1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/BinaryFormat/Dwarf.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83 STATISTIC(NumDeleted   , "Number of globals deleted");
84 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
85 STATISTIC(NumLocalized , "Number of globals localized");
86 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
87 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93 STATISTIC(NumInternalFunc, "Number of internal functions");
94 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 
96 static cl::opt<bool>
97     EnableColdCCStressTest("enable-coldcc-stress-test",
98                            cl::desc("Enable stress test of coldcc by adding "
99                                     "calling conv to all internal functions."),
100                            cl::init(false), cl::Hidden);
101 
102 static cl::opt<int> ColdCCRelFreq(
103     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
104     cl::desc(
105         "Maximum block frequency, expressed as a percentage of caller's "
106         "entry frequency, for a call site to be considered cold for enabling"
107         "coldcc"));
108 
109 /// Is this global variable possibly used by a leak checker as a root?  If so,
110 /// we might not really want to eliminate the stores to it.
111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112   // A global variable is a root if it is a pointer, or could plausibly contain
113   // a pointer.  There are two challenges; one is that we could have a struct
114   // the has an inner member which is a pointer.  We recurse through the type to
115   // detect these (up to a point).  The other is that we may actually be a union
116   // of a pointer and another type, and so our LLVM type is an integer which
117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118   // potentially contained here.
119 
120   if (GV->hasPrivateLinkage())
121     return false;
122 
123   SmallVector<Type *, 4> Types;
124   Types.push_back(GV->getValueType());
125 
126   unsigned Limit = 20;
127   do {
128     Type *Ty = Types.pop_back_val();
129     switch (Ty->getTypeID()) {
130       default: break;
131       case Type::PointerTyID:
132         return true;
133       case Type::FixedVectorTyID:
134       case Type::ScalableVectorTyID:
135         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
136           return true;
137         break;
138       case Type::ArrayTyID:
139         Types.push_back(cast<ArrayType>(Ty)->getElementType());
140         break;
141       case Type::StructTyID: {
142         StructType *STy = cast<StructType>(Ty);
143         if (STy->isOpaque()) return true;
144         for (StructType::element_iterator I = STy->element_begin(),
145                  E = STy->element_end(); I != E; ++I) {
146           Type *InnerTy = *I;
147           if (isa<PointerType>(InnerTy)) return true;
148           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
149               isa<VectorType>(InnerTy))
150             Types.push_back(InnerTy);
151         }
152         break;
153       }
154     }
155     if (--Limit == 0) return true;
156   } while (!Types.empty());
157   return false;
158 }
159 
160 /// Given a value that is stored to a global but never read, determine whether
161 /// it's safe to remove the store and the chain of computation that feeds the
162 /// store.
163 static bool IsSafeComputationToRemove(
164     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
165   do {
166     if (isa<Constant>(V))
167       return true;
168     if (!V->hasOneUse())
169       return false;
170     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
171         isa<GlobalValue>(V))
172       return false;
173     if (isAllocationFn(V, GetTLI))
174       return true;
175 
176     Instruction *I = cast<Instruction>(V);
177     if (I->mayHaveSideEffects())
178       return false;
179     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
180       if (!GEP->hasAllConstantIndices())
181         return false;
182     } else if (I->getNumOperands() != 1) {
183       return false;
184     }
185 
186     V = I->getOperand(0);
187   } while (true);
188 }
189 
190 /// This GV is a pointer root.  Loop over all users of the global and clean up
191 /// any that obviously don't assign the global a value that isn't dynamically
192 /// allocated.
193 static bool
194 CleanupPointerRootUsers(GlobalVariable *GV,
195                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
196   // A brief explanation of leak checkers.  The goal is to find bugs where
197   // pointers are forgotten, causing an accumulating growth in memory
198   // usage over time.  The common strategy for leak checkers is to explicitly
199   // allow the memory pointed to by globals at exit.  This is popular because it
200   // also solves another problem where the main thread of a C++ program may shut
201   // down before other threads that are still expecting to use those globals. To
202   // handle that case, we expect the program may create a singleton and never
203   // destroy it.
204 
205   bool Changed = false;
206 
207   // If Dead[n].first is the only use of a malloc result, we can delete its
208   // chain of computation and the store to the global in Dead[n].second.
209   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
210 
211   // Constants can't be pointers to dynamically allocated memory.
212   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
213        UI != E;) {
214     User *U = *UI++;
215     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
216       Value *V = SI->getValueOperand();
217       if (isa<Constant>(V)) {
218         Changed = true;
219         SI->eraseFromParent();
220       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
221         if (I->hasOneUse())
222           Dead.push_back(std::make_pair(I, SI));
223       }
224     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
225       if (isa<Constant>(MSI->getValue())) {
226         Changed = true;
227         MSI->eraseFromParent();
228       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
229         if (I->hasOneUse())
230           Dead.push_back(std::make_pair(I, MSI));
231       }
232     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
233       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
234       if (MemSrc && MemSrc->isConstant()) {
235         Changed = true;
236         MTI->eraseFromParent();
237       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
238         if (I->hasOneUse())
239           Dead.push_back(std::make_pair(I, MTI));
240       }
241     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
242       if (CE->use_empty()) {
243         CE->destroyConstant();
244         Changed = true;
245       }
246     } else if (Constant *C = dyn_cast<Constant>(U)) {
247       if (isSafeToDestroyConstant(C)) {
248         C->destroyConstant();
249         // This could have invalidated UI, start over from scratch.
250         Dead.clear();
251         CleanupPointerRootUsers(GV, GetTLI);
252         return true;
253       }
254     }
255   }
256 
257   for (int i = 0, e = Dead.size(); i != e; ++i) {
258     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
259       Dead[i].second->eraseFromParent();
260       Instruction *I = Dead[i].first;
261       do {
262         if (isAllocationFn(I, GetTLI))
263           break;
264         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
265         if (!J)
266           break;
267         I->eraseFromParent();
268         I = J;
269       } while (true);
270       I->eraseFromParent();
271     }
272   }
273 
274   return Changed;
275 }
276 
277 /// We just marked GV constant.  Loop over all users of the global, cleaning up
278 /// the obvious ones.  This is largely just a quick scan over the use list to
279 /// clean up the easy and obvious cruft.  This returns true if it made a change.
280 static bool CleanupConstantGlobalUsers(
281     Value *V, Constant *Init, const DataLayout &DL,
282     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
283   bool Changed = false;
284   // Note that we need to use a weak value handle for the worklist items. When
285   // we delete a constant array, we may also be holding pointer to one of its
286   // elements (or an element of one of its elements if we're dealing with an
287   // array of arrays) in the worklist.
288   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
289   while (!WorkList.empty()) {
290     Value *UV = WorkList.pop_back_val();
291     if (!UV)
292       continue;
293 
294     User *U = cast<User>(UV);
295 
296     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
297       if (Init) {
298         // Replace the load with the initializer.
299         LI->replaceAllUsesWith(Init);
300         LI->eraseFromParent();
301         Changed = true;
302       }
303     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
304       // Store must be unreachable or storing Init into the global.
305       SI->eraseFromParent();
306       Changed = true;
307     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
308       if (CE->getOpcode() == Instruction::GetElementPtr) {
309         Constant *SubInit = nullptr;
310         if (Init)
311           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
312         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
313       } else if ((CE->getOpcode() == Instruction::BitCast &&
314                   CE->getType()->isPointerTy()) ||
315                  CE->getOpcode() == Instruction::AddrSpaceCast) {
316         // Pointer cast, delete any stores and memsets to the global.
317         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
318       }
319 
320       if (CE->use_empty()) {
321         CE->destroyConstant();
322         Changed = true;
323       }
324     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
325       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
326       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
327       // and will invalidate our notion of what Init is.
328       Constant *SubInit = nullptr;
329       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
330         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
331             ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
332         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
333           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
334 
335         // If the initializer is an all-null value and we have an inbounds GEP,
336         // we already know what the result of any load from that GEP is.
337         // TODO: Handle splats.
338         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
339           SubInit = Constant::getNullValue(GEP->getResultElementType());
340       }
341       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
342 
343       if (GEP->use_empty()) {
344         GEP->eraseFromParent();
345         Changed = true;
346       }
347     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
348       if (MI->getRawDest() == V) {
349         MI->eraseFromParent();
350         Changed = true;
351       }
352 
353     } else if (Constant *C = dyn_cast<Constant>(U)) {
354       // If we have a chain of dead constantexprs or other things dangling from
355       // us, and if they are all dead, nuke them without remorse.
356       if (isSafeToDestroyConstant(C)) {
357         C->destroyConstant();
358         CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
359         return true;
360       }
361     }
362   }
363   return Changed;
364 }
365 
366 static bool isSafeSROAElementUse(Value *V);
367 
368 /// Return true if the specified GEP is a safe user of a derived
369 /// expression from a global that we want to SROA.
370 static bool isSafeSROAGEP(User *U) {
371   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
372   // don't like < 3 operand CE's, and we don't like non-constant integer
373   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
374   // value of C.
375   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
376       !cast<Constant>(U->getOperand(1))->isNullValue())
377     return false;
378 
379   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
380   ++GEPI; // Skip over the pointer index.
381 
382   // For all other level we require that the indices are constant and inrange.
383   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
384   // invalid things like allowing i to index an out-of-range subscript that
385   // accesses A[1]. This can also happen between different members of a struct
386   // in llvm IR.
387   for (; GEPI != E; ++GEPI) {
388     if (GEPI.isStruct())
389       continue;
390 
391     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
392     if (!IdxVal || (GEPI.isBoundedSequential() &&
393                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
394       return false;
395   }
396 
397   return llvm::all_of(U->users(),
398                       [](User *UU) { return isSafeSROAElementUse(UU); });
399 }
400 
401 /// Return true if the specified instruction is a safe user of a derived
402 /// expression from a global that we want to SROA.
403 static bool isSafeSROAElementUse(Value *V) {
404   // We might have a dead and dangling constant hanging off of here.
405   if (Constant *C = dyn_cast<Constant>(V))
406     return isSafeToDestroyConstant(C);
407 
408   Instruction *I = dyn_cast<Instruction>(V);
409   if (!I) return false;
410 
411   // Loads are ok.
412   if (isa<LoadInst>(I)) return true;
413 
414   // Stores *to* the pointer are ok.
415   if (StoreInst *SI = dyn_cast<StoreInst>(I))
416     return SI->getOperand(0) != V;
417 
418   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
419   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
420 }
421 
422 /// Look at all uses of the global and decide whether it is safe for us to
423 /// perform this transformation.
424 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
425   for (User *U : GV->users()) {
426     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
427     if (!isa<GetElementPtrInst>(U) &&
428         (!isa<ConstantExpr>(U) ||
429         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
430       return false;
431 
432     // Check the gep and it's users are safe to SRA
433     if (!isSafeSROAGEP(U))
434       return false;
435   }
436 
437   return true;
438 }
439 
440 static bool IsSRASequential(Type *T) {
441   return isa<ArrayType>(T) || isa<VectorType>(T);
442 }
443 static uint64_t GetSRASequentialNumElements(Type *T) {
444   if (ArrayType *AT = dyn_cast<ArrayType>(T))
445     return AT->getNumElements();
446   return cast<FixedVectorType>(T)->getNumElements();
447 }
448 static Type *GetSRASequentialElementType(Type *T) {
449   if (ArrayType *AT = dyn_cast<ArrayType>(T))
450     return AT->getElementType();
451   return cast<VectorType>(T)->getElementType();
452 }
453 static bool CanDoGlobalSRA(GlobalVariable *GV) {
454   Constant *Init = GV->getInitializer();
455 
456   if (isa<StructType>(Init->getType())) {
457     // nothing to check
458   } else if (IsSRASequential(Init->getType())) {
459     if (GetSRASequentialNumElements(Init->getType()) > 16 &&
460         GV->hasNUsesOrMore(16))
461       return false; // It's not worth it.
462   } else
463     return false;
464 
465   return GlobalUsersSafeToSRA(GV);
466 }
467 
468 /// Copy over the debug info for a variable to its SRA replacements.
469 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
470                                  uint64_t FragmentOffsetInBits,
471                                  uint64_t FragmentSizeInBits) {
472   SmallVector<DIGlobalVariableExpression *, 1> GVs;
473   GV->getDebugInfo(GVs);
474   for (auto *GVE : GVs) {
475     DIVariable *Var = GVE->getVariable();
476     Optional<uint64_t> VarSize = Var->getSizeInBits();
477 
478     DIExpression *Expr = GVE->getExpression();
479     // If the FragmentSize is smaller than the variable,
480     // emit a fragment expression.
