1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms simple global variables that never have their address
11 // taken.  If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/GlobalOpt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/Utils/Local.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GetElementPtrTypeIterator.h"
44 #include "llvm/IR/GlobalAlias.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Operator.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueHandle.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/AtomicOrdering.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MathExtras.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Transforms/IPO.h"
67 #include "llvm/Transforms/Utils/CtorUtils.h"
68 #include "llvm/Transforms/Utils/Evaluator.h"
69 #include "llvm/Transforms/Utils/GlobalStatus.h"
70 #include <cassert>
71 #include <cstdint>
72 #include <utility>
73 #include <vector>
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "globalopt"
78 
79 STATISTIC(NumMarked    , "Number of globals marked constant");
80 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
81 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
82 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
83 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
84 STATISTIC(NumDeleted   , "Number of globals deleted");
85 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
86 STATISTIC(NumLocalized , "Number of globals localized");
87 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
88 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
89 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
90 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
91 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
92 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
93 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
94 STATISTIC(NumInternalFunc, "Number of internal functions");
95 STATISTIC(NumColdCC, "Number of functions marked coldcc");
96 
97 static cl::opt<bool>
98     EnableColdCCStressTest("enable-coldcc-stress-test",
99                            cl::desc("Enable stress test of coldcc by adding "
100                                     "calling conv to all internal functions."),
101                            cl::init(false), cl::Hidden);
102 
103 static cl::opt<int> ColdCCRelFreq(
104     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
105     cl::desc(
106         "Maximum block frequency, expressed as a percentage of caller's "
107         "entry frequency, for a call site to be considered cold for enabling"
108         "coldcc"));
109 
110 /// Is this global variable possibly used by a leak checker as a root?  If so,
111 /// we might not really want to eliminate the stores to it.
112 static bool isLeakCheckerRoot(GlobalVariable *GV) {
113   // A global variable is a root if it is a pointer, or could plausibly contain
114   // a pointer.  There are two challenges; one is that we could have a struct
115   // the has an inner member which is a pointer.  We recurse through the type to
116   // detect these (up to a point).  The other is that we may actually be a union
117   // of a pointer and another type, and so our LLVM type is an integer which
118   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
119   // potentially contained here.
120 
121   if (GV->hasPrivateLinkage())
122     return false;
123 
124   SmallVector<Type *, 4> Types;
125   Types.push_back(GV->getValueType());
126 
127   unsigned Limit = 20;
128   do {
129     Type *Ty = Types.pop_back_val();
130     switch (Ty->getTypeID()) {
131       default: break;
132       case Type::PointerTyID: return true;
133       case Type::ArrayTyID:
134       case Type::VectorTyID: {
135         SequentialType *STy = cast<SequentialType>(Ty);
136         Types.push_back(STy->getElementType());
137         break;
138       }
139       case Type::StructTyID: {
140         StructType *STy = cast<StructType>(Ty);
141         if (STy->isOpaque()) return true;
142         for (StructType::element_iterator I = STy->element_begin(),
143                  E = STy->element_end(); I != E; ++I) {
144           Type *InnerTy = *I;
145           if (isa<PointerType>(InnerTy)) return true;
146           if (isa<CompositeType>(InnerTy))
147             Types.push_back(InnerTy);
148         }
149         break;
150       }
151     }
152     if (--Limit == 0) return true;
153   } while (!Types.empty());
154   return false;
155 }
156 
157 /// Given a value that is stored to a global but never read, determine whether
158 /// it's safe to remove the store and the chain of computation that feeds the
159 /// store.
160 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
161   do {
162     if (isa<Constant>(V))
163       return true;
164     if (!V->hasOneUse())
165       return false;
166     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
167         isa<GlobalValue>(V))
168       return false;
169     if (isAllocationFn(V, TLI))
170       return true;
171 
172     Instruction *I = cast<Instruction>(V);
173     if (I->mayHaveSideEffects())
174       return false;
175     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
176       if (!GEP->hasAllConstantIndices())
177         return false;
178     } else if (I->getNumOperands() != 1) {
179       return false;
180     }
181 
182     V = I->getOperand(0);
183   } while (true);
184 }
185 
186 /// This GV is a pointer root.  Loop over all users of the global and clean up
187 /// any that obviously don't assign the global a value that isn't dynamically
188 /// allocated.
189 static bool CleanupPointerRootUsers(GlobalVariable *GV,
190                                     const TargetLibraryInfo *TLI) {
191   // A brief explanation of leak checkers.  The goal is to find bugs where
192   // pointers are forgotten, causing an accumulating growth in memory
193   // usage over time.  The common strategy for leak checkers is to whitelist the
194   // memory pointed to by globals at exit.  This is popular because it also
195   // solves another problem where the main thread of a C++ program may shut down
196   // before other threads that are still expecting to use those globals.  To
197   // handle that case, we expect the program may create a singleton and never
198   // destroy it.
199 
200   bool Changed = false;
201 
202   // If Dead[n].first is the only use of a malloc result, we can delete its
203   // chain of computation and the store to the global in Dead[n].second.
204   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
205 
206   // Constants can't be pointers to dynamically allocated memory.
207   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
208        UI != E;) {
209     User *U = *UI++;
210     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
211       Value *V = SI->getValueOperand();
212       if (isa<Constant>(V)) {
213         Changed = true;
214         SI->eraseFromParent();
215       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
216         if (I->hasOneUse())
217           Dead.push_back(std::make_pair(I, SI));
218       }
219     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
220       if (isa<Constant>(MSI->getValue())) {
221         Changed = true;
222         MSI->eraseFromParent();
223       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
224         if (I->hasOneUse())
225           Dead.push_back(std::make_pair(I, MSI));
226       }
227     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
228       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
229       if (MemSrc && MemSrc->isConstant()) {
230         Changed = true;
231         MTI->eraseFromParent();
232       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
233         if (I->hasOneUse())
234           Dead.push_back(std::make_pair(I, MTI));
235       }
236     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
237       if (CE->use_empty()) {
238         CE->destroyConstant();
239         Changed = true;
240       }
241     } else if (Constant *C = dyn_cast<Constant>(U)) {
242       if (isSafeToDestroyConstant(C)) {
243         C->destroyConstant();
244         // This could have invalidated UI, start over from scratch.
245         Dead.clear();
246         CleanupPointerRootUsers(GV, TLI);
247         return true;
248       }
249     }
250   }
251 
252   for (int i = 0, e = Dead.size(); i != e; ++i) {
253     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
254       Dead[i].second->eraseFromParent();
255       Instruction *I = Dead[i].first;
256       do {
257         if (isAllocationFn(I, TLI))
258           break;
259         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
260         if (!J)
261           break;
262         I->eraseFromParent();
263         I = J;
264       } while (true);
265       I->eraseFromParent();
266     }
267   }
268 
269   return Changed;
270 }
271 
272 /// We just marked GV constant.  Loop over all users of the global, cleaning up
273 /// the obvious ones.  This is largely just a quick scan over the use list to
274 /// clean up the easy and obvious cruft.  This returns true if it made a change.
275 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
276                                        const DataLayout &DL,
277                                        TargetLibraryInfo *TLI) {
278   bool Changed = false;
279   // Note that we need to use a weak value handle for the worklist items. When
280   // we delete a constant array, we may also be holding pointer to one of its
281   // elements (or an element of one of its elements if we're dealing with an
282   // array of arrays) in the worklist.
283   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
284   while (!WorkList.empty()) {
285     Value *UV = WorkList.pop_back_val();
286     if (!UV)
287       continue;
288 
289     User *U = cast<User>(UV);
290 
291     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
292       if (Init) {
293         // Replace the load with the initializer.
294         LI->replaceAllUsesWith(Init);
295         LI->eraseFromParent();
296         Changed = true;
297       }
298     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
299       // Store must be unreachable or storing Init into the global.
300       SI->eraseFromParent();
301       Changed = true;
302     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
303       if (CE->getOpcode() == Instruction::GetElementPtr) {
304         Constant *SubInit = nullptr;
305         if (Init)
306           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
307         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
308       } else if ((CE->getOpcode() == Instruction::BitCast &&
309                   CE->getType()->isPointerTy()) ||
310                  CE->getOpcode() == Instruction::AddrSpaceCast) {
311         // Pointer cast, delete any stores and memsets to the global.
312         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
313       }
314 
315       if (CE->use_empty()) {
316         CE->destroyConstant();
317         Changed = true;
318       }
319     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
320       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
321       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
322       // and will invalidate our notion of what Init is.
323       Constant *SubInit = nullptr;
324       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
325         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
326             ConstantFoldInstruction(GEP, DL, TLI));
327         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
328           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
329 
330         // If the initializer is an all-null value and we have an inbounds GEP,
331         // we already know what the result of any load from that GEP is.
332         // TODO: Handle splats.
333         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
334           SubInit = Constant::getNullValue(GEP->getResultElementType());
335       }
336       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
337 
338       if (GEP->use_empty()) {
339         GEP->eraseFromParent();
340         Changed = true;
341       }
342     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
343       if (MI->getRawDest() == V) {
344         MI->eraseFromParent();
345         Changed = true;
346       }
347 
348     } else if (Constant *C = dyn_cast<Constant>(U)) {
349       // If we have a chain of dead constantexprs or other things dangling from
350       // us, and if they are all dead, nuke them without remorse.
351       if (isSafeToDestroyConstant(C)) {
352         C->destroyConstant();
353         CleanupConstantGlobalUsers(V, Init, DL, TLI);
354         return true;
355       }
356     }
357   }
358   return Changed;
359 }
360 
361 /// Return true if the specified instruction is a safe user of a derived
362 /// expression from a global that we want to SROA.
363 static bool isSafeSROAElementUse(Value *V) {
364   // We might have a dead and dangling constant hanging off of here.
365   if (Constant *C = dyn_cast<Constant>(V))
366     return isSafeToDestroyConstant(C);
367 
368   Instruction *I = dyn_cast<Instruction>(V);
369   if (!I) return false;
370 
371   // Loads are ok.
372   if (isa<LoadInst>(I)) return true;
373 
374   // Stores *to* the pointer are ok.
375   if (StoreInst *SI = dyn_cast<StoreInst>(I))
376     return SI->getOperand(0) != V;
377 
378   // Otherwise, it must be a GEP.
379   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
380   if (!GEPI) return false;
381 
382   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
383       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
384     return false;
385 
386   for (User *U : GEPI->users())
387     if (!isSafeSROAElementUse(U))
388       return false;
389   return true;
390 }
391 
392 /// U is a direct user of the specified global value.  Look at it and its uses
393 /// and decide whether it is safe to SROA this global.
394 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
395   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
396   if (!isa<GetElementPtrInst>(U) &&
397       (!isa<ConstantExpr>(U) ||
398        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
399     return false;
400 
401   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
402   // don't like < 3 operand CE's, and we don't like non-constant integer
403   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
404   // value of C.
405   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
406       !cast<Constant>(U->getOperand(1))->isNullValue() ||
407       !isa<ConstantInt>(U->getOperand(2)))
408     return false;
409 
410   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
411   ++GEPI;  // Skip over the pointer index.
412 
413   // If this is a use of an array allocation, do a bit more checking for sanity.
414   if (GEPI.isSequential()) {
415     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
416 
417     // Check to make sure that index falls within the array.  If not,
418     // something funny is going on, so we won't do the optimization.
419     //
420     if (GEPI.isBoundedSequential() &&
421         Idx->getZExtValue() >= GEPI.getSequentialNumElements())
422       return false;
423 
424     // We cannot scalar repl this level of the array unless any array
425     // sub-indices are in-range constants.  In particular, consider:
426     // A[0][i].  We cannot know that the user isn't doing invalid things like
427     // allowing i to index an out-of-range subscript that accesses A[1].
