1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms simple global variables that never have their address
11 // taken.  If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/GlobalOpt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/IR/CallSite.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/IPO.h"
45 #include "llvm/Transforms/Utils/CtorUtils.h"
46 #include "llvm/Transforms/Utils/Evaluator.h"
47 #include "llvm/Transforms/Utils/GlobalStatus.h"
48 #include "llvm/Transforms/Utils/Local.h"
49 #include <algorithm>
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "globalopt"
53 
54 STATISTIC(NumMarked    , "Number of globals marked constant");
55 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
56 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
57 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
58 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
59 STATISTIC(NumDeleted   , "Number of globals deleted");
60 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
61 STATISTIC(NumLocalized , "Number of globals localized");
62 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
63 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
64 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
65 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
66 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
67 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
68 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
69 
70 /// Is this global variable possibly used by a leak checker as a root?  If so,
71 /// we might not really want to eliminate the stores to it.
72 static bool isLeakCheckerRoot(GlobalVariable *GV) {
73   // A global variable is a root if it is a pointer, or could plausibly contain
74   // a pointer.  There are two challenges; one is that we could have a struct
75   // the has an inner member which is a pointer.  We recurse through the type to
76   // detect these (up to a point).  The other is that we may actually be a union
77   // of a pointer and another type, and so our LLVM type is an integer which
78   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
79   // potentially contained here.
80 
81   if (GV->hasPrivateLinkage())
82     return false;
83 
84   SmallVector<Type *, 4> Types;
85   Types.push_back(GV->getValueType());
86 
87   unsigned Limit = 20;
88   do {
89     Type *Ty = Types.pop_back_val();
90     switch (Ty->getTypeID()) {
91       default: break;
92       case Type::PointerTyID: return true;
93       case Type::ArrayTyID:
94       case Type::VectorTyID: {
95         SequentialType *STy = cast<SequentialType>(Ty);
96         Types.push_back(STy->getElementType());
97         break;
98       }
99       case Type::StructTyID: {
100         StructType *STy = cast<StructType>(Ty);
101         if (STy->isOpaque()) return true;
102         for (StructType::element_iterator I = STy->element_begin(),
103                  E = STy->element_end(); I != E; ++I) {
104           Type *InnerTy = *I;
105           if (isa<PointerType>(InnerTy)) return true;
106           if (isa<CompositeType>(InnerTy))
107             Types.push_back(InnerTy);
108         }
109         break;
110       }
111     }
112     if (--Limit == 0) return true;
113   } while (!Types.empty());
114   return false;
115 }
116 
117 /// Given a value that is stored to a global but never read, determine whether
118 /// it's safe to remove the store and the chain of computation that feeds the
119 /// store.
120 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
121   do {
122     if (isa<Constant>(V))
123       return true;
124     if (!V->hasOneUse())
125       return false;
126     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
127         isa<GlobalValue>(V))
128       return false;
129     if (isAllocationFn(V, TLI))
130       return true;
131 
132     Instruction *I = cast<Instruction>(V);
133     if (I->mayHaveSideEffects())
134       return false;
135     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
136       if (!GEP->hasAllConstantIndices())
137         return false;
138     } else if (I->getNumOperands() != 1) {
139       return false;
140     }
141 
142     V = I->getOperand(0);
143   } while (1);
144 }
145 
146 /// This GV is a pointer root.  Loop over all users of the global and clean up
147 /// any that obviously don't assign the global a value that isn't dynamically
148 /// allocated.
149 static bool CleanupPointerRootUsers(GlobalVariable *GV,
150                                     const TargetLibraryInfo *TLI) {
151   // A brief explanation of leak checkers.  The goal is to find bugs where
152   // pointers are forgotten, causing an accumulating growth in memory
153   // usage over time.  The common strategy for leak checkers is to whitelist the
154   // memory pointed to by globals at exit.  This is popular because it also
155   // solves another problem where the main thread of a C++ program may shut down
156   // before other threads that are still expecting to use those globals.  To
157   // handle that case, we expect the program may create a singleton and never
158   // destroy it.
159 
160   bool Changed = false;
161 
162   // If Dead[n].first is the only use of a malloc result, we can delete its
163   // chain of computation and the store to the global in Dead[n].second.
164   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
165 
166   // Constants can't be pointers to dynamically allocated memory.
167   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
168        UI != E;) {
169     User *U = *UI++;
170     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
171       Value *V = SI->getValueOperand();
172       if (isa<Constant>(V)) {
173         Changed = true;
174         SI->eraseFromParent();
175       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
176         if (I->hasOneUse())
177           Dead.push_back(std::make_pair(I, SI));
178       }
179     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
180       if (isa<Constant>(MSI->getValue())) {
181         Changed = true;
182         MSI->eraseFromParent();
183       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
184         if (I->hasOneUse())
185           Dead.push_back(std::make_pair(I, MSI));
186       }
187     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
188       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
189       if (MemSrc && MemSrc->isConstant()) {
190         Changed = true;
191         MTI->eraseFromParent();
192       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
193         if (I->hasOneUse())
194           Dead.push_back(std::make_pair(I, MTI));
195       }
196     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
197       if (CE->use_empty()) {
198         CE->destroyConstant();
199         Changed = true;
200       }
201     } else if (Constant *C = dyn_cast<Constant>(U)) {
202       if (isSafeToDestroyConstant(C)) {
203         C->destroyConstant();
204         // This could have invalidated UI, start over from scratch.
205         Dead.clear();
206         CleanupPointerRootUsers(GV, TLI);
207         return true;
208       }
209     }
210   }
211 
212   for (int i = 0, e = Dead.size(); i != e; ++i) {
213     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
214       Dead[i].second->eraseFromParent();
215       Instruction *I = Dead[i].first;
216       do {
217         if (isAllocationFn(I, TLI))
218           break;
219         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
220         if (!J)
221           break;
222         I->eraseFromParent();
223         I = J;
224       } while (1);
225       I->eraseFromParent();
226     }
227   }
228 
229   return Changed;
230 }
231 
232 /// We just marked GV constant.  Loop over all users of the global, cleaning up
233 /// the obvious ones.  This is largely just a quick scan over the use list to
234 /// clean up the easy and obvious cruft.  This returns true if it made a change.
235 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
236                                        const DataLayout &DL,
237                                        TargetLibraryInfo *TLI) {
238   bool Changed = false;
239   // Note that we need to use a weak value handle for the worklist items. When
240   // we delete a constant array, we may also be holding pointer to one of its
241   // elements (or an element of one of its elements if we're dealing with an
242   // array of arrays) in the worklist.
243   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
244   while (!WorkList.empty()) {
245     Value *UV = WorkList.pop_back_val();
246     if (!UV)
247       continue;
248 
249     User *U = cast<User>(UV);
250 
251     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
252       if (Init) {
253         // Replace the load with the initializer.
254         LI->replaceAllUsesWith(Init);
255         LI->eraseFromParent();
256         Changed = true;
257       }
258     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
259       // Store must be unreachable or storing Init into the global.
260       SI->eraseFromParent();
261       Changed = true;
262     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
263       if (CE->getOpcode() == Instruction::GetElementPtr) {
264         Constant *SubInit = nullptr;
265         if (Init)
266           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
267         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
268       } else if ((CE->getOpcode() == Instruction::BitCast &&
269                   CE->getType()->isPointerTy()) ||
270                  CE->getOpcode() == Instruction::AddrSpaceCast) {
271         // Pointer cast, delete any stores and memsets to the global.
272         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
273       }
274 
275       if (CE->use_empty()) {
276         CE->destroyConstant();
277         Changed = true;
278       }
279     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
280       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
281       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
282       // and will invalidate our notion of what Init is.
283       Constant *SubInit = nullptr;
284       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
285         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
286             ConstantFoldInstruction(GEP, DL, TLI));
287         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
288           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
289 
290         // If the initializer is an all-null value and we have an inbounds GEP,
291         // we already know what the result of any load from that GEP is.
292         // TODO: Handle splats.
293         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
294           SubInit = Constant::getNullValue(GEP->getResultElementType());
295       }
296       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
297 
298       if (GEP->use_empty()) {
299         GEP->eraseFromParent();
300         Changed = true;
301       }
302     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
303       if (MI->getRawDest() == V) {
304         MI->eraseFromParent();
305         Changed = true;
306       }
307 
308     } else if (Constant *C = dyn_cast<Constant>(U)) {
309       // If we have a chain of dead constantexprs or other things dangling from
310       // us, and if they are all dead, nuke them without remorse.
311       if (isSafeToDestroyConstant(C)) {
312         C->destroyConstant();
313         CleanupConstantGlobalUsers(V, Init, DL, TLI);
314         return true;
315       }
316     }
317   }
318   return Changed;
319 }
320 
321 /// Return true if the specified instruction is a safe user of a derived
322 /// expression from a global that we want to SROA.
323 static bool isSafeSROAElementUse(Value *V) {
324   // We might have a dead and dangling constant hanging off of here.
325   if (Constant *C = dyn_cast<Constant>(V))
326     return isSafeToDestroyConstant(C);
327 
328   Instruction *I = dyn_cast<Instruction>(V);
329   if (!I) return false;
330 
331   // Loads are ok.
332   if (isa<LoadInst>(I)) return true;
333 
334   // Stores *to* the pointer are ok.
335   if (StoreInst *SI = dyn_cast<StoreInst>(I))
336     return SI->getOperand(0) != V;
337 
338   // Otherwise, it must be a GEP.
339   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
340   if (!GEPI) return false;
341 
342   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
343       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
344     return false;
345 
346   for (User *U : GEPI->users())
347     if (!isSafeSROAElementUse(U))
348       return false;
349   return true;
350 }
351 
352 
353 /// U is a direct user of the specified global value.  Look at it and its uses
354 /// and decide whether it is safe to SROA this global.
355 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
356   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
357   if (!isa<GetElementPtrInst>(U) &&
358       (!isa<ConstantExpr>(U) ||
359        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
360     return false;
361 
362   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
363   // don't like < 3 operand CE's, and we don't like non-constant integer
364   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
365   // value of C.
366   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
367       !cast<Constant>(U->getOperand(1))->isNullValue() ||
368       !isa<ConstantInt>(U->getOperand(2)))
369     return false;
370 
371   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
372   ++GEPI;  // Skip over the pointer index.
