1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "globalopt" 17 #include "llvm/Transforms/IPO.h" 18 #include "llvm/CallingConv.h" 19 #include "llvm/Constants.h" 20 #include "llvm/DerivedTypes.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/IntrinsicInst.h" 23 #include "llvm/Module.h" 24 #include "llvm/Operator.h" 25 #include "llvm/Pass.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Target/TargetData.h" 29 #include "llvm/Target/TargetLibraryInfo.h" 30 #include "llvm/Support/CallSite.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/GetElementPtrTypeIterator.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 STATISTIC(NumMarked , "Number of globals marked constant"); 45 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 46 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 47 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 48 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 49 STATISTIC(NumDeleted , "Number of globals deleted"); 50 STATISTIC(NumFnDeleted , "Number of functions deleted"); 51 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 52 STATISTIC(NumLocalized , "Number of globals localized"); 53 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 54 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 55 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 56 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 57 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 58 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 59 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 60 61 namespace { 62 struct GlobalStatus; 63 struct GlobalOpt : public ModulePass { 64 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 65 AU.addRequired<TargetLibraryInfo>(); 66 } 67 static char ID; // Pass identification, replacement for typeid 68 GlobalOpt() : ModulePass(ID) { 69 initializeGlobalOptPass(*PassRegistry::getPassRegistry()); 70 } 71 72 bool runOnModule(Module &M); 73 74 private: 75 GlobalVariable *FindGlobalCtors(Module &M); 76 bool OptimizeFunctions(Module &M); 77 bool OptimizeGlobalVars(Module &M); 78 bool OptimizeGlobalAliases(Module &M); 79 bool OptimizeGlobalCtorsList(GlobalVariable *&GCL); 80 bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI); 81 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI, 82 const SmallPtrSet<const PHINode*, 16> &PHIUsers, 83 const GlobalStatus &GS); 84 bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn); 85 86 TargetData *TD; 87 TargetLibraryInfo *TLI; 88 }; 89 } 90 91 char GlobalOpt::ID = 0; 92 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt", 93 "Global Variable Optimizer", false, false) 94 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 95 INITIALIZE_PASS_END(GlobalOpt, "globalopt", 96 "Global Variable Optimizer", false, false) 97 98 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } 99 100 namespace { 101 102 /// GlobalStatus - As we analyze each global, keep track of some information 103 /// about it. If we find out that the address of the global is taken, none of 104 /// this info will be accurate. 105 struct GlobalStatus { 106 /// isCompared - True if the global's address is used in a comparison. 107 bool isCompared; 108 109 /// isLoaded - True if the global is ever loaded. If the global isn't ever 110 /// loaded it can be deleted. 111 bool isLoaded; 112 113 /// StoredType - Keep track of what stores to the global look like. 114 /// 115 enum StoredType { 116 /// NotStored - There is no store to this global. It can thus be marked 117 /// constant. 118 NotStored, 119 120 /// isInitializerStored - This global is stored to, but the only thing 121 /// stored is the constant it was initialized with. This is only tracked 122 /// for scalar globals. 123 isInitializerStored, 124 125 /// isStoredOnce - This global is stored to, but only its initializer and 126 /// one other value is ever stored to it. If this global isStoredOnce, we 127 /// track the value stored to it in StoredOnceValue below. This is only 128 /// tracked for scalar globals. 129 isStoredOnce, 130 131 /// isStored - This global is stored to by multiple values or something else 132 /// that we cannot track. 133 isStored 134 } StoredType; 135 136 /// StoredOnceValue - If only one value (besides the initializer constant) is 137 /// ever stored to this global, keep track of what value it is. 138 Value *StoredOnceValue; 139 140 /// AccessingFunction/HasMultipleAccessingFunctions - These start out 141 /// null/false. When the first accessing function is noticed, it is recorded. 142 /// When a second different accessing function is noticed, 143 /// HasMultipleAccessingFunctions is set to true. 144 const Function *AccessingFunction; 145 bool HasMultipleAccessingFunctions; 146 147 /// HasNonInstructionUser - Set to true if this global has a user that is not 148 /// an instruction (e.g. a constant expr or GV initializer). 149 bool HasNonInstructionUser; 150 151 /// HasPHIUser - Set to true if this global has a user that is a PHI node. 152 bool HasPHIUser; 153 154 /// AtomicOrdering - Set to the strongest atomic ordering requirement. 155 AtomicOrdering Ordering; 156 157 GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored), 158 StoredOnceValue(0), AccessingFunction(0), 159 HasMultipleAccessingFunctions(false), 160 HasNonInstructionUser(false), HasPHIUser(false), 161 Ordering(NotAtomic) {} 162 }; 163 164 } 165 166 /// StrongerOrdering - Return the stronger of the two ordering. If the two 167 /// orderings are acquire and release, then return AcquireRelease. 168 /// 169 static AtomicOrdering StrongerOrdering(AtomicOrdering X, AtomicOrdering Y) { 170 if (X == Acquire && Y == Release) return AcquireRelease; 171 if (Y == Acquire && X == Release) return AcquireRelease; 172 return (AtomicOrdering)std::max(X, Y); 173 } 174 175 /// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used 176 /// by constants itself. Note that constants cannot be cyclic, so this test is 177 /// pretty easy to implement recursively. 178 /// 179 static bool SafeToDestroyConstant(const Constant *C) { 180 if (isa<GlobalValue>(C)) return false; 181 182 for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; 183 ++UI) 184 if (const Constant *CU = dyn_cast<Constant>(*UI)) { 185 if (!SafeToDestroyConstant(CU)) return false; 186 } else 187 return false; 188 return true; 189 } 190 191 192 /// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus 193 /// structure. If the global has its address taken, return true to indicate we 194 /// can't do anything with it. 195 /// 196 static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS, 197 SmallPtrSet<const PHINode*, 16> &PHIUsers) { 198 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 199 ++UI) { 200 const User *U = *UI; 201 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 202 GS.HasNonInstructionUser = true; 203 204 // If the result of the constantexpr isn't pointer type, then we won't 205 // know to expect it in various places. Just reject early. 206 if (!isa<PointerType>(CE->getType())) return true; 207 208 if (AnalyzeGlobal(CE, GS, PHIUsers)) return true; 209 } else if (const Instruction *I = dyn_cast<Instruction>(U)) { 210 if (!GS.HasMultipleAccessingFunctions) { 211 const Function *F = I->getParent()->getParent(); 212 if (GS.AccessingFunction == 0) 213 GS.AccessingFunction = F; 214 else if (GS.AccessingFunction != F) 215 GS.HasMultipleAccessingFunctions = true; 216 } 217 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 218 GS.isLoaded = true; 219 // Don't hack on volatile loads. 220 if (LI->isVolatile()) return true; 221 GS.Ordering = StrongerOrdering(GS.Ordering, LI->getOrdering()); 222 } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 223 // Don't allow a store OF the address, only stores TO the address. 224 if (SI->getOperand(0) == V) return true; 225 226 // Don't hack on volatile stores. 227 if (SI->isVolatile()) return true; 228 GS.Ordering = StrongerOrdering(GS.Ordering, SI->getOrdering()); 229 230 // If this is a direct store to the global (i.e., the global is a scalar 231 // value, not an aggregate), keep more specific information about 232 // stores. 233 if (GS.StoredType != GlobalStatus::isStored) { 234 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>( 235 SI->getOperand(1))) { 236 Value *StoredVal = SI->getOperand(0); 237 if (StoredVal == GV->getInitializer()) { 238 if (GS.StoredType < GlobalStatus::isInitializerStored) 239 GS.StoredType = GlobalStatus::isInitializerStored; 240 } else if (isa<LoadInst>(StoredVal) && 241 cast<LoadInst>(StoredVal)->getOperand(0) == GV) { 242 if (GS.StoredType < GlobalStatus::isInitializerStored) 243 GS.StoredType = GlobalStatus::isInitializerStored; 244 } else if (GS.StoredType < GlobalStatus::isStoredOnce) { 245 GS.StoredType = GlobalStatus::isStoredOnce; 246 GS.StoredOnceValue = StoredVal; 247 } else if (GS.StoredType == GlobalStatus::isStoredOnce && 248 GS.StoredOnceValue == StoredVal) { 249 // noop. 250 } else { 251 GS.StoredType = GlobalStatus::isStored; 252 } 253 } else { 254 GS.StoredType = GlobalStatus::isStored; 255 } 256 } 257 } else if (isa<BitCastInst>(I)) { 258 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 259 } else if (isa<GetElementPtrInst>(I)) { 260 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 261 } else if (isa<SelectInst>(I)) { 262 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 263 } else if (const PHINode *PN = dyn_cast<PHINode>(I)) { 264 // PHI nodes we can check just like select or GEP instructions, but we 265 // have to be careful about infinite recursion. 266 if (PHIUsers.insert(PN)) // Not already visited. 267 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 268 GS.HasPHIUser = true; 269 } else if (isa<CmpInst>(I)) { 270 GS.isCompared = true; 271 } else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) { 272 if (MTI->isVolatile()) return true; 273 if (MTI->getArgOperand(0) == V) 274 GS.StoredType = GlobalStatus::isStored; 275 if (MTI->getArgOperand(1) == V) 276 GS.isLoaded = true; 277 } else if (const MemSetInst *MSI = dyn_cast<MemSetInst>(I)) { 278 assert(MSI->getArgOperand(0) == V && "Memset only takes one pointer!"); 279 if (MSI->isVolatile()) return true; 280 GS.StoredType = GlobalStatus::isStored; 281 } else { 282 return true; // Any other non-load instruction might take address! 283 } 284 } else if (const Constant *C = dyn_cast<Constant>(U)) { 285 GS.HasNonInstructionUser = true; 286 // We might have a dead and dangling constant hanging off of here. 287 if (!SafeToDestroyConstant(C)) 288 return true; 289 } else { 290 GS.HasNonInstructionUser = true; 291 // Otherwise must be some other user. 292 return true; 293 } 294 } 295 296 return false; 297 } 298 299 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all 300 /// users of the global, cleaning up the obvious ones. This is largely just a 301 /// quick scan over the use list to clean up the easy and obvious cruft. This 302 /// returns true if it made a change. 303 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 304 TargetData *TD, TargetLibraryInfo *TLI) { 305 bool Changed = false; 306 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) { 307 User *U = *UI++; 308 309 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 310 if (Init) { 311 // Replace the load with the initializer. 312 LI->replaceAllUsesWith(Init); 313 LI->eraseFromParent(); 314 Changed = true; 315 } 316 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 317 // Store must be unreachable or storing Init into the global. 318 SI->eraseFromParent(); 319 Changed = true; 320 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 321 if (CE->getOpcode() == Instruction::GetElementPtr) { 322 Constant *SubInit = 0; 323 if (Init) 324 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 325 Changed |= CleanupConstantGlobalUsers(CE, SubInit, TD, TLI); 326 } else if (CE->getOpcode() == Instruction::BitCast && 327 CE->getType()->isPointerTy()) { 328 // Pointer cast, delete any stores and memsets to the global. 329 Changed |= CleanupConstantGlobalUsers(CE, 0, TD, TLI); 330 } 331 332 if (CE->use_empty()) { 333 CE->destroyConstant(); 334 Changed = true; 335 } 336 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 337 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 338 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 339 // and will invalidate our notion of what Init is. 340 Constant *SubInit = 0; 341 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 342 ConstantExpr *CE = 343 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, TD, TLI)); 344 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 345 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 346 347 // If the initializer is an all-null value and we have an inbounds GEP, 348 // we already know what the result of any load from that GEP is. 349 // TODO: Handle splats. 350 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 351 SubInit = Constant::getNullValue(GEP->getType()->getElementType()); 352 } 353 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, TD, TLI); 354 355 if (GEP->use_empty()) { 356 GEP->eraseFromParent(); 357 Changed = true; 358 } 359 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 360 if (MI->getRawDest() == V) { 361 MI->eraseFromParent(); 362 Changed = true; 363 } 364 365 } else if (Constant *C = dyn_cast<Constant>(U)) { 366 // If we have a chain of dead constantexprs or other things dangling from 367 // us, and if they are all dead, nuke them without remorse. 368 if (SafeToDestroyConstant(C)) { 369 C->destroyConstant(); 370 // This could have invalidated UI, start over from scratch. 