340 2341 // If the aliasee has internal linkage, give it the name and linkage 2342 // of the alias, and delete the alias. This turns: 2343 // define internal ... @f(...) 2344 // @a = alias ... @f 2345 // into: 2346 // define ... @a(...) 2347 Constant *Aliasee = GA.getAliasee(); 2348 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2349 if (!Target->hasLocalLinkage()) 2350 return Ret; 2351 2352 // Do not perform the transform if multiple aliases potentially target the 2353 // aliasee. This check also ensures that it is safe to replace the section 2354 // and other attributes of the aliasee with those of the alias. 2355 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2356 return Ret; 2357 2358 RenameTarget = true; 2359 return true; 2360 } 2361 2362 static bool 2363 OptimizeGlobalAliases(Module &M, 2364 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2365 bool Changed = false; 2366 LLVMUsed Used(M); 2367 2368 for (GlobalValue *GV : Used.used()) 2369 Used.compilerUsedErase(GV); 2370 2371 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2372 I != E;) { 2373 GlobalAlias *J = &*I++; 2374 2375 // Aliases without names cannot be referenced outside this module. 2376 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2377 J->setLinkage(GlobalValue::InternalLinkage); 2378 2379 if (deleteIfDead(*J, NotDiscardableComdats)) { 2380 Changed = true; 2381 continue; 2382 } 2383 2384 // If the aliasee may change at link time, nothing can be done - bail out. 2385 if (J->isInterposable()) 2386 continue; 2387 2388 Constant *Aliasee = J->getAliasee(); 2389 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2390 // We can't trivially replace the alias with the aliasee if the aliasee is 2391 // non-trivial in some way. 2392 // TODO: Try to handle non-zero GEPs of local aliasees. 2393 if (!Target) 2394 continue; 2395 Target->removeDeadConstantUsers(); 2396 2397 // Make all users of the alias use the aliasee instead. 2398 bool RenameTarget; 2399 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2400 continue; 2401 2402 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2403 ++NumAliasesResolved; 2404 Changed = true; 2405 2406 if (RenameTarget) { 2407 // Give the aliasee the name, linkage and other attributes of the alias. 2408 Target->takeName(&*J); 2409 Target->setLinkage(J->getLinkage()); 2410 Target->setVisibility(J->getVisibility()); 2411 Target->setDLLStorageClass(J->getDLLStorageClass()); 2412 2413 if (Used.usedErase(&*J)) 2414 Used.usedInsert(Target); 2415 2416 if (Used.compilerUsedErase(&*J)) 2417 Used.compilerUsedInsert(Target); 2418 } else if (mayHaveOtherReferences(*J, Used)) 2419 continue; 2420 2421 // Delete the alias. 2422 M.getAliasList().erase(J); 2423 ++NumAliasesRemoved; 2424 Changed = true; 2425 } 2426 2427 Used.syncVariablesAndSets(); 2428 2429 return Changed; 2430 } 2431 2432 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2433 LibFunc F = LibFunc_cxa_atexit; 2434 if (!TLI->has(F)) 2435 return nullptr; 2436 2437 Function *Fn = M.getFunction(TLI->getName(F)); 2438 if (!Fn) 2439 return nullptr; 2440 2441 // Make sure that the function has the correct prototype. 2442 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2443 return nullptr; 2444 2445 return Fn; 2446 } 2447 2448 /// Returns whether the given function is an empty C++ destructor and can 2449 /// therefore be eliminated. 2450 /// Note that we assume that other optimization passes have already simplified 2451 /// the code so we only look for a function with a single basic block, where 2452 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2453 /// other side-effect free instructions. 2454 static bool cxxDtorIsEmpty(const Function &Fn, 2455 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2456 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2457 // nounwind, but that doesn't seem worth doing. 2458 if (Fn.isDeclaration()) 2459 return false; 2460 2461 if (++Fn.begin() != Fn.end()) 2462 return false; 2463 2464 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2465 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2466 I != E; ++I) { 2467 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2468 // Ignore debug intrinsics. 2469 if (isa<DbgInfoIntrinsic>(CI)) 2470 continue; 2471 2472 const Function *CalledFn = CI->getCalledFunction(); 2473 2474 if (!CalledFn) 2475 return false; 2476 2477 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2478 2479 // Don't treat recursive functions as empty. 2480 if (!NewCalledFunctions.insert(CalledFn).second) 2481 return false; 2482 2483 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2484 return false; 2485 } else if (isa<ReturnInst>(*I)) 2486 return true; // We're done. 2487 else if (I->mayHaveSideEffects()) 2488 return false; // Destructor with side effects, bail. 2489 } 2490 2491 return false; 2492 } 2493 2494 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2495 /// Itanium C++ ABI p3.3.5: 2496 /// 2497 /// After constructing a global (or local static) object, that will require 2498 /// destruction on exit, a termination function is registered as follows: 2499 /// 2500 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2501 /// 2502 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2503 /// call f(p) when DSO d is unloaded, before all such termination calls 2504 /// registered before this one. It returns zero if registration is 2505 /// successful, nonzero on failure. 