481     // If the variable size is unknown a fragment must be
482     // emitted to be safe.
483     if (!VarSize || FragmentSizeInBits < *VarSize) {
484       if (auto E = DIExpression::createFragmentExpression(
485               Expr, FragmentOffsetInBits, FragmentSizeInBits))
486         Expr = *E;
487       else
488         return;
489     }
490     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
491     NGV->addDebugInfo(NGVE);
492   }
493 }
494 
495 /// Perform scalar replacement of aggregates on the specified global variable.
496 /// This opens the door for other optimizations by exposing the behavior of the
497 /// program in a more fine-grained way.  We have determined that this
498 /// transformation is safe already.  We return the first global variable we
499 /// insert so that the caller can reprocess it.
500 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
501   // Make sure this global only has simple uses that we can SRA.
502   if (!CanDoGlobalSRA(GV))
503     return nullptr;
504 
505   assert(GV->hasLocalLinkage());
506   Constant *Init = GV->getInitializer();
507   Type *Ty = Init->getType();
508 
509   std::map<unsigned, GlobalVariable *> NewGlobals;
510 
511   // Get the alignment of the global, either explicit or target-specific.
512   unsigned StartAlignment = GV->getAlignment();
513   if (StartAlignment == 0)
514     StartAlignment = DL.getABITypeAlignment(GV->getType());
515 
516   // Loop over all users and create replacement variables for used aggregate
517   // elements.
518   for (User *GEP : GV->users()) {
519     assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
520                                            Instruction::GetElementPtr) ||
521             isa<GetElementPtrInst>(GEP)) &&
522            "NonGEP CE's are not SRAable!");
523 
524     // Ignore the 1th operand, which has to be zero or else the program is quite
525     // broken (undefined).  Get the 2nd operand, which is the structure or array
526     // index.
527     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
528     if (NewGlobals.count(ElementIdx) == 1)
529       continue; // we`ve already created replacement variable
530     assert(NewGlobals.count(ElementIdx) == 0);
531 
532     Type *ElTy = nullptr;
533     if (StructType *STy = dyn_cast<StructType>(Ty))
534       ElTy = STy->getElementType(ElementIdx);
535     else
536       ElTy = GetSRASequentialElementType(Ty);
537     assert(ElTy);
538 
539     Constant *In = Init->getAggregateElement(ElementIdx);
540     assert(In && "Couldn't get element of initializer?");
541 
542     GlobalVariable *NGV = new GlobalVariable(
543         ElTy, false, GlobalVariable::InternalLinkage, In,
544         GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
545         GV->getType()->getAddressSpace());
546     NGV->setExternallyInitialized(GV->isExternallyInitialized());
547     NGV->copyAttributesFrom(GV);
548     NewGlobals.insert(std::make_pair(ElementIdx, NGV));
549 
550     if (StructType *STy = dyn_cast<StructType>(Ty)) {
551       const StructLayout &Layout = *DL.getStructLayout(STy);
552 
553       // Calculate the known alignment of the field.  If the original aggregate
554       // had 256 byte alignment for example, something might depend on that:
555       // propagate info to each field.
556       uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
557       Align NewAlign(MinAlign(StartAlignment, FieldOffset));
558       if (NewAlign >
559           Align(DL.getABITypeAlignment(STy->getElementType(ElementIdx))))
560         NGV->setAlignment(NewAlign);
561 
562       // Copy over the debug info for the variable.
563       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
564       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
565       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size);
566     } else {
567       uint64_t EltSize = DL.getTypeAllocSize(ElTy);
568       Align EltAlign(DL.getABITypeAlignment(ElTy));
569       uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
570 
571       // Calculate the known alignment of the field.  If the original aggregate
572       // had 256 byte alignment for example, something might depend on that:
573       // propagate info to each field.
574       Align NewAlign(MinAlign(StartAlignment, EltSize * ElementIdx));
575       if (NewAlign > EltAlign)
576         NGV->setAlignment(NewAlign);
577       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
578                            FragmentSizeInBits);
579     }
580   }
581 
582   if (NewGlobals.empty())
583     return nullptr;
584 
585   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
586   for (auto NewGlobalVar : NewGlobals)
587     Globals.push_back(NewGlobalVar.second);
588 
589   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
590 
591   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
592 
593   // Loop over all of the uses of the global, replacing the constantexpr geps,
594   // with smaller constantexpr geps or direct references.
595   while (!GV->use_empty()) {
596     User *GEP = GV->user_back();
597     assert(((isa<ConstantExpr>(GEP) &&
598              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
599             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
600 
601     // Ignore the 1th operand, which has to be zero or else the program is quite
602     // broken (undefined).  Get the 2nd operand, which is the structure or array
603     // index.
604     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
605     assert(NewGlobals.count(ElementIdx) == 1);
606 
607     Value *NewPtr = NewGlobals[ElementIdx];
608     Type *NewTy = NewGlobals[ElementIdx]->getValueType();
609 
610     // Form a shorter GEP if needed.
611     if (GEP->getNumOperands() > 3) {
612       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
613         SmallVector<Constant*, 8> Idxs;
614         Idxs.push_back(NullInt);
615         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
616           Idxs.push_back(CE->getOperand(i));
617         NewPtr =
618             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
619       } else {
620         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
621         SmallVector<Value*, 8> Idxs;
622         Idxs.push_back(NullInt);
623         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
624           Idxs.push_back(GEPI->getOperand(i));
625         NewPtr = GetElementPtrInst::Create(
626             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
627             GEPI);
628       }
629     }
630     GEP->replaceAllUsesWith(NewPtr);
631 
632     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
633       GEPI->eraseFromParent();
634     else
635       cast<ConstantExpr>(GEP)->destroyConstant();
636   }
637 
638   // Delete the old global, now that it is dead.
639   Globals.erase(GV);
640   ++NumSRA;
641 
642   assert(NewGlobals.size() > 0);
643   return NewGlobals.begin()->second;
644 }
645 
646 /// Return true if all users of the specified value will trap if the value is
647 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
648 /// reprocessing them.
649 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
650                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
651   for (const User *U : V->users()) {
652     if (const Instruction *I = dyn_cast<Instruction>(U)) {
653       // If null pointer is considered valid, then all uses are non-trapping.
654       // Non address-space 0 globals have already been pruned by the caller.
655       if (NullPointerIsDefined(I->getFunction()))
656         return false;
657     }
658     if (isa<LoadInst>(U)) {
659       // Will trap.
660     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
661       if (SI->getOperand(0) == V) {
662         //cerr << "NONTRAPPING USE: " << *U;
663         return false;  // Storing the value.
664       }
665     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
666       if (CI->getCalledOperand() != V) {
667         //cerr << "NONTRAPPING USE: " << *U;
668         return false;  // Not calling the ptr
669       }
670     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
671       if (II->getCalledOperand() != V) {
672         //cerr << "NONTRAPPING USE: " << *U;
673         return false;  // Not calling the ptr
674       }
675     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
676       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
677     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
678       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
679     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
680       // If we've already seen this phi node, ignore it, it has already been
681       // checked.
682       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
683         return false;
684     } else {
685       //cerr << "NONTRAPPING USE: " << *U;
686       return false;
687     }
688   }
689   return true;
690 }
691 
692 /// Return true if all uses of any loads from GV will trap if the loaded value
693 /// is null.  Note that this also permits comparisons of the loaded value
694 /// against null, as a special case.
695 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
696   for (const User *U : GV->users())
697     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
698       SmallPtrSet<const PHINode*, 8> PHIs;
699       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
700         return false;
701     } else if (isa<StoreInst>(U)) {
702       // Ignore stores to the global.
703     } else {
704       // We don't know or understand this user, bail out.
705       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
706       return false;
707     }
708   return true;
709 }
710 
711 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
712   bool Changed = false;
713   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
714     Instruction *I = cast<Instruction>(*UI++);
715     // Uses are non-trapping if null pointer is considered valid.
716     // Non address-space 0 globals are already pruned by the caller.
717     if (NullPointerIsDefined(I->getFunction()))
718       return false;
719     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
720       LI->setOperand(0, NewV);
721       Changed = true;
722     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
723       if (SI->getOperand(1) == V) {
724         SI->setOperand(1, NewV);
725         Changed = true;
726       }
727     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
728       CallBase *CB = cast<CallBase>(I);
729       if (CB->getCalledOperand() == V) {
730         // Calling through the pointer!  Turn into a direct call, but be careful
731         // that the pointer is not also being passed as an argument.
732         CB->setCalledOperand(NewV);
733         Changed = true;
734         bool PassedAsArg = false;
735         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
736           if (CB->getArgOperand(i) == V) {
737             PassedAsArg = true;
738             CB->setArgOperand(i, NewV);
739           }
740 
741         if (PassedAsArg) {
742           // Being passed as an argument also.  Be careful to not invalidate UI!
743           UI = V->user_begin();
744         }
745       }
746     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
747       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
748                                 ConstantExpr::getCast(CI->getOpcode(),
749                                                       NewV, CI->getType()));
750       if (CI->use_empty()) {
751         Changed = true;
752         CI->eraseFromParent();
753       }
754     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
755       // Should handle GEP here.
756       SmallVector<Constant*, 8> Idxs;
757       Idxs.reserve(GEPI->getNumOperands()-1);
758       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
759            i != e; ++i)
760         if (Constant *C = dyn_cast<Constant>(*i))
761           Idxs.push_back(C);
762         else
763           break;
764       if (Idxs.size() == GEPI->getNumOperands()-1)
765         Changed |= OptimizeAwayTrappingUsesOfValue(
766             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
767                                                  NewV, Idxs));
768       if (GEPI->use_empty()) {
769         Changed = true;
770         GEPI->eraseFromParent();
771       }
772     }
773   }
774 
775   return Changed;
776 }
777 
778 /// The specified global has only one non-null value stored into it.  If there
779 /// are uses of the loaded value that would trap if the loaded value is
780 /// dynamically null, then we know that they cannot be reachable with a null
781 /// optimize away the load.
782 static bool OptimizeAwayTrappingUsesOfLoads(
783     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
784     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
785   bool Changed = false;
786 
787   // Keep track of whether we are able to remove all the uses of the global
788   // other than the store that defines it.
789   bool AllNonStoreUsesGone = true;
790 
791   // Replace all uses of loads with uses of uses of the stored value.
792   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
793     User *GlobalUser = *GUI++;
794     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
795       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
796       // If we were able to delete all uses of the loads
797       if (LI->use_empty()) {
798         LI->eraseFromParent();
799         Changed = true;
800       } else {
801         AllNonStoreUsesGone = false;
802       }
803     } else if (isa<StoreInst>(GlobalUser)) {
804       // Ignore the store that stores "LV" to the global.
805       assert(GlobalUser->getOperand(1) == GV &&
806              "Must be storing *to* the global");
807     } else {
808       AllNonStoreUsesGone = false;
809 
810       // If we get here we could have other crazy uses that are transitively
811       // loaded.
812       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
813               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
814               isa<BitCastInst>(GlobalUser) ||
815               isa<GetElementPtrInst>(GlobalUser)) &&
816              "Only expect load and stores!");
817     }
818   }
819 
820   if (Changed) {
821     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
822                       << "\n");
823     ++NumGlobUses;
824   }
825 
826   // If we nuked all of the loads, then none of the stores are needed either,
827   // nor is the global.
828   if (AllNonStoreUsesGone) {
829     if (isLeakCheckerRoot(GV)) {
830       Changed |= CleanupPointerRootUsers(GV, GetTLI);
831     } else {
832       Changed = true;
833       CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
834     }
835     if (GV->use_empty()) {
836       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
837       Changed = true;
838       GV->eraseFromParent();
839       ++NumDeleted;
840     }
841   }
842   return Changed;
843 }
844 
845 /// Walk the use list of V, constant folding all of the instructions that are
846 /// foldable.
847 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
848                                 TargetLibraryInfo *TLI) {
849   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
850     if (Instruction *I = dyn_cast<Instruction>(*UI++))
851       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
852         I->replaceAllUsesWith(NewC);
853 
854         // Advance UI to the next non-I use to avoid invalidating it!
855         // Instructions could multiply use V.
856         while (UI != E && *UI == I)
857           ++UI;
858         if (isInstructionTriviallyDead(I, TLI))
859           I->eraseFromParent();
860       }
861 }
862 
863 /// This function takes the specified global variable, and transforms the
864 /// program as if it always contained the result of the specified malloc.