371 CleanupConstantGlobalUsers(V, Init, TD, TLI); 372 return true; 373 } 374 } 375 } 376 return Changed; 377 } 378 379 /// isSafeSROAElementUse - Return true if the specified instruction is a safe 380 /// user of a derived expression from a global that we want to SROA. 381 static bool isSafeSROAElementUse(Value *V) { 382 // We might have a dead and dangling constant hanging off of here. 383 if (Constant *C = dyn_cast<Constant>(V)) 384 return SafeToDestroyConstant(C); 385 386 Instruction *I = dyn_cast<Instruction>(V); 387 if (!I) return false; 388 389 // Loads are ok. 390 if (isa<LoadInst>(I)) return true; 391 392 // Stores *to* the pointer are ok. 393 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 394 return SI->getOperand(0) != V; 395 396 // Otherwise, it must be a GEP. 397 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 398 if (GEPI == 0) return false; 399 400 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 401 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 402 return false; 403 404 for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end(); 405 I != E; ++I) 406 if (!isSafeSROAElementUse(*I)) 407 return false; 408 return true; 409 } 410 411 412 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value. 413 /// Look at it and its uses and decide whether it is safe to SROA this global. 414 /// 415 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 416 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 417 if (!isa<GetElementPtrInst>(U) && 418 (!isa<ConstantExpr>(U) || 419 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 420 return false; 421 422 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 423 // don't like < 3 operand CE's, and we don't like non-constant integer 424 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 425 // value of C. 426 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 427 !cast<Constant>(U->getOperand(1))->isNullValue() || 428 !isa<ConstantInt>(U->getOperand(2))) 429 return false; 430 431 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 432 ++GEPI; // Skip over the pointer index. 433 434 // If this is a use of an array allocation, do a bit more checking for sanity. 435 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 436 uint64_t NumElements = AT->getNumElements(); 437 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 438 439 // Check to make sure that index falls within the array. If not, 440 // something funny is going on, so we won't do the optimization. 441 // 442 if (Idx->getZExtValue() >= NumElements) 443 return false; 444 445 // We cannot scalar repl this level of the array unless any array 446 // sub-indices are in-range constants. In particular, consider: 447 // A[0][i]. We cannot know that the user isn't doing invalid things like 448 // allowing i to index an out-of-range subscript that accesses A[1]. 449 // 450 // Scalar replacing *just* the outer index of the array is probably not 451 // going to be a win anyway, so just give up. 452 for (++GEPI; // Skip array index. 453 GEPI != E; 454 ++GEPI) { 455 uint64_t NumElements; 456 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 457 NumElements = SubArrayTy->getNumElements(); 458 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 459 NumElements = SubVectorTy->getNumElements(); 460 else { 461 assert((*GEPI)->isStructTy() && 462 "Indexed GEP type is not array, vector, or struct!"); 463 continue; 464 } 465 466 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 467 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 468 return false; 469 } 470 } 471 472 for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I) 473 if (!isSafeSROAElementUse(*I)) 474 return false; 475 return true; 476 } 477 478 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it 479 /// is safe for us to perform this transformation. 480 /// 481 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 482 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 483 UI != E; ++UI) { 484 if (!IsUserOfGlobalSafeForSRA(*UI, GV)) 485 return false; 486 } 487 return true; 488 } 489 490 491 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global 492 /// variable. This opens the door for other optimizations by exposing the 493 /// behavior of the program in a more fine-grained way. We have determined that 494 /// this transformation is safe already. We return the first global variable we 495 /// insert so that the caller can reprocess it. 496 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) { 497 // Make sure this global only has simple uses that we can SRA. 498 if (!GlobalUsersSafeToSRA(GV)) 499 return 0; 500 501 assert(GV->hasLocalLinkage() && !GV->isConstant()); 502 Constant *Init = GV->getInitializer(); 503 Type *Ty = Init->getType(); 504 505 std::vector<GlobalVariable*> NewGlobals; 506 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 507 508 // Get the alignment of the global, either explicit or target-specific. 509 unsigned StartAlignment = GV->getAlignment(); 510 if (StartAlignment == 0) 511 StartAlignment = TD.getABITypeAlignment(GV->getType()); 512 513 if (StructType *STy = dyn_cast<StructType>(Ty)) { 514 NewGlobals.reserve(STy->getNumElements()); 515 const StructLayout &Layout = *TD.getStructLayout(STy); 516 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 517 Constant *In = Init->getAggregateElement(i); 518 assert(In && "Couldn't get element of initializer?"); 519 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 520 GlobalVariable::InternalLinkage, 521 In, GV->getName()+"."+Twine(i), 522 GV->getThreadLocalMode(), 523 GV->getType()->getAddressSpace()); 524 Globals.insert(GV, NGV); 525 NewGlobals.push_back(NGV); 526 527 // Calculate the known alignment of the field. If the original aggregate 528 // had 256 byte alignment for example, something might depend on that: 529 // propagate info to each field. 530 uint64_t FieldOffset = Layout.getElementOffset(i); 531 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 532 if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i))) 533 NGV->setAlignment(NewAlign); 534 } 535 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 536 unsigned NumElements = 0; 537 if (ArrayType *ATy = dyn_cast<ArrayType>(STy)) 538 NumElements = ATy->getNumElements(); 539 else 540 NumElements = cast<VectorType>(STy)->getNumElements(); 541 542 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 543 return 0; // It's not worth it. 544 NewGlobals.reserve(NumElements); 545 546 uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType()); 547 unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType()); 548 for (unsigned i = 0, e = NumElements; i != e; ++i) { 549 Constant *In = Init->getAggregateElement(i); 550 assert(In && "Couldn't get element of initializer?"); 551 552 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 553 GlobalVariable::InternalLinkage, 554 In, GV->getName()+"."+Twine(i), 555 GV->getThreadLocalMode(), 556 GV->getType()->getAddressSpace()); 557 Globals.insert(GV, NGV); 558 NewGlobals.push_back(NGV); 559 560 // Calculate the known alignment of the field. If the original aggregate 561 // had 256 byte alignment for example, something might depend on that: 562 // propagate info to each field. 563 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 564 if (NewAlign > EltAlign) 565 NGV->setAlignment(NewAlign); 566 } 567 } 568 569 if (NewGlobals.empty()) 570 return 0; 571 572 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV); 573 574 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 575 576 // Loop over all of the uses of the global, replacing the constantexpr geps, 577 // with smaller constantexpr geps or direct references. 578 while (!GV->use_empty()) { 579 User *GEP = GV->use_back(); 580 assert(((isa<ConstantExpr>(GEP) && 581 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 582 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 583 584 // Ignore the 1th operand, which has to be zero or else the program is quite 585 // broken (undefined). Get the 2nd operand, which is the structure or array 586 // index. 587 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 588 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 589 590 Value *NewPtr = NewGlobals[Val]; 591 592 // Form a shorter GEP if needed. 593 if (GEP->getNumOperands() > 3) { 594 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 595 SmallVector<Constant*, 8> Idxs; 596 Idxs.push_back(NullInt); 597 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 598 Idxs.push_back(CE->getOperand(i)); 599 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs); 600 } else { 601 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 602 SmallVector<Value*, 8> Idxs; 603 Idxs.push_back(NullInt); 604 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 605 Idxs.push_back(GEPI->getOperand(i)); 606 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs, 607 GEPI->getName()+"."+Twine(Val),GEPI); 608 } 609 } 610 GEP->replaceAllUsesWith(NewPtr); 611 612 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 613 GEPI->eraseFromParent(); 614 else 615 cast<ConstantExpr>(GEP)->destroyConstant(); 616 } 617 618 // Delete the old global, now that it is dead. 619 Globals.erase(GV); 620 ++NumSRA; 621 622 // Loop over the new globals array deleting any globals that are obviously 623 // dead. This can arise due to scalarization of a structure or an array that 624 // has elements that are dead. 625 unsigned FirstGlobal = 0; 626 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 627 if (NewGlobals[i]->use_empty()) { 628 Globals.erase(NewGlobals[i]); 629 if (FirstGlobal == i) ++FirstGlobal; 630 } 631 632 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0; 633 } 634 635 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified 636 /// value will trap if the value is dynamically null. PHIs keeps track of any 637 /// phi nodes we've seen to avoid reprocessing them. 638 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 639 SmallPtrSet<const PHINode*, 8> &PHIs) { 640 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 641 ++UI) { 642 const User *U = *UI; 643 644 if (isa<LoadInst>(U)) { 645 // Will trap. 646 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 647 if (SI->getOperand(0) == V) { 648 //cerr << "NONTRAPPING USE: " << *U; 649 return false; // Storing the value. 650 } 651 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 652 if (CI->getCalledValue() != V) { 653 //cerr << "NONTRAPPING USE: " << *U; 654 return false; // Not calling the ptr 655 } 656 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 657 if (II->getCalledValue() != V) { 658 //cerr << "NONTRAPPING USE: " << *U; 659 return false; // Not calling the ptr 660 } 661 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 662 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 663 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 664 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 665 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 666 // If we've already seen this phi node, ignore it, it has already been 667 // checked. 668 if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 669 return false; 670 } else if (isa<ICmpInst>(U) && 671 isa<ConstantPointerNull>(UI->getOperand(1))) { 672 // Ignore icmp X, null 673 } else { 674 //cerr << "NONTRAPPING USE: " << *U; 675 return false; 676 } 677 } 678 return true; 679 } 680 681 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads 682 /// from GV will trap if the loaded value is null. Note that this also permits 683 /// comparisons of the loaded value against null, as a special case. 684 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 685 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 686 UI != E; ++UI) { 687 const User *U = *UI; 688 689 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 690 SmallPtrSet<const PHINode*, 8> PHIs; 691 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 692 return false; 693 } else if (isa<StoreInst>(U)) { 694 // Ignore stores to the global. 695 } else { 696 // We don't know or understand this user, bail out. 697 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 698 return false; 699 } 700 } 701 return true; 702 } 703 704 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 705 bool Changed = false; 706 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) { 707 Instruction *I = cast<Instruction>(*UI++); 708 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 709 LI->setOperand(0, NewV); 710 Changed = true; 711 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 712 if (SI->getOperand(1) == V) { 713 SI->setOperand(1, NewV); 714 Changed = true; 715 } 716 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 717 CallSite CS(I); 718 if (CS.getCalledValue() == V) { 719 // Calling through the pointer! Turn into a direct call, but be careful 720 // that the pointer is not also being passed as an argument. 