1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms simple global variables that never have their address
11 // taken.  If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/IR/CallSite.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/CtorUtils.h"
44 #include "llvm/Transforms/Utils/Evaluator.h"
45 #include "llvm/Transforms/Utils/GlobalStatus.h"
46 #include "llvm/Transforms/Utils/ModuleUtils.h"
47 #include <algorithm>
48 #include <deque>
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "globalopt"
52 
53 STATISTIC(NumMarked    , "Number of globals marked constant");
54 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
55 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
56 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
57 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
58 STATISTIC(NumDeleted   , "Number of globals deleted");
59 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
60 STATISTIC(NumLocalized , "Number of globals localized");
61 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
62 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
63 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
64 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
65 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
66 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
67 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
68 
69 namespace {
70   struct GlobalOpt : public ModulePass {
71     void getAnalysisUsage(AnalysisUsage &AU) const override {
72       AU.addRequired<TargetLibraryInfoWrapperPass>();
73       AU.addRequired<DominatorTreeWrapperPass>();
74     }
75     static char ID; // Pass identification, replacement for typeid
76     GlobalOpt() : ModulePass(ID) {
77       initializeGlobalOptPass(*PassRegistry::getPassRegistry());
78     }
79 
80     bool runOnModule(Module &M) override;
81 
82   private:
83     bool OptimizeFunctions(Module &M);
84     bool OptimizeGlobalVars(Module &M);
85     bool OptimizeGlobalAliases(Module &M);
86     bool deleteIfDead(GlobalValue &GV);
87     bool processGlobal(GlobalValue &GV);
88     bool processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS);
89     bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
90 
91     bool isPointerValueDeadOnEntryToFunction(const Function *F,
92                                              GlobalValue *GV);
93 
94     TargetLibraryInfo *TLI;
95     SmallSet<const Comdat *, 8> NotDiscardableComdats;
96   };
97 }
98 
99 char GlobalOpt::ID = 0;
100 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
101                 "Global Variable Optimizer", false, false)
102 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
103 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
104 INITIALIZE_PASS_END(GlobalOpt, "globalopt",
105                 "Global Variable Optimizer", false, false)
106 
107 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
108 
109 /// Is this global variable possibly used by a leak checker as a root?  If so,
110 /// we might not really want to eliminate the stores to it.
111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112   // A global variable is a root if it is a pointer, or could plausibly contain
113   // a pointer.  There are two challenges; one is that we could have a struct
114   // the has an inner member which is a pointer.  We recurse through the type to
115   // detect these (up to a point).  The other is that we may actually be a union
116   // of a pointer and another type, and so our LLVM type is an integer which
117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118   // potentially contained here.
119 
120   if (GV->hasPrivateLinkage())
121     return false;
122 
123   SmallVector<Type *, 4> Types;
124   Types.push_back(GV->getValueType());
125 
126   unsigned Limit = 20;
127   do {
128     Type *Ty = Types.pop_back_val();
129     switch (Ty->getTypeID()) {
130       default: break;
131       case Type::PointerTyID: return true;
132       case Type::ArrayTyID:
133       case Type::VectorTyID: {
134         SequentialType *STy = cast<SequentialType>(Ty);
135         Types.push_back(STy->getElementType());
136         break;
137       }
138       case Type::StructTyID: {
139         StructType *STy = cast<StructType>(Ty);
140         if (STy->isOpaque()) return true;
141         for (StructType::element_iterator I = STy->element_begin(),
142                  E = STy->element_end(); I != E; ++I) {
143           Type *InnerTy = *I;
144           if (isa<PointerType>(InnerTy)) return true;
145           if (isa<CompositeType>(InnerTy))
146             Types.push_back(InnerTy);
147         }
148         break;
149       }
150     }
151     if (--Limit == 0) return true;
152   } while (!Types.empty());
153   return false;
154 }
155 
156 /// Given a value that is stored to a global but never read, determine whether
157 /// it's safe to remove the store and the chain of computation that feeds the
158 /// store.
159 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
160   do {
161     if (isa<Constant>(V))
162       return true;
163     if (!V->hasOneUse())
164       return false;
165     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
166         isa<GlobalValue>(V))
167       return false;
168     if (isAllocationFn(V, TLI))
169       return true;
170 
171     Instruction *I = cast<Instruction>(V);
172     if (I->mayHaveSideEffects())
173       return false;
174     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
175       if (!GEP->hasAllConstantIndices())
176         return false;
177     } else if (I->getNumOperands() != 1) {
178       return false;
179     }
180 
181     V = I->getOperand(0);
182   } while (1);
183 }
184 
185 /// This GV is a pointer root.  Loop over all users of the global and clean up
186 /// any that obviously don't assign the global a value that isn't dynamically
187 /// allocated.
188 static bool CleanupPointerRootUsers(GlobalVariable *GV,
189                                     const TargetLibraryInfo *TLI) {
190   // A brief explanation of leak checkers.  The goal is to find bugs where
191   // pointers are forgotten, causing an accumulating growth in memory
192   // usage over time.  The common strategy for leak checkers is to whitelist the
193   // memory pointed to by globals at exit.  This is popular because it also
194   // solves another problem where the main thread of a C++ program may shut down
195   // before other threads that are still expecting to use those globals.  To
196   // handle that case, we expect the program may create a singleton and never
197   // destroy it.
198 
199   bool Changed = false;
200 
201   // If Dead[n].first is the only use of a malloc result, we can delete its
202   // chain of computation and the store to the global in Dead[n].second.
203   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
204 
205   // Constants can't be pointers to dynamically allocated memory.
206   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
207        UI != E;) {
208     User *U = *UI++;
209     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
210       Value *V = SI->getValueOperand();
211       if (isa<Constant>(V)) {
212         Changed = true;
213         SI->eraseFromParent();
214       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
215         if (I->hasOneUse())
216           Dead.push_back(std::make_pair(I, SI));
217       }
218     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
219       if (isa<Constant>(MSI->getValue())) {
220         Changed = true;
221         MSI->eraseFromParent();
222       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
223         if (I->hasOneUse())
224           Dead.push_back(std::make_pair(I, MSI));
225       }
226     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
227       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
228       if (MemSrc && MemSrc->isConstant()) {
229         Changed = true;
230         MTI->eraseFromParent();
231       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
232         if (I->hasOneUse())
233           Dead.push_back(std::make_pair(I, MTI));
234       }
235     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
236       if (CE->use_empty()) {
237         CE->destroyConstant();
238         Changed = true;
239       }
240     } else if (Constant *C = dyn_cast<Constant>(U)) {
241       if (isSafeToDestroyConstant(C)) {
242         C->destroyConstant();
243         // This could have invalidated UI, start over from scratch.
244         Dead.clear();
245         CleanupPointerRootUsers(GV, TLI);
246         return true;
247       }
248     }
249   }
250 
251   for (int i = 0, e = Dead.size(); i != e; ++i) {
252     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
253       Dead[i].second->eraseFromParent();
254       Instruction *I = Dead[i].first;
255       do {
256         if (isAllocationFn(I, TLI))
257           break;
258         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
259         if (!J)
260           break;
261         I->eraseFromParent();
262         I = J;
263       } while (1);
264       I->eraseFromParent();
265     }
266   }
267 
268   return Changed;
269 }
270 
271 /// We just marked GV constant.  Loop over all users of the global, cleaning up
272 /// the obvious ones.  This is largely just a quick scan over the use list to
273 /// clean up the easy and obvious cruft.  This returns true if it made a change.
274 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
275                                        const DataLayout &DL,
276                                        TargetLibraryInfo *TLI) {
277   bool Changed = false;
278   // Note that we need to use a weak value handle for the worklist items. When
279   // we delete a constant array, we may also be holding pointer to one of its
280   // elements (or an element of one of its elements if we're dealing with an
281   // array of arrays) in the worklist.
282   SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end());
283   while (!WorkList.empty()) {
284     Value *UV = WorkList.pop_back_val();
285     if (!UV)
286       continue;
287 
288     User *U = cast<User>(UV);
289 
290     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
291       if (Init) {
292         // Replace the load with the initializer.
293         LI->replaceAllUsesWith(Init);
294         LI->eraseFromParent();
295         Changed = true;
296       }
297     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
298       // Store must be unreachable or storing Init into the global.
299       SI->eraseFromParent();
300       Changed = true;
301     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
302       if (CE->getOpcode() == Instruction::GetElementPtr) {
303         Constant *SubInit = nullptr;
304         if (Init)
305           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
306         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
307       } else if ((CE->getOpcode() == Instruction::BitCast &&
308                   CE->getType()->isPointerTy()) ||
309                  CE->getOpcode() == Instruction::AddrSpaceCast) {
310         // Pointer cast, delete any stores and memsets to the global.
311         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
312       }
313 
314       if (CE->use_empty()) {
315         CE->destroyConstant();
316         Changed = true;
317       }
318     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
319       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
320       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
321       // and will invalidate our notion of what Init is.
322       Constant *SubInit = nullptr;
323       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
324         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
325             ConstantFoldInstruction(GEP, DL, TLI));
326         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
327           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
328 
329         // If the initializer is an all-null value and we have an inbounds GEP,
330         // we already know what the result of any load from that GEP is.
331         // TODO: Handle splats.
332         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
333           SubInit = Constant::getNullValue(GEP->getResultElementType());
334       }
335       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
336 
337       if (GEP->use_empty()) {
338         GEP->eraseFromParent();
339         Changed = true;
340       }
341     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
342       if (MI->getRawDest() == V) {
343         MI->eraseFromParent();
344         Changed = true;
345       }
346 
347     } else if (Constant *C = dyn_cast<Constant>(U)) {
348       // If we have a chain of dead constantexprs or other things dangling from
349       // us, and if they are all dead, nuke them without remorse.
350       if (isSafeToDestroyConstant(C)) {
351         C->destroyConstant();
352         CleanupConstantGlobalUsers(V, Init, DL, TLI);
353         return true;
354       }
355     }
356   }
357   return Changed;
358 }
359 
360 /// Return true if the specified instruction is a safe user of a derived
361 /// expression from a global that we want to SROA.