428     //
429     // Scalar replacing *just* the outer index of the array is probably not
430     // going to be a win anyway, so just give up.
431     for (++GEPI; // Skip array index.
432          GEPI != E;
433          ++GEPI) {
434       if (GEPI.isStruct())
435         continue;
436 
437       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
438       if (!IdxVal ||
439           (GEPI.isBoundedSequential() &&
440            IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
441         return false;
442     }
443   }
444 
445   return llvm::all_of(U->users(),
446                       [](User *UU) { return isSafeSROAElementUse(UU); });
447 }
448 
449 /// Look at all uses of the global and decide whether it is safe for us to
450 /// perform this transformation.
451 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
452   for (User *U : GV->users())
453     if (!IsUserOfGlobalSafeForSRA(U, GV))
454       return false;
455 
456   return true;
457 }
458 
459 /// Copy over the debug info for a variable to its SRA replacements.
460 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
461                                  uint64_t FragmentOffsetInBits,
462                                  uint64_t FragmentSizeInBits,
463                                  unsigned NumElements) {
464   SmallVector<DIGlobalVariableExpression *, 1> GVs;
465   GV->getDebugInfo(GVs);
466   for (auto *GVE : GVs) {
467     DIVariable *Var = GVE->getVariable();
468     DIExpression *Expr = GVE->getExpression();
469     if (NumElements > 1) {
470       if (auto E = DIExpression::createFragmentExpression(
471               Expr, FragmentOffsetInBits, FragmentSizeInBits))
472         Expr = *E;
473       else
474         return;
475     }
476     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
477     NGV->addDebugInfo(NGVE);
478   }
479 }
480 
481 /// Perform scalar replacement of aggregates on the specified global variable.
482 /// This opens the door for other optimizations by exposing the behavior of the
483 /// program in a more fine-grained way.  We have determined that this
484 /// transformation is safe already.  We return the first global variable we
485 /// insert so that the caller can reprocess it.
486 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
487   // Make sure this global only has simple uses that we can SRA.
488   if (!GlobalUsersSafeToSRA(GV))
489     return nullptr;
490 
491   assert(GV->hasLocalLinkage());
492   Constant *Init = GV->getInitializer();
493   Type *Ty = Init->getType();
494 
495   std::vector<GlobalVariable *> NewGlobals;
496   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
497 
498   // Get the alignment of the global, either explicit or target-specific.
499   unsigned StartAlignment = GV->getAlignment();
500   if (StartAlignment == 0)
501     StartAlignment = DL.getABITypeAlignment(GV->getType());
502 
503   if (StructType *STy = dyn_cast<StructType>(Ty)) {
504     unsigned NumElements = STy->getNumElements();
505     NewGlobals.reserve(NumElements);
506     const StructLayout &Layout = *DL.getStructLayout(STy);
507     for (unsigned i = 0, e = NumElements; i != e; ++i) {
508       Constant *In = Init->getAggregateElement(i);
509       assert(In && "Couldn't get element of initializer?");
510       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
511                                                GlobalVariable::InternalLinkage,
512                                                In, GV->getName()+"."+Twine(i),
513                                                GV->getThreadLocalMode(),
514                                               GV->getType()->getAddressSpace());
515       NGV->setExternallyInitialized(GV->isExternallyInitialized());
516       NGV->copyAttributesFrom(GV);
517       Globals.push_back(NGV);
518       NewGlobals.push_back(NGV);
519 
520       // Calculate the known alignment of the field.  If the original aggregate
521       // had 256 byte alignment for example, something might depend on that:
522       // propagate info to each field.
523       uint64_t FieldOffset = Layout.getElementOffset(i);
524       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
525       if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
526         NGV->setAlignment(NewAlign);
527 
528       // Copy over the debug info for the variable.
529       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
530       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i);
531       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements);
532     }
533   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
534     unsigned NumElements = STy->getNumElements();
535     if (NumElements > 16 && GV->hasNUsesOrMore(16))
536       return nullptr; // It's not worth it.
537     NewGlobals.reserve(NumElements);
538     auto ElTy = STy->getElementType();
539     uint64_t EltSize = DL.getTypeAllocSize(ElTy);
540     unsigned EltAlign = DL.getABITypeAlignment(ElTy);
541     uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
542     for (unsigned i = 0, e = NumElements; i != e; ++i) {
543       Constant *In = Init->getAggregateElement(i);
544       assert(In && "Couldn't get element of initializer?");
545 
546       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
547                                                GlobalVariable::InternalLinkage,
548                                                In, GV->getName()+"."+Twine(i),
549                                                GV->getThreadLocalMode(),
550                                               GV->getType()->getAddressSpace());
551       NGV->setExternallyInitialized(GV->isExternallyInitialized());
552       NGV->copyAttributesFrom(GV);
553       Globals.push_back(NGV);
554       NewGlobals.push_back(NGV);
555 
556       // Calculate the known alignment of the field.  If the original aggregate
557       // had 256 byte alignment for example, something might depend on that:
558       // propagate info to each field.
559       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
560       if (NewAlign > EltAlign)
561         NGV->setAlignment(NewAlign);
562       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits,
563                            NumElements);
564     }
565   }
566 
567   if (NewGlobals.empty())
568     return nullptr;
569 
570   DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
571 
572   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
573 
574   // Loop over all of the uses of the global, replacing the constantexpr geps,
575   // with smaller constantexpr geps or direct references.
576   while (!GV->use_empty()) {
577     User *GEP = GV->user_back();
578     assert(((isa<ConstantExpr>(GEP) &&
579              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
580             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
581 
582     // Ignore the 1th operand, which has to be zero or else the program is quite
583     // broken (undefined).  Get the 2nd operand, which is the structure or array
584     // index.
585     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
586     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
587 
588     Value *NewPtr = NewGlobals[Val];
589     Type *NewTy = NewGlobals[Val]->getValueType();
590 
591     // Form a shorter GEP if needed.
592     if (GEP->getNumOperands() > 3) {
593       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
594         SmallVector<Constant*, 8> Idxs;
595         Idxs.push_back(NullInt);
596         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
597           Idxs.push_back(CE->getOperand(i));
598         NewPtr =
599             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
600       } else {
601         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
602         SmallVector<Value*, 8> Idxs;
603         Idxs.push_back(NullInt);
604         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
605           Idxs.push_back(GEPI->getOperand(i));
606         NewPtr = GetElementPtrInst::Create(
607             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
608       }
609     }
610     GEP->replaceAllUsesWith(NewPtr);
611 
612     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
613       GEPI->eraseFromParent();
614     else
615       cast<ConstantExpr>(GEP)->destroyConstant();
616   }
617 
618   // Delete the old global, now that it is dead.
619   Globals.erase(GV);
620   ++NumSRA;
621 
622   // Loop over the new globals array deleting any globals that are obviously
623   // dead.  This can arise due to scalarization of a structure or an array that
624   // has elements that are dead.
625   unsigned FirstGlobal = 0;
626   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
627     if (NewGlobals[i]->use_empty()) {
628       Globals.erase(NewGlobals[i]);
629       if (FirstGlobal == i) ++FirstGlobal;
630     }
631 
632   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
633 }
634 
635 /// Return true if all users of the specified value will trap if the value is
636 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
637 /// reprocessing them.
638 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
639                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
640   for (const User *U : V->users())
641     if (isa<LoadInst>(U)) {
642       // Will trap.
643     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
644       if (SI->getOperand(0) == V) {
645         //cerr << "NONTRAPPING USE: " << *U;
646         return false;  // Storing the value.
647       }
648     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
649       if (CI->getCalledValue() != V) {
650         //cerr << "NONTRAPPING USE: " << *U;
651         return false;  // Not calling the ptr
652       }
653     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
654       if (II->getCalledValue() != V) {
655         //cerr << "NONTRAPPING USE: " << *U;
656         return false;  // Not calling the ptr
657       }
658     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
659       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
660     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
661       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
662     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
663       // If we've already seen this phi node, ignore it, it has already been
664       // checked.
665       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
666         return false;
667     } else if (isa<ICmpInst>(U) &&
668                isa<ConstantPointerNull>(U->getOperand(1))) {
669       // Ignore icmp X, null
670     } else {
671       //cerr << "NONTRAPPING USE: " << *U;
672       return false;
673     }
674 
675   return true;
676 }
677 
678 /// Return true if all uses of any loads from GV will trap if the loaded value
679 /// is null.  Note that this also permits comparisons of the loaded value
680 /// against null, as a special case.
681 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
682   for (const User *U : GV->users())
683     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
684       SmallPtrSet<const PHINode*, 8> PHIs;
685       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
686         return false;
687     } else if (isa<StoreInst>(U)) {
688       // Ignore stores to the global.
689     } else {
690       // We don't know or understand this user, bail out.
691       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
692       return false;
693     }
694   return true;
695 }
696 
697 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
698   bool Changed = false;
699   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
700     Instruction *I = cast<Instruction>(*UI++);
701     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
702       LI->setOperand(0, NewV);
703       Changed = true;
704     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
705       if (SI->getOperand(1) == V) {
706         SI->setOperand(1, NewV);
707         Changed = true;
708       }
709     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
710       CallSite CS(I);
711       if (CS.getCalledValue() == V) {
712         // Calling through the pointer!  Turn into a direct call, but be careful
713         // that the pointer is not also being passed as an argument.
714         CS.setCalledFunction(NewV);
715         Changed = true;
716         bool PassedAsArg = false;
717         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
718           if (CS.getArgument(i) == V) {
719             PassedAsArg = true;
720             CS.setArgument(i, NewV);
721           }
722 
723         if (PassedAsArg) {
724           // Being passed as an argument also.  Be careful to not invalidate UI!
725           UI = V->user_begin();
726         }
727       }
728     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
729       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
730                                 ConstantExpr::getCast(CI->getOpcode(),
731                                                       NewV, CI->getType()));
732       if (CI->use_empty()) {
733         Changed = true;
734         CI->eraseFromParent();
735       }
736     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
737       // Should handle GEP here.
738       SmallVector<Constant*, 8> Idxs;
739       Idxs.reserve(GEPI->getNumOperands()-1);
740       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
741            i != e; ++i)
742         if (Constant *C = dyn_cast<Constant>(*i))
743           Idxs.push_back(C);
744         else
745           break;
746       if (Idxs.size() == GEPI->getNumOperands()-1)
747         Changed |= OptimizeAwayTrappingUsesOfValue(
748             GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
749       if (GEPI->use_empty()) {
750         Changed = true;
751         GEPI->eraseFromParent();
752       }
753     }
754   }
755 
756   return Changed;
757 }
758 
759 /// The specified global has only one non-null value stored into it.  If there
760 /// are uses of the loaded value that would trap if the loaded value is
761 /// dynamically null, then we know that they cannot be reachable with a null
762 /// optimize away the load.
763 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
764                                             const DataLayout &DL,
765                                             TargetLibraryInfo *TLI) {
766   bool Changed = false;
767 
768   // Keep track of whether we are able to remove all the uses of the global
769   // other than the store that defines it.
770   bool AllNonStoreUsesGone = true;
771 
772   // Replace all uses of loads with uses of uses of the stored value.
773   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
774     User *GlobalUser = *GUI++;
775     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
776       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
777       // If we were able to delete all uses of the loads
778       if (LI->use_empty()) {
779         LI->eraseFromParent();
780         Changed = true;
781       } else {
782         AllNonStoreUsesGone = false;
783       }
784     } else if (isa<StoreInst>(GlobalUser)) {
785       // Ignore the store that stores "LV" to the global.
786       assert(GlobalUser->getOperand(1) == GV &&
787              "Must be storing *to* the global");
788     } else {
789       AllNonStoreUsesGone = false;
790 
791       // If we get here we could have other crazy uses that are transitively
792       // loaded.
