1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/GlobalOpt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/CallingConv.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfoMetadata.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/IPO.h" 45 #include "llvm/Transforms/Utils/CtorUtils.h" 46 #include "llvm/Transforms/Utils/Evaluator.h" 47 #include "llvm/Transforms/Utils/GlobalStatus.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include <algorithm> 50 using namespace llvm; 51 52 #define DEBUG_TYPE "globalopt" 53 54 STATISTIC(NumMarked , "Number of globals marked constant"); 55 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 56 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 57 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 58 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 59 STATISTIC(NumDeleted , "Number of globals deleted"); 60 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 61 STATISTIC(NumLocalized , "Number of globals localized"); 62 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 63 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 64 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 65 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 66 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 67 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 68 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 69 70 /// Is this global variable possibly used by a leak checker as a root? If so, 71 /// we might not really want to eliminate the stores to it. 72 static bool isLeakCheckerRoot(GlobalVariable *GV) { 73 // A global variable is a root if it is a pointer, or could plausibly contain 74 // a pointer. There are two challenges; one is that we could have a struct 75 // the has an inner member which is a pointer. We recurse through the type to 76 // detect these (up to a point). The other is that we may actually be a union 77 // of a pointer and another type, and so our LLVM type is an integer which 78 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 79 // potentially contained here. 80 81 if (GV->hasPrivateLinkage()) 82 return false; 83 84 SmallVector<Type *, 4> Types; 85 Types.push_back(GV->getValueType()); 86 87 unsigned Limit = 20; 88 do { 89 Type *Ty = Types.pop_back_val(); 90 switch (Ty->getTypeID()) { 91 default: break; 92 case Type::PointerTyID: return true; 93 case Type::ArrayTyID: 94 case Type::VectorTyID: { 95 SequentialType *STy = cast<SequentialType>(Ty); 96 Types.push_back(STy->getElementType()); 97 break; 98 } 99 case Type::StructTyID: { 100 StructType *STy = cast<StructType>(Ty); 101 if (STy->isOpaque()) return true; 102 for (StructType::element_iterator I = STy->element_begin(), 103 E = STy->element_end(); I != E; ++I) { 104 Type *InnerTy = *I; 105 if (isa<PointerType>(InnerTy)) return true; 106 if (isa<CompositeType>(InnerTy)) 107 Types.push_back(InnerTy); 108 } 109 break; 110 } 111 } 112 if (--Limit == 0) return true; 113 } while (!Types.empty()); 114 return false; 115 } 116 117 /// Given a value that is stored to a global but never read, determine whether 118 /// it's safe to remove the store and the chain of computation that feeds the 119 /// store. 120 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 121 do { 122 if (isa<Constant>(V)) 123 return true; 124 if (!V->hasOneUse()) 125 return false; 126 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 127 isa<GlobalValue>(V)) 128 return false; 129 if (isAllocationFn(V, TLI)) 130 return true; 131 132 Instruction *I = cast<Instruction>(V); 133 if (I->mayHaveSideEffects()) 134 return false; 135 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 136 if (!GEP->hasAllConstantIndices()) 137 return false; 138 } else if (I->getNumOperands() != 1) { 139 return false; 140 } 141 142 V = I->getOperand(0); 143 } while (1); 144 } 145 146 /// This GV is a pointer root. Loop over all users of the global and clean up 147 /// any that obviously don't assign the global a value that isn't dynamically 148 /// allocated. 149 static bool CleanupPointerRootUsers(GlobalVariable *GV, 150 const TargetLibraryInfo *TLI) { 151 // A brief explanation of leak checkers. The goal is to find bugs where 152 // pointers are forgotten, causing an accumulating growth in memory 153 // usage over time. The common strategy for leak checkers is to whitelist the 154 // memory pointed to by globals at exit. This is popular because it also 155 // solves another problem where the main thread of a C++ program may shut down 156 // before other threads that are still expecting to use those globals. To 157 // handle that case, we expect the program may create a singleton and never 158 // destroy it. 159 160 bool Changed = false; 161 162 // If Dead[n].first is the only use of a malloc result, we can delete its 163 // chain of computation and the store to the global in Dead[n].second. 164 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 165 166 // Constants can't be pointers to dynamically allocated memory. 167 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 168 UI != E;) { 169 User *U = *UI++; 170 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 171 Value *V = SI->getValueOperand(); 172 if (isa<Constant>(V)) { 173 Changed = true; 174 SI->eraseFromParent(); 175 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 176 if (I->hasOneUse()) 177 Dead.push_back(std::make_pair(I, SI)); 178 } 179 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 180 if (isa<Constant>(MSI->getValue())) { 181 Changed = true; 182 MSI->eraseFromParent(); 183 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 184 if (I->hasOneUse()) 185 Dead.push_back(std::make_pair(I, MSI)); 186 } 187 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 188 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 189 if (MemSrc && MemSrc->isConstant()) { 190 Changed = true; 191 MTI->eraseFromParent(); 192 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 193 if (I->hasOneUse()) 194 Dead.push_back(std::make_pair(I, MTI)); 195 } 196 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 197 if (CE->use_empty()) { 198 CE->destroyConstant(); 199 Changed = true; 200 } 201 } else if (Constant *C = dyn_cast<Constant>(U)) { 202 if (isSafeToDestroyConstant(C)) { 203 C->destroyConstant(); 204 // This could have invalidated UI, start over from scratch. 205 Dead.clear(); 206 CleanupPointerRootUsers(GV, TLI); 207 return true; 208 } 209 } 210 } 211 212 for (int i = 0, e = Dead.size(); i != e; ++i) { 213 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 214 Dead[i].second->eraseFromParent(); 215 Instruction *I = Dead[i].first; 216 do { 217 if (isAllocationFn(I, TLI)) 218 break; 219 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 220 if (!J) 221 break; 222 I->eraseFromParent(); 223 I = J; 224 } while (1); 225 I->eraseFromParent(); 226 } 227 } 228 229 return Changed; 230 } 231 232 /// We just marked GV constant. Loop over all users of the global, cleaning up 233 /// the obvious ones. This is largely just a quick scan over the use list to 234 /// clean up the easy and obvious cruft. This returns true if it made a change. 235 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 236 const DataLayout &DL, 237 TargetLibraryInfo *TLI) { 238 bool Changed = false; 239 // Note that we need to use a weak value handle for the worklist items. When 240 // we delete a constant array, we may also be holding pointer to one of its 241 // elements (or an element of one of its elements if we're dealing with an 242 // array of arrays) in the worklist. 243 SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end()); 244 while (!WorkList.empty()) { 245 Value *UV = WorkList.pop_back_val(); 246 if (!UV) 247 continue; 248 249 User *U = cast<User>(UV); 250 251 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 252 if (Init) { 253 // Replace the load with the initializer. 254 LI->replaceAllUsesWith(Init); 255 LI->eraseFromParent(); 256 Changed = true; 257 } 258 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 259 // Store must be unreachable or storing Init into the global. 260 SI->eraseFromParent(); 261 Changed = true; 262 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 263 if (CE->getOpcode() == Instruction::GetElementPtr) { 264 Constant *SubInit = nullptr; 265 if (Init) 266 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 267 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 268 } else if ((CE->getOpcode() == Instruction::BitCast && 269 CE->getType()->isPointerTy()) || 270 CE->getOpcode() == Instruction::AddrSpaceCast) { 271 // Pointer cast, delete any stores and memsets to the global. 272 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 273 } 274 275 if (CE->use_empty()) { 276 CE->destroyConstant(); 277 Changed = true; 278 } 279 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 280 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 281 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 282 // and will invalidate our notion of what Init is. 283 Constant *SubInit = nullptr; 284 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 285 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 286 ConstantFoldInstruction(GEP, DL, TLI)); 287 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 288 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 289 290 // If the initializer is an all-null value and we have an inbounds GEP, 291 // we already know what the result of any load from that GEP is. 292 // TODO: Handle splats. 293 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 294 SubInit = Constant::getNullValue(GEP->getResultElementType()); 295 } 296 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 297 298 if (GEP->use_empty()) { 299 GEP->eraseFromParent(); 300 Changed = true; 301 } 302 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 303 if (MI->getRawDest() == V) { 304 MI->eraseFromParent(); 305 Changed = true; 306 } 307 308 } else if (Constant *C = dyn_cast<Constant>(U)) { 309 // If we have a chain of dead constantexprs or other things dangling from 310 // us, and if they are all dead, nuke them without remorse. 311 if (isSafeToDestroyConstant(C)) { 312 C->destroyConstant(); 313 CleanupConstantGlobalUsers(V, Init, DL, TLI); 314 return true; 315 } 316 } 317 } 318 return Changed; 319 } 320 321 /// Return true if the specified instruction is a safe user of a derived 322 /// expression from a global that we want to SROA. 323 static bool isSafeSROAElementUse(Value *V) { 324 // We might have a dead and dangling constant hanging off of here. 325 if (Constant *C = dyn_cast<Constant>(V)) 326 return isSafeToDestroyConstant(C); 327 328 Instruction *I = dyn_cast<Instruction>(V); 329 if (!I) return false; 330 331 // Loads are ok. 332 if (isa<LoadInst>(I)) return true; 333 334 // Stores *to* the pointer are ok. 335 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 336 return SI->getOperand(0) != V; 337 338 // Otherwise, it must be a GEP. 339 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 340 if (!GEPI) return false; 341 342 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 343 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 344 return false; 345 346 for (User *U : GEPI->users()) 347 if (!isSafeSROAElementUse(U)) 348 return false; 349 return true; 350 } 351 352 353 /// U is a direct user of the specified global value. Look at it and its uses 354 /// and decide whether it is safe to SROA this global. 355 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 356 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 357 if (!isa<GetElementPtrInst>(U) && 358 (!isa<ConstantExpr>(U) || 359 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 360 return false; 361 362 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 363 // don't like < 3 operand CE's, and we don't like non-constant integer 364 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 365 // value of C. 366 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 367 !cast<Constant>(U->getOperand(1))->isNullValue() || 368 !isa<ConstantInt>(U->getOperand(2))) 369 return false; 370 371 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 372 ++GEPI; // Skip over the pointer index. 