362 static bool isSafeSROAElementUse(Value *V) {
363   // We might have a dead and dangling constant hanging off of here.
364   if (Constant *C = dyn_cast<Constant>(V))
365     return isSafeToDestroyConstant(C);
366 
367   Instruction *I = dyn_cast<Instruction>(V);
368   if (!I) return false;
369 
370   // Loads are ok.
371   if (isa<LoadInst>(I)) return true;
372 
373   // Stores *to* the pointer are ok.
374   if (StoreInst *SI = dyn_cast<StoreInst>(I))
375     return SI->getOperand(0) != V;
376 
377   // Otherwise, it must be a GEP.
378   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
379   if (!GEPI) return false;
380 
381   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
382       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
383     return false;
384 
385   for (User *U : GEPI->users())
386     if (!isSafeSROAElementUse(U))
387       return false;
388   return true;
389 }
390 
391 
392 /// U is a direct user of the specified global value.  Look at it and its uses
393 /// and decide whether it is safe to SROA this global.
394 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
395   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
396   if (!isa<GetElementPtrInst>(U) &&
397       (!isa<ConstantExpr>(U) ||
398        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
399     return false;
400 
401   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
402   // don't like < 3 operand CE's, and we don't like non-constant integer
403   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
404   // value of C.
405   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
406       !cast<Constant>(U->getOperand(1))->isNullValue() ||
407       !isa<ConstantInt>(U->getOperand(2)))
408     return false;
409 
410   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
411   ++GEPI;  // Skip over the pointer index.
412 
413   // If this is a use of an array allocation, do a bit more checking for sanity.
414   if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
415     uint64_t NumElements = AT->getNumElements();
416     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
417 
418     // Check to make sure that index falls within the array.  If not,
419     // something funny is going on, so we won't do the optimization.
420     //
421     if (Idx->getZExtValue() >= NumElements)
422       return false;
423 
424     // We cannot scalar repl this level of the array unless any array
425     // sub-indices are in-range constants.  In particular, consider:
426     // A[0][i].  We cannot know that the user isn't doing invalid things like
427     // allowing i to index an out-of-range subscript that accesses A[1].
428     //
429     // Scalar replacing *just* the outer index of the array is probably not
430     // going to be a win anyway, so just give up.
431     for (++GEPI; // Skip array index.
432          GEPI != E;
433          ++GEPI) {
434       uint64_t NumElements;
435       if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
436         NumElements = SubArrayTy->getNumElements();
437       else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
438         NumElements = SubVectorTy->getNumElements();
439       else {
440         assert((*GEPI)->isStructTy() &&
441                "Indexed GEP type is not array, vector, or struct!");
442         continue;
443       }
444 
445       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
446       if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
447         return false;
448     }
449   }
450 
451   for (User *UU : U->users())
452     if (!isSafeSROAElementUse(UU))
453       return false;
454 
455   return true;
456 }
457 
458 /// Look at all uses of the global and decide whether it is safe for us to
459 /// perform this transformation.
460 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
461   for (User *U : GV->users())
462     if (!IsUserOfGlobalSafeForSRA(U, GV))
463       return false;
464 
465   return true;
466 }
467 
468 
469 /// Perform scalar replacement of aggregates on the specified global variable.
470 /// This opens the door for other optimizations by exposing the behavior of the
471 /// program in a more fine-grained way.  We have determined that this
472 /// transformation is safe already.  We return the first global variable we
473 /// insert so that the caller can reprocess it.
474 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
475   // Make sure this global only has simple uses that we can SRA.
476   if (!GlobalUsersSafeToSRA(GV))
477     return nullptr;
478 
479   assert(GV->hasLocalLinkage() && !GV->isConstant());
480   Constant *Init = GV->getInitializer();
481   Type *Ty = Init->getType();
482 
483   std::vector<GlobalVariable*> NewGlobals;
484   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
485 
486   // Get the alignment of the global, either explicit or target-specific.
487   unsigned StartAlignment = GV->getAlignment();
488   if (StartAlignment == 0)
489     StartAlignment = DL.getABITypeAlignment(GV->getType());
490 
491   if (StructType *STy = dyn_cast<StructType>(Ty)) {
492     NewGlobals.reserve(STy->getNumElements());
493     const StructLayout &Layout = *DL.getStructLayout(STy);
494     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
495       Constant *In = Init->getAggregateElement(i);
496       assert(In && "Couldn't get element of initializer?");
497       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
498                                                GlobalVariable::InternalLinkage,
499                                                In, GV->getName()+"."+Twine(i),
500                                                GV->getThreadLocalMode(),
501                                               GV->getType()->getAddressSpace());
502       NGV->setExternallyInitialized(GV->isExternallyInitialized());
503       NGV->copyAttributesFrom(GV);
504       Globals.push_back(NGV);
505       NewGlobals.push_back(NGV);
506 
507       // Calculate the known alignment of the field.  If the original aggregate
508       // had 256 byte alignment for example, something might depend on that:
509       // propagate info to each field.
510       uint64_t FieldOffset = Layout.getElementOffset(i);
511       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
512       if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
513         NGV->setAlignment(NewAlign);
514     }
515   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
516     unsigned NumElements = 0;
517     if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
518       NumElements = ATy->getNumElements();
519     else
520       NumElements = cast<VectorType>(STy)->getNumElements();
521 
522     if (NumElements > 16 && GV->hasNUsesOrMore(16))
523       return nullptr; // It's not worth it.
524     NewGlobals.reserve(NumElements);
525 
526     uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType());
527     unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType());
528     for (unsigned i = 0, e = NumElements; i != e; ++i) {
529       Constant *In = Init->getAggregateElement(i);
530       assert(In && "Couldn't get element of initializer?");
531 
532       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
533                                                GlobalVariable::InternalLinkage,
534                                                In, GV->getName()+"."+Twine(i),
535                                                GV->getThreadLocalMode(),
536                                               GV->getType()->getAddressSpace());
537       NGV->setExternallyInitialized(GV->isExternallyInitialized());
538       NGV->copyAttributesFrom(GV);
539       Globals.push_back(NGV);
540       NewGlobals.push_back(NGV);
541 
542       // Calculate the known alignment of the field.  If the original aggregate
543       // had 256 byte alignment for example, something might depend on that:
544       // propagate info to each field.
545       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
546       if (NewAlign > EltAlign)
547         NGV->setAlignment(NewAlign);
548     }
549   }
550 
551   if (NewGlobals.empty())
552     return nullptr;
553 
554   DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
555 
556   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
557 
558   // Loop over all of the uses of the global, replacing the constantexpr geps,
559   // with smaller constantexpr geps or direct references.
560   while (!GV->use_empty()) {
561     User *GEP = GV->user_back();
562     assert(((isa<ConstantExpr>(GEP) &&
563              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
564             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
565 
566     // Ignore the 1th operand, which has to be zero or else the program is quite
567     // broken (undefined).  Get the 2nd operand, which is the structure or array
568     // index.
569     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
570     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
571 
572     Value *NewPtr = NewGlobals[Val];
573     Type *NewTy = NewGlobals[Val]->getValueType();
574 
575     // Form a shorter GEP if needed.
576     if (GEP->getNumOperands() > 3) {
577       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
578         SmallVector<Constant*, 8> Idxs;
579         Idxs.push_back(NullInt);
580         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
581           Idxs.push_back(CE->getOperand(i));
582         NewPtr =
583             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
584       } else {
585         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
586         SmallVector<Value*, 8> Idxs;
587         Idxs.push_back(NullInt);
588         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
589           Idxs.push_back(GEPI->getOperand(i));
590         NewPtr = GetElementPtrInst::Create(
591             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
592       }
593     }
594     GEP->replaceAllUsesWith(NewPtr);
595 
596     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
597       GEPI->eraseFromParent();
598     else
599       cast<ConstantExpr>(GEP)->destroyConstant();
600   }
601 
602   // Delete the old global, now that it is dead.
603   Globals.erase(GV);
604   ++NumSRA;
605 
606   // Loop over the new globals array deleting any globals that are obviously
607   // dead.  This can arise due to scalarization of a structure or an array that
608   // has elements that are dead.
609   unsigned FirstGlobal = 0;
610   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
611     if (NewGlobals[i]->use_empty()) {
612       Globals.erase(NewGlobals[i]);
613       if (FirstGlobal == i) ++FirstGlobal;
614     }
615 
616   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
617 }
618 
619 /// Return true if all users of the specified value will trap if the value is
620 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
621 /// reprocessing them.
622 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
623                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
624   for (const User *U : V->users())
625     if (isa<LoadInst>(U)) {
626       // Will trap.
627     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
628       if (SI->getOperand(0) == V) {
629         //cerr << "NONTRAPPING USE: " << *U;
630         return false;  // Storing the value.
631       }
632     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
633       if (CI->getCalledValue() != V) {
634         //cerr << "NONTRAPPING USE: " << *U;
635         return false;  // Not calling the ptr
636       }
637     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
638       if (II->getCalledValue() != V) {
639         //cerr << "NONTRAPPING USE: " << *U;
640         return false;  // Not calling the ptr
641       }
642     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
643       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
644     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
645       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
646     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
647       // If we've already seen this phi node, ignore it, it has already been
648       // checked.
649       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
650         return false;
651     } else if (isa<ICmpInst>(U) &&
652                isa<ConstantPointerNull>(U->getOperand(1))) {
653       // Ignore icmp X, null
654     } else {
655       //cerr << "NONTRAPPING USE: " << *U;
656       return false;
657     }
658 
659   return true;
660 }
661 
662 /// Return true if all uses of any loads from GV will trap if the loaded value
663 /// is null.  Note that this also permits comparisons of the loaded value
664 /// against null, as a special case.
665 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
666   for (const User *U : GV->users())
667     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
668       SmallPtrSet<const PHINode*, 8> PHIs;
669       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
670         return false;
671     } else if (isa<StoreInst>(U)) {
672       // Ignore stores to the global.