721 CS.setCalledFunction(NewV); 722 Changed = true; 723 bool PassedAsArg = false; 724 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 725 if (CS.getArgument(i) == V) { 726 PassedAsArg = true; 727 CS.setArgument(i, NewV); 728 } 729 730 if (PassedAsArg) { 731 // Being passed as an argument also. Be careful to not invalidate UI! 732 UI = V->use_begin(); 733 } 734 } 735 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 736 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 737 ConstantExpr::getCast(CI->getOpcode(), 738 NewV, CI->getType())); 739 if (CI->use_empty()) { 740 Changed = true; 741 CI->eraseFromParent(); 742 } 743 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 744 // Should handle GEP here. 745 SmallVector<Constant*, 8> Idxs; 746 Idxs.reserve(GEPI->getNumOperands()-1); 747 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 748 i != e; ++i) 749 if (Constant *C = dyn_cast<Constant>(*i)) 750 Idxs.push_back(C); 751 else 752 break; 753 if (Idxs.size() == GEPI->getNumOperands()-1) 754 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI, 755 ConstantExpr::getGetElementPtr(NewV, Idxs)); 756 if (GEPI->use_empty()) { 757 Changed = true; 758 GEPI->eraseFromParent(); 759 } 760 } 761 } 762 763 return Changed; 764 } 765 766 767 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null 768 /// value stored into it. If there are uses of the loaded value that would trap 769 /// if the loaded value is dynamically null, then we know that they cannot be 770 /// reachable with a null optimize away the load. 771 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 772 TargetData *TD, 773 TargetLibraryInfo *TLI) { 774 bool Changed = false; 775 776 // Keep track of whether we are able to remove all the uses of the global 777 // other than the store that defines it. 778 bool AllNonStoreUsesGone = true; 779 780 // Replace all uses of loads with uses of uses of the stored value. 781 for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){ 782 User *GlobalUser = *GUI++; 783 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 784 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 785 // If we were able to delete all uses of the loads 786 if (LI->use_empty()) { 787 LI->eraseFromParent(); 788 Changed = true; 789 } else { 790 AllNonStoreUsesGone = false; 791 } 792 } else if (isa<StoreInst>(GlobalUser)) { 793 // Ignore the store that stores "LV" to the global. 794 assert(GlobalUser->getOperand(1) == GV && 795 "Must be storing *to* the global"); 796 } else { 797 AllNonStoreUsesGone = false; 798 799 // If we get here we could have other crazy uses that are transitively 800 // loaded. 801 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 802 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser)) && 803 "Only expect load and stores!"); 804 } 805 } 806 807 if (Changed) { 808 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV); 809 ++NumGlobUses; 810 } 811 812 // If we nuked all of the loads, then none of the stores are needed either, 813 // nor is the global. 814 if (AllNonStoreUsesGone) { 815 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 816 CleanupConstantGlobalUsers(GV, 0, TD, TLI); 817 if (GV->use_empty()) { 818 GV->eraseFromParent(); 819 ++NumDeleted; 820 } 821 Changed = true; 822 } 823 return Changed; 824 } 825 826 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the 827 /// instructions that are foldable. 828 static void ConstantPropUsersOf(Value *V, 829 TargetData *TD, TargetLibraryInfo *TLI) { 830 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) 831 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 832 if (Constant *NewC = ConstantFoldInstruction(I, TD, TLI)) { 833 I->replaceAllUsesWith(NewC); 834 835 // Advance UI to the next non-I use to avoid invalidating it! 836 // Instructions could multiply use V. 837 while (UI != E && *UI == I) 838 ++UI; 839 I->eraseFromParent(); 840 } 841 } 842 843 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global 844 /// variable, and transforms the program as if it always contained the result of 845 /// the specified malloc. Because it is always the result of the specified 846 /// malloc, there is no reason to actually DO the malloc. Instead, turn the 847 /// malloc into a global, and any loads of GV as uses of the new global. 848 static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, 849 CallInst *CI, 850 Type *AllocTy, 851 ConstantInt *NElements, 852 TargetData *TD, 853 TargetLibraryInfo *TLI) { 854 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 855 856 Type *GlobalType; 857 if (NElements->getZExtValue() == 1) 858 GlobalType = AllocTy; 859 else 860 // If we have an array allocation, the global variable is of an array. 861 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 862 863 // Create the new global variable. The contents of the malloc'd memory is 864 // undefined, so initialize with an undef value. 865 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(), 866 GlobalType, false, 867 GlobalValue::InternalLinkage, 868 UndefValue::get(GlobalType), 869 GV->getName()+".body", 870 GV, 871 GV->getThreadLocalMode()); 872 873 // If there are bitcast users of the malloc (which is typical, usually we have 874 // a malloc + bitcast) then replace them with uses of the new global. Update 875 // other users to use the global as well. 876 BitCastInst *TheBC = 0; 877 while (!CI->use_empty()) { 878 Instruction *User = cast<Instruction>(CI->use_back()); 879 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 880 if (BCI->getType() == NewGV->getType()) { 881 BCI->replaceAllUsesWith(NewGV); 882 BCI->eraseFromParent(); 883 } else { 884 BCI->setOperand(0, NewGV); 885 } 886 } else { 887 if (TheBC == 0) 888 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 889 User->replaceUsesOfWith(CI, TheBC); 890 } 891 } 892 893 Constant *RepValue = NewGV; 894 if (NewGV->getType() != GV->getType()->getElementType()) 895 RepValue = ConstantExpr::getBitCast(RepValue, 896 GV->getType()->getElementType()); 897 898 // If there is a comparison against null, we will insert a global bool to 899 // keep track of whether the global was initialized yet or not. 900 GlobalVariable *InitBool = 901 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 902 GlobalValue::InternalLinkage, 903 ConstantInt::getFalse(GV->getContext()), 904 GV->getName()+".init", GV->getThreadLocalMode()); 905 bool InitBoolUsed = false; 906 907 // Loop over all uses of GV, processing them in turn. 908 while (!GV->use_empty()) { 909 if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) { 910 // The global is initialized when the store to it occurs. 911 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 912 SI->getOrdering(), SI->getSynchScope(), SI); 913 SI->eraseFromParent(); 914 continue; 915 } 916 917 LoadInst *LI = cast<LoadInst>(GV->use_back()); 918 while (!LI->use_empty()) { 919 Use &LoadUse = LI->use_begin().getUse(); 920 if (!isa<ICmpInst>(LoadUse.getUser())) { 921 LoadUse = RepValue; 922 continue; 923 } 924 925 ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser()); 926 // Replace the cmp X, 0 with a use of the bool value. 927 // Sink the load to where the compare was, if atomic rules allow us to. 928 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 929 LI->getOrdering(), LI->getSynchScope(), 930 LI->isUnordered() ? (Instruction*)ICI : LI); 931 InitBoolUsed = true; 932 switch (ICI->getPredicate()) { 933 default: llvm_unreachable("Unknown ICmp Predicate!"); 934 case ICmpInst::ICMP_ULT: 935 case ICmpInst::ICMP_SLT: // X < null -> always false 936 LV = ConstantInt::getFalse(GV->getContext()); 937 break; 938 case ICmpInst::ICMP_ULE: 939 case ICmpInst::ICMP_SLE: 940 case ICmpInst::ICMP_EQ: 941 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 942 break; 943 case ICmpInst::ICMP_NE: 944 case ICmpInst::ICMP_UGE: 945 case ICmpInst::ICMP_SGE: 946 case ICmpInst::ICMP_UGT: 947 case ICmpInst::ICMP_SGT: 948 break; // no change. 949 } 950 ICI->replaceAllUsesWith(LV); 951 ICI->eraseFromParent(); 952 } 953 LI->eraseFromParent(); 954 } 955 956 // If the initialization boolean was used, insert it, otherwise delete it. 957 if (!InitBoolUsed) { 958 while (!InitBool->use_empty()) // Delete initializations 959 cast<StoreInst>(InitBool->use_back())->eraseFromParent(); 960 delete InitBool; 961 } else 962 GV->getParent()->getGlobalList().insert(GV, InitBool); 963 964 // Now the GV is dead, nuke it and the malloc.. 965 GV->eraseFromParent(); 966 CI->eraseFromParent(); 967 968 // To further other optimizations, loop over all users of NewGV and try to 969 // constant prop them. This will promote GEP instructions with constant 970 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 971 ConstantPropUsersOf(NewGV, TD, TLI); 972 if (RepValue != NewGV) 973 ConstantPropUsersOf(RepValue, TD, TLI); 974 975 return NewGV; 976 } 977 978 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking 979 /// to make sure that there are no complex uses of V. We permit simple things 980 /// like dereferencing the pointer, but not storing through the address, unless 981 /// it is to the specified global. 982 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 983 const GlobalVariable *GV, 984 SmallPtrSet<const PHINode*, 8> &PHIs) { 985 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 986 UI != E; ++UI) { 987 const Instruction *Inst = cast<Instruction>(*UI); 988 989 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 990 continue; // Fine, ignore. 991 } 992 993 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 994 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 995 return false; // Storing the pointer itself... bad. 996 continue; // Otherwise, storing through it, or storing into GV... fine. 997 } 998 999 // Must index into the array and into the struct. 1000 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 1001 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 1002 return false; 1003 continue; 1004 } 1005 1006 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 1007 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 1008 // cycles. 1009 if (PHIs.insert(PN)) 1010 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 1011 return false; 1012 continue; 1013 } 1014 1015 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 1016 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 1017 return false; 1018 continue; 1019 } 1020 1021 return false; 1022 } 1023 return true; 1024 } 1025 1026 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV 1027 /// somewhere. Transform all uses of the allocation into loads from the 1028 /// global and uses of the resultant pointer. Further, delete the store into 1029 /// GV. This assumes that these value pass the 1030 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1031 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1032 GlobalVariable *GV) { 1033 while (!Alloc->use_empty()) { 1034 Instruction *U = cast<Instruction>(*Alloc->use_begin()); 1035 Instruction *InsertPt = U; 1036 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1037 // If this is the store of the allocation into the global, remove it. 1038 if (SI->getOperand(1) == GV) { 1039 SI->eraseFromParent(); 1040 continue; 1041 } 1042 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1043 // Insert the load in the corresponding predecessor, not right before the 1044 // PHI. 1045 InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator(); 1046 } else if (isa<BitCastInst>(U)) { 1047 // Must be bitcast between the malloc and store to initialize the global. 1048 ReplaceUsesOfMallocWithGlobal(U, GV); 1049 U->eraseFromParent(); 1050 continue; 1051 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1052 // If this is a "GEP bitcast" and the user is a store to the global, then 1053 // just process it as a bitcast. 1054 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1055 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back())) 1056 if (SI->getOperand(1) == GV) { 1057 // Must be bitcast GEP between the malloc and store to initialize 1058 // the global. 1059 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1060 GEPI->eraseFromParent(); 1061 continue; 1062 } 1063 } 1064 1065 // Insert a load from the global, and use it instead of the malloc. 1066 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1067 U->replaceUsesOfWith(Alloc, NL); 1068 } 1069 } 1070 1071 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi 1072 /// of a load) are simple enough to perform heap SRA on. This permits GEP's 1073 /// that index through the array and struct field, icmps of null, and PHIs. 1074 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1075 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs, 1076 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) { 1077 // We permit two users of the load: setcc comparing against the null 1078 // pointer, and a getelementptr of a specific form. 1079 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 1080 ++UI) { 1081 const Instruction *User = cast<Instruction>(*UI); 1082 1083 // Comparison against null is ok. 1084 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) { 1085 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1086 return false; 1087 continue; 1088 } 1089 1090 // getelementptr is also ok, but only a simple form. 1091 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { 1092 // Must index into the array and into the struct. 1093 if (GEPI->getNumOperands() < 3) 1094 return false; 1095 1096 // Otherwise the GEP is ok. 1097 continue; 1098 } 1099 1100 if (const PHINode *PN = dyn_cast<PHINode>(User)) { 1101 if (!LoadUsingPHIsPerLoad.insert(PN)) 1102 // This means some phi nodes are dependent on each other. 1103 // Avoid infinite looping! 1104 return false; 1105 if (!LoadUsingPHIs.insert(PN)) 1106 // If we have already analyzed this PHI, then it is safe. 1107 continue; 1108 1109 // Make sure all uses of the PHI are simple enough to transform. 1110 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1111 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1112 return false; 1113 1114 continue; 1115 } 1116 1117 // Otherwise we don't know what this is, not ok. 1118 return false; 1119 } 1120 1121 return true; 1122 } 1123 1124 1125 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from 1126 /// GV are simple enough to perform HeapSRA, return true. 1127 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1128 Instruction *StoredVal) { 1129 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1130 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1131 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 1132 UI != E; ++UI) 1133 if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1134 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1135 LoadUsingPHIsPerLoad)) 1136 return false; 1137 LoadUsingPHIsPerLoad.clear(); 1138 } 1139 1140 // If we reach here, we know that all uses of the loads and transitive uses 1141 // (through PHI nodes) are simple enough to transform. However, we don't know 1142 // that all inputs the to the PHI nodes are in the same equivalence sets. 1143 // Check to verify that all operands of the PHIs are either PHIS that can be 1144 // transformed, loads from GV, or MI itself. 