865 /// Because it is always the result of the specified malloc, there is no reason
866 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
867 /// loads of GV as uses of the new global.
868 static GlobalVariable *
869 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
870                               ConstantInt *NElements, const DataLayout &DL,
871                               TargetLibraryInfo *TLI) {
872   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
873                     << '\n');
874 
875   Type *GlobalType;
876   if (NElements->getZExtValue() == 1)
877     GlobalType = AllocTy;
878   else
879     // If we have an array allocation, the global variable is of an array.
880     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
881 
882   // Create the new global variable.  The contents of the malloc'd memory is
883   // undefined, so initialize with an undef value.
884   GlobalVariable *NewGV = new GlobalVariable(
885       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
886       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
887       GV->getThreadLocalMode());
888 
889   // If there are bitcast users of the malloc (which is typical, usually we have
890   // a malloc + bitcast) then replace them with uses of the new global.  Update
891   // other users to use the global as well.
892   BitCastInst *TheBC = nullptr;
893   while (!CI->use_empty()) {
894     Instruction *User = cast<Instruction>(CI->user_back());
895     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
896       if (BCI->getType() == NewGV->getType()) {
897         BCI->replaceAllUsesWith(NewGV);
898         BCI->eraseFromParent();
899       } else {
900         BCI->setOperand(0, NewGV);
901       }
902     } else {
903       if (!TheBC)
904         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
905       User->replaceUsesOfWith(CI, TheBC);
906     }
907   }
908 
909   Constant *RepValue = NewGV;
910   if (NewGV->getType() != GV->getValueType())
911     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
912 
913   // If there is a comparison against null, we will insert a global bool to
914   // keep track of whether the global was initialized yet or not.
915   GlobalVariable *InitBool =
916     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
917                        GlobalValue::InternalLinkage,
918                        ConstantInt::getFalse(GV->getContext()),
919                        GV->getName()+".init", GV->getThreadLocalMode());
920   bool InitBoolUsed = false;
921 
922   // Loop over all uses of GV, processing them in turn.
923   while (!GV->use_empty()) {
924     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
925       // The global is initialized when the store to it occurs.
926       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false,
927                     Align(1), SI->getOrdering(), SI->getSyncScopeID(), SI);
928       SI->eraseFromParent();
929       continue;
930     }
931 
932     LoadInst *LI = cast<LoadInst>(GV->user_back());
933     while (!LI->use_empty()) {
934       Use &LoadUse = *LI->use_begin();
935       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
936       if (!ICI) {
937         LoadUse = RepValue;
938         continue;
939       }
940 
941       // Replace the cmp X, 0 with a use of the bool value.
942       // Sink the load to where the compare was, if atomic rules allow us to.
943       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
944                                InitBool->getName() + ".val", false, Align(1),
945                                LI->getOrdering(), LI->getSyncScopeID(),
946                                LI->isUnordered() ? (Instruction *)ICI : LI);
947       InitBoolUsed = true;
948       switch (ICI->getPredicate()) {
949       default: llvm_unreachable("Unknown ICmp Predicate!");
950       case ICmpInst::ICMP_ULT:
951       case ICmpInst::ICMP_SLT:   // X < null -> always false
952         LV = ConstantInt::getFalse(GV->getContext());
953         break;
954       case ICmpInst::ICMP_ULE:
955       case ICmpInst::ICMP_SLE:
956       case ICmpInst::ICMP_EQ:
957         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
958         break;
959       case ICmpInst::ICMP_NE:
960       case ICmpInst::ICMP_UGE:
961       case ICmpInst::ICMP_SGE:
962       case ICmpInst::ICMP_UGT:
963       case ICmpInst::ICMP_SGT:
964         break;  // no change.
965       }
966       ICI->replaceAllUsesWith(LV);
967       ICI->eraseFromParent();
968     }
969     LI->eraseFromParent();
970   }
971 
972   // If the initialization boolean was used, insert it, otherwise delete it.
973   if (!InitBoolUsed) {
974     while (!InitBool->use_empty())  // Delete initializations
975       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
976     delete InitBool;
977   } else
978     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
979 
980   // Now the GV is dead, nuke it and the malloc..
981   GV->eraseFromParent();
982   CI->eraseFromParent();
983 
984   // To further other optimizations, loop over all users of NewGV and try to
985   // constant prop them.  This will promote GEP instructions with constant
986   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
987   ConstantPropUsersOf(NewGV, DL, TLI);
988   if (RepValue != NewGV)
989     ConstantPropUsersOf(RepValue, DL, TLI);
990 
991   return NewGV;
992 }
993 
994 /// Scan the use-list of V checking to make sure that there are no complex uses
995 /// of V.  We permit simple things like dereferencing the pointer, but not
996 /// storing through the address, unless it is to the specified global.
997 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
998                                                       const GlobalVariable *GV,
999                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
1000   for (const User *U : V->users()) {
1001     const Instruction *Inst = cast<Instruction>(U);
1002 
1003     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
1004       continue; // Fine, ignore.
1005     }
1006 
1007     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1008       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
1009         return false;  // Storing the pointer itself... bad.
1010       continue; // Otherwise, storing through it, or storing into GV... fine.
1011     }
1012 
1013     // Must index into the array and into the struct.
1014     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
1015       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
1016         return false;
1017       continue;
1018     }
1019 
1020     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1021       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1022       // cycles.
1023       if (PHIs.insert(PN).second)
1024         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1025           return false;
1026       continue;
1027     }
1028 
1029     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1030       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1031         return false;
1032       continue;
1033     }
1034 
1035     return false;
1036   }
1037   return true;
1038 }
1039 
1040 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1041 /// allocation into loads from the global and uses of the resultant pointer.
1042 /// Further, delete the store into GV.  This assumes that these value pass the
1043 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1044 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1045                                           GlobalVariable *GV) {
1046   while (!Alloc->use_empty()) {
1047     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1048     Instruction *InsertPt = U;
1049     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1050       // If this is the store of the allocation into the global, remove it.
1051       if (SI->getOperand(1) == GV) {
1052         SI->eraseFromParent();
1053         continue;
1054       }
1055     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1056       // Insert the load in the corresponding predecessor, not right before the
1057       // PHI.
1058       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1059     } else if (isa<BitCastInst>(U)) {
1060       // Must be bitcast between the malloc and store to initialize the global.
1061       ReplaceUsesOfMallocWithGlobal(U, GV);
1062       U->eraseFromParent();
1063       continue;
1064     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1065       // If this is a "GEP bitcast" and the user is a store to the global, then
1066       // just process it as a bitcast.
1067       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1068         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1069           if (SI->getOperand(1) == GV) {
1070             // Must be bitcast GEP between the malloc and store to initialize
1071             // the global.
1072             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1073             GEPI->eraseFromParent();
1074             continue;
1075           }
1076     }
1077 
1078     // Insert a load from the global, and use it instead of the malloc.
1079     Value *NL =
1080         new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt);
1081     U->replaceUsesOfWith(Alloc, NL);
1082   }
1083 }
1084 
1085 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1086 /// perform heap SRA on.  This permits GEP's that index through the array and
1087 /// struct field, icmps of null, and PHIs.
1088 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1089                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1090                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1091   // We permit two users of the load: setcc comparing against the null
1092   // pointer, and a getelementptr of a specific form.
1093   for (const User *U : V->users()) {
1094     const Instruction *UI = cast<Instruction>(U);
1095 
1096     // Comparison against null is ok.
1097     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1098       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1099         return false;
1100       continue;
1101     }
1102 
1103     // getelementptr is also ok, but only a simple form.
1104     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1105       // Must index into the array and into the struct.
1106       if (GEPI->getNumOperands() < 3)
1107         return false;
1108 
1109       // Otherwise the GEP is ok.
1110       continue;
1111     }
1112 
1113     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1114       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1115         // This means some phi nodes are dependent on each other.
1116         // Avoid infinite looping!
1117         return false;
1118       if (!LoadUsingPHIs.insert(PN).second)
1119         // If we have already analyzed this PHI, then it is safe.
1120         continue;
1121 
1122       // Make sure all uses of the PHI are simple enough to transform.
1123       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1124                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1125         return false;
1126 
1127       continue;
1128     }
1129 
1130     // Otherwise we don't know what this is, not ok.
1131     return false;
1132   }
1133 
1134   return true;
1135 }
1136 
1137 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1138 /// return true.
1139 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1140                                                     Instruction *StoredVal) {
1141   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1142   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1143   for (const User *U : GV->users())
1144     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1145       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1146                                           LoadUsingPHIsPerLoad))
1147         return false;
1148       LoadUsingPHIsPerLoad.clear();
1149     }
1150 
1151   // If we reach here, we know that all uses of the loads and transitive uses
1152   // (through PHI nodes) are simple enough to transform.  However, we don't know
1153   // that all inputs the to the PHI nodes are in the same equivalence sets.
1154   // Check to verify that all operands of the PHIs are either PHIS that can be
1155   // transformed, loads from GV, or MI itself.
1156   for (const PHINode *PN : LoadUsingPHIs) {
1157     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1158       Value *InVal = PN->getIncomingValue(op);
1159 
1160       // PHI of the stored value itself is ok.
1161       if (InVal == StoredVal) continue;
1162 
1163       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1164         // One of the PHIs in our set is (optimistically) ok.
1165         if (LoadUsingPHIs.count(InPN))
1166           continue;
1167         return false;
1168       }
1169 
1170       // Load from GV is ok.
1171       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1172         if (LI->getOperand(0) == GV)
1173           continue;
1174 
1175       // UNDEF? NULL?
1176 
1177       // Anything else is rejected.
1178       return false;
1179     }
1180   }
1181 
1182   return true;
1183 }
1184 
1185 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1186               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1187                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1188   std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1189 
1190   if (FieldNo >= FieldVals.size())
1191     FieldVals.resize(FieldNo+1);
1192 
1193   // If we already have this value, just reuse the previously scalarized
1194   // version.
1195   if (Value *FieldVal = FieldVals[FieldNo])
1196     return FieldVal;
1197 
1198   // Depending on what instruction this is, we have several cases.
1199   Value *Result;
1200   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1201     // This is a scalarized version of the load from the global.  Just create
1202     // a new Load of the scalarized global.
1203     Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo,
1204                                 InsertedScalarizedValues, PHIsToRewrite);
1205     Result = new LoadInst(V->getType()->getPointerElementType(), V,
1206                           LI->getName() + ".f" + Twine(FieldNo), LI);
1207   } else {
1208     PHINode *PN = cast<PHINode>(V);
1209     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1210     // field.
1211 
1212     PointerType *PTy = cast<PointerType>(PN->getType());
1213     StructType *ST = cast<StructType>(PTy->getElementType());
1214 
1215     unsigned AS = PTy->getAddressSpace();
1216     PHINode *NewPN =
1217       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1218                      PN->getNumIncomingValues(),
1219                      PN->getName()+".f"+Twine(FieldNo), PN);
1220     Result = NewPN;
1221     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1222   }
1223 
1224   return FieldVals[FieldNo] = Result;
1225 }
1226 
1227 /// Given a load instruction and a value derived from the load, rewrite the
1228 /// derived value to use the HeapSRoA'd load.
1229 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1230               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1231                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1232   // If this is a comparison against null, handle it.
1233   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1234     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1235     // If we have a setcc of the loaded pointer, we can use a setcc of any
1236     // field.
1237     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1238                                    InsertedScalarizedValues, PHIsToRewrite);
1239 
1240     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1241                               Constant::getNullValue(NPtr->getType()),
1242                               SCI->getName());
1243     SCI->replaceAllUsesWith(New);
1244     SCI->eraseFromParent();
1245     return;
1246   }
1247 
1248   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1249   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1250     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1251            && "Unexpected GEPI!");
1252 
1253     // Load the pointer for this field.
1254     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1255     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1256                                      InsertedScalarizedValues, PHIsToRewrite);
1257 
1258     // Create the new GEP idx vector.
1259     SmallVector<Value*, 8> GEPIdx;
1260     GEPIdx.push_back(GEPI->getOperand(1));
1261     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1262 
1263     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1264                                              GEPI->getName(), GEPI);
1265     GEPI->replaceAllUsesWith(NGEPI);
1266     GEPI->eraseFromParent();
1267     return;
1268   }
1269 
1270   // Recursively transform the users of PHI nodes.  This will lazily create the
1271   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1272   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1273   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1274   // already been seen first by another load, so its uses have already been
1275   // processed.