793       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
794               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
795               isa<BitCastInst>(GlobalUser) ||
796               isa<GetElementPtrInst>(GlobalUser)) &&
797              "Only expect load and stores!");
798     }
799   }
800 
801   if (Changed) {
802     DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n");
803     ++NumGlobUses;
804   }
805 
806   // If we nuked all of the loads, then none of the stores are needed either,
807   // nor is the global.
808   if (AllNonStoreUsesGone) {
809     if (isLeakCheckerRoot(GV)) {
810       Changed |= CleanupPointerRootUsers(GV, TLI);
811     } else {
812       Changed = true;
813       CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
814     }
815     if (GV->use_empty()) {
816       DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
817       Changed = true;
818       GV->eraseFromParent();
819       ++NumDeleted;
820     }
821   }
822   return Changed;
823 }
824 
825 /// Walk the use list of V, constant folding all of the instructions that are
826 /// foldable.
827 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
828                                 TargetLibraryInfo *TLI) {
829   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
830     if (Instruction *I = dyn_cast<Instruction>(*UI++))
831       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
832         I->replaceAllUsesWith(NewC);
833 
834         // Advance UI to the next non-I use to avoid invalidating it!
835         // Instructions could multiply use V.
836         while (UI != E && *UI == I)
837           ++UI;
838         if (isInstructionTriviallyDead(I, TLI))
839           I->eraseFromParent();
840       }
841 }
842 
843 /// This function takes the specified global variable, and transforms the
844 /// program as if it always contained the result of the specified malloc.
845 /// Because it is always the result of the specified malloc, there is no reason
846 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
847 /// loads of GV as uses of the new global.
848 static GlobalVariable *
849 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
850                               ConstantInt *NElements, const DataLayout &DL,
851                               TargetLibraryInfo *TLI) {
852   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
853 
854   Type *GlobalType;
855   if (NElements->getZExtValue() == 1)
856     GlobalType = AllocTy;
857   else
858     // If we have an array allocation, the global variable is of an array.
859     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
860 
861   // Create the new global variable.  The contents of the malloc'd memory is
862   // undefined, so initialize with an undef value.
863   GlobalVariable *NewGV = new GlobalVariable(
864       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
865       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
866       GV->getThreadLocalMode());
867 
868   // If there are bitcast users of the malloc (which is typical, usually we have
869   // a malloc + bitcast) then replace them with uses of the new global.  Update
870   // other users to use the global as well.
871   BitCastInst *TheBC = nullptr;
872   while (!CI->use_empty()) {
873     Instruction *User = cast<Instruction>(CI->user_back());
874     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
875       if (BCI->getType() == NewGV->getType()) {
876         BCI->replaceAllUsesWith(NewGV);
877         BCI->eraseFromParent();
878       } else {
879         BCI->setOperand(0, NewGV);
880       }
881     } else {
882       if (!TheBC)
883         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
884       User->replaceUsesOfWith(CI, TheBC);
885     }
886   }
887 
888   Constant *RepValue = NewGV;
889   if (NewGV->getType() != GV->getValueType())
890     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
891 
892   // If there is a comparison against null, we will insert a global bool to
893   // keep track of whether the global was initialized yet or not.
894   GlobalVariable *InitBool =
895     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
896                        GlobalValue::InternalLinkage,
897                        ConstantInt::getFalse(GV->getContext()),
898                        GV->getName()+".init", GV->getThreadLocalMode());
899   bool InitBoolUsed = false;
900 
901   // Loop over all uses of GV, processing them in turn.
902   while (!GV->use_empty()) {
903     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
904       // The global is initialized when the store to it occurs.
905       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
906                     SI->getOrdering(), SI->getSyncScopeID(), SI);
907       SI->eraseFromParent();
908       continue;
909     }
910 
911     LoadInst *LI = cast<LoadInst>(GV->user_back());
912     while (!LI->use_empty()) {
913       Use &LoadUse = *LI->use_begin();
914       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
915       if (!ICI) {
916         LoadUse = RepValue;
917         continue;
918       }
919 
920       // Replace the cmp X, 0 with a use of the bool value.
921       // Sink the load to where the compare was, if atomic rules allow us to.
922       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
923                                LI->getOrdering(), LI->getSyncScopeID(),
924                                LI->isUnordered() ? (Instruction*)ICI : LI);
925       InitBoolUsed = true;
926       switch (ICI->getPredicate()) {
927       default: llvm_unreachable("Unknown ICmp Predicate!");
928       case ICmpInst::ICMP_ULT:
929       case ICmpInst::ICMP_SLT:   // X < null -> always false
930         LV = ConstantInt::getFalse(GV->getContext());
931         break;
932       case ICmpInst::ICMP_ULE:
933       case ICmpInst::ICMP_SLE:
934       case ICmpInst::ICMP_EQ:
935         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
936         break;
937       case ICmpInst::ICMP_NE:
938       case ICmpInst::ICMP_UGE:
939       case ICmpInst::ICMP_SGE:
940       case ICmpInst::ICMP_UGT:
941       case ICmpInst::ICMP_SGT:
942         break;  // no change.
943       }
944       ICI->replaceAllUsesWith(LV);
945       ICI->eraseFromParent();
946     }
947     LI->eraseFromParent();
948   }
949 
950   // If the initialization boolean was used, insert it, otherwise delete it.
951   if (!InitBoolUsed) {
952     while (!InitBool->use_empty())  // Delete initializations
953       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
954     delete InitBool;
955   } else
956     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
957 
958   // Now the GV is dead, nuke it and the malloc..
959   GV->eraseFromParent();
960   CI->eraseFromParent();
961 
962   // To further other optimizations, loop over all users of NewGV and try to
963   // constant prop them.  This will promote GEP instructions with constant
964   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
965   ConstantPropUsersOf(NewGV, DL, TLI);
966   if (RepValue != NewGV)
967     ConstantPropUsersOf(RepValue, DL, TLI);
968 
969   return NewGV;
970 }
971 
972 /// Scan the use-list of V checking to make sure that there are no complex uses
973 /// of V.  We permit simple things like dereferencing the pointer, but not
974 /// storing through the address, unless it is to the specified global.
975 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
976                                                       const GlobalVariable *GV,
977                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
978   for (const User *U : V->users()) {
979     const Instruction *Inst = cast<Instruction>(U);
980 
981     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
982       continue; // Fine, ignore.
983     }
984 
985     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
986       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
987         return false;  // Storing the pointer itself... bad.
988       continue; // Otherwise, storing through it, or storing into GV... fine.
989     }
990 
991     // Must index into the array and into the struct.
992     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
993       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
994         return false;
995       continue;
996     }
997 
998     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
999       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1000       // cycles.
1001       if (PHIs.insert(PN).second)
1002         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1003           return false;
1004       continue;
1005     }
1006 
1007     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1008       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1009         return false;
1010       continue;
1011     }
1012 
1013     return false;
1014   }
1015   return true;
1016 }
1017 
1018 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1019 /// allocation into loads from the global and uses of the resultant pointer.
1020 /// Further, delete the store into GV.  This assumes that these value pass the
1021 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1022 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1023                                           GlobalVariable *GV) {
1024   while (!Alloc->use_empty()) {
1025     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1026     Instruction *InsertPt = U;
1027     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1028       // If this is the store of the allocation into the global, remove it.
1029       if (SI->getOperand(1) == GV) {
1030         SI->eraseFromParent();
1031         continue;
1032       }
1033     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1034       // Insert the load in the corresponding predecessor, not right before the
1035       // PHI.
1036       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1037     } else if (isa<BitCastInst>(U)) {
1038       // Must be bitcast between the malloc and store to initialize the global.
1039       ReplaceUsesOfMallocWithGlobal(U, GV);
1040       U->eraseFromParent();
1041       continue;
1042     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1043       // If this is a "GEP bitcast" and the user is a store to the global, then
1044       // just process it as a bitcast.
1045       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1046         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1047           if (SI->getOperand(1) == GV) {
1048             // Must be bitcast GEP between the malloc and store to initialize
1049             // the global.
1050             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1051             GEPI->eraseFromParent();
1052             continue;
1053           }
1054     }
1055 
1056     // Insert a load from the global, and use it instead of the malloc.
1057     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1058     U->replaceUsesOfWith(Alloc, NL);
1059   }
1060 }
1061 
1062 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1063 /// perform heap SRA on.  This permits GEP's that index through the array and
1064 /// struct field, icmps of null, and PHIs.
1065 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1066                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1067                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1068   // We permit two users of the load: setcc comparing against the null
1069   // pointer, and a getelementptr of a specific form.
1070   for (const User *U : V->users()) {
1071     const Instruction *UI = cast<Instruction>(U);
1072 
1073     // Comparison against null is ok.
1074     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1075       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1076         return false;
1077       continue;
1078     }
1079 
1080     // getelementptr is also ok, but only a simple form.
1081     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1082       // Must index into the array and into the struct.
1083       if (GEPI->getNumOperands() < 3)
1084         return false;
1085 
1086       // Otherwise the GEP is ok.
1087       continue;
1088     }
1089 
1090     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1091       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1092         // This means some phi nodes are dependent on each other.
1093         // Avoid infinite looping!
1094         return false;
1095       if (!LoadUsingPHIs.insert(PN).second)
1096         // If we have already analyzed this PHI, then it is safe.
1097         continue;
1098 
1099       // Make sure all uses of the PHI are simple enough to transform.
1100       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1101                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1102         return false;
1103 
1104       continue;
1105     }
1106 
1107     // Otherwise we don't know what this is, not ok.
1108     return false;
1109   }
1110 
1111   return true;
1112 }
1113 
1114 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1115 /// return true.
1116 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1117                                                     Instruction *StoredVal) {
1118   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1119   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1120   for (const User *U : GV->users())
1121     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1122       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1123                                           LoadUsingPHIsPerLoad))
1124         return false;
1125       LoadUsingPHIsPerLoad.clear();
1126     }
1127 
1128   // If we reach here, we know that all uses of the loads and transitive uses
1129   // (through PHI nodes) are simple enough to transform.  However, we don't know
1130   // that all inputs the to the PHI nodes are in the same equivalence sets.
1131   // Check to verify that all operands of the PHIs are either PHIS that can be
1132   // transformed, loads from GV, or MI itself.
1133   for (const PHINode *PN : LoadUsingPHIs) {
1134     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1135       Value *InVal = PN->getIncomingValue(op);
1136 
1137       // PHI of the stored value itself is ok.
1138       if (InVal == StoredVal) continue;
1139 
1140       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1141         // One of the PHIs in our set is (optimistically) ok.
1142         if (LoadUsingPHIs.count(InPN))
1143           continue;
1144         return false;
1145       }
1146 
1147       // Load from GV is ok.
1148       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1149         if (LI->getOperand(0) == GV)
1150           continue;
1151 
1152       // UNDEF? NULL?
1153 
1154       // Anything else is rejected.
1155       return false;
1156     }
1157   }
1158 
1159   return true;
1160 }
1161 
1162 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1163               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1164                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1165   std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1166 
1167   if (FieldNo >= FieldVals.size())
1168     FieldVals.resize(FieldNo+1);
1169 
1170   // If we already have this value, just reuse the previously scalarized
1171   // version.
1172   if (Value *FieldVal = FieldVals[FieldNo])
1173     return FieldVal;
1174 
1175   // Depending on what instruction this is, we have several cases.
1176   Value *Result;
1177   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1178     // This is a scalarized version of the load from the global.  Just create
1179     // a new Load of the scalarized global.
1180     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1181                                            InsertedScalarizedValues,
1182                                            PHIsToRewrite),
1183                           LI->getName()+".f"+Twine(FieldNo), LI);
1184   } else {
1185     PHINode *PN = cast<PHINode>(V);
1186     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1187     // field.