373 374 // If this is a use of an array allocation, do a bit more checking for sanity. 375 if (GEPI.isSequential()) { 376 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 377 378 // Check to make sure that index falls within the array. If not, 379 // something funny is going on, so we won't do the optimization. 380 // 381 if (GEPI.isBoundedSequential() && 382 Idx->getZExtValue() >= GEPI.getSequentialNumElements()) 383 return false; 384 385 // We cannot scalar repl this level of the array unless any array 386 // sub-indices are in-range constants. In particular, consider: 387 // A[0][i]. We cannot know that the user isn't doing invalid things like 388 // allowing i to index an out-of-range subscript that accesses A[1]. 389 // 390 // Scalar replacing *just* the outer index of the array is probably not 391 // going to be a win anyway, so just give up. 392 for (++GEPI; // Skip array index. 393 GEPI != E; 394 ++GEPI) { 395 if (GEPI.isStruct()) 396 continue; 397 398 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 399 if (!IdxVal || 400 (GEPI.isBoundedSequential() && 401 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 402 return false; 403 } 404 } 405 406 return llvm::all_of(U->users(), 407 [](User *UU) { return isSafeSROAElementUse(UU); }); 408 } 409 410 /// Look at all uses of the global and decide whether it is safe for us to 411 /// perform this transformation. 412 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 413 for (User *U : GV->users()) 414 if (!IsUserOfGlobalSafeForSRA(U, GV)) 415 return false; 416 417 return true; 418 } 419 420 /// Copy over the debug info for a variable to its SRA replacements. 421 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 422 uint64_t FragmentOffsetInBits, 423 uint64_t FragmentSizeInBits, 424 unsigned NumElements) { 425 SmallVector<DIGlobalVariableExpression *, 1> GVs; 426 GV->getDebugInfo(GVs); 427 for (auto *GVE : GVs) { 428 DIVariable *Var = GVE->getVariable(); 429 DIExpression *Expr = GVE->getExpression(); 430 if (NumElements > 1) 431 Expr = DIExpression::createFragmentExpression(Expr, FragmentOffsetInBits, 432 FragmentSizeInBits); 433 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 434 NGV->addDebugInfo(NGVE); 435 } 436 } 437 438 439 /// Perform scalar replacement of aggregates on the specified global variable. 440 /// This opens the door for other optimizations by exposing the behavior of the 441 /// program in a more fine-grained way. We have determined that this 442 /// transformation is safe already. We return the first global variable we 443 /// insert so that the caller can reprocess it. 444 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 445 // Make sure this global only has simple uses that we can SRA. 446 if (!GlobalUsersSafeToSRA(GV)) 447 return nullptr; 448 449 assert(GV->hasLocalLinkage()); 450 Constant *Init = GV->getInitializer(); 451 Type *Ty = Init->getType(); 452 453 std::vector<GlobalVariable*> NewGlobals; 454 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 455 456 // Get the alignment of the global, either explicit or target-specific. 457 unsigned StartAlignment = GV->getAlignment(); 458 if (StartAlignment == 0) 459 StartAlignment = DL.getABITypeAlignment(GV->getType()); 460 461 if (StructType *STy = dyn_cast<StructType>(Ty)) { 462 uint64_t FragmentOffset = 0; 463 unsigned NumElements = STy->getNumElements(); 464 NewGlobals.reserve(NumElements); 465 const StructLayout &Layout = *DL.getStructLayout(STy); 466 for (unsigned i = 0, e = NumElements; i != e; ++i) { 467 Constant *In = Init->getAggregateElement(i); 468 assert(In && "Couldn't get element of initializer?"); 469 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 470 GlobalVariable::InternalLinkage, 471 In, GV->getName()+"."+Twine(i), 472 GV->getThreadLocalMode(), 473 GV->getType()->getAddressSpace()); 474 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 475 NGV->copyAttributesFrom(GV); 476 Globals.push_back(NGV); 477 NewGlobals.push_back(NGV); 478 479 // Calculate the known alignment of the field. If the original aggregate 480 // had 256 byte alignment for example, something might depend on that: 481 // propagate info to each field. 482 uint64_t FieldOffset = Layout.getElementOffset(i); 483 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 484 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 485 NGV->setAlignment(NewAlign); 486 487 // Copy over the debug info for the variable. 488 FragmentOffset = alignTo(FragmentOffset, NewAlign); 489 uint64_t Size = DL.getTypeSizeInBits(NGV->getValueType()); 490 transferSRADebugInfo(GV, NGV, FragmentOffset, Size, NumElements); 491 FragmentOffset += Size; 492 } 493 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 494 unsigned NumElements = STy->getNumElements(); 495 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 496 return nullptr; // It's not worth it. 497 NewGlobals.reserve(NumElements); 498 auto ElTy = STy->getElementType(); 499 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 500 unsigned EltAlign = DL.getABITypeAlignment(ElTy); 501 uint64_t FragmentSizeInBits = DL.getTypeSizeInBits(ElTy); 502 for (unsigned i = 0, e = NumElements; i != e; ++i) { 503 Constant *In = Init->getAggregateElement(i); 504 assert(In && "Couldn't get element of initializer?"); 505 506 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 507 GlobalVariable::InternalLinkage, 508 In, GV->getName()+"."+Twine(i), 509 GV->getThreadLocalMode(), 510 GV->getType()->getAddressSpace()); 511 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 512 NGV->copyAttributesFrom(GV); 513 Globals.push_back(NGV); 514 NewGlobals.push_back(NGV); 515 516 // Calculate the known alignment of the field. If the original aggregate 517 // had 256 byte alignment for example, something might depend on that: 518 // propagate info to each field. 519 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 520 if (NewAlign > EltAlign) 521 NGV->setAlignment(NewAlign); 522 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits, 523 NumElements); 524 } 525 } 526 527 if (NewGlobals.empty()) 528 return nullptr; 529 530 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 531 532 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 533 534 // Loop over all of the uses of the global, replacing the constantexpr geps, 535 // with smaller constantexpr geps or direct references. 536 while (!GV->use_empty()) { 537 User *GEP = GV->user_back(); 538 assert(((isa<ConstantExpr>(GEP) && 539 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 540 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 541 542 // Ignore the 1th operand, which has to be zero or else the program is quite 543 // broken (undefined). Get the 2nd operand, which is the structure or array 544 // index. 545 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 546 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 547 548 Value *NewPtr = NewGlobals[Val]; 549 Type *NewTy = NewGlobals[Val]->getValueType(); 550 551 // Form a shorter GEP if needed. 552 if (GEP->getNumOperands() > 3) { 553 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 554 SmallVector<Constant*, 8> Idxs; 555 Idxs.push_back(NullInt); 556 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 557 Idxs.push_back(CE->getOperand(i)); 558 NewPtr = 559 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 560 } else { 561 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 562 SmallVector<Value*, 8> Idxs; 563 Idxs.push_back(NullInt); 564 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 565 Idxs.push_back(GEPI->getOperand(i)); 566 NewPtr = GetElementPtrInst::Create( 567 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 568 } 569 } 570 GEP->replaceAllUsesWith(NewPtr); 571 572 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 573 GEPI->eraseFromParent(); 574 else 575 cast<ConstantExpr>(GEP)->destroyConstant(); 576 } 577 578 // Delete the old global, now that it is dead. 579 Globals.erase(GV); 580 ++NumSRA; 581 582 // Loop over the new globals array deleting any globals that are obviously 583 // dead. This can arise due to scalarization of a structure or an array that 584 // has elements that are dead. 585 unsigned FirstGlobal = 0; 586 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 587 if (NewGlobals[i]->use_empty()) { 588 Globals.erase(NewGlobals[i]); 589 if (FirstGlobal == i) ++FirstGlobal; 590 } 591 592 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 593 } 594 595 /// Return true if all users of the specified value will trap if the value is 596 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 597 /// reprocessing them. 598 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 599 SmallPtrSetImpl<const PHINode*> &PHIs) { 600 for (const User *U : V->users()) 601 if (isa<LoadInst>(U)) { 602 // Will trap. 603 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 604 if (SI->getOperand(0) == V) { 605 //cerr << "NONTRAPPING USE: " << *U; 606 return false; // Storing the value. 607 } 608 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 609 if (CI->getCalledValue() != V) { 610 //cerr << "NONTRAPPING USE: " << *U; 611 return false; // Not calling the ptr 612 } 613 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 614 if (II->getCalledValue() != V) { 615 //cerr << "NONTRAPPING USE: " << *U; 616 return false; // Not calling the ptr 617 } 618 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 619 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 620 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 621 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 622 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 623 // If we've already seen this phi node, ignore it, it has already been 624 // checked. 625 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 626 return false; 627 } else if (isa<ICmpInst>(U) && 628 isa<ConstantPointerNull>(U->getOperand(1))) { 629 // Ignore icmp X, null 630 } else { 631 //cerr << "NONTRAPPING USE: " << *U; 632 return false; 633 } 634 635 return true; 636 } 637 638 /// Return true if all uses of any loads from GV will trap if the loaded value 639 /// is null. Note that this also permits comparisons of the loaded value 640 /// against null, as a special case. 641 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 642 for (const User *U : GV->users()) 643 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 644 SmallPtrSet<const PHINode*, 8> PHIs; 645 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 646 return false; 647 } else if (isa<StoreInst>(U)) { 648 // Ignore stores to the global. 649 } else { 650 // We don't know or understand this user, bail out. 651 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 652 return false; 653 } 654 return true; 655 } 656 657 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 658 bool Changed = false; 659 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 660 Instruction *I = cast<Instruction>(*UI++); 661 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 662 LI->setOperand(0, NewV); 663 Changed = true; 664 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 665 if (SI->getOperand(1) == V) { 666 SI->setOperand(1, NewV); 667 Changed = true; 668 } 669 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 670 CallSite CS(I); 671 if (CS.getCalledValue() == V) { 672 // Calling through the pointer! Turn into a direct call, but be careful 673 // that the pointer is not also being passed as an argument. 