1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/CallingConv.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/CtorUtils.h" 43 #include "llvm/Transforms/Utils/GlobalStatus.h" 44 #include "llvm/Transforms/Utils/ModuleUtils.h" 45 #include <algorithm> 46 #include <deque> 47 using namespace llvm; 48 49 #define DEBUG_TYPE "globalopt" 50 51 STATISTIC(NumMarked , "Number of globals marked constant"); 52 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 53 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 54 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 55 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 56 STATISTIC(NumDeleted , "Number of globals deleted"); 57 STATISTIC(NumFnDeleted , "Number of functions deleted"); 58 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 59 STATISTIC(NumLocalized , "Number of globals localized"); 60 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 61 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 62 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 63 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 64 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 65 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 66 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 67 68 namespace { 69 struct GlobalOpt : public ModulePass { 70 void getAnalysisUsage(AnalysisUsage &AU) const override { 71 AU.addRequired<TargetLibraryInfoWrapperPass>(); 72 } 73 static char ID; // Pass identification, replacement for typeid 74 GlobalOpt() : ModulePass(ID) { 75 initializeGlobalOptPass(*PassRegistry::getPassRegistry()); 76 } 77 78 bool runOnModule(Module &M) override; 79 80 private: 81 bool OptimizeFunctions(Module &M); 82 bool OptimizeGlobalVars(Module &M); 83 bool OptimizeGlobalAliases(Module &M); 84 bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI); 85 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI, 86 const GlobalStatus &GS); 87 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn); 88 89 TargetLibraryInfo *TLI; 90 SmallSet<const Comdat *, 8> NotDiscardableComdats; 91 }; 92 } 93 94 char GlobalOpt::ID = 0; 95 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt", 96 "Global Variable Optimizer", false, false) 97 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 98 INITIALIZE_PASS_END(GlobalOpt, "globalopt", 99 "Global Variable Optimizer", false, false) 100 101 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } 102 103 /// isLeakCheckerRoot - Is this global variable possibly used by a leak checker 104 /// as a root? If so, we might not really want to eliminate the stores to it. 105 static bool isLeakCheckerRoot(GlobalVariable *GV) { 106 // A global variable is a root if it is a pointer, or could plausibly contain 107 // a pointer. There are two challenges; one is that we could have a struct 108 // the has an inner member which is a pointer. We recurse through the type to 109 // detect these (up to a point). The other is that we may actually be a union 110 // of a pointer and another type, and so our LLVM type is an integer which 111 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 112 // potentially contained here. 113 114 if (GV->hasPrivateLinkage()) 115 return false; 116 117 SmallVector<Type *, 4> Types; 118 Types.push_back(cast<PointerType>(GV->getType())->getElementType()); 119 120 unsigned Limit = 20; 121 do { 122 Type *Ty = Types.pop_back_val(); 123 switch (Ty->getTypeID()) { 124 default: break; 125 case Type::PointerTyID: return true; 126 case Type::ArrayTyID: 127 case Type::VectorTyID: { 128 SequentialType *STy = cast<SequentialType>(Ty); 129 Types.push_back(STy->getElementType()); 130 break; 131 } 132 case Type::StructTyID: { 133 StructType *STy = cast<StructType>(Ty); 134 if (STy->isOpaque()) return true; 135 for (StructType::element_iterator I = STy->element_begin(), 136 E = STy->element_end(); I != E; ++I) { 137 Type *InnerTy = *I; 138 if (isa<PointerType>(InnerTy)) return true; 139 if (isa<CompositeType>(InnerTy)) 140 Types.push_back(InnerTy); 141 } 142 break; 143 } 144 } 145 if (--Limit == 0) return true; 146 } while (!Types.empty()); 147 return false; 148 } 149 150 /// Given a value that is stored to a global but never read, determine whether 151 /// it's safe to remove the store and the chain of computation that feeds the 152 /// store. 153 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 154 do { 155 if (isa<Constant>(V)) 156 return true; 157 if (!V->hasOneUse()) 158 return false; 159 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 160 isa<GlobalValue>(V)) 161 return false; 162 if (isAllocationFn(V, TLI)) 163 return true; 164 165 Instruction *I = cast<Instruction>(V); 166 if (I->mayHaveSideEffects()) 167 return false; 168 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 169 if (!GEP->hasAllConstantIndices()) 170 return false; 171 } else if (I->getNumOperands() != 1) { 172 return false; 173 } 174 175 V = I->getOperand(0); 176 } while (1); 177 } 178 179 /// CleanupPointerRootUsers - This GV is a pointer root. Loop over all users 180 /// of the global and clean up any that obviously don't assign the global a 181 /// value that isn't dynamically allocated. 182 /// 183 static bool CleanupPointerRootUsers(GlobalVariable *GV, 184 const TargetLibraryInfo *TLI) { 185 // A brief explanation of leak checkers. The goal is to find bugs where 186 // pointers are forgotten, causing an accumulating growth in memory 187 // usage over time. The common strategy for leak checkers is to whitelist the 188 // memory pointed to by globals at exit. This is popular because it also 189 // solves another problem where the main thread of a C++ program may shut down 190 // before other threads that are still expecting to use those globals. To 191 // handle that case, we expect the program may create a singleton and never 192 // destroy it. 193 194 bool Changed = false; 195 196 // If Dead[n].first is the only use of a malloc result, we can delete its 197 // chain of computation and the store to the global in Dead[n].second. 198 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 199 200 // Constants can't be pointers to dynamically allocated memory. 201 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 202 UI != E;) { 203 User *U = *UI++; 204 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 205 Value *V = SI->getValueOperand(); 206 if (isa<Constant>(V)) { 207 Changed = true; 208 SI->eraseFromParent(); 209 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 210 if (I->hasOneUse()) 211 Dead.push_back(std::make_pair(I, SI)); 212 } 213 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 214 if (isa<Constant>(MSI->getValue())) { 215 Changed = true; 216 MSI->eraseFromParent(); 217 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 218 if (I->hasOneUse()) 219 Dead.push_back(std::make_pair(I, MSI)); 220 } 221 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 222 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 223 if (MemSrc && MemSrc->isConstant()) { 224 Changed = true; 225 MTI->eraseFromParent(); 226 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 227 if (I->hasOneUse()) 228 Dead.push_back(std::make_pair(I, MTI)); 229 } 230 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 231 if (CE->use_empty()) { 232 CE->destroyConstant(); 233 Changed = true; 234 } 235 } else if (Constant *C = dyn_cast<Constant>(U)) { 236 if (isSafeToDestroyConstant(C)) { 237 C->destroyConstant(); 238 // This could have invalidated UI, start over from scratch. 239 Dead.clear(); 240 CleanupPointerRootUsers(GV, TLI); 241 return true; 242 } 243 } 244 } 245 246 for (int i = 0, e = Dead.size(); i != e; ++i) { 247 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 248 Dead[i].second->eraseFromParent(); 249 Instruction *I = Dead[i].first; 250 do { 251 if (isAllocationFn(I, TLI)) 252 break; 253 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 254 if (!J) 255 break; 256 I->eraseFromParent(); 257 I = J; 258 } while (1); 259 I->eraseFromParent(); 260 } 261 } 262 263 return Changed; 264 } 265 266 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all 267 /// users of the global, cleaning up the obvious ones. This is largely just a 268 /// quick scan over the use list to clean up the easy and obvious cruft. This 269 /// returns true if it made a change. 270 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 271 const DataLayout &DL, 272 TargetLibraryInfo *TLI) { 273 bool Changed = false; 274 // Note that we need to use a weak value handle for the worklist items. When 275 // we delete a constant array, we may also be holding pointer to one of its 276 // elements (or an element of one of its elements if we're dealing with an 277 // array of arrays) in the worklist. 278 SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end()); 279 while (!WorkList.empty()) { 280 Value *UV = WorkList.pop_back_val(); 281 if (!UV) 282 continue; 283 284 User *U = cast<User>(UV); 285 286 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 287 if (Init) { 288 // Replace the load with the initializer. 289 LI->replaceAllUsesWith(Init); 290 LI->eraseFromParent(); 291 Changed = true; 292 } 293 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 294 // Store must be unreachable or storing Init into the global. 295 SI->eraseFromParent(); 296 Changed = true; 297 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 298 if (CE->getOpcode() == Instruction::GetElementPtr) { 299 Constant *SubInit = nullptr; 300 if (Init) 301 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 302 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 303 } else if ((CE->getOpcode() == Instruction::BitCast && 304 CE->getType()->isPointerTy()) || 305 CE->getOpcode() == Instruction::AddrSpaceCast) { 306 // Pointer cast, delete any stores and memsets to the global. 307 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 308 } 309 310 if (CE->use_empty()) { 311 CE->destroyConstant(); 312 Changed = true; 313 } 314 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 315 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 316 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 317 // and will invalidate our notion of what Init is. 318 Constant *SubInit = nullptr; 319 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 320 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 321 ConstantFoldInstruction(GEP, DL, TLI)); 322 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 323 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 324 325 // If the initializer is an all-null value and we have an inbounds GEP, 326 // we already know what the result of any load from that GEP is. 327 // TODO: Handle splats. 328 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 329 SubInit = Constant::getNullValue(GEP->getType()->getElementType()); 330 } 331 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 332 333 if (GEP->use_empty()) { 334 GEP->eraseFromParent(); 335 Changed = true; 336 } 337 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 338 if (MI->getRawDest() == V) { 339 MI->eraseFromParent(); 340 Changed = true; 341 } 342 343 } else if (Constant *C = dyn_cast<Constant>(U)) { 344 // If we have a chain of dead constantexprs or other things dangling from 345 // us, and if they are all dead, nuke them without remorse. 346 if (isSafeToDestroyConstant(C)) { 347 C->destroyConstant(); 348 CleanupConstantGlobalUsers(V, Init, DL, TLI); 349 return true; 350 } 351 } 352 } 353 return Changed; 354 } 355 356 /// isSafeSROAElementUse - Return true if the specified instruction is a safe 357 /// user of a derived expression from a global that we want to SROA. 358 static bool isSafeSROAElementUse(Value *V) { 359 // We might have a dead and dangling constant hanging off of here. 360 if (Constant *C = dyn_cast<Constant>(V)) 361 return isSafeToDestroyConstant(C); 362 363 Instruction *I = dyn_cast<Instruction>(V); 364 if (!I) return false; 365 366 // Loads are ok. 367 if (isa<LoadInst>(I)) return true; 368 369 // Stores *to* the pointer are ok. 370 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 371 return SI->getOperand(0) != V; 372 373 // Otherwise, it must be a GEP. 374 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 375 if (!GEPI) return false; 376 377 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 378 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 379 return false; 380 381 for (User *U : GEPI->users()) 382 if (!isSafeSROAElementUse(U)) 383 return false; 384 return true; 385 } 386 387 388 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value. 389 /// Look at it and its uses and decide whether it is safe to SROA this global. 390 /// 391 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 392 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 393 if (!isa<GetElementPtrInst>(U) && 394 (!isa<ConstantExpr>(U) || 395 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 396 return false; 397 398 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 399 // don't like < 3 operand CE's, and we don't like non-constant integer 400 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 401 // value of C. 402 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 403 !cast<Constant>(U->getOperand(1))->isNullValue() || 404 !isa<ConstantInt>(U->getOperand(2))) 405 return false; 406 407 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 408 ++GEPI; // Skip over the pointer index. 409 410 // If this is a use of an array allocation, do a bit more checking for sanity. 411 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 412 uint64_t NumElements = AT->getNumElements(); 413 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 414 415 // Check to make sure that index falls within the array. If not, 416 // something funny is going on, so we won't do the optimization. 417 // 418 if (Idx->getZExtValue() >= NumElements) 419 return false; 420 421 // We cannot scalar repl this level of the array unless any array 422 // sub-indices are in-range constants. In particular, consider: 423 // A[0][i]. We cannot know that the user isn't doing invalid things like 424 // allowing i to index an out-of-range subscript that accesses A[1]. 