1188 
1189     PointerType *PTy = cast<PointerType>(PN->getType());
1190     StructType *ST = cast<StructType>(PTy->getElementType());
1191 
1192     unsigned AS = PTy->getAddressSpace();
1193     PHINode *NewPN =
1194       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1195                      PN->getNumIncomingValues(),
1196                      PN->getName()+".f"+Twine(FieldNo), PN);
1197     Result = NewPN;
1198     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1199   }
1200 
1201   return FieldVals[FieldNo] = Result;
1202 }
1203 
1204 /// Given a load instruction and a value derived from the load, rewrite the
1205 /// derived value to use the HeapSRoA'd load.
1206 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1207               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1208                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1209   // If this is a comparison against null, handle it.
1210   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1211     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1212     // If we have a setcc of the loaded pointer, we can use a setcc of any
1213     // field.
1214     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1215                                    InsertedScalarizedValues, PHIsToRewrite);
1216 
1217     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1218                               Constant::getNullValue(NPtr->getType()),
1219                               SCI->getName());
1220     SCI->replaceAllUsesWith(New);
1221     SCI->eraseFromParent();
1222     return;
1223   }
1224 
1225   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1226   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1227     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1228            && "Unexpected GEPI!");
1229 
1230     // Load the pointer for this field.
1231     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1232     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1233                                      InsertedScalarizedValues, PHIsToRewrite);
1234 
1235     // Create the new GEP idx vector.
1236     SmallVector<Value*, 8> GEPIdx;
1237     GEPIdx.push_back(GEPI->getOperand(1));
1238     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1239 
1240     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1241                                              GEPI->getName(), GEPI);
1242     GEPI->replaceAllUsesWith(NGEPI);
1243     GEPI->eraseFromParent();
1244     return;
1245   }
1246 
1247   // Recursively transform the users of PHI nodes.  This will lazily create the
1248   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1249   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1250   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1251   // already been seen first by another load, so its uses have already been
1252   // processed.
1253   PHINode *PN = cast<PHINode>(LoadUser);
1254   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1255                                               std::vector<Value *>())).second)
1256     return;
1257 
1258   // If this is the first time we've seen this PHI, recursively process all
1259   // users.
1260   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1261     Instruction *User = cast<Instruction>(*UI++);
1262     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1263   }
1264 }
1265 
1266 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1267 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1268 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1269 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1270               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1271                   std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1272   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1273     Instruction *User = cast<Instruction>(*UI++);
1274     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1275   }
1276 
1277   if (Load->use_empty()) {
1278     Load->eraseFromParent();
1279     InsertedScalarizedValues.erase(Load);
1280   }
1281 }
1282 
1283 /// CI is an allocation of an array of structures.  Break it up into multiple
1284 /// allocations of arrays of the fields.
1285 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1286                                             Value *NElems, const DataLayout &DL,
1287                                             const TargetLibraryInfo *TLI) {
1288   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1289   Type *MAT = getMallocAllocatedType(CI, TLI);
1290   StructType *STy = cast<StructType>(MAT);
1291 
1292   // There is guaranteed to be at least one use of the malloc (storing
1293   // it into GV).  If there are other uses, change them to be uses of
1294   // the global to simplify later code.  This also deletes the store
1295   // into GV.
1296   ReplaceUsesOfMallocWithGlobal(CI, GV);
1297 
1298   // Okay, at this point, there are no users of the malloc.  Insert N
1299   // new mallocs at the same place as CI, and N globals.
1300   std::vector<Value *> FieldGlobals;
1301   std::vector<Value *> FieldMallocs;
1302 
1303   SmallVector<OperandBundleDef, 1> OpBundles;
1304   CI->getOperandBundlesAsDefs(OpBundles);
1305 
1306   unsigned AS = GV->getType()->getPointerAddressSpace();
1307   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1308     Type *FieldTy = STy->getElementType(FieldNo);
1309     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1310 
1311     GlobalVariable *NGV = new GlobalVariable(
1312         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1313         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1314         nullptr, GV->getThreadLocalMode());
1315     NGV->copyAttributesFrom(GV);
1316     FieldGlobals.push_back(NGV);
1317 
1318     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1319     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1320       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1321     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1322     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1323                                         ConstantInt::get(IntPtrTy, TypeSize),
1324                                         NElems, OpBundles, nullptr,
1325                                         CI->getName() + ".f" + Twine(FieldNo));
1326     FieldMallocs.push_back(NMI);
1327     new StoreInst(NMI, NGV, CI);
1328   }
1329 
1330   // The tricky aspect of this transformation is handling the case when malloc
1331   // fails.  In the original code, malloc failing would set the result pointer
1332   // of malloc to null.  In this case, some mallocs could succeed and others
1333   // could fail.  As such, we emit code that looks like this:
1334   //    F0 = malloc(field0)
1335   //    F1 = malloc(field1)
1336   //    F2 = malloc(field2)
1337   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1338   //      if (F0) { free(F0); F0 = 0; }
1339   //      if (F1) { free(F1); F1 = 0; }
1340   //      if (F2) { free(F2); F2 = 0; }
1341   //    }
1342   // The malloc can also fail if its argument is too large.
1343   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1344   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1345                                   ConstantZero, "isneg");
1346   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1347     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1348                              Constant::getNullValue(FieldMallocs[i]->getType()),
1349                                "isnull");
1350     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1351   }
1352 
1353   // Split the basic block at the old malloc.
1354   BasicBlock *OrigBB = CI->getParent();
1355   BasicBlock *ContBB =
1356       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1357 
1358   // Create the block to check the first condition.  Put all these blocks at the
1359   // end of the function as they are unlikely to be executed.
1360   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1361                                                 "malloc_ret_null",
1362                                                 OrigBB->getParent());
1363 
1364   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1365   // branch on RunningOr.
1366   OrigBB->getTerminator()->eraseFromParent();
1367   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1368 
1369   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1370   // pointer, because some may be null while others are not.
1371   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1372     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1373     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1374                               Constant::getNullValue(GVVal->getType()));
1375     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1376                                                OrigBB->getParent());
1377     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1378                                                OrigBB->getParent());
1379     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1380                                          Cmp, NullPtrBlock);
1381 
1382     // Fill in FreeBlock.
1383     CallInst::CreateFree(GVVal, OpBundles, BI);
1384     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1385                   FreeBlock);
1386     BranchInst::Create(NextBlock, FreeBlock);
1387 
1388     NullPtrBlock = NextBlock;
1389   }
1390 
1391   BranchInst::Create(ContBB, NullPtrBlock);
1392 
1393   // CI is no longer needed, remove it.
1394   CI->eraseFromParent();
1395 
1396   /// As we process loads, if we can't immediately update all uses of the load,
1397   /// keep track of what scalarized loads are inserted for a given load.
1398   DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1399   InsertedScalarizedValues[GV] = FieldGlobals;
1400 
1401   std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1402 
1403   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1404   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1405   // of the per-field globals instead.
1406   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1407     Instruction *User = cast<Instruction>(*UI++);
1408 
1409     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1410       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1411       continue;
1412     }
1413 
1414     // Must be a store of null.
1415     StoreInst *SI = cast<StoreInst>(User);
1416     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1417            "Unexpected heap-sra user!");
1418 
1419     // Insert a store of null into each global.
1420     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1421       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1422       Constant *Null = Constant::getNullValue(ValTy);
1423       new StoreInst(Null, FieldGlobals[i], SI);
1424     }
1425     // Erase the original store.
1426     SI->eraseFromParent();
1427   }
1428 
1429   // While we have PHIs that are interesting to rewrite, do it.
1430   while (!PHIsToRewrite.empty()) {
1431     PHINode *PN = PHIsToRewrite.back().first;
1432     unsigned FieldNo = PHIsToRewrite.back().second;
1433     PHIsToRewrite.pop_back();
1434     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1435     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1436 
1437     // Add all the incoming values.  This can materialize more phis.
1438     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1439       Value *InVal = PN->getIncomingValue(i);
1440       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1441                                PHIsToRewrite);
1442       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1443     }
1444   }
1445 
1446   // Drop all inter-phi links and any loads that made it this far.
1447   for (DenseMap<Value *, std::vector<Value *>>::iterator
1448        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1449        I != E; ++I) {
1450     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1451       PN->dropAllReferences();
1452     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1453       LI->dropAllReferences();
1454   }
1455 
1456   // Delete all the phis and loads now that inter-references are dead.
1457   for (DenseMap<Value *, std::vector<Value *>>::iterator
1458        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1459        I != E; ++I) {
1460     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1461       PN->eraseFromParent();
1462     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1463       LI->eraseFromParent();
1464   }
1465 
1466   // The old global is now dead, remove it.
1467   GV->eraseFromParent();
1468 
1469   ++NumHeapSRA;
1470   return cast<GlobalVariable>(FieldGlobals[0]);
1471 }
1472 
1473 /// This function is called when we see a pointer global variable with a single
1474 /// value stored it that is a malloc or cast of malloc.
1475 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1476                                                Type *AllocTy,
1477                                                AtomicOrdering Ordering,
1478                                                const DataLayout &DL,
1479                                                TargetLibraryInfo *TLI) {
1480   // If this is a malloc of an abstract type, don't touch it.
1481   if (!AllocTy->isSized())
1482     return false;
1483 
1484   // We can't optimize this global unless all uses of it are *known* to be
1485   // of the malloc value, not of the null initializer value (consider a use
1486   // that compares the global's value against zero to see if the malloc has
1487   // been reached).  To do this, we check to see if all uses of the global
1488   // would trap if the global were null: this proves that they must all
1489   // happen after the malloc.
1490   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1491     return false;
1492 
1493   // We can't optimize this if the malloc itself is used in a complex way,
1494   // for example, being stored into multiple globals.  This allows the
1495   // malloc to be stored into the specified global, loaded icmp'd, and
1496   // GEP'd.  These are all things we could transform to using the global
1497   // for.
1498   SmallPtrSet<const PHINode*, 8> PHIs;
1499   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1500     return false;
1501 
1502   // If we have a global that is only initialized with a fixed size malloc,
1503   // transform the program to use global memory instead of malloc'd memory.
1504   // This eliminates dynamic allocation, avoids an indirection accessing the
1505   // data, and exposes the resultant global to further GlobalOpt.
1506   // We cannot optimize the malloc if we cannot determine malloc array size.
1507   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1508   if (!NElems)
1509     return false;
1510 
1511   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1512     // Restrict this transformation to only working on small allocations
1513     // (2048 bytes currently), as we don't want to introduce a 16M global or
1514     // something.
1515     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1516       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1517       return true;
1518     }
1519 
1520   // If the allocation is an array of structures, consider transforming this
1521   // into multiple malloc'd arrays, one for each field.  This is basically
1522   // SRoA for malloc'd memory.
1523 
1524   if (Ordering != AtomicOrdering::NotAtomic)
1525     return false;
1526 
1527   // If this is an allocation of a fixed size array of structs, analyze as a
1528   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1529   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1530     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1531       AllocTy = AT->getElementType();
1532 
1533   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1534   if (!AllocSTy)
1535     return false;
1536 
1537   // This the structure has an unreasonable number of fields, leave it
1538   // alone.
1539   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1540       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1541 
1542     // If this is a fixed size array, transform the Malloc to be an alloc of
1543     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1544     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1545       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1546       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1547       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1548       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1549       SmallVector<OperandBundleDef, 1> OpBundles;
1550       CI->getOperandBundlesAsDefs(OpBundles);
1551       Instruction *Malloc =
1552           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1553                                  OpBundles, nullptr, CI->getName());
1554       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1555       CI->replaceAllUsesWith(Cast);
1556       CI->eraseFromParent();
1557       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1558         CI = cast<CallInst>(BCI->getOperand(0));
1559       else
1560         CI = cast<CallInst>(Malloc);
1561     }
1562 
1563     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1564                          TLI);
1565     return true;
1566   }
1567 
1568   return false;
1569 }
1570 
1571 // Try to optimize globals based on the knowledge that only one value (besides
1572 // its initializer) is ever stored to the global.