373 
374   // If this is a use of an array allocation, do a bit more checking for sanity.
375   if (GEPI.isSequential()) {
376     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
377 
378     // Check to make sure that index falls within the array.  If not,
379     // something funny is going on, so we won't do the optimization.
380     //
381     if (GEPI.isBoundedSequential() &&
382         Idx->getZExtValue() >= GEPI.getSequentialNumElements())
383       return false;
384 
385     // We cannot scalar repl this level of the array unless any array
386     // sub-indices are in-range constants.  In particular, consider:
387     // A[0][i].  We cannot know that the user isn't doing invalid things like
388     // allowing i to index an out-of-range subscript that accesses A[1].
389     //
390     // Scalar replacing *just* the outer index of the array is probably not
391     // going to be a win anyway, so just give up.
392     for (++GEPI; // Skip array index.
393          GEPI != E;
394          ++GEPI) {
395       if (GEPI.isStruct())
396         continue;
397 
398       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
399       if (!IdxVal ||
400           (GEPI.isBoundedSequential() &&
401            IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
402         return false;
403     }
404   }
405 
406   return llvm::all_of(U->users(),
407                       [](User *UU) { return isSafeSROAElementUse(UU); });
408 }
409 
410 /// Look at all uses of the global and decide whether it is safe for us to
411 /// perform this transformation.
412 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
413   for (User *U : GV->users())
414     if (!IsUserOfGlobalSafeForSRA(U, GV))
415       return false;
416 
417   return true;
418 }
419 
420 /// Copy over the debug info for a variable to its SRA replacements.
421 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
422                                  uint64_t FragmentOffsetInBits,
423                                  uint64_t FragmentSizeInBits,
424                                  unsigned NumElements) {
425   SmallVector<DIGlobalVariableExpression *, 1> GVs;
426   GV->getDebugInfo(GVs);
427   for (auto *GVE : GVs) {
428     DIVariable *Var = GVE->getVariable();
429     DIExpression *Expr = GVE->getExpression();
430     if (NumElements > 1)
431       Expr = DIExpression::createFragmentExpression(Expr, FragmentOffsetInBits,
432                                                     FragmentSizeInBits);
433     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
434     NGV->addDebugInfo(NGVE);
435   }
436 }
437 
438 
439 /// Perform scalar replacement of aggregates on the specified global variable.
440 /// This opens the door for other optimizations by exposing the behavior of the
441 /// program in a more fine-grained way.  We have determined that this
442 /// transformation is safe already.  We return the first global variable we
443 /// insert so that the caller can reprocess it.
444 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
445   // Make sure this global only has simple uses that we can SRA.
446   if (!GlobalUsersSafeToSRA(GV))
447     return nullptr;
448 
449   assert(GV->hasLocalLinkage());
450   Constant *Init = GV->getInitializer();
451   Type *Ty = Init->getType();
452 
453   std::vector<GlobalVariable*> NewGlobals;
454   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
455 
456   // Get the alignment of the global, either explicit or target-specific.
457   unsigned StartAlignment = GV->getAlignment();
458   if (StartAlignment == 0)
459     StartAlignment = DL.getABITypeAlignment(GV->getType());
460 
461   if (StructType *STy = dyn_cast<StructType>(Ty)) {
462     uint64_t FragmentOffset = 0;
463     unsigned NumElements = STy->getNumElements();
464     NewGlobals.reserve(NumElements);
465     const StructLayout &Layout = *DL.getStructLayout(STy);
466     for (unsigned i = 0, e = NumElements; i != e; ++i) {
467       Constant *In = Init->getAggregateElement(i);
468       assert(In && "Couldn't get element of initializer?");
469       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
470                                                GlobalVariable::InternalLinkage,
471                                                In, GV->getName()+"."+Twine(i),
472                                                GV->getThreadLocalMode(),
473                                               GV->getType()->getAddressSpace());
474       NGV->setExternallyInitialized(GV->isExternallyInitialized());
475       NGV->copyAttributesFrom(GV);
476       Globals.push_back(NGV);
477       NewGlobals.push_back(NGV);
478 
479       // Calculate the known alignment of the field.  If the original aggregate
480       // had 256 byte alignment for example, something might depend on that:
481       // propagate info to each field.
482       uint64_t FieldOffset = Layout.getElementOffset(i);
483       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
484       if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
485         NGV->setAlignment(NewAlign);
486 
487       // Copy over the debug info for the variable.
488       FragmentOffset = alignTo(FragmentOffset, NewAlign);
489       uint64_t Size = DL.getTypeSizeInBits(NGV->getValueType());
490       transferSRADebugInfo(GV, NGV, FragmentOffset, Size, NumElements);
491       FragmentOffset += Size;
492     }
493   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
494     unsigned NumElements = STy->getNumElements();
495     if (NumElements > 16 && GV->hasNUsesOrMore(16))
496       return nullptr; // It's not worth it.
497     NewGlobals.reserve(NumElements);
498     auto ElTy = STy->getElementType();
499     uint64_t EltSize = DL.getTypeAllocSize(ElTy);
500     unsigned EltAlign = DL.getABITypeAlignment(ElTy);
501     uint64_t FragmentSizeInBits = DL.getTypeSizeInBits(ElTy);
502     for (unsigned i = 0, e = NumElements; i != e; ++i) {
503       Constant *In = Init->getAggregateElement(i);
504       assert(In && "Couldn't get element of initializer?");
505 
506       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
507                                                GlobalVariable::InternalLinkage,
508                                                In, GV->getName()+"."+Twine(i),
509                                                GV->getThreadLocalMode(),
510                                               GV->getType()->getAddressSpace());
511       NGV->setExternallyInitialized(GV->isExternallyInitialized());
512       NGV->copyAttributesFrom(GV);
513       Globals.push_back(NGV);
514       NewGlobals.push_back(NGV);
515 
516       // Calculate the known alignment of the field.  If the original aggregate
517       // had 256 byte alignment for example, something might depend on that:
518       // propagate info to each field.
519       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
520       if (NewAlign > EltAlign)
521         NGV->setAlignment(NewAlign);
522       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits,
523                            NumElements);
524     }
525   }
526 
527   if (NewGlobals.empty())
528     return nullptr;
529 
530   DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
531 
532   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
533 
534   // Loop over all of the uses of the global, replacing the constantexpr geps,
535   // with smaller constantexpr geps or direct references.
536   while (!GV->use_empty()) {
537     User *GEP = GV->user_back();
538     assert(((isa<ConstantExpr>(GEP) &&
539              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
540             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
541 
542     // Ignore the 1th operand, which has to be zero or else the program is quite
543     // broken (undefined).  Get the 2nd operand, which is the structure or array
544     // index.
545     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
546     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
547 
548     Value *NewPtr = NewGlobals[Val];
549     Type *NewTy = NewGlobals[Val]->getValueType();
550 
551     // Form a shorter GEP if needed.
552     if (GEP->getNumOperands() > 3) {
553       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
554         SmallVector<Constant*, 8> Idxs;
555         Idxs.push_back(NullInt);
556         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
557           Idxs.push_back(CE->getOperand(i));
558         NewPtr =
559             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
560       } else {
561         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
562         SmallVector<Value*, 8> Idxs;
563         Idxs.push_back(NullInt);
564         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
565           Idxs.push_back(GEPI->getOperand(i));
566         NewPtr = GetElementPtrInst::Create(
567             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
568       }
569     }
570     GEP->replaceAllUsesWith(NewPtr);
571 
572     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
573       GEPI->eraseFromParent();
574     else
575       cast<ConstantExpr>(GEP)->destroyConstant();
576   }
577 
578   // Delete the old global, now that it is dead.
579   Globals.erase(GV);
580   ++NumSRA;
581 
582   // Loop over the new globals array deleting any globals that are obviously
583   // dead.  This can arise due to scalarization of a structure or an array that
584   // has elements that are dead.
585   unsigned FirstGlobal = 0;
586   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
587     if (NewGlobals[i]->use_empty()) {
588       Globals.erase(NewGlobals[i]);
589       if (FirstGlobal == i) ++FirstGlobal;
590     }
591 
592   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
593 }
594 
595 /// Return true if all users of the specified value will trap if the value is
596 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
597 /// reprocessing them.
598 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
599                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
600   for (const User *U : V->users())
601     if (isa<LoadInst>(U)) {
602       // Will trap.
603     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
604       if (SI->getOperand(0) == V) {
605         //cerr << "NONTRAPPING USE: " << *U;
606         return false;  // Storing the value.
607       }
608     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
609       if (CI->getCalledValue() != V) {
610         //cerr << "NONTRAPPING USE: " << *U;
611         return false;  // Not calling the ptr
612       }
613     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
614       if (II->getCalledValue() != V) {
615         //cerr << "NONTRAPPING USE: " << *U;
616         return false;  // Not calling the ptr
617       }
618     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
619       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
620     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
621       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
622     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
623       // If we've already seen this phi node, ignore it, it has already been
624       // checked.
625       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
626         return false;
627     } else if (isa<ICmpInst>(U) &&
628                isa<ConstantPointerNull>(U->getOperand(1))) {
629       // Ignore icmp X, null
630     } else {
631       //cerr << "NONTRAPPING USE: " << *U;
632       return false;
633     }
634 
635   return true;
636 }
637 
638 /// Return true if all uses of any loads from GV will trap if the loaded value
639 /// is null.  Note that this also permits comparisons of the loaded value
640 /// against null, as a special case.
641 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
642   for (const User *U : GV->users())
643     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
644       SmallPtrSet<const PHINode*, 8> PHIs;
645       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
646         return false;
647     } else if (isa<StoreInst>(U)) {
648       // Ignore stores to the global.
649     } else {
650       // We don't know or understand this user, bail out.
651       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
652       return false;
653     }
654   return true;
655 }
656 
657 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
658   bool Changed = false;
659   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
660     Instruction *I = cast<Instruction>(*UI++);
661     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
662       LI->setOperand(0, NewV);
663       Changed = true;
664     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
665       if (SI->getOperand(1) == V) {
666         SI->setOperand(1, NewV);
667         Changed = true;
668       }
669     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
670       CallSite CS(I);
671       if (CS.getCalledValue() == V) {
672         // Calling through the pointer!  Turn into a direct call, but be careful
673         // that the pointer is not also being passed as an argument.