674 CS.setCalledFunction(NewV); 675 Changed = true; 676 bool PassedAsArg = false; 677 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 678 if (CS.getArgument(i) == V) { 679 PassedAsArg = true; 680 CS.setArgument(i, NewV); 681 } 682 683 if (PassedAsArg) { 684 // Being passed as an argument also. Be careful to not invalidate UI! 685 UI = V->user_begin(); 686 } 687 } 688 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 689 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 690 ConstantExpr::getCast(CI->getOpcode(), 691 NewV, CI->getType())); 692 if (CI->use_empty()) { 693 Changed = true; 694 CI->eraseFromParent(); 695 } 696 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 697 // Should handle GEP here. 698 SmallVector<Constant*, 8> Idxs; 699 Idxs.reserve(GEPI->getNumOperands()-1); 700 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 701 i != e; ++i) 702 if (Constant *C = dyn_cast<Constant>(*i)) 703 Idxs.push_back(C); 704 else 705 break; 706 if (Idxs.size() == GEPI->getNumOperands()-1) 707 Changed |= OptimizeAwayTrappingUsesOfValue( 708 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 709 if (GEPI->use_empty()) { 710 Changed = true; 711 GEPI->eraseFromParent(); 712 } 713 } 714 } 715 716 return Changed; 717 } 718 719 720 /// The specified global has only one non-null value stored into it. If there 721 /// are uses of the loaded value that would trap if the loaded value is 722 /// dynamically null, then we know that they cannot be reachable with a null 723 /// optimize away the load. 724 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 725 const DataLayout &DL, 726 TargetLibraryInfo *TLI) { 727 bool Changed = false; 728 729 // Keep track of whether we are able to remove all the uses of the global 730 // other than the store that defines it. 731 bool AllNonStoreUsesGone = true; 732 733 // Replace all uses of loads with uses of uses of the stored value. 734 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 735 User *GlobalUser = *GUI++; 736 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 737 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 738 // If we were able to delete all uses of the loads 739 if (LI->use_empty()) { 740 LI->eraseFromParent(); 741 Changed = true; 742 } else { 743 AllNonStoreUsesGone = false; 744 } 745 } else if (isa<StoreInst>(GlobalUser)) { 746 // Ignore the store that stores "LV" to the global. 747 assert(GlobalUser->getOperand(1) == GV && 748 "Must be storing *to* the global"); 749 } else { 750 AllNonStoreUsesGone = false; 751 752 // If we get here we could have other crazy uses that are transitively 753 // loaded. 754 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 755 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 756 isa<BitCastInst>(GlobalUser) || 757 isa<GetElementPtrInst>(GlobalUser)) && 758 "Only expect load and stores!"); 759 } 760 } 761 762 if (Changed) { 763 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n"); 764 ++NumGlobUses; 765 } 766 767 // If we nuked all of the loads, then none of the stores are needed either, 768 // nor is the global. 769 if (AllNonStoreUsesGone) { 770 if (isLeakCheckerRoot(GV)) { 771 Changed |= CleanupPointerRootUsers(GV, TLI); 772 } else { 773 Changed = true; 774 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 775 } 776 if (GV->use_empty()) { 777 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 778 Changed = true; 779 GV->eraseFromParent(); 780 ++NumDeleted; 781 } 782 } 783 return Changed; 784 } 785 786 /// Walk the use list of V, constant folding all of the instructions that are 787 /// foldable. 788 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 789 TargetLibraryInfo *TLI) { 790 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 791 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 792 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 793 I->replaceAllUsesWith(NewC); 794 795 // Advance UI to the next non-I use to avoid invalidating it! 796 // Instructions could multiply use V. 797 while (UI != E && *UI == I) 798 ++UI; 799 if (isInstructionTriviallyDead(I, TLI)) 800 I->eraseFromParent(); 801 } 802 } 803 804 /// This function takes the specified global variable, and transforms the 805 /// program as if it always contained the result of the specified malloc. 806 /// Because it is always the result of the specified malloc, there is no reason 807 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 808 /// loads of GV as uses of the new global. 809 static GlobalVariable * 810 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 811 ConstantInt *NElements, const DataLayout &DL, 812 TargetLibraryInfo *TLI) { 813 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 814 815 Type *GlobalType; 816 if (NElements->getZExtValue() == 1) 817 GlobalType = AllocTy; 818 else 819 // If we have an array allocation, the global variable is of an array. 820 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 821 822 // Create the new global variable. The contents of the malloc'd memory is 823 // undefined, so initialize with an undef value. 824 GlobalVariable *NewGV = new GlobalVariable( 825 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 826 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 827 GV->getThreadLocalMode()); 828 829 // If there are bitcast users of the malloc (which is typical, usually we have 830 // a malloc + bitcast) then replace them with uses of the new global. Update 831 // other users to use the global as well. 832 BitCastInst *TheBC = nullptr; 833 while (!CI->use_empty()) { 834 Instruction *User = cast<Instruction>(CI->user_back()); 835 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 836 if (BCI->getType() == NewGV->getType()) { 837 BCI->replaceAllUsesWith(NewGV); 838 BCI->eraseFromParent(); 839 } else { 840 BCI->setOperand(0, NewGV); 841 } 842 } else { 843 if (!TheBC) 844 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 845 User->replaceUsesOfWith(CI, TheBC); 846 } 847 } 848 849 Constant *RepValue = NewGV; 850 if (NewGV->getType() != GV->getValueType()) 851 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 852 853 // If there is a comparison against null, we will insert a global bool to 854 // keep track of whether the global was initialized yet or not. 855 GlobalVariable *InitBool = 856 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 857 GlobalValue::InternalLinkage, 858 ConstantInt::getFalse(GV->getContext()), 859 GV->getName()+".init", GV->getThreadLocalMode()); 860 bool InitBoolUsed = false; 861 862 // Loop over all uses of GV, processing them in turn. 863 while (!GV->use_empty()) { 864 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 865 // The global is initialized when the store to it occurs. 866 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 867 SI->getOrdering(), SI->getSyncScopeID(), SI); 868 SI->eraseFromParent(); 869 continue; 870 } 871 872 LoadInst *LI = cast<LoadInst>(GV->user_back()); 873 while (!LI->use_empty()) { 874 Use &LoadUse = *LI->use_begin(); 875 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 876 if (!ICI) { 877 LoadUse = RepValue; 878 continue; 879 } 880 881 // Replace the cmp X, 0 with a use of the bool value. 882 // Sink the load to where the compare was, if atomic rules allow us to. 883 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 884 LI->getOrdering(), LI->getSyncScopeID(), 885 LI->isUnordered() ? (Instruction*)ICI : LI); 886 InitBoolUsed = true; 887 switch (ICI->getPredicate()) { 888 default: llvm_unreachable("Unknown ICmp Predicate!"); 889 case ICmpInst::ICMP_ULT: 890 case ICmpInst::ICMP_SLT: // X < null -> always false 891 LV = ConstantInt::getFalse(GV->getContext()); 892 break; 893 case ICmpInst::ICMP_ULE: 894 case ICmpInst::ICMP_SLE: 895 case ICmpInst::ICMP_EQ: 896 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 897 break; 898 case ICmpInst::ICMP_NE: 899 case ICmpInst::ICMP_UGE: 900 case ICmpInst::ICMP_SGE: 901 case ICmpInst::ICMP_UGT: 902 case ICmpInst::ICMP_SGT: 903 break; // no change. 904 } 905 ICI->replaceAllUsesWith(LV); 906 ICI->eraseFromParent(); 907 } 908 LI->eraseFromParent(); 909 } 910 911 // If the initialization boolean was used, insert it, otherwise delete it. 912 if (!InitBoolUsed) { 913 while (!InitBool->use_empty()) // Delete initializations 914 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 915 delete InitBool; 916 } else 917 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 918 919 // Now the GV is dead, nuke it and the malloc.. 920 GV->eraseFromParent(); 921 CI->eraseFromParent(); 922 923 // To further other optimizations, loop over all users of NewGV and try to 924 // constant prop them. This will promote GEP instructions with constant 925 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 926 ConstantPropUsersOf(NewGV, DL, TLI); 927 if (RepValue != NewGV) 928 ConstantPropUsersOf(RepValue, DL, TLI); 929 930 return NewGV; 931 } 932 933 /// Scan the use-list of V checking to make sure that there are no complex uses 934 /// of V. We permit simple things like dereferencing the pointer, but not 935 /// storing through the address, unless it is to the specified global. 936 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 937 const GlobalVariable *GV, 938 SmallPtrSetImpl<const PHINode*> &PHIs) { 939 for (const User *U : V->users()) { 940 const Instruction *Inst = cast<Instruction>(U); 941 942 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 943 continue; // Fine, ignore. 944 } 945 946 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 947 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 948 return false; // Storing the pointer itself... bad. 949 continue; // Otherwise, storing through it, or storing into GV... fine. 950 } 951 952 // Must index into the array and into the struct. 953 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 954 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 955 return false; 956 continue; 957 } 958 959 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 960 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 961 // cycles. 962 if (PHIs.insert(PN).second) 963 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 964 return false; 965 continue; 966 } 967 968 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 969 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 970 return false; 971 continue; 972 } 973 974 return false; 975 } 976 return true; 977 } 978 979 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the 980 /// allocation into loads from the global and uses of the resultant pointer. 981 /// Further, delete the store into GV. This assumes that these value pass the 982 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 983 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 984 GlobalVariable *GV) { 985 while (!Alloc->use_empty()) { 986 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 987 Instruction *InsertPt = U; 988 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 989 // If this is the store of the allocation into the global, remove it. 990 if (SI->getOperand(1) == GV) { 991 SI->eraseFromParent(); 992 continue; 993 } 994 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 995 // Insert the load in the corresponding predecessor, not right before the 996 // PHI. 997 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 998 } else if (isa<BitCastInst>(U)) { 999 // Must be bitcast between the malloc and store to initialize the global. 1000 ReplaceUsesOfMallocWithGlobal(U, GV); 1001 U->eraseFromParent(); 1002 continue; 1003 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1004 // If this is a "GEP bitcast" and the user is a store to the global, then 1005 // just process it as a bitcast. 1006 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1007 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1008 if (SI->getOperand(1) == GV) { 1009 // Must be bitcast GEP between the malloc and store to initialize 1010 // the global. 1011 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1012 GEPI->eraseFromParent(); 1013 continue; 1014 } 1015 } 1016 1017 // Insert a load from the global, and use it instead of the malloc. 