1573 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1574                                      AtomicOrdering Ordering,
1575                                      const DataLayout &DL,
1576                                      TargetLibraryInfo *TLI) {
1577   // Ignore no-op GEPs and bitcasts.
1578   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1579 
1580   // If we are dealing with a pointer global that is initialized to null and
1581   // only has one (non-null) value stored into it, then we can optimize any
1582   // users of the loaded value (often calls and loads) that would trap if the
1583   // value was null.
1584   if (GV->getInitializer()->getType()->isPointerTy() &&
1585       GV->getInitializer()->isNullValue()) {
1586     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1587       if (GV->getInitializer()->getType() != SOVC->getType())
1588         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1589 
1590       // Optimize away any trapping uses of the loaded value.
1591       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1592         return true;
1593     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1594       Type *MallocType = getMallocAllocatedType(CI, TLI);
1595       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1596                                                            Ordering, DL, TLI))
1597         return true;
1598     }
1599   }
1600 
1601   return false;
1602 }
1603 
1604 /// At this point, we have learned that the only two values ever stored into GV
1605 /// are its initializer and OtherVal.  See if we can shrink the global into a
1606 /// boolean and select between the two values whenever it is used.  This exposes
1607 /// the values to other scalar optimizations.
1608 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1609   Type *GVElType = GV->getValueType();
1610 
1611   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1612   // an FP value, pointer or vector, don't do this optimization because a select
1613   // between them is very expensive and unlikely to lead to later
1614   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1615   // where v1 and v2 both require constant pool loads, a big loss.
1616   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1617       GVElType->isFloatingPointTy() ||
1618       GVElType->isPointerTy() || GVElType->isVectorTy())
1619     return false;
1620 
1621   // Walk the use list of the global seeing if all the uses are load or store.
1622   // If there is anything else, bail out.
1623   for (User *U : GV->users())
1624     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1625       return false;
1626 
1627   DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1628 
1629   // Create the new global, initializing it to false.
1630   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1631                                              false,
1632                                              GlobalValue::InternalLinkage,
1633                                         ConstantInt::getFalse(GV->getContext()),
1634                                              GV->getName()+".b",
1635                                              GV->getThreadLocalMode(),
1636                                              GV->getType()->getAddressSpace());
1637   NewGV->copyAttributesFrom(GV);
1638   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1639 
1640   Constant *InitVal = GV->getInitializer();
1641   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1642          "No reason to shrink to bool!");
1643 
1644   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1645   GV->getDebugInfo(GVs);
1646 
1647   // If initialized to zero and storing one into the global, we can use a cast
1648   // instead of a select to synthesize the desired value.
1649   bool IsOneZero = false;
1650   bool EmitOneOrZero = true;
1651   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)){
1652     IsOneZero = InitVal->isNullValue() && CI->isOne();
1653 
1654     if (ConstantInt *CIInit = dyn_cast<ConstantInt>(GV->getInitializer())){
1655       uint64_t ValInit = CIInit->getZExtValue();
1656       uint64_t ValOther = CI->getZExtValue();
1657       uint64_t ValMinus = ValOther - ValInit;
1658 
1659       for(auto *GVe : GVs){
1660         DIGlobalVariable *DGV = GVe->getVariable();
1661         DIExpression *E = GVe->getExpression();
1662 
1663         // It is expected that the address of global optimized variable is on
1664         // top of the stack. After optimization, value of that variable will
1665         // be ether 0 for initial value or 1 for other value. The following
1666         // expression should return constant integer value depending on the
1667         // value at global object address:
1668         // val * (ValOther - ValInit) + ValInit:
1669         // DW_OP_deref DW_OP_constu <ValMinus>
1670         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1671         E = DIExpression::get(NewGV->getContext(),
1672                              {dwarf::DW_OP_deref,
1673                               dwarf::DW_OP_constu,
1674                               ValMinus,
1675                               dwarf::DW_OP_mul,
1676                               dwarf::DW_OP_constu,
1677                               ValInit,
1678                               dwarf::DW_OP_plus,
1679                               dwarf::DW_OP_stack_value});
1680         DIGlobalVariableExpression *DGVE =
1681           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1682         NewGV->addDebugInfo(DGVE);
1683      }
1684      EmitOneOrZero = false;
1685     }
1686   }
1687 
1688   if (EmitOneOrZero) {
1689      // FIXME: This will only emit address for debugger on which will
1690      // be written only 0 or 1.
1691      for(auto *GV : GVs)
1692        NewGV->addDebugInfo(GV);
1693    }
1694 
1695   while (!GV->use_empty()) {
1696     Instruction *UI = cast<Instruction>(GV->user_back());
1697     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1698       // Change the store into a boolean store.
1699       bool StoringOther = SI->getOperand(0) == OtherVal;
1700       // Only do this if we weren't storing a loaded value.
1701       Value *StoreVal;
1702       if (StoringOther || SI->getOperand(0) == InitVal) {
1703         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1704                                     StoringOther);
1705       } else {
1706         // Otherwise, we are storing a previously loaded copy.  To do this,
1707         // change the copy from copying the original value to just copying the
1708         // bool.
1709         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1710 
1711         // If we've already replaced the input, StoredVal will be a cast or
1712         // select instruction.  If not, it will be a load of the original
1713         // global.
1714         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1715           assert(LI->getOperand(0) == GV && "Not a copy!");
1716           // Insert a new load, to preserve the saved value.
1717           StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1718                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1719         } else {
1720           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1721                  "This is not a form that we understand!");
1722           StoreVal = StoredVal->getOperand(0);
1723           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1724         }
1725       }
1726       new StoreInst(StoreVal, NewGV, false, 0,
1727                     SI->getOrdering(), SI->getSyncScopeID(), SI);
1728     } else {
1729       // Change the load into a load of bool then a select.
1730       LoadInst *LI = cast<LoadInst>(UI);
1731       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1732                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1733       Value *NSI;
1734       if (IsOneZero)
1735         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1736       else
1737         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1738       NSI->takeName(LI);
1739       LI->replaceAllUsesWith(NSI);
1740     }
1741     UI->eraseFromParent();
1742   }
1743 
1744   // Retain the name of the old global variable. People who are debugging their
1745   // programs may expect these variables to be named the same.
1746   NewGV->takeName(GV);
1747   GV->eraseFromParent();
1748   return true;
1749 }
1750 
1751 static bool deleteIfDead(GlobalValue &GV,
1752                          SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
1753   GV.removeDeadConstantUsers();
1754 
1755   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1756     return false;
1757 
1758   if (const Comdat *C = GV.getComdat())
1759     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1760       return false;
1761 
1762   bool Dead;
1763   if (auto *F = dyn_cast<Function>(&GV))
1764     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1765   else
1766     Dead = GV.use_empty();
1767   if (!Dead)
1768     return false;
1769 
1770   DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1771   GV.eraseFromParent();
1772   ++NumDeleted;
1773   return true;
1774 }
1775 
1776 static bool isPointerValueDeadOnEntryToFunction(
1777     const Function *F, GlobalValue *GV,
1778     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1779   // Find all uses of GV. We expect them all to be in F, and if we can't
1780   // identify any of the uses we bail out.
1781   //
1782   // On each of these uses, identify if the memory that GV points to is
1783   // used/required/live at the start of the function. If it is not, for example
1784   // if the first thing the function does is store to the GV, the GV can
1785   // possibly be demoted.
1786   //
1787   // We don't do an exhaustive search for memory operations - simply look
1788   // through bitcasts as they're quite common and benign.
1789   const DataLayout &DL = GV->getParent()->getDataLayout();
1790   SmallVector<LoadInst *, 4> Loads;
1791   SmallVector<StoreInst *, 4> Stores;
1792   for (auto *U : GV->users()) {
1793     if (Operator::getOpcode(U) == Instruction::BitCast) {
1794       for (auto *UU : U->users()) {
1795         if (auto *LI = dyn_cast<LoadInst>(UU))
1796           Loads.push_back(LI);
1797         else if (auto *SI = dyn_cast<StoreInst>(UU))
1798           Stores.push_back(SI);
1799         else
1800           return false;
1801       }
1802       continue;
1803     }
1804 
1805     Instruction *I = dyn_cast<Instruction>(U);
1806     if (!I)
1807       return false;
1808     assert(I->getParent()->getParent() == F);
1809 
1810     if (auto *LI = dyn_cast<LoadInst>(I))
1811       Loads.push_back(LI);
1812     else if (auto *SI = dyn_cast<StoreInst>(I))
1813       Stores.push_back(SI);
1814     else
1815       return false;
1816   }
1817 
1818   // We have identified all uses of GV into loads and stores. Now check if all
1819   // of them are known not to depend on the value of the global at the function
1820   // entry point. We do this by ensuring that every load is dominated by at
1821   // least one store.
1822   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1823 
1824   // The below check is quadratic. Check we're not going to do too many tests.
1825   // FIXME: Even though this will always have worst-case quadratic time, we
1826   // could put effort into minimizing the average time by putting stores that
1827   // have been shown to dominate at least one load at the beginning of the
1828   // Stores array, making subsequent dominance checks more likely to succeed
1829   // early.
1830   //
1831   // The threshold here is fairly large because global->local demotion is a
1832   // very powerful optimization should it fire.
1833   const unsigned Threshold = 100;
1834   if (Loads.size() * Stores.size() > Threshold)
1835     return false;
1836 
1837   for (auto *L : Loads) {
1838     auto *LTy = L->getType();
1839     if (none_of(Stores, [&](const StoreInst *S) {
1840           auto *STy = S->getValueOperand()->getType();
1841           // The load is only dominated by the store if DomTree says so
1842           // and the number of bits loaded in L is less than or equal to
1843           // the number of bits stored in S.
1844           return DT.dominates(S, L) &&
1845                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1846         }))
1847       return false;
1848   }
1849   // All loads have known dependences inside F, so the global can be localized.
1850   return true;
1851 }
1852 
1853 /// C may have non-instruction users. Can all of those users be turned into
1854 /// instructions?
1855 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1856   // We don't do this exhaustively. The most common pattern that we really need
1857   // to care about is a constant GEP or constant bitcast - so just looking
1858   // through one single ConstantExpr.
1859   //
1860   // The set of constants that this function returns true for must be able to be
1861   // handled by makeAllConstantUsesInstructions.
1862   for (auto *U : C->users()) {
1863     if (isa<Instruction>(U))
1864       continue;
1865     if (!isa<ConstantExpr>(U))
1866       // Non instruction, non-constantexpr user; cannot convert this.
1867       return false;
1868     for (auto *UU : U->users())
1869       if (!isa<Instruction>(UU))
1870         // A constantexpr used by another constant. We don't try and recurse any
1871         // further but just bail out at this point.
1872         return false;
1873   }
1874 
1875   return true;
1876 }
1877 
1878 /// C may have non-instruction users, and
1879 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1880 /// non-instruction users to instructions.
1881 static void makeAllConstantUsesInstructions(Constant *C) {
1882   SmallVector<ConstantExpr*,4> Users;
1883   for (auto *U : C->users()) {
1884     if (isa<ConstantExpr>(U))
1885       Users.push_back(cast<ConstantExpr>(U));
1886     else
1887       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1888       // should not have returned true for C.