674         CS.setCalledFunction(NewV);
675         Changed = true;
676         bool PassedAsArg = false;
677         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
678           if (CS.getArgument(i) == V) {
679             PassedAsArg = true;
680             CS.setArgument(i, NewV);
681           }
682 
683         if (PassedAsArg) {
684           // Being passed as an argument also.  Be careful to not invalidate UI!
685           UI = V->user_begin();
686         }
687       }
688     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
689       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
690                                 ConstantExpr::getCast(CI->getOpcode(),
691                                                       NewV, CI->getType()));
692       if (CI->use_empty()) {
693         Changed = true;
694         CI->eraseFromParent();
695       }
696     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
697       // Should handle GEP here.
698       SmallVector<Constant*, 8> Idxs;
699       Idxs.reserve(GEPI->getNumOperands()-1);
700       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
701            i != e; ++i)
702         if (Constant *C = dyn_cast<Constant>(*i))
703           Idxs.push_back(C);
704         else
705           break;
706       if (Idxs.size() == GEPI->getNumOperands()-1)
707         Changed |= OptimizeAwayTrappingUsesOfValue(
708             GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
709       if (GEPI->use_empty()) {
710         Changed = true;
711         GEPI->eraseFromParent();
712       }
713     }
714   }
715 
716   return Changed;
717 }
718 
719 
720 /// The specified global has only one non-null value stored into it.  If there
721 /// are uses of the loaded value that would trap if the loaded value is
722 /// dynamically null, then we know that they cannot be reachable with a null
723 /// optimize away the load.
724 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
725                                             const DataLayout &DL,
726                                             TargetLibraryInfo *TLI) {
727   bool Changed = false;
728 
729   // Keep track of whether we are able to remove all the uses of the global
730   // other than the store that defines it.
731   bool AllNonStoreUsesGone = true;
732 
733   // Replace all uses of loads with uses of uses of the stored value.
734   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
735     User *GlobalUser = *GUI++;
736     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
737       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
738       // If we were able to delete all uses of the loads
739       if (LI->use_empty()) {
740         LI->eraseFromParent();
741         Changed = true;
742       } else {
743         AllNonStoreUsesGone = false;
744       }
745     } else if (isa<StoreInst>(GlobalUser)) {
746       // Ignore the store that stores "LV" to the global.
747       assert(GlobalUser->getOperand(1) == GV &&
748              "Must be storing *to* the global");
749     } else {
750       AllNonStoreUsesGone = false;
751 
752       // If we get here we could have other crazy uses that are transitively
753       // loaded.
754       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
755               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
756               isa<BitCastInst>(GlobalUser) ||
757               isa<GetElementPtrInst>(GlobalUser)) &&
758              "Only expect load and stores!");
759     }
760   }
761 
762   if (Changed) {
763     DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n");
764     ++NumGlobUses;
765   }
766 
767   // If we nuked all of the loads, then none of the stores are needed either,
768   // nor is the global.
769   if (AllNonStoreUsesGone) {
770     if (isLeakCheckerRoot(GV)) {
771       Changed |= CleanupPointerRootUsers(GV, TLI);
772     } else {
773       Changed = true;
774       CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
775     }
776     if (GV->use_empty()) {
777       DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
778       Changed = true;
779       GV->eraseFromParent();
780       ++NumDeleted;
781     }
782   }
783   return Changed;
784 }
785 
786 /// Walk the use list of V, constant folding all of the instructions that are
787 /// foldable.
788 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
789                                 TargetLibraryInfo *TLI) {
790   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
791     if (Instruction *I = dyn_cast<Instruction>(*UI++))
792       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
793         I->replaceAllUsesWith(NewC);
794 
795         // Advance UI to the next non-I use to avoid invalidating it!
796         // Instructions could multiply use V.
797         while (UI != E && *UI == I)
798           ++UI;
799         if (isInstructionTriviallyDead(I, TLI))
800           I->eraseFromParent();
801       }
802 }
803 
804 /// This function takes the specified global variable, and transforms the
805 /// program as if it always contained the result of the specified malloc.
806 /// Because it is always the result of the specified malloc, there is no reason
807 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
808 /// loads of GV as uses of the new global.
809 static GlobalVariable *
810 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
811                               ConstantInt *NElements, const DataLayout &DL,
812                               TargetLibraryInfo *TLI) {
813   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
814 
815   Type *GlobalType;
816   if (NElements->getZExtValue() == 1)
817     GlobalType = AllocTy;
818   else
819     // If we have an array allocation, the global variable is of an array.
820     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
821 
822   // Create the new global variable.  The contents of the malloc'd memory is
823   // undefined, so initialize with an undef value.
824   GlobalVariable *NewGV = new GlobalVariable(
825       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
826       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
827       GV->getThreadLocalMode());
828 
829   // If there are bitcast users of the malloc (which is typical, usually we have
830   // a malloc + bitcast) then replace them with uses of the new global.  Update
831   // other users to use the global as well.
832   BitCastInst *TheBC = nullptr;
833   while (!CI->use_empty()) {
834     Instruction *User = cast<Instruction>(CI->user_back());
835     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
836       if (BCI->getType() == NewGV->getType()) {
837         BCI->replaceAllUsesWith(NewGV);
838         BCI->eraseFromParent();
839       } else {
840         BCI->setOperand(0, NewGV);
841       }
842     } else {
843       if (!TheBC)
844         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
845       User->replaceUsesOfWith(CI, TheBC);
846     }
847   }
848 
849   Constant *RepValue = NewGV;
850   if (NewGV->getType() != GV->getValueType())
851     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
852 
853   // If there is a comparison against null, we will insert a global bool to
854   // keep track of whether the global was initialized yet or not.
855   GlobalVariable *InitBool =
856     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
857                        GlobalValue::InternalLinkage,
858                        ConstantInt::getFalse(GV->getContext()),
859                        GV->getName()+".init", GV->getThreadLocalMode());
860   bool InitBoolUsed = false;
861 
862   // Loop over all uses of GV, processing them in turn.
863   while (!GV->use_empty()) {
864     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
865       // The global is initialized when the store to it occurs.
866       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
867                     SI->getOrdering(), SI->getSyncScopeID(), SI);
868       SI->eraseFromParent();
869       continue;
870     }
871 
872     LoadInst *LI = cast<LoadInst>(GV->user_back());
873     while (!LI->use_empty()) {
874       Use &LoadUse = *LI->use_begin();
875       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
876       if (!ICI) {
877         LoadUse = RepValue;
878         continue;
879       }
880 
881       // Replace the cmp X, 0 with a use of the bool value.
882       // Sink the load to where the compare was, if atomic rules allow us to.
883       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
884                                LI->getOrdering(), LI->getSyncScopeID(),
885                                LI->isUnordered() ? (Instruction*)ICI : LI);
886       InitBoolUsed = true;
887       switch (ICI->getPredicate()) {
888       default: llvm_unreachable("Unknown ICmp Predicate!");
889       case ICmpInst::ICMP_ULT:
890       case ICmpInst::ICMP_SLT:   // X < null -> always false
891         LV = ConstantInt::getFalse(GV->getContext());
892         break;
893       case ICmpInst::ICMP_ULE:
894       case ICmpInst::ICMP_SLE:
895       case ICmpInst::ICMP_EQ:
896         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
897         break;
898       case ICmpInst::ICMP_NE:
899       case ICmpInst::ICMP_UGE:
900       case ICmpInst::ICMP_SGE:
901       case ICmpInst::ICMP_UGT:
902       case ICmpInst::ICMP_SGT:
903         break;  // no change.
904       }
905       ICI->replaceAllUsesWith(LV);
906       ICI->eraseFromParent();
907     }
908     LI->eraseFromParent();
909   }
910 
911   // If the initialization boolean was used, insert it, otherwise delete it.
912   if (!InitBoolUsed) {
913     while (!InitBool->use_empty())  // Delete initializations
914       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
915     delete InitBool;
916   } else
917     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
918 
919   // Now the GV is dead, nuke it and the malloc..
920   GV->eraseFromParent();
921   CI->eraseFromParent();
922 
923   // To further other optimizations, loop over all users of NewGV and try to
924   // constant prop them.  This will promote GEP instructions with constant
925   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
926   ConstantPropUsersOf(NewGV, DL, TLI);
927   if (RepValue != NewGV)
928     ConstantPropUsersOf(RepValue, DL, TLI);
929 
930   return NewGV;
931 }
932 
933 /// Scan the use-list of V checking to make sure that there are no complex uses
934 /// of V.  We permit simple things like dereferencing the pointer, but not
935 /// storing through the address, unless it is to the specified global.
936 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
937                                                       const GlobalVariable *GV,
938                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
939   for (const User *U : V->users()) {
940     const Instruction *Inst = cast<Instruction>(U);
941 
942     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
943       continue; // Fine, ignore.
944     }
945 
946     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
947       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
948         return false;  // Storing the pointer itself... bad.
949       continue; // Otherwise, storing through it, or storing into GV... fine.
950     }
951 
952     // Must index into the array and into the struct.
953     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
954       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
955         return false;
956       continue;
957     }
958 
959     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
960       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
961       // cycles.
962       if (PHIs.insert(PN).second)
963         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
964           return false;
965       continue;
966     }
967 
968     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
969       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
970         return false;
971       continue;
972     }
973 
974     return false;
975   }
976   return true;
977 }
978 
979 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
980 /// allocation into loads from the global and uses of the resultant pointer.
981 /// Further, delete the store into GV.  This assumes that these value pass the
982 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
983 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
984                                           GlobalVariable *GV) {
985   while (!Alloc->use_empty()) {
986     Instruction *U = cast<Instruction>(*Alloc->user_begin());
987     Instruction *InsertPt = U;
988     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
989       // If this is the store of the allocation into the global, remove it.
990       if (SI->getOperand(1) == GV) {
991         SI->eraseFromParent();
992         continue;
993       }
994     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
995       // Insert the load in the corresponding predecessor, not right before the
996       // PHI.
997       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
998     } else if (isa<BitCastInst>(U)) {
999       // Must be bitcast between the malloc and store to initialize the global.
1000       ReplaceUsesOfMallocWithGlobal(U, GV);
1001       U->eraseFromParent();
1002       continue;
1003     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1004       // If this is a "GEP bitcast" and the user is a store to the global, then
1005       // just process it as a bitcast.