1145 for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin() 1146 , E = LoadUsingPHIs.end(); I != E; ++I) { 1147 const PHINode *PN = *I; 1148 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1149 Value *InVal = PN->getIncomingValue(op); 1150 1151 // PHI of the stored value itself is ok. 1152 if (InVal == StoredVal) continue; 1153 1154 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1155 // One of the PHIs in our set is (optimistically) ok. 1156 if (LoadUsingPHIs.count(InPN)) 1157 continue; 1158 return false; 1159 } 1160 1161 // Load from GV is ok. 1162 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1163 if (LI->getOperand(0) == GV) 1164 continue; 1165 1166 // UNDEF? NULL? 1167 1168 // Anything else is rejected. 1169 return false; 1170 } 1171 } 1172 1173 return true; 1174 } 1175 1176 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1177 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1178 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1179 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1180 1181 if (FieldNo >= FieldVals.size()) 1182 FieldVals.resize(FieldNo+1); 1183 1184 // If we already have this value, just reuse the previously scalarized 1185 // version. 1186 if (Value *FieldVal = FieldVals[FieldNo]) 1187 return FieldVal; 1188 1189 // Depending on what instruction this is, we have several cases. 1190 Value *Result; 1191 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1192 // This is a scalarized version of the load from the global. Just create 1193 // a new Load of the scalarized global. 1194 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1195 InsertedScalarizedValues, 1196 PHIsToRewrite), 1197 LI->getName()+".f"+Twine(FieldNo), LI); 1198 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1199 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1200 // field. 1201 StructType *ST = 1202 cast<StructType>(cast<PointerType>(PN->getType())->getElementType()); 1203 1204 PHINode *NewPN = 1205 PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)), 1206 PN->getNumIncomingValues(), 1207 PN->getName()+".f"+Twine(FieldNo), PN); 1208 Result = NewPN; 1209 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1210 } else { 1211 llvm_unreachable("Unknown usable value"); 1212 } 1213 1214 return FieldVals[FieldNo] = Result; 1215 } 1216 1217 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from 1218 /// the load, rewrite the derived value to use the HeapSRoA'd load. 1219 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1220 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1221 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1222 // If this is a comparison against null, handle it. 1223 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1224 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1225 // If we have a setcc of the loaded pointer, we can use a setcc of any 1226 // field. 1227 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1228 InsertedScalarizedValues, PHIsToRewrite); 1229 1230 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1231 Constant::getNullValue(NPtr->getType()), 1232 SCI->getName()); 1233 SCI->replaceAllUsesWith(New); 1234 SCI->eraseFromParent(); 1235 return; 1236 } 1237 1238 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1239 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1240 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1241 && "Unexpected GEPI!"); 1242 1243 // Load the pointer for this field. 1244 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1245 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1246 InsertedScalarizedValues, PHIsToRewrite); 1247 1248 // Create the new GEP idx vector. 1249 SmallVector<Value*, 8> GEPIdx; 1250 GEPIdx.push_back(GEPI->getOperand(1)); 1251 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1252 1253 Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx, 1254 GEPI->getName(), GEPI); 1255 GEPI->replaceAllUsesWith(NGEPI); 1256 GEPI->eraseFromParent(); 1257 return; 1258 } 1259 1260 // Recursively transform the users of PHI nodes. This will lazily create the 1261 // PHIs that are needed for individual elements. Keep track of what PHIs we 1262 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1263 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1264 // already been seen first by another load, so its uses have already been 1265 // processed. 1266 PHINode *PN = cast<PHINode>(LoadUser); 1267 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1268 std::vector<Value*>())).second) 1269 return; 1270 1271 // If this is the first time we've seen this PHI, recursively process all 1272 // users. 1273 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) { 1274 Instruction *User = cast<Instruction>(*UI++); 1275 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1276 } 1277 } 1278 1279 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr 1280 /// is a value loaded from the global. Eliminate all uses of Ptr, making them 1281 /// use FieldGlobals instead. All uses of loaded values satisfy 1282 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1283 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1284 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1285 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1286 for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end(); 1287 UI != E; ) { 1288 Instruction *User = cast<Instruction>(*UI++); 1289 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1290 } 1291 1292 if (Load->use_empty()) { 1293 Load->eraseFromParent(); 1294 InsertedScalarizedValues.erase(Load); 1295 } 1296 } 1297 1298 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break 1299 /// it up into multiple allocations of arrays of the fields. 1300 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1301 Value *NElems, TargetData *TD) { 1302 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1303 Type *MAT = getMallocAllocatedType(CI); 1304 StructType *STy = cast<StructType>(MAT); 1305 1306 // There is guaranteed to be at least one use of the malloc (storing 1307 // it into GV). If there are other uses, change them to be uses of 1308 // the global to simplify later code. This also deletes the store 1309 // into GV. 1310 ReplaceUsesOfMallocWithGlobal(CI, GV); 1311 1312 // Okay, at this point, there are no users of the malloc. Insert N 1313 // new mallocs at the same place as CI, and N globals. 1314 std::vector<Value*> FieldGlobals; 1315 std::vector<Value*> FieldMallocs; 1316 1317 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1318 Type *FieldTy = STy->getElementType(FieldNo); 1319 PointerType *PFieldTy = PointerType::getUnqual(FieldTy); 1320 1321 GlobalVariable *NGV = 1322 new GlobalVariable(*GV->getParent(), 1323 PFieldTy, false, GlobalValue::InternalLinkage, 1324 Constant::getNullValue(PFieldTy), 1325 GV->getName() + ".f" + Twine(FieldNo), GV, 1326 GV->getThreadLocalMode()); 1327 FieldGlobals.push_back(NGV); 1328 1329 unsigned TypeSize = TD->getTypeAllocSize(FieldTy); 1330 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1331 TypeSize = TD->getStructLayout(ST)->getSizeInBytes(); 1332 Type *IntPtrTy = TD->getIntPtrType(CI->getContext()); 1333 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1334 ConstantInt::get(IntPtrTy, TypeSize), 1335 NElems, 0, 1336 CI->getName() + ".f" + Twine(FieldNo)); 1337 FieldMallocs.push_back(NMI); 1338 new StoreInst(NMI, NGV, CI); 1339 } 1340 1341 // The tricky aspect of this transformation is handling the case when malloc 1342 // fails. In the original code, malloc failing would set the result pointer 1343 // of malloc to null. In this case, some mallocs could succeed and others 1344 // could fail. As such, we emit code that looks like this: 1345 // F0 = malloc(field0) 1346 // F1 = malloc(field1) 1347 // F2 = malloc(field2) 1348 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1349 // if (F0) { free(F0); F0 = 0; } 1350 // if (F1) { free(F1); F1 = 0; } 1351 // if (F2) { free(F2); F2 = 0; } 1352 // } 1353 // The malloc can also fail if its argument is too large. 1354 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1355 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1356 ConstantZero, "isneg"); 1357 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1358 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1359 Constant::getNullValue(FieldMallocs[i]->getType()), 1360 "isnull"); 1361 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1362 } 1363 1364 // Split the basic block at the old malloc. 1365 BasicBlock *OrigBB = CI->getParent(); 1366 BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont"); 1367 1368 // Create the block to check the first condition. Put all these blocks at the 1369 // end of the function as they are unlikely to be executed. 1370 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1371 "malloc_ret_null", 1372 OrigBB->getParent()); 1373 1374 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1375 // branch on RunningOr. 1376 OrigBB->getTerminator()->eraseFromParent(); 1377 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1378 1379 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1380 // pointer, because some may be null while others are not. 1381 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1382 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1383 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1384 Constant::getNullValue(GVVal->getType())); 1385 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1386 OrigBB->getParent()); 1387 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1388 OrigBB->getParent()); 1389 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1390 Cmp, NullPtrBlock); 1391 1392 // Fill in FreeBlock. 1393 CallInst::CreateFree(GVVal, BI); 1394 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1395 FreeBlock); 1396 BranchInst::Create(NextBlock, FreeBlock); 1397 1398 NullPtrBlock = NextBlock; 1399 } 1400 1401 BranchInst::Create(ContBB, NullPtrBlock); 1402 1403 // CI is no longer needed, remove it. 1404 CI->eraseFromParent(); 1405 1406 /// InsertedScalarizedLoads - As we process loads, if we can't immediately 1407 /// update all uses of the load, keep track of what scalarized loads are 1408 /// inserted for a given load. 1409 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1410 InsertedScalarizedValues[GV] = FieldGlobals; 1411 1412 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1413 1414 // Okay, the malloc site is completely handled. All of the uses of GV are now 1415 // loads, and all uses of those loads are simple. Rewrite them to use loads 1416 // of the per-field globals instead. 1417 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) { 1418 Instruction *User = cast<Instruction>(*UI++); 1419 1420 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1421 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1422 continue; 1423 } 1424 1425 // Must be a store of null. 1426 StoreInst *SI = cast<StoreInst>(User); 1427 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1428 "Unexpected heap-sra user!"); 1429 1430 // Insert a store of null into each global. 1431 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1432 PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType()); 1433 Constant *Null = Constant::getNullValue(PT->getElementType()); 1434 new StoreInst(Null, FieldGlobals[i], SI); 1435 } 1436 // Erase the original store. 1437 SI->eraseFromParent(); 1438 } 1439 1440 // While we have PHIs that are interesting to rewrite, do it. 1441 while (!PHIsToRewrite.empty()) { 1442 PHINode *PN = PHIsToRewrite.back().first; 1443 unsigned FieldNo = PHIsToRewrite.back().second; 1444 PHIsToRewrite.pop_back(); 1445 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1446 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1447 1448 // Add all the incoming values. This can materialize more phis. 1449 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1450 Value *InVal = PN->getIncomingValue(i); 1451 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1452 PHIsToRewrite); 1453 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1454 } 1455 } 1456 1457 // Drop all inter-phi links and any loads that made it this far. 1458 for (DenseMap<Value*, std::vector<Value*> >::iterator 1459 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1460 I != E; ++I) { 1461 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1462 PN->dropAllReferences(); 1463 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1464 LI->dropAllReferences(); 1465 } 1466 1467 // Delete all the phis and loads now that inter-references are dead. 1468 for (DenseMap<Value*, std::vector<Value*> >::iterator 1469 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1470 I != E; ++I) { 1471 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1472 PN->eraseFromParent(); 1473 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1474 LI->eraseFromParent(); 1475 } 1476 1477 // The old global is now dead, remove it. 1478 GV->eraseFromParent(); 1479 1480 ++NumHeapSRA; 1481 return cast<GlobalVariable>(FieldGlobals[0]); 1482 } 1483 1484 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a 1485 /// pointer global variable with a single value stored it that is a malloc or 1486 /// cast of malloc. 