1276   PHINode *PN = cast<PHINode>(LoadUser);
1277   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1278                                               std::vector<Value *>())).second)
1279     return;
1280 
1281   // If this is the first time we've seen this PHI, recursively process all
1282   // users.
1283   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1284     Instruction *User = cast<Instruction>(*UI++);
1285     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1286   }
1287 }
1288 
1289 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1290 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1291 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1292 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1293               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1294                   std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1295   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1296     Instruction *User = cast<Instruction>(*UI++);
1297     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1298   }
1299 
1300   if (Load->use_empty()) {
1301     Load->eraseFromParent();
1302     InsertedScalarizedValues.erase(Load);
1303   }
1304 }
1305 
1306 /// CI is an allocation of an array of structures.  Break it up into multiple
1307 /// allocations of arrays of the fields.
1308 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1309                                             Value *NElems, const DataLayout &DL,
1310                                             const TargetLibraryInfo *TLI) {
1311   LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
1312                     << '\n');
1313   Type *MAT = getMallocAllocatedType(CI, TLI);
1314   StructType *STy = cast<StructType>(MAT);
1315 
1316   // There is guaranteed to be at least one use of the malloc (storing
1317   // it into GV).  If there are other uses, change them to be uses of
1318   // the global to simplify later code.  This also deletes the store
1319   // into GV.
1320   ReplaceUsesOfMallocWithGlobal(CI, GV);
1321 
1322   // Okay, at this point, there are no users of the malloc.  Insert N
1323   // new mallocs at the same place as CI, and N globals.
1324   std::vector<Value *> FieldGlobals;
1325   std::vector<Value *> FieldMallocs;
1326 
1327   SmallVector<OperandBundleDef, 1> OpBundles;
1328   CI->getOperandBundlesAsDefs(OpBundles);
1329 
1330   unsigned AS = GV->getType()->getPointerAddressSpace();
1331   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1332     Type *FieldTy = STy->getElementType(FieldNo);
1333     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1334 
1335     GlobalVariable *NGV = new GlobalVariable(
1336         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1337         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1338         nullptr, GV->getThreadLocalMode());
1339     NGV->copyAttributesFrom(GV);
1340     FieldGlobals.push_back(NGV);
1341 
1342     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1343     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1344       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1345     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1346     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1347                                         ConstantInt::get(IntPtrTy, TypeSize),
1348                                         NElems, OpBundles, nullptr,
1349                                         CI->getName() + ".f" + Twine(FieldNo));
1350     FieldMallocs.push_back(NMI);
1351     new StoreInst(NMI, NGV, CI);
1352   }
1353 
1354   // The tricky aspect of this transformation is handling the case when malloc
1355   // fails.  In the original code, malloc failing would set the result pointer
1356   // of malloc to null.  In this case, some mallocs could succeed and others
1357   // could fail.  As such, we emit code that looks like this:
1358   //    F0 = malloc(field0)
1359   //    F1 = malloc(field1)
1360   //    F2 = malloc(field2)
1361   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1362   //      if (F0) { free(F0); F0 = 0; }
1363   //      if (F1) { free(F1); F1 = 0; }
1364   //      if (F2) { free(F2); F2 = 0; }
1365   //    }
1366   // The malloc can also fail if its argument is too large.
1367   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1368   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1369                                   ConstantZero, "isneg");
1370   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1371     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1372                              Constant::getNullValue(FieldMallocs[i]->getType()),
1373                                "isnull");
1374     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1375   }
1376 
1377   // Split the basic block at the old malloc.
1378   BasicBlock *OrigBB = CI->getParent();
1379   BasicBlock *ContBB =
1380       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1381 
1382   // Create the block to check the first condition.  Put all these blocks at the
1383   // end of the function as they are unlikely to be executed.
1384   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1385                                                 "malloc_ret_null",
1386                                                 OrigBB->getParent());
1387 
1388   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1389   // branch on RunningOr.
1390   OrigBB->getTerminator()->eraseFromParent();
1391   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1392 
1393   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1394   // pointer, because some may be null while others are not.
1395   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1396     Value *GVVal =
1397         new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(),
1398                      FieldGlobals[i], "tmp", NullPtrBlock);
1399     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1400                               Constant::getNullValue(GVVal->getType()));
1401     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1402                                                OrigBB->getParent());
1403     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1404                                                OrigBB->getParent());
1405     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1406                                          Cmp, NullPtrBlock);
1407 
1408     // Fill in FreeBlock.
1409     CallInst::CreateFree(GVVal, OpBundles, BI);
1410     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1411                   FreeBlock);
1412     BranchInst::Create(NextBlock, FreeBlock);
1413 
1414     NullPtrBlock = NextBlock;
1415   }
1416 
1417   BranchInst::Create(ContBB, NullPtrBlock);
1418 
1419   // CI is no longer needed, remove it.
1420   CI->eraseFromParent();
1421 
1422   /// As we process loads, if we can't immediately update all uses of the load,
1423   /// keep track of what scalarized loads are inserted for a given load.
1424   DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1425   InsertedScalarizedValues[GV] = FieldGlobals;
1426 
1427   std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1428 
1429   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1430   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1431   // of the per-field globals instead.
1432   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1433     Instruction *User = cast<Instruction>(*UI++);
1434 
1435     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1436       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1437       continue;
1438     }
1439 
1440     // Must be a store of null.
1441     StoreInst *SI = cast<StoreInst>(User);
1442     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1443            "Unexpected heap-sra user!");
1444 
1445     // Insert a store of null into each global.
1446     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1447       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1448       Constant *Null = Constant::getNullValue(ValTy);
1449       new StoreInst(Null, FieldGlobals[i], SI);
1450     }
1451     // Erase the original store.
1452     SI->eraseFromParent();
1453   }
1454 
1455   // While we have PHIs that are interesting to rewrite, do it.
1456   while (!PHIsToRewrite.empty()) {
1457     PHINode *PN = PHIsToRewrite.back().first;
1458     unsigned FieldNo = PHIsToRewrite.back().second;
1459     PHIsToRewrite.pop_back();
1460     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1461     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1462 
1463     // Add all the incoming values.  This can materialize more phis.
1464     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1465       Value *InVal = PN->getIncomingValue(i);
1466       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1467                                PHIsToRewrite);
1468       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1469     }
1470   }
1471 
1472   // Drop all inter-phi links and any loads that made it this far.
1473   for (DenseMap<Value *, std::vector<Value *>>::iterator
1474        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1475        I != E; ++I) {
1476     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1477       PN->dropAllReferences();
1478     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1479       LI->dropAllReferences();
1480   }
1481 
1482   // Delete all the phis and loads now that inter-references are dead.
1483   for (DenseMap<Value *, std::vector<Value *>>::iterator
1484        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1485        I != E; ++I) {
1486     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1487       PN->eraseFromParent();
1488     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1489       LI->eraseFromParent();
1490   }
1491 
1492   // The old global is now dead, remove it.
1493   GV->eraseFromParent();
1494 
1495   ++NumHeapSRA;
1496   return cast<GlobalVariable>(FieldGlobals[0]);
1497 }
1498 
1499 /// This function is called when we see a pointer global variable with a single
1500 /// value stored it that is a malloc or cast of malloc.
1501 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1502                                                Type *AllocTy,
1503                                                AtomicOrdering Ordering,
1504                                                const DataLayout &DL,
1505                                                TargetLibraryInfo *TLI) {
1506   // If this is a malloc of an abstract type, don't touch it.
1507   if (!AllocTy->isSized())
1508     return false;
1509 
1510   // We can't optimize this global unless all uses of it are *known* to be
1511   // of the malloc value, not of the null initializer value (consider a use
1512   // that compares the global's value against zero to see if the malloc has
1513   // been reached).  To do this, we check to see if all uses of the global
1514   // would trap if the global were null: this proves that they must all
1515   // happen after the malloc.
1516   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1517     return false;
1518 
1519   // We can't optimize this if the malloc itself is used in a complex way,
1520   // for example, being stored into multiple globals.  This allows the
1521   // malloc to be stored into the specified global, loaded icmp'd, and
1522   // GEP'd.  These are all things we could transform to using the global
1523   // for.
1524   SmallPtrSet<const PHINode*, 8> PHIs;
1525   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1526     return false;
1527 
1528   // If we have a global that is only initialized with a fixed size malloc,
1529   // transform the program to use global memory instead of malloc'd memory.
1530   // This eliminates dynamic allocation, avoids an indirection accessing the
1531   // data, and exposes the resultant global to further GlobalOpt.
1532   // We cannot optimize the malloc if we cannot determine malloc array size.
1533   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1534   if (!NElems)
1535     return false;
1536 
1537   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1538     // Restrict this transformation to only working on small allocations
1539     // (2048 bytes currently), as we don't want to introduce a 16M global or
1540     // something.
1541     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1542       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1543       return true;
1544     }
1545 
1546   // If the allocation is an array of structures, consider transforming this
1547   // into multiple malloc'd arrays, one for each field.  This is basically
1548   // SRoA for malloc'd memory.
1549 
1550   if (Ordering != AtomicOrdering::NotAtomic)
1551     return false;
1552 
1553   // If this is an allocation of a fixed size array of structs, analyze as a
1554   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1555   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1556     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1557       AllocTy = AT->getElementType();
1558 
1559   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1560   if (!AllocSTy)
1561     return false;
1562 
1563   // This the structure has an unreasonable number of fields, leave it
1564   // alone.
1565   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1566       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1567 
1568     // If this is a fixed size array, transform the Malloc to be an alloc of
1569     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1570     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1571       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1572       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1573       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1574       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1575       SmallVector<OperandBundleDef, 1> OpBundles;
1576       CI->getOperandBundlesAsDefs(OpBundles);
1577       Instruction *Malloc =
1578           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1579                                  OpBundles, nullptr, CI->getName());
1580       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1581       CI->replaceAllUsesWith(Cast);
1582       CI->eraseFromParent();
1583       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1584         CI = cast<CallInst>(BCI->getOperand(0));
1585       else
1586         CI = cast<CallInst>(Malloc);
1587     }
1588 
1589     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1590                          TLI);
1591     return true;
1592   }
1593 
1594   return false;
1595 }
1596 
1597 // Try to optimize globals based on the knowledge that only one value (besides
1598 // its initializer) is ever stored to the global.
1599 static bool
1600 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1601                          AtomicOrdering Ordering, const DataLayout &DL,
1602                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1603   // Ignore no-op GEPs and bitcasts.
1604   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1605 
1606   // If we are dealing with a pointer global that is initialized to null and
1607   // only has one (non-null) value stored into it, then we can optimize any
1608   // users of the loaded value (often calls and loads) that would trap if the
1609   // value was null.
1610   if (GV->getInitializer()->getType()->isPointerTy() &&
1611       GV->getInitializer()->isNullValue() &&
1612       !NullPointerIsDefined(
1613           nullptr /* F */,
1614           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1615     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1616       if (GV->getInitializer()->getType() != SOVC->getType())
1617         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1618 
1619       // Optimize away any trapping uses of the loaded value.
1620       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1621         return true;
1622     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1623       auto *TLI = &GetTLI(*CI->getFunction());
1624       Type *MallocType = getMallocAllocatedType(CI, TLI);
1625       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1626                                                            Ordering, DL, TLI))
1627         return true;
1628     }
1629   }
1630 
1631   return false;
1632 }
1633 
1634 /// At this point, we have learned that the only two values ever stored into GV
1635 /// are its initializer and OtherVal.  See if we can shrink the global into a
1636 /// boolean and select between the two values whenever it is used.  This exposes
1637 /// the values to other scalar optimizations.
1638 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1639   Type *GVElType = GV->getValueType();
1640 
1641   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1642   // an FP value, pointer or vector, don't do this optimization because a select
1643   // between them is very expensive and unlikely to lead to later
1644   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1645   // where v1 and v2 both require constant pool loads, a big loss.
1646   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1647       GVElType->isFloatingPointTy() ||
1648       GVElType->isPointerTy() || GVElType->isVectorTy())
1649     return false;
1650 
1651   // Walk the use list of the global seeing if all the uses are load or store.
1652   // If there is anything else, bail out.
1653   for (User *U : GV->users())
1654     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1655       return false;
1656 
1657   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1658 
1659   // Create the new global, initializing it to false.