1018 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1019 U->replaceUsesOfWith(Alloc, NL); 1020 } 1021 } 1022 1023 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to 1024 /// perform heap SRA on. This permits GEP's that index through the array and 1025 /// struct field, icmps of null, and PHIs. 1026 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1027 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1028 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1029 // We permit two users of the load: setcc comparing against the null 1030 // pointer, and a getelementptr of a specific form. 1031 for (const User *U : V->users()) { 1032 const Instruction *UI = cast<Instruction>(U); 1033 1034 // Comparison against null is ok. 1035 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1036 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1037 return false; 1038 continue; 1039 } 1040 1041 // getelementptr is also ok, but only a simple form. 1042 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1043 // Must index into the array and into the struct. 1044 if (GEPI->getNumOperands() < 3) 1045 return false; 1046 1047 // Otherwise the GEP is ok. 1048 continue; 1049 } 1050 1051 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1052 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1053 // This means some phi nodes are dependent on each other. 1054 // Avoid infinite looping! 1055 return false; 1056 if (!LoadUsingPHIs.insert(PN).second) 1057 // If we have already analyzed this PHI, then it is safe. 1058 continue; 1059 1060 // Make sure all uses of the PHI are simple enough to transform. 1061 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1062 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1063 return false; 1064 1065 continue; 1066 } 1067 1068 // Otherwise we don't know what this is, not ok. 1069 return false; 1070 } 1071 1072 return true; 1073 } 1074 1075 1076 /// If all users of values loaded from GV are simple enough to perform HeapSRA, 1077 /// return true. 1078 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1079 Instruction *StoredVal) { 1080 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1081 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1082 for (const User *U : GV->users()) 1083 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1084 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1085 LoadUsingPHIsPerLoad)) 1086 return false; 1087 LoadUsingPHIsPerLoad.clear(); 1088 } 1089 1090 // If we reach here, we know that all uses of the loads and transitive uses 1091 // (through PHI nodes) are simple enough to transform. However, we don't know 1092 // that all inputs the to the PHI nodes are in the same equivalence sets. 1093 // Check to verify that all operands of the PHIs are either PHIS that can be 1094 // transformed, loads from GV, or MI itself. 1095 for (const PHINode *PN : LoadUsingPHIs) { 1096 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1097 Value *InVal = PN->getIncomingValue(op); 1098 1099 // PHI of the stored value itself is ok. 1100 if (InVal == StoredVal) continue; 1101 1102 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1103 // One of the PHIs in our set is (optimistically) ok. 1104 if (LoadUsingPHIs.count(InPN)) 1105 continue; 1106 return false; 1107 } 1108 1109 // Load from GV is ok. 1110 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1111 if (LI->getOperand(0) == GV) 1112 continue; 1113 1114 // UNDEF? NULL? 1115 1116 // Anything else is rejected. 1117 return false; 1118 } 1119 } 1120 1121 return true; 1122 } 1123 1124 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1125 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1126 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1127 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1128 1129 if (FieldNo >= FieldVals.size()) 1130 FieldVals.resize(FieldNo+1); 1131 1132 // If we already have this value, just reuse the previously scalarized 1133 // version. 1134 if (Value *FieldVal = FieldVals[FieldNo]) 1135 return FieldVal; 1136 1137 // Depending on what instruction this is, we have several cases. 1138 Value *Result; 1139 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1140 // This is a scalarized version of the load from the global. Just create 1141 // a new Load of the scalarized global. 1142 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1143 InsertedScalarizedValues, 1144 PHIsToRewrite), 1145 LI->getName()+".f"+Twine(FieldNo), LI); 1146 } else { 1147 PHINode *PN = cast<PHINode>(V); 1148 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1149 // field. 1150 1151 PointerType *PTy = cast<PointerType>(PN->getType()); 1152 StructType *ST = cast<StructType>(PTy->getElementType()); 1153 1154 unsigned AS = PTy->getAddressSpace(); 1155 PHINode *NewPN = 1156 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1157 PN->getNumIncomingValues(), 1158 PN->getName()+".f"+Twine(FieldNo), PN); 1159 Result = NewPN; 1160 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1161 } 1162 1163 return FieldVals[FieldNo] = Result; 1164 } 1165 1166 /// Given a load instruction and a value derived from the load, rewrite the 1167 /// derived value to use the HeapSRoA'd load. 1168 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1169 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1170 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1171 // If this is a comparison against null, handle it. 1172 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1173 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1174 // If we have a setcc of the loaded pointer, we can use a setcc of any 1175 // field. 1176 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1177 InsertedScalarizedValues, PHIsToRewrite); 1178 1179 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1180 Constant::getNullValue(NPtr->getType()), 1181 SCI->getName()); 1182 SCI->replaceAllUsesWith(New); 1183 SCI->eraseFromParent(); 1184 return; 1185 } 1186 1187 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1188 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1189 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1190 && "Unexpected GEPI!"); 1191 1192 // Load the pointer for this field. 1193 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1194 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1195 InsertedScalarizedValues, PHIsToRewrite); 1196 1197 // Create the new GEP idx vector. 1198 SmallVector<Value*, 8> GEPIdx; 1199 GEPIdx.push_back(GEPI->getOperand(1)); 1200 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1201 1202 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1203 GEPI->getName(), GEPI); 1204 GEPI->replaceAllUsesWith(NGEPI); 1205 GEPI->eraseFromParent(); 1206 return; 1207 } 1208 1209 // Recursively transform the users of PHI nodes. This will lazily create the 1210 // PHIs that are needed for individual elements. Keep track of what PHIs we 1211 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1212 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1213 // already been seen first by another load, so its uses have already been 1214 // processed. 1215 PHINode *PN = cast<PHINode>(LoadUser); 1216 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1217 std::vector<Value*>())).second) 1218 return; 1219 1220 // If this is the first time we've seen this PHI, recursively process all 1221 // users. 1222 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1223 Instruction *User = cast<Instruction>(*UI++); 1224 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1225 } 1226 } 1227 1228 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1229 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1230 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1231 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1232 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1233 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1234 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1235 Instruction *User = cast<Instruction>(*UI++); 1236 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1237 } 1238 1239 if (Load->use_empty()) { 1240 Load->eraseFromParent(); 1241 InsertedScalarizedValues.erase(Load); 1242 } 1243 } 1244 1245 /// CI is an allocation of an array of structures. Break it up into multiple 1246 /// allocations of arrays of the fields. 1247 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1248 Value *NElems, const DataLayout &DL, 1249 const TargetLibraryInfo *TLI) { 1250 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1251 Type *MAT = getMallocAllocatedType(CI, TLI); 1252 StructType *STy = cast<StructType>(MAT); 1253 1254 // There is guaranteed to be at least one use of the malloc (storing 1255 // it into GV). If there are other uses, change them to be uses of 1256 // the global to simplify later code. This also deletes the store 1257 // into GV. 1258 ReplaceUsesOfMallocWithGlobal(CI, GV); 1259 1260 // Okay, at this point, there are no users of the malloc. Insert N 1261 // new mallocs at the same place as CI, and N globals. 1262 std::vector<Value*> FieldGlobals; 1263 std::vector<Value*> FieldMallocs; 1264 1265 SmallVector<OperandBundleDef, 1> OpBundles; 1266 CI->getOperandBundlesAsDefs(OpBundles); 1267 1268 unsigned AS = GV->getType()->getPointerAddressSpace(); 1269 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1270 Type *FieldTy = STy->getElementType(FieldNo); 1271 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1272 1273 GlobalVariable *NGV = new GlobalVariable( 1274 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1275 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1276 nullptr, GV->getThreadLocalMode()); 1277 NGV->copyAttributesFrom(GV); 1278 FieldGlobals.push_back(NGV); 1279 1280 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1281 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1282 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1283 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1284 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1285 ConstantInt::get(IntPtrTy, TypeSize), 1286 NElems, OpBundles, nullptr, 1287 CI->getName() + ".f" + Twine(FieldNo)); 1288 FieldMallocs.push_back(NMI); 1289 new StoreInst(NMI, NGV, CI); 1290 } 1291 1292 // The tricky aspect of this transformation is handling the case when malloc 1293 // fails. In the original code, malloc failing would set the result pointer 1294 // of malloc to null. In this case, some mallocs could succeed and others 1295 // could fail. As such, we emit code that looks like this: 1296 // F0 = malloc(field0) 1297 // F1 = malloc(field1) 1298 // F2 = malloc(field2) 1299 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1300 // if (F0) { free(F0); F0 = 0; } 1301 // if (F1) { free(F1); F1 = 0; } 1302 // if (F2) { free(F2); F2 = 0; } 1303 // } 1304 // The malloc can also fail if its argument is too large. 1305 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1306 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1307 ConstantZero, "isneg"); 1308 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1309 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1310 Constant::getNullValue(FieldMallocs[i]->getType()), 1311 "isnull"); 1312 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1313 } 1314 1315 // Split the basic block at the old malloc. 1316 BasicBlock *OrigBB = CI->getParent(); 1317 BasicBlock *ContBB = 1318 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1319 1320 // Create the block to check the first condition. Put all these blocks at the 1321 // end of the function as they are unlikely to be executed. 1322 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1323 "malloc_ret_null", 1324 OrigBB->getParent()); 1325 1326 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1327 // branch on RunningOr. 