1889       assert(
1890           isa<Instruction>(U) &&
1891           "Can't transform non-constantexpr non-instruction to instruction!");
1892   }
1893 
1894   SmallVector<Value*,4> UUsers;
1895   for (auto *U : Users) {
1896     UUsers.clear();
1897     for (auto *UU : U->users())
1898       UUsers.push_back(UU);
1899     for (auto *UU : UUsers) {
1900       Instruction *UI = cast<Instruction>(UU);
1901       Instruction *NewU = U->getAsInstruction();
1902       NewU->insertBefore(UI);
1903       UI->replaceUsesOfWith(U, NewU);
1904     }
1905     // We've replaced all the uses, so destroy the constant. (destroyConstant
1906     // will update value handles and metadata.)
1907     U->destroyConstant();
1908   }
1909 }
1910 
1911 /// Analyze the specified global variable and optimize
1912 /// it if possible.  If we make a change, return true.
1913 static bool processInternalGlobal(
1914     GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI,
1915     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1916   auto &DL = GV->getParent()->getDataLayout();
1917   // If this is a first class global and has only one accessing function and
1918   // this function is non-recursive, we replace the global with a local alloca
1919   // in this function.
1920   //
1921   // NOTE: It doesn't make sense to promote non-single-value types since we
1922   // are just replacing static memory to stack memory.
1923   //
1924   // If the global is in different address space, don't bring it to stack.
1925   if (!GS.HasMultipleAccessingFunctions &&
1926       GS.AccessingFunction &&
1927       GV->getValueType()->isSingleValueType() &&
1928       GV->getType()->getAddressSpace() == 0 &&
1929       !GV->isExternallyInitialized() &&
1930       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1931       GS.AccessingFunction->doesNotRecurse() &&
1932       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1933                                           LookupDomTree)) {
1934     const DataLayout &DL = GV->getParent()->getDataLayout();
1935 
1936     DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1937     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1938                                                    ->getEntryBlock().begin());
1939     Type *ElemTy = GV->getValueType();
1940     // FIXME: Pass Global's alignment when globals have alignment
1941     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1942                                         GV->getName(), &FirstI);
1943     if (!isa<UndefValue>(GV->getInitializer()))
1944       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1945 
1946     makeAllConstantUsesInstructions(GV);
1947 
1948     GV->replaceAllUsesWith(Alloca);
1949     GV->eraseFromParent();
1950     ++NumLocalized;
1951     return true;
1952   }
1953 
1954   // If the global is never loaded (but may be stored to), it is dead.
1955   // Delete it now.
1956   if (!GS.IsLoaded) {
1957     DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1958 
1959     bool Changed;
1960     if (isLeakCheckerRoot(GV)) {
1961       // Delete any constant stores to the global.
1962       Changed = CleanupPointerRootUsers(GV, TLI);
1963     } else {
1964       // Delete any stores we can find to the global.  We may not be able to
1965       // make it completely dead though.
1966       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1967     }
1968 
1969     // If the global is dead now, delete it.
1970     if (GV->use_empty()) {
1971       GV->eraseFromParent();
1972       ++NumDeleted;
1973       Changed = true;
1974     }
1975     return Changed;
1976 
1977   }
1978   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1979     DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1980     GV->setConstant(true);
1981 
1982     // Clean up any obviously simplifiable users now.
1983     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1984 
1985     // If the global is dead now, just nuke it.
1986     if (GV->use_empty()) {
1987       DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1988             << "all users and delete global!\n");
1989       GV->eraseFromParent();
1990       ++NumDeleted;
1991       return true;
1992     }
1993 
1994     // Fall through to the next check; see if we can optimize further.
1995     ++NumMarked;
1996   }
1997   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1998     const DataLayout &DL = GV->getParent()->getDataLayout();
1999     if (SRAGlobal(GV, DL))
2000       return true;
2001   }
2002   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
2003     // If the initial value for the global was an undef value, and if only
2004     // one other value was stored into it, we can just change the
2005     // initializer to be the stored value, then delete all stores to the
2006     // global.  This allows us to mark it constant.
2007     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2008       if (isa<UndefValue>(GV->getInitializer())) {
2009         // Change the initial value here.
2010         GV->setInitializer(SOVConstant);
2011 
2012         // Clean up any obviously simplifiable users now.
2013         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
2014 
2015         if (GV->use_empty()) {
2016           DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2017                        << "simplify all users and delete global!\n");
2018           GV->eraseFromParent();
2019           ++NumDeleted;
2020         }
2021         ++NumSubstitute;
2022         return true;
2023       }
2024 
2025     // Try to optimize globals based on the knowledge that only one value
2026     // (besides its initializer) is ever stored to the global.
2027     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
2028       return true;
2029 
2030     // Otherwise, if the global was not a boolean, we can shrink it to be a
2031     // boolean.
2032     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2033       if (GS.Ordering == AtomicOrdering::NotAtomic) {
2034         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2035           ++NumShrunkToBool;
2036           return true;
2037         }
2038       }
2039     }
2040   }
2041 
2042   return false;
2043 }
2044 
2045 /// Analyze the specified global variable and optimize it if possible.  If we
2046 /// make a change, return true.
2047 static bool
2048 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI,
2049               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2050   if (GV.getName().startswith("llvm."))
2051     return false;
2052 
2053   GlobalStatus GS;
2054 
2055   if (GlobalStatus::analyzeGlobal(&GV, GS))
2056     return false;
2057 
2058   bool Changed = false;
2059   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2060     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2061                                                : GlobalValue::UnnamedAddr::Local;
2062     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2063       GV.setUnnamedAddr(NewUnnamedAddr);
2064       NumUnnamed++;
2065       Changed = true;
2066     }
2067   }
2068 
2069   // Do more involved optimizations if the global is internal.
2070   if (!GV.hasLocalLinkage())
2071     return Changed;
2072 
2073   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2074   if (!GVar)
2075     return Changed;
2076 
2077   if (GVar->isConstant() || !GVar->hasInitializer())
2078     return Changed;
2079 
2080   return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed;
2081 }
2082 
2083 /// Walk all of the direct calls of the specified function, changing them to
2084 /// FastCC.
2085 static void ChangeCalleesToFastCall(Function *F) {
2086   for (User *U : F->users()) {
2087     if (isa<BlockAddress>(U))
2088       continue;
2089     CallSite CS(cast<Instruction>(U));
2090     CS.setCallingConv(CallingConv::Fast);
2091   }
2092 }
2093 
2094 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) {
2095   // There can be at most one attribute set with a nest attribute.
2096   unsigned NestIndex;
2097   if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex))
2098     return Attrs.removeAttribute(C, NestIndex, Attribute::Nest);
2099   return Attrs;
2100 }
2101 
2102 static void RemoveNestAttribute(Function *F) {
2103   F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2104   for (User *U : F->users()) {
2105     if (isa<BlockAddress>(U))
2106       continue;
2107     CallSite CS(cast<Instruction>(U));
2108     CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
2109   }
2110 }
2111 
2112 /// Return true if this is a calling convention that we'd like to change.  The
2113 /// idea here is that we don't want to mess with the convention if the user
2114 /// explicitly requested something with performance implications like coldcc,
2115 /// GHC, or anyregcc.
2116 static bool hasChangeableCC(Function *F) {
2117   CallingConv::ID CC = F->getCallingConv();
2118 
2119   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2120   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2121     return false;
2122 
2123   // FIXME: Change CC for the whole chain of musttail calls when possible.
2124   //
2125   // Can't change CC of the function that either has musttail calls, or is a
2126   // musttail callee itself
2127   for (User *U : F->users()) {
2128     if (isa<BlockAddress>(U))
2129       continue;
2130     CallInst* CI = dyn_cast<CallInst>(U);
2131     if (!CI)
2132       continue;
2133 
2134     if (CI->isMustTailCall())
2135       return false;
2136   }
2137 
2138   for (BasicBlock &BB : *F)
2139     if (BB.getTerminatingMustTailCall())
2140       return false;
2141 
2142   return true;
2143 }
2144 
2145 /// Return true if the block containing the call site has a BlockFrequency of
2146 /// less than ColdCCRelFreq% of the entry block.
2147 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
2148   const BranchProbability ColdProb(ColdCCRelFreq, 100);
2149   auto CallSiteBB = CS.getInstruction()->getParent();
2150   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2151   auto CallerEntryFreq =
2152       CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
2153   return CallSiteFreq < CallerEntryFreq * ColdProb;
2154 }
2155 
2156 // This function checks if the input function F is cold at all call sites. It
2157 // also looks each call site's containing function, returning false if the
2158 // caller function contains other non cold calls. The input vector AllCallsCold
2159 // contains a list of functions that only have call sites in cold blocks.
2160 static bool
2161 isValidCandidateForColdCC(Function &F,
2162                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2163                           const std::vector<Function *> &AllCallsCold) {
2164 
2165   if (F.user_empty())
2166     return false;
2167 
2168   for (User *U : F.users()) {
2169     if (isa<BlockAddress>(U))
2170       continue;
2171 
2172     CallSite CS(cast<Instruction>(U));
2173     Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
2174     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2175     if (!isColdCallSite(CS, CallerBFI))
2176       return false;
2177     auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2178     if (It == AllCallsCold.end())
2179       return false;
2180   }
2181   return true;
2182 }
2183 
2184 static void changeCallSitesToColdCC(Function *F) {
2185   for (User *U : F->users()) {
2186     if (isa<BlockAddress>(U))
2187       continue;
2188     CallSite CS(cast<Instruction>(U));
2189     CS.setCallingConv(CallingConv::Cold);
2190   }
2191 }
2192 
2193 // This function iterates over all the call instructions in the input Function
2194 // and checks that all call sites are in cold blocks and are allowed to use the
2195 // coldcc calling convention.
2196 static bool
2197 hasOnlyColdCalls(Function &F,
2198                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2199   for (BasicBlock &BB : F) {
2200     for (Instruction &I : BB) {
2201       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2202         CallSite CS(cast<Instruction>(CI));
2203         // Skip over isline asm instructions since they aren't function calls.
2204         if (CI->isInlineAsm())
2205           continue;
2206         Function *CalledFn = CI->getCalledFunction();
2207         if (!CalledFn)
2208           return false;
2209         if (!CalledFn->hasLocalLinkage())
2210           return false;
2211         // Skip over instrinsics since they won't remain as function calls.
2212         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2213           continue;
2214         // Check if it's valid to use coldcc calling convention.
2215         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2216             CalledFn->hasAddressTaken())
2217           return false;
2218         BlockFrequencyInfo &CallerBFI = GetBFI(F);
2219         if (!isColdCallSite(CS, CallerBFI))
2220           return false;
2221       }
2222     }
2223   }
2224   return true;
2225 }
2226 
2227 static bool
2228 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI,
2229                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
2230                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2231                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2232                   SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2233 
2234   bool Changed = false;
2235 
2236   std::vector<Function *> AllCallsCold;
2237   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2238     Function *F = &*FI++;
2239     if (hasOnlyColdCalls(*F, GetBFI))
2240       AllCallsCold.push_back(F);
2241   }
2242 
2243   // Optimize functions.
2244   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2245     Function *F = &*FI++;
2246 
2247     // Don't perform global opt pass on naked functions; we don't want fast
2248     // calling conventions for naked functions.
2249     if (F->hasFnAttribute(Attribute::Naked))
2250       continue;
2251 
2252     // Functions without names cannot be referenced outside this module.
2253     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2254       F->setLinkage(GlobalValue::InternalLinkage);
2255 
2256     if (deleteIfDead(*F, NotDiscardableComdats)) {
2257       Changed = true;
2258       continue;
2259     }
2260 
2261     // LLVM's definition of dominance allows instructions that are cyclic
2262     // in unreachable blocks, e.g.:
2263     // %pat = select i1 %condition, @global, i16* %pat
2264     // because any instruction dominates an instruction in a block that's
2265     // not reachable from entry.