1006       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1007         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1008           if (SI->getOperand(1) == GV) {
1009             // Must be bitcast GEP between the malloc and store to initialize
1010             // the global.
1011             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1012             GEPI->eraseFromParent();
1013             continue;
1014           }
1015     }
1016 
1017     // Insert a load from the global, and use it instead of the malloc.
1018     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1019     U->replaceUsesOfWith(Alloc, NL);
1020   }
1021 }
1022 
1023 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1024 /// perform heap SRA on.  This permits GEP's that index through the array and
1025 /// struct field, icmps of null, and PHIs.
1026 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1027                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1028                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1029   // We permit two users of the load: setcc comparing against the null
1030   // pointer, and a getelementptr of a specific form.
1031   for (const User *U : V->users()) {
1032     const Instruction *UI = cast<Instruction>(U);
1033 
1034     // Comparison against null is ok.
1035     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1036       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1037         return false;
1038       continue;
1039     }
1040 
1041     // getelementptr is also ok, but only a simple form.
1042     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1043       // Must index into the array and into the struct.
1044       if (GEPI->getNumOperands() < 3)
1045         return false;
1046 
1047       // Otherwise the GEP is ok.
1048       continue;
1049     }
1050 
1051     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1052       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1053         // This means some phi nodes are dependent on each other.
1054         // Avoid infinite looping!
1055         return false;
1056       if (!LoadUsingPHIs.insert(PN).second)
1057         // If we have already analyzed this PHI, then it is safe.
1058         continue;
1059 
1060       // Make sure all uses of the PHI are simple enough to transform.
1061       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1062                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1063         return false;
1064 
1065       continue;
1066     }
1067 
1068     // Otherwise we don't know what this is, not ok.
1069     return false;
1070   }
1071 
1072   return true;
1073 }
1074 
1075 
1076 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1077 /// return true.
1078 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1079                                                     Instruction *StoredVal) {
1080   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1081   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1082   for (const User *U : GV->users())
1083     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1084       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1085                                           LoadUsingPHIsPerLoad))
1086         return false;
1087       LoadUsingPHIsPerLoad.clear();
1088     }
1089 
1090   // If we reach here, we know that all uses of the loads and transitive uses
1091   // (through PHI nodes) are simple enough to transform.  However, we don't know
1092   // that all inputs the to the PHI nodes are in the same equivalence sets.
1093   // Check to verify that all operands of the PHIs are either PHIS that can be
1094   // transformed, loads from GV, or MI itself.
1095   for (const PHINode *PN : LoadUsingPHIs) {
1096     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1097       Value *InVal = PN->getIncomingValue(op);
1098 
1099       // PHI of the stored value itself is ok.
1100       if (InVal == StoredVal) continue;
1101 
1102       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1103         // One of the PHIs in our set is (optimistically) ok.
1104         if (LoadUsingPHIs.count(InPN))
1105           continue;
1106         return false;
1107       }
1108 
1109       // Load from GV is ok.
1110       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1111         if (LI->getOperand(0) == GV)
1112           continue;
1113 
1114       // UNDEF? NULL?
1115 
1116       // Anything else is rejected.
1117       return false;
1118     }
1119   }
1120 
1121   return true;
1122 }
1123 
1124 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1125                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1126                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1127   std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1128 
1129   if (FieldNo >= FieldVals.size())
1130     FieldVals.resize(FieldNo+1);
1131 
1132   // If we already have this value, just reuse the previously scalarized
1133   // version.
1134   if (Value *FieldVal = FieldVals[FieldNo])
1135     return FieldVal;
1136 
1137   // Depending on what instruction this is, we have several cases.
1138   Value *Result;
1139   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1140     // This is a scalarized version of the load from the global.  Just create
1141     // a new Load of the scalarized global.
1142     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1143                                            InsertedScalarizedValues,
1144                                            PHIsToRewrite),
1145                           LI->getName()+".f"+Twine(FieldNo), LI);
1146   } else {
1147     PHINode *PN = cast<PHINode>(V);
1148     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1149     // field.
1150 
1151     PointerType *PTy = cast<PointerType>(PN->getType());
1152     StructType *ST = cast<StructType>(PTy->getElementType());
1153 
1154     unsigned AS = PTy->getAddressSpace();
1155     PHINode *NewPN =
1156       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1157                      PN->getNumIncomingValues(),
1158                      PN->getName()+".f"+Twine(FieldNo), PN);
1159     Result = NewPN;
1160     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1161   }
1162 
1163   return FieldVals[FieldNo] = Result;
1164 }
1165 
1166 /// Given a load instruction and a value derived from the load, rewrite the
1167 /// derived value to use the HeapSRoA'd load.
1168 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1169              DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1170                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1171   // If this is a comparison against null, handle it.
1172   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1173     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1174     // If we have a setcc of the loaded pointer, we can use a setcc of any
1175     // field.
1176     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1177                                    InsertedScalarizedValues, PHIsToRewrite);
1178 
1179     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1180                               Constant::getNullValue(NPtr->getType()),
1181                               SCI->getName());
1182     SCI->replaceAllUsesWith(New);
1183     SCI->eraseFromParent();
1184     return;
1185   }
1186 
1187   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1188   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1189     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1190            && "Unexpected GEPI!");
1191 
1192     // Load the pointer for this field.
1193     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1194     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1195                                      InsertedScalarizedValues, PHIsToRewrite);
1196 
1197     // Create the new GEP idx vector.
1198     SmallVector<Value*, 8> GEPIdx;
1199     GEPIdx.push_back(GEPI->getOperand(1));
1200     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1201 
1202     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1203                                              GEPI->getName(), GEPI);
1204     GEPI->replaceAllUsesWith(NGEPI);
1205     GEPI->eraseFromParent();
1206     return;
1207   }
1208 
1209   // Recursively transform the users of PHI nodes.  This will lazily create the
1210   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1211   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1212   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1213   // already been seen first by another load, so its uses have already been
1214   // processed.
1215   PHINode *PN = cast<PHINode>(LoadUser);
1216   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1217                                               std::vector<Value*>())).second)
1218     return;
1219 
1220   // If this is the first time we've seen this PHI, recursively process all
1221   // users.
1222   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1223     Instruction *User = cast<Instruction>(*UI++);
1224     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1225   }
1226 }
1227 
1228 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1229 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1230 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1231 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1232                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1233                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1234   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1235     Instruction *User = cast<Instruction>(*UI++);
1236     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1237   }
1238 
1239   if (Load->use_empty()) {
1240     Load->eraseFromParent();
1241     InsertedScalarizedValues.erase(Load);
1242   }
1243 }
1244 
1245 /// CI is an allocation of an array of structures.  Break it up into multiple
1246 /// allocations of arrays of the fields.
1247 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1248                                             Value *NElems, const DataLayout &DL,
1249                                             const TargetLibraryInfo *TLI) {
1250   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1251   Type *MAT = getMallocAllocatedType(CI, TLI);
1252   StructType *STy = cast<StructType>(MAT);
1253 
1254   // There is guaranteed to be at least one use of the malloc (storing
1255   // it into GV).  If there are other uses, change them to be uses of
1256   // the global to simplify later code.  This also deletes the store
1257   // into GV.
1258   ReplaceUsesOfMallocWithGlobal(CI, GV);
1259 
1260   // Okay, at this point, there are no users of the malloc.  Insert N
1261   // new mallocs at the same place as CI, and N globals.
1262   std::vector<Value*> FieldGlobals;
1263   std::vector<Value*> FieldMallocs;
1264 
1265   SmallVector<OperandBundleDef, 1> OpBundles;
1266   CI->getOperandBundlesAsDefs(OpBundles);
1267 
1268   unsigned AS = GV->getType()->getPointerAddressSpace();
1269   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1270     Type *FieldTy = STy->getElementType(FieldNo);
1271     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1272 
1273     GlobalVariable *NGV = new GlobalVariable(
1274         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1275         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1276         nullptr, GV->getThreadLocalMode());
1277     NGV->copyAttributesFrom(GV);
1278     FieldGlobals.push_back(NGV);
1279 
1280     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1281     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1282       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1283     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1284     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1285                                         ConstantInt::get(IntPtrTy, TypeSize),
1286                                         NElems, OpBundles, nullptr,
1287                                         CI->getName() + ".f" + Twine(FieldNo));
1288     FieldMallocs.push_back(NMI);
1289     new StoreInst(NMI, NGV, CI);
1290   }
1291 
1292   // The tricky aspect of this transformation is handling the case when malloc
1293   // fails.  In the original code, malloc failing would set the result pointer
1294   // of malloc to null.  In this case, some mallocs could succeed and others
1295   // could fail.  As such, we emit code that looks like this:
1296   //    F0 = malloc(field0)
1297   //    F1 = malloc(field1)
1298   //    F2 = malloc(field2)
1299   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1300   //      if (F0) { free(F0); F0 = 0; }
1301   //      if (F1) { free(F1); F1 = 0; }
1302   //      if (F2) { free(F2); F2 = 0; }
1303   //    }
1304   // The malloc can also fail if its argument is too large.
1305   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1306   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1307                                   ConstantZero, "isneg");
1308   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1309     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1310                              Constant::getNullValue(FieldMallocs[i]->getType()),
1311                                "isnull");
1312     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1313   }
1314 
1315   // Split the basic block at the old malloc.
1316   BasicBlock *OrigBB = CI->getParent();
1317   BasicBlock *ContBB =
1318       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1319 
1320   // Create the block to check the first condition.  Put all these blocks at the
1321   // end of the function as they are unlikely to be executed.
1322   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1323                                                 "malloc_ret_null",
1324                                                 OrigBB->getParent());
1325 
1326   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1327   // branch on RunningOr.
1328   OrigBB->getTerminator()->eraseFromParent();
1329   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1330 
1331   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1332   // pointer, because some may be null while others are not.
1333   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1334     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1335     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1336                               Constant::getNullValue(GVVal->getType()));
1337     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1338                                                OrigBB->getParent());
1339     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1340                                                OrigBB->getParent());
1341     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1342                                          Cmp, NullPtrBlock);
1343 
1344     // Fill in FreeBlock.