1660   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1661                                              false,
1662                                              GlobalValue::InternalLinkage,
1663                                         ConstantInt::getFalse(GV->getContext()),
1664                                              GV->getName()+".b",
1665                                              GV->getThreadLocalMode(),
1666                                              GV->getType()->getAddressSpace());
1667   NewGV->copyAttributesFrom(GV);
1668   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1669 
1670   Constant *InitVal = GV->getInitializer();
1671   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1672          "No reason to shrink to bool!");
1673 
1674   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1675   GV->getDebugInfo(GVs);
1676 
1677   // If initialized to zero and storing one into the global, we can use a cast
1678   // instead of a select to synthesize the desired value.
1679   bool IsOneZero = false;
1680   bool EmitOneOrZero = true;
1681   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1682   if (CI && CI->getValue().getActiveBits() <= 64) {
1683     IsOneZero = InitVal->isNullValue() && CI->isOne();
1684 
1685     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1686     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1687       uint64_t ValInit = CIInit->getZExtValue();
1688       uint64_t ValOther = CI->getZExtValue();
1689       uint64_t ValMinus = ValOther - ValInit;
1690 
1691       for(auto *GVe : GVs){
1692         DIGlobalVariable *DGV = GVe->getVariable();
1693         DIExpression *E = GVe->getExpression();
1694         const DataLayout &DL = GV->getParent()->getDataLayout();
1695         unsigned SizeInOctets =
1696           DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8;
1697 
1698         // It is expected that the address of global optimized variable is on
1699         // top of the stack. After optimization, value of that variable will
1700         // be ether 0 for initial value or 1 for other value. The following
1701         // expression should return constant integer value depending on the
1702         // value at global object address:
1703         // val * (ValOther - ValInit) + ValInit:
1704         // DW_OP_deref DW_OP_constu <ValMinus>
1705         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1706         SmallVector<uint64_t, 12> Ops = {
1707             dwarf::DW_OP_deref_size, SizeInOctets,
1708             dwarf::DW_OP_constu, ValMinus,
1709             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1710             dwarf::DW_OP_plus};
1711         bool WithStackValue = true;
1712         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1713         DIGlobalVariableExpression *DGVE =
1714           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1715         NewGV->addDebugInfo(DGVE);
1716      }
1717      EmitOneOrZero = false;
1718     }
1719   }
1720 
1721   if (EmitOneOrZero) {
1722      // FIXME: This will only emit address for debugger on which will
1723      // be written only 0 or 1.
1724      for(auto *GV : GVs)
1725        NewGV->addDebugInfo(GV);
1726    }
1727 
1728   while (!GV->use_empty()) {
1729     Instruction *UI = cast<Instruction>(GV->user_back());
1730     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1731       // Change the store into a boolean store.
1732       bool StoringOther = SI->getOperand(0) == OtherVal;
1733       // Only do this if we weren't storing a loaded value.
1734       Value *StoreVal;
1735       if (StoringOther || SI->getOperand(0) == InitVal) {
1736         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1737                                     StoringOther);
1738       } else {
1739         // Otherwise, we are storing a previously loaded copy.  To do this,
1740         // change the copy from copying the original value to just copying the
1741         // bool.
1742         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1743 
1744         // If we've already replaced the input, StoredVal will be a cast or
1745         // select instruction.  If not, it will be a load of the original
1746         // global.
1747         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1748           assert(LI->getOperand(0) == GV && "Not a copy!");
1749           // Insert a new load, to preserve the saved value.
1750           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1751                                   LI->getName() + ".b", false, Align(1),
1752                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1753         } else {
1754           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1755                  "This is not a form that we understand!");
1756           StoreVal = StoredVal->getOperand(0);
1757           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1758         }
1759       }
1760       StoreInst *NSI =
1761           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1762                         SI->getSyncScopeID(), SI);
1763       NSI->setDebugLoc(SI->getDebugLoc());
1764     } else {
1765       // Change the load into a load of bool then a select.
1766       LoadInst *LI = cast<LoadInst>(UI);
1767       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1768                                    LI->getName() + ".b", false, Align(1),
1769                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1770       Instruction *NSI;
1771       if (IsOneZero)
1772         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1773       else
1774         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1775       NSI->takeName(LI);
1776       // Since LI is split into two instructions, NLI and NSI both inherit the
1777       // same DebugLoc
1778       NLI->setDebugLoc(LI->getDebugLoc());
1779       NSI->setDebugLoc(LI->getDebugLoc());
1780       LI->replaceAllUsesWith(NSI);
1781     }
1782     UI->eraseFromParent();
1783   }
1784 
1785   // Retain the name of the old global variable. People who are debugging their
1786   // programs may expect these variables to be named the same.
1787   NewGV->takeName(GV);
1788   GV->eraseFromParent();
1789   return true;
1790 }
1791 
1792 static bool deleteIfDead(
1793     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1794   GV.removeDeadConstantUsers();
1795 
1796   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1797     return false;
1798 
1799   if (const Comdat *C = GV.getComdat())
1800     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1801       return false;
1802 
1803   bool Dead;
1804   if (auto *F = dyn_cast<Function>(&GV))
1805     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1806   else
1807     Dead = GV.use_empty();
1808   if (!Dead)
1809     return false;
1810 
1811   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1812   GV.eraseFromParent();
1813   ++NumDeleted;
1814   return true;
1815 }
1816 
1817 static bool isPointerValueDeadOnEntryToFunction(
1818     const Function *F, GlobalValue *GV,
1819     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1820   // Find all uses of GV. We expect them all to be in F, and if we can't
1821   // identify any of the uses we bail out.
1822   //
1823   // On each of these uses, identify if the memory that GV points to is
1824   // used/required/live at the start of the function. If it is not, for example
1825   // if the first thing the function does is store to the GV, the GV can
1826   // possibly be demoted.
1827   //
1828   // We don't do an exhaustive search for memory operations - simply look
1829   // through bitcasts as they're quite common and benign.
1830   const DataLayout &DL = GV->getParent()->getDataLayout();
1831   SmallVector<LoadInst *, 4> Loads;
1832   SmallVector<StoreInst *, 4> Stores;
1833   for (auto *U : GV->users()) {
1834     if (Operator::getOpcode(U) == Instruction::BitCast) {
1835       for (auto *UU : U->users()) {
1836         if (auto *LI = dyn_cast<LoadInst>(UU))
1837           Loads.push_back(LI);
1838         else if (auto *SI = dyn_cast<StoreInst>(UU))
1839           Stores.push_back(SI);
1840         else
1841           return false;
1842       }
1843       continue;
1844     }
1845 
1846     Instruction *I = dyn_cast<Instruction>(U);
1847     if (!I)
1848       return false;
1849     assert(I->getParent()->getParent() == F);
1850 
1851     if (auto *LI = dyn_cast<LoadInst>(I))
1852       Loads.push_back(LI);
1853     else if (auto *SI = dyn_cast<StoreInst>(I))
1854       Stores.push_back(SI);
1855     else
1856       return false;
1857   }
1858 
1859   // We have identified all uses of GV into loads and stores. Now check if all
1860   // of them are known not to depend on the value of the global at the function
1861   // entry point. We do this by ensuring that every load is dominated by at
1862   // least one store.
1863   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1864 
1865   // The below check is quadratic. Check we're not going to do too many tests.
1866   // FIXME: Even though this will always have worst-case quadratic time, we
1867   // could put effort into minimizing the average time by putting stores that
1868   // have been shown to dominate at least one load at the beginning of the
1869   // Stores array, making subsequent dominance checks more likely to succeed
1870   // early.
1871   //
1872   // The threshold here is fairly large because global->local demotion is a
1873   // very powerful optimization should it fire.
1874   const unsigned Threshold = 100;
1875   if (Loads.size() * Stores.size() > Threshold)
1876     return false;
1877 
1878   for (auto *L : Loads) {
1879     auto *LTy = L->getType();
1880     if (none_of(Stores, [&](const StoreInst *S) {
1881           auto *STy = S->getValueOperand()->getType();
1882           // The load is only dominated by the store if DomTree says so
1883           // and the number of bits loaded in L is less than or equal to
1884           // the number of bits stored in S.
1885           return DT.dominates(S, L) &&
1886                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1887         }))
1888       return false;
1889   }
1890   // All loads have known dependences inside F, so the global can be localized.
1891   return true;
1892 }
1893 
1894 /// C may have non-instruction users. Can all of those users be turned into
1895 /// instructions?
1896 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1897   // We don't do this exhaustively. The most common pattern that we really need
1898   // to care about is a constant GEP or constant bitcast - so just looking
1899   // through one single ConstantExpr.
1900   //
1901   // The set of constants that this function returns true for must be able to be
1902   // handled by makeAllConstantUsesInstructions.
1903   for (auto *U : C->users()) {
1904     if (isa<Instruction>(U))
1905       continue;
1906     if (!isa<ConstantExpr>(U))
1907       // Non instruction, non-constantexpr user; cannot convert this.
1908       return false;
1909     for (auto *UU : U->users())
1910       if (!isa<Instruction>(UU))
1911         // A constantexpr used by another constant. We don't try and recurse any
1912         // further but just bail out at this point.
1913         return false;
1914   }
1915 
1916   return true;
1917 }
1918 
1919 /// C may have non-instruction users, and
1920 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1921 /// non-instruction users to instructions.
1922 static void makeAllConstantUsesInstructions(Constant *C) {
1923   SmallVector<ConstantExpr*,4> Users;
1924   for (auto *U : C->users()) {
1925     if (isa<ConstantExpr>(U))
1926       Users.push_back(cast<ConstantExpr>(U));
1927     else
1928       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1929       // should not have returned true for C.
1930       assert(
1931           isa<Instruction>(U) &&
1932           "Can't transform non-constantexpr non-instruction to instruction!");
1933   }
1934 
1935   SmallVector<Value*,4> UUsers;
1936   for (auto *U : Users) {
1937     UUsers.clear();
1938     for (auto *UU : U->users())
1939       UUsers.push_back(UU);
1940     for (auto *UU : UUsers) {
1941       Instruction *UI = cast<Instruction>(UU);
1942       Instruction *NewU = U->getAsInstruction();
1943       NewU->insertBefore(UI);
1944       UI->replaceUsesOfWith(U, NewU);
1945     }
1946     // We've replaced all the uses, so destroy the constant. (destroyConstant
1947     // will update value handles and metadata.)
1948     U->destroyConstant();
1949   }
1950 }
1951 
1952 /// Analyze the specified global variable and optimize
1953 /// it if possible.  If we make a change, return true.
1954 static bool
1955 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1956                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1957                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1958   auto &DL = GV->getParent()->getDataLayout();
1959   // If this is a first class global and has only one accessing function and
1960   // this function is non-recursive, we replace the global with a local alloca
1961   // in this function.
1962   //
1963   // NOTE: It doesn't make sense to promote non-single-value types since we
1964   // are just replacing static memory to stack memory.
1965   //
1966   // If the global is in different address space, don't bring it to stack.
1967   if (!GS.HasMultipleAccessingFunctions &&
1968       GS.AccessingFunction &&
1969       GV->getValueType()->isSingleValueType() &&
1970       GV->getType()->getAddressSpace() == 0 &&
1971       !GV->isExternallyInitialized() &&
1972       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1973       GS.AccessingFunction->doesNotRecurse() &&
1974       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1975                                           LookupDomTree)) {
1976     const DataLayout &DL = GV->getParent()->getDataLayout();
1977 
1978     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1979     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1980                                                    ->getEntryBlock().begin());
1981     Type *ElemTy = GV->getValueType();
1982     // FIXME: Pass Global's alignment when globals have alignment
1983     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1984                                         GV->getName(), &FirstI);
1985     if (!isa<UndefValue>(GV->getInitializer()))
1986       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1987 
1988     makeAllConstantUsesInstructions(GV);
1989 
1990     GV->replaceAllUsesWith(Alloca);
1991     GV->eraseFromParent();
1992     ++NumLocalized;
1993     return true;
1994   }
1995 
1996   // If the global is never loaded (but may be stored to), it is dead.
1997   // Delete it now.
1998   if (!GS.IsLoaded) {
1999     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
2000 
2001     bool Changed;
2002     if (isLeakCheckerRoot(GV)) {
2003       // Delete any constant stores to the global.
2004       Changed = CleanupPointerRootUsers(GV, GetTLI);
2005     } else {
2006       // Delete any stores we can find to the global.  We may not be able to
2007       // make it completely dead though.
2008       Changed =
2009           CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2010     }
2011 
2012     // If the global is dead now, delete it.