2506 2507 // This pass will look for calls to __cxa_atexit where the function is trivial 2508 // and remove them. 2509 bool Changed = false; 2510 2511 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2512 I != E;) { 2513 // We're only interested in calls. Theoretically, we could handle invoke 2514 // instructions as well, but neither llvm-gcc nor clang generate invokes 2515 // to __cxa_atexit. 2516 CallInst *CI = dyn_cast<CallInst>(*I++); 2517 if (!CI) 2518 continue; 2519 2520 Function *DtorFn = 2521 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2522 if (!DtorFn) 2523 continue; 2524 2525 SmallPtrSet<const Function *, 8> CalledFunctions; 2526 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 2527 continue; 2528 2529 // Just remove the call. 2530 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2531 CI->eraseFromParent(); 2532 2533 ++NumCXXDtorsRemoved; 2534 2535 Changed |= true; 2536 } 2537 2538 return Changed; 2539 } 2540 2541 static bool optimizeGlobalsInModule( 2542 Module &M, const DataLayout &DL, TargetLibraryInfo *TLI, 2543 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2544 SmallSet<const Comdat *, 8> NotDiscardableComdats; 2545 bool Changed = false; 2546 bool LocalChange = true; 2547 while (LocalChange) { 2548 LocalChange = false; 2549 2550 NotDiscardableComdats.clear(); 2551 for (const GlobalVariable &GV : M.globals()) 2552 if (const Comdat *C = GV.getComdat()) 2553 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2554 NotDiscardableComdats.insert(C); 2555 for (Function &F : M) 2556 if (const Comdat *C = F.getComdat()) 2557 if (!F.isDefTriviallyDead()) 2558 NotDiscardableComdats.insert(C); 2559 for (GlobalAlias &GA : M.aliases()) 2560 if (const Comdat *C = GA.getComdat()) 2561 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2562 NotDiscardableComdats.insert(C); 2563 2564 // Delete functions that are trivially dead, ccc -> fastcc 2565 LocalChange |= 2566 OptimizeFunctions(M, TLI, LookupDomTree, NotDiscardableComdats); 2567 2568 // Optimize global_ctors list. 2569 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2570 return EvaluateStaticConstructor(F, DL, TLI); 2571 }); 2572 2573 // Optimize non-address-taken globals. 2574 LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree, 2575 NotDiscardableComdats); 2576 2577 // Resolve aliases, when possible. 2578 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2579 2580 // Try to remove trivial global destructors if they are not removed 2581 // already. 2582 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 2583 if (CXAAtExitFn) 2584 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2585 2586 Changed |= LocalChange; 2587 } 2588 2589 // TODO: Move all global ctors functions to the end of the module for code 2590 // layout. 2591 2592 return Changed; 2593 } 2594 2595 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2596 auto &DL = M.getDataLayout(); 2597 auto &TLI = AM.getResult<TargetLibraryAnalysis>(M); 2598 auto &FAM = 2599 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2600 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2601 return FAM.getResult<DominatorTreeAnalysis>(F); 2602 }; 2603 if (!optimizeGlobalsInModule(M, DL, &TLI, LookupDomTree)) 2604 return PreservedAnalyses::all(); 2605 return PreservedAnalyses::none(); 2606 } 2607 2608 namespace { 2609 struct GlobalOptLegacyPass : public ModulePass { 2610 static char ID; // Pass identification, replacement for typeid 2611 GlobalOptLegacyPass() : ModulePass(ID) { 2612 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2613 } 2614 2615 bool runOnModule(Module &M) override { 2616 if (skipModule(M)) 2617 return false; 2618 2619 auto &DL = M.getDataLayout(); 2620 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2621 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2622 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2623 }; 2624 return optimizeGlobalsInModule(M, DL, TLI, LookupDomTree); 2625 } 2626 2627 void getAnalysisUsage(AnalysisUsage &AU) const override { 2628 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2629 AU.addRequired<DominatorTreeWrapperPass>(); 2630 } 2631 }; 2632 } 2633 2634 char GlobalOptLegacyPass::ID = 0; 2635 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2636 "Global Variable Optimizer", false, false) 2637 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2638 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2639 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2640 "Global Variable Optimizer", false, false) 2641 2642 ModulePass *llvm::createGlobalOptimizerPass() { 2643 return new GlobalOptLegacyPass(); 2644 } 2645