1345     CallInst::CreateFree(GVVal, OpBundles, BI);
1346     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1347                   FreeBlock);
1348     BranchInst::Create(NextBlock, FreeBlock);
1349 
1350     NullPtrBlock = NextBlock;
1351   }
1352 
1353   BranchInst::Create(ContBB, NullPtrBlock);
1354 
1355   // CI is no longer needed, remove it.
1356   CI->eraseFromParent();
1357 
1358   /// As we process loads, if we can't immediately update all uses of the load,
1359   /// keep track of what scalarized loads are inserted for a given load.
1360   DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1361   InsertedScalarizedValues[GV] = FieldGlobals;
1362 
1363   std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1364 
1365   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1366   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1367   // of the per-field globals instead.
1368   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1369     Instruction *User = cast<Instruction>(*UI++);
1370 
1371     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1372       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1373       continue;
1374     }
1375 
1376     // Must be a store of null.
1377     StoreInst *SI = cast<StoreInst>(User);
1378     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1379            "Unexpected heap-sra user!");
1380 
1381     // Insert a store of null into each global.
1382     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1383       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1384       Constant *Null = Constant::getNullValue(ValTy);
1385       new StoreInst(Null, FieldGlobals[i], SI);
1386     }
1387     // Erase the original store.
1388     SI->eraseFromParent();
1389   }
1390 
1391   // While we have PHIs that are interesting to rewrite, do it.
1392   while (!PHIsToRewrite.empty()) {
1393     PHINode *PN = PHIsToRewrite.back().first;
1394     unsigned FieldNo = PHIsToRewrite.back().second;
1395     PHIsToRewrite.pop_back();
1396     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1397     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1398 
1399     // Add all the incoming values.  This can materialize more phis.
1400     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1401       Value *InVal = PN->getIncomingValue(i);
1402       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1403                                PHIsToRewrite);
1404       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1405     }
1406   }
1407 
1408   // Drop all inter-phi links and any loads that made it this far.
1409   for (DenseMap<Value*, std::vector<Value*> >::iterator
1410        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1411        I != E; ++I) {
1412     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1413       PN->dropAllReferences();
1414     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1415       LI->dropAllReferences();
1416   }
1417 
1418   // Delete all the phis and loads now that inter-references are dead.
1419   for (DenseMap<Value*, std::vector<Value*> >::iterator
1420        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1421        I != E; ++I) {
1422     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1423       PN->eraseFromParent();
1424     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1425       LI->eraseFromParent();
1426   }
1427 
1428   // The old global is now dead, remove it.
1429   GV->eraseFromParent();
1430 
1431   ++NumHeapSRA;
1432   return cast<GlobalVariable>(FieldGlobals[0]);
1433 }
1434 
1435 /// This function is called when we see a pointer global variable with a single
1436 /// value stored it that is a malloc or cast of malloc.
1437 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1438                                                Type *AllocTy,
1439                                                AtomicOrdering Ordering,
1440                                                const DataLayout &DL,
1441                                                TargetLibraryInfo *TLI) {
1442   // If this is a malloc of an abstract type, don't touch it.
1443   if (!AllocTy->isSized())
1444     return false;
1445 
1446   // We can't optimize this global unless all uses of it are *known* to be
1447   // of the malloc value, not of the null initializer value (consider a use
1448   // that compares the global's value against zero to see if the malloc has
1449   // been reached).  To do this, we check to see if all uses of the global
1450   // would trap if the global were null: this proves that they must all
1451   // happen after the malloc.
1452   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1453     return false;
1454 
1455   // We can't optimize this if the malloc itself is used in a complex way,
1456   // for example, being stored into multiple globals.  This allows the
1457   // malloc to be stored into the specified global, loaded icmp'd, and
1458   // GEP'd.  These are all things we could transform to using the global
1459   // for.
1460   SmallPtrSet<const PHINode*, 8> PHIs;
1461   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1462     return false;
1463 
1464   // If we have a global that is only initialized with a fixed size malloc,
1465   // transform the program to use global memory instead of malloc'd memory.
1466   // This eliminates dynamic allocation, avoids an indirection accessing the
1467   // data, and exposes the resultant global to further GlobalOpt.
1468   // We cannot optimize the malloc if we cannot determine malloc array size.
1469   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1470   if (!NElems)
1471     return false;
1472 
1473   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1474     // Restrict this transformation to only working on small allocations
1475     // (2048 bytes currently), as we don't want to introduce a 16M global or
1476     // something.
1477     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1478       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1479       return true;
1480     }
1481 
1482   // If the allocation is an array of structures, consider transforming this
1483   // into multiple malloc'd arrays, one for each field.  This is basically
1484   // SRoA for malloc'd memory.
1485 
1486   if (Ordering != AtomicOrdering::NotAtomic)
1487     return false;
1488 
1489   // If this is an allocation of a fixed size array of structs, analyze as a
1490   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1491   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1492     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1493       AllocTy = AT->getElementType();
1494 
1495   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1496   if (!AllocSTy)
1497     return false;
1498 
1499   // This the structure has an unreasonable number of fields, leave it
1500   // alone.
1501   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1502       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1503 
1504     // If this is a fixed size array, transform the Malloc to be an alloc of
1505     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1506     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1507       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1508       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1509       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1510       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1511       SmallVector<OperandBundleDef, 1> OpBundles;
1512       CI->getOperandBundlesAsDefs(OpBundles);
1513       Instruction *Malloc =
1514           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1515                                  OpBundles, nullptr, CI->getName());
1516       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1517       CI->replaceAllUsesWith(Cast);
1518       CI->eraseFromParent();
1519       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1520         CI = cast<CallInst>(BCI->getOperand(0));
1521       else
1522         CI = cast<CallInst>(Malloc);
1523     }
1524 
1525     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1526                          TLI);
1527     return true;
1528   }
1529 
1530   return false;
1531 }
1532 
1533 // Try to optimize globals based on the knowledge that only one value (besides
1534 // its initializer) is ever stored to the global.
1535 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1536                                      AtomicOrdering Ordering,
1537                                      const DataLayout &DL,
1538                                      TargetLibraryInfo *TLI) {
1539   // Ignore no-op GEPs and bitcasts.
1540   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1541 
1542   // If we are dealing with a pointer global that is initialized to null and
1543   // only has one (non-null) value stored into it, then we can optimize any
1544   // users of the loaded value (often calls and loads) that would trap if the
1545   // value was null.
1546   if (GV->getInitializer()->getType()->isPointerTy() &&
1547       GV->getInitializer()->isNullValue()) {
1548     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1549       if (GV->getInitializer()->getType() != SOVC->getType())
1550         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1551 
1552       // Optimize away any trapping uses of the loaded value.
1553       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1554         return true;
1555     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1556       Type *MallocType = getMallocAllocatedType(CI, TLI);
1557       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1558                                                            Ordering, DL, TLI))
1559         return true;
1560     }
1561   }
1562 
1563   return false;
1564 }
1565 
1566 /// At this point, we have learned that the only two values ever stored into GV
1567 /// are its initializer and OtherVal.  See if we can shrink the global into a
1568 /// boolean and select between the two values whenever it is used.  This exposes
1569 /// the values to other scalar optimizations.
1570 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1571   Type *GVElType = GV->getValueType();
1572 
1573   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1574   // an FP value, pointer or vector, don't do this optimization because a select
1575   // between them is very expensive and unlikely to lead to later
1576   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1577   // where v1 and v2 both require constant pool loads, a big loss.
1578   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1579       GVElType->isFloatingPointTy() ||
1580       GVElType->isPointerTy() || GVElType->isVectorTy())
1581     return false;
1582 
1583   // Walk the use list of the global seeing if all the uses are load or store.
1584   // If there is anything else, bail out.
1585   for (User *U : GV->users())
1586     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1587       return false;
1588 
1589   DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1590 
1591   // Create the new global, initializing it to false.
1592   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1593                                              false,
1594                                              GlobalValue::InternalLinkage,
1595                                         ConstantInt::getFalse(GV->getContext()),
1596                                              GV->getName()+".b",
1597                                              GV->getThreadLocalMode(),
1598                                              GV->getType()->getAddressSpace());
1599   NewGV->copyAttributesFrom(GV);
1600   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1601 
1602   Constant *InitVal = GV->getInitializer();
1603   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1604          "No reason to shrink to bool!");
1605 
1606   // If initialized to zero and storing one into the global, we can use a cast
1607   // instead of a select to synthesize the desired value.
1608   bool IsOneZero = false;
1609   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1610     IsOneZero = InitVal->isNullValue() && CI->isOne();
1611 
1612   while (!GV->use_empty()) {
1613     Instruction *UI = cast<Instruction>(GV->user_back());
1614     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1615       // Change the store into a boolean store.
1616       bool StoringOther = SI->getOperand(0) == OtherVal;
1617       // Only do this if we weren't storing a loaded value.
1618       Value *StoreVal;
1619       if (StoringOther || SI->getOperand(0) == InitVal) {
1620         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1621                                     StoringOther);
1622       } else {
1623         // Otherwise, we are storing a previously loaded copy.  To do this,
1624         // change the copy from copying the original value to just copying the
1625         // bool.
1626         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1627 
1628         // If we've already replaced the input, StoredVal will be a cast or
1629         // select instruction.  If not, it will be a load of the original
1630         // global.
1631         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1632           assert(LI->getOperand(0) == GV && "Not a copy!");
1633           // Insert a new load, to preserve the saved value.
1634           StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1635                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1636         } else {
1637           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1638                  "This is not a form that we understand!");
1639           StoreVal = StoredVal->getOperand(0);
1640           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1641         }
1642       }
1643       new StoreInst(StoreVal, NewGV, false, 0,
1644                     SI->getOrdering(), SI->getSyncScopeID(), SI);
1645     } else {
1646       // Change the load into a load of bool then a select.
1647       LoadInst *LI = cast<LoadInst>(UI);
1648       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1649                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1650       Value *NSI;
1651       if (IsOneZero)
1652         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1653       else
1654         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1655       NSI->takeName(LI);
1656       LI->replaceAllUsesWith(NSI);
1657     }
1658     UI->eraseFromParent();
1659   }
1660 
1661   // Retain the name of the old global variable. People who are debugging their
1662   // programs may expect these variables to be named the same.