2266     // So, remove unreachable blocks from the function, because a) there's
2267     // no point in analyzing them and b) GlobalOpt should otherwise grow
2268     // some more complicated logic to break these cycles.
2269     // Removing unreachable blocks might invalidate the dominator so we
2270     // recalculate it.
2271     if (!F->isDeclaration()) {
2272       if (removeUnreachableBlocks(*F)) {
2273         auto &DT = LookupDomTree(*F);
2274         DT.recalculate(*F);
2275         Changed = true;
2276       }
2277     }
2278 
2279     Changed |= processGlobal(*F, TLI, LookupDomTree);
2280 
2281     if (!F->hasLocalLinkage())
2282       continue;
2283 
2284     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2285       NumInternalFunc++;
2286       TargetTransformInfo &TTI = GetTTI(*F);
2287       // Change the calling convention to coldcc if either stress testing is
2288       // enabled or the target would like to use coldcc on functions which are
2289       // cold at all call sites and the callers contain no other non coldcc
2290       // calls.
2291       if (EnableColdCCStressTest ||
2292           (isValidCandidateForColdCC(*F, GetBFI, AllCallsCold) &&
2293            TTI.useColdCCForColdCall(*F))) {
2294         F->setCallingConv(CallingConv::Cold);
2295         changeCallSitesToColdCC(F);
2296         Changed = true;
2297         NumColdCC++;
2298       }
2299     }
2300 
2301     if (hasChangeableCC(F) && !F->isVarArg() &&
2302         !F->hasAddressTaken()) {
2303       // If this function has a calling convention worth changing, is not a
2304       // varargs function, and is only called directly, promote it to use the
2305       // Fast calling convention.
2306       F->setCallingConv(CallingConv::Fast);
2307       ChangeCalleesToFastCall(F);
2308       ++NumFastCallFns;
2309       Changed = true;
2310     }
2311 
2312     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2313         !F->hasAddressTaken()) {
2314       // The function is not used by a trampoline intrinsic, so it is safe
2315       // to remove the 'nest' attribute.
2316       RemoveNestAttribute(F);
2317       ++NumNestRemoved;
2318       Changed = true;
2319     }
2320   }
2321   return Changed;
2322 }
2323 
2324 static bool
2325 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI,
2326                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2327                    SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2328   bool Changed = false;
2329 
2330   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2331        GVI != E; ) {
2332     GlobalVariable *GV = &*GVI++;
2333     // Global variables without names cannot be referenced outside this module.
2334     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2335       GV->setLinkage(GlobalValue::InternalLinkage);
2336     // Simplify the initializer.
2337     if (GV->hasInitializer())
2338       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2339         auto &DL = M.getDataLayout();
2340         Constant *New = ConstantFoldConstant(C, DL, TLI);
2341         if (New && New != C)
2342           GV->setInitializer(New);
2343       }
2344 
2345     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2346       Changed = true;
2347       continue;
2348     }
2349 
2350     Changed |= processGlobal(*GV, TLI, LookupDomTree);
2351   }
2352   return Changed;
2353 }
2354 
2355 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2356 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2357 /// GEP operands of Addr [0, OpNo) have been stepped into.
2358 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2359                                    ConstantExpr *Addr, unsigned OpNo) {
2360   // Base case of the recursion.
2361   if (OpNo == Addr->getNumOperands()) {
2362     assert(Val->getType() == Init->getType() && "Type mismatch!");
2363     return Val;
2364   }
2365 
2366   SmallVector<Constant*, 32> Elts;
2367   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2368     // Break up the constant into its elements.
2369     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2370       Elts.push_back(Init->getAggregateElement(i));
2371 
2372     // Replace the element that we are supposed to.
2373     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2374     unsigned Idx = CU->getZExtValue();
2375     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2376     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2377 
2378     // Return the modified struct.
2379     return ConstantStruct::get(STy, Elts);
2380   }
2381 
2382   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2383   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2384   uint64_t NumElts = InitTy->getNumElements();
2385 
2386   // Break up the array into elements.
2387   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2388     Elts.push_back(Init->getAggregateElement(i));
2389 
2390   assert(CI->getZExtValue() < NumElts);
2391   Elts[CI->getZExtValue()] =
2392     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2393 
2394   if (Init->getType()->isArrayTy())
2395     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2396   return ConstantVector::get(Elts);
2397 }
2398 
2399 /// We have decided that Addr (which satisfies the predicate
2400 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2401 static void CommitValueTo(Constant *Val, Constant *Addr) {
2402   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2403     assert(GV->hasInitializer());
2404     GV->setInitializer(Val);
2405     return;
2406   }
2407 
2408   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2409   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2410   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2411 }
2412 
2413 /// Given a map of address -> value, where addresses are expected to be some form
2414 /// of either a global or a constant GEP, set the initializer for the address to
2415 /// be the value. This performs mostly the same function as CommitValueTo()
2416 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2417 /// case where the set of addresses are GEPs sharing the same underlying global,
2418 /// processing the GEPs in batches rather than individually.
2419 ///
2420 /// To give an example, consider the following C++ code adapted from the clang
2421 /// regression tests:
2422 /// struct S {
2423 ///  int n = 10;
2424 ///  int m = 2 * n;
2425 ///  S(int a) : n(a) {}
2426 /// };
2427 ///
2428 /// template<typename T>
2429 /// struct U {
2430 ///  T *r = &q;
2431 ///  T q = 42;
2432 ///  U *p = this;
2433 /// };
2434 ///
2435 /// U<S> e;
2436 ///
2437 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2438 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2439 /// members. This batch algorithm will simply use general CommitValueTo() method
2440 /// to handle the complex nested S struct initialization of 'q', before
2441 /// processing the outermost members in a single batch. Using CommitValueTo() to
2442 /// handle member in the outer struct is inefficient when the struct/array is
2443 /// very large as we end up creating and destroy constant arrays for each
2444 /// initialization.
2445 /// For the above case, we expect the following IR to be generated:
2446 ///
2447 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2448 /// %struct.S = type { i32, i32 }
2449 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2450 ///                                                  i64 0, i32 1),
2451 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2452 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2453 /// constant expression, while the other two elements of @e are "simple".
2454 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2455   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2456   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2457   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2458   SimpleCEs.reserve(Mem.size());
2459 
2460   for (const auto &I : Mem) {
2461     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2462       GVs.push_back(std::make_pair(GV, I.second));
2463     } else {
2464       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2465       // We don't handle the deeply recursive case using the batch method.
2466       if (GEP->getNumOperands() > 3)
2467         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2468       else
2469         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2470     }
2471   }
2472 
2473   // The algorithm below doesn't handle cases like nested structs, so use the
2474   // slower fully general method if we have to.
2475   for (auto ComplexCE : ComplexCEs)
2476     CommitValueTo(ComplexCE.second, ComplexCE.first);
2477 
2478   for (auto GVPair : GVs) {
2479     assert(GVPair.first->hasInitializer());
2480     GVPair.first->setInitializer(GVPair.second);
2481   }
2482 
2483   if (SimpleCEs.empty())
2484     return;
2485 
2486   // We cache a single global's initializer elements in the case where the
2487   // subsequent address/val pair uses the same one. This avoids throwing away and
2488   // rebuilding the constant struct/vector/array just because one element is
2489   // modified at a time.
2490   SmallVector<Constant *, 32> Elts;
2491   Elts.reserve(SimpleCEs.size());
2492   GlobalVariable *CurrentGV = nullptr;
2493 
2494   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2495     Constant *Init = GV->getInitializer();
2496     Type *Ty = Init->getType();
2497     if (Update) {
2498       if (CurrentGV) {
2499         assert(CurrentGV && "Expected a GV to commit to!");
2500         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2501         // We have a valid cache that needs to be committed.
2502         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2503           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2504         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2505           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2506         else
2507           CurrentGV->setInitializer(ConstantVector::get(Elts));
2508       }
2509       if (CurrentGV == GV)
2510         return;
2511       // Need to clear and set up cache for new initializer.
2512       CurrentGV = GV;
2513       Elts.clear();
2514       unsigned NumElts;
2515       if (auto *STy = dyn_cast<StructType>(Ty))
2516         NumElts = STy->getNumElements();
2517       else
2518         NumElts = cast<SequentialType>(Ty)->getNumElements();
2519       for (unsigned i = 0, e = NumElts; i != e; ++i)
2520         Elts.push_back(Init->getAggregateElement(i));
2521     }
2522   };
2523 
2524   for (auto CEPair : SimpleCEs) {
2525     ConstantExpr *GEP = CEPair.first;
2526     Constant *Val = CEPair.second;
2527 
2528     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2529     commitAndSetupCache(GV, GV != CurrentGV);
2530     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2531     Elts[CI->getZExtValue()] = Val;
2532   }
2533   // The last initializer in the list needs to be committed, others
2534   // will be committed on a new initializer being processed.
2535   commitAndSetupCache(CurrentGV, true);
2536 }
2537 
2538 /// Evaluate static constructors in the function, if we can.  Return true if we
2539 /// can, false otherwise.
2540 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2541                                       TargetLibraryInfo *TLI) {
2542   // Call the function.
2543   Evaluator Eval(DL, TLI);
2544   Constant *RetValDummy;
2545   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2546                                            SmallVector<Constant*, 0>());
2547 
2548   if (EvalSuccess) {
2549     ++NumCtorsEvaluated;
2550 
2551     // We succeeded at evaluation: commit the result.
2552     DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2553           << F->getName() << "' to " << Eval.getMutatedMemory().size()
2554           << " stores.\n");
2555     BatchCommitValueTo(Eval.getMutatedMemory());
2556     for (GlobalVariable *GV : Eval.getInvariants())
2557       GV->setConstant(true);
2558   }
2559 
2560   return EvalSuccess;
2561 }
2562 
2563 static int compareNames(Constant *const *A, Constant *const *B) {
2564   Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
2565   Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
2566   return AStripped->getName().compare(BStripped->getName());
2567 }
2568 
2569 static void setUsedInitializer(GlobalVariable &V,
2570                                const SmallPtrSet<GlobalValue *, 8> &Init) {
2571   if (Init.empty()) {
2572     V.eraseFromParent();
2573     return;
2574   }
2575 
2576   // Type of pointer to the array of pointers.
2577   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2578 
2579   SmallVector<Constant *, 8> UsedArray;
2580   for (GlobalValue *GV : Init) {
2581     Constant *Cast
2582       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2583     UsedArray.push_back(Cast);
2584   }
2585   // Sort to get deterministic order.
2586   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2587   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2588 
2589   Module *M = V.getParent();
2590   V.removeFromParent();
2591   GlobalVariable *NV =
2592       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2593                          ConstantArray::get(ATy, UsedArray), "");
2594   NV->takeName(&V);
2595   NV->setSection("llvm.metadata");
2596   delete &V;
2597 }
2598 
2599 namespace {
2600 
2601 /// An easy to access representation of llvm.used and llvm.compiler.used.
2602 class LLVMUsed {
2603   SmallPtrSet<GlobalValue *, 8> Used;
2604   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2605   GlobalVariable *UsedV;
2606   GlobalVariable *CompilerUsedV;
2607 
2608 public:
2609   LLVMUsed(Module &M) {
2610     UsedV = collectUsedGlobalVariables(M, Used, false);
2611     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2612   }
2613 
2614   using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2615   using used_iterator_range = iterator_range<iterator>;
2616 
2617   iterator usedBegin() { return Used.begin(); }
2618   iterator usedEnd() { return Used.end(); }
2619 
2620   used_iterator_range used() {
2621     return used_iterator_range(usedBegin(), usedEnd());
2622   }
2623 
2624   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2625   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2626 
2627   used_iterator_range compilerUsed() {
2628     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2629   }
2630 
2631   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2632 
2633   bool compilerUsedCount(GlobalValue *GV) const {
2634     return CompilerUsed.count(GV);
2635   }
2636 
2637   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2638   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2639   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2640 
2641   bool compilerUsedInsert(GlobalValue *GV) {
2642     return CompilerUsed.insert(GV).second;
2643   }
2644 
2645   void syncVariablesAndSets() {
2646     if (UsedV)
2647       setUsedInitializer(*UsedV, Used);
2648     if (CompilerUsedV)
2649       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2650   }
2651 };
2652 
2653 } // end anonymous namespace
2654 
2655 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2656   if (GA.use_empty()) // No use at all.