1328 OrigBB->getTerminator()->eraseFromParent(); 1329 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1330 1331 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1332 // pointer, because some may be null while others are not. 1333 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1334 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1335 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1336 Constant::getNullValue(GVVal->getType())); 1337 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1338 OrigBB->getParent()); 1339 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1340 OrigBB->getParent()); 1341 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1342 Cmp, NullPtrBlock); 1343 1344 // Fill in FreeBlock. 1345 CallInst::CreateFree(GVVal, OpBundles, BI); 1346 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1347 FreeBlock); 1348 BranchInst::Create(NextBlock, FreeBlock); 1349 1350 NullPtrBlock = NextBlock; 1351 } 1352 1353 BranchInst::Create(ContBB, NullPtrBlock); 1354 1355 // CI is no longer needed, remove it. 1356 CI->eraseFromParent(); 1357 1358 /// As we process loads, if we can't immediately update all uses of the load, 1359 /// keep track of what scalarized loads are inserted for a given load. 1360 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1361 InsertedScalarizedValues[GV] = FieldGlobals; 1362 1363 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1364 1365 // Okay, the malloc site is completely handled. All of the uses of GV are now 1366 // loads, and all uses of those loads are simple. Rewrite them to use loads 1367 // of the per-field globals instead. 1368 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1369 Instruction *User = cast<Instruction>(*UI++); 1370 1371 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1372 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1373 continue; 1374 } 1375 1376 // Must be a store of null. 1377 StoreInst *SI = cast<StoreInst>(User); 1378 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1379 "Unexpected heap-sra user!"); 1380 1381 // Insert a store of null into each global. 1382 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1383 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1384 Constant *Null = Constant::getNullValue(ValTy); 1385 new StoreInst(Null, FieldGlobals[i], SI); 1386 } 1387 // Erase the original store. 1388 SI->eraseFromParent(); 1389 } 1390 1391 // While we have PHIs that are interesting to rewrite, do it. 1392 while (!PHIsToRewrite.empty()) { 1393 PHINode *PN = PHIsToRewrite.back().first; 1394 unsigned FieldNo = PHIsToRewrite.back().second; 1395 PHIsToRewrite.pop_back(); 1396 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1397 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1398 1399 // Add all the incoming values. This can materialize more phis. 1400 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1401 Value *InVal = PN->getIncomingValue(i); 1402 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1403 PHIsToRewrite); 1404 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1405 } 1406 } 1407 1408 // Drop all inter-phi links and any loads that made it this far. 1409 for (DenseMap<Value*, std::vector<Value*> >::iterator 1410 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1411 I != E; ++I) { 1412 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1413 PN->dropAllReferences(); 1414 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1415 LI->dropAllReferences(); 1416 } 1417 1418 // Delete all the phis and loads now that inter-references are dead. 1419 for (DenseMap<Value*, std::vector<Value*> >::iterator 1420 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1421 I != E; ++I) { 1422 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1423 PN->eraseFromParent(); 1424 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1425 LI->eraseFromParent(); 1426 } 1427 1428 // The old global is now dead, remove it. 1429 GV->eraseFromParent(); 1430 1431 ++NumHeapSRA; 1432 return cast<GlobalVariable>(FieldGlobals[0]); 1433 } 1434 1435 /// This function is called when we see a pointer global variable with a single 1436 /// value stored it that is a malloc or cast of malloc. 1437 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1438 Type *AllocTy, 1439 AtomicOrdering Ordering, 1440 const DataLayout &DL, 1441 TargetLibraryInfo *TLI) { 1442 // If this is a malloc of an abstract type, don't touch it. 1443 if (!AllocTy->isSized()) 1444 return false; 1445 1446 // We can't optimize this global unless all uses of it are *known* to be 1447 // of the malloc value, not of the null initializer value (consider a use 1448 // that compares the global's value against zero to see if the malloc has 1449 // been reached). To do this, we check to see if all uses of the global 1450 // would trap if the global were null: this proves that they must all 1451 // happen after the malloc. 1452 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1453 return false; 1454 1455 // We can't optimize this if the malloc itself is used in a complex way, 1456 // for example, being stored into multiple globals. This allows the 1457 // malloc to be stored into the specified global, loaded icmp'd, and 1458 // GEP'd. These are all things we could transform to using the global 1459 // for. 1460 SmallPtrSet<const PHINode*, 8> PHIs; 1461 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1462 return false; 1463 1464 // If we have a global that is only initialized with a fixed size malloc, 1465 // transform the program to use global memory instead of malloc'd memory. 1466 // This eliminates dynamic allocation, avoids an indirection accessing the 1467 // data, and exposes the resultant global to further GlobalOpt. 1468 // We cannot optimize the malloc if we cannot determine malloc array size. 1469 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1470 if (!NElems) 1471 return false; 1472 1473 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1474 // Restrict this transformation to only working on small allocations 1475 // (2048 bytes currently), as we don't want to introduce a 16M global or 1476 // something. 1477 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1478 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1479 return true; 1480 } 1481 1482 // If the allocation is an array of structures, consider transforming this 1483 // into multiple malloc'd arrays, one for each field. This is basically 1484 // SRoA for malloc'd memory. 1485 1486 if (Ordering != AtomicOrdering::NotAtomic) 1487 return false; 1488 1489 // If this is an allocation of a fixed size array of structs, analyze as a 1490 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1491 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1492 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1493 AllocTy = AT->getElementType(); 1494 1495 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1496 if (!AllocSTy) 1497 return false; 1498 1499 // This the structure has an unreasonable number of fields, leave it 1500 // alone. 1501 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1502 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1503 1504 // If this is a fixed size array, transform the Malloc to be an alloc of 1505 // structs. malloc [100 x struct],1 -> malloc struct, 100 1506 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1507 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1508 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1509 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1510 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1511 SmallVector<OperandBundleDef, 1> OpBundles; 1512 CI->getOperandBundlesAsDefs(OpBundles); 1513 Instruction *Malloc = 1514 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements, 1515 OpBundles, nullptr, CI->getName()); 1516 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1517 CI->replaceAllUsesWith(Cast); 1518 CI->eraseFromParent(); 1519 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1520 CI = cast<CallInst>(BCI->getOperand(0)); 1521 else 1522 CI = cast<CallInst>(Malloc); 1523 } 1524 1525 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1526 TLI); 1527 return true; 1528 } 1529 1530 return false; 1531 } 1532 1533 // Try to optimize globals based on the knowledge that only one value (besides 1534 // its initializer) is ever stored to the global. 1535 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1536 AtomicOrdering Ordering, 1537 const DataLayout &DL, 1538 TargetLibraryInfo *TLI) { 1539 // Ignore no-op GEPs and bitcasts. 1540 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1541 1542 // If we are dealing with a pointer global that is initialized to null and 1543 // only has one (non-null) value stored into it, then we can optimize any 1544 // users of the loaded value (often calls and loads) that would trap if the 1545 // value was null. 1546 if (GV->getInitializer()->getType()->isPointerTy() && 1547 GV->getInitializer()->isNullValue()) { 1548 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1549 if (GV->getInitializer()->getType() != SOVC->getType()) 1550 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1551 1552 // Optimize away any trapping uses of the loaded value. 1553 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1554 return true; 1555 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1556 Type *MallocType = getMallocAllocatedType(CI, TLI); 1557 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1558 Ordering, DL, TLI)) 1559 return true; 1560 } 1561 } 1562 1563 return false; 1564 } 1565 1566 /// At this point, we have learned that the only two values ever stored into GV 1567 /// are its initializer and OtherVal. See if we can shrink the global into a 1568 /// boolean and select between the two values whenever it is used. This exposes 1569 /// the values to other scalar optimizations. 1570 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1571 Type *GVElType = GV->getValueType(); 1572 1573 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1574 // an FP value, pointer or vector, don't do this optimization because a select 1575 // between them is very expensive and unlikely to lead to later 1576 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1577 // where v1 and v2 both require constant pool loads, a big loss. 1578 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1579 GVElType->isFloatingPointTy() || 1580 GVElType->isPointerTy() || GVElType->isVectorTy()) 1581 return false; 1582 1583 // Walk the use list of the global seeing if all the uses are load or store. 1584 // If there is anything else, bail out. 1585 for (User *U : GV->users()) 1586 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1587 return false; 1588 1589 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1590 1591 // Create the new global, initializing it to false. 1592 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1593 false, 1594 GlobalValue::InternalLinkage, 1595 ConstantInt::getFalse(GV->getContext()), 1596 GV->getName()+".b", 1597 GV->getThreadLocalMode(), 1598 GV->getType()->getAddressSpace()); 1599 NewGV->copyAttributesFrom(GV); 1600 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1601 1602 Constant *InitVal = GV->getInitializer(); 1603 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1604 "No reason to shrink to bool!"); 1605 1606 // If initialized to zero and storing one into the global, we can use a cast 1607 // instead of a select to synthesize the desired value. 1608 bool IsOneZero = false; 1609 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1610 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1611 1612 while (!GV->use_empty()) { 1613 Instruction *UI = cast<Instruction>(GV->user_back()); 1614 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1615 // Change the store into a boolean store. 1616 bool StoringOther = SI->getOperand(0) == OtherVal; 1617 // Only do this if we weren't storing a loaded value. 