1663   NewGV->takeName(GV);
1664   GV->eraseFromParent();
1665   return true;
1666 }
1667 
1668 static bool deleteIfDead(GlobalValue &GV,
1669                          SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
1670   GV.removeDeadConstantUsers();
1671 
1672   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1673     return false;
1674 
1675   if (const Comdat *C = GV.getComdat())
1676     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1677       return false;
1678 
1679   bool Dead;
1680   if (auto *F = dyn_cast<Function>(&GV))
1681     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1682   else
1683     Dead = GV.use_empty();
1684   if (!Dead)
1685     return false;
1686 
1687   DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1688   GV.eraseFromParent();
1689   ++NumDeleted;
1690   return true;
1691 }
1692 
1693 static bool isPointerValueDeadOnEntryToFunction(
1694     const Function *F, GlobalValue *GV,
1695     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1696   // Find all uses of GV. We expect them all to be in F, and if we can't
1697   // identify any of the uses we bail out.
1698   //
1699   // On each of these uses, identify if the memory that GV points to is
1700   // used/required/live at the start of the function. If it is not, for example
1701   // if the first thing the function does is store to the GV, the GV can
1702   // possibly be demoted.
1703   //
1704   // We don't do an exhaustive search for memory operations - simply look
1705   // through bitcasts as they're quite common and benign.
1706   const DataLayout &DL = GV->getParent()->getDataLayout();
1707   SmallVector<LoadInst *, 4> Loads;
1708   SmallVector<StoreInst *, 4> Stores;
1709   for (auto *U : GV->users()) {
1710     if (Operator::getOpcode(U) == Instruction::BitCast) {
1711       for (auto *UU : U->users()) {
1712         if (auto *LI = dyn_cast<LoadInst>(UU))
1713           Loads.push_back(LI);
1714         else if (auto *SI = dyn_cast<StoreInst>(UU))
1715           Stores.push_back(SI);
1716         else
1717           return false;
1718       }
1719       continue;
1720     }
1721 
1722     Instruction *I = dyn_cast<Instruction>(U);
1723     if (!I)
1724       return false;
1725     assert(I->getParent()->getParent() == F);
1726 
1727     if (auto *LI = dyn_cast<LoadInst>(I))
1728       Loads.push_back(LI);
1729     else if (auto *SI = dyn_cast<StoreInst>(I))
1730       Stores.push_back(SI);
1731     else
1732       return false;
1733   }
1734 
1735   // We have identified all uses of GV into loads and stores. Now check if all
1736   // of them are known not to depend on the value of the global at the function
1737   // entry point. We do this by ensuring that every load is dominated by at
1738   // least one store.
1739   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1740 
1741   // The below check is quadratic. Check we're not going to do too many tests.
1742   // FIXME: Even though this will always have worst-case quadratic time, we
1743   // could put effort into minimizing the average time by putting stores that
1744   // have been shown to dominate at least one load at the beginning of the
1745   // Stores array, making subsequent dominance checks more likely to succeed
1746   // early.
1747   //
1748   // The threshold here is fairly large because global->local demotion is a
1749   // very powerful optimization should it fire.
1750   const unsigned Threshold = 100;
1751   if (Loads.size() * Stores.size() > Threshold)
1752     return false;
1753 
1754   for (auto *L : Loads) {
1755     auto *LTy = L->getType();
1756     if (none_of(Stores, [&](const StoreInst *S) {
1757           auto *STy = S->getValueOperand()->getType();
1758           // The load is only dominated by the store if DomTree says so
1759           // and the number of bits loaded in L is less than or equal to
1760           // the number of bits stored in S.
1761           return DT.dominates(S, L) &&
1762                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1763         }))
1764       return false;
1765   }
1766   // All loads have known dependences inside F, so the global can be localized.
1767   return true;
1768 }
1769 
1770 /// C may have non-instruction users. Can all of those users be turned into
1771 /// instructions?
1772 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1773   // We don't do this exhaustively. The most common pattern that we really need
1774   // to care about is a constant GEP or constant bitcast - so just looking
1775   // through one single ConstantExpr.
1776   //
1777   // The set of constants that this function returns true for must be able to be
1778   // handled by makeAllConstantUsesInstructions.
1779   for (auto *U : C->users()) {
1780     if (isa<Instruction>(U))
1781       continue;
1782     if (!isa<ConstantExpr>(U))
1783       // Non instruction, non-constantexpr user; cannot convert this.
1784       return false;
1785     for (auto *UU : U->users())
1786       if (!isa<Instruction>(UU))
1787         // A constantexpr used by another constant. We don't try and recurse any
1788         // further but just bail out at this point.
1789         return false;
1790   }
1791 
1792   return true;
1793 }
1794 
1795 /// C may have non-instruction users, and
1796 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1797 /// non-instruction users to instructions.
1798 static void makeAllConstantUsesInstructions(Constant *C) {
1799   SmallVector<ConstantExpr*,4> Users;
1800   for (auto *U : C->users()) {
1801     if (isa<ConstantExpr>(U))
1802       Users.push_back(cast<ConstantExpr>(U));
1803     else
1804       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1805       // should not have returned true for C.
1806       assert(
1807           isa<Instruction>(U) &&
1808           "Can't transform non-constantexpr non-instruction to instruction!");
1809   }
1810 
1811   SmallVector<Value*,4> UUsers;
1812   for (auto *U : Users) {
1813     UUsers.clear();
1814     for (auto *UU : U->users())
1815       UUsers.push_back(UU);
1816     for (auto *UU : UUsers) {
1817       Instruction *UI = cast<Instruction>(UU);
1818       Instruction *NewU = U->getAsInstruction();
1819       NewU->insertBefore(UI);
1820       UI->replaceUsesOfWith(U, NewU);
1821     }
1822     // We've replaced all the uses, so destroy the constant. (destroyConstant
1823     // will update value handles and metadata.)
1824     U->destroyConstant();
1825   }
1826 }
1827 
1828 /// Analyze the specified global variable and optimize
1829 /// it if possible.  If we make a change, return true.
1830 static bool processInternalGlobal(
1831     GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI,
1832     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1833   auto &DL = GV->getParent()->getDataLayout();
1834   // If this is a first class global and has only one accessing function and
1835   // this function is non-recursive, we replace the global with a local alloca
1836   // in this function.
1837   //
1838   // NOTE: It doesn't make sense to promote non-single-value types since we
1839   // are just replacing static memory to stack memory.
1840   //
1841   // If the global is in different address space, don't bring it to stack.
1842   if (!GS.HasMultipleAccessingFunctions &&
1843       GS.AccessingFunction &&
1844       GV->getValueType()->isSingleValueType() &&
1845       GV->getType()->getAddressSpace() == 0 &&
1846       !GV->isExternallyInitialized() &&
1847       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1848       GS.AccessingFunction->doesNotRecurse() &&
1849       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1850                                           LookupDomTree)) {
1851     const DataLayout &DL = GV->getParent()->getDataLayout();
1852 
1853     DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1854     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1855                                                    ->getEntryBlock().begin());
1856     Type *ElemTy = GV->getValueType();
1857     // FIXME: Pass Global's alignment when globals have alignment
1858     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1859                                         GV->getName(), &FirstI);
1860     if (!isa<UndefValue>(GV->getInitializer()))
1861       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1862 
1863     makeAllConstantUsesInstructions(GV);
1864 
1865     GV->replaceAllUsesWith(Alloca);
1866     GV->eraseFromParent();
1867     ++NumLocalized;
1868     return true;
1869   }
1870 
1871   // If the global is never loaded (but may be stored to), it is dead.
1872   // Delete it now.
1873   if (!GS.IsLoaded) {
1874     DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1875 
1876     bool Changed;
1877     if (isLeakCheckerRoot(GV)) {
1878       // Delete any constant stores to the global.
1879       Changed = CleanupPointerRootUsers(GV, TLI);
1880     } else {
1881       // Delete any stores we can find to the global.  We may not be able to
1882       // make it completely dead though.
1883       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1884     }
1885 
1886     // If the global is dead now, delete it.
1887     if (GV->use_empty()) {
1888       GV->eraseFromParent();
1889       ++NumDeleted;
1890       Changed = true;
1891     }
1892     return Changed;
1893 
1894   }
1895   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1896     DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1897     GV->setConstant(true);
1898 
1899     // Clean up any obviously simplifiable users now.
1900     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1901 
1902     // If the global is dead now, just nuke it.
1903     if (GV->use_empty()) {
1904       DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1905             << "all users and delete global!\n");
1906       GV->eraseFromParent();
1907       ++NumDeleted;
1908       return true;
1909     }
1910 
1911     // Fall through to the next check; see if we can optimize further.
1912     ++NumMarked;
1913   }
1914   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1915     const DataLayout &DL = GV->getParent()->getDataLayout();
1916     if (SRAGlobal(GV, DL))
1917       return true;
1918   }
1919   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1920     // If the initial value for the global was an undef value, and if only
1921     // one other value was stored into it, we can just change the
1922     // initializer to be the stored value, then delete all stores to the
1923     // global.  This allows us to mark it constant.
1924     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1925       if (isa<UndefValue>(GV->getInitializer())) {
1926         // Change the initial value here.
1927         GV->setInitializer(SOVConstant);
1928 
1929         // Clean up any obviously simplifiable users now.
1930         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1931 
1932         if (GV->use_empty()) {
1933           DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1934                        << "simplify all users and delete global!\n");
1935           GV->eraseFromParent();
1936           ++NumDeleted;
1937         }
1938         ++NumSubstitute;
1939         return true;
1940       }
1941 
1942     // Try to optimize globals based on the knowledge that only one value
1943     // (besides its initializer) is ever stored to the global.
1944     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
1945       return true;
1946 
1947     // Otherwise, if the global was not a boolean, we can shrink it to be a
1948     // boolean.
1949     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1950       if (GS.Ordering == AtomicOrdering::NotAtomic) {
1951         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1952           ++NumShrunkToBool;
1953           return true;
1954         }
1955       }
1956     }
1957   }
1958 
1959   return false;
1960 }
1961 
1962 /// Analyze the specified global variable and optimize it if possible.  If we
1963 /// make a change, return true.
1964 static bool
1965 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI,
1966               function_ref<DominatorTree &(Function &)> LookupDomTree) {
1967   if (GV.getName().startswith("llvm."))