425 // 426 // Scalar replacing *just* the outer index of the array is probably not 427 // going to be a win anyway, so just give up. 428 for (++GEPI; // Skip array index. 429 GEPI != E; 430 ++GEPI) { 431 uint64_t NumElements; 432 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 433 NumElements = SubArrayTy->getNumElements(); 434 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 435 NumElements = SubVectorTy->getNumElements(); 436 else { 437 assert((*GEPI)->isStructTy() && 438 "Indexed GEP type is not array, vector, or struct!"); 439 continue; 440 } 441 442 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 443 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 444 return false; 445 } 446 } 447 448 for (User *UU : U->users()) 449 if (!isSafeSROAElementUse(UU)) 450 return false; 451 452 return true; 453 } 454 455 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it 456 /// is safe for us to perform this transformation. 457 /// 458 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 459 for (User *U : GV->users()) 460 if (!IsUserOfGlobalSafeForSRA(U, GV)) 461 return false; 462 463 return true; 464 } 465 466 467 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global 468 /// variable. This opens the door for other optimizations by exposing the 469 /// behavior of the program in a more fine-grained way. We have determined that 470 /// this transformation is safe already. We return the first global variable we 471 /// insert so that the caller can reprocess it. 472 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 473 // Make sure this global only has simple uses that we can SRA. 474 if (!GlobalUsersSafeToSRA(GV)) 475 return nullptr; 476 477 assert(GV->hasLocalLinkage() && !GV->isConstant()); 478 Constant *Init = GV->getInitializer(); 479 Type *Ty = Init->getType(); 480 481 std::vector<GlobalVariable*> NewGlobals; 482 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 483 484 // Get the alignment of the global, either explicit or target-specific. 485 unsigned StartAlignment = GV->getAlignment(); 486 if (StartAlignment == 0) 487 StartAlignment = DL.getABITypeAlignment(GV->getType()); 488 489 if (StructType *STy = dyn_cast<StructType>(Ty)) { 490 NewGlobals.reserve(STy->getNumElements()); 491 const StructLayout &Layout = *DL.getStructLayout(STy); 492 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 493 Constant *In = Init->getAggregateElement(i); 494 assert(In && "Couldn't get element of initializer?"); 495 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 496 GlobalVariable::InternalLinkage, 497 In, GV->getName()+"."+Twine(i), 498 GV->getThreadLocalMode(), 499 GV->getType()->getAddressSpace()); 500 Globals.insert(GV, NGV); 501 NewGlobals.push_back(NGV); 502 503 // Calculate the known alignment of the field. If the original aggregate 504 // had 256 byte alignment for example, something might depend on that: 505 // propagate info to each field. 506 uint64_t FieldOffset = Layout.getElementOffset(i); 507 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 508 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 509 NGV->setAlignment(NewAlign); 510 } 511 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 512 unsigned NumElements = 0; 513 if (ArrayType *ATy = dyn_cast<ArrayType>(STy)) 514 NumElements = ATy->getNumElements(); 515 else 516 NumElements = cast<VectorType>(STy)->getNumElements(); 517 518 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 519 return nullptr; // It's not worth it. 520 NewGlobals.reserve(NumElements); 521 522 uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType()); 523 unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType()); 524 for (unsigned i = 0, e = NumElements; i != e; ++i) { 525 Constant *In = Init->getAggregateElement(i); 526 assert(In && "Couldn't get element of initializer?"); 527 528 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 529 GlobalVariable::InternalLinkage, 530 In, GV->getName()+"."+Twine(i), 531 GV->getThreadLocalMode(), 532 GV->getType()->getAddressSpace()); 533 Globals.insert(GV, NGV); 534 NewGlobals.push_back(NGV); 535 536 // Calculate the known alignment of the field. If the original aggregate 537 // had 256 byte alignment for example, something might depend on that: 538 // propagate info to each field. 539 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 540 if (NewAlign > EltAlign) 541 NGV->setAlignment(NewAlign); 542 } 543 } 544 545 if (NewGlobals.empty()) 546 return nullptr; 547 548 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV); 549 550 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 551 552 // Loop over all of the uses of the global, replacing the constantexpr geps, 553 // with smaller constantexpr geps or direct references. 554 while (!GV->use_empty()) { 555 User *GEP = GV->user_back(); 556 assert(((isa<ConstantExpr>(GEP) && 557 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 558 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 559 560 // Ignore the 1th operand, which has to be zero or else the program is quite 561 // broken (undefined). Get the 2nd operand, which is the structure or array 562 // index. 563 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 564 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 565 566 Value *NewPtr = NewGlobals[Val]; 567 Type *NewTy = NewGlobals[Val]->getValueType(); 568 569 // Form a shorter GEP if needed. 570 if (GEP->getNumOperands() > 3) { 571 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 572 SmallVector<Constant*, 8> Idxs; 573 Idxs.push_back(NullInt); 574 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 575 Idxs.push_back(CE->getOperand(i)); 576 NewPtr = 577 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 578 } else { 579 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 580 SmallVector<Value*, 8> Idxs; 581 Idxs.push_back(NullInt); 582 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 583 Idxs.push_back(GEPI->getOperand(i)); 584 NewPtr = GetElementPtrInst::Create( 585 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 586 } 587 } 588 GEP->replaceAllUsesWith(NewPtr); 589 590 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 591 GEPI->eraseFromParent(); 592 else 593 cast<ConstantExpr>(GEP)->destroyConstant(); 594 } 595 596 // Delete the old global, now that it is dead. 597 Globals.erase(GV); 598 ++NumSRA; 599 600 // Loop over the new globals array deleting any globals that are obviously 601 // dead. This can arise due to scalarization of a structure or an array that 602 // has elements that are dead. 603 unsigned FirstGlobal = 0; 604 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 605 if (NewGlobals[i]->use_empty()) { 606 Globals.erase(NewGlobals[i]); 607 if (FirstGlobal == i) ++FirstGlobal; 608 } 609 610 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 611 } 612 613 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified 614 /// value will trap if the value is dynamically null. PHIs keeps track of any 615 /// phi nodes we've seen to avoid reprocessing them. 616 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 617 SmallPtrSetImpl<const PHINode*> &PHIs) { 618 for (const User *U : V->users()) 619 if (isa<LoadInst>(U)) { 620 // Will trap. 621 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 622 if (SI->getOperand(0) == V) { 623 //cerr << "NONTRAPPING USE: " << *U; 624 return false; // Storing the value. 625 } 626 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 627 if (CI->getCalledValue() != V) { 628 //cerr << "NONTRAPPING USE: " << *U; 629 return false; // Not calling the ptr 630 } 631 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 632 if (II->getCalledValue() != V) { 633 //cerr << "NONTRAPPING USE: " << *U; 634 return false; // Not calling the ptr 635 } 636 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 637 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 638 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 639 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 640 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 641 // If we've already seen this phi node, ignore it, it has already been 642 // checked. 643 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 644 return false; 645 } else if (isa<ICmpInst>(U) && 646 isa<ConstantPointerNull>(U->getOperand(1))) { 647 // Ignore icmp X, null 648 } else { 649 //cerr << "NONTRAPPING USE: " << *U; 650 return false; 651 } 652 653 return true; 654 } 655 656 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads 657 /// from GV will trap if the loaded value is null. Note that this also permits 658 /// comparisons of the loaded value against null, as a special case. 659 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 660 for (const User *U : GV->users()) 661 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 662 SmallPtrSet<const PHINode*, 8> PHIs; 663 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 664 return false; 665 } else if (isa<StoreInst>(U)) { 666 // Ignore stores to the global. 667 } else { 668 // We don't know or understand this user, bail out. 669 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 670 return false; 671 } 672 return true; 673 } 674 675 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 676 bool Changed = false; 677 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 678 Instruction *I = cast<Instruction>(*UI++); 679 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 680 LI->setOperand(0, NewV); 681 Changed = true; 682 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 683 if (SI->getOperand(1) == V) { 684 SI->setOperand(1, NewV); 685 Changed = true; 686 } 687 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 688 CallSite CS(I); 689 if (CS.getCalledValue() == V) { 690 // Calling through the pointer! Turn into a direct call, but be careful 691 // that the pointer is not also being passed as an argument. 692 CS.setCalledFunction(NewV); 693 Changed = true; 694 bool PassedAsArg = false; 695 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 696 if (CS.getArgument(i) == V) { 697 PassedAsArg = true; 698 CS.setArgument(i, NewV); 699 } 700 701 if (PassedAsArg) { 702 // Being passed as an argument also. Be careful to not invalidate UI! 703 UI = V->user_begin(); 704 } 705 } 706 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 707 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 708 ConstantExpr::getCast(CI->getOpcode(), 709 NewV, CI->getType())); 710 if (CI->use_empty()) { 711 Changed = true; 712 CI->eraseFromParent(); 713 } 714 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 715 // Should handle GEP here. 716 SmallVector<Constant*, 8> Idxs; 717 Idxs.reserve(GEPI->getNumOperands()-1); 718 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 719 i != e; ++i) 720 if (Constant *C = dyn_cast<Constant>(*i)) 721 Idxs.push_back(C); 722 else 723 break; 724 if (Idxs.size() == GEPI->getNumOperands()-1) 725 Changed |= OptimizeAwayTrappingUsesOfValue( 726 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 727 if (GEPI->use_empty()) { 728 Changed = true; 729 GEPI->eraseFromParent(); 730 } 731 } 732 } 733 734 return Changed; 735 } 736 737 738 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null 739 /// value stored into it. If there are uses of the loaded value that would trap 740 /// if the loaded value is dynamically null, then we know that they cannot be 741 /// reachable with a null optimize away the load. 742 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 743 const DataLayout &DL, 744 TargetLibraryInfo *TLI) { 745 bool Changed = false; 746 747 // Keep track of whether we are able to remove all the uses of the global 748 // other than the store that defines it. 749 bool AllNonStoreUsesGone = true; 750 751 // Replace all uses of loads with uses of uses of the stored value. 752 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 753 User *GlobalUser = *GUI++; 754 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 755 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 756 // If we were able to delete all uses of the loads 757 if (LI->use_empty()) { 758 LI->eraseFromParent(); 759 Changed = true; 760 } else { 761 AllNonStoreUsesGone = false; 762 } 763 } else if (isa<StoreInst>(GlobalUser)) { 764 // Ignore the store that stores "LV" to the global. 765 assert(GlobalUser->getOperand(1) == GV && 766 "Must be storing *to* the global"); 767 } else { 768 AllNonStoreUsesGone = false; 769 770 // If we get here we could have other crazy uses that are transitively 771 // loaded. 772 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 773 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 774 isa<BitCastInst>(GlobalUser) || 775 isa<GetElementPtrInst>(GlobalUser)) && 776 "Only expect load and stores!"); 777 } 778 } 779 780 if (Changed) { 781 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV); 782 ++NumGlobUses; 783 } 784 785 // If we nuked all of the loads, then none of the stores are needed either, 786 // nor is the global. 787 if (AllNonStoreUsesGone) { 788 if (isLeakCheckerRoot(GV)) { 789 Changed |= CleanupPointerRootUsers(GV, TLI); 790 } else { 791 Changed = true; 792 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 793 } 794 if (GV->use_empty()) { 795 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 796 Changed = true; 797 GV->eraseFromParent(); 798 ++NumDeleted; 799 } 800 } 801 return Changed; 802 } 803 804 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the 805 /// instructions that are foldable. 806 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 807 TargetLibraryInfo *TLI) { 808 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 809 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 810 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 811 I->replaceAllUsesWith(NewC); 812 813 // Advance UI to the next non-I use to avoid invalidating it! 814 // Instructions could multiply use V. 815 while (UI != E && *UI == I) 816 ++UI; 817 I->eraseFromParent(); 818 } 819 } 820 821 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global 822 /// variable, and transforms the program as if it always contained the result of 823 /// the specified malloc. Because it is always the result of the specified 824 /// malloc, there is no reason to actually DO the malloc. Instead, turn the 825 /// malloc into a global, and any loads of GV as uses of the new global. 