673     } else {
674       // We don't know or understand this user, bail out.
675       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
676       return false;
677     }
678   return true;
679 }
680 
681 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
682   bool Changed = false;
683   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
684     Instruction *I = cast<Instruction>(*UI++);
685     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
686       LI->setOperand(0, NewV);
687       Changed = true;
688     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
689       if (SI->getOperand(1) == V) {
690         SI->setOperand(1, NewV);
691         Changed = true;
692       }
693     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
694       CallSite CS(I);
695       if (CS.getCalledValue() == V) {
696         // Calling through the pointer!  Turn into a direct call, but be careful
697         // that the pointer is not also being passed as an argument.
698         CS.setCalledFunction(NewV);
699         Changed = true;
700         bool PassedAsArg = false;
701         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
702           if (CS.getArgument(i) == V) {
703             PassedAsArg = true;
704             CS.setArgument(i, NewV);
705           }
706 
707         if (PassedAsArg) {
708           // Being passed as an argument also.  Be careful to not invalidate UI!
709           UI = V->user_begin();
710         }
711       }
712     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
713       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
714                                 ConstantExpr::getCast(CI->getOpcode(),
715                                                       NewV, CI->getType()));
716       if (CI->use_empty()) {
717         Changed = true;
718         CI->eraseFromParent();
719       }
720     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
721       // Should handle GEP here.
722       SmallVector<Constant*, 8> Idxs;
723       Idxs.reserve(GEPI->getNumOperands()-1);
724       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
725            i != e; ++i)
726         if (Constant *C = dyn_cast<Constant>(*i))
727           Idxs.push_back(C);
728         else
729           break;
730       if (Idxs.size() == GEPI->getNumOperands()-1)
731         Changed |= OptimizeAwayTrappingUsesOfValue(
732             GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
733       if (GEPI->use_empty()) {
734         Changed = true;
735         GEPI->eraseFromParent();
736       }
737     }
738   }
739 
740   return Changed;
741 }
742 
743 
744 /// The specified global has only one non-null value stored into it.  If there
745 /// are uses of the loaded value that would trap if the loaded value is
746 /// dynamically null, then we know that they cannot be reachable with a null
747 /// optimize away the load.
748 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
749                                             const DataLayout &DL,
750                                             TargetLibraryInfo *TLI) {
751   bool Changed = false;
752 
753   // Keep track of whether we are able to remove all the uses of the global
754   // other than the store that defines it.
755   bool AllNonStoreUsesGone = true;
756 
757   // Replace all uses of loads with uses of uses of the stored value.
758   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
759     User *GlobalUser = *GUI++;
760     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
761       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
762       // If we were able to delete all uses of the loads
763       if (LI->use_empty()) {
764         LI->eraseFromParent();
765         Changed = true;
766       } else {
767         AllNonStoreUsesGone = false;
768       }
769     } else if (isa<StoreInst>(GlobalUser)) {
770       // Ignore the store that stores "LV" to the global.
771       assert(GlobalUser->getOperand(1) == GV &&
772              "Must be storing *to* the global");
773     } else {
774       AllNonStoreUsesGone = false;
775 
776       // If we get here we could have other crazy uses that are transitively
777       // loaded.
778       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
779               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
780               isa<BitCastInst>(GlobalUser) ||
781               isa<GetElementPtrInst>(GlobalUser)) &&
782              "Only expect load and stores!");
783     }
784   }
785 
786   if (Changed) {
787     DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n");
788     ++NumGlobUses;
789   }
790 
791   // If we nuked all of the loads, then none of the stores are needed either,
792   // nor is the global.
793   if (AllNonStoreUsesGone) {
794     if (isLeakCheckerRoot(GV)) {
795       Changed |= CleanupPointerRootUsers(GV, TLI);
796     } else {
797       Changed = true;
798       CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
799     }
800     if (GV->use_empty()) {
801       DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
802       Changed = true;
803       GV->eraseFromParent();
804       ++NumDeleted;
805     }
806   }
807   return Changed;
808 }
809 
810 /// Walk the use list of V, constant folding all of the instructions that are
811 /// foldable.
812 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
813                                 TargetLibraryInfo *TLI) {
814   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
815     if (Instruction *I = dyn_cast<Instruction>(*UI++))
816       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
817         I->replaceAllUsesWith(NewC);
818 
819         // Advance UI to the next non-I use to avoid invalidating it!
820         // Instructions could multiply use V.
821         while (UI != E && *UI == I)
822           ++UI;
823         I->eraseFromParent();
824       }
825 }
826 
827 /// This function takes the specified global variable, and transforms the
828 /// program as if it always contained the result of the specified malloc.
829 /// Because it is always the result of the specified malloc, there is no reason
830 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
831 /// loads of GV as uses of the new global.
832 static GlobalVariable *
833 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
834                               ConstantInt *NElements, const DataLayout &DL,
835                               TargetLibraryInfo *TLI) {
836   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
837 
838   Type *GlobalType;
839   if (NElements->getZExtValue() == 1)
840     GlobalType = AllocTy;
841   else
842     // If we have an array allocation, the global variable is of an array.
843     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
844 
845   // Create the new global variable.  The contents of the malloc'd memory is
846   // undefined, so initialize with an undef value.
847   GlobalVariable *NewGV = new GlobalVariable(
848       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
849       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
850       GV->getThreadLocalMode());
851 
852   // If there are bitcast users of the malloc (which is typical, usually we have
853   // a malloc + bitcast) then replace them with uses of the new global.  Update
854   // other users to use the global as well.
855   BitCastInst *TheBC = nullptr;
856   while (!CI->use_empty()) {
857     Instruction *User = cast<Instruction>(CI->user_back());
858     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
859       if (BCI->getType() == NewGV->getType()) {
860         BCI->replaceAllUsesWith(NewGV);
861         BCI->eraseFromParent();
862       } else {
863         BCI->setOperand(0, NewGV);
864       }
865     } else {
866       if (!TheBC)
867         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
868       User->replaceUsesOfWith(CI, TheBC);
869     }
870   }
871 
872   Constant *RepValue = NewGV;
873   if (NewGV->getType() != GV->getValueType())
874     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
875 
876   // If there is a comparison against null, we will insert a global bool to
877   // keep track of whether the global was initialized yet or not.
878   GlobalVariable *InitBool =
879     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
880                        GlobalValue::InternalLinkage,
881                        ConstantInt::getFalse(GV->getContext()),
882                        GV->getName()+".init", GV->getThreadLocalMode());
883   bool InitBoolUsed = false;
884 
885   // Loop over all uses of GV, processing them in turn.
886   while (!GV->use_empty()) {
887     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
888       // The global is initialized when the store to it occurs.
889       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
890                     SI->getOrdering(), SI->getSynchScope(), SI);
891       SI->eraseFromParent();
892       continue;
893     }
894 
895     LoadInst *LI = cast<LoadInst>(GV->user_back());
896     while (!LI->use_empty()) {
897       Use &LoadUse = *LI->use_begin();
898       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
899       if (!ICI) {
900         LoadUse = RepValue;
901         continue;
902       }
903 
904       // Replace the cmp X, 0 with a use of the bool value.
905       // Sink the load to where the compare was, if atomic rules allow us to.
906       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
907                                LI->getOrdering(), LI->getSynchScope(),
908                                LI->isUnordered() ? (Instruction*)ICI : LI);
909       InitBoolUsed = true;
910       switch (ICI->getPredicate()) {
911       default: llvm_unreachable("Unknown ICmp Predicate!");
912       case ICmpInst::ICMP_ULT:
913       case ICmpInst::ICMP_SLT:   // X < null -> always false
914         LV = ConstantInt::getFalse(GV->getContext());
915         break;
916       case ICmpInst::ICMP_ULE:
917       case ICmpInst::ICMP_SLE:
918       case ICmpInst::ICMP_EQ:
919         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
920         break;
921       case ICmpInst::ICMP_NE:
922       case ICmpInst::ICMP_UGE:
923       case ICmpInst::ICMP_SGE:
924       case ICmpInst::ICMP_UGT:
925       case ICmpInst::ICMP_SGT:
926         break;  // no change.
927       }
928       ICI->replaceAllUsesWith(LV);
929       ICI->eraseFromParent();
930     }
931     LI->eraseFromParent();
932   }
933 
934   // If the initialization boolean was used, insert it, otherwise delete it.
935   if (!InitBoolUsed) {
936     while (!InitBool->use_empty())  // Delete initializations
937       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
938     delete InitBool;
939   } else
940     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
941 
942   // Now the GV is dead, nuke it and the malloc..
943   GV->eraseFromParent();
944   CI->eraseFromParent();
945 
946   // To further other optimizations, loop over all users of NewGV and try to
947   // constant prop them.  This will promote GEP instructions with constant
948   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
949   ConstantPropUsersOf(NewGV, DL, TLI);
950   if (RepValue != NewGV)
951     ConstantPropUsersOf(RepValue, DL, TLI);
952 
953   return NewGV;
954 }
955 
956 /// Scan the use-list of V checking to make sure that there are no complex uses
957 /// of V.  We permit simple things like dereferencing the pointer, but not
958 /// storing through the address, unless it is to the specified global.
959 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
960                                                       const GlobalVariable *GV,
961                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
962   for (const User *U : V->users()) {
963     const Instruction *Inst = cast<Instruction>(U);
964 
965     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
966       continue; // Fine, ignore.
967     }
968 
969     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
970       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
971         return false;  // Storing the pointer itself... bad.
972       continue; // Otherwise, storing through it, or storing into GV... fine.
973     }
974 
975     // Must index into the array and into the struct.
976     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
977       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
978         return false;
979       continue;
980     }
981 
982     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
983       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
984       // cycles.
985       if (PHIs.insert(PN).second)
986         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
987           return false;
988       continue;
989     }
990 
991     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
992       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
993         return false;
994       continue;
995     }
996 
997     return false;
998   }
999   return true;
1000 }
1001 
1002 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1003 /// allocation into loads from the global and uses of the resultant pointer.