2013     if (GV->use_empty()) {
2014       GV->eraseFromParent();
2015       ++NumDeleted;
2016       Changed = true;
2017     }
2018     return Changed;
2019 
2020   }
2021   if (GS.StoredType <= GlobalStatus::InitializerStored) {
2022     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
2023 
2024     // Don't actually mark a global constant if it's atomic because atomic loads
2025     // are implemented by a trivial cmpxchg in some edge-cases and that usually
2026     // requires write access to the variable even if it's not actually changed.
2027     if (GS.Ordering == AtomicOrdering::NotAtomic)
2028       GV->setConstant(true);
2029 
2030     // Clean up any obviously simplifiable users now.
2031     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2032 
2033     // If the global is dead now, just nuke it.
2034     if (GV->use_empty()) {
2035       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
2036                         << "all users and delete global!\n");
2037       GV->eraseFromParent();
2038       ++NumDeleted;
2039       return true;
2040     }
2041 
2042     // Fall through to the next check; see if we can optimize further.
2043     ++NumMarked;
2044   }
2045   if (!GV->getInitializer()->getType()->isSingleValueType()) {
2046     const DataLayout &DL = GV->getParent()->getDataLayout();
2047     if (SRAGlobal(GV, DL))
2048       return true;
2049   }
2050   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
2051     // If the initial value for the global was an undef value, and if only
2052     // one other value was stored into it, we can just change the
2053     // initializer to be the stored value, then delete all stores to the
2054     // global.  This allows us to mark it constant.
2055     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2056       if (isa<UndefValue>(GV->getInitializer())) {
2057         // Change the initial value here.
2058         GV->setInitializer(SOVConstant);
2059 
2060         // Clean up any obviously simplifiable users now.
2061         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2062 
2063         if (GV->use_empty()) {
2064           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2065                             << "simplify all users and delete global!\n");
2066           GV->eraseFromParent();
2067           ++NumDeleted;
2068         }
2069         ++NumSubstitute;
2070         return true;
2071       }
2072 
2073     // Try to optimize globals based on the knowledge that only one value
2074     // (besides its initializer) is ever stored to the global.
2075     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
2076                                  GetTLI))
2077       return true;
2078 
2079     // Otherwise, if the global was not a boolean, we can shrink it to be a
2080     // boolean.
2081     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2082       if (GS.Ordering == AtomicOrdering::NotAtomic) {
2083         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2084           ++NumShrunkToBool;
2085           return true;
2086         }
2087       }
2088     }
2089   }
2090 
2091   return false;
2092 }
2093 
2094 /// Analyze the specified global variable and optimize it if possible.  If we
2095 /// make a change, return true.
2096 static bool
2097 processGlobal(GlobalValue &GV,
2098               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2099               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2100   if (GV.getName().startswith("llvm."))
2101     return false;
2102 
2103   GlobalStatus GS;
2104 
2105   if (GlobalStatus::analyzeGlobal(&GV, GS))
2106     return false;
2107 
2108   bool Changed = false;
2109   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2110     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2111                                                : GlobalValue::UnnamedAddr::Local;
2112     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2113       GV.setUnnamedAddr(NewUnnamedAddr);
2114       NumUnnamed++;
2115       Changed = true;
2116     }
2117   }
2118 
2119   // Do more involved optimizations if the global is internal.
2120   if (!GV.hasLocalLinkage())
2121     return Changed;
2122 
2123   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2124   if (!GVar)
2125     return Changed;
2126 
2127   if (GVar->isConstant() || !GVar->hasInitializer())
2128     return Changed;
2129 
2130   return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
2131 }
2132 
2133 /// Walk all of the direct calls of the specified function, changing them to
2134 /// FastCC.
2135 static void ChangeCalleesToFastCall(Function *F) {
2136   for (User *U : F->users()) {
2137     if (isa<BlockAddress>(U))
2138       continue;
2139     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
2140   }
2141 }
2142 
2143 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
2144                                Attribute::AttrKind A) {
2145   unsigned AttrIndex;
2146   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
2147     return Attrs.removeAttribute(C, AttrIndex, A);
2148   return Attrs;
2149 }
2150 
2151 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
2152   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
2153   for (User *U : F->users()) {
2154     if (isa<BlockAddress>(U))
2155       continue;
2156     CallBase *CB = cast<CallBase>(U);
2157     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
2158   }
2159 }
2160 
2161 /// Return true if this is a calling convention that we'd like to change.  The
2162 /// idea here is that we don't want to mess with the convention if the user
2163 /// explicitly requested something with performance implications like coldcc,
2164 /// GHC, or anyregcc.
2165 static bool hasChangeableCC(Function *F) {
2166   CallingConv::ID CC = F->getCallingConv();
2167 
2168   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2169   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2170     return false;
2171 
2172   // FIXME: Change CC for the whole chain of musttail calls when possible.
2173   //
2174   // Can't change CC of the function that either has musttail calls, or is a
2175   // musttail callee itself
2176   for (User *U : F->users()) {
2177     if (isa<BlockAddress>(U))
2178       continue;
2179     CallInst* CI = dyn_cast<CallInst>(U);
2180     if (!CI)
2181       continue;
2182 
2183     if (CI->isMustTailCall())
2184       return false;
2185   }
2186 
2187   for (BasicBlock &BB : *F)
2188     if (BB.getTerminatingMustTailCall())
2189       return false;
2190 
2191   return true;
2192 }
2193 
2194 /// Return true if the block containing the call site has a BlockFrequency of
2195 /// less than ColdCCRelFreq% of the entry block.
2196 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
2197   const BranchProbability ColdProb(ColdCCRelFreq, 100);
2198   auto *CallSiteBB = CB.getParent();
2199   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2200   auto CallerEntryFreq =
2201       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
2202   return CallSiteFreq < CallerEntryFreq * ColdProb;
2203 }
2204 
2205 // This function checks if the input function F is cold at all call sites. It
2206 // also looks each call site's containing function, returning false if the
2207 // caller function contains other non cold calls. The input vector AllCallsCold
2208 // contains a list of functions that only have call sites in cold blocks.
2209 static bool
2210 isValidCandidateForColdCC(Function &F,
2211                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2212                           const std::vector<Function *> &AllCallsCold) {
2213 
2214   if (F.user_empty())
2215     return false;
2216 
2217   for (User *U : F.users()) {
2218     if (isa<BlockAddress>(U))
2219       continue;
2220 
2221     CallBase &CB = cast<CallBase>(*U);
2222     Function *CallerFunc = CB.getParent()->getParent();
2223     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2224     if (!isColdCallSite(CB, CallerBFI))
2225       return false;
2226     auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2227     if (It == AllCallsCold.end())
2228       return false;
2229   }
2230   return true;
2231 }
2232 
2233 static void changeCallSitesToColdCC(Function *F) {
2234   for (User *U : F->users()) {
2235     if (isa<BlockAddress>(U))
2236       continue;
2237     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
2238   }
2239 }
2240 
2241 // This function iterates over all the call instructions in the input Function
2242 // and checks that all call sites are in cold blocks and are allowed to use the
2243 // coldcc calling convention.
2244 static bool
2245 hasOnlyColdCalls(Function &F,
2246                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2247   for (BasicBlock &BB : F) {
2248     for (Instruction &I : BB) {
2249       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2250         // Skip over isline asm instructions since they aren't function calls.
2251         if (CI->isInlineAsm())
2252           continue;
2253         Function *CalledFn = CI->getCalledFunction();
2254         if (!CalledFn)
2255           return false;
2256         if (!CalledFn->hasLocalLinkage())
2257           return false;
2258         // Skip over instrinsics since they won't remain as function calls.
2259         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2260           continue;
2261         // Check if it's valid to use coldcc calling convention.
2262         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2263             CalledFn->hasAddressTaken())
2264           return false;
2265         BlockFrequencyInfo &CallerBFI = GetBFI(F);
2266         if (!isColdCallSite(*CI, CallerBFI))
2267           return false;
2268       }
2269     }
2270   }
2271   return true;
2272 }
2273 
2274 static bool hasMustTailCallers(Function *F) {
2275   for (User *U : F->users()) {
2276     CallBase *CB = dyn_cast<CallBase>(U);
2277     if (!CB) {
2278       assert(isa<BlockAddress>(U) &&
2279              "Expected either CallBase or BlockAddress");
2280       continue;
2281     }
2282     if (CB->isMustTailCall())
2283       return true;
2284   }
2285   return false;
2286 }
2287 
2288 static bool hasInvokeCallers(Function *F) {
2289   for (User *U : F->users())
2290     if (isa<InvokeInst>(U))
2291       return true;
2292   return false;
2293 }
2294 
2295 static void RemovePreallocated(Function *F) {
2296   RemoveAttribute(F, Attribute::Preallocated);
2297 
2298   auto *M = F->getParent();
2299 
2300   IRBuilder<> Builder(M->getContext());
2301 
2302   // Cannot modify users() while iterating over it, so make a copy.
2303   SmallVector<User *, 4> PreallocatedCalls(F->users());
2304   for (User *U : PreallocatedCalls) {
2305     CallBase *CB = dyn_cast<CallBase>(U);
2306     if (!CB)
2307       continue;
2308 
2309     assert(
2310         !CB->isMustTailCall() &&
2311         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
2312     // Create copy of call without "preallocated" operand bundle.
2313     SmallVector<OperandBundleDef, 1> OpBundles;
2314     CB->getOperandBundlesAsDefs(OpBundles);
2315     CallBase *PreallocatedSetup = nullptr;
2316     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
2317       if (It->getTag() == "preallocated") {
2318         PreallocatedSetup = cast<CallBase>(*It->input_begin());
2319         OpBundles.erase(It);
2320         break;
2321       }
2322     }
2323     assert(PreallocatedSetup && "Did not find preallocated bundle");
2324     uint64_t ArgCount =
2325         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
2326     CallBase *NewCB = nullptr;
2327     if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
2328       NewCB = InvokeInst::Create(II, OpBundles, CB);
2329     } else {
2330       CallInst *CI = cast<CallInst>(CB);
2331       NewCB = CallInst::Create(CI, OpBundles, CB);
2332     }
2333     CB->replaceAllUsesWith(NewCB);
2334     NewCB->takeName(CB);
2335     CB->eraseFromParent();
2336 
2337     Builder.SetInsertPoint(PreallocatedSetup);
2338     auto *StackSave =
2339         Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
2340 
2341     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
2342     Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
2343                        StackSave);
2344 
2345     // Replace @llvm.call.preallocated.arg() with alloca.
2346     // Cannot modify users() while iterating over it, so make a copy.
2347     // @llvm.call.preallocated.arg() can be called with the same index multiple
2348     // times. So for each @llvm.call.preallocated.arg(), we see if we have
2349     // already created a Value* for the index, and if not, create an alloca and
2350     // bitcast right after the @llvm.call.preallocated.setup() so that it
2351     // dominates all uses.
2352     SmallVector<Value *, 2> ArgAllocas(ArgCount);
2353     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
2354     for (auto *User : PreallocatedArgs) {
2355       auto *UseCall = cast<CallBase>(User);
2356       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
2357                  Intrinsic::call_preallocated_arg &&
2358              "preallocated token use was not a llvm.call.preallocated.arg");
2359       uint64_t AllocArgIndex =
2360           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
2361       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
2362       if (!AllocaReplacement) {
2363         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
2364         auto *ArgType = UseCall
2365                             ->getAttribute(AttributeList::FunctionIndex,
2366                                            Attribute::Preallocated)
2367                             .getValueAsType();
2368         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
2369         Builder.SetInsertPoint(InsertBefore);
2370         auto *Alloca =
2371             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
2372         auto *BitCast = Builder.CreateBitCast(
2373             Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
2374         ArgAllocas[AllocArgIndex] = BitCast;
2375         AllocaReplacement = BitCast;
2376       }
2377 
2378       UseCall->replaceAllUsesWith(AllocaReplacement);
2379       UseCall->eraseFromParent();
2380     }
2381     // Remove @llvm.call.preallocated.setup().
2382     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
2383   }
2384 }
2385 
2386 static bool
2387 OptimizeFunctions(Module &M,
2388                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2389                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
2390                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2391                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2392                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2393 
2394   bool Changed = false;
2395 
2396   std::vector<Function *> AllCallsCold;
2397   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2398     Function *F = &*FI++;
2399     if (hasOnlyColdCalls(*F, GetBFI))
2400       AllCallsCold.push_back(F);
2401   }
2402 
2403   // Optimize functions.