2657     return false;
2658 
2659   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2660          "We should have removed the duplicated "
2661          "element from llvm.compiler.used");
2662   if (!GA.hasOneUse())
2663     // Strictly more than one use. So at least one is not in llvm.used and
2664     // llvm.compiler.used.
2665     return true;
2666 
2667   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2668   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2669 }
2670 
2671 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2672                                                const LLVMUsed &U) {
2673   unsigned N = 2;
2674   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2675          "We should have removed the duplicated "
2676          "element from llvm.compiler.used");
2677   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2678     ++N;
2679   return V.hasNUsesOrMore(N);
2680 }
2681 
2682 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2683   if (!GA.hasLocalLinkage())
2684     return true;
2685 
2686   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2687 }
2688 
2689 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2690                              bool &RenameTarget) {
2691   RenameTarget = false;
2692   bool Ret = false;
2693   if (hasUseOtherThanLLVMUsed(GA, U))
2694     Ret = true;
2695 
2696   // If the alias is externally visible, we may still be able to simplify it.
2697   if (!mayHaveOtherReferences(GA, U))
2698     return Ret;
2699 
2700   // If the aliasee has internal linkage, give it the name and linkage
2701   // of the alias, and delete the alias.  This turns:
2702   //   define internal ... @f(...)
2703   //   @a = alias ... @f
2704   // into:
2705   //   define ... @a(...)
2706   Constant *Aliasee = GA.getAliasee();
2707   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2708   if (!Target->hasLocalLinkage())
2709     return Ret;
2710 
2711   // Do not perform the transform if multiple aliases potentially target the
2712   // aliasee. This check also ensures that it is safe to replace the section
2713   // and other attributes of the aliasee with those of the alias.
2714   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2715     return Ret;
2716 
2717   RenameTarget = true;
2718   return true;
2719 }
2720 
2721 static bool
2722 OptimizeGlobalAliases(Module &M,
2723                       SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2724   bool Changed = false;
2725   LLVMUsed Used(M);
2726 
2727   for (GlobalValue *GV : Used.used())
2728     Used.compilerUsedErase(GV);
2729 
2730   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2731        I != E;) {
2732     GlobalAlias *J = &*I++;
2733 
2734     // Aliases without names cannot be referenced outside this module.
2735     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2736       J->setLinkage(GlobalValue::InternalLinkage);
2737 
2738     if (deleteIfDead(*J, NotDiscardableComdats)) {
2739       Changed = true;
2740       continue;
2741     }
2742 
2743     // If the alias can change at link time, nothing can be done - bail out.
2744     if (J->isInterposable())
2745       continue;
2746 
2747     Constant *Aliasee = J->getAliasee();
2748     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2749     // We can't trivially replace the alias with the aliasee if the aliasee is
2750     // non-trivial in some way.
2751     // TODO: Try to handle non-zero GEPs of local aliasees.
2752     if (!Target)
2753       continue;
2754     Target->removeDeadConstantUsers();
2755 
2756     // Make all users of the alias use the aliasee instead.
2757     bool RenameTarget;
2758     if (!hasUsesToReplace(*J, Used, RenameTarget))
2759       continue;
2760 
2761     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2762     ++NumAliasesResolved;
2763     Changed = true;
2764 
2765     if (RenameTarget) {
2766       // Give the aliasee the name, linkage and other attributes of the alias.
2767       Target->takeName(&*J);
2768       Target->setLinkage(J->getLinkage());
2769       Target->setDSOLocal(J->isDSOLocal());
2770       Target->setVisibility(J->getVisibility());
2771       Target->setDLLStorageClass(J->getDLLStorageClass());
2772 
2773       if (Used.usedErase(&*J))
2774         Used.usedInsert(Target);
2775 
2776       if (Used.compilerUsedErase(&*J))
2777         Used.compilerUsedInsert(Target);
2778     } else if (mayHaveOtherReferences(*J, Used))
2779       continue;
2780 
2781     // Delete the alias.
2782     M.getAliasList().erase(J);
2783     ++NumAliasesRemoved;
2784     Changed = true;
2785   }
2786 
2787   Used.syncVariablesAndSets();
2788 
2789   return Changed;
2790 }
2791 
2792 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2793   LibFunc F = LibFunc_cxa_atexit;
2794   if (!TLI->has(F))
2795     return nullptr;
2796 
2797   Function *Fn = M.getFunction(TLI->getName(F));
2798   if (!Fn)
2799     return nullptr;
2800 
2801   // Make sure that the function has the correct prototype.
2802   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2803     return nullptr;
2804 
2805   return Fn;
2806 }
2807 
2808 /// Returns whether the given function is an empty C++ destructor and can
2809 /// therefore be eliminated.
2810 /// Note that we assume that other optimization passes have already simplified
2811 /// the code so we only look for a function with a single basic block, where
2812 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2813 /// other side-effect free instructions.
2814 static bool cxxDtorIsEmpty(const Function &Fn,
2815                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
2816   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2817   // nounwind, but that doesn't seem worth doing.
2818   if (Fn.isDeclaration())
2819     return false;
2820 
2821   if (++Fn.begin() != Fn.end())
2822     return false;
2823 
2824   const BasicBlock &EntryBlock = Fn.getEntryBlock();
2825   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2826        I != E; ++I) {
2827     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2828       // Ignore debug intrinsics.
2829       if (isa<DbgInfoIntrinsic>(CI))
2830         continue;
2831 
2832       const Function *CalledFn = CI->getCalledFunction();
2833 
2834       if (!CalledFn)
2835         return false;
2836 
2837       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2838 
2839       // Don't treat recursive functions as empty.
2840       if (!NewCalledFunctions.insert(CalledFn).second)
2841         return false;
2842 
2843       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2844         return false;
2845     } else if (isa<ReturnInst>(*I))
2846       return true; // We're done.
2847     else if (I->mayHaveSideEffects())
2848       return false; // Destructor with side effects, bail.
2849   }
2850 
2851   return false;
2852 }
2853 
2854 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2855   /// Itanium C++ ABI p3.3.5:
2856   ///
2857   ///   After constructing a global (or local static) object, that will require
2858   ///   destruction on exit, a termination function is registered as follows:
2859   ///
2860   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2861   ///
2862   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2863   ///   call f(p) when DSO d is unloaded, before all such termination calls
2864   ///   registered before this one. It returns zero if registration is
2865   ///   successful, nonzero on failure.
2866 
2867   // This pass will look for calls to __cxa_atexit where the function is trivial
2868   // and remove them.
2869   bool Changed = false;
2870 
2871   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2872        I != E;) {
2873     // We're only interested in calls. Theoretically, we could handle invoke
2874     // instructions as well, but neither llvm-gcc nor clang generate invokes
2875     // to __cxa_atexit.
2876     CallInst *CI = dyn_cast<CallInst>(*I++);
2877     if (!CI)
2878       continue;
2879 
2880     Function *DtorFn =
2881       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2882     if (!DtorFn)
2883       continue;
2884 
2885     SmallPtrSet<const Function *, 8> CalledFunctions;
2886     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2887       continue;
2888 
2889     // Just remove the call.
2890     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2891     CI->eraseFromParent();
2892 
2893     ++NumCXXDtorsRemoved;
2894 
2895     Changed |= true;
2896   }
2897 
2898   return Changed;
2899 }
2900 
2901 static bool optimizeGlobalsInModule(
2902     Module &M, const DataLayout &DL, TargetLibraryInfo *TLI,
2903     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2904     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2905     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2906   SmallSet<const Comdat *, 8> NotDiscardableComdats;
2907   bool Changed = false;
2908   bool LocalChange = true;
2909   while (LocalChange) {
2910     LocalChange = false;
2911 
2912     NotDiscardableComdats.clear();
2913     for (const GlobalVariable &GV : M.globals())
2914       if (const Comdat *C = GV.getComdat())
2915         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2916           NotDiscardableComdats.insert(C);
2917     for (Function &F : M)
2918       if (const Comdat *C = F.getComdat())
2919         if (!F.isDefTriviallyDead())
2920           NotDiscardableComdats.insert(C);
2921     for (GlobalAlias &GA : M.aliases())
2922       if (const Comdat *C = GA.getComdat())
2923         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2924           NotDiscardableComdats.insert(C);
2925 
2926     // Delete functions that are trivially dead, ccc -> fastcc
2927     LocalChange |= OptimizeFunctions(M, TLI, GetTTI, GetBFI, LookupDomTree,
2928                                      NotDiscardableComdats);
2929 
2930     // Optimize global_ctors list.
2931     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2932       return EvaluateStaticConstructor(F, DL, TLI);
2933     });
2934 
2935     // Optimize non-address-taken globals.
2936     LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree,
2937                                       NotDiscardableComdats);
2938 
2939     // Resolve aliases, when possible.
2940     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2941 
2942     // Try to remove trivial global destructors if they are not removed
2943     // already.
2944     Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
2945     if (CXAAtExitFn)
2946       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2947 
2948     Changed |= LocalChange;
2949   }
2950 
2951   // TODO: Move all global ctors functions to the end of the module for code
2952   // layout.
2953 
2954   return Changed;
2955 }
2956 
2957 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2958     auto &DL = M.getDataLayout();
2959     auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
2960     auto &FAM =
2961         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2962     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2963       return FAM.getResult<DominatorTreeAnalysis>(F);
2964     };
2965     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2966       return FAM.getResult<TargetIRAnalysis>(F);
2967     };
2968 
2969     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2970       return FAM.getResult<BlockFrequencyAnalysis>(F);
2971     };
2972 
2973     if (!optimizeGlobalsInModule(M, DL, &TLI, GetTTI, GetBFI, LookupDomTree))
2974       return PreservedAnalyses::all();
2975     return PreservedAnalyses::none();
2976 }
2977 
2978 namespace {
2979 
2980 struct GlobalOptLegacyPass : public ModulePass {
2981   static char ID; // Pass identification, replacement for typeid
2982 
2983   GlobalOptLegacyPass() : ModulePass(ID) {
2984     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2985   }
2986 
2987   bool runOnModule(Module &M) override {
2988     if (skipModule(M))
2989       return false;
2990 
2991     auto &DL = M.getDataLayout();
2992     auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2993     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2994       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2995     };
2996     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2997       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2998     };
2999 
3000     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3001       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3002     };
3003 
3004     return optimizeGlobalsInModule(M, DL, TLI, GetTTI, GetBFI, LookupDomTree);
3005   }
3006 
3007   void getAnalysisUsage(AnalysisUsage &AU) const override {
3008     AU.addRequired<TargetLibraryInfoWrapperPass>();
3009     AU.addRequired<TargetTransformInfoWrapperPass>();
3010     AU.addRequired<DominatorTreeWrapperPass>();
3011     AU.addRequired<BlockFrequencyInfoWrapperPass>();
3012   }
3013 };
3014 
3015 } // end anonymous namespace
3016 
3017 char GlobalOptLegacyPass::ID = 0;
3018 
3019 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3020                       "Global Variable Optimizer", false, false)
3021 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3022 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3023 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3024 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3025 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3026                     "Global Variable Optimizer", false, false)
3027 
3028 ModulePass *llvm::createGlobalOptimizerPass() {
3029   return new GlobalOptLegacyPass();
3030 }
3031