826 static GlobalVariable * 827 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 828 ConstantInt *NElements, const DataLayout &DL, 829 TargetLibraryInfo *TLI) { 830 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 831 832 Type *GlobalType; 833 if (NElements->getZExtValue() == 1) 834 GlobalType = AllocTy; 835 else 836 // If we have an array allocation, the global variable is of an array. 837 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 838 839 // Create the new global variable. The contents of the malloc'd memory is 840 // undefined, so initialize with an undef value. 841 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(), 842 GlobalType, false, 843 GlobalValue::InternalLinkage, 844 UndefValue::get(GlobalType), 845 GV->getName()+".body", 846 GV, 847 GV->getThreadLocalMode()); 848 849 // If there are bitcast users of the malloc (which is typical, usually we have 850 // a malloc + bitcast) then replace them with uses of the new global. Update 851 // other users to use the global as well. 852 BitCastInst *TheBC = nullptr; 853 while (!CI->use_empty()) { 854 Instruction *User = cast<Instruction>(CI->user_back()); 855 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 856 if (BCI->getType() == NewGV->getType()) { 857 BCI->replaceAllUsesWith(NewGV); 858 BCI->eraseFromParent(); 859 } else { 860 BCI->setOperand(0, NewGV); 861 } 862 } else { 863 if (!TheBC) 864 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 865 User->replaceUsesOfWith(CI, TheBC); 866 } 867 } 868 869 Constant *RepValue = NewGV; 870 if (NewGV->getType() != GV->getType()->getElementType()) 871 RepValue = ConstantExpr::getBitCast(RepValue, 872 GV->getType()->getElementType()); 873 874 // If there is a comparison against null, we will insert a global bool to 875 // keep track of whether the global was initialized yet or not. 876 GlobalVariable *InitBool = 877 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 878 GlobalValue::InternalLinkage, 879 ConstantInt::getFalse(GV->getContext()), 880 GV->getName()+".init", GV->getThreadLocalMode()); 881 bool InitBoolUsed = false; 882 883 // Loop over all uses of GV, processing them in turn. 884 while (!GV->use_empty()) { 885 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 886 // The global is initialized when the store to it occurs. 887 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 888 SI->getOrdering(), SI->getSynchScope(), SI); 889 SI->eraseFromParent(); 890 continue; 891 } 892 893 LoadInst *LI = cast<LoadInst>(GV->user_back()); 894 while (!LI->use_empty()) { 895 Use &LoadUse = *LI->use_begin(); 896 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 897 if (!ICI) { 898 LoadUse = RepValue; 899 continue; 900 } 901 902 // Replace the cmp X, 0 with a use of the bool value. 903 // Sink the load to where the compare was, if atomic rules allow us to. 904 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 905 LI->getOrdering(), LI->getSynchScope(), 906 LI->isUnordered() ? (Instruction*)ICI : LI); 907 InitBoolUsed = true; 908 switch (ICI->getPredicate()) { 909 default: llvm_unreachable("Unknown ICmp Predicate!"); 910 case ICmpInst::ICMP_ULT: 911 case ICmpInst::ICMP_SLT: // X < null -> always false 912 LV = ConstantInt::getFalse(GV->getContext()); 913 break; 914 case ICmpInst::ICMP_ULE: 915 case ICmpInst::ICMP_SLE: 916 case ICmpInst::ICMP_EQ: 917 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 918 break; 919 case ICmpInst::ICMP_NE: 920 case ICmpInst::ICMP_UGE: 921 case ICmpInst::ICMP_SGE: 922 case ICmpInst::ICMP_UGT: 923 case ICmpInst::ICMP_SGT: 924 break; // no change. 925 } 926 ICI->replaceAllUsesWith(LV); 927 ICI->eraseFromParent(); 928 } 929 LI->eraseFromParent(); 930 } 931 932 // If the initialization boolean was used, insert it, otherwise delete it. 933 if (!InitBoolUsed) { 934 while (!InitBool->use_empty()) // Delete initializations 935 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 936 delete InitBool; 937 } else 938 GV->getParent()->getGlobalList().insert(GV, InitBool); 939 940 // Now the GV is dead, nuke it and the malloc.. 941 GV->eraseFromParent(); 942 CI->eraseFromParent(); 943 944 // To further other optimizations, loop over all users of NewGV and try to 945 // constant prop them. This will promote GEP instructions with constant 946 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 947 ConstantPropUsersOf(NewGV, DL, TLI); 948 if (RepValue != NewGV) 949 ConstantPropUsersOf(RepValue, DL, TLI); 950 951 return NewGV; 952 } 953 954 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking 955 /// to make sure that there are no complex uses of V. We permit simple things 956 /// like dereferencing the pointer, but not storing through the address, unless 957 /// it is to the specified global. 958 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 959 const GlobalVariable *GV, 960 SmallPtrSetImpl<const PHINode*> &PHIs) { 961 for (const User *U : V->users()) { 962 const Instruction *Inst = cast<Instruction>(U); 963 964 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 965 continue; // Fine, ignore. 966 } 967 968 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 969 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 970 return false; // Storing the pointer itself... bad. 971 continue; // Otherwise, storing through it, or storing into GV... fine. 972 } 973 974 // Must index into the array and into the struct. 975 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 976 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 977 return false; 978 continue; 979 } 980 981 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 982 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 983 // cycles. 984 if (PHIs.insert(PN).second) 985 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 986 return false; 987 continue; 988 } 989 990 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 991 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 992 return false; 993 continue; 994 } 995 996 return false; 997 } 998 return true; 999 } 1000 1001 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV 1002 /// somewhere. Transform all uses of the allocation into loads from the 1003 /// global and uses of the resultant pointer. Further, delete the store into 1004 /// GV. This assumes that these value pass the 1005 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1006 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1007 GlobalVariable *GV) { 1008 while (!Alloc->use_empty()) { 1009 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 1010 Instruction *InsertPt = U; 1011 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1012 // If this is the store of the allocation into the global, remove it. 1013 if (SI->getOperand(1) == GV) { 1014 SI->eraseFromParent(); 1015 continue; 1016 } 1017 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1018 // Insert the load in the corresponding predecessor, not right before the 1019 // PHI. 1020 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 1021 } else if (isa<BitCastInst>(U)) { 1022 // Must be bitcast between the malloc and store to initialize the global. 1023 ReplaceUsesOfMallocWithGlobal(U, GV); 1024 U->eraseFromParent(); 1025 continue; 1026 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1027 // If this is a "GEP bitcast" and the user is a store to the global, then 1028 // just process it as a bitcast. 1029 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1030 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1031 if (SI->getOperand(1) == GV) { 1032 // Must be bitcast GEP between the malloc and store to initialize 1033 // the global. 1034 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1035 GEPI->eraseFromParent(); 1036 continue; 1037 } 1038 } 1039 1040 // Insert a load from the global, and use it instead of the malloc. 1041 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1042 U->replaceUsesOfWith(Alloc, NL); 1043 } 1044 } 1045 1046 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi 1047 /// of a load) are simple enough to perform heap SRA on. This permits GEP's 1048 /// that index through the array and struct field, icmps of null, and PHIs. 1049 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1050 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1051 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1052 // We permit two users of the load: setcc comparing against the null 1053 // pointer, and a getelementptr of a specific form. 1054 for (const User *U : V->users()) { 1055 const Instruction *UI = cast<Instruction>(U); 1056 1057 // Comparison against null is ok. 1058 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1059 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1060 return false; 1061 continue; 1062 } 1063 1064 // getelementptr is also ok, but only a simple form. 1065 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1066 // Must index into the array and into the struct. 1067 if (GEPI->getNumOperands() < 3) 1068 return false; 1069 1070 // Otherwise the GEP is ok. 1071 continue; 1072 } 1073 1074 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1075 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1076 // This means some phi nodes are dependent on each other. 1077 // Avoid infinite looping! 1078 return false; 1079 if (!LoadUsingPHIs.insert(PN).second) 1080 // If we have already analyzed this PHI, then it is safe. 1081 continue; 1082 1083 // Make sure all uses of the PHI are simple enough to transform. 1084 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1085 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1086 return false; 1087 1088 continue; 1089 } 1090 1091 // Otherwise we don't know what this is, not ok. 1092 return false; 1093 } 1094 1095 return true; 1096 } 1097 1098 1099 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from 1100 /// GV are simple enough to perform HeapSRA, return true. 1101 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1102 Instruction *StoredVal) { 1103 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1104 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1105 for (const User *U : GV->users()) 1106 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1107 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1108 LoadUsingPHIsPerLoad)) 1109 return false; 1110 LoadUsingPHIsPerLoad.clear(); 1111 } 1112 1113 // If we reach here, we know that all uses of the loads and transitive uses 1114 // (through PHI nodes) are simple enough to transform. However, we don't know 1115 // that all inputs the to the PHI nodes are in the same equivalence sets. 1116 // Check to verify that all operands of the PHIs are either PHIS that can be 1117 // transformed, loads from GV, or MI itself. 1118 for (const PHINode *PN : LoadUsingPHIs) { 1119 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1120 Value *InVal = PN->getIncomingValue(op); 1121 1122 // PHI of the stored value itself is ok. 1123 if (InVal == StoredVal) continue; 1124 1125 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1126 // One of the PHIs in our set is (optimistically) ok. 1127 if (LoadUsingPHIs.count(InPN)) 1128 continue; 1129 return false; 1130 } 1131 1132 // Load from GV is ok. 1133 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1134 if (LI->getOperand(0) == GV) 1135 continue; 1136 1137 // UNDEF? NULL? 1138 1139 // Anything else is rejected. 1140 return false; 1141 } 1142 } 1143 1144 return true; 1145 } 1146 1147 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1148 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1149 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1150 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1151 1152 if (FieldNo >= FieldVals.size()) 1153 FieldVals.resize(FieldNo+1); 1154 1155 // If we already have this value, just reuse the previously scalarized 1156 // version. 1157 if (Value *FieldVal = FieldVals[FieldNo]) 1158 return FieldVal; 1159 1160 // Depending on what instruction this is, we have several cases. 1161 Value *Result; 1162 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1163 // This is a scalarized version of the load from the global. Just create 1164 // a new Load of the scalarized global. 1165 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1166 InsertedScalarizedValues, 1167 PHIsToRewrite), 1168 LI->getName()+".f"+Twine(FieldNo), LI); 1169 } else { 1170 PHINode *PN = cast<PHINode>(V); 1171 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1172 // field. 1173 1174 PointerType *PTy = cast<PointerType>(PN->getType()); 1175 StructType *ST = cast<StructType>(PTy->getElementType()); 1176 1177 unsigned AS = PTy->getAddressSpace(); 1178 PHINode *NewPN = 1179 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1180 PN->getNumIncomingValues(), 1181 PN->getName()+".f"+Twine(FieldNo), PN); 1182 Result = NewPN; 1183 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1184 } 1185 1186 return FieldVals[FieldNo] = Result; 1187 } 1188 1189 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from 1190 /// the load, rewrite the derived value to use the HeapSRoA'd load. 1191 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1192 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1193 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1194 // If this is a comparison against null, handle it. 1195 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1196 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1197 // If we have a setcc of the loaded pointer, we can use a setcc of any 1198 // field. 