1004 /// Further, delete the store into GV.  This assumes that these value pass the
1005 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1006 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1007                                           GlobalVariable *GV) {
1008   while (!Alloc->use_empty()) {
1009     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1010     Instruction *InsertPt = U;
1011     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1012       // If this is the store of the allocation into the global, remove it.
1013       if (SI->getOperand(1) == GV) {
1014         SI->eraseFromParent();
1015         continue;
1016       }
1017     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1018       // Insert the load in the corresponding predecessor, not right before the
1019       // PHI.
1020       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1021     } else if (isa<BitCastInst>(U)) {
1022       // Must be bitcast between the malloc and store to initialize the global.
1023       ReplaceUsesOfMallocWithGlobal(U, GV);
1024       U->eraseFromParent();
1025       continue;
1026     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1027       // If this is a "GEP bitcast" and the user is a store to the global, then
1028       // just process it as a bitcast.
1029       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1030         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1031           if (SI->getOperand(1) == GV) {
1032             // Must be bitcast GEP between the malloc and store to initialize
1033             // the global.
1034             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1035             GEPI->eraseFromParent();
1036             continue;
1037           }
1038     }
1039 
1040     // Insert a load from the global, and use it instead of the malloc.
1041     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1042     U->replaceUsesOfWith(Alloc, NL);
1043   }
1044 }
1045 
1046 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1047 /// perform heap SRA on.  This permits GEP's that index through the array and
1048 /// struct field, icmps of null, and PHIs.
1049 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1050                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1051                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1052   // We permit two users of the load: setcc comparing against the null
1053   // pointer, and a getelementptr of a specific form.
1054   for (const User *U : V->users()) {
1055     const Instruction *UI = cast<Instruction>(U);
1056 
1057     // Comparison against null is ok.
1058     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1059       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1060         return false;
1061       continue;
1062     }
1063 
1064     // getelementptr is also ok, but only a simple form.
1065     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1066       // Must index into the array and into the struct.
1067       if (GEPI->getNumOperands() < 3)
1068         return false;
1069 
1070       // Otherwise the GEP is ok.
1071       continue;
1072     }
1073 
1074     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1075       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1076         // This means some phi nodes are dependent on each other.
1077         // Avoid infinite looping!
1078         return false;
1079       if (!LoadUsingPHIs.insert(PN).second)
1080         // If we have already analyzed this PHI, then it is safe.
1081         continue;
1082 
1083       // Make sure all uses of the PHI are simple enough to transform.
1084       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1085                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1086         return false;
1087 
1088       continue;
1089     }
1090 
1091     // Otherwise we don't know what this is, not ok.
1092     return false;
1093   }
1094 
1095   return true;
1096 }
1097 
1098 
1099 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1100 /// return true.
1101 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1102                                                     Instruction *StoredVal) {
1103   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1104   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1105   for (const User *U : GV->users())
1106     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1107       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1108                                           LoadUsingPHIsPerLoad))
1109         return false;
1110       LoadUsingPHIsPerLoad.clear();
1111     }
1112 
1113   // If we reach here, we know that all uses of the loads and transitive uses
1114   // (through PHI nodes) are simple enough to transform.  However, we don't know
1115   // that all inputs the to the PHI nodes are in the same equivalence sets.
1116   // Check to verify that all operands of the PHIs are either PHIS that can be
1117   // transformed, loads from GV, or MI itself.
1118   for (const PHINode *PN : LoadUsingPHIs) {
1119     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1120       Value *InVal = PN->getIncomingValue(op);
1121 
1122       // PHI of the stored value itself is ok.
1123       if (InVal == StoredVal) continue;
1124 
1125       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1126         // One of the PHIs in our set is (optimistically) ok.
1127         if (LoadUsingPHIs.count(InPN))
1128           continue;
1129         return false;
1130       }
1131 
1132       // Load from GV is ok.
1133       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1134         if (LI->getOperand(0) == GV)
1135           continue;
1136 
1137       // UNDEF? NULL?
1138 
1139       // Anything else is rejected.
1140       return false;
1141     }
1142   }
1143 
1144   return true;
1145 }
1146 
1147 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1148                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1149                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1150   std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1151 
1152   if (FieldNo >= FieldVals.size())
1153     FieldVals.resize(FieldNo+1);
1154 
1155   // If we already have this value, just reuse the previously scalarized
1156   // version.
1157   if (Value *FieldVal = FieldVals[FieldNo])
1158     return FieldVal;
1159 
1160   // Depending on what instruction this is, we have several cases.
1161   Value *Result;
1162   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1163     // This is a scalarized version of the load from the global.  Just create
1164     // a new Load of the scalarized global.
1165     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1166                                            InsertedScalarizedValues,
1167                                            PHIsToRewrite),
1168                           LI->getName()+".f"+Twine(FieldNo), LI);
1169   } else {
1170     PHINode *PN = cast<PHINode>(V);
1171     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1172     // field.
1173 
1174     PointerType *PTy = cast<PointerType>(PN->getType());
1175     StructType *ST = cast<StructType>(PTy->getElementType());
1176 
1177     unsigned AS = PTy->getAddressSpace();
1178     PHINode *NewPN =
1179       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1180                      PN->getNumIncomingValues(),
1181                      PN->getName()+".f"+Twine(FieldNo), PN);
1182     Result = NewPN;
1183     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1184   }
1185 
1186   return FieldVals[FieldNo] = Result;
1187 }
1188 
1189 /// Given a load instruction and a value derived from the load, rewrite the
1190 /// derived value to use the HeapSRoA'd load.
1191 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1192              DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1193                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1194   // If this is a comparison against null, handle it.
1195   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1196     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1197     // If we have a setcc of the loaded pointer, we can use a setcc of any
1198     // field.
1199     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1200                                    InsertedScalarizedValues, PHIsToRewrite);
1201 
1202     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1203                               Constant::getNullValue(NPtr->getType()),
1204                               SCI->getName());
1205     SCI->replaceAllUsesWith(New);
1206     SCI->eraseFromParent();
1207     return;
1208   }
1209 
1210   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1211   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1212     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1213            && "Unexpected GEPI!");
1214 
1215     // Load the pointer for this field.
1216     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1217     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1218                                      InsertedScalarizedValues, PHIsToRewrite);
1219 
1220     // Create the new GEP idx vector.
1221     SmallVector<Value*, 8> GEPIdx;
1222     GEPIdx.push_back(GEPI->getOperand(1));
1223     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1224 
1225     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1226                                              GEPI->getName(), GEPI);
1227     GEPI->replaceAllUsesWith(NGEPI);
1228     GEPI->eraseFromParent();
1229     return;
1230   }
1231 
1232   // Recursively transform the users of PHI nodes.  This will lazily create the
1233   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1234   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1235   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1236   // already been seen first by another load, so its uses have already been
1237   // processed.
1238   PHINode *PN = cast<PHINode>(LoadUser);
1239   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1240                                               std::vector<Value*>())).second)
1241     return;
1242 
1243   // If this is the first time we've seen this PHI, recursively process all
1244   // users.
1245   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1246     Instruction *User = cast<Instruction>(*UI++);
1247     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1248   }
1249 }
1250 
1251 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1252 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1253 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1254 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1255                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1256                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1257   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1258     Instruction *User = cast<Instruction>(*UI++);
1259     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1260   }
1261 
1262   if (Load->use_empty()) {
1263     Load->eraseFromParent();
1264     InsertedScalarizedValues.erase(Load);
1265   }
1266 }
1267 
1268 /// CI is an allocation of an array of structures.  Break it up into multiple
1269 /// allocations of arrays of the fields.
1270 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1271                                             Value *NElems, const DataLayout &DL,
1272                                             const TargetLibraryInfo *TLI) {
1273   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1274   Type *MAT = getMallocAllocatedType(CI, TLI);
1275   StructType *STy = cast<StructType>(MAT);
1276 
1277   // There is guaranteed to be at least one use of the malloc (storing
1278   // it into GV).  If there are other uses, change them to be uses of
1279   // the global to simplify later code.  This also deletes the store
1280   // into GV.
1281   ReplaceUsesOfMallocWithGlobal(CI, GV);
1282 
1283   // Okay, at this point, there are no users of the malloc.  Insert N
1284   // new mallocs at the same place as CI, and N globals.
1285   std::vector<Value*> FieldGlobals;
1286   std::vector<Value*> FieldMallocs;
1287 
1288   unsigned AS = GV->getType()->getPointerAddressSpace();
1289   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1290     Type *FieldTy = STy->getElementType(FieldNo);
1291     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1292 
1293     GlobalVariable *NGV = new GlobalVariable(
1294         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1295         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1296         nullptr, GV->getThreadLocalMode());
1297     NGV->copyAttributesFrom(GV);
1298     FieldGlobals.push_back(NGV);
1299 
1300     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1301     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1302       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1303     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1304     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1305                                         ConstantInt::get(IntPtrTy, TypeSize),
1306                                         NElems, nullptr,
1307                                         CI->getName() + ".f" + Twine(FieldNo));
1308     FieldMallocs.push_back(NMI);
1309     new StoreInst(NMI, NGV, CI);
1310   }
1311 
1312   // The tricky aspect of this transformation is handling the case when malloc
1313   // fails.  In the original code, malloc failing would set the result pointer
1314   // of malloc to null.  In this case, some mallocs could succeed and others
1315   // could fail.  As such, we emit code that looks like this:
1316   //    F0 = malloc(field0)
1317   //    F1 = malloc(field1)
1318   //    F2 = malloc(field2)
1319   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1320   //      if (F0) { free(F0); F0 = 0; }
1321   //      if (F1) { free(F1); F1 = 0; }
1322   //      if (F2) { free(F2); F2 = 0; }
1323   //    }
1324   // The malloc can also fail if its argument is too large.
1325   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1326   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1327                                   ConstantZero, "isneg");
1328   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1329     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1330                              Constant::getNullValue(FieldMallocs[i]->getType()),
1331                                "isnull");
1332     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1333   }
1334 
1335   // Split the basic block at the old malloc.