1487 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, 1488 CallInst *CI, 1489 Type *AllocTy, 1490 AtomicOrdering Ordering, 1491 Module::global_iterator &GVI, 1492 TargetData *TD, 1493 TargetLibraryInfo *TLI) { 1494 if (!TD) 1495 return false; 1496 1497 // If this is a malloc of an abstract type, don't touch it. 1498 if (!AllocTy->isSized()) 1499 return false; 1500 1501 // We can't optimize this global unless all uses of it are *known* to be 1502 // of the malloc value, not of the null initializer value (consider a use 1503 // that compares the global's value against zero to see if the malloc has 1504 // been reached). To do this, we check to see if all uses of the global 1505 // would trap if the global were null: this proves that they must all 1506 // happen after the malloc. 1507 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1508 return false; 1509 1510 // We can't optimize this if the malloc itself is used in a complex way, 1511 // for example, being stored into multiple globals. This allows the 1512 // malloc to be stored into the specified global, loaded icmp'd, and 1513 // GEP'd. These are all things we could transform to using the global 1514 // for. 1515 SmallPtrSet<const PHINode*, 8> PHIs; 1516 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1517 return false; 1518 1519 // If we have a global that is only initialized with a fixed size malloc, 1520 // transform the program to use global memory instead of malloc'd memory. 1521 // This eliminates dynamic allocation, avoids an indirection accessing the 1522 // data, and exposes the resultant global to further GlobalOpt. 1523 // We cannot optimize the malloc if we cannot determine malloc array size. 1524 Value *NElems = getMallocArraySize(CI, TD, true); 1525 if (!NElems) 1526 return false; 1527 1528 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1529 // Restrict this transformation to only working on small allocations 1530 // (2048 bytes currently), as we don't want to introduce a 16M global or 1531 // something. 1532 if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) { 1533 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD, TLI); 1534 return true; 1535 } 1536 1537 // If the allocation is an array of structures, consider transforming this 1538 // into multiple malloc'd arrays, one for each field. This is basically 1539 // SRoA for malloc'd memory. 1540 1541 if (Ordering != NotAtomic) 1542 return false; 1543 1544 // If this is an allocation of a fixed size array of structs, analyze as a 1545 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1546 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1547 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1548 AllocTy = AT->getElementType(); 1549 1550 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1551 if (!AllocSTy) 1552 return false; 1553 1554 // This the structure has an unreasonable number of fields, leave it 1555 // alone. 1556 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1557 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1558 1559 // If this is a fixed size array, transform the Malloc to be an alloc of 1560 // structs. malloc [100 x struct],1 -> malloc struct, 100 1561 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) { 1562 Type *IntPtrTy = TD->getIntPtrType(CI->getContext()); 1563 unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes(); 1564 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1565 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1566 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, 1567 AllocSize, NumElements, 1568 0, CI->getName()); 1569 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1570 CI->replaceAllUsesWith(Cast); 1571 CI->eraseFromParent(); 1572 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1573 CI = cast<CallInst>(BCI->getOperand(0)); 1574 else 1575 CI = cast<CallInst>(Malloc); 1576 } 1577 1578 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true), TD); 1579 return true; 1580 } 1581 1582 return false; 1583 } 1584 1585 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge 1586 // that only one value (besides its initializer) is ever stored to the global. 1587 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1588 AtomicOrdering Ordering, 1589 Module::global_iterator &GVI, 1590 TargetData *TD, TargetLibraryInfo *TLI) { 1591 // Ignore no-op GEPs and bitcasts. 1592 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1593 1594 // If we are dealing with a pointer global that is initialized to null and 1595 // only has one (non-null) value stored into it, then we can optimize any 1596 // users of the loaded value (often calls and loads) that would trap if the 1597 // value was null. 1598 if (GV->getInitializer()->getType()->isPointerTy() && 1599 GV->getInitializer()->isNullValue()) { 1600 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1601 if (GV->getInitializer()->getType() != SOVC->getType()) 1602 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1603 1604 // Optimize away any trapping uses of the loaded value. 1605 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, TD, TLI)) 1606 return true; 1607 } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) { 1608 Type *MallocType = getMallocAllocatedType(CI); 1609 if (MallocType && 1610 TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI, 1611 TD, TLI)) 1612 return true; 1613 } 1614 } 1615 1616 return false; 1617 } 1618 1619 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only 1620 /// two values ever stored into GV are its initializer and OtherVal. See if we 1621 /// can shrink the global into a boolean and select between the two values 1622 /// whenever it is used. This exposes the values to other scalar optimizations. 1623 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1624 Type *GVElType = GV->getType()->getElementType(); 1625 1626 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1627 // an FP value, pointer or vector, don't do this optimization because a select 1628 // between them is very expensive and unlikely to lead to later 1629 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1630 // where v1 and v2 both require constant pool loads, a big loss. 1631 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1632 GVElType->isFloatingPointTy() || 1633 GVElType->isPointerTy() || GVElType->isVectorTy()) 1634 return false; 1635 1636 // Walk the use list of the global seeing if all the uses are load or store. 1637 // If there is anything else, bail out. 1638 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){ 1639 User *U = *I; 1640 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1641 return false; 1642 } 1643 1644 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV); 1645 1646 // Create the new global, initializing it to false. 1647 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1648 false, 1649 GlobalValue::InternalLinkage, 1650 ConstantInt::getFalse(GV->getContext()), 1651 GV->getName()+".b", 1652 GV->getThreadLocalMode()); 1653 GV->getParent()->getGlobalList().insert(GV, NewGV); 1654 1655 Constant *InitVal = GV->getInitializer(); 1656 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1657 "No reason to shrink to bool!"); 1658 1659 // If initialized to zero and storing one into the global, we can use a cast 1660 // instead of a select to synthesize the desired value. 1661 bool IsOneZero = false; 1662 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1663 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1664 1665 while (!GV->use_empty()) { 1666 Instruction *UI = cast<Instruction>(GV->use_back()); 1667 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1668 // Change the store into a boolean store. 1669 bool StoringOther = SI->getOperand(0) == OtherVal; 1670 // Only do this if we weren't storing a loaded value. 1671 Value *StoreVal; 1672 if (StoringOther || SI->getOperand(0) == InitVal) 1673 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1674 StoringOther); 1675 else { 1676 // Otherwise, we are storing a previously loaded copy. To do this, 1677 // change the copy from copying the original value to just copying the 1678 // bool. 1679 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1680 1681 // If we've already replaced the input, StoredVal will be a cast or 1682 // select instruction. If not, it will be a load of the original 1683 // global. 1684 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1685 assert(LI->getOperand(0) == GV && "Not a copy!"); 1686 // Insert a new load, to preserve the saved value. 1687 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1688 LI->getOrdering(), LI->getSynchScope(), LI); 1689 } else { 1690 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1691 "This is not a form that we understand!"); 1692 StoreVal = StoredVal->getOperand(0); 1693 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1694 } 1695 } 1696 new StoreInst(StoreVal, NewGV, false, 0, 1697 SI->getOrdering(), SI->getSynchScope(), SI); 1698 } else { 1699 // Change the load into a load of bool then a select. 1700 LoadInst *LI = cast<LoadInst>(UI); 1701 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1702 LI->getOrdering(), LI->getSynchScope(), LI); 1703 Value *NSI; 1704 if (IsOneZero) 1705 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1706 else 1707 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1708 NSI->takeName(LI); 1709 LI->replaceAllUsesWith(NSI); 1710 } 1711 UI->eraseFromParent(); 1712 } 1713 1714 GV->eraseFromParent(); 1715 return true; 1716 } 1717 1718 1719 /// ProcessGlobal - Analyze the specified global variable and optimize it if 1720 /// possible. If we make a change, return true. 1721 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV, 1722 Module::global_iterator &GVI) { 1723 if (!GV->isDiscardableIfUnused()) 1724 return false; 1725 1726 // Do more involved optimizations if the global is internal. 1727 GV->removeDeadConstantUsers(); 1728 1729 if (GV->use_empty()) { 1730 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV); 1731 GV->eraseFromParent(); 1732 ++NumDeleted; 1733 return true; 1734 } 1735 1736 if (!GV->hasLocalLinkage()) 1737 return false; 1738 1739 SmallPtrSet<const PHINode*, 16> PHIUsers; 1740 GlobalStatus GS; 1741 1742 if (AnalyzeGlobal(GV, GS, PHIUsers)) 1743 return false; 1744 1745 if (!GS.isCompared && !GV->hasUnnamedAddr()) { 1746 GV->setUnnamedAddr(true); 1747 NumUnnamed++; 1748 } 1749 1750 if (GV->isConstant() || !GV->hasInitializer()) 1751 return false; 1752 1753 return ProcessInternalGlobal(GV, GVI, PHIUsers, GS); 1754 } 1755 1756 /// ProcessInternalGlobal - Analyze the specified global variable and optimize 1757 /// it if possible. If we make a change, return true. 1758 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, 1759 Module::global_iterator &GVI, 1760 const SmallPtrSet<const PHINode*, 16> &PHIUsers, 1761 const GlobalStatus &GS) { 1762 // If this is a first class global and has only one accessing function 1763 // and this function is main (which we know is not recursive we can make 1764 // this global a local variable) we replace the global with a local alloca 1765 // in this function. 1766 // 1767 // NOTE: It doesn't make sense to promote non single-value types since we 1768 // are just replacing static memory to stack memory. 1769 // 1770 // If the global is in different address space, don't bring it to stack. 1771 if (!GS.HasMultipleAccessingFunctions && 1772 GS.AccessingFunction && !GS.HasNonInstructionUser && 1773 GV->getType()->getElementType()->isSingleValueType() && 1774 GS.AccessingFunction->getName() == "main" && 1775 GS.AccessingFunction->hasExternalLinkage() && 1776 GV->getType()->getAddressSpace() == 0) { 1777 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV); 1778 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1779 ->getEntryBlock().begin()); 1780 Type *ElemTy = GV->getType()->getElementType(); 1781 // FIXME: Pass Global's alignment when globals have alignment 1782 AllocaInst *Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI); 1783 if (!isa<UndefValue>(GV->getInitializer())) 1784 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1785 1786 GV->replaceAllUsesWith(Alloca); 1787 GV->eraseFromParent(); 1788 ++NumLocalized; 1789 return true; 1790 } 1791 1792 // If the global is never loaded (but may be stored to), it is dead. 1793 // Delete it now. 1794 if (!GS.isLoaded) { 1795 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV); 1796 1797 // Delete any stores we can find to the global. We may not be able to 1798 // make it completely dead though. 1799 bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), 1800 TD, TLI); 1801 1802 // If the global is dead now, delete it. 1803 if (GV->use_empty()) { 1804 GV->eraseFromParent(); 1805 ++NumDeleted; 1806 Changed = true; 1807 } 1808 return Changed; 1809 1810 } else if (GS.StoredType <= GlobalStatus::isInitializerStored) { 1811 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV); 1812 GV->setConstant(true); 1813 1814 // Clean up any obviously simplifiable users now. 1815 CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI); 1816 1817 // If the global is dead now, just nuke it. 1818 if (GV->use_empty()) { 1819 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1820 << "all users and delete global!\n"); 1821 GV->eraseFromParent(); 1822 ++NumDeleted; 1823 } 1824 1825 ++NumMarked; 1826 return true; 1827 } else if (!GV->getInitializer()->getType()->isSingleValueType()) { 1828 if (TargetData *TD = getAnalysisIfAvailable<TargetData>()) 1829 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) { 1830 GVI = FirstNewGV; // Don't skip the newly produced globals! 