1199 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1200 InsertedScalarizedValues, PHIsToRewrite); 1201 1202 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1203 Constant::getNullValue(NPtr->getType()), 1204 SCI->getName()); 1205 SCI->replaceAllUsesWith(New); 1206 SCI->eraseFromParent(); 1207 return; 1208 } 1209 1210 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1211 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1212 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1213 && "Unexpected GEPI!"); 1214 1215 // Load the pointer for this field. 1216 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1217 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1218 InsertedScalarizedValues, PHIsToRewrite); 1219 1220 // Create the new GEP idx vector. 1221 SmallVector<Value*, 8> GEPIdx; 1222 GEPIdx.push_back(GEPI->getOperand(1)); 1223 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1224 1225 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1226 GEPI->getName(), GEPI); 1227 GEPI->replaceAllUsesWith(NGEPI); 1228 GEPI->eraseFromParent(); 1229 return; 1230 } 1231 1232 // Recursively transform the users of PHI nodes. This will lazily create the 1233 // PHIs that are needed for individual elements. Keep track of what PHIs we 1234 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1235 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1236 // already been seen first by another load, so its uses have already been 1237 // processed. 1238 PHINode *PN = cast<PHINode>(LoadUser); 1239 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1240 std::vector<Value*>())).second) 1241 return; 1242 1243 // If this is the first time we've seen this PHI, recursively process all 1244 // users. 1245 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1246 Instruction *User = cast<Instruction>(*UI++); 1247 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1248 } 1249 } 1250 1251 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr 1252 /// is a value loaded from the global. Eliminate all uses of Ptr, making them 1253 /// use FieldGlobals instead. All uses of loaded values satisfy 1254 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1255 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1256 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1257 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1258 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1259 Instruction *User = cast<Instruction>(*UI++); 1260 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1261 } 1262 1263 if (Load->use_empty()) { 1264 Load->eraseFromParent(); 1265 InsertedScalarizedValues.erase(Load); 1266 } 1267 } 1268 1269 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break 1270 /// it up into multiple allocations of arrays of the fields. 1271 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1272 Value *NElems, const DataLayout &DL, 1273 const TargetLibraryInfo *TLI) { 1274 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1275 Type *MAT = getMallocAllocatedType(CI, TLI); 1276 StructType *STy = cast<StructType>(MAT); 1277 1278 // There is guaranteed to be at least one use of the malloc (storing 1279 // it into GV). If there are other uses, change them to be uses of 1280 // the global to simplify later code. This also deletes the store 1281 // into GV. 1282 ReplaceUsesOfMallocWithGlobal(CI, GV); 1283 1284 // Okay, at this point, there are no users of the malloc. Insert N 1285 // new mallocs at the same place as CI, and N globals. 1286 std::vector<Value*> FieldGlobals; 1287 std::vector<Value*> FieldMallocs; 1288 1289 unsigned AS = GV->getType()->getPointerAddressSpace(); 1290 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1291 Type *FieldTy = STy->getElementType(FieldNo); 1292 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1293 1294 GlobalVariable *NGV = 1295 new GlobalVariable(*GV->getParent(), 1296 PFieldTy, false, GlobalValue::InternalLinkage, 1297 Constant::getNullValue(PFieldTy), 1298 GV->getName() + ".f" + Twine(FieldNo), GV, 1299 GV->getThreadLocalMode()); 1300 FieldGlobals.push_back(NGV); 1301 1302 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1303 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1304 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1305 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1306 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1307 ConstantInt::get(IntPtrTy, TypeSize), 1308 NElems, nullptr, 1309 CI->getName() + ".f" + Twine(FieldNo)); 1310 FieldMallocs.push_back(NMI); 1311 new StoreInst(NMI, NGV, CI); 1312 } 1313 1314 // The tricky aspect of this transformation is handling the case when malloc 1315 // fails. In the original code, malloc failing would set the result pointer 1316 // of malloc to null. In this case, some mallocs could succeed and others 1317 // could fail. As such, we emit code that looks like this: 1318 // F0 = malloc(field0) 1319 // F1 = malloc(field1) 1320 // F2 = malloc(field2) 1321 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1322 // if (F0) { free(F0); F0 = 0; } 1323 // if (F1) { free(F1); F1 = 0; } 1324 // if (F2) { free(F2); F2 = 0; } 1325 // } 1326 // The malloc can also fail if its argument is too large. 1327 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1328 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1329 ConstantZero, "isneg"); 1330 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1331 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1332 Constant::getNullValue(FieldMallocs[i]->getType()), 1333 "isnull"); 1334 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1335 } 1336 1337 // Split the basic block at the old malloc. 1338 BasicBlock *OrigBB = CI->getParent(); 1339 BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont"); 1340 1341 // Create the block to check the first condition. Put all these blocks at the 1342 // end of the function as they are unlikely to be executed. 1343 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1344 "malloc_ret_null", 1345 OrigBB->getParent()); 1346 1347 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1348 // branch on RunningOr. 1349 OrigBB->getTerminator()->eraseFromParent(); 1350 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1351 1352 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1353 // pointer, because some may be null while others are not. 1354 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1355 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1356 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1357 Constant::getNullValue(GVVal->getType())); 1358 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1359 OrigBB->getParent()); 1360 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1361 OrigBB->getParent()); 1362 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1363 Cmp, NullPtrBlock); 1364 1365 // Fill in FreeBlock. 1366 CallInst::CreateFree(GVVal, BI); 1367 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1368 FreeBlock); 1369 BranchInst::Create(NextBlock, FreeBlock); 1370 1371 NullPtrBlock = NextBlock; 1372 } 1373 1374 BranchInst::Create(ContBB, NullPtrBlock); 1375 1376 // CI is no longer needed, remove it. 1377 CI->eraseFromParent(); 1378 1379 /// InsertedScalarizedLoads - As we process loads, if we can't immediately 1380 /// update all uses of the load, keep track of what scalarized loads are 1381 /// inserted for a given load. 1382 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1383 InsertedScalarizedValues[GV] = FieldGlobals; 1384 1385 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1386 1387 // Okay, the malloc site is completely handled. All of the uses of GV are now 1388 // loads, and all uses of those loads are simple. Rewrite them to use loads 1389 // of the per-field globals instead. 1390 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1391 Instruction *User = cast<Instruction>(*UI++); 1392 1393 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1394 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1395 continue; 1396 } 1397 1398 // Must be a store of null. 1399 StoreInst *SI = cast<StoreInst>(User); 1400 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1401 "Unexpected heap-sra user!"); 1402 1403 // Insert a store of null into each global. 1404 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1405 PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType()); 1406 Constant *Null = Constant::getNullValue(PT->getElementType()); 1407 new StoreInst(Null, FieldGlobals[i], SI); 1408 } 1409 // Erase the original store. 1410 SI->eraseFromParent(); 1411 } 1412 1413 // While we have PHIs that are interesting to rewrite, do it. 1414 while (!PHIsToRewrite.empty()) { 1415 PHINode *PN = PHIsToRewrite.back().first; 1416 unsigned FieldNo = PHIsToRewrite.back().second; 1417 PHIsToRewrite.pop_back(); 1418 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1419 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1420 1421 // Add all the incoming values. This can materialize more phis. 1422 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1423 Value *InVal = PN->getIncomingValue(i); 1424 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1425 PHIsToRewrite); 1426 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1427 } 1428 } 1429 1430 // Drop all inter-phi links and any loads that made it this far. 1431 for (DenseMap<Value*, std::vector<Value*> >::iterator 1432 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1433 I != E; ++I) { 1434 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1435 PN->dropAllReferences(); 1436 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1437 LI->dropAllReferences(); 1438 } 1439 1440 // Delete all the phis and loads now that inter-references are dead. 1441 for (DenseMap<Value*, std::vector<Value*> >::iterator 1442 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1443 I != E; ++I) { 1444 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1445 PN->eraseFromParent(); 1446 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1447 LI->eraseFromParent(); 1448 } 1449 1450 // The old global is now dead, remove it. 1451 GV->eraseFromParent(); 1452 1453 ++NumHeapSRA; 1454 return cast<GlobalVariable>(FieldGlobals[0]); 1455 } 1456 1457 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a 1458 /// pointer global variable with a single value stored it that is a malloc or 1459 /// cast of malloc. 1460 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1461 Type *AllocTy, 1462 AtomicOrdering Ordering, 1463 Module::global_iterator &GVI, 1464 const DataLayout &DL, 1465 TargetLibraryInfo *TLI) { 1466 // If this is a malloc of an abstract type, don't touch it. 1467 if (!AllocTy->isSized()) 1468 return false; 1469 1470 // We can't optimize this global unless all uses of it are *known* to be 1471 // of the malloc value, not of the null initializer value (consider a use 1472 // that compares the global's value against zero to see if the malloc has 1473 // been reached). To do this, we check to see if all uses of the global 1474 // would trap if the global were null: this proves that they must all 1475 // happen after the malloc. 1476 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1477 return false; 1478 1479 // We can't optimize this if the malloc itself is used in a complex way, 1480 // for example, being stored into multiple globals. This allows the 1481 // malloc to be stored into the specified global, loaded icmp'd, and 1482 // GEP'd. These are all things we could transform to using the global 1483 // for. 1484 SmallPtrSet<const PHINode*, 8> PHIs; 1485 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1486 return false; 1487 1488 // If we have a global that is only initialized with a fixed size malloc, 1489 // transform the program to use global memory instead of malloc'd memory. 1490 // This eliminates dynamic allocation, avoids an indirection accessing the 1491 // data, and exposes the resultant global to further GlobalOpt. 1492 // We cannot optimize the malloc if we cannot determine malloc array size. 1493 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1494 if (!NElems) 1495 return false; 1496 1497 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1498 // Restrict this transformation to only working on small allocations 1499 // (2048 bytes currently), as we don't want to introduce a 16M global or 1500 // something. 1501 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1502 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1503 return true; 1504 } 1505 1506 // If the allocation is an array of structures, consider transforming this 1507 // into multiple malloc'd arrays, one for each field. This is basically 1508 // SRoA for malloc'd memory. 1509 1510 if (Ordering != NotAtomic) 1511 return false; 1512 1513 // If this is an allocation of a fixed size array of structs, analyze as a 1514 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1515 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1516 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1517 AllocTy = AT->getElementType(); 1518 1519 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1520 if (!AllocSTy) 1521 return false; 1522 1523 // This the structure has an unreasonable number of fields, leave it 1524 // alone. 1525 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1526 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1527 1528 // If this is a fixed size array, transform the Malloc to be an alloc of 1529 // structs. malloc [100 x struct],1 -> malloc struct, 100 1530 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1531 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1532 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1533 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1534 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1535 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, 1536 AllocSize, NumElements, 1537 nullptr, CI->getName()); 1538 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1539 CI->replaceAllUsesWith(Cast); 1540 CI->eraseFromParent(); 1541 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1542 CI = cast<CallInst>(BCI->getOperand(0)); 1543 else 1544 CI = cast<CallInst>(Malloc); 1545 } 1546 1547 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), 1548 DL, TLI); 1549 return true; 1550 } 1551 1552 return false; 1553 } 1554 1555 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge 1556 // that only one value (besides its initializer) is ever stored to the global. 