1336   BasicBlock *OrigBB = CI->getParent();
1337   BasicBlock *ContBB =
1338       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1339 
1340   // Create the block to check the first condition.  Put all these blocks at the
1341   // end of the function as they are unlikely to be executed.
1342   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1343                                                 "malloc_ret_null",
1344                                                 OrigBB->getParent());
1345 
1346   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1347   // branch on RunningOr.
1348   OrigBB->getTerminator()->eraseFromParent();
1349   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1350 
1351   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1352   // pointer, because some may be null while others are not.
1353   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1354     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1355     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1356                               Constant::getNullValue(GVVal->getType()));
1357     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1358                                                OrigBB->getParent());
1359     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1360                                                OrigBB->getParent());
1361     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1362                                          Cmp, NullPtrBlock);
1363 
1364     // Fill in FreeBlock.
1365     CallInst::CreateFree(GVVal, BI);
1366     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1367                   FreeBlock);
1368     BranchInst::Create(NextBlock, FreeBlock);
1369 
1370     NullPtrBlock = NextBlock;
1371   }
1372 
1373   BranchInst::Create(ContBB, NullPtrBlock);
1374 
1375   // CI is no longer needed, remove it.
1376   CI->eraseFromParent();
1377 
1378   /// As we process loads, if we can't immediately update all uses of the load,
1379   /// keep track of what scalarized loads are inserted for a given load.
1380   DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1381   InsertedScalarizedValues[GV] = FieldGlobals;
1382 
1383   std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1384 
1385   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1386   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1387   // of the per-field globals instead.
1388   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1389     Instruction *User = cast<Instruction>(*UI++);
1390 
1391     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1392       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1393       continue;
1394     }
1395 
1396     // Must be a store of null.
1397     StoreInst *SI = cast<StoreInst>(User);
1398     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1399            "Unexpected heap-sra user!");
1400 
1401     // Insert a store of null into each global.
1402     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1403       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1404       Constant *Null = Constant::getNullValue(ValTy);
1405       new StoreInst(Null, FieldGlobals[i], SI);
1406     }
1407     // Erase the original store.
1408     SI->eraseFromParent();
1409   }
1410 
1411   // While we have PHIs that are interesting to rewrite, do it.
1412   while (!PHIsToRewrite.empty()) {
1413     PHINode *PN = PHIsToRewrite.back().first;
1414     unsigned FieldNo = PHIsToRewrite.back().second;
1415     PHIsToRewrite.pop_back();
1416     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1417     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1418 
1419     // Add all the incoming values.  This can materialize more phis.
1420     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1421       Value *InVal = PN->getIncomingValue(i);
1422       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1423                                PHIsToRewrite);
1424       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1425     }
1426   }
1427 
1428   // Drop all inter-phi links and any loads that made it this far.
1429   for (DenseMap<Value*, std::vector<Value*> >::iterator
1430        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1431        I != E; ++I) {
1432     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1433       PN->dropAllReferences();
1434     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1435       LI->dropAllReferences();
1436   }
1437 
1438   // Delete all the phis and loads now that inter-references are dead.
1439   for (DenseMap<Value*, std::vector<Value*> >::iterator
1440        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1441        I != E; ++I) {
1442     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1443       PN->eraseFromParent();
1444     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1445       LI->eraseFromParent();
1446   }
1447 
1448   // The old global is now dead, remove it.
1449   GV->eraseFromParent();
1450 
1451   ++NumHeapSRA;
1452   return cast<GlobalVariable>(FieldGlobals[0]);
1453 }
1454 
1455 /// This function is called when we see a pointer global variable with a single
1456 /// value stored it that is a malloc or cast of malloc.
1457 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1458                                                Type *AllocTy,
1459                                                AtomicOrdering Ordering,
1460                                                const DataLayout &DL,
1461                                                TargetLibraryInfo *TLI) {
1462   // If this is a malloc of an abstract type, don't touch it.
1463   if (!AllocTy->isSized())
1464     return false;
1465 
1466   // We can't optimize this global unless all uses of it are *known* to be
1467   // of the malloc value, not of the null initializer value (consider a use
1468   // that compares the global's value against zero to see if the malloc has
1469   // been reached).  To do this, we check to see if all uses of the global
1470   // would trap if the global were null: this proves that they must all
1471   // happen after the malloc.
1472   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1473     return false;
1474 
1475   // We can't optimize this if the malloc itself is used in a complex way,
1476   // for example, being stored into multiple globals.  This allows the
1477   // malloc to be stored into the specified global, loaded icmp'd, and
1478   // GEP'd.  These are all things we could transform to using the global
1479   // for.
1480   SmallPtrSet<const PHINode*, 8> PHIs;
1481   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1482     return false;
1483 
1484   // If we have a global that is only initialized with a fixed size malloc,
1485   // transform the program to use global memory instead of malloc'd memory.
1486   // This eliminates dynamic allocation, avoids an indirection accessing the
1487   // data, and exposes the resultant global to further GlobalOpt.
1488   // We cannot optimize the malloc if we cannot determine malloc array size.
1489   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1490   if (!NElems)
1491     return false;
1492 
1493   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1494     // Restrict this transformation to only working on small allocations
1495     // (2048 bytes currently), as we don't want to introduce a 16M global or
1496     // something.
1497     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1498       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1499       return true;
1500     }
1501 
1502   // If the allocation is an array of structures, consider transforming this
1503   // into multiple malloc'd arrays, one for each field.  This is basically
1504   // SRoA for malloc'd memory.
1505 
1506   if (Ordering != AtomicOrdering::NotAtomic)
1507     return false;
1508 
1509   // If this is an allocation of a fixed size array of structs, analyze as a
1510   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1511   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1512     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1513       AllocTy = AT->getElementType();
1514 
1515   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1516   if (!AllocSTy)
1517     return false;
1518 
1519   // This the structure has an unreasonable number of fields, leave it
1520   // alone.
1521   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1522       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1523 
1524     // If this is a fixed size array, transform the Malloc to be an alloc of
1525     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1526     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1527       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1528       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1529       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1530       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1531       Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1532                                                    AllocSize, NumElements,
1533                                                    nullptr, CI->getName());
1534       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1535       CI->replaceAllUsesWith(Cast);
1536       CI->eraseFromParent();
1537       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1538         CI = cast<CallInst>(BCI->getOperand(0));
1539       else
1540         CI = cast<CallInst>(Malloc);
1541     }
1542 
1543     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1544                          TLI);
1545     return true;
1546   }
1547 
1548   return false;
1549 }
1550 
1551 // Try to optimize globals based on the knowledge that only one value (besides
1552 // its initializer) is ever stored to the global.
1553 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1554                                      AtomicOrdering Ordering,
1555                                      const DataLayout &DL,
1556                                      TargetLibraryInfo *TLI) {
1557   // Ignore no-op GEPs and bitcasts.
1558   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1559 
1560   // If we are dealing with a pointer global that is initialized to null and
1561   // only has one (non-null) value stored into it, then we can optimize any
1562   // users of the loaded value (often calls and loads) that would trap if the
1563   // value was null.
1564   if (GV->getInitializer()->getType()->isPointerTy() &&
1565       GV->getInitializer()->isNullValue()) {
1566     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1567       if (GV->getInitializer()->getType() != SOVC->getType())
1568         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1569 
1570       // Optimize away any trapping uses of the loaded value.
1571       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1572         return true;
1573     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1574       Type *MallocType = getMallocAllocatedType(CI, TLI);
1575       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1576                                                            Ordering, DL, TLI))
1577         return true;
1578     }
1579   }
1580 
1581   return false;
1582 }
1583 
1584 /// At this point, we have learned that the only two values ever stored into GV
1585 /// are its initializer and OtherVal.  See if we can shrink the global into a
1586 /// boolean and select between the two values whenever it is used.  This exposes
1587 /// the values to other scalar optimizations.
1588 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1589   Type *GVElType = GV->getValueType();
1590 
1591   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1592   // an FP value, pointer or vector, don't do this optimization because a select
1593   // between them is very expensive and unlikely to lead to later
1594   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1595   // where v1 and v2 both require constant pool loads, a big loss.
1596   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1597       GVElType->isFloatingPointTy() ||
1598       GVElType->isPointerTy() || GVElType->isVectorTy())
1599     return false;
1600 
1601   // Walk the use list of the global seeing if all the uses are load or store.
1602   // If there is anything else, bail out.
1603   for (User *U : GV->users())
1604     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1605       return false;
1606 
1607   DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1608 
1609   // Create the new global, initializing it to false.
1610   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1611                                              false,
1612                                              GlobalValue::InternalLinkage,
1613                                         ConstantInt::getFalse(GV->getContext()),
1614                                              GV->getName()+".b",
1615                                              GV->getThreadLocalMode(),
1616                                              GV->getType()->getAddressSpace());
1617   NewGV->copyAttributesFrom(GV);
1618   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1619 
1620   Constant *InitVal = GV->getInitializer();
1621   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1622          "No reason to shrink to bool!");
1623 
1624   // If initialized to zero and storing one into the global, we can use a cast
1625   // instead of a select to synthesize the desired value.
1626   bool IsOneZero = false;
1627   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1628     IsOneZero = InitVal->isNullValue() && CI->isOne();
1629 
1630   while (!GV->use_empty()) {
1631     Instruction *UI = cast<Instruction>(GV->user_back());
1632     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1633       // Change the store into a boolean store.
1634       bool StoringOther = SI->getOperand(0) == OtherVal;
1635       // Only do this if we weren't storing a loaded value.
1636       Value *StoreVal;
1637       if (StoringOther || SI->getOperand(0) == InitVal) {
1638         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1639                                     StoringOther);
1640       } else {
1641         // Otherwise, we are storing a previously loaded copy.  To do this,
1642         // change the copy from copying the original value to just copying the
1643         // bool.
1644         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1645 
1646         // If we've already replaced the input, StoredVal will be a cast or
1647         // select instruction.  If not, it will be a load of the original
1648         // global.