1831 return true; 1832 } 1833 } else if (GS.StoredType == GlobalStatus::isStoredOnce) { 1834 // If the initial value for the global was an undef value, and if only 1835 // one other value was stored into it, we can just change the 1836 // initializer to be the stored value, then delete all stores to the 1837 // global. This allows us to mark it constant. 1838 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1839 if (isa<UndefValue>(GV->getInitializer())) { 1840 // Change the initial value here. 1841 GV->setInitializer(SOVConstant); 1842 1843 // Clean up any obviously simplifiable users now. 1844 CleanupConstantGlobalUsers(GV, GV->getInitializer(), TD, TLI); 1845 1846 if (GV->use_empty()) { 1847 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1848 << "simplify all users and delete global!\n"); 1849 GV->eraseFromParent(); 1850 ++NumDeleted; 1851 } else { 1852 GVI = GV; 1853 } 1854 ++NumSubstitute; 1855 return true; 1856 } 1857 1858 // Try to optimize globals based on the knowledge that only one value 1859 // (besides its initializer) is ever stored to the global. 1860 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI, 1861 TD, TLI)) 1862 return true; 1863 1864 // Otherwise, if the global was not a boolean, we can shrink it to be a 1865 // boolean. 1866 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1867 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1868 ++NumShrunkToBool; 1869 return true; 1870 } 1871 } 1872 1873 return false; 1874 } 1875 1876 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified 1877 /// function, changing them to FastCC. 1878 static void ChangeCalleesToFastCall(Function *F) { 1879 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 1880 if (isa<BlockAddress>(*UI)) 1881 continue; 1882 CallSite User(cast<Instruction>(*UI)); 1883 User.setCallingConv(CallingConv::Fast); 1884 } 1885 } 1886 1887 static AttrListPtr StripNest(const AttrListPtr &Attrs) { 1888 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1889 if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0) 1890 continue; 1891 1892 // There can be only one. 1893 return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest); 1894 } 1895 1896 return Attrs; 1897 } 1898 1899 static void RemoveNestAttribute(Function *F) { 1900 F->setAttributes(StripNest(F->getAttributes())); 1901 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 1902 if (isa<BlockAddress>(*UI)) 1903 continue; 1904 CallSite User(cast<Instruction>(*UI)); 1905 User.setAttributes(StripNest(User.getAttributes())); 1906 } 1907 } 1908 1909 bool GlobalOpt::OptimizeFunctions(Module &M) { 1910 bool Changed = false; 1911 // Optimize functions. 1912 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 1913 Function *F = FI++; 1914 // Functions without names cannot be referenced outside this module. 1915 if (!F->hasName() && !F->isDeclaration()) 1916 F->setLinkage(GlobalValue::InternalLinkage); 1917 F->removeDeadConstantUsers(); 1918 if (F->isDefTriviallyDead()) { 1919 F->eraseFromParent(); 1920 Changed = true; 1921 ++NumFnDeleted; 1922 } else if (F->hasLocalLinkage()) { 1923 if (F->getCallingConv() == CallingConv::C && !F->isVarArg() && 1924 !F->hasAddressTaken()) { 1925 // If this function has C calling conventions, is not a varargs 1926 // function, and is only called directly, promote it to use the Fast 1927 // calling convention. 1928 F->setCallingConv(CallingConv::Fast); 1929 ChangeCalleesToFastCall(F); 1930 ++NumFastCallFns; 1931 Changed = true; 1932 } 1933 1934 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 1935 !F->hasAddressTaken()) { 1936 // The function is not used by a trampoline intrinsic, so it is safe 1937 // to remove the 'nest' attribute. 1938 RemoveNestAttribute(F); 1939 ++NumNestRemoved; 1940 Changed = true; 1941 } 1942 } 1943 } 1944 return Changed; 1945 } 1946 1947 bool GlobalOpt::OptimizeGlobalVars(Module &M) { 1948 bool Changed = false; 1949 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 1950 GVI != E; ) { 1951 GlobalVariable *GV = GVI++; 1952 // Global variables without names cannot be referenced outside this module. 1953 if (!GV->hasName() && !GV->isDeclaration()) 1954 GV->setLinkage(GlobalValue::InternalLinkage); 1955 // Simplify the initializer. 1956 if (GV->hasInitializer()) 1957 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) { 1958 Constant *New = ConstantFoldConstantExpression(CE, TD, TLI); 1959 if (New && New != CE) 1960 GV->setInitializer(New); 1961 } 1962 1963 Changed |= ProcessGlobal(GV, GVI); 1964 } 1965 return Changed; 1966 } 1967 1968 /// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all 1969 /// initializers have an init priority of 65535. 1970 GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) { 1971 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1972 if (GV == 0) return 0; 1973 1974 // Verify that the initializer is simple enough for us to handle. We are 1975 // only allowed to optimize the initializer if it is unique. 1976 if (!GV->hasUniqueInitializer()) return 0; 1977 1978 if (isa<ConstantAggregateZero>(GV->getInitializer())) 1979 return GV; 1980 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 1981 1982 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) { 1983 if (isa<ConstantAggregateZero>(*i)) 1984 continue; 1985 ConstantStruct *CS = cast<ConstantStruct>(*i); 1986 if (isa<ConstantPointerNull>(CS->getOperand(1))) 1987 continue; 1988 1989 // Must have a function or null ptr. 1990 if (!isa<Function>(CS->getOperand(1))) 1991 return 0; 1992 1993 // Init priority must be standard. 1994 ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0)); 1995 if (CI->getZExtValue() != 65535) 1996 return 0; 1997 } 1998 1999 return GV; 2000 } 2001 2002 /// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand, 2003 /// return a list of the functions and null terminator as a vector. 2004 static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) { 2005 if (GV->getInitializer()->isNullValue()) 2006 return std::vector<Function*>(); 2007 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 2008 std::vector<Function*> Result; 2009 Result.reserve(CA->getNumOperands()); 2010 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) { 2011 ConstantStruct *CS = cast<ConstantStruct>(*i); 2012 Result.push_back(dyn_cast<Function>(CS->getOperand(1))); 2013 } 2014 return Result; 2015 } 2016 2017 /// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the 2018 /// specified array, returning the new global to use. 2019 static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL, 2020 const std::vector<Function*> &Ctors) { 2021 // If we made a change, reassemble the initializer list. 2022 Constant *CSVals[2]; 2023 CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535); 2024 CSVals[1] = 0; 2025 2026 StructType *StructTy = 2027 cast <StructType>( 2028 cast<ArrayType>(GCL->getType()->getElementType())->getElementType()); 2029 2030 // Create the new init list. 2031 std::vector<Constant*> CAList; 2032 for (unsigned i = 0, e = Ctors.size(); i != e; ++i) { 2033 if (Ctors[i]) { 2034 CSVals[1] = Ctors[i]; 2035 } else { 2036 Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()), 2037 false); 2038 PointerType *PFTy = PointerType::getUnqual(FTy); 2039 CSVals[1] = Constant::getNullValue(PFTy); 2040 CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 2041 0x7fffffff); 2042 } 2043 CAList.push_back(ConstantStruct::get(StructTy, CSVals)); 2044 } 2045 2046 // Create the array initializer. 2047 Constant *CA = ConstantArray::get(ArrayType::get(StructTy, 2048 CAList.size()), CAList); 2049 2050 // If we didn't change the number of elements, don't create a new GV. 2051 if (CA->getType() == GCL->getInitializer()->getType()) { 2052 GCL->setInitializer(CA); 2053 return GCL; 2054 } 2055 2056 // Create the new global and insert it next to the existing list. 2057 GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(), 2058 GCL->getLinkage(), CA, "", 2059 GCL->getThreadLocalMode()); 2060 GCL->getParent()->getGlobalList().insert(GCL, NGV); 2061 NGV->takeName(GCL); 2062 2063 // Nuke the old list, replacing any uses with the new one. 2064 if (!GCL->use_empty()) { 2065 Constant *V = NGV; 2066 if (V->getType() != GCL->getType()) 2067 V = ConstantExpr::getBitCast(V, GCL->getType()); 2068 GCL->replaceAllUsesWith(V); 2069 } 2070 GCL->eraseFromParent(); 2071 2072 if (Ctors.size()) 2073 return NGV; 2074 else 2075 return 0; 2076 } 2077 2078 2079 static inline bool 2080 isSimpleEnoughValueToCommit(Constant *C, 2081 SmallPtrSet<Constant*, 8> &SimpleConstants, 2082 const TargetData *TD); 2083 2084 2085 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be 2086 /// handled by the code generator. We don't want to generate something like: 2087 /// void *X = &X/42; 2088 /// because the code generator doesn't have a relocation that can handle that. 2089 /// 2090 /// This function should be called if C was not found (but just got inserted) 2091 /// in SimpleConstants to avoid having to rescan the same constants all the 2092 /// time. 2093 static bool isSimpleEnoughValueToCommitHelper(Constant *C, 2094 SmallPtrSet<Constant*, 8> &SimpleConstants, 2095 const TargetData *TD) { 2096 // Simple integer, undef, constant aggregate zero, global addresses, etc are 2097 // all supported. 2098 if (C->getNumOperands() == 0 || isa<BlockAddress>(C) || 2099 isa<GlobalValue>(C)) 2100 return true; 2101 2102 // Aggregate values are safe if all their elements are. 2103 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2104 isa<ConstantVector>(C)) { 2105 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 2106 Constant *Op = cast<Constant>(C->getOperand(i)); 2107 if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, TD)) 2108 return false; 2109 } 2110 return true; 2111 } 2112 2113 // We don't know exactly what relocations are allowed in constant expressions, 2114 // so we allow &global+constantoffset, which is safe and uniformly supported 2115 // across targets. 2116 ConstantExpr *CE = cast<ConstantExpr>(C); 2117 switch (CE->getOpcode()) { 2118 case Instruction::BitCast: 2119 // Bitcast is fine if the casted value is fine. 2120 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2121 2122 case Instruction::IntToPtr: 2123 case Instruction::PtrToInt: 2124 // int <=> ptr is fine if the int type is the same size as the 2125 // pointer type. 2126 if (!TD || TD->getTypeSizeInBits(CE->getType()) != 2127 TD->getTypeSizeInBits(CE->getOperand(0)->getType())) 2128 return false; 2129 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2130 2131 // GEP is fine if it is simple + constant offset. 2132 case Instruction::GetElementPtr: 2133 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 2134 if (!isa<ConstantInt>(CE->getOperand(i))) 2135 return false; 2136 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2137 2138 case Instruction::Add: 2139 // We allow simple+cst. 2140 if (!isa<ConstantInt>(CE->getOperand(1))) 2141 return false; 2142 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, TD); 2143 } 2144 return false; 2145 } 2146 2147 static inline bool 2148 isSimpleEnoughValueToCommit(Constant *C, 2149 SmallPtrSet<Constant*, 8> &SimpleConstants, 2150 const TargetData *TD) { 2151 // If we already checked this constant, we win. 2152 if (!SimpleConstants.insert(C)) return true; 2153 // Check the constant. 2154 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, TD); 2155 } 2156 2157 2158 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple 2159 /// enough for us to understand. In particular, if it is a cast to anything 2160 /// other than from one pointer type to another pointer type, we punt. 2161 /// We basically just support direct accesses to globals and GEP's of 2162 /// globals. This should be kept up to date with CommitValueTo. 2163 static bool isSimpleEnoughPointerToCommit(Constant *C) { 2164 // Conservatively, avoid aggregate types. This is because we don't 2165 // want to worry about them partially overlapping other stores. 2166 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) 2167 return false; 2168 2169 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 2170 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2171 // external globals. 2172 return GV->hasUniqueInitializer(); 2173 2174 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2175 // Handle a constantexpr gep. 2176 if (CE->getOpcode() == Instruction::GetElementPtr && 2177 isa<GlobalVariable>(CE->getOperand(0)) && 2178 cast<GEPOperator>(CE)->isInBounds()) { 2179 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2180 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2181 // external globals. 2182 if (!GV->hasUniqueInitializer()) 2183 return false; 2184 2185 // The first index must be zero. 2186 ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin())); 2187 if (!CI || !CI->isZero()) return false; 2188 2189 // The remaining indices must be compile-time known integers within the 2190 // notional bounds of the corresponding static array types. 2191 if (!CE->isGEPWithNoNotionalOverIndexing()) 2192 return false; 2193 2194 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2195 2196 // A constantexpr bitcast from a pointer to another pointer is a no-op, 2197 // and we know how to evaluate it by moving the bitcast from the pointer 2198 // operand to the value operand. 2199 } else if (CE->getOpcode() == Instruction::BitCast && 2200 isa<GlobalVariable>(CE->getOperand(0))) { 2201 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2202 // external globals. 2203 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); 2204 } 2205 } 2206 2207 return false; 2208 } 2209 2210 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global 2211 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it. 2212 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into. 2213 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2214 ConstantExpr *Addr, unsigned OpNo) { 2215 // Base case of the recursion. 