1557 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1558 AtomicOrdering Ordering, 1559 Module::global_iterator &GVI, 1560 const DataLayout &DL, 1561 TargetLibraryInfo *TLI) { 1562 // Ignore no-op GEPs and bitcasts. 1563 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1564 1565 // If we are dealing with a pointer global that is initialized to null and 1566 // only has one (non-null) value stored into it, then we can optimize any 1567 // users of the loaded value (often calls and loads) that would trap if the 1568 // value was null. 1569 if (GV->getInitializer()->getType()->isPointerTy() && 1570 GV->getInitializer()->isNullValue()) { 1571 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1572 if (GV->getInitializer()->getType() != SOVC->getType()) 1573 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1574 1575 // Optimize away any trapping uses of the loaded value. 1576 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1577 return true; 1578 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1579 Type *MallocType = getMallocAllocatedType(CI, TLI); 1580 if (MallocType && 1581 TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI, 1582 DL, TLI)) 1583 return true; 1584 } 1585 } 1586 1587 return false; 1588 } 1589 1590 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only 1591 /// two values ever stored into GV are its initializer and OtherVal. See if we 1592 /// can shrink the global into a boolean and select between the two values 1593 /// whenever it is used. This exposes the values to other scalar optimizations. 1594 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1595 Type *GVElType = GV->getType()->getElementType(); 1596 1597 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1598 // an FP value, pointer or vector, don't do this optimization because a select 1599 // between them is very expensive and unlikely to lead to later 1600 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1601 // where v1 and v2 both require constant pool loads, a big loss. 1602 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1603 GVElType->isFloatingPointTy() || 1604 GVElType->isPointerTy() || GVElType->isVectorTy()) 1605 return false; 1606 1607 // Walk the use list of the global seeing if all the uses are load or store. 1608 // If there is anything else, bail out. 1609 for (User *U : GV->users()) 1610 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1611 return false; 1612 1613 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV); 1614 1615 // Create the new global, initializing it to false. 1616 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1617 false, 1618 GlobalValue::InternalLinkage, 1619 ConstantInt::getFalse(GV->getContext()), 1620 GV->getName()+".b", 1621 GV->getThreadLocalMode(), 1622 GV->getType()->getAddressSpace()); 1623 GV->getParent()->getGlobalList().insert(GV, NewGV); 1624 1625 Constant *InitVal = GV->getInitializer(); 1626 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1627 "No reason to shrink to bool!"); 1628 1629 // If initialized to zero and storing one into the global, we can use a cast 1630 // instead of a select to synthesize the desired value. 1631 bool IsOneZero = false; 1632 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1633 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1634 1635 while (!GV->use_empty()) { 1636 Instruction *UI = cast<Instruction>(GV->user_back()); 1637 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1638 // Change the store into a boolean store. 1639 bool StoringOther = SI->getOperand(0) == OtherVal; 1640 // Only do this if we weren't storing a loaded value. 1641 Value *StoreVal; 1642 if (StoringOther || SI->getOperand(0) == InitVal) { 1643 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1644 StoringOther); 1645 } else { 1646 // Otherwise, we are storing a previously loaded copy. To do this, 1647 // change the copy from copying the original value to just copying the 1648 // bool. 1649 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1650 1651 // If we've already replaced the input, StoredVal will be a cast or 1652 // select instruction. If not, it will be a load of the original 1653 // global. 1654 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1655 assert(LI->getOperand(0) == GV && "Not a copy!"); 1656 // Insert a new load, to preserve the saved value. 1657 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1658 LI->getOrdering(), LI->getSynchScope(), LI); 1659 } else { 1660 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1661 "This is not a form that we understand!"); 1662 StoreVal = StoredVal->getOperand(0); 1663 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1664 } 1665 } 1666 new StoreInst(StoreVal, NewGV, false, 0, 1667 SI->getOrdering(), SI->getSynchScope(), SI); 1668 } else { 1669 // Change the load into a load of bool then a select. 1670 LoadInst *LI = cast<LoadInst>(UI); 1671 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1672 LI->getOrdering(), LI->getSynchScope(), LI); 1673 Value *NSI; 1674 if (IsOneZero) 1675 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1676 else 1677 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1678 NSI->takeName(LI); 1679 LI->replaceAllUsesWith(NSI); 1680 } 1681 UI->eraseFromParent(); 1682 } 1683 1684 // Retain the name of the old global variable. People who are debugging their 1685 // programs may expect these variables to be named the same. 1686 NewGV->takeName(GV); 1687 GV->eraseFromParent(); 1688 return true; 1689 } 1690 1691 1692 /// ProcessGlobal - Analyze the specified global variable and optimize it if 1693 /// possible. If we make a change, return true. 1694 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV, 1695 Module::global_iterator &GVI) { 1696 // Do more involved optimizations if the global is internal. 1697 GV->removeDeadConstantUsers(); 1698 1699 if (GV->use_empty()) { 1700 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV); 1701 GV->eraseFromParent(); 1702 ++NumDeleted; 1703 return true; 1704 } 1705 1706 if (!GV->hasLocalLinkage()) 1707 return false; 1708 1709 GlobalStatus GS; 1710 1711 if (GlobalStatus::analyzeGlobal(GV, GS)) 1712 return false; 1713 1714 if (!GS.IsCompared && !GV->hasUnnamedAddr()) { 1715 GV->setUnnamedAddr(true); 1716 NumUnnamed++; 1717 } 1718 1719 if (GV->isConstant() || !GV->hasInitializer()) 1720 return false; 1721 1722 return ProcessInternalGlobal(GV, GVI, GS); 1723 } 1724 1725 /// ProcessInternalGlobal - Analyze the specified global variable and optimize 1726 /// it if possible. If we make a change, return true. 1727 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, 1728 Module::global_iterator &GVI, 1729 const GlobalStatus &GS) { 1730 auto &DL = GV->getParent()->getDataLayout(); 1731 // If this is a first class global and has only one accessing function 1732 // and this function is main (which we know is not recursive), we replace 1733 // the global with a local alloca in this function. 1734 // 1735 // NOTE: It doesn't make sense to promote non-single-value types since we 1736 // are just replacing static memory to stack memory. 1737 // 1738 // If the global is in different address space, don't bring it to stack. 1739 if (!GS.HasMultipleAccessingFunctions && 1740 GS.AccessingFunction && !GS.HasNonInstructionUser && 1741 GV->getType()->getElementType()->isSingleValueType() && 1742 GS.AccessingFunction->getName() == "main" && 1743 GS.AccessingFunction->hasExternalLinkage() && 1744 GV->getType()->getAddressSpace() == 0) { 1745 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV); 1746 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1747 ->getEntryBlock().begin()); 1748 Type *ElemTy = GV->getType()->getElementType(); 1749 // FIXME: Pass Global's alignment when globals have alignment 1750 AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr, 1751 GV->getName(), &FirstI); 1752 if (!isa<UndefValue>(GV->getInitializer())) 1753 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1754 1755 GV->replaceAllUsesWith(Alloca); 1756 GV->eraseFromParent(); 1757 ++NumLocalized; 1758 return true; 1759 } 1760 1761 // If the global is never loaded (but may be stored to), it is dead. 1762 // Delete it now. 1763 if (!GS.IsLoaded) { 1764 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV); 1765 1766 bool Changed; 1767 if (isLeakCheckerRoot(GV)) { 1768 // Delete any constant stores to the global. 1769 Changed = CleanupPointerRootUsers(GV, TLI); 1770 } else { 1771 // Delete any stores we can find to the global. We may not be able to 1772 // make it completely dead though. 1773 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1774 } 1775 1776 // If the global is dead now, delete it. 1777 if (GV->use_empty()) { 1778 GV->eraseFromParent(); 1779 ++NumDeleted; 1780 Changed = true; 1781 } 1782 return Changed; 1783 1784 } else if (GS.StoredType <= GlobalStatus::InitializerStored) { 1785 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1786 GV->setConstant(true); 1787 1788 // Clean up any obviously simplifiable users now. 1789 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1790 1791 // If the global is dead now, just nuke it. 1792 if (GV->use_empty()) { 1793 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1794 << "all users and delete global!\n"); 1795 GV->eraseFromParent(); 1796 ++NumDeleted; 1797 } 1798 1799 ++NumMarked; 1800 return true; 1801 } else if (!GV->getInitializer()->getType()->isSingleValueType()) { 1802 const DataLayout &DL = GV->getParent()->getDataLayout(); 1803 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, DL)) { 1804 GVI = FirstNewGV; // Don't skip the newly produced globals! 1805 return true; 1806 } 1807 } else if (GS.StoredType == GlobalStatus::StoredOnce) { 1808 // If the initial value for the global was an undef value, and if only 1809 // one other value was stored into it, we can just change the 1810 // initializer to be the stored value, then delete all stores to the 1811 // global. This allows us to mark it constant. 1812 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1813 if (isa<UndefValue>(GV->getInitializer())) { 1814 // Change the initial value here. 1815 GV->setInitializer(SOVConstant); 1816 1817 // Clean up any obviously simplifiable users now. 1818 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1819 1820 if (GV->use_empty()) { 1821 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1822 << "simplify all users and delete global!\n"); 1823 GV->eraseFromParent(); 1824 ++NumDeleted; 1825 } else { 1826 GVI = GV; 1827 } 1828 ++NumSubstitute; 1829 return true; 1830 } 1831 1832 // Try to optimize globals based on the knowledge that only one value 1833 // (besides its initializer) is ever stored to the global. 1834 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI, 1835 DL, TLI)) 1836 return true; 1837 1838 // Otherwise, if the global was not a boolean, we can shrink it to be a 1839 // boolean. 1840 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 1841 if (GS.Ordering == NotAtomic) { 1842 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1843 ++NumShrunkToBool; 1844 return true; 1845 } 1846 } 1847 } 1848 } 1849 1850 return false; 1851 } 1852 1853 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified 1854 /// function, changing them to FastCC. 1855 static void ChangeCalleesToFastCall(Function *F) { 1856 for (User *U : F->users()) { 1857 if (isa<BlockAddress>(U)) 1858 continue; 1859 CallSite CS(cast<Instruction>(U)); 1860 CS.setCallingConv(CallingConv::Fast); 1861 } 1862 } 1863 1864 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) { 1865 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1866 unsigned Index = Attrs.getSlotIndex(i); 1867 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest)) 1868 continue; 1869 1870 // There can be only one. 1871 return Attrs.removeAttribute(C, Index, Attribute::Nest); 1872 } 1873 1874 return Attrs; 1875 } 1876 1877 static void RemoveNestAttribute(Function *F) { 1878 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 1879 for (User *U : F->users()) { 1880 if (isa<BlockAddress>(U)) 1881 continue; 1882 CallSite CS(cast<Instruction>(U)); 1883 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 1884 } 1885 } 1886 1887 /// Return true if this is a calling convention that we'd like to change. The 1888 /// idea here is that we don't want to mess with the convention if the user 1889 /// explicitly requested something with performance implications like coldcc, 1890 /// GHC, or anyregcc. 1891 static bool isProfitableToMakeFastCC(Function *F) { 1892 CallingConv::ID CC = F->getCallingConv(); 1893 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 1894 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall; 1895 } 1896 1897 bool GlobalOpt::OptimizeFunctions(Module &M) { 1898 bool Changed = false; 1899 // Optimize functions. 1900 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 1901 Function *F = FI++; 1902 // Functions without names cannot be referenced outside this module. 1903 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 1904 F->setLinkage(GlobalValue::InternalLinkage); 1905 1906 const Comdat *C = F->getComdat(); 1907 bool inComdat = C && NotDiscardableComdats.count(C); 1908 F->removeDeadConstantUsers(); 1909 if ((!inComdat || F->hasLocalLinkage()) && F->isDefTriviallyDead()) { 1910 F->eraseFromParent(); 1911 Changed = true; 1912 ++NumFnDeleted; 1913 } else if (F->hasLocalLinkage()) { 1914 if (isProfitableToMakeFastCC(F) && !F->isVarArg() && 1915 !F->hasAddressTaken()) { 1916 // If this function has a calling convention worth changing, is not a 1917 // varargs function, and is only called directly, promote it to use the 1918 // Fast calling convention. 