1618 Value *StoreVal; 1619 if (StoringOther || SI->getOperand(0) == InitVal) { 1620 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1621 StoringOther); 1622 } else { 1623 // Otherwise, we are storing a previously loaded copy. To do this, 1624 // change the copy from copying the original value to just copying the 1625 // bool. 1626 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1627 1628 // If we've already replaced the input, StoredVal will be a cast or 1629 // select instruction. If not, it will be a load of the original 1630 // global. 1631 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1632 assert(LI->getOperand(0) == GV && "Not a copy!"); 1633 // Insert a new load, to preserve the saved value. 1634 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1635 LI->getOrdering(), LI->getSyncScopeID(), LI); 1636 } else { 1637 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1638 "This is not a form that we understand!"); 1639 StoreVal = StoredVal->getOperand(0); 1640 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1641 } 1642 } 1643 new StoreInst(StoreVal, NewGV, false, 0, 1644 SI->getOrdering(), SI->getSyncScopeID(), SI); 1645 } else { 1646 // Change the load into a load of bool then a select. 1647 LoadInst *LI = cast<LoadInst>(UI); 1648 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1649 LI->getOrdering(), LI->getSyncScopeID(), LI); 1650 Value *NSI; 1651 if (IsOneZero) 1652 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1653 else 1654 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1655 NSI->takeName(LI); 1656 LI->replaceAllUsesWith(NSI); 1657 } 1658 UI->eraseFromParent(); 1659 } 1660 1661 // Retain the name of the old global variable. People who are debugging their 1662 // programs may expect these variables to be named the same. 1663 NewGV->takeName(GV); 1664 GV->eraseFromParent(); 1665 return true; 1666 } 1667 1668 static bool deleteIfDead(GlobalValue &GV, 1669 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 1670 GV.removeDeadConstantUsers(); 1671 1672 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1673 return false; 1674 1675 if (const Comdat *C = GV.getComdat()) 1676 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1677 return false; 1678 1679 bool Dead; 1680 if (auto *F = dyn_cast<Function>(&GV)) 1681 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1682 else 1683 Dead = GV.use_empty(); 1684 if (!Dead) 1685 return false; 1686 1687 DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1688 GV.eraseFromParent(); 1689 ++NumDeleted; 1690 return true; 1691 } 1692 1693 static bool isPointerValueDeadOnEntryToFunction( 1694 const Function *F, GlobalValue *GV, 1695 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1696 // Find all uses of GV. We expect them all to be in F, and if we can't 1697 // identify any of the uses we bail out. 1698 // 1699 // On each of these uses, identify if the memory that GV points to is 1700 // used/required/live at the start of the function. If it is not, for example 1701 // if the first thing the function does is store to the GV, the GV can 1702 // possibly be demoted. 1703 // 1704 // We don't do an exhaustive search for memory operations - simply look 1705 // through bitcasts as they're quite common and benign. 1706 const DataLayout &DL = GV->getParent()->getDataLayout(); 1707 SmallVector<LoadInst *, 4> Loads; 1708 SmallVector<StoreInst *, 4> Stores; 1709 for (auto *U : GV->users()) { 1710 if (Operator::getOpcode(U) == Instruction::BitCast) { 1711 for (auto *UU : U->users()) { 1712 if (auto *LI = dyn_cast<LoadInst>(UU)) 1713 Loads.push_back(LI); 1714 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1715 Stores.push_back(SI); 1716 else 1717 return false; 1718 } 1719 continue; 1720 } 1721 1722 Instruction *I = dyn_cast<Instruction>(U); 1723 if (!I) 1724 return false; 1725 assert(I->getParent()->getParent() == F); 1726 1727 if (auto *LI = dyn_cast<LoadInst>(I)) 1728 Loads.push_back(LI); 1729 else if (auto *SI = dyn_cast<StoreInst>(I)) 1730 Stores.push_back(SI); 1731 else 1732 return false; 1733 } 1734 1735 // We have identified all uses of GV into loads and stores. Now check if all 1736 // of them are known not to depend on the value of the global at the function 1737 // entry point. We do this by ensuring that every load is dominated by at 1738 // least one store. 1739 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1740 1741 // The below check is quadratic. Check we're not going to do too many tests. 1742 // FIXME: Even though this will always have worst-case quadratic time, we 1743 // could put effort into minimizing the average time by putting stores that 1744 // have been shown to dominate at least one load at the beginning of the 1745 // Stores array, making subsequent dominance checks more likely to succeed 1746 // early. 1747 // 1748 // The threshold here is fairly large because global->local demotion is a 1749 // very powerful optimization should it fire. 1750 const unsigned Threshold = 100; 1751 if (Loads.size() * Stores.size() > Threshold) 1752 return false; 1753 1754 for (auto *L : Loads) { 1755 auto *LTy = L->getType(); 1756 if (none_of(Stores, [&](const StoreInst *S) { 1757 auto *STy = S->getValueOperand()->getType(); 1758 // The load is only dominated by the store if DomTree says so 1759 // and the number of bits loaded in L is less than or equal to 1760 // the number of bits stored in S. 1761 return DT.dominates(S, L) && 1762 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1763 })) 1764 return false; 1765 } 1766 // All loads have known dependences inside F, so the global can be localized. 1767 return true; 1768 } 1769 1770 /// C may have non-instruction users. Can all of those users be turned into 1771 /// instructions? 1772 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1773 // We don't do this exhaustively. The most common pattern that we really need 1774 // to care about is a constant GEP or constant bitcast - so just looking 1775 // through one single ConstantExpr. 1776 // 1777 // The set of constants that this function returns true for must be able to be 1778 // handled by makeAllConstantUsesInstructions. 1779 for (auto *U : C->users()) { 1780 if (isa<Instruction>(U)) 1781 continue; 1782 if (!isa<ConstantExpr>(U)) 1783 // Non instruction, non-constantexpr user; cannot convert this. 1784 return false; 1785 for (auto *UU : U->users()) 1786 if (!isa<Instruction>(UU)) 1787 // A constantexpr used by another constant. We don't try and recurse any 1788 // further but just bail out at this point. 1789 return false; 1790 } 1791 1792 return true; 1793 } 1794 1795 /// C may have non-instruction users, and 1796 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1797 /// non-instruction users to instructions. 1798 static void makeAllConstantUsesInstructions(Constant *C) { 1799 SmallVector<ConstantExpr*,4> Users; 1800 for (auto *U : C->users()) { 1801 if (isa<ConstantExpr>(U)) 1802 Users.push_back(cast<ConstantExpr>(U)); 1803 else 1804 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1805 // should not have returned true for C. 1806 assert( 1807 isa<Instruction>(U) && 1808 "Can't transform non-constantexpr non-instruction to instruction!"); 1809 } 1810 1811 SmallVector<Value*,4> UUsers; 1812 for (auto *U : Users) { 1813 UUsers.clear(); 1814 for (auto *UU : U->users()) 1815 UUsers.push_back(UU); 1816 for (auto *UU : UUsers) { 1817 Instruction *UI = cast<Instruction>(UU); 1818 Instruction *NewU = U->getAsInstruction(); 1819 NewU->insertBefore(UI); 1820 UI->replaceUsesOfWith(U, NewU); 1821 } 1822 // We've replaced all the uses, so destroy the constant. (destroyConstant 1823 // will update value handles and metadata.) 1824 U->destroyConstant(); 1825 } 1826 } 1827 1828 /// Analyze the specified global variable and optimize 1829 /// it if possible. If we make a change, return true. 1830 static bool processInternalGlobal( 1831 GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI, 1832 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1833 auto &DL = GV->getParent()->getDataLayout(); 1834 // If this is a first class global and has only one accessing function and 1835 // this function is non-recursive, we replace the global with a local alloca 1836 // in this function. 1837 // 1838 // NOTE: It doesn't make sense to promote non-single-value types since we 1839 // are just replacing static memory to stack memory. 1840 // 1841 // If the global is in different address space, don't bring it to stack. 1842 if (!GS.HasMultipleAccessingFunctions && 1843 GS.AccessingFunction && 1844 GV->getValueType()->isSingleValueType() && 1845 GV->getType()->getAddressSpace() == 0 && 1846 !GV->isExternallyInitialized() && 1847 allNonInstructionUsersCanBeMadeInstructions(GV) && 1848 GS.AccessingFunction->doesNotRecurse() && 1849 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1850 LookupDomTree)) { 1851 const DataLayout &DL = GV->getParent()->getDataLayout(); 1852 1853 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1854 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1855 ->getEntryBlock().begin()); 1856 Type *ElemTy = GV->getValueType(); 1857 // FIXME: Pass Global's alignment when globals have alignment 1858 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1859 GV->getName(), &FirstI); 1860 if (!isa<UndefValue>(GV->getInitializer())) 1861 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1862 1863 makeAllConstantUsesInstructions(GV); 1864 1865 GV->replaceAllUsesWith(Alloca); 1866 GV->eraseFromParent(); 1867 ++NumLocalized; 1868 return true; 1869 } 1870 1871 // If the global is never loaded (but may be stored to), it is dead. 1872 // Delete it now. 1873 if (!GS.IsLoaded) { 1874 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1875 1876 bool Changed; 1877 if (isLeakCheckerRoot(GV)) { 1878 // Delete any constant stores to the global. 1879 Changed = CleanupPointerRootUsers(GV, TLI); 1880 } else { 1881 // Delete any stores we can find to the global. We may not be able to 1882 // make it completely dead though. 1883 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1884 } 1885 1886 // If the global is dead now, delete it. 1887 if (GV->use_empty()) { 1888 GV->eraseFromParent(); 1889 ++NumDeleted; 1890 Changed = true; 1891 } 1892 return Changed; 1893 1894 } 1895 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1896 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1897 GV->setConstant(true); 1898 1899 // Clean up any obviously simplifiable users now. 1900 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1901 1902 // If the global is dead now, just nuke it. 1903 if (GV->use_empty()) { 1904 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1905 << "all users and delete global!\n"); 1906 GV->eraseFromParent(); 1907 ++NumDeleted; 1908 return true; 1909 } 1910 1911 // Fall through to the next check; see if we can optimize further. 1912 ++NumMarked; 1913 } 1914 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1915 const DataLayout &DL = GV->getParent()->getDataLayout(); 1916 if (SRAGlobal(GV, DL)) 1917 return true; 1918 } 1919 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1920 // If the initial value for the global was an undef value, and if only 1921 // one other value was stored into it, we can just change the 1922 // initializer to be the stored value, then delete all stores to the 1923 // global. This allows us to mark it constant. 1924 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1925 if (isa<UndefValue>(GV->getInitializer())) { 1926 // Change the initial value here. 1927 GV->setInitializer(SOVConstant); 1928 1929 // Clean up any obviously simplifiable users now. 1930 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1931 1932 if (GV->use_empty()) { 1933 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1934 << "simplify all users and delete global!\n"); 1935 GV->eraseFromParent(); 1936 ++NumDeleted; 1937 } 1938 ++NumSubstitute; 1939 return true; 1940 } 1941 1942 // Try to optimize globals based on the knowledge that only one value 1943 // (besides its initializer) is ever stored to the global. 