2216 if (OpNo == Addr->getNumOperands()) { 2217 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2218 return Val; 2219 } 2220 2221 SmallVector<Constant*, 32> Elts; 2222 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2223 // Break up the constant into its elements. 2224 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2225 Elts.push_back(Init->getAggregateElement(i)); 2226 2227 // Replace the element that we are supposed to. 2228 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2229 unsigned Idx = CU->getZExtValue(); 2230 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2231 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2232 2233 // Return the modified struct. 2234 return ConstantStruct::get(STy, Elts); 2235 } 2236 2237 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2238 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2239 2240 uint64_t NumElts; 2241 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy)) 2242 NumElts = ATy->getNumElements(); 2243 else 2244 NumElts = InitTy->getVectorNumElements(); 2245 2246 // Break up the array into elements. 2247 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2248 Elts.push_back(Init->getAggregateElement(i)); 2249 2250 assert(CI->getZExtValue() < NumElts); 2251 Elts[CI->getZExtValue()] = 2252 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2253 2254 if (Init->getType()->isArrayTy()) 2255 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2256 return ConstantVector::get(Elts); 2257 } 2258 2259 /// CommitValueTo - We have decided that Addr (which satisfies the predicate 2260 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2261 static void CommitValueTo(Constant *Val, Constant *Addr) { 2262 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2263 assert(GV->hasInitializer()); 2264 GV->setInitializer(Val); 2265 return; 2266 } 2267 2268 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2269 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2270 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2271 } 2272 2273 namespace { 2274 2275 /// Evaluator - This class evaluates LLVM IR, producing the Constant 2276 /// representing each SSA instruction. Changes to global variables are stored 2277 /// in a mapping that can be iterated over after the evaluation is complete. 2278 /// Once an evaluation call fails, the evaluation object should not be reused. 2279 class Evaluator { 2280 public: 2281 Evaluator(const TargetData *TD, const TargetLibraryInfo *TLI) 2282 : TD(TD), TLI(TLI) { 2283 ValueStack.push_back(new DenseMap<Value*, Constant*>); 2284 } 2285 2286 ~Evaluator() { 2287 DeleteContainerPointers(ValueStack); 2288 while (!AllocaTmps.empty()) { 2289 GlobalVariable *Tmp = AllocaTmps.back(); 2290 AllocaTmps.pop_back(); 2291 2292 // If there are still users of the alloca, the program is doing something 2293 // silly, e.g. storing the address of the alloca somewhere and using it 2294 // later. Since this is undefined, we'll just make it be null. 2295 if (!Tmp->use_empty()) 2296 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType())); 2297 delete Tmp; 2298 } 2299 } 2300 2301 /// EvaluateFunction - Evaluate a call to function F, returning true if 2302 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2303 /// arguments for the function. 2304 bool EvaluateFunction(Function *F, Constant *&RetVal, 2305 const SmallVectorImpl<Constant*> &ActualArgs); 2306 2307 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2308 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2309 /// control flows into, or null upon return. 2310 bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB); 2311 2312 Constant *getVal(Value *V) { 2313 if (Constant *CV = dyn_cast<Constant>(V)) return CV; 2314 Constant *R = ValueStack.back()->lookup(V); 2315 assert(R && "Reference to an uncomputed value!"); 2316 return R; 2317 } 2318 2319 void setVal(Value *V, Constant *C) { 2320 ValueStack.back()->operator[](V) = C; 2321 } 2322 2323 const DenseMap<Constant*, Constant*> &getMutatedMemory() const { 2324 return MutatedMemory; 2325 } 2326 2327 const SmallPtrSet<GlobalVariable*, 8> &getInvariants() const { 2328 return Invariants; 2329 } 2330 2331 private: 2332 Constant *ComputeLoadResult(Constant *P); 2333 2334 /// ValueStack - As we compute SSA register values, we store their contents 2335 /// here. The back of the vector contains the current function and the stack 2336 /// contains the values in the calling frames. 2337 SmallVector<DenseMap<Value*, Constant*>*, 4> ValueStack; 2338 2339 /// CallStack - This is used to detect recursion. In pathological situations 2340 /// we could hit exponential behavior, but at least there is nothing 2341 /// unbounded. 2342 SmallVector<Function*, 4> CallStack; 2343 2344 /// MutatedMemory - For each store we execute, we update this map. Loads 2345 /// check this to get the most up-to-date value. If evaluation is successful, 2346 /// this state is committed to the process. 2347 DenseMap<Constant*, Constant*> MutatedMemory; 2348 2349 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable 2350 /// to represent its body. This vector is needed so we can delete the 2351 /// temporary globals when we are done. 2352 SmallVector<GlobalVariable*, 32> AllocaTmps; 2353 2354 /// Invariants - These global variables have been marked invariant by the 2355 /// static constructor. 2356 SmallPtrSet<GlobalVariable*, 8> Invariants; 2357 2358 /// SimpleConstants - These are constants we have checked and know to be 2359 /// simple enough to live in a static initializer of a global. 2360 SmallPtrSet<Constant*, 8> SimpleConstants; 2361 2362 const TargetData *TD; 2363 const TargetLibraryInfo *TLI; 2364 }; 2365 2366 } // anonymous namespace 2367 2368 /// ComputeLoadResult - Return the value that would be computed by a load from 2369 /// P after the stores reflected by 'memory' have been performed. If we can't 2370 /// decide, return null. 2371 Constant *Evaluator::ComputeLoadResult(Constant *P) { 2372 // If this memory location has been recently stored, use the stored value: it 2373 // is the most up-to-date. 2374 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P); 2375 if (I != MutatedMemory.end()) return I->second; 2376 2377 // Access it. 2378 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 2379 if (GV->hasDefinitiveInitializer()) 2380 return GV->getInitializer(); 2381 return 0; 2382 } 2383 2384 // Handle a constantexpr getelementptr. 2385 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) 2386 if (CE->getOpcode() == Instruction::GetElementPtr && 2387 isa<GlobalVariable>(CE->getOperand(0))) { 2388 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2389 if (GV->hasDefinitiveInitializer()) 2390 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2391 } 2392 2393 return 0; // don't know how to evaluate. 2394 } 2395 2396 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if 2397 /// successful, false if we can't evaluate it. NewBB returns the next BB that 2398 /// control flows into, or null upon return. 2399 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, 2400 BasicBlock *&NextBB) { 2401 // This is the main evaluation loop. 2402 while (1) { 2403 Constant *InstResult = 0; 2404 2405 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 2406 if (!SI->isSimple()) return false; // no volatile/atomic accesses. 2407 Constant *Ptr = getVal(SI->getOperand(1)); 2408 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 2409 Ptr = ConstantFoldConstantExpression(CE, TD, TLI); 2410 if (!isSimpleEnoughPointerToCommit(Ptr)) 2411 // If this is too complex for us to commit, reject it. 2412 return false; 2413 2414 Constant *Val = getVal(SI->getOperand(0)); 2415 2416 // If this might be too difficult for the backend to handle (e.g. the addr 2417 // of one global variable divided by another) then we can't commit it. 2418 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, TD)) 2419 return false; 2420 2421 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 2422 if (CE->getOpcode() == Instruction::BitCast) { 2423 // If we're evaluating a store through a bitcast, then we need 2424 // to pull the bitcast off the pointer type and push it onto the 2425 // stored value. 2426 Ptr = CE->getOperand(0); 2427 2428 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType(); 2429 2430 // In order to push the bitcast onto the stored value, a bitcast 2431 // from NewTy to Val's type must be legal. If it's not, we can try 2432 // introspecting NewTy to find a legal conversion. 2433 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) { 2434 // If NewTy is a struct, we can convert the pointer to the struct 2435 // into a pointer to its first member. 2436 // FIXME: This could be extended to support arrays as well. 2437 if (StructType *STy = dyn_cast<StructType>(NewTy)) { 2438 NewTy = STy->getTypeAtIndex(0U); 2439 2440 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32); 2441 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); 2442 Constant * const IdxList[] = {IdxZero, IdxZero}; 2443 2444 Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList); 2445 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 2446 Ptr = ConstantFoldConstantExpression(CE, TD, TLI); 2447 2448 // If we can't improve the situation by introspecting NewTy, 2449 // we have to give up. 2450 } else { 2451 return false; 2452 } 2453 } 2454 2455 // If we found compatible types, go ahead and push the bitcast 2456 // onto the stored value. 2457 Val = ConstantExpr::getBitCast(Val, NewTy); 2458 } 2459 2460 MutatedMemory[Ptr] = Val; 2461 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 2462 InstResult = ConstantExpr::get(BO->getOpcode(), 2463 getVal(BO->getOperand(0)), 2464 getVal(BO->getOperand(1))); 2465 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 2466 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 2467 getVal(CI->getOperand(0)), 2468 getVal(CI->getOperand(1))); 2469 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 2470 InstResult = ConstantExpr::getCast(CI->getOpcode(), 2471 getVal(CI->getOperand(0)), 2472 CI->getType()); 2473 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 2474 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), 2475 getVal(SI->getOperand(1)), 2476 getVal(SI->getOperand(2))); 2477 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 2478 Constant *P = getVal(GEP->getOperand(0)); 2479 SmallVector<Constant*, 8> GEPOps; 2480 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); 2481 i != e; ++i) 2482 GEPOps.push_back(getVal(*i)); 2483 InstResult = 2484 ConstantExpr::getGetElementPtr(P, GEPOps, 2485 cast<GEPOperator>(GEP)->isInBounds()); 2486 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 2487 if (!LI->isSimple()) return false; // no volatile/atomic accesses. 2488 Constant *Ptr = getVal(LI->getOperand(0)); 2489 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 2490 Ptr = ConstantFoldConstantExpression(CE, TD, TLI); 2491 InstResult = ComputeLoadResult(Ptr); 2492 if (InstResult == 0) return false; // Could not evaluate load. 2493 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 2494 if (AI->isArrayAllocation()) return false; // Cannot handle array allocs. 2495 Type *Ty = AI->getType()->getElementType(); 2496 AllocaTmps.push_back(new GlobalVariable(Ty, false, 2497 GlobalValue::InternalLinkage, 2498 UndefValue::get(Ty), 2499 AI->getName())); 2500 InstResult = AllocaTmps.back(); 2501 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { 2502 CallSite CS(CurInst); 2503 2504 // Debug info can safely be ignored here. 2505 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) { 2506 ++CurInst; 2507 continue; 2508 } 2509 2510 // Cannot handle inline asm. 2511 if (isa<InlineAsm>(CS.getCalledValue())) return false; 2512 2513 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { 2514 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { 2515 if (MSI->isVolatile()) return false; 2516 Constant *Ptr = getVal(MSI->getDest()); 2517 Constant *Val = getVal(MSI->getValue()); 2518 Constant *DestVal = ComputeLoadResult(getVal(Ptr)); 2519 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { 2520 // This memset is a no-op. 2521 ++CurInst; 2522 continue; 2523 } 2524 } 2525 2526 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 2527 II->getIntrinsicID() == Intrinsic::lifetime_end) { 2528 ++CurInst; 2529 continue; 2530 } 2531 2532 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2533 // We don't insert an entry into Values, as it doesn't have a 2534 // meaningful return value. 2535 if (!II->use_empty()) 2536 return false; 2537 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); 2538 Value *PtrArg = getVal(II->getArgOperand(1)); 2539 Value *Ptr = PtrArg->stripPointerCasts(); 2540 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { 2541 Type *ElemTy = cast<PointerType>(GV->getType())->getElementType(); 2542 if (!Size->isAllOnesValue() && 2543 Size->getValue().getLimitedValue() >= 2544 TD->getTypeStoreSize(ElemTy)) 2545 Invariants.insert(GV); 2546 } 2547 // Continue even if we do nothing. 2548 ++CurInst; 2549 continue; 2550 } 2551 return false; 2552 } 2553 2554 // Resolve function pointers. 2555 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue())); 2556 if (!Callee || Callee->mayBeOverridden()) 2557 return false; // Cannot resolve. 