1919 F->setCallingConv(CallingConv::Fast); 1920 ChangeCalleesToFastCall(F); 1921 ++NumFastCallFns; 1922 Changed = true; 1923 } 1924 1925 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 1926 !F->hasAddressTaken()) { 1927 // The function is not used by a trampoline intrinsic, so it is safe 1928 // to remove the 'nest' attribute. 1929 RemoveNestAttribute(F); 1930 ++NumNestRemoved; 1931 Changed = true; 1932 } 1933 } 1934 } 1935 return Changed; 1936 } 1937 1938 bool GlobalOpt::OptimizeGlobalVars(Module &M) { 1939 bool Changed = false; 1940 1941 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 1942 GVI != E; ) { 1943 GlobalVariable *GV = GVI++; 1944 // Global variables without names cannot be referenced outside this module. 1945 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 1946 GV->setLinkage(GlobalValue::InternalLinkage); 1947 // Simplify the initializer. 1948 if (GV->hasInitializer()) 1949 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) { 1950 auto &DL = M.getDataLayout(); 1951 Constant *New = ConstantFoldConstantExpression(CE, DL, TLI); 1952 if (New && New != CE) 1953 GV->setInitializer(New); 1954 } 1955 1956 if (GV->isDiscardableIfUnused()) { 1957 if (const Comdat *C = GV->getComdat()) 1958 if (NotDiscardableComdats.count(C) && !GV->hasLocalLinkage()) 1959 continue; 1960 Changed |= ProcessGlobal(GV, GVI); 1961 } 1962 } 1963 return Changed; 1964 } 1965 1966 static inline bool 1967 isSimpleEnoughValueToCommit(Constant *C, 1968 SmallPtrSetImpl<Constant *> &SimpleConstants, 1969 const DataLayout &DL); 1970 1971 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be 1972 /// handled by the code generator. We don't want to generate something like: 1973 /// void *X = &X/42; 1974 /// because the code generator doesn't have a relocation that can handle that. 1975 /// 1976 /// This function should be called if C was not found (but just got inserted) 1977 /// in SimpleConstants to avoid having to rescan the same constants all the 1978 /// time. 1979 static bool 1980 isSimpleEnoughValueToCommitHelper(Constant *C, 1981 SmallPtrSetImpl<Constant *> &SimpleConstants, 1982 const DataLayout &DL) { 1983 // Simple global addresses are supported, do not allow dllimport or 1984 // thread-local globals. 1985 if (auto *GV = dyn_cast<GlobalValue>(C)) 1986 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); 1987 1988 // Simple integer, undef, constant aggregate zero, etc are all supported. 1989 if (C->getNumOperands() == 0 || isa<BlockAddress>(C)) 1990 return true; 1991 1992 // Aggregate values are safe if all their elements are. 1993 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1994 isa<ConstantVector>(C)) { 1995 for (Value *Op : C->operands()) 1996 if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL)) 1997 return false; 1998 return true; 1999 } 2000 2001 // We don't know exactly what relocations are allowed in constant expressions, 2002 // so we allow &global+constantoffset, which is safe and uniformly supported 2003 // across targets. 2004 ConstantExpr *CE = cast<ConstantExpr>(C); 2005 switch (CE->getOpcode()) { 2006 case Instruction::BitCast: 2007 // Bitcast is fine if the casted value is fine. 2008 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2009 2010 case Instruction::IntToPtr: 2011 case Instruction::PtrToInt: 2012 // int <=> ptr is fine if the int type is the same size as the 2013 // pointer type. 2014 if (DL.getTypeSizeInBits(CE->getType()) != 2015 DL.getTypeSizeInBits(CE->getOperand(0)->getType())) 2016 return false; 2017 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2018 2019 // GEP is fine if it is simple + constant offset. 2020 case Instruction::GetElementPtr: 2021 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 2022 if (!isa<ConstantInt>(CE->getOperand(i))) 2023 return false; 2024 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2025 2026 case Instruction::Add: 2027 // We allow simple+cst. 2028 if (!isa<ConstantInt>(CE->getOperand(1))) 2029 return false; 2030 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); 2031 } 2032 return false; 2033 } 2034 2035 static inline bool 2036 isSimpleEnoughValueToCommit(Constant *C, 2037 SmallPtrSetImpl<Constant *> &SimpleConstants, 2038 const DataLayout &DL) { 2039 // If we already checked this constant, we win. 2040 if (!SimpleConstants.insert(C).second) 2041 return true; 2042 // Check the constant. 2043 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); 2044 } 2045 2046 2047 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple 2048 /// enough for us to understand. In particular, if it is a cast to anything 2049 /// other than from one pointer type to another pointer type, we punt. 2050 /// We basically just support direct accesses to globals and GEP's of 2051 /// globals. This should be kept up to date with CommitValueTo. 2052 static bool isSimpleEnoughPointerToCommit(Constant *C) { 2053 // Conservatively, avoid aggregate types. This is because we don't 2054 // want to worry about them partially overlapping other stores. 2055 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) 2056 return false; 2057 2058 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 2059 // Do not allow weak/*_odr/linkonce linkage or external globals. 2060 return GV->hasUniqueInitializer(); 2061 2062 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2063 // Handle a constantexpr gep. 2064 if (CE->getOpcode() == Instruction::GetElementPtr && 2065 isa<GlobalVariable>(CE->getOperand(0)) && 2066 cast<GEPOperator>(CE)->isInBounds()) { 2067 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2068 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2069 // external globals. 2070 if (!GV->hasUniqueInitializer()) 2071 return false; 2072 2073 // The first index must be zero. 2074 ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin())); 2075 if (!CI || !CI->isZero()) return false; 2076 2077 // The remaining indices must be compile-time known integers within the 2078 // notional bounds of the corresponding static array types. 2079 if (!CE->isGEPWithNoNotionalOverIndexing()) 2080 return false; 2081 2082 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2083 2084 // A constantexpr bitcast from a pointer to another pointer is a no-op, 2085 // and we know how to evaluate it by moving the bitcast from the pointer 2086 // operand to the value operand. 2087 } else if (CE->getOpcode() == Instruction::BitCast && 2088 isa<GlobalVariable>(CE->getOperand(0))) { 2089 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2090 // external globals. 2091 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); 2092 } 2093 } 2094 2095 return false; 2096 } 2097 2098 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global 2099 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it. 2100 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into. 2101 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2102 ConstantExpr *Addr, unsigned OpNo) { 2103 // Base case of the recursion. 2104 if (OpNo == Addr->getNumOperands()) { 2105 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2106 return Val; 2107 } 2108 2109 SmallVector<Constant*, 32> Elts; 2110 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2111 // Break up the constant into its elements. 2112 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2113 Elts.push_back(Init->getAggregateElement(i)); 2114 2115 // Replace the element that we are supposed to. 2116 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2117 unsigned Idx = CU->getZExtValue(); 2118 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2119 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2120 2121 // Return the modified struct. 2122 return ConstantStruct::get(STy, Elts); 2123 } 2124 2125 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2126 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2127 2128 uint64_t NumElts; 2129 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy)) 2130 NumElts = ATy->getNumElements(); 2131 else 2132 NumElts = InitTy->getVectorNumElements(); 2133 2134 // Break up the array into elements. 2135 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2136 Elts.push_back(Init->getAggregateElement(i)); 2137 2138 assert(CI->getZExtValue() < NumElts); 2139 Elts[CI->getZExtValue()] = 2140 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2141 2142 if (Init->getType()->isArrayTy()) 2143 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2144 return ConstantVector::get(Elts); 2145 } 2146 2147 /// CommitValueTo - We have decided that Addr (which satisfies the predicate 2148 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2149 static void CommitValueTo(Constant *Val, Constant *Addr) { 2150 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2151 assert(GV->hasInitializer()); 2152 GV->setInitializer(Val); 2153 return; 2154 } 2155 2156 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2157 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2158 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2159 } 2160 2161 namespace { 2162 2163 /// Evaluator - This class evaluates LLVM IR, producing the Constant 2164 /// representing each SSA instruction. Changes to global variables are stored 2165 /// in a mapping that can be iterated over after the evaluation is complete. 2166 /// Once an evaluation call fails, the evaluation object should not be reused. 2167 class Evaluator { 2168 public: 2169 Evaluator(const DataLayout &DL, const TargetLibraryInfo *TLI) 2170 : DL(DL), TLI(TLI) { 2171 ValueStack.emplace_back(); 2172 } 2173 2174 ~Evaluator() { 2175 for (auto &Tmp : AllocaTmps) 2176 // If there are still users of the alloca, the program is doing something 2177 // silly, e.g. storing the address of the alloca somewhere and using it 2178 // later. Since this is undefined, we'll just make it be null. 2179 if (!Tmp->use_empty()) 2180 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType())); 2181 } 2182 2183 /// EvaluateFunction - Evaluate a call to function F, returning true if 2184 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2185 /// arguments for the function. 2186 bool EvaluateFunction(Function *F, Constant *&RetVal, 2187 const SmallVectorImpl<Constant*> &ActualArgs); 2188 2189 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2190 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2191 /// control flows into, or null upon return. 2192 bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB); 2193 2194 Constant *getVal(Value *V) { 2195 if (Constant *CV = dyn_cast<Constant>(V)) return CV; 2196 Constant *R = ValueStack.back().lookup(V); 2197 assert(R && "Reference to an uncomputed value!"); 2198 return R; 2199 } 2200 2201 void setVal(Value *V, Constant *C) { 2202 ValueStack.back()[V] = C; 2203 } 2204 2205 const DenseMap<Constant*, Constant*> &getMutatedMemory() const { 2206 return MutatedMemory; 2207 } 2208 2209 const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const { 2210 return Invariants; 2211 } 2212 2213 private: 2214 Constant *ComputeLoadResult(Constant *P); 2215 2216 /// ValueStack - As we compute SSA register values, we store their contents 2217 /// here. The back of the deque contains the current function and the stack 2218 /// contains the values in the calling frames. 2219 std::deque<DenseMap<Value*, Constant*>> ValueStack; 2220 2221 /// CallStack - This is used to detect recursion. In pathological situations 2222 /// we could hit exponential behavior, but at least there is nothing 2223 /// unbounded. 2224 SmallVector<Function*, 4> CallStack; 2225 2226 /// MutatedMemory - For each store we execute, we update this map. Loads 2227 /// check this to get the most up-to-date value. If evaluation is successful, 2228 /// this state is committed to the process. 2229 DenseMap<Constant*, Constant*> MutatedMemory; 2230 2231 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable 2232 /// to represent its body. This vector is needed so we can delete the 2233 /// temporary globals when we are done. 2234 SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps; 2235 2236 /// Invariants - These global variables have been marked invariant by the 2237 /// static constructor. 2238 SmallPtrSet<GlobalVariable*, 8> Invariants; 2239 2240 /// SimpleConstants - These are constants we have checked and know to be 2241 /// simple enough to live in a static initializer of a global. 2242 SmallPtrSet<Constant*, 8> SimpleConstants; 2243 2244 const DataLayout &DL; 2245 const TargetLibraryInfo *TLI; 2246 }; 2247 2248 } // anonymous namespace 2249 2250 /// ComputeLoadResult - Return the value that would be computed by a load from 2251 /// P after the stores reflected by 'memory' have been performed. If we can't 2252 /// decide, return null. 2253 Constant *Evaluator::ComputeLoadResult(Constant *P) { 2254 // If this memory location has been recently stored, use the stored value: it 2255 // is the most up-to-date. 2256 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P); 2257 if (I != MutatedMemory.end()) return I->second; 2258 2259 // Access it. 2260 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 2261 if (GV->hasDefinitiveInitializer()) 2262 return GV->getInitializer(); 2263 return nullptr; 2264 } 2265 2266 // Handle a constantexpr getelementptr. 2267 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) 2268 if (CE->getOpcode() == Instruction::GetElementPtr && 2269 isa<GlobalVariable>(CE->getOperand(0))) { 2270 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2271 if (GV->hasDefinitiveInitializer()) 2272 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2273 } 2274 2275 return nullptr; // don't know how to evaluate. 2276 } 2277 2278 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2279 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2280 /// control flows into, or null upon return. 2281 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, 2282 BasicBlock *&NextBB) { 2283 // This is the main evaluation loop. 2284 while (1) { 2285 Constant *InstResult = nullptr; 2286 2287 DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); 2288 2289 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 2290 if (!SI->isSimple()) { 2291 DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n"); 2292 return false; // no volatile/atomic accesses. 