1968     return false;
1969 
1970   GlobalStatus GS;
1971 
1972   if (GlobalStatus::analyzeGlobal(&GV, GS))
1973     return false;
1974 
1975   bool Changed = false;
1976   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1977     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1978                                                : GlobalValue::UnnamedAddr::Local;
1979     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1980       GV.setUnnamedAddr(NewUnnamedAddr);
1981       NumUnnamed++;
1982       Changed = true;
1983     }
1984   }
1985 
1986   // Do more involved optimizations if the global is internal.
1987   if (!GV.hasLocalLinkage())
1988     return Changed;
1989 
1990   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1991   if (!GVar)
1992     return Changed;
1993 
1994   if (GVar->isConstant() || !GVar->hasInitializer())
1995     return Changed;
1996 
1997   return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed;
1998 }
1999 
2000 /// Walk all of the direct calls of the specified function, changing them to
2001 /// FastCC.
2002 static void ChangeCalleesToFastCall(Function *F) {
2003   for (User *U : F->users()) {
2004     if (isa<BlockAddress>(U))
2005       continue;
2006     CallSite CS(cast<Instruction>(U));
2007     CS.setCallingConv(CallingConv::Fast);
2008   }
2009 }
2010 
2011 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) {
2012   // There can be at most one attribute set with a nest attribute.
2013   unsigned NestIndex;
2014   if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex))
2015     return Attrs.removeAttribute(C, NestIndex, Attribute::Nest);
2016   return Attrs;
2017 }
2018 
2019 static void RemoveNestAttribute(Function *F) {
2020   F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2021   for (User *U : F->users()) {
2022     if (isa<BlockAddress>(U))
2023       continue;
2024     CallSite CS(cast<Instruction>(U));
2025     CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
2026   }
2027 }
2028 
2029 /// Return true if this is a calling convention that we'd like to change.  The
2030 /// idea here is that we don't want to mess with the convention if the user
2031 /// explicitly requested something with performance implications like coldcc,
2032 /// GHC, or anyregcc.
2033 static bool isProfitableToMakeFastCC(Function *F) {
2034   CallingConv::ID CC = F->getCallingConv();
2035   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2036   return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
2037 }
2038 
2039 static bool
2040 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI,
2041                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2042                   SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2043   bool Changed = false;
2044   // Optimize functions.
2045   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2046     Function *F = &*FI++;
2047     // Functions without names cannot be referenced outside this module.
2048     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2049       F->setLinkage(GlobalValue::InternalLinkage);
2050 
2051     if (deleteIfDead(*F, NotDiscardableComdats)) {
2052       Changed = true;
2053       continue;
2054     }
2055 
2056     // LLVM's definition of dominance allows instructions that are cyclic
2057     // in unreachable blocks, e.g.:
2058     // %pat = select i1 %condition, @global, i16* %pat
2059     // because any instruction dominates an instruction in a block that's
2060     // not reachable from entry.
2061     // So, remove unreachable blocks from the function, because a) there's
2062     // no point in analyzing them and b) GlobalOpt should otherwise grow
2063     // some more complicated logic to break these cycles.
2064     // Removing unreachable blocks might invalidate the dominator so we
2065     // recalculate it.
2066     if (!F->isDeclaration()) {
2067       if (removeUnreachableBlocks(*F)) {
2068         auto &DT = LookupDomTree(*F);
2069         DT.recalculate(*F);
2070         Changed = true;
2071       }
2072     }
2073 
2074     Changed |= processGlobal(*F, TLI, LookupDomTree);
2075 
2076     if (!F->hasLocalLinkage())
2077       continue;
2078     if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
2079         !F->hasAddressTaken()) {
2080       // If this function has a calling convention worth changing, is not a
2081       // varargs function, and is only called directly, promote it to use the
2082       // Fast calling convention.
2083       F->setCallingConv(CallingConv::Fast);
2084       ChangeCalleesToFastCall(F);
2085       ++NumFastCallFns;
2086       Changed = true;
2087     }
2088 
2089     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2090         !F->hasAddressTaken()) {
2091       // The function is not used by a trampoline intrinsic, so it is safe
2092       // to remove the 'nest' attribute.
2093       RemoveNestAttribute(F);
2094       ++NumNestRemoved;
2095       Changed = true;
2096     }
2097   }
2098   return Changed;
2099 }
2100 
2101 static bool
2102 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI,
2103                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2104                    SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2105   bool Changed = false;
2106 
2107   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2108        GVI != E; ) {
2109     GlobalVariable *GV = &*GVI++;
2110     // Global variables without names cannot be referenced outside this module.
2111     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2112       GV->setLinkage(GlobalValue::InternalLinkage);
2113     // Simplify the initializer.
2114     if (GV->hasInitializer())
2115       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2116         auto &DL = M.getDataLayout();
2117         Constant *New = ConstantFoldConstant(C, DL, TLI);
2118         if (New && New != C)
2119           GV->setInitializer(New);
2120       }
2121 
2122     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2123       Changed = true;
2124       continue;
2125     }
2126 
2127     Changed |= processGlobal(*GV, TLI, LookupDomTree);
2128   }
2129   return Changed;
2130 }
2131 
2132 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2133 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2134 /// GEP operands of Addr [0, OpNo) have been stepped into.
2135 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2136                                    ConstantExpr *Addr, unsigned OpNo) {
2137   // Base case of the recursion.
2138   if (OpNo == Addr->getNumOperands()) {
2139     assert(Val->getType() == Init->getType() && "Type mismatch!");
2140     return Val;
2141   }
2142 
2143   SmallVector<Constant*, 32> Elts;
2144   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2145     // Break up the constant into its elements.
2146     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2147       Elts.push_back(Init->getAggregateElement(i));
2148 
2149     // Replace the element that we are supposed to.
2150     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2151     unsigned Idx = CU->getZExtValue();
2152     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2153     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2154 
2155     // Return the modified struct.
2156     return ConstantStruct::get(STy, Elts);
2157   }
2158 
2159   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2160   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2161   uint64_t NumElts = InitTy->getNumElements();
2162 
2163   // Break up the array into elements.
2164   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2165     Elts.push_back(Init->getAggregateElement(i));
2166 
2167   assert(CI->getZExtValue() < NumElts);
2168   Elts[CI->getZExtValue()] =
2169     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2170 
2171   if (Init->getType()->isArrayTy())
2172     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2173   return ConstantVector::get(Elts);
2174 }
2175 
2176 /// We have decided that Addr (which satisfies the predicate
2177 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2178 static void CommitValueTo(Constant *Val, Constant *Addr) {
2179   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2180     assert(GV->hasInitializer());
2181     GV->setInitializer(Val);
2182     return;
2183   }
2184 
2185   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2186   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2187   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2188 }
2189 
2190 /// Evaluate static constructors in the function, if we can.  Return true if we
2191 /// can, false otherwise.
2192 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2193                                       TargetLibraryInfo *TLI) {
2194   // Call the function.
2195   Evaluator Eval(DL, TLI);
2196   Constant *RetValDummy;
2197   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2198                                            SmallVector<Constant*, 0>());
2199 
2200   if (EvalSuccess) {
2201     ++NumCtorsEvaluated;
2202 
2203     // We succeeded at evaluation: commit the result.
2204     DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2205           << F->getName() << "' to " << Eval.getMutatedMemory().size()
2206           << " stores.\n");
2207     for (const auto &I : Eval.getMutatedMemory())
2208       CommitValueTo(I.second, I.first);
2209     for (GlobalVariable *GV : Eval.getInvariants())
2210       GV->setConstant(true);
2211   }
2212 
2213   return EvalSuccess;
2214 }
2215 
2216 static int compareNames(Constant *const *A, Constant *const *B) {
2217   Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
2218   Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
2219   return AStripped->getName().compare(BStripped->getName());
2220 }
2221 
2222 static void setUsedInitializer(GlobalVariable &V,
2223                                const SmallPtrSet<GlobalValue *, 8> &Init) {
2224   if (Init.empty()) {
2225     V.eraseFromParent();
2226     return;
2227   }
2228 
2229   // Type of pointer to the array of pointers.
2230   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2231 
2232   SmallVector<llvm::Constant *, 8> UsedArray;
2233   for (GlobalValue *GV : Init) {
2234     Constant *Cast
2235       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2236     UsedArray.push_back(Cast);
2237   }
2238   // Sort to get deterministic order.
2239   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2240   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2241 
2242   Module *M = V.getParent();
2243   V.removeFromParent();
2244   GlobalVariable *NV =
2245       new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
2246                          llvm::ConstantArray::get(ATy, UsedArray), "");
2247   NV->takeName(&V);
2248   NV->setSection("llvm.metadata");
2249   delete &V;
2250 }
2251 
2252 namespace {
2253 /// An easy to access representation of llvm.used and llvm.compiler.used.
2254 class LLVMUsed {
2255   SmallPtrSet<GlobalValue *, 8> Used;
2256   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2257   GlobalVariable *UsedV;
2258   GlobalVariable *CompilerUsedV;
2259 
2260 public:
2261   LLVMUsed(Module &M) {
2262     UsedV = collectUsedGlobalVariables(M, Used, false);
2263     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2264   }
2265   typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
2266   typedef iterator_range<iterator> used_iterator_range;
2267   iterator usedBegin() { return Used.begin(); }
2268   iterator usedEnd() { return Used.end(); }
2269   used_iterator_range used() {
2270     return used_iterator_range(usedBegin(), usedEnd());
2271   }
2272   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2273   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2274   used_iterator_range compilerUsed() {
2275     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2276   }
2277   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2278   bool compilerUsedCount(GlobalValue *GV) const {
2279     return CompilerUsed.count(GV);
2280   }
2281   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2282   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2283   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2284   bool compilerUsedInsert(GlobalValue *GV) {
2285     return CompilerUsed.insert(GV).second;
2286   }
2287 
2288   void syncVariablesAndSets() {
2289     if (UsedV)
2290       setUsedInitializer(*UsedV, Used);
2291     if (CompilerUsedV)
2292       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2293   }
2294 };
2295 }
2296 
2297 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2298   if (GA.use_empty()) // No use at all.
2299     return false;
2300 
2301   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2302          "We should have removed the duplicated "
2303          "element from llvm.compiler.used");
2304   if (!GA.hasOneUse())
2305     // Strictly more than one use. So at least one is not in llvm.used and
2306     // llvm.compiler.used.