1944 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI)) 1945 return true; 1946 1947 // Otherwise, if the global was not a boolean, we can shrink it to be a 1948 // boolean. 1949 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 1950 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1951 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1952 ++NumShrunkToBool; 1953 return true; 1954 } 1955 } 1956 } 1957 } 1958 1959 return false; 1960 } 1961 1962 /// Analyze the specified global variable and optimize it if possible. If we 1963 /// make a change, return true. 1964 static bool 1965 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI, 1966 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1967 if (GV.getName().startswith("llvm.")) 1968 return false; 1969 1970 GlobalStatus GS; 1971 1972 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1973 return false; 1974 1975 bool Changed = false; 1976 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 1977 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 1978 : GlobalValue::UnnamedAddr::Local; 1979 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 1980 GV.setUnnamedAddr(NewUnnamedAddr); 1981 NumUnnamed++; 1982 Changed = true; 1983 } 1984 } 1985 1986 // Do more involved optimizations if the global is internal. 1987 if (!GV.hasLocalLinkage()) 1988 return Changed; 1989 1990 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1991 if (!GVar) 1992 return Changed; 1993 1994 if (GVar->isConstant() || !GVar->hasInitializer()) 1995 return Changed; 1996 1997 return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed; 1998 } 1999 2000 /// Walk all of the direct calls of the specified function, changing them to 2001 /// FastCC. 2002 static void ChangeCalleesToFastCall(Function *F) { 2003 for (User *U : F->users()) { 2004 if (isa<BlockAddress>(U)) 2005 continue; 2006 CallSite CS(cast<Instruction>(U)); 2007 CS.setCallingConv(CallingConv::Fast); 2008 } 2009 } 2010 2011 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) { 2012 // There can be at most one attribute set with a nest attribute. 2013 unsigned NestIndex; 2014 if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex)) 2015 return Attrs.removeAttribute(C, NestIndex, Attribute::Nest); 2016 return Attrs; 2017 } 2018 2019 static void RemoveNestAttribute(Function *F) { 2020 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 2021 for (User *U : F->users()) { 2022 if (isa<BlockAddress>(U)) 2023 continue; 2024 CallSite CS(cast<Instruction>(U)); 2025 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 2026 } 2027 } 2028 2029 /// Return true if this is a calling convention that we'd like to change. The 2030 /// idea here is that we don't want to mess with the convention if the user 2031 /// explicitly requested something with performance implications like coldcc, 2032 /// GHC, or anyregcc. 2033 static bool isProfitableToMakeFastCC(Function *F) { 2034 CallingConv::ID CC = F->getCallingConv(); 2035 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2036 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall; 2037 } 2038 2039 static bool 2040 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI, 2041 function_ref<DominatorTree &(Function &)> LookupDomTree, 2042 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2043 bool Changed = false; 2044 // Optimize functions. 2045 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2046 Function *F = &*FI++; 2047 // Functions without names cannot be referenced outside this module. 2048 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2049 F->setLinkage(GlobalValue::InternalLinkage); 2050 2051 if (deleteIfDead(*F, NotDiscardableComdats)) { 2052 Changed = true; 2053 continue; 2054 } 2055 2056 // LLVM's definition of dominance allows instructions that are cyclic 2057 // in unreachable blocks, e.g.: 2058 // %pat = select i1 %condition, @global, i16* %pat 2059 // because any instruction dominates an instruction in a block that's 2060 // not reachable from entry. 2061 // So, remove unreachable blocks from the function, because a) there's 2062 // no point in analyzing them and b) GlobalOpt should otherwise grow 2063 // some more complicated logic to break these cycles. 2064 // Removing unreachable blocks might invalidate the dominator so we 2065 // recalculate it. 2066 if (!F->isDeclaration()) { 2067 if (removeUnreachableBlocks(*F)) { 2068 auto &DT = LookupDomTree(*F); 2069 DT.recalculate(*F); 2070 Changed = true; 2071 } 2072 } 2073 2074 Changed |= processGlobal(*F, TLI, LookupDomTree); 2075 2076 if (!F->hasLocalLinkage()) 2077 continue; 2078 if (isProfitableToMakeFastCC(F) && !F->isVarArg() && 2079 !F->hasAddressTaken()) { 2080 // If this function has a calling convention worth changing, is not a 2081 // varargs function, and is only called directly, promote it to use the 2082 // Fast calling convention. 2083 F->setCallingConv(CallingConv::Fast); 2084 ChangeCalleesToFastCall(F); 2085 ++NumFastCallFns; 2086 Changed = true; 2087 } 2088 2089 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2090 !F->hasAddressTaken()) { 2091 // The function is not used by a trampoline intrinsic, so it is safe 2092 // to remove the 'nest' attribute. 2093 RemoveNestAttribute(F); 2094 ++NumNestRemoved; 2095 Changed = true; 2096 } 2097 } 2098 return Changed; 2099 } 2100 2101 static bool 2102 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI, 2103 function_ref<DominatorTree &(Function &)> LookupDomTree, 2104 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2105 bool Changed = false; 2106 2107 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2108 GVI != E; ) { 2109 GlobalVariable *GV = &*GVI++; 2110 // Global variables without names cannot be referenced outside this module. 2111 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2112 GV->setLinkage(GlobalValue::InternalLinkage); 2113 // Simplify the initializer. 2114 if (GV->hasInitializer()) 2115 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 2116 auto &DL = M.getDataLayout(); 2117 Constant *New = ConstantFoldConstant(C, DL, TLI); 2118 if (New && New != C) 2119 GV->setInitializer(New); 2120 } 2121 2122 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2123 Changed = true; 2124 continue; 2125 } 2126 2127 Changed |= processGlobal(*GV, TLI, LookupDomTree); 2128 } 2129 return Changed; 2130 } 2131 2132 /// Evaluate a piece of a constantexpr store into a global initializer. This 2133 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2134 /// GEP operands of Addr [0, OpNo) have been stepped into. 2135 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2136 ConstantExpr *Addr, unsigned OpNo) { 2137 // Base case of the recursion. 2138 if (OpNo == Addr->getNumOperands()) { 2139 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2140 return Val; 2141 } 2142 2143 SmallVector<Constant*, 32> Elts; 2144 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2145 // Break up the constant into its elements. 2146 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2147 Elts.push_back(Init->getAggregateElement(i)); 2148 2149 // Replace the element that we are supposed to. 2150 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2151 unsigned Idx = CU->getZExtValue(); 2152 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2153 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2154 2155 // Return the modified struct. 2156 return ConstantStruct::get(STy, Elts); 2157 } 2158 2159 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2160 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2161 uint64_t NumElts = InitTy->getNumElements(); 2162 2163 // Break up the array into elements. 2164 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2165 Elts.push_back(Init->getAggregateElement(i)); 2166 2167 assert(CI->getZExtValue() < NumElts); 2168 Elts[CI->getZExtValue()] = 2169 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2170 2171 if (Init->getType()->isArrayTy()) 2172 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2173 return ConstantVector::get(Elts); 2174 } 2175 2176 /// We have decided that Addr (which satisfies the predicate 2177 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2178 static void CommitValueTo(Constant *Val, Constant *Addr) { 2179 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2180 assert(GV->hasInitializer()); 2181 GV->setInitializer(Val); 2182 return; 2183 } 2184 2185 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2186 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2187 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2188 } 2189 2190 /// Evaluate static constructors in the function, if we can. Return true if we 2191 /// can, false otherwise. 2192 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2193 TargetLibraryInfo *TLI) { 2194 // Call the function. 2195 Evaluator Eval(DL, TLI); 2196 Constant *RetValDummy; 2197 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2198 SmallVector<Constant*, 0>()); 2199 2200 if (EvalSuccess) { 2201 ++NumCtorsEvaluated; 2202 2203 // We succeeded at evaluation: commit the result. 2204 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2205 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2206 << " stores.\n"); 2207 for (const auto &I : Eval.getMutatedMemory()) 2208 CommitValueTo(I.second, I.first); 2209 for (GlobalVariable *GV : Eval.getInvariants()) 2210 GV->setConstant(true); 2211 } 2212 2213 return EvalSuccess; 2214 } 2215 2216 static int compareNames(Constant *const *A, Constant *const *B) { 2217 Value *AStripped = (*A)->stripPointerCastsNoFollowAliases(); 2218 Value *BStripped = (*B)->stripPointerCastsNoFollowAliases(); 2219 return AStripped->getName().compare(BStripped->getName()); 2220 } 2221 2222 static void setUsedInitializer(GlobalVariable &V, 2223 const SmallPtrSet<GlobalValue *, 8> &Init) { 2224 if (Init.empty()) { 2225 V.eraseFromParent(); 2226 return; 2227 } 2228 2229 // Type of pointer to the array of pointers. 2230 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2231 2232 SmallVector<llvm::Constant *, 8> UsedArray; 2233 for (GlobalValue *GV : Init) { 2234 Constant *Cast 2235 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2236 UsedArray.push_back(Cast); 2237 } 2238 // Sort to get deterministic order. 