2293 } 2294 Constant *Ptr = getVal(SI->getOperand(1)); 2295 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2296 DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); 2297 Ptr = ConstantFoldConstantExpression(CE, DL, TLI); 2298 DEBUG(dbgs() << "; To: " << *Ptr << "\n"); 2299 } 2300 if (!isSimpleEnoughPointerToCommit(Ptr)) { 2301 // If this is too complex for us to commit, reject it. 2302 DEBUG(dbgs() << "Pointer is too complex for us to evaluate store."); 2303 return false; 2304 } 2305 2306 Constant *Val = getVal(SI->getOperand(0)); 2307 2308 // If this might be too difficult for the backend to handle (e.g. the addr 2309 // of one global variable divided by another) then we can't commit it. 2310 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { 2311 DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val 2312 << "\n"); 2313 return false; 2314 } 2315 2316 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2317 if (CE->getOpcode() == Instruction::BitCast) { 2318 DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n"); 2319 // If we're evaluating a store through a bitcast, then we need 2320 // to pull the bitcast off the pointer type and push it onto the 2321 // stored value. 2322 Ptr = CE->getOperand(0); 2323 2324 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType(); 2325 2326 // In order to push the bitcast onto the stored value, a bitcast 2327 // from NewTy to Val's type must be legal. If it's not, we can try 2328 // introspecting NewTy to find a legal conversion. 2329 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) { 2330 // If NewTy is a struct, we can convert the pointer to the struct 2331 // into a pointer to its first member. 2332 // FIXME: This could be extended to support arrays as well. 2333 if (StructType *STy = dyn_cast<StructType>(NewTy)) { 2334 NewTy = STy->getTypeAtIndex(0U); 2335 2336 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32); 2337 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); 2338 Constant * const IdxList[] = {IdxZero, IdxZero}; 2339 2340 Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList); 2341 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 2342 Ptr = ConstantFoldConstantExpression(CE, DL, TLI); 2343 2344 // If we can't improve the situation by introspecting NewTy, 2345 // we have to give up. 2346 } else { 2347 DEBUG(dbgs() << "Failed to bitcast constant ptr, can not " 2348 "evaluate.\n"); 2349 return false; 2350 } 2351 } 2352 2353 // If we found compatible types, go ahead and push the bitcast 2354 // onto the stored value. 2355 Val = ConstantExpr::getBitCast(Val, NewTy); 2356 2357 DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n"); 2358 } 2359 } 2360 2361 MutatedMemory[Ptr] = Val; 2362 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 2363 InstResult = ConstantExpr::get(BO->getOpcode(), 2364 getVal(BO->getOperand(0)), 2365 getVal(BO->getOperand(1))); 2366 DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult 2367 << "\n"); 2368 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 2369 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 2370 getVal(CI->getOperand(0)), 2371 getVal(CI->getOperand(1))); 2372 DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult 2373 << "\n"); 2374 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 2375 InstResult = ConstantExpr::getCast(CI->getOpcode(), 2376 getVal(CI->getOperand(0)), 2377 CI->getType()); 2378 DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult 2379 << "\n"); 2380 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 2381 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), 2382 getVal(SI->getOperand(1)), 2383 getVal(SI->getOperand(2))); 2384 DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult 2385 << "\n"); 2386 } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) { 2387 InstResult = ConstantExpr::getExtractValue( 2388 getVal(EVI->getAggregateOperand()), EVI->getIndices()); 2389 DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult 2390 << "\n"); 2391 } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) { 2392 InstResult = ConstantExpr::getInsertValue( 2393 getVal(IVI->getAggregateOperand()), 2394 getVal(IVI->getInsertedValueOperand()), IVI->getIndices()); 2395 DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult 2396 << "\n"); 2397 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 2398 Constant *P = getVal(GEP->getOperand(0)); 2399 SmallVector<Constant*, 8> GEPOps; 2400 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); 2401 i != e; ++i) 2402 GEPOps.push_back(getVal(*i)); 2403 InstResult = 2404 ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps, 2405 cast<GEPOperator>(GEP)->isInBounds()); 2406 DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult 2407 << "\n"); 2408 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 2409 2410 if (!LI->isSimple()) { 2411 DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"); 2412 return false; // no volatile/atomic accesses. 2413 } 2414 2415 Constant *Ptr = getVal(LI->getOperand(0)); 2416 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { 2417 Ptr = ConstantFoldConstantExpression(CE, DL, TLI); 2418 DEBUG(dbgs() << "Found a constant pointer expression, constant " 2419 "folding: " << *Ptr << "\n"); 2420 } 2421 InstResult = ComputeLoadResult(Ptr); 2422 if (!InstResult) { 2423 DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load." 2424 "\n"); 2425 return false; // Could not evaluate load. 2426 } 2427 2428 DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); 2429 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 2430 if (AI->isArrayAllocation()) { 2431 DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); 2432 return false; // Cannot handle array allocs. 2433 } 2434 Type *Ty = AI->getType()->getElementType(); 2435 AllocaTmps.push_back( 2436 make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage, 2437 UndefValue::get(Ty), AI->getName())); 2438 InstResult = AllocaTmps.back().get(); 2439 DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); 2440 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { 2441 CallSite CS(CurInst); 2442 2443 // Debug info can safely be ignored here. 2444 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) { 2445 DEBUG(dbgs() << "Ignoring debug info.\n"); 2446 ++CurInst; 2447 continue; 2448 } 2449 2450 // Cannot handle inline asm. 2451 if (isa<InlineAsm>(CS.getCalledValue())) { 2452 DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); 2453 return false; 2454 } 2455 2456 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { 2457 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { 2458 if (MSI->isVolatile()) { 2459 DEBUG(dbgs() << "Can not optimize a volatile memset " << 2460 "intrinsic.\n"); 2461 return false; 2462 } 2463 Constant *Ptr = getVal(MSI->getDest()); 2464 Constant *Val = getVal(MSI->getValue()); 2465 Constant *DestVal = ComputeLoadResult(getVal(Ptr)); 2466 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { 2467 // This memset is a no-op. 2468 DEBUG(dbgs() << "Ignoring no-op memset.\n"); 2469 ++CurInst; 2470 continue; 2471 } 2472 } 2473 2474 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 2475 II->getIntrinsicID() == Intrinsic::lifetime_end) { 2476 DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); 2477 ++CurInst; 2478 continue; 2479 } 2480 2481 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2482 // We don't insert an entry into Values, as it doesn't have a 2483 // meaningful return value. 2484 if (!II->use_empty()) { 2485 DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n"); 2486 return false; 2487 } 2488 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); 2489 Value *PtrArg = getVal(II->getArgOperand(1)); 2490 Value *Ptr = PtrArg->stripPointerCasts(); 2491 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 2492 Type *ElemTy = cast<PointerType>(GV->getType())->getElementType(); 2493 if (!Size->isAllOnesValue() && 2494 Size->getValue().getLimitedValue() >= 2495 DL.getTypeStoreSize(ElemTy)) { 2496 Invariants.insert(GV); 2497 DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV 2498 << "\n"); 2499 } else { 2500 DEBUG(dbgs() << "Found a global var, but can not treat it as an " 2501 "invariant.\n"); 2502 } 2503 } 2504 // Continue even if we do nothing. 2505 ++CurInst; 2506 continue; 2507 } else if (II->getIntrinsicID() == Intrinsic::assume) { 2508 DEBUG(dbgs() << "Skipping assume intrinsic.\n"); 2509 ++CurInst; 2510 continue; 2511 } 2512 2513 DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n"); 2514 return false; 2515 } 2516 2517 // Resolve function pointers. 2518 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue())); 2519 if (!Callee || Callee->mayBeOverridden()) { 2520 DEBUG(dbgs() << "Can not resolve function pointer.\n"); 2521 return false; // Cannot resolve. 2522 } 2523 2524 SmallVector<Constant*, 8> Formals; 2525 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) 2526 Formals.push_back(getVal(*i)); 2527 2528 if (Callee->isDeclaration()) { 2529 // If this is a function we can constant fold, do it. 2530 if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) { 2531 InstResult = C; 2532 DEBUG(dbgs() << "Constant folded function call. Result: " << 2533 *InstResult << "\n"); 2534 } else { 2535 DEBUG(dbgs() << "Can not constant fold function call.\n"); 2536 return false; 2537 } 2538 } else { 2539 if (Callee->getFunctionType()->isVarArg()) { 2540 DEBUG(dbgs() << "Can not constant fold vararg function call.\n"); 2541 return false; 2542 } 2543 2544 Constant *RetVal = nullptr; 2545 // Execute the call, if successful, use the return value. 2546 ValueStack.emplace_back(); 2547 if (!EvaluateFunction(Callee, RetVal, Formals)) { 2548 DEBUG(dbgs() << "Failed to evaluate function.\n"); 2549 return false; 2550 } 2551 ValueStack.pop_back(); 2552 InstResult = RetVal; 2553 2554 if (InstResult) { 2555 DEBUG(dbgs() << "Successfully evaluated function. Result: " << 2556 InstResult << "\n\n"); 2557 } else { 2558 DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n"); 2559 } 2560 } 2561 } else if (isa<TerminatorInst>(CurInst)) { 2562 DEBUG(dbgs() << "Found a terminator instruction.\n"); 2563 2564 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 2565 if (BI->isUnconditional()) { 2566 NextBB = BI->getSuccessor(0); 2567 } else { 2568 ConstantInt *Cond = 2569 dyn_cast<ConstantInt>(getVal(BI->getCondition())); 2570 if (!Cond) return false; // Cannot determine. 2571 2572 NextBB = BI->getSuccessor(!Cond->getZExtValue()); 2573 } 2574 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 2575 ConstantInt *Val = 2576 dyn_cast<ConstantInt>(getVal(SI->getCondition())); 2577 if (!Val) return false; // Cannot determine. 2578 NextBB = SI->findCaseValue(Val).getCaseSuccessor(); 2579 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 2580 Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); 2581 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 2582 NextBB = BA->getBasicBlock(); 2583 else 2584 return false; // Cannot determine. 2585 } else if (isa<ReturnInst>(CurInst)) { 2586 NextBB = nullptr; 2587 } else { 2588 // invoke, unwind, resume, unreachable. 2589 DEBUG(dbgs() << "Can not handle terminator."); 2590 return false; // Cannot handle this terminator. 2591 } 2592 2593 // We succeeded at evaluating this block! 2594 DEBUG(dbgs() << "Successfully evaluated block.\n"); 2595 return true; 2596 } else { 2597 // Did not know how to evaluate this! 2598 DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction." 2599 "\n"); 2600 return false; 2601 } 2602 2603 if (!CurInst->use_empty()) { 2604 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult)) 2605 InstResult = ConstantFoldConstantExpression(CE, DL, TLI); 2606 2607 setVal(CurInst, InstResult); 2608 } 2609 2610 // If we just processed an invoke, we finished evaluating the block. 2611 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { 2612 NextBB = II->getNormalDest(); 2613 DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); 2614 return true; 2615 } 2616 2617 // Advance program counter. 2618 ++CurInst; 2619 } 2620 } 2621 2622 /// EvaluateFunction - Evaluate a call to function F, returning true if 2623 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2624 /// arguments for the function. 2625 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, 2626 const SmallVectorImpl<Constant*> &ActualArgs) { 2627 // Check to see if this function is already executing (recursion). If so, 2628 // bail out. TODO: we might want to accept limited recursion. 2629 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end()) 2630 return false; 2631 2632 CallStack.push_back(F); 2633 2634 // Initialize arguments to the incoming values specified. 2635 unsigned ArgNo = 0; 2636 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 2637 ++AI, ++ArgNo) 2638 setVal(AI, ActualArgs[ArgNo]); 2639 2640 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 2641 // we can only evaluate any one basic block at most once. This set keeps 2642 // track of what we have executed so we can detect recursive cases etc. 2643 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 2644 2645 // CurBB - The current basic block we're evaluating. 2646 BasicBlock *CurBB = F->begin(); 2647 2648 BasicBlock::iterator CurInst = CurBB->begin(); 2649 2650 while (1) { 2651 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. 2652 DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); 2653 2654 if (!EvaluateBlock(CurInst, NextBB)) 2655 return false; 2656 2657 if (!NextBB) { 2658 // Successfully running until there's no next block means that we found 2659 // the return. Fill it the return value and pop the call stack. 