1649         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1650           assert(LI->getOperand(0) == GV && "Not a copy!");
1651           // Insert a new load, to preserve the saved value.
1652           StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1653                                   LI->getOrdering(), LI->getSynchScope(), LI);
1654         } else {
1655           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1656                  "This is not a form that we understand!");
1657           StoreVal = StoredVal->getOperand(0);
1658           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1659         }
1660       }
1661       new StoreInst(StoreVal, NewGV, false, 0,
1662                     SI->getOrdering(), SI->getSynchScope(), SI);
1663     } else {
1664       // Change the load into a load of bool then a select.
1665       LoadInst *LI = cast<LoadInst>(UI);
1666       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1667                                    LI->getOrdering(), LI->getSynchScope(), LI);
1668       Value *NSI;
1669       if (IsOneZero)
1670         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1671       else
1672         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1673       NSI->takeName(LI);
1674       LI->replaceAllUsesWith(NSI);
1675     }
1676     UI->eraseFromParent();
1677   }
1678 
1679   // Retain the name of the old global variable. People who are debugging their
1680   // programs may expect these variables to be named the same.
1681   NewGV->takeName(GV);
1682   GV->eraseFromParent();
1683   return true;
1684 }
1685 
1686 bool GlobalOpt::deleteIfDead(GlobalValue &GV) {
1687   GV.removeDeadConstantUsers();
1688 
1689   if (!GV.isDiscardableIfUnused())
1690     return false;
1691 
1692   if (const Comdat *C = GV.getComdat())
1693     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1694       return false;
1695 
1696   bool Dead;
1697   if (auto *F = dyn_cast<Function>(&GV))
1698     Dead = F->isDefTriviallyDead();
1699   else
1700     Dead = GV.use_empty();
1701   if (!Dead)
1702     return false;
1703 
1704   DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1705   GV.eraseFromParent();
1706   ++NumDeleted;
1707   return true;
1708 }
1709 
1710 /// Analyze the specified global variable and optimize it if possible.  If we
1711 /// make a change, return true.
1712 bool GlobalOpt::processGlobal(GlobalValue &GV) {
1713   // Do more involved optimizations if the global is internal.
1714   if (!GV.hasLocalLinkage())
1715     return false;
1716 
1717   GlobalStatus GS;
1718 
1719   if (GlobalStatus::analyzeGlobal(&GV, GS))
1720     return false;
1721 
1722   bool Changed = false;
1723   if (!GS.IsCompared && !GV.hasUnnamedAddr()) {
1724     GV.setUnnamedAddr(true);
1725     NumUnnamed++;
1726     Changed = true;
1727   }
1728 
1729   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1730   if (!GVar)
1731     return Changed;
1732 
1733   if (GVar->isConstant() || !GVar->hasInitializer())
1734     return Changed;
1735 
1736   return processInternalGlobal(GVar, GS) || Changed;
1737 }
1738 
1739 bool GlobalOpt::isPointerValueDeadOnEntryToFunction(const Function *F, GlobalValue *GV) {
1740   // Find all uses of GV. We expect them all to be in F, and if we can't
1741   // identify any of the uses we bail out.
1742   //
1743   // On each of these uses, identify if the memory that GV points to is
1744   // used/required/live at the start of the function. If it is not, for example
1745   // if the first thing the function does is store to the GV, the GV can
1746   // possibly be demoted.
1747   //
1748   // We don't do an exhaustive search for memory operations - simply look
1749   // through bitcasts as they're quite common and benign.
1750   const DataLayout &DL = GV->getParent()->getDataLayout();
1751   SmallVector<LoadInst *, 4> Loads;
1752   SmallVector<StoreInst *, 4> Stores;
1753   for (auto *U : GV->users()) {
1754     if (Operator::getOpcode(U) == Instruction::BitCast) {
1755       for (auto *UU : U->users()) {
1756         if (auto *LI = dyn_cast<LoadInst>(UU))
1757           Loads.push_back(LI);
1758         else if (auto *SI = dyn_cast<StoreInst>(UU))
1759           Stores.push_back(SI);
1760         else
1761           return false;
1762       }
1763       continue;
1764     }
1765 
1766     Instruction *I = dyn_cast<Instruction>(U);
1767     if (!I)
1768       return false;
1769     assert(I->getParent()->getParent() == F);
1770 
1771     if (auto *LI = dyn_cast<LoadInst>(I))
1772       Loads.push_back(LI);
1773     else if (auto *SI = dyn_cast<StoreInst>(I))
1774       Stores.push_back(SI);
1775     else
1776       return false;
1777   }
1778 
1779   // We have identified all uses of GV into loads and stores. Now check if all
1780   // of them are known not to depend on the value of the global at the function
1781   // entry point. We do this by ensuring that every load is dominated by at
1782   // least one store.
1783   auto &DT = getAnalysis<DominatorTreeWrapperPass>(*const_cast<Function *>(F))
1784                  .getDomTree();
1785 
1786   // The below check is quadratic. Check we're not going to do too many tests.
1787   // FIXME: Even though this will always have worst-case quadratic time, we
1788   // could put effort into minimizing the average time by putting stores that
1789   // have been shown to dominate at least one load at the beginning of the
1790   // Stores array, making subsequent dominance checks more likely to succeed
1791   // early.
1792   //
1793   // The threshold here is fairly large because global->local demotion is a
1794   // very powerful optimization should it fire.
1795   const unsigned Threshold = 100;
1796   if (Loads.size() * Stores.size() > Threshold)
1797     return false;
1798 
1799   for (auto *L : Loads) {
1800     auto *LTy = L->getType();
1801     if (!std::any_of(Stores.begin(), Stores.end(), [&](StoreInst *S) {
1802           auto *STy = S->getValueOperand()->getType();
1803           // The load is only dominated by the store if DomTree says so
1804           // and the number of bits loaded in L is less than or equal to
1805           // the number of bits stored in S.
1806           return DT.dominates(S, L) &&
1807                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1808         }))
1809       return false;
1810   }
1811   // All loads have known dependences inside F, so the global can be localized.
1812   return true;
1813 }
1814 
1815 /// C may have non-instruction users. Can all of those users be turned into
1816 /// instructions?
1817 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1818   // We don't do this exhaustively. The most common pattern that we really need
1819   // to care about is a constant GEP or constant bitcast - so just looking
1820   // through one single ConstantExpr.
1821   //
1822   // The set of constants that this function returns true for must be able to be
1823   // handled by makeAllConstantUsesInstructions.
1824   for (auto *U : C->users()) {
1825     if (isa<Instruction>(U))
1826       continue;
1827     if (!isa<ConstantExpr>(U))
1828       // Non instruction, non-constantexpr user; cannot convert this.
1829       return false;
1830     for (auto *UU : U->users())
1831       if (!isa<Instruction>(UU))
1832         // A constantexpr used by another constant. We don't try and recurse any
1833         // further but just bail out at this point.
1834         return false;
1835   }
1836 
1837   return true;
1838 }
1839 
1840 /// C may have non-instruction users, and
1841 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1842 /// non-instruction users to instructions.
1843 static void makeAllConstantUsesInstructions(Constant *C) {
1844   SmallVector<ConstantExpr*,4> Users;
1845   for (auto *U : C->users()) {
1846     if (isa<ConstantExpr>(U))
1847       Users.push_back(cast<ConstantExpr>(U));
1848     else
1849       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1850       // should not have returned true for C.
1851       assert(
1852           isa<Instruction>(U) &&
1853           "Can't transform non-constantexpr non-instruction to instruction!");
1854   }
1855 
1856   SmallVector<Value*,4> UUsers;
1857   for (auto *U : Users) {
1858     UUsers.clear();
1859     for (auto *UU : U->users())
1860       UUsers.push_back(UU);
1861     for (auto *UU : UUsers) {
1862       Instruction *UI = cast<Instruction>(UU);
1863       Instruction *NewU = U->getAsInstruction();
1864       NewU->insertBefore(UI);
1865       UI->replaceUsesOfWith(U, NewU);
1866     }
1867     U->dropAllReferences();
1868   }
1869 }
1870 
1871 /// Analyze the specified global variable and optimize
1872 /// it if possible.  If we make a change, return true.
1873 bool GlobalOpt::processInternalGlobal(GlobalVariable *GV,
1874                                       const GlobalStatus &GS) {
1875   auto &DL = GV->getParent()->getDataLayout();
1876   // If this is a first class global and has only one accessing function and
1877   // this function is non-recursive, we replace the global with a local alloca
1878   // in this function.
1879   //
1880   // NOTE: It doesn't make sense to promote non-single-value types since we
1881   // are just replacing static memory to stack memory.
1882   //
1883   // If the global is in different address space, don't bring it to stack.
1884   if (!GS.HasMultipleAccessingFunctions &&
1885       GS.AccessingFunction &&
1886       GV->getValueType()->isSingleValueType() &&
1887       GV->getType()->getAddressSpace() == 0 &&
1888       !GV->isExternallyInitialized() &&
1889       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1890       GS.AccessingFunction->doesNotRecurse() &&
1891       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV) ) {
1892     DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1893     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1894                                                    ->getEntryBlock().begin());
1895     Type *ElemTy = GV->getValueType();
1896     // FIXME: Pass Global's alignment when globals have alignment
1897     AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr,
1898                                         GV->getName(), &FirstI);
1899     if (!isa<UndefValue>(GV->getInitializer()))
1900       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1901 
1902     makeAllConstantUsesInstructions(GV);
1903 
1904     GV->replaceAllUsesWith(Alloca);
1905     GV->eraseFromParent();
1906     ++NumLocalized;
1907     return true;
1908   }
1909 
1910   // If the global is never loaded (but may be stored to), it is dead.
1911   // Delete it now.
1912   if (!GS.IsLoaded) {
1913     DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1914 
1915     bool Changed;
1916     if (isLeakCheckerRoot(GV)) {
1917       // Delete any constant stores to the global.
1918       Changed = CleanupPointerRootUsers(GV, TLI);
1919     } else {
1920       // Delete any stores we can find to the global.  We may not be able to
1921       // make it completely dead though.