2307     return true;
2308 
2309   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2310   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2311 }
2312 
2313 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2314                                                const LLVMUsed &U) {
2315   unsigned N = 2;
2316   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2317          "We should have removed the duplicated "
2318          "element from llvm.compiler.used");
2319   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2320     ++N;
2321   return V.hasNUsesOrMore(N);
2322 }
2323 
2324 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2325   if (!GA.hasLocalLinkage())
2326     return true;
2327 
2328   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2329 }
2330 
2331 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2332                              bool &RenameTarget) {
2333   RenameTarget = false;
2334   bool Ret = false;
2335   if (hasUseOtherThanLLVMUsed(GA, U))
2336     Ret = true;
2337 
2338   // If the alias is externally visible, we may still be able to simplify it.
2339   if (!mayHaveOtherReferences(GA, U))
2340     return Ret;
2341 
2342   // If the aliasee has internal linkage, give it the name and linkage
2343   // of the alias, and delete the alias.  This turns:
2344   //   define internal ... @f(...)
2345   //   @a = alias ... @f
2346   // into:
2347   //   define ... @a(...)
2348   Constant *Aliasee = GA.getAliasee();
2349   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2350   if (!Target->hasLocalLinkage())
2351     return Ret;
2352 
2353   // Do not perform the transform if multiple aliases potentially target the
2354   // aliasee. This check also ensures that it is safe to replace the section
2355   // and other attributes of the aliasee with those of the alias.
2356   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2357     return Ret;
2358 
2359   RenameTarget = true;
2360   return true;
2361 }
2362 
2363 static bool
2364 OptimizeGlobalAliases(Module &M,
2365                       SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2366   bool Changed = false;
2367   LLVMUsed Used(M);
2368 
2369   for (GlobalValue *GV : Used.used())
2370     Used.compilerUsedErase(GV);
2371 
2372   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2373        I != E;) {
2374     GlobalAlias *J = &*I++;
2375 
2376     // Aliases without names cannot be referenced outside this module.
2377     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2378       J->setLinkage(GlobalValue::InternalLinkage);
2379 
2380     if (deleteIfDead(*J, NotDiscardableComdats)) {
2381       Changed = true;
2382       continue;
2383     }
2384 
2385     // If the aliasee may change at link time, nothing can be done - bail out.
2386     if (J->isInterposable())
2387       continue;
2388 
2389     Constant *Aliasee = J->getAliasee();
2390     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2391     // We can't trivially replace the alias with the aliasee if the aliasee is
2392     // non-trivial in some way.
2393     // TODO: Try to handle non-zero GEPs of local aliasees.
2394     if (!Target)
2395       continue;
2396     Target->removeDeadConstantUsers();
2397 
2398     // Make all users of the alias use the aliasee instead.
2399     bool RenameTarget;
2400     if (!hasUsesToReplace(*J, Used, RenameTarget))
2401       continue;
2402 
2403     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2404     ++NumAliasesResolved;
2405     Changed = true;
2406 
2407     if (RenameTarget) {
2408       // Give the aliasee the name, linkage and other attributes of the alias.
2409       Target->takeName(&*J);
2410       Target->setLinkage(J->getLinkage());
2411       Target->setVisibility(J->getVisibility());
2412       Target->setDLLStorageClass(J->getDLLStorageClass());
2413 
2414       if (Used.usedErase(&*J))
2415         Used.usedInsert(Target);
2416 
2417       if (Used.compilerUsedErase(&*J))
2418         Used.compilerUsedInsert(Target);
2419     } else if (mayHaveOtherReferences(*J, Used))
2420       continue;
2421 
2422     // Delete the alias.
2423     M.getAliasList().erase(J);
2424     ++NumAliasesRemoved;
2425     Changed = true;
2426   }
2427 
2428   Used.syncVariablesAndSets();
2429 
2430   return Changed;
2431 }
2432 
2433 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2434   LibFunc F = LibFunc_cxa_atexit;
2435   if (!TLI->has(F))
2436     return nullptr;
2437 
2438   Function *Fn = M.getFunction(TLI->getName(F));
2439   if (!Fn)
2440     return nullptr;
2441 
2442   // Make sure that the function has the correct prototype.
2443   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2444     return nullptr;
2445 
2446   return Fn;
2447 }
2448 
2449 /// Returns whether the given function is an empty C++ destructor and can
2450 /// therefore be eliminated.
2451 /// Note that we assume that other optimization passes have already simplified
2452 /// the code so we only look for a function with a single basic block, where
2453 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2454 /// other side-effect free instructions.
2455 static bool cxxDtorIsEmpty(const Function &Fn,
2456                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
2457   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2458   // nounwind, but that doesn't seem worth doing.
2459   if (Fn.isDeclaration())
2460     return false;
2461 
2462   if (++Fn.begin() != Fn.end())
2463     return false;
2464 
2465   const BasicBlock &EntryBlock = Fn.getEntryBlock();
2466   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2467        I != E; ++I) {
2468     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2469       // Ignore debug intrinsics.
2470       if (isa<DbgInfoIntrinsic>(CI))
2471         continue;
2472 
2473       const Function *CalledFn = CI->getCalledFunction();
2474 
2475       if (!CalledFn)
2476         return false;
2477 
2478       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2479 
2480       // Don't treat recursive functions as empty.
2481       if (!NewCalledFunctions.insert(CalledFn).second)
2482         return false;
2483 
2484       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2485         return false;
2486     } else if (isa<ReturnInst>(*I))
2487       return true; // We're done.
2488     else if (I->mayHaveSideEffects())
2489       return false; // Destructor with side effects, bail.
2490   }
2491 
2492   return false;
2493 }
2494 
2495 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2496   /// Itanium C++ ABI p3.3.5:
2497   ///
2498   ///   After constructing a global (or local static) object, that will require
2499   ///   destruction on exit, a termination function is registered as follows:
2500   ///
2501   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2502   ///
2503   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2504   ///   call f(p) when DSO d is unloaded, before all such termination calls
2505   ///   registered before this one. It returns zero if registration is
2506   ///   successful, nonzero on failure.
2507 
2508   // This pass will look for calls to __cxa_atexit where the function is trivial
2509   // and remove them.
2510   bool Changed = false;
2511 
2512   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2513        I != E;) {
2514     // We're only interested in calls. Theoretically, we could handle invoke
2515     // instructions as well, but neither llvm-gcc nor clang generate invokes
2516     // to __cxa_atexit.
2517     CallInst *CI = dyn_cast<CallInst>(*I++);
2518     if (!CI)
2519       continue;
2520 
2521     Function *DtorFn =
2522       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2523     if (!DtorFn)
2524       continue;
2525 
2526     SmallPtrSet<const Function *, 8> CalledFunctions;
2527     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2528       continue;
2529 
2530     // Just remove the call.
2531     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2532     CI->eraseFromParent();
2533 
2534     ++NumCXXDtorsRemoved;
2535 
2536     Changed |= true;
2537   }
2538 
2539   return Changed;
2540 }
2541 
2542 static bool optimizeGlobalsInModule(
2543     Module &M, const DataLayout &DL, TargetLibraryInfo *TLI,
2544     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2545   SmallSet<const Comdat *, 8> NotDiscardableComdats;
2546   bool Changed = false;
2547   bool LocalChange = true;
2548   while (LocalChange) {
2549     LocalChange = false;
2550 
2551     NotDiscardableComdats.clear();
2552     for (const GlobalVariable &GV : M.globals())
2553       if (const Comdat *C = GV.getComdat())
2554         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2555           NotDiscardableComdats.insert(C);
2556     for (Function &F : M)
2557       if (const Comdat *C = F.getComdat())
2558         if (!F.isDefTriviallyDead())
2559           NotDiscardableComdats.insert(C);
2560     for (GlobalAlias &GA : M.aliases())
2561       if (const Comdat *C = GA.getComdat())
2562         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2563           NotDiscardableComdats.insert(C);
2564 
2565     // Delete functions that are trivially dead, ccc -> fastcc
2566     LocalChange |=
2567         OptimizeFunctions(M, TLI, LookupDomTree, NotDiscardableComdats);
2568 
2569     // Optimize global_ctors list.
2570     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2571       return EvaluateStaticConstructor(F, DL, TLI);
2572     });
2573 
2574     // Optimize non-address-taken globals.
2575     LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree,
2576                                       NotDiscardableComdats);
2577 
2578     // Resolve aliases, when possible.
2579     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2580 
2581     // Try to remove trivial global destructors if they are not removed
2582     // already.
2583     Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
2584     if (CXAAtExitFn)
2585       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2586 
2587     Changed |= LocalChange;
2588   }
2589 
2590   // TODO: Move all global ctors functions to the end of the module for code
2591   // layout.
2592 
2593   return Changed;
2594 }
2595 
2596 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2597     auto &DL = M.getDataLayout();
2598     auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
2599     auto &FAM =
2600         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2601     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2602       return FAM.getResult<DominatorTreeAnalysis>(F);
2603     };
2604     if (!optimizeGlobalsInModule(M, DL, &TLI, LookupDomTree))
2605       return PreservedAnalyses::all();
2606     return PreservedAnalyses::none();
2607 }
2608 
2609 namespace {
2610 struct GlobalOptLegacyPass : public ModulePass {
2611   static char ID; // Pass identification, replacement for typeid
2612   GlobalOptLegacyPass() : ModulePass(ID) {
2613     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2614   }
2615 
2616   bool runOnModule(Module &M) override {
2617     if (skipModule(M))
2618       return false;
2619 
2620     auto &DL = M.getDataLayout();
2621     auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2622     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2623       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2624     };
2625     return optimizeGlobalsInModule(M, DL, TLI, LookupDomTree);
2626   }
2627 
2628   void getAnalysisUsage(AnalysisUsage &AU) const override {
2629     AU.addRequired<TargetLibraryInfoWrapperPass>();
2630     AU.addRequired<DominatorTreeWrapperPass>();
2631   }
2632 };
2633 }
2634 
2635 char GlobalOptLegacyPass::ID = 0;
2636 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2637                       "Global Variable Optimizer", false, false)
2638 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2639 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2640 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2641                     "Global Variable Optimizer", false, false)
2642 
2643 ModulePass *llvm::createGlobalOptimizerPass() {
2644   return new GlobalOptLegacyPass();
2645 }
2646