2239 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2240 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2241 2242 Module *M = V.getParent(); 2243 V.removeFromParent(); 2244 GlobalVariable *NV = 2245 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage, 2246 llvm::ConstantArray::get(ATy, UsedArray), ""); 2247 NV->takeName(&V); 2248 NV->setSection("llvm.metadata"); 2249 delete &V; 2250 } 2251 2252 namespace { 2253 /// An easy to access representation of llvm.used and llvm.compiler.used. 2254 class LLVMUsed { 2255 SmallPtrSet<GlobalValue *, 8> Used; 2256 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2257 GlobalVariable *UsedV; 2258 GlobalVariable *CompilerUsedV; 2259 2260 public: 2261 LLVMUsed(Module &M) { 2262 UsedV = collectUsedGlobalVariables(M, Used, false); 2263 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2264 } 2265 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator; 2266 typedef iterator_range<iterator> used_iterator_range; 2267 iterator usedBegin() { return Used.begin(); } 2268 iterator usedEnd() { return Used.end(); } 2269 used_iterator_range used() { 2270 return used_iterator_range(usedBegin(), usedEnd()); 2271 } 2272 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2273 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2274 used_iterator_range compilerUsed() { 2275 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2276 } 2277 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2278 bool compilerUsedCount(GlobalValue *GV) const { 2279 return CompilerUsed.count(GV); 2280 } 2281 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2282 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2283 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2284 bool compilerUsedInsert(GlobalValue *GV) { 2285 return CompilerUsed.insert(GV).second; 2286 } 2287 2288 void syncVariablesAndSets() { 2289 if (UsedV) 2290 setUsedInitializer(*UsedV, Used); 2291 if (CompilerUsedV) 2292 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2293 } 2294 }; 2295 } 2296 2297 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2298 if (GA.use_empty()) // No use at all. 2299 return false; 2300 2301 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2302 "We should have removed the duplicated " 2303 "element from llvm.compiler.used"); 2304 if (!GA.hasOneUse()) 2305 // Strictly more than one use. So at least one is not in llvm.used and 2306 // llvm.compiler.used. 2307 return true; 2308 2309 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2310 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2311 } 2312 2313 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2314 const LLVMUsed &U) { 2315 unsigned N = 2; 2316 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2317 "We should have removed the duplicated " 2318 "element from llvm.compiler.used"); 2319 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2320 ++N; 2321 return V.hasNUsesOrMore(N); 2322 } 2323 2324 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2325 if (!GA.hasLocalLinkage()) 2326 return true; 2327 2328 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2329 } 2330 2331 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2332 bool &RenameTarget) { 2333 RenameTarget = false; 2334 bool Ret = false; 2335 if (hasUseOtherThanLLVMUsed(GA, U)) 2336 Ret = true; 2337 2338 // If the alias is externally visible, we may still be able to simplify it. 2339 if (!mayHaveOtherReferences(GA, U)) 2340 return Ret; 2341 2342 // If the aliasee has internal linkage, give it the name and linkage 2343 // of the alias, and delete the alias. This turns: 2344 // define internal ... @f(...) 2345 // @a = alias ... @f 2346 // into: 2347 // define ... @a(...) 2348 Constant *Aliasee = GA.getAliasee(); 2349 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2350 if (!Target->hasLocalLinkage()) 2351 return Ret; 2352 2353 // Do not perform the transform if multiple aliases potentially target the 2354 // aliasee. This check also ensures that it is safe to replace the section 2355 // and other attributes of the aliasee with those of the alias. 2356 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2357 return Ret; 2358 2359 RenameTarget = true; 2360 return true; 2361 } 2362 2363 static bool 2364 OptimizeGlobalAliases(Module &M, 2365 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2366 bool Changed = false; 2367 LLVMUsed Used(M); 2368 2369 for (GlobalValue *GV : Used.used()) 2370 Used.compilerUsedErase(GV); 2371 2372 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2373 I != E;) { 2374 GlobalAlias *J = &*I++; 2375 2376 // Aliases without names cannot be referenced outside this module. 2377 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2378 J->setLinkage(GlobalValue::InternalLinkage); 2379 2380 if (deleteIfDead(*J, NotDiscardableComdats)) { 2381 Changed = true; 2382 continue; 2383 } 2384 2385 // If the aliasee may change at link time, nothing can be done - bail out. 2386 if (J->isInterposable()) 2387 continue; 2388 2389 Constant *Aliasee = J->getAliasee(); 2390 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2391 // We can't trivially replace the alias with the aliasee if the aliasee is 2392 // non-trivial in some way. 2393 // TODO: Try to handle non-zero GEPs of local aliasees. 2394 if (!Target) 2395 continue; 2396 Target->removeDeadConstantUsers(); 2397 2398 // Make all users of the alias use the aliasee instead. 2399 bool RenameTarget; 2400 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2401 continue; 2402 2403 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2404 ++NumAliasesResolved; 2405 Changed = true; 2406 2407 if (RenameTarget) { 2408 // Give the aliasee the name, linkage and other attributes of the alias. 2409 Target->takeName(&*J); 2410 Target->setLinkage(J->getLinkage()); 2411 Target->setVisibility(J->getVisibility()); 2412 Target->setDLLStorageClass(J->getDLLStorageClass()); 2413 2414 if (Used.usedErase(&*J)) 2415 Used.usedInsert(Target); 2416 2417 if (Used.compilerUsedErase(&*J)) 2418 Used.compilerUsedInsert(Target); 2419 } else if (mayHaveOtherReferences(*J, Used)) 2420 continue; 2421 2422 // Delete the alias. 2423 M.getAliasList().erase(J); 2424 ++NumAliasesRemoved; 2425 Changed = true; 2426 } 2427 2428 Used.syncVariablesAndSets(); 2429 2430 return Changed; 2431 } 2432 2433 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2434 LibFunc F = LibFunc_cxa_atexit; 2435 if (!TLI->has(F)) 2436 return nullptr; 2437 2438 Function *Fn = M.getFunction(TLI->getName(F)); 2439 if (!Fn) 2440 return nullptr; 2441 2442 // Make sure that the function has the correct prototype. 2443 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2444 return nullptr; 2445 2446 return Fn; 2447 } 2448 2449 /// Returns whether the given function is an empty C++ destructor and can 2450 /// therefore be eliminated. 2451 /// Note that we assume that other optimization passes have already simplified 2452 /// the code so we only look for a function with a single basic block, where 2453 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2454 /// other side-effect free instructions. 2455 static bool cxxDtorIsEmpty(const Function &Fn, 2456 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2457 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2458 // nounwind, but that doesn't seem worth doing. 2459 if (Fn.isDeclaration()) 2460 return false; 2461 2462 if (++Fn.begin() != Fn.end()) 2463 return false; 2464 2465 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2466 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2467 I != E; ++I) { 2468 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2469 // Ignore debug intrinsics. 2470 if (isa<DbgInfoIntrinsic>(CI)) 2471 continue; 2472 2473 const Function *CalledFn = CI->getCalledFunction(); 2474 2475 if (!CalledFn) 2476 return false; 2477 2478 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2479 2480 // Don't treat recursive functions as empty. 2481 if (!NewCalledFunctions.insert(CalledFn).second) 2482 return false; 2483 2484 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2485 return false; 2486 } else if (isa<ReturnInst>(*I)) 2487 return true; // We're done. 2488 else if (I->mayHaveSideEffects()) 2489 return false; // Destructor with side effects, bail. 2490 } 2491 2492 return false; 2493 } 2494 2495 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2496 /// Itanium C++ ABI p3.3.5: 2497 /// 2498 /// After constructing a global (or local static) object, that will require 2499 /// destruction on exit, a termination function is registered as follows: 2500 /// 2501 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2502 /// 2503 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2504 /// call f(p) when DSO d is unloaded, before all such termination calls 2505 /// registered before this one. It returns zero if registration is 2506 /// successful, nonzero on failure. 2507 2508 // This pass will look for calls to __cxa_atexit where the function is trivial 2509 // and remove them. 2510 bool Changed = false; 2511 2512 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2513 I != E;) { 2514 // We're only interested in calls. Theoretically, we could handle invoke 2515 // instructions as well, but neither llvm-gcc nor clang generate invokes 2516 // to __cxa_atexit. 2517 CallInst *CI = dyn_cast<CallInst>(*I++); 2518 if (!CI) 2519 continue; 2520 2521 Function *DtorFn = 2522 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2523 if (!DtorFn) 2524 continue; 2525 2526 SmallPtrSet<const Function *, 8> CalledFunctions; 2527 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 2528 continue; 2529 2530 // Just remove the call. 2531 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2532 CI->eraseFromParent(); 2533 2534 ++NumCXXDtorsRemoved; 2535 2536 Changed |= true; 2537 } 2538 2539 return Changed; 2540 } 2541 2542 static bool optimizeGlobalsInModule( 2543 Module &M, const DataLayout &DL, TargetLibraryInfo *TLI, 2544 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2545 SmallSet<const Comdat *, 8> NotDiscardableComdats; 2546 bool Changed = false; 2547 bool LocalChange = true; 2548 while (LocalChange) { 2549 LocalChange = false; 2550 2551 NotDiscardableComdats.clear(); 2552 for (const GlobalVariable &GV : M.globals()) 2553 if (const Comdat *C = GV.getComdat()) 2554 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2555 NotDiscardableComdats.insert(C); 2556 for (Function &F : M) 2557 if (const Comdat *C = F.getComdat()) 2558 if (!F.isDefTriviallyDead()) 2559 NotDiscardableComdats.insert(C); 2560 for (GlobalAlias &GA : M.aliases()) 2561 if (const Comdat *C = GA.getComdat()) 2562 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2563 NotDiscardableComdats.insert(C); 2564 2565 // Delete functions that are trivially dead, ccc -> fastcc 2566 LocalChange |= 2567 OptimizeFunctions(M, TLI, LookupDomTree, NotDiscardableComdats); 2568 2569 // Optimize global_ctors list. 2570 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2571 return EvaluateStaticConstructor(F, DL, TLI); 2572 }); 2573 2574 // Optimize non-address-taken globals. 2575 LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree, 2576 NotDiscardableComdats); 2577 2578 // Resolve aliases, when possible. 2579 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2580 2581 // Try to remove trivial global destructors if they are not removed 2582 // already. 2583 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 2584 if (CXAAtExitFn) 2585 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2586 2587 Changed |= LocalChange; 2588 } 2589 2590 // TODO: Move all global ctors functions to the end of the module for code 2591 // layout. 2592 2593 return Changed; 2594 } 2595 2596 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2597 auto &DL = M.getDataLayout(); 2598 auto &TLI = AM.getResult<TargetLibraryAnalysis>(M); 2599 auto &FAM = 2600 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2601 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2602 return FAM.getResult<DominatorTreeAnalysis>(F); 2603 }; 2604 if (!optimizeGlobalsInModule(M, DL, &TLI, LookupDomTree)) 2605 return PreservedAnalyses::all(); 2606 return PreservedAnalyses::none(); 2607 } 2608 2609 namespace { 2610 struct GlobalOptLegacyPass : public ModulePass { 2611 static char ID; // Pass identification, replacement for typeid 2612 GlobalOptLegacyPass() : ModulePass(ID) { 2613 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2614 } 2615 2616 bool runOnModule(Module &M) override { 2617 if (skipModule(M)) 2618 return false; 2619 2620 auto &DL = M.getDataLayout(); 2621 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2622 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2623 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2624 }; 2625 return optimizeGlobalsInModule(M, DL, TLI, LookupDomTree); 2626 } 2627 2628 void getAnalysisUsage(AnalysisUsage &AU) const override { 2629 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2630 AU.addRequired<DominatorTreeWrapperPass>(); 2631 } 2632 }; 2633 } 2634 2635 char GlobalOptLegacyPass::ID = 0; 2636 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2637 "Global Variable Optimizer", false, false) 2638 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2639 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2640 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2641 "Global Variable Optimizer", false, false) 2642 2643 ModulePass *llvm::createGlobalOptimizerPass() { 2644 return new GlobalOptLegacyPass(); 2645 } 2646