2660 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); 2661 if (RI->getNumOperands()) 2662 RetVal = getVal(RI->getOperand(0)); 2663 CallStack.pop_back(); 2664 return true; 2665 } 2666 2667 // Okay, we succeeded in evaluating this control flow. See if we have 2668 // executed the new block before. If so, we have a looping function, 2669 // which we cannot evaluate in reasonable time. 2670 if (!ExecutedBlocks.insert(NextBB).second) 2671 return false; // looped! 2672 2673 // Okay, we have never been in this block before. Check to see if there 2674 // are any PHI nodes. If so, evaluate them with information about where 2675 // we came from. 2676 PHINode *PN = nullptr; 2677 for (CurInst = NextBB->begin(); 2678 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 2679 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); 2680 2681 // Advance to the next block. 2682 CurBB = NextBB; 2683 } 2684 } 2685 2686 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if 2687 /// we can. Return true if we can, false otherwise. 2688 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2689 const TargetLibraryInfo *TLI) { 2690 // Call the function. 2691 Evaluator Eval(DL, TLI); 2692 Constant *RetValDummy; 2693 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2694 SmallVector<Constant*, 0>()); 2695 2696 if (EvalSuccess) { 2697 ++NumCtorsEvaluated; 2698 2699 // We succeeded at evaluation: commit the result. 2700 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2701 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2702 << " stores.\n"); 2703 for (DenseMap<Constant*, Constant*>::const_iterator I = 2704 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end(); 2705 I != E; ++I) 2706 CommitValueTo(I->second, I->first); 2707 for (GlobalVariable *GV : Eval.getInvariants()) 2708 GV->setConstant(true); 2709 } 2710 2711 return EvalSuccess; 2712 } 2713 2714 static int compareNames(Constant *const *A, Constant *const *B) { 2715 return (*A)->stripPointerCasts()->getName().compare( 2716 (*B)->stripPointerCasts()->getName()); 2717 } 2718 2719 static void setUsedInitializer(GlobalVariable &V, 2720 const SmallPtrSet<GlobalValue *, 8> &Init) { 2721 if (Init.empty()) { 2722 V.eraseFromParent(); 2723 return; 2724 } 2725 2726 // Type of pointer to the array of pointers. 2727 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2728 2729 SmallVector<llvm::Constant *, 8> UsedArray; 2730 for (GlobalValue *GV : Init) { 2731 Constant *Cast 2732 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2733 UsedArray.push_back(Cast); 2734 } 2735 // Sort to get deterministic order. 2736 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2737 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2738 2739 Module *M = V.getParent(); 2740 V.removeFromParent(); 2741 GlobalVariable *NV = 2742 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage, 2743 llvm::ConstantArray::get(ATy, UsedArray), ""); 2744 NV->takeName(&V); 2745 NV->setSection("llvm.metadata"); 2746 delete &V; 2747 } 2748 2749 namespace { 2750 /// \brief An easy to access representation of llvm.used and llvm.compiler.used. 2751 class LLVMUsed { 2752 SmallPtrSet<GlobalValue *, 8> Used; 2753 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2754 GlobalVariable *UsedV; 2755 GlobalVariable *CompilerUsedV; 2756 2757 public: 2758 LLVMUsed(Module &M) { 2759 UsedV = collectUsedGlobalVariables(M, Used, false); 2760 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2761 } 2762 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator; 2763 typedef iterator_range<iterator> used_iterator_range; 2764 iterator usedBegin() { return Used.begin(); } 2765 iterator usedEnd() { return Used.end(); } 2766 used_iterator_range used() { 2767 return used_iterator_range(usedBegin(), usedEnd()); 2768 } 2769 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2770 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2771 used_iterator_range compilerUsed() { 2772 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2773 } 2774 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2775 bool compilerUsedCount(GlobalValue *GV) const { 2776 return CompilerUsed.count(GV); 2777 } 2778 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2779 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2780 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2781 bool compilerUsedInsert(GlobalValue *GV) { 2782 return CompilerUsed.insert(GV).second; 2783 } 2784 2785 void syncVariablesAndSets() { 2786 if (UsedV) 2787 setUsedInitializer(*UsedV, Used); 2788 if (CompilerUsedV) 2789 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2790 } 2791 }; 2792 } 2793 2794 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2795 if (GA.use_empty()) // No use at all. 2796 return false; 2797 2798 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2799 "We should have removed the duplicated " 2800 "element from llvm.compiler.used"); 2801 if (!GA.hasOneUse()) 2802 // Strictly more than one use. So at least one is not in llvm.used and 2803 // llvm.compiler.used. 2804 return true; 2805 2806 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2807 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2808 } 2809 2810 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2811 const LLVMUsed &U) { 2812 unsigned N = 2; 2813 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2814 "We should have removed the duplicated " 2815 "element from llvm.compiler.used"); 2816 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2817 ++N; 2818 return V.hasNUsesOrMore(N); 2819 } 2820 2821 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2822 if (!GA.hasLocalLinkage()) 2823 return true; 2824 2825 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2826 } 2827 2828 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2829 bool &RenameTarget) { 2830 RenameTarget = false; 2831 bool Ret = false; 2832 if (hasUseOtherThanLLVMUsed(GA, U)) 2833 Ret = true; 2834 2835 // If the alias is externally visible, we may still be able to simplify it. 2836 if (!mayHaveOtherReferences(GA, U)) 2837 return Ret; 2838 2839 // If the aliasee has internal linkage, give it the name and linkage 2840 // of the alias, and delete the alias. This turns: 2841 // define internal ... @f(...) 2842 // @a = alias ... @f 2843 // into: 2844 // define ... @a(...) 2845 Constant *Aliasee = GA.getAliasee(); 2846 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2847 if (!Target->hasLocalLinkage()) 2848 return Ret; 2849 2850 // Do not perform the transform if multiple aliases potentially target the 2851 // aliasee. This check also ensures that it is safe to replace the section 2852 // and other attributes of the aliasee with those of the alias. 2853 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2854 return Ret; 2855 2856 RenameTarget = true; 2857 return true; 2858 } 2859 2860 bool GlobalOpt::OptimizeGlobalAliases(Module &M) { 2861 bool Changed = false; 2862 LLVMUsed Used(M); 2863 2864 for (GlobalValue *GV : Used.used()) 2865 Used.compilerUsedErase(GV); 2866 2867 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2868 I != E;) { 2869 Module::alias_iterator J = I++; 2870 // Aliases without names cannot be referenced outside this module. 2871 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2872 J->setLinkage(GlobalValue::InternalLinkage); 2873 // If the aliasee may change at link time, nothing can be done - bail out. 2874 if (J->mayBeOverridden()) 2875 continue; 2876 2877 Constant *Aliasee = J->getAliasee(); 2878 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2879 // We can't trivially replace the alias with the aliasee if the aliasee is 2880 // non-trivial in some way. 2881 // TODO: Try to handle non-zero GEPs of local aliasees. 2882 if (!Target) 2883 continue; 2884 Target->removeDeadConstantUsers(); 2885 2886 // Make all users of the alias use the aliasee instead. 2887 bool RenameTarget; 2888 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2889 continue; 2890 2891 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2892 ++NumAliasesResolved; 2893 Changed = true; 2894 2895 if (RenameTarget) { 2896 // Give the aliasee the name, linkage and other attributes of the alias. 2897 Target->takeName(J); 2898 Target->setLinkage(J->getLinkage()); 2899 Target->setVisibility(J->getVisibility()); 2900 Target->setDLLStorageClass(J->getDLLStorageClass()); 2901 2902 if (Used.usedErase(J)) 2903 Used.usedInsert(Target); 2904 2905 if (Used.compilerUsedErase(J)) 2906 Used.compilerUsedInsert(Target); 2907 } else if (mayHaveOtherReferences(*J, Used)) 2908 continue; 2909 2910 // Delete the alias. 2911 M.getAliasList().erase(J); 2912 ++NumAliasesRemoved; 2913 Changed = true; 2914 } 2915 2916 Used.syncVariablesAndSets(); 2917 2918 return Changed; 2919 } 2920 2921 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2922 if (!TLI->has(LibFunc::cxa_atexit)) 2923 return nullptr; 2924 2925 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit)); 2926 2927 if (!Fn) 2928 return nullptr; 2929 2930 FunctionType *FTy = Fn->getFunctionType(); 2931 2932 // Checking that the function has the right return type, the right number of 2933 // parameters and that they all have pointer types should be enough. 2934 if (!FTy->getReturnType()->isIntegerTy() || 2935 FTy->getNumParams() != 3 || 2936 !FTy->getParamType(0)->isPointerTy() || 2937 !FTy->getParamType(1)->isPointerTy() || 2938 !FTy->getParamType(2)->isPointerTy()) 2939 return nullptr; 2940 2941 return Fn; 2942 } 2943 2944 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++ 2945 /// destructor and can therefore be eliminated. 2946 /// Note that we assume that other optimization passes have already simplified 2947 /// the code so we only look for a function with a single basic block, where 2948 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2949 /// other side-effect free instructions. 2950 static bool cxxDtorIsEmpty(const Function &Fn, 2951 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2952 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2953 // nounwind, but that doesn't seem worth doing. 2954 if (Fn.isDeclaration()) 2955 return false; 2956 2957 if (++Fn.begin() != Fn.end()) 2958 return false; 2959 2960 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2961 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2962 I != E; ++I) { 2963 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2964 // Ignore debug intrinsics. 2965 if (isa<DbgInfoIntrinsic>(CI)) 2966 continue; 2967 2968 const Function *CalledFn = CI->getCalledFunction(); 2969 2970 if (!CalledFn) 2971 return false; 2972 2973 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2974 2975 // Don't treat recursive functions as empty. 2976 if (!NewCalledFunctions.insert(CalledFn).second) 2977 return false; 2978 2979 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2980 return false; 2981 } else if (isa<ReturnInst>(*I)) 2982 return true; // We're done. 2983 else if (I->mayHaveSideEffects()) 2984 return false; // Destructor with side effects, bail. 2985 } 2986 2987 return false; 2988 } 2989 2990 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2991 /// Itanium C++ ABI p3.3.5: 2992 /// 2993 /// After constructing a global (or local static) object, that will require 2994 /// destruction on exit, a termination function is registered as follows: 2995 /// 2996 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2997 /// 2998 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2999 /// call f(p) when DSO d is unloaded, before all such termination calls 3000 /// registered before this one. It returns zero if registration is 3001 /// successful, nonzero on failure. 3002 3003 // This pass will look for calls to __cxa_atexit where the function is trivial 3004 // and remove them. 3005 bool Changed = false; 3006 3007 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 3008 I != E;) { 3009 // We're only interested in calls. Theoretically, we could handle invoke 3010 // instructions as well, but neither llvm-gcc nor clang generate invokes 3011 // to __cxa_atexit. 3012 CallInst *CI = dyn_cast<CallInst>(*I++); 3013 if (!CI) 3014 continue; 3015 3016 Function *DtorFn = 3017 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 3018 if (!DtorFn) 3019 continue; 3020 3021 SmallPtrSet<const Function *, 8> CalledFunctions; 3022 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 3023 continue; 3024 3025 // Just remove the call. 3026 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 3027 CI->eraseFromParent(); 3028 3029 ++NumCXXDtorsRemoved; 3030 3031 Changed |= true; 3032 } 3033 3034 return Changed; 3035 } 3036 3037 bool GlobalOpt::runOnModule(Module &M) { 3038 bool Changed = false; 3039 3040 auto &DL = M.getDataLayout(); 3041 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 3042 3043 bool LocalChange = true; 3044 while (LocalChange) { 3045 LocalChange = false; 3046 3047 NotDiscardableComdats.clear(); 3048 for (const GlobalVariable &GV : M.globals()) 3049 if (const Comdat *C = GV.getComdat()) 3050 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 3051 NotDiscardableComdats.insert(C); 3052 for (Function &F : M) 3053 if (const Comdat *C = F.getComdat()) 3054 if (!F.isDefTriviallyDead()) 3055 NotDiscardableComdats.insert(C); 3056 for (GlobalAlias &GA : M.aliases()) 3057 if (const Comdat *C = GA.getComdat()) 3058 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 3059 NotDiscardableComdats.insert(C); 3060 3061 // Delete functions that are trivially dead, ccc -> fastcc 3062 LocalChange |= OptimizeFunctions(M); 3063 3064 // Optimize global_ctors list. 3065 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 3066 return EvaluateStaticConstructor(F, DL, TLI); 3067 }); 3068 3069 // Optimize non-address-taken globals. 3070 LocalChange |= OptimizeGlobalVars(M); 3071 3072 // Resolve aliases, when possible. 3073 LocalChange |= OptimizeGlobalAliases(M); 3074 3075 // Try to remove trivial global destructors if they are not removed 3076 // already. 3077 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 3078 if (CXAAtExitFn) 3079 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 3080 3081 Changed |= LocalChange; 3082 } 3083 3084 // TODO: Move all global ctors functions to the end of the module for code 3085 // layout. 3086 3087 return Changed; 3088 } 3089 3090