2404   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2405     Function *F = &*FI++;
2406 
2407     // Don't perform global opt pass on naked functions; we don't want fast
2408     // calling conventions for naked functions.
2409     if (F->hasFnAttribute(Attribute::Naked))
2410       continue;
2411 
2412     // Functions without names cannot be referenced outside this module.
2413     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2414       F->setLinkage(GlobalValue::InternalLinkage);
2415 
2416     if (deleteIfDead(*F, NotDiscardableComdats)) {
2417       Changed = true;
2418       continue;
2419     }
2420 
2421     // LLVM's definition of dominance allows instructions that are cyclic
2422     // in unreachable blocks, e.g.:
2423     // %pat = select i1 %condition, @global, i16* %pat
2424     // because any instruction dominates an instruction in a block that's
2425     // not reachable from entry.
2426     // So, remove unreachable blocks from the function, because a) there's
2427     // no point in analyzing them and b) GlobalOpt should otherwise grow
2428     // some more complicated logic to break these cycles.
2429     // Removing unreachable blocks might invalidate the dominator so we
2430     // recalculate it.
2431     if (!F->isDeclaration()) {
2432       if (removeUnreachableBlocks(*F)) {
2433         auto &DT = LookupDomTree(*F);
2434         DT.recalculate(*F);
2435         Changed = true;
2436       }
2437     }
2438 
2439     Changed |= processGlobal(*F, GetTLI, LookupDomTree);
2440 
2441     if (!F->hasLocalLinkage())
2442       continue;
2443 
2444     // If we have an inalloca parameter that we can safely remove the
2445     // inalloca attribute from, do so. This unlocks optimizations that
2446     // wouldn't be safe in the presence of inalloca.
2447     // FIXME: We should also hoist alloca affected by this to the entry
2448     // block if possible.
2449     if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2450         !F->hasAddressTaken()) {
2451       RemoveAttribute(F, Attribute::InAlloca);
2452       Changed = true;
2453     }
2454 
2455     // FIXME: handle invokes
2456     // FIXME: handle musttail
2457     if (F->getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
2458       if (!F->hasAddressTaken() && !hasMustTailCallers(F) &&
2459           !hasInvokeCallers(F)) {
2460         RemovePreallocated(F);
2461         Changed = true;
2462       }
2463       continue;
2464     }
2465 
2466     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2467       NumInternalFunc++;
2468       TargetTransformInfo &TTI = GetTTI(*F);
2469       // Change the calling convention to coldcc if either stress testing is
2470       // enabled or the target would like to use coldcc on functions which are
2471       // cold at all call sites and the callers contain no other non coldcc
2472       // calls.
2473       if (EnableColdCCStressTest ||
2474           (TTI.useColdCCForColdCall(*F) &&
2475            isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
2476         F->setCallingConv(CallingConv::Cold);
2477         changeCallSitesToColdCC(F);
2478         Changed = true;
2479         NumColdCC++;
2480       }
2481     }
2482 
2483     if (hasChangeableCC(F) && !F->isVarArg() &&
2484         !F->hasAddressTaken()) {
2485       // If this function has a calling convention worth changing, is not a
2486       // varargs function, and is only called directly, promote it to use the
2487       // Fast calling convention.
2488       F->setCallingConv(CallingConv::Fast);
2489       ChangeCalleesToFastCall(F);
2490       ++NumFastCallFns;
2491       Changed = true;
2492     }
2493 
2494     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2495         !F->hasAddressTaken()) {
2496       // The function is not used by a trampoline intrinsic, so it is safe
2497       // to remove the 'nest' attribute.
2498       RemoveAttribute(F, Attribute::Nest);
2499       ++NumNestRemoved;
2500       Changed = true;
2501     }
2502   }
2503   return Changed;
2504 }
2505 
2506 static bool
2507 OptimizeGlobalVars(Module &M,
2508                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2509                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2510                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2511   bool Changed = false;
2512 
2513   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2514        GVI != E; ) {
2515     GlobalVariable *GV = &*GVI++;
2516     // Global variables without names cannot be referenced outside this module.
2517     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2518       GV->setLinkage(GlobalValue::InternalLinkage);
2519     // Simplify the initializer.
2520     if (GV->hasInitializer())
2521       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2522         auto &DL = M.getDataLayout();
2523         // TLI is not used in the case of a Constant, so use default nullptr
2524         // for that optional parameter, since we don't have a Function to
2525         // provide GetTLI anyway.
2526         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2527         if (New != C)
2528           GV->setInitializer(New);
2529       }
2530 
2531     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2532       Changed = true;
2533       continue;
2534     }
2535 
2536     Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
2537   }
2538   return Changed;
2539 }
2540 
2541 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2542 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2543 /// GEP operands of Addr [0, OpNo) have been stepped into.
2544 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2545                                    ConstantExpr *Addr, unsigned OpNo) {
2546   // Base case of the recursion.
2547   if (OpNo == Addr->getNumOperands()) {
2548     assert(Val->getType() == Init->getType() && "Type mismatch!");
2549     return Val;
2550   }
2551 
2552   SmallVector<Constant*, 32> Elts;
2553   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2554     // Break up the constant into its elements.
2555     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2556       Elts.push_back(Init->getAggregateElement(i));
2557 
2558     // Replace the element that we are supposed to.
2559     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2560     unsigned Idx = CU->getZExtValue();
2561     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2562     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2563 
2564     // Return the modified struct.
2565     return ConstantStruct::get(STy, Elts);
2566   }
2567 
2568   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2569   uint64_t NumElts;
2570   if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType()))
2571     NumElts = ATy->getNumElements();
2572   else
2573     NumElts = cast<FixedVectorType>(Init->getType())->getNumElements();
2574 
2575   // Break up the array into elements.
2576   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2577     Elts.push_back(Init->getAggregateElement(i));
2578 
2579   assert(CI->getZExtValue() < NumElts);
2580   Elts[CI->getZExtValue()] =
2581     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2582 
2583   if (Init->getType()->isArrayTy())
2584     return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts);
2585   return ConstantVector::get(Elts);
2586 }
2587 
2588 /// We have decided that Addr (which satisfies the predicate
2589 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2590 static void CommitValueTo(Constant *Val, Constant *Addr) {
2591   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2592     assert(GV->hasInitializer());
2593     GV->setInitializer(Val);
2594     return;
2595   }
2596 
2597   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2598   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2599   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2600 }
2601 
2602 /// Given a map of address -> value, where addresses are expected to be some form
2603 /// of either a global or a constant GEP, set the initializer for the address to
2604 /// be the value. This performs mostly the same function as CommitValueTo()
2605 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2606 /// case where the set of addresses are GEPs sharing the same underlying global,
2607 /// processing the GEPs in batches rather than individually.
2608 ///
2609 /// To give an example, consider the following C++ code adapted from the clang
2610 /// regression tests:
2611 /// struct S {
2612 ///  int n = 10;
2613 ///  int m = 2 * n;
2614 ///  S(int a) : n(a) {}
2615 /// };
2616 ///
2617 /// template<typename T>
2618 /// struct U {
2619 ///  T *r = &q;
2620 ///  T q = 42;
2621 ///  U *p = this;
2622 /// };
2623 ///
2624 /// U<S> e;
2625 ///
2626 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2627 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2628 /// members. This batch algorithm will simply use general CommitValueTo() method
2629 /// to handle the complex nested S struct initialization of 'q', before
2630 /// processing the outermost members in a single batch. Using CommitValueTo() to
2631 /// handle member in the outer struct is inefficient when the struct/array is
2632 /// very large as we end up creating and destroy constant arrays for each
2633 /// initialization.
2634 /// For the above case, we expect the following IR to be generated:
2635 ///
2636 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2637 /// %struct.S = type { i32, i32 }
2638 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2639 ///                                                  i64 0, i32 1),
2640 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2641 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2642 /// constant expression, while the other two elements of @e are "simple".
2643 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2644   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2645   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2646   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2647   SimpleCEs.reserve(Mem.size());
2648 
2649   for (const auto &I : Mem) {
2650     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2651       GVs.push_back(std::make_pair(GV, I.second));
2652     } else {
2653       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2654       // We don't handle the deeply recursive case using the batch method.
2655       if (GEP->getNumOperands() > 3)
2656         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2657       else
2658         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2659     }
2660   }
2661 
2662   // The algorithm below doesn't handle cases like nested structs, so use the
2663   // slower fully general method if we have to.
2664   for (auto ComplexCE : ComplexCEs)
2665     CommitValueTo(ComplexCE.second, ComplexCE.first);
2666 
2667   for (auto GVPair : GVs) {
2668     assert(GVPair.first->hasInitializer());
2669     GVPair.first->setInitializer(GVPair.second);
2670   }
2671 
2672   if (SimpleCEs.empty())
2673     return;
2674 
2675   // We cache a single global's initializer elements in the case where the
2676   // subsequent address/val pair uses the same one. This avoids throwing away and
2677   // rebuilding the constant struct/vector/array just because one element is
2678   // modified at a time.
2679   SmallVector<Constant *, 32> Elts;
2680   Elts.reserve(SimpleCEs.size());
2681   GlobalVariable *CurrentGV = nullptr;
2682 
2683   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2684     Constant *Init = GV->getInitializer();
2685     Type *Ty = Init->getType();
2686     if (Update) {
2687       if (CurrentGV) {
2688         assert(CurrentGV && "Expected a GV to commit to!");
2689         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2690         // We have a valid cache that needs to be committed.
2691         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2692           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2693         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2694           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2695         else
2696           CurrentGV->setInitializer(ConstantVector::get(Elts));
2697       }
2698       if (CurrentGV == GV)
2699         return;
2700       // Need to clear and set up cache for new initializer.
2701       CurrentGV = GV;
2702       Elts.clear();
2703       unsigned NumElts;
2704       if (auto *STy = dyn_cast<StructType>(Ty))
2705         NumElts = STy->getNumElements();
2706       else if (auto *ATy = dyn_cast<ArrayType>(Ty))
2707         NumElts = ATy->getNumElements();
2708       else
2709         NumElts = cast<FixedVectorType>(Ty)->getNumElements();
2710       for (unsigned i = 0, e = NumElts; i != e; ++i)
2711         Elts.push_back(Init->getAggregateElement(i));
2712     }
2713   };
2714 
2715   for (auto CEPair : SimpleCEs) {
2716     ConstantExpr *GEP = CEPair.first;
2717     Constant *Val = CEPair.second;
2718 
2719     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2720     commitAndSetupCache(GV, GV != CurrentGV);
2721     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2722     Elts[CI->getZExtValue()] = Val;
2723   }
2724   // The last initializer in the list needs to be committed, others
2725   // will be committed on a new initializer being processed.
2726   commitAndSetupCache(CurrentGV, true);
2727 }
2728 
2729 /// Evaluate static constructors in the function, if we can.  Return true if we
2730 /// can, false otherwise.
2731 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2732                                       TargetLibraryInfo *TLI) {
2733   // Call the function.
2734   Evaluator Eval(DL, TLI);
2735   Constant *RetValDummy;
2736   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2737                                            SmallVector<Constant*, 0>());
2738 
2739   if (EvalSuccess) {
2740     ++NumCtorsEvaluated;
2741 
2742     // We succeeded at evaluation: commit the result.
2743     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2744                       << F->getName() << "' to "
2745                       << Eval.getMutatedMemory().size() << " stores.\n");
2746     BatchCommitValueTo(Eval.getMutatedMemory());
2747     for (GlobalVariable *GV : Eval.getInvariants())
2748       GV->setConstant(true);
2749   }
2750 
2751   return EvalSuccess;
2752 }
2753 
2754 static int compareNames(Constant *const *A, Constant *const *B) {
2755   Value *AStripped = (*A)->stripPointerCasts();
2756   Value *BStripped = (*B)->stripPointerCasts();
2757   return AStripped->getName().compare(BStripped->getName());
2758 }
2759 
2760 static void setUsedInitializer(GlobalVariable &V,
2761                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2762   if (Init.empty()) {
2763     V.eraseFromParent();
2764     return;
2765   }
2766 
2767   // Type of pointer to the array of pointers.
2768   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2769 
2770   SmallVector<Constant *, 8> UsedArray;
2771   for (GlobalValue *GV : Init) {
2772     Constant *Cast
2773       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2774     UsedArray.push_back(Cast);
2775   }
2776   // Sort to get deterministic order.