1922       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1923     }
1924 
1925     // If the global is dead now, delete it.
1926     if (GV->use_empty()) {
1927       GV->eraseFromParent();
1928       ++NumDeleted;
1929       Changed = true;
1930     }
1931     return Changed;
1932 
1933   } else if (GS.StoredType <= GlobalStatus::InitializerStored) {
1934     DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1935     GV->setConstant(true);
1936 
1937     // Clean up any obviously simplifiable users now.
1938     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1939 
1940     // If the global is dead now, just nuke it.
1941     if (GV->use_empty()) {
1942       DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1943             << "all users and delete global!\n");
1944       GV->eraseFromParent();
1945       ++NumDeleted;
1946     }
1947 
1948     ++NumMarked;
1949     return true;
1950   } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1951     const DataLayout &DL = GV->getParent()->getDataLayout();
1952     if (SRAGlobal(GV, DL))
1953       return true;
1954   } else if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1955     // If the initial value for the global was an undef value, and if only
1956     // one other value was stored into it, we can just change the
1957     // initializer to be the stored value, then delete all stores to the
1958     // global.  This allows us to mark it constant.
1959     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1960       if (isa<UndefValue>(GV->getInitializer())) {
1961         // Change the initial value here.
1962         GV->setInitializer(SOVConstant);
1963 
1964         // Clean up any obviously simplifiable users now.
1965         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1966 
1967         if (GV->use_empty()) {
1968           DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1969                        << "simplify all users and delete global!\n");
1970           GV->eraseFromParent();
1971           ++NumDeleted;
1972         }
1973         ++NumSubstitute;
1974         return true;
1975       }
1976 
1977     // Try to optimize globals based on the knowledge that only one value
1978     // (besides its initializer) is ever stored to the global.
1979     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
1980       return true;
1981 
1982     // Otherwise, if the global was not a boolean, we can shrink it to be a
1983     // boolean.
1984     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1985       if (GS.Ordering == AtomicOrdering::NotAtomic) {
1986         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1987           ++NumShrunkToBool;
1988           return true;
1989         }
1990       }
1991     }
1992   }
1993 
1994   return false;
1995 }
1996 
1997 /// Walk all of the direct calls of the specified function, changing them to
1998 /// FastCC.
1999 static void ChangeCalleesToFastCall(Function *F) {
2000   for (User *U : F->users()) {
2001     if (isa<BlockAddress>(U))
2002       continue;
2003     CallSite CS(cast<Instruction>(U));
2004     CS.setCallingConv(CallingConv::Fast);
2005   }
2006 }
2007 
2008 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
2009   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
2010     unsigned Index = Attrs.getSlotIndex(i);
2011     if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
2012       continue;
2013 
2014     // There can be only one.
2015     return Attrs.removeAttribute(C, Index, Attribute::Nest);
2016   }
2017 
2018   return Attrs;
2019 }
2020 
2021 static void RemoveNestAttribute(Function *F) {
2022   F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2023   for (User *U : F->users()) {
2024     if (isa<BlockAddress>(U))
2025       continue;
2026     CallSite CS(cast<Instruction>(U));
2027     CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
2028   }
2029 }
2030 
2031 /// Return true if this is a calling convention that we'd like to change.  The
2032 /// idea here is that we don't want to mess with the convention if the user
2033 /// explicitly requested something with performance implications like coldcc,
2034 /// GHC, or anyregcc.
2035 static bool isProfitableToMakeFastCC(Function *F) {
2036   CallingConv::ID CC = F->getCallingConv();
2037   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2038   return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
2039 }
2040 
2041 bool GlobalOpt::OptimizeFunctions(Module &M) {
2042   bool Changed = false;
2043   // Optimize functions.
2044   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2045     Function *F = &*FI++;
2046     // Functions without names cannot be referenced outside this module.
2047     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2048       F->setLinkage(GlobalValue::InternalLinkage);
2049 
2050     if (deleteIfDead(*F)) {
2051       Changed = true;
2052       continue;
2053     }
2054 
2055     Changed |= processGlobal(*F);
2056 
2057     if (!F->hasLocalLinkage())
2058       continue;
2059     if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
2060         !F->hasAddressTaken()) {
2061       // If this function has a calling convention worth changing, is not a
2062       // varargs function, and is only called directly, promote it to use the
2063       // Fast calling convention.
2064       F->setCallingConv(CallingConv::Fast);
2065       ChangeCalleesToFastCall(F);
2066       ++NumFastCallFns;
2067       Changed = true;
2068     }
2069 
2070     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2071         !F->hasAddressTaken()) {
2072       // The function is not used by a trampoline intrinsic, so it is safe
2073       // to remove the 'nest' attribute.
2074       RemoveNestAttribute(F);
2075       ++NumNestRemoved;
2076       Changed = true;
2077     }
2078   }
2079   return Changed;
2080 }
2081 
2082 bool GlobalOpt::OptimizeGlobalVars(Module &M) {
2083   bool Changed = false;
2084 
2085   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2086        GVI != E; ) {
2087     GlobalVariable *GV = &*GVI++;
2088     // Global variables without names cannot be referenced outside this module.
2089     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2090       GV->setLinkage(GlobalValue::InternalLinkage);
2091     // Simplify the initializer.
2092     if (GV->hasInitializer())
2093       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
2094         auto &DL = M.getDataLayout();
2095         Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
2096         if (New && New != CE)
2097           GV->setInitializer(New);
2098       }
2099 
2100     if (deleteIfDead(*GV)) {
2101       Changed = true;
2102       continue;
2103     }
2104 
2105     Changed |= processGlobal(*GV);
2106   }
2107   return Changed;
2108 }
2109 
2110 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2111 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2112 /// GEP operands of Addr [0, OpNo) have been stepped into.
2113 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2114                                    ConstantExpr *Addr, unsigned OpNo) {
2115   // Base case of the recursion.
2116   if (OpNo == Addr->getNumOperands()) {
2117     assert(Val->getType() == Init->getType() && "Type mismatch!");
2118     return Val;
2119   }
2120 
2121   SmallVector<Constant*, 32> Elts;
2122   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2123     // Break up the constant into its elements.
2124     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2125       Elts.push_back(Init->getAggregateElement(i));
2126 
2127     // Replace the element that we are supposed to.
2128     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2129     unsigned Idx = CU->getZExtValue();
2130     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2131     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2132 
2133     // Return the modified struct.
2134     return ConstantStruct::get(STy, Elts);
2135   }
2136 
2137   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2138   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2139 
2140   uint64_t NumElts;
2141   if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2142     NumElts = ATy->getNumElements();
2143   else
2144     NumElts = InitTy->getVectorNumElements();
2145 
2146   // Break up the array into elements.
2147   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2148     Elts.push_back(Init->getAggregateElement(i));
2149 
2150   assert(CI->getZExtValue() < NumElts);
2151   Elts[CI->getZExtValue()] =
2152     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2153 
2154   if (Init->getType()->isArrayTy())
2155     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2156   return ConstantVector::get(Elts);
2157 }
2158 
2159 /// We have decided that Addr (which satisfies the predicate
2160 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2161 static void CommitValueTo(Constant *Val, Constant *Addr) {
2162   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2163     assert(GV->hasInitializer());
2164     GV->setInitializer(Val);
2165     return;
2166   }
2167 
2168   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2169   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2170   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2171 }
2172 
2173 /// Evaluate static constructors in the function, if we can.  Return true if we
2174 /// can, false otherwise.
2175 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2176                                       const TargetLibraryInfo *TLI) {
2177   // Call the function.
2178   Evaluator Eval(DL, TLI);
2179   Constant *RetValDummy;
2180   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2181                                            SmallVector<Constant*, 0>());
2182 
2183   if (EvalSuccess) {
2184     ++NumCtorsEvaluated;
2185 
2186     // We succeeded at evaluation: commit the result.
2187     DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2188           << F->getName() << "' to " << Eval.getMutatedMemory().size()
2189           << " stores.\n");
2190     for (DenseMap<Constant*, Constant*>::const_iterator I =
2191            Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
2192          I != E; ++I)
2193       CommitValueTo(I->second, I->first);
2194     for (GlobalVariable *GV : Eval.getInvariants())
2195       GV->setConstant(true);
2196   }
2197 
2198   return EvalSuccess;
2199 }
2200 
2201 static int compareNames(Constant *const *A, Constant *const *B) {
2202   Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
2203   Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
2204   return AStripped->getName().compare(BStripped->getName());
2205 }
2206 
2207 static void setUsedInitializer(GlobalVariable &V,
2208                                const SmallPtrSet<GlobalValue *, 8> &Init) {
2209   if (Init.empty()) {
2210     V.eraseFromParent();
2211     return;
2212   }
2213 
2214   // Type of pointer to the array of pointers.
2215   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2216 
2217   SmallVector<llvm::Constant *, 8> UsedArray;
2218   for (GlobalValue *GV : Init) {
2219     Constant *Cast
2220       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2221     UsedArray.push_back(Cast);
2222   }
2223   // Sort to get deterministic order.
2224   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2225   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2226 
2227   Module *M = V.getParent();
2228   V.removeFromParent();
2229   GlobalVariable *NV =
2230       new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
2231                          llvm::ConstantArray::get(ATy, UsedArray), "");
2232   NV->takeName(&V);
2233   NV->setSection("llvm.metadata");
2234   delete &V;
2235 }
2236 
2237 namespace {
2238 /// An easy to access representation of llvm.used and llvm.compiler.used.