2558 2559 SmallVector<Constant*, 8> Formals; 2560 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) 2561 Formals.push_back(getVal(*i)); 2562 2563 if (Callee->isDeclaration()) { 2564 // If this is a function we can constant fold, do it. 2565 if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) { 2566 InstResult = C; 2567 } else { 2568 return false; 2569 } 2570 } else { 2571 if (Callee->getFunctionType()->isVarArg()) 2572 return false; 2573 2574 Constant *RetVal; 2575 // Execute the call, if successful, use the return value. 2576 ValueStack.push_back(new DenseMap<Value*, Constant*>); 2577 if (!EvaluateFunction(Callee, RetVal, Formals)) 2578 return false; 2579 delete ValueStack.pop_back_val(); 2580 InstResult = RetVal; 2581 } 2582 } else if (isa<TerminatorInst>(CurInst)) { 2583 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 2584 if (BI->isUnconditional()) { 2585 NextBB = BI->getSuccessor(0); 2586 } else { 2587 ConstantInt *Cond = 2588 dyn_cast<ConstantInt>(getVal(BI->getCondition())); 2589 if (!Cond) return false; // Cannot determine. 2590 2591 NextBB = BI->getSuccessor(!Cond->getZExtValue()); 2592 } 2593 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 2594 ConstantInt *Val = 2595 dyn_cast<ConstantInt>(getVal(SI->getCondition())); 2596 if (!Val) return false; // Cannot determine. 2597 NextBB = SI->findCaseValue(Val).getCaseSuccessor(); 2598 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 2599 Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); 2600 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 2601 NextBB = BA->getBasicBlock(); 2602 else 2603 return false; // Cannot determine. 2604 } else if (isa<ReturnInst>(CurInst)) { 2605 NextBB = 0; 2606 } else { 2607 // invoke, unwind, resume, unreachable. 2608 return false; // Cannot handle this terminator. 2609 } 2610 2611 // We succeeded at evaluating this block! 2612 return true; 2613 } else { 2614 // Did not know how to evaluate this! 2615 return false; 2616 } 2617 2618 if (!CurInst->use_empty()) { 2619 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult)) 2620 InstResult = ConstantFoldConstantExpression(CE, TD, TLI); 2621 2622 setVal(CurInst, InstResult); 2623 } 2624 2625 // If we just processed an invoke, we finished evaluating the block. 2626 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { 2627 NextBB = II->getNormalDest(); 2628 return true; 2629 } 2630 2631 // Advance program counter. 2632 ++CurInst; 2633 } 2634 } 2635 2636 /// EvaluateFunction - Evaluate a call to function F, returning true if 2637 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2638 /// arguments for the function. 2639 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, 2640 const SmallVectorImpl<Constant*> &ActualArgs) { 2641 // Check to see if this function is already executing (recursion). If so, 2642 // bail out. TODO: we might want to accept limited recursion. 2643 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end()) 2644 return false; 2645 2646 CallStack.push_back(F); 2647 2648 // Initialize arguments to the incoming values specified. 2649 unsigned ArgNo = 0; 2650 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 2651 ++AI, ++ArgNo) 2652 setVal(AI, ActualArgs[ArgNo]); 2653 2654 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 2655 // we can only evaluate any one basic block at most once. This set keeps 2656 // track of what we have executed so we can detect recursive cases etc. 2657 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 2658 2659 // CurBB - The current basic block we're evaluating. 2660 BasicBlock *CurBB = F->begin(); 2661 2662 BasicBlock::iterator CurInst = CurBB->begin(); 2663 2664 while (1) { 2665 BasicBlock *NextBB = 0; // Initialized to avoid compiler warnings. 2666 if (!EvaluateBlock(CurInst, NextBB)) 2667 return false; 2668 2669 if (NextBB == 0) { 2670 // Successfully running until there's no next block means that we found 2671 // the return. Fill it the return value and pop the call stack. 2672 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); 2673 if (RI->getNumOperands()) 2674 RetVal = getVal(RI->getOperand(0)); 2675 CallStack.pop_back(); 2676 return true; 2677 } 2678 2679 // Okay, we succeeded in evaluating this control flow. See if we have 2680 // executed the new block before. If so, we have a looping function, 2681 // which we cannot evaluate in reasonable time. 2682 if (!ExecutedBlocks.insert(NextBB)) 2683 return false; // looped! 2684 2685 // Okay, we have never been in this block before. Check to see if there 2686 // are any PHI nodes. If so, evaluate them with information about where 2687 // we came from. 2688 PHINode *PN = 0; 2689 for (CurInst = NextBB->begin(); 2690 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 2691 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); 2692 2693 // Advance to the next block. 2694 CurBB = NextBB; 2695 } 2696 } 2697 2698 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if 2699 /// we can. Return true if we can, false otherwise. 2700 static bool EvaluateStaticConstructor(Function *F, const TargetData *TD, 2701 const TargetLibraryInfo *TLI) { 2702 // Call the function. 2703 Evaluator Eval(TD, TLI); 2704 Constant *RetValDummy; 2705 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2706 SmallVector<Constant*, 0>()); 2707 2708 if (EvalSuccess) { 2709 // We succeeded at evaluation: commit the result. 2710 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2711 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2712 << " stores.\n"); 2713 for (DenseMap<Constant*, Constant*>::const_iterator I = 2714 Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end(); 2715 I != E; ++I) 2716 CommitValueTo(I->second, I->first); 2717 for (SmallPtrSet<GlobalVariable*, 8>::const_iterator I = 2718 Eval.getInvariants().begin(), E = Eval.getInvariants().end(); 2719 I != E; ++I) 2720 (*I)->setConstant(true); 2721 } 2722 2723 return EvalSuccess; 2724 } 2725 2726 /// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible. 2727 /// Return true if anything changed. 2728 bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) { 2729 std::vector<Function*> Ctors = ParseGlobalCtors(GCL); 2730 bool MadeChange = false; 2731 if (Ctors.empty()) return false; 2732 2733 // Loop over global ctors, optimizing them when we can. 2734 for (unsigned i = 0; i != Ctors.size(); ++i) { 2735 Function *F = Ctors[i]; 2736 // Found a null terminator in the middle of the list, prune off the rest of 2737 // the list. 2738 if (F == 0) { 2739 if (i != Ctors.size()-1) { 2740 Ctors.resize(i+1); 2741 MadeChange = true; 2742 } 2743 break; 2744 } 2745 2746 // We cannot simplify external ctor functions. 2747 if (F->empty()) continue; 2748 2749 // If we can evaluate the ctor at compile time, do. 2750 if (EvaluateStaticConstructor(F, TD, TLI)) { 2751 Ctors.erase(Ctors.begin()+i); 2752 MadeChange = true; 2753 --i; 2754 ++NumCtorsEvaluated; 2755 continue; 2756 } 2757 } 2758 2759 if (!MadeChange) return false; 2760 2761 GCL = InstallGlobalCtors(GCL, Ctors); 2762 return true; 2763 } 2764 2765 bool GlobalOpt::OptimizeGlobalAliases(Module &M) { 2766 bool Changed = false; 2767 2768 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2769 I != E;) { 2770 Module::alias_iterator J = I++; 2771 // Aliases without names cannot be referenced outside this module. 2772 if (!J->hasName() && !J->isDeclaration()) 2773 J->setLinkage(GlobalValue::InternalLinkage); 2774 // If the aliasee may change at link time, nothing can be done - bail out. 2775 if (J->mayBeOverridden()) 2776 continue; 2777 2778 Constant *Aliasee = J->getAliasee(); 2779 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2780 Target->removeDeadConstantUsers(); 2781 bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse(); 2782 2783 // Make all users of the alias use the aliasee instead. 2784 if (!J->use_empty()) { 2785 J->replaceAllUsesWith(Aliasee); 2786 ++NumAliasesResolved; 2787 Changed = true; 2788 } 2789 2790 // If the alias is externally visible, we may still be able to simplify it. 2791 if (!J->hasLocalLinkage()) { 2792 // If the aliasee has internal linkage, give it the name and linkage 2793 // of the alias, and delete the alias. This turns: 2794 // define internal ... @f(...) 2795 // @a = alias ... @f 2796 // into: 2797 // define ... @a(...) 2798 if (!Target->hasLocalLinkage()) 2799 continue; 2800 2801 // Do not perform the transform if multiple aliases potentially target the 2802 // aliasee. This check also ensures that it is safe to replace the section 2803 // and other attributes of the aliasee with those of the alias. 2804 if (!hasOneUse) 2805 continue; 2806 2807 // Give the aliasee the name, linkage and other attributes of the alias. 2808 Target->takeName(J); 2809 Target->setLinkage(J->getLinkage()); 2810 Target->GlobalValue::copyAttributesFrom(J); 2811 } 2812 2813 // Delete the alias. 2814 M.getAliasList().erase(J); 2815 ++NumAliasesRemoved; 2816 Changed = true; 2817 } 2818 2819 return Changed; 2820 } 2821 2822 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2823 if (!TLI->has(LibFunc::cxa_atexit)) 2824 return 0; 2825 2826 Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit)); 2827 2828 if (!Fn) 2829 return 0; 2830 2831 FunctionType *FTy = Fn->getFunctionType(); 2832 2833 // Checking that the function has the right return type, the right number of 2834 // parameters and that they all have pointer types should be enough. 2835 if (!FTy->getReturnType()->isIntegerTy() || 2836 FTy->getNumParams() != 3 || 2837 !FTy->getParamType(0)->isPointerTy() || 2838 !FTy->getParamType(1)->isPointerTy() || 2839 !FTy->getParamType(2)->isPointerTy()) 2840 return 0; 2841 2842 return Fn; 2843 } 2844 2845 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++ 2846 /// destructor and can therefore be eliminated. 2847 /// Note that we assume that other optimization passes have already simplified 2848 /// the code so we only look for a function with a single basic block, where 2849 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2850 /// other side-effect free instructions. 2851 static bool cxxDtorIsEmpty(const Function &Fn, 2852 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2853 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2854 // nounwind, but that doesn't seem worth doing. 2855 if (Fn.isDeclaration()) 2856 return false; 2857 2858 if (++Fn.begin() != Fn.end()) 2859 return false; 2860 2861 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2862 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2863 I != E; ++I) { 2864 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2865 // Ignore debug intrinsics. 2866 if (isa<DbgInfoIntrinsic>(CI)) 2867 continue; 2868 2869 const Function *CalledFn = CI->getCalledFunction(); 2870 2871 if (!CalledFn) 2872 return false; 2873 2874 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2875 2876 // Don't treat recursive functions as empty. 2877 if (!NewCalledFunctions.insert(CalledFn)) 2878 return false; 2879 2880 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2881 return false; 2882 } else if (isa<ReturnInst>(*I)) 2883 return true; // We're done. 2884 else if (I->mayHaveSideEffects()) 2885 return false; // Destructor with side effects, bail. 2886 } 2887 2888 return false; 2889 } 2890 2891 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2892 /// Itanium C++ ABI p3.3.5: 2893 /// 2894 /// After constructing a global (or local static) object, that will require 2895 /// destruction on exit, a termination function is registered as follows: 2896 /// 2897 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2898 /// 2899 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2900 /// call f(p) when DSO d is unloaded, before all such termination calls 2901 /// registered before this one. It returns zero if registration is 2902 /// successful, nonzero on failure. 2903 2904 // This pass will look for calls to __cxa_atexit where the function is trivial 2905 // and remove them. 2906 bool Changed = false; 2907 2908 for (Function::use_iterator I = CXAAtExitFn->use_begin(), 2909 E = CXAAtExitFn->use_end(); I != E;) { 2910 // We're only interested in calls. Theoretically, we could handle invoke 2911 // instructions as well, but neither llvm-gcc nor clang generate invokes 2912 // to __cxa_atexit. 2913 CallInst *CI = dyn_cast<CallInst>(*I++); 2914 if (!CI) 2915 continue; 2916 2917 Function *DtorFn = 2918 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2919 if (!DtorFn) 2920 continue; 2921 2922 SmallPtrSet<const Function *, 8> CalledFunctions; 2923 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 2924 continue; 2925 2926 // Just remove the call. 2927 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2928 CI->eraseFromParent(); 2929 2930 ++NumCXXDtorsRemoved; 2931 2932 Changed |= true; 2933 } 2934 2935 return Changed; 2936 } 2937 2938 bool GlobalOpt::runOnModule(Module &M) { 2939 bool Changed = false; 2940 2941 TD = getAnalysisIfAvailable<TargetData>(); 2942 TLI = &getAnalysis<TargetLibraryInfo>(); 2943 2944 // Try to find the llvm.globalctors list. 2945 GlobalVariable *GlobalCtors = FindGlobalCtors(M); 2946 2947 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 2948 2949 bool LocalChange = true; 2950 while (LocalChange) { 2951 LocalChange = false; 2952 2953 // Delete functions that are trivially dead, ccc -> fastcc 2954 LocalChange |= OptimizeFunctions(M); 2955 2956 // Optimize global_ctors list. 2957 if (GlobalCtors) 2958 LocalChange |= OptimizeGlobalCtorsList(GlobalCtors); 2959 2960 // Optimize non-address-taken globals. 2961 LocalChange |= OptimizeGlobalVars(M); 2962 2963 // Resolve aliases, when possible. 2964 LocalChange |= OptimizeGlobalAliases(M); 2965 2966 // Try to remove trivial global destructors. 2967 if (CXAAtExitFn) 2968 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2969 2970 Changed |= LocalChange; 2971 } 2972 2973 // TODO: Move all global ctors functions to the end of the module for code 2974 // layout. 2975 2976 return Changed; 2977 } 2978