2777   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2778   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2779 
2780   Module *M = V.getParent();
2781   V.removeFromParent();
2782   GlobalVariable *NV =
2783       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2784                          ConstantArray::get(ATy, UsedArray), "");
2785   NV->takeName(&V);
2786   NV->setSection("llvm.metadata");
2787   delete &V;
2788 }
2789 
2790 namespace {
2791 
2792 /// An easy to access representation of llvm.used and llvm.compiler.used.
2793 class LLVMUsed {
2794   SmallPtrSet<GlobalValue *, 8> Used;
2795   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2796   GlobalVariable *UsedV;
2797   GlobalVariable *CompilerUsedV;
2798 
2799 public:
2800   LLVMUsed(Module &M) {
2801     UsedV = collectUsedGlobalVariables(M, Used, false);
2802     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2803   }
2804 
2805   using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2806   using used_iterator_range = iterator_range<iterator>;
2807 
2808   iterator usedBegin() { return Used.begin(); }
2809   iterator usedEnd() { return Used.end(); }
2810 
2811   used_iterator_range used() {
2812     return used_iterator_range(usedBegin(), usedEnd());
2813   }
2814 
2815   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2816   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2817 
2818   used_iterator_range compilerUsed() {
2819     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2820   }
2821 
2822   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2823 
2824   bool compilerUsedCount(GlobalValue *GV) const {
2825     return CompilerUsed.count(GV);
2826   }
2827 
2828   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2829   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2830   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2831 
2832   bool compilerUsedInsert(GlobalValue *GV) {
2833     return CompilerUsed.insert(GV).second;
2834   }
2835 
2836   void syncVariablesAndSets() {
2837     if (UsedV)
2838       setUsedInitializer(*UsedV, Used);
2839     if (CompilerUsedV)
2840       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2841   }
2842 };
2843 
2844 } // end anonymous namespace
2845 
2846 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2847   if (GA.use_empty()) // No use at all.
2848     return false;
2849 
2850   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2851          "We should have removed the duplicated "
2852          "element from llvm.compiler.used");
2853   if (!GA.hasOneUse())
2854     // Strictly more than one use. So at least one is not in llvm.used and
2855     // llvm.compiler.used.
2856     return true;
2857 
2858   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2859   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2860 }
2861 
2862 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2863                                                const LLVMUsed &U) {
2864   unsigned N = 2;
2865   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2866          "We should have removed the duplicated "
2867          "element from llvm.compiler.used");
2868   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2869     ++N;
2870   return V.hasNUsesOrMore(N);
2871 }
2872 
2873 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2874   if (!GA.hasLocalLinkage())
2875     return true;
2876 
2877   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2878 }
2879 
2880 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2881                              bool &RenameTarget) {
2882   RenameTarget = false;
2883   bool Ret = false;
2884   if (hasUseOtherThanLLVMUsed(GA, U))
2885     Ret = true;
2886 
2887   // If the alias is externally visible, we may still be able to simplify it.
2888   if (!mayHaveOtherReferences(GA, U))
2889     return Ret;
2890 
2891   // If the aliasee has internal linkage, give it the name and linkage
2892   // of the alias, and delete the alias.  This turns:
2893   //   define internal ... @f(...)
2894   //   @a = alias ... @f
2895   // into:
2896   //   define ... @a(...)
2897   Constant *Aliasee = GA.getAliasee();
2898   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2899   if (!Target->hasLocalLinkage())
2900     return Ret;
2901 
2902   // Do not perform the transform if multiple aliases potentially target the
2903   // aliasee. This check also ensures that it is safe to replace the section
2904   // and other attributes of the aliasee with those of the alias.
2905   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2906     return Ret;
2907 
2908   RenameTarget = true;
2909   return true;
2910 }
2911 
2912 static bool
2913 OptimizeGlobalAliases(Module &M,
2914                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2915   bool Changed = false;
2916   LLVMUsed Used(M);
2917 
2918   for (GlobalValue *GV : Used.used())
2919     Used.compilerUsedErase(GV);
2920 
2921   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2922        I != E;) {
2923     GlobalAlias *J = &*I++;
2924 
2925     // Aliases without names cannot be referenced outside this module.
2926     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2927       J->setLinkage(GlobalValue::InternalLinkage);
2928 
2929     if (deleteIfDead(*J, NotDiscardableComdats)) {
2930       Changed = true;
2931       continue;
2932     }
2933 
2934     // If the alias can change at link time, nothing can be done - bail out.
2935     if (J->isInterposable())
2936       continue;
2937 
2938     Constant *Aliasee = J->getAliasee();
2939     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2940     // We can't trivially replace the alias with the aliasee if the aliasee is
2941     // non-trivial in some way.
2942     // TODO: Try to handle non-zero GEPs of local aliasees.
2943     if (!Target)
2944       continue;
2945     Target->removeDeadConstantUsers();
2946 
2947     // Make all users of the alias use the aliasee instead.
2948     bool RenameTarget;
2949     if (!hasUsesToReplace(*J, Used, RenameTarget))
2950       continue;
2951 
2952     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2953     ++NumAliasesResolved;
2954     Changed = true;
2955 
2956     if (RenameTarget) {
2957       // Give the aliasee the name, linkage and other attributes of the alias.
2958       Target->takeName(&*J);
2959       Target->setLinkage(J->getLinkage());
2960       Target->setDSOLocal(J->isDSOLocal());
2961       Target->setVisibility(J->getVisibility());
2962       Target->setDLLStorageClass(J->getDLLStorageClass());
2963 
2964       if (Used.usedErase(&*J))
2965         Used.usedInsert(Target);
2966 
2967       if (Used.compilerUsedErase(&*J))
2968         Used.compilerUsedInsert(Target);
2969     } else if (mayHaveOtherReferences(*J, Used))
2970       continue;
2971 
2972     // Delete the alias.
2973     M.getAliasList().erase(J);
2974     ++NumAliasesRemoved;
2975     Changed = true;
2976   }
2977 
2978   Used.syncVariablesAndSets();
2979 
2980   return Changed;
2981 }
2982 
2983 static Function *
2984 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2985   // Hack to get a default TLI before we have actual Function.
2986   auto FuncIter = M.begin();
2987   if (FuncIter == M.end())
2988     return nullptr;
2989   auto *TLI = &GetTLI(*FuncIter);
2990 
2991   LibFunc F = LibFunc_cxa_atexit;
2992   if (!TLI->has(F))
2993     return nullptr;
2994 
2995   Function *Fn = M.getFunction(TLI->getName(F));
2996   if (!Fn)
2997     return nullptr;
2998 
2999   // Now get the actual TLI for Fn.
3000   TLI = &GetTLI(*Fn);
3001 
3002   // Make sure that the function has the correct prototype.
3003   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
3004     return nullptr;
3005 
3006   return Fn;
3007 }
3008 
3009 /// Returns whether the given function is an empty C++ destructor and can
3010 /// therefore be eliminated.
3011 /// Note that we assume that other optimization passes have already simplified
3012 /// the code so we simply check for 'ret'.
3013 static bool cxxDtorIsEmpty(const Function &Fn) {
3014   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
3015   // nounwind, but that doesn't seem worth doing.
3016   if (Fn.isDeclaration())
3017     return false;
3018 
3019   for (auto &I : Fn.getEntryBlock()) {
3020     if (isa<DbgInfoIntrinsic>(I))
3021       continue;
3022     if (isa<ReturnInst>(I))
3023       return true;
3024     break;
3025   }
3026   return false;
3027 }
3028 
3029 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
3030   /// Itanium C++ ABI p3.3.5:
3031   ///
3032   ///   After constructing a global (or local static) object, that will require
3033   ///   destruction on exit, a termination function is registered as follows:
3034   ///
3035   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
3036   ///
3037   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
3038   ///   call f(p) when DSO d is unloaded, before all such termination calls
3039   ///   registered before this one. It returns zero if registration is
3040   ///   successful, nonzero on failure.
3041 
3042   // This pass will look for calls to __cxa_atexit where the function is trivial
3043   // and remove them.
3044   bool Changed = false;
3045 
3046   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
3047        I != E;) {
3048     // We're only interested in calls. Theoretically, we could handle invoke
3049     // instructions as well, but neither llvm-gcc nor clang generate invokes
3050     // to __cxa_atexit.
3051     CallInst *CI = dyn_cast<CallInst>(*I++);
3052     if (!CI)
3053       continue;
3054 
3055     Function *DtorFn =
3056       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
3057     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
3058       continue;
3059 
3060     // Just remove the call.
3061     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
3062     CI->eraseFromParent();
3063 
3064     ++NumCXXDtorsRemoved;
3065 
3066     Changed |= true;
3067   }
3068 
3069   return Changed;
3070 }
3071 
3072 static bool optimizeGlobalsInModule(
3073     Module &M, const DataLayout &DL,
3074     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
3075     function_ref<TargetTransformInfo &(Function &)> GetTTI,
3076     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
3077     function_ref<DominatorTree &(Function &)> LookupDomTree) {
3078   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
3079   bool Changed = false;
3080   bool LocalChange = true;
3081   while (LocalChange) {
3082     LocalChange = false;
3083 
3084     NotDiscardableComdats.clear();
3085     for (const GlobalVariable &GV : M.globals())
3086       if (const Comdat *C = GV.getComdat())
3087         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
3088           NotDiscardableComdats.insert(C);
3089     for (Function &F : M)
3090       if (const Comdat *C = F.getComdat())
3091         if (!F.isDefTriviallyDead())
3092           NotDiscardableComdats.insert(C);
3093     for (GlobalAlias &GA : M.aliases())
3094       if (const Comdat *C = GA.getComdat())
3095         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
3096           NotDiscardableComdats.insert(C);
3097 
3098     // Delete functions that are trivially dead, ccc -> fastcc
3099     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
3100                                      NotDiscardableComdats);
3101 
3102     // Optimize global_ctors list.
3103     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
3104       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
3105     });
3106 
3107     // Optimize non-address-taken globals.
3108     LocalChange |=
3109         OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);
3110 
3111     // Resolve aliases, when possible.
3112     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
3113 
3114     // Try to remove trivial global destructors if they are not removed
3115     // already.
3116     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
3117     if (CXAAtExitFn)
3118       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
3119 
3120     Changed |= LocalChange;
3121   }
3122 
3123   // TODO: Move all global ctors functions to the end of the module for code
3124   // layout.
3125 
3126   return Changed;
3127 }
3128 
3129 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
3130     auto &DL = M.getDataLayout();
3131     auto &FAM =
3132         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3133     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
3134       return FAM.getResult<DominatorTreeAnalysis>(F);
3135     };
3136     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
3137       return FAM.getResult<TargetLibraryAnalysis>(F);
3138     };
3139     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
3140       return FAM.getResult<TargetIRAnalysis>(F);
3141     };
3142 
3143     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
3144       return FAM.getResult<BlockFrequencyAnalysis>(F);
3145     };
3146 
3147     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
3148       return PreservedAnalyses::all();
3149     return PreservedAnalyses::none();
3150 }
3151 
3152 namespace {
3153 
3154 struct GlobalOptLegacyPass : public ModulePass {
3155   static char ID; // Pass identification, replacement for typeid
3156 
3157   GlobalOptLegacyPass() : ModulePass(ID) {
3158     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
3159   }
3160 
3161   bool runOnModule(Module &M) override {
3162     if (skipModule(M))
3163       return false;
3164 
3165     auto &DL = M.getDataLayout();
3166     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
3167       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
3168     };
3169     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
3170       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3171     };
3172     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
3173       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3174     };
3175 
3176     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3177       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3178     };
3179 
3180     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
3181                                    LookupDomTree);
3182   }
3183 
3184   void getAnalysisUsage(AnalysisUsage &AU) const override {
3185     AU.addRequired<TargetLibraryInfoWrapperPass>();
3186     AU.addRequired<TargetTransformInfoWrapperPass>();
3187     AU.addRequired<DominatorTreeWrapperPass>();
3188     AU.addRequired<BlockFrequencyInfoWrapperPass>();
3189   }
3190 };
3191 
3192 } // end anonymous namespace
3193 
3194 char GlobalOptLegacyPass::ID = 0;
3195 
3196 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3197                       "Global Variable Optimizer", false, false)
3198 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3199 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3200 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3201 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3202 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3203                     "Global Variable Optimizer", false, false)
3204 
3205 ModulePass *llvm::createGlobalOptimizerPass() {
3206   return new GlobalOptLegacyPass();
3207 }
3208