2239 class LLVMUsed {
2240   SmallPtrSet<GlobalValue *, 8> Used;
2241   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2242   GlobalVariable *UsedV;
2243   GlobalVariable *CompilerUsedV;
2244 
2245 public:
2246   LLVMUsed(Module &M) {
2247     UsedV = collectUsedGlobalVariables(M, Used, false);
2248     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2249   }
2250   typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
2251   typedef iterator_range<iterator> used_iterator_range;
2252   iterator usedBegin() { return Used.begin(); }
2253   iterator usedEnd() { return Used.end(); }
2254   used_iterator_range used() {
2255     return used_iterator_range(usedBegin(), usedEnd());
2256   }
2257   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2258   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2259   used_iterator_range compilerUsed() {
2260     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2261   }
2262   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2263   bool compilerUsedCount(GlobalValue *GV) const {
2264     return CompilerUsed.count(GV);
2265   }
2266   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2267   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2268   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2269   bool compilerUsedInsert(GlobalValue *GV) {
2270     return CompilerUsed.insert(GV).second;
2271   }
2272 
2273   void syncVariablesAndSets() {
2274     if (UsedV)
2275       setUsedInitializer(*UsedV, Used);
2276     if (CompilerUsedV)
2277       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2278   }
2279 };
2280 }
2281 
2282 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2283   if (GA.use_empty()) // No use at all.
2284     return false;
2285 
2286   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2287          "We should have removed the duplicated "
2288          "element from llvm.compiler.used");
2289   if (!GA.hasOneUse())
2290     // Strictly more than one use. So at least one is not in llvm.used and
2291     // llvm.compiler.used.
2292     return true;
2293 
2294   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2295   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2296 }
2297 
2298 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2299                                                const LLVMUsed &U) {
2300   unsigned N = 2;
2301   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2302          "We should have removed the duplicated "
2303          "element from llvm.compiler.used");
2304   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2305     ++N;
2306   return V.hasNUsesOrMore(N);
2307 }
2308 
2309 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2310   if (!GA.hasLocalLinkage())
2311     return true;
2312 
2313   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2314 }
2315 
2316 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2317                              bool &RenameTarget) {
2318   RenameTarget = false;
2319   bool Ret = false;
2320   if (hasUseOtherThanLLVMUsed(GA, U))
2321     Ret = true;
2322 
2323   // If the alias is externally visible, we may still be able to simplify it.
2324   if (!mayHaveOtherReferences(GA, U))
2325     return Ret;
2326 
2327   // If the aliasee has internal linkage, give it the name and linkage
2328   // of the alias, and delete the alias.  This turns:
2329   //   define internal ... @f(...)
2330   //   @a = alias ... @f
2331   // into:
2332   //   define ... @a(...)
2333   Constant *Aliasee = GA.getAliasee();
2334   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2335   if (!Target->hasLocalLinkage())
2336     return Ret;
2337 
2338   // Do not perform the transform if multiple aliases potentially target the
2339   // aliasee. This check also ensures that it is safe to replace the section
2340   // and other attributes of the aliasee with those of the alias.
2341   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2342     return Ret;
2343 
2344   RenameTarget = true;
2345   return true;
2346 }
2347 
2348 bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2349   bool Changed = false;
2350   LLVMUsed Used(M);
2351 
2352   for (GlobalValue *GV : Used.used())
2353     Used.compilerUsedErase(GV);
2354 
2355   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2356        I != E;) {
2357     GlobalAlias *J = &*I++;
2358 
2359     // Aliases without names cannot be referenced outside this module.
2360     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2361       J->setLinkage(GlobalValue::InternalLinkage);
2362 
2363     if (deleteIfDead(*J)) {
2364       Changed = true;
2365       continue;
2366     }
2367 
2368     // If the aliasee may change at link time, nothing can be done - bail out.
2369     if (J->isInterposable())
2370       continue;
2371 
2372     Constant *Aliasee = J->getAliasee();
2373     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2374     // We can't trivially replace the alias with the aliasee if the aliasee is
2375     // non-trivial in some way.
2376     // TODO: Try to handle non-zero GEPs of local aliasees.
2377     if (!Target)
2378       continue;
2379     Target->removeDeadConstantUsers();
2380 
2381     // Make all users of the alias use the aliasee instead.
2382     bool RenameTarget;
2383     if (!hasUsesToReplace(*J, Used, RenameTarget))
2384       continue;
2385 
2386     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2387     ++NumAliasesResolved;
2388     Changed = true;
2389 
2390     if (RenameTarget) {
2391       // Give the aliasee the name, linkage and other attributes of the alias.
2392       Target->takeName(&*J);
2393       Target->setLinkage(J->getLinkage());
2394       Target->setVisibility(J->getVisibility());
2395       Target->setDLLStorageClass(J->getDLLStorageClass());
2396 
2397       if (Used.usedErase(&*J))
2398         Used.usedInsert(Target);
2399 
2400       if (Used.compilerUsedErase(&*J))
2401         Used.compilerUsedInsert(Target);
2402     } else if (mayHaveOtherReferences(*J, Used))
2403       continue;
2404 
2405     // Delete the alias.
2406     M.getAliasList().erase(J);
2407     ++NumAliasesRemoved;
2408     Changed = true;
2409   }
2410 
2411   Used.syncVariablesAndSets();
2412 
2413   return Changed;
2414 }
2415 
2416 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2417   if (!TLI->has(LibFunc::cxa_atexit))
2418     return nullptr;
2419 
2420   Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
2421 
2422   if (!Fn)
2423     return nullptr;
2424 
2425   FunctionType *FTy = Fn->getFunctionType();
2426 
2427   // Checking that the function has the right return type, the right number of
2428   // parameters and that they all have pointer types should be enough.
2429   if (!FTy->getReturnType()->isIntegerTy() ||
2430       FTy->getNumParams() != 3 ||
2431       !FTy->getParamType(0)->isPointerTy() ||
2432       !FTy->getParamType(1)->isPointerTy() ||
2433       !FTy->getParamType(2)->isPointerTy())
2434     return nullptr;
2435 
2436   return Fn;
2437 }
2438 
2439 /// Returns whether the given function is an empty C++ destructor and can
2440 /// therefore be eliminated.
2441 /// Note that we assume that other optimization passes have already simplified
2442 /// the code so we only look for a function with a single basic block, where
2443 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2444 /// other side-effect free instructions.
2445 static bool cxxDtorIsEmpty(const Function &Fn,
2446                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
2447   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2448   // nounwind, but that doesn't seem worth doing.
2449   if (Fn.isDeclaration())
2450     return false;
2451 
2452   if (++Fn.begin() != Fn.end())
2453     return false;
2454 
2455   const BasicBlock &EntryBlock = Fn.getEntryBlock();
2456   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2457        I != E; ++I) {
2458     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2459       // Ignore debug intrinsics.
2460       if (isa<DbgInfoIntrinsic>(CI))
2461         continue;
2462 
2463       const Function *CalledFn = CI->getCalledFunction();
2464 
2465       if (!CalledFn)
2466         return false;
2467 
2468       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2469 
2470       // Don't treat recursive functions as empty.
2471       if (!NewCalledFunctions.insert(CalledFn).second)
2472         return false;
2473 
2474       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2475         return false;
2476     } else if (isa<ReturnInst>(*I))
2477       return true; // We're done.
2478     else if (I->mayHaveSideEffects())
2479       return false; // Destructor with side effects, bail.
2480   }
2481 
2482   return false;
2483 }
2484 
2485 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2486   /// Itanium C++ ABI p3.3.5:
2487   ///
2488   ///   After constructing a global (or local static) object, that will require
2489   ///   destruction on exit, a termination function is registered as follows:
2490   ///
2491   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2492   ///
2493   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2494   ///   call f(p) when DSO d is unloaded, before all such termination calls
2495   ///   registered before this one. It returns zero if registration is
2496   ///   successful, nonzero on failure.
2497 
2498   // This pass will look for calls to __cxa_atexit where the function is trivial
2499   // and remove them.
2500   bool Changed = false;
2501 
2502   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2503        I != E;) {
2504     // We're only interested in calls. Theoretically, we could handle invoke
2505     // instructions as well, but neither llvm-gcc nor clang generate invokes
2506     // to __cxa_atexit.
2507     CallInst *CI = dyn_cast<CallInst>(*I++);
2508     if (!CI)
2509       continue;
2510 
2511     Function *DtorFn =
2512       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2513     if (!DtorFn)
2514       continue;
2515 
2516     SmallPtrSet<const Function *, 8> CalledFunctions;
2517     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2518       continue;
2519 
2520     // Just remove the call.
2521     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2522     CI->eraseFromParent();
2523 
2524     ++NumCXXDtorsRemoved;
2525 
2526     Changed |= true;
2527   }
2528 
2529   return Changed;
2530 }
2531 
2532 bool GlobalOpt::runOnModule(Module &M) {
2533   bool Changed = false;
2534 
2535   auto &DL = M.getDataLayout();
2536   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2537 
2538   bool LocalChange = true;
2539   while (LocalChange) {
2540     LocalChange = false;
2541 
2542     NotDiscardableComdats.clear();
2543     for (const GlobalVariable &GV : M.globals())
2544       if (const Comdat *C = GV.getComdat())
2545         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2546           NotDiscardableComdats.insert(C);
2547     for (Function &F : M)
2548       if (const Comdat *C = F.getComdat())
2549         if (!F.isDefTriviallyDead())
2550           NotDiscardableComdats.insert(C);
2551     for (GlobalAlias &GA : M.aliases())
2552       if (const Comdat *C = GA.getComdat())
2553         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2554           NotDiscardableComdats.insert(C);
2555 
2556     // Delete functions that are trivially dead, ccc -> fastcc
2557     LocalChange |= OptimizeFunctions(M);
2558 
2559     // Optimize global_ctors list.
2560     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2561       return EvaluateStaticConstructor(F, DL, TLI);
2562     });
2563 
2564     // Optimize non-address-taken globals.
2565     LocalChange |= OptimizeGlobalVars(M);
2566 
2567     // Resolve aliases, when possible.
2568     LocalChange |= OptimizeGlobalAliases(M);
2569 
2570     // Try to remove trivial global destructors if they are not removed
2571     // already.
2572     Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
2573     if (CXAAtExitFn)
2574       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2575 
2576     Changed |= LocalChange;
2577   }
2578 
2579   // TODO: Move all global ctors functions to the end of the module for code
2580   // layout.
2581 
2582   return Changed;
2583 }
2584