1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms simple global variables that never have their address 10 // taken. If obviously true, it marks read/write globals as constant, deletes 11 // variables only stored to, etc. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/GlobalOpt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/ADT/iterator_range.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/BinaryFormat/Dwarf.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Use.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueHandle.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/AtomicOrdering.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/IPO.h" 65 #include "llvm/Transforms/Utils/CtorUtils.h" 66 #include "llvm/Transforms/Utils/Evaluator.h" 67 #include "llvm/Transforms/Utils/GlobalStatus.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include <cassert> 70 #include <cstdint> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "globalopt" 77 78 STATISTIC(NumMarked , "Number of globals marked constant"); 79 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 80 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 82 STATISTIC(NumDeleted , "Number of globals deleted"); 83 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 84 STATISTIC(NumLocalized , "Number of globals localized"); 85 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 86 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 88 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 92 STATISTIC(NumInternalFunc, "Number of internal functions"); 93 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 94 95 static cl::opt<bool> 96 EnableColdCCStressTest("enable-coldcc-stress-test", 97 cl::desc("Enable stress test of coldcc by adding " 98 "calling conv to all internal functions."), 99 cl::init(false), cl::Hidden); 100 101 static cl::opt<int> ColdCCRelFreq( 102 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 103 cl::desc( 104 "Maximum block frequency, expressed as a percentage of caller's " 105 "entry frequency, for a call site to be considered cold for enabling" 106 "coldcc")); 107 108 /// Is this global variable possibly used by a leak checker as a root? If so, 109 /// we might not really want to eliminate the stores to it. 110 static bool isLeakCheckerRoot(GlobalVariable *GV) { 111 // A global variable is a root if it is a pointer, or could plausibly contain 112 // a pointer. There are two challenges; one is that we could have a struct 113 // the has an inner member which is a pointer. We recurse through the type to 114 // detect these (up to a point). The other is that we may actually be a union 115 // of a pointer and another type, and so our LLVM type is an integer which 116 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 117 // potentially contained here. 118 119 if (GV->hasPrivateLinkage()) 120 return false; 121 122 SmallVector<Type *, 4> Types; 123 Types.push_back(GV->getValueType()); 124 125 unsigned Limit = 20; 126 do { 127 Type *Ty = Types.pop_back_val(); 128 switch (Ty->getTypeID()) { 129 default: break; 130 case Type::PointerTyID: 131 return true; 132 case Type::FixedVectorTyID: 133 case Type::ScalableVectorTyID: 134 if (cast<VectorType>(Ty)->getElementType()->isPointerTy()) 135 return true; 136 break; 137 case Type::ArrayTyID: 138 Types.push_back(cast<ArrayType>(Ty)->getElementType()); 139 break; 140 case Type::StructTyID: { 141 StructType *STy = cast<StructType>(Ty); 142 if (STy->isOpaque()) return true; 143 for (StructType::element_iterator I = STy->element_begin(), 144 E = STy->element_end(); I != E; ++I) { 145 Type *InnerTy = *I; 146 if (isa<PointerType>(InnerTy)) return true; 147 if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) || 148 isa<VectorType>(InnerTy)) 149 Types.push_back(InnerTy); 150 } 151 break; 152 } 153 } 154 if (--Limit == 0) return true; 155 } while (!Types.empty()); 156 return false; 157 } 158 159 /// Given a value that is stored to a global but never read, determine whether 160 /// it's safe to remove the store and the chain of computation that feeds the 161 /// store. 162 static bool IsSafeComputationToRemove( 163 Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 164 do { 165 if (isa<Constant>(V)) 166 return true; 167 if (!V->hasOneUse()) 168 return false; 169 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 170 isa<GlobalValue>(V)) 171 return false; 172 if (isAllocationFn(V, GetTLI)) 173 return true; 174 175 Instruction *I = cast<Instruction>(V); 176 if (I->mayHaveSideEffects()) 177 return false; 178 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 179 if (!GEP->hasAllConstantIndices()) 180 return false; 181 } else if (I->getNumOperands() != 1) { 182 return false; 183 } 184 185 V = I->getOperand(0); 186 } while (true); 187 } 188 189 /// This GV is a pointer root. Loop over all users of the global and clean up 190 /// any that obviously don't assign the global a value that isn't dynamically 191 /// allocated. 192 static bool 193 CleanupPointerRootUsers(GlobalVariable *GV, 194 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 195 // A brief explanation of leak checkers. The goal is to find bugs where 196 // pointers are forgotten, causing an accumulating growth in memory 197 // usage over time. The common strategy for leak checkers is to explicitly 198 // allow the memory pointed to by globals at exit. This is popular because it 199 // also solves another problem where the main thread of a C++ program may shut 200 // down before other threads that are still expecting to use those globals. To 201 // handle that case, we expect the program may create a singleton and never 202 // destroy it. 203 204 bool Changed = false; 205 206 // If Dead[n].first is the only use of a malloc result, we can delete its 207 // chain of computation and the store to the global in Dead[n].second. 208 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 209 210 // Constants can't be pointers to dynamically allocated memory. 211 for (User *U : llvm::make_early_inc_range(GV->users())) { 212 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 213 Value *V = SI->getValueOperand(); 214 if (isa<Constant>(V)) { 215 Changed = true; 216 SI->eraseFromParent(); 217 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 218 if (I->hasOneUse()) 219 Dead.push_back(std::make_pair(I, SI)); 220 } 221 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 222 if (isa<Constant>(MSI->getValue())) { 223 Changed = true; 224 MSI->eraseFromParent(); 225 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 226 if (I->hasOneUse()) 227 Dead.push_back(std::make_pair(I, MSI)); 228 } 229 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 230 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 231 if (MemSrc && MemSrc->isConstant()) { 232 Changed = true; 233 MTI->eraseFromParent(); 234 } else if (Instruction *I = dyn_cast<Instruction>(MTI->getSource())) { 235 if (I->hasOneUse()) 236 Dead.push_back(std::make_pair(I, MTI)); 237 } 238 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 239 if (CE->use_empty()) { 240 CE->destroyConstant(); 241 Changed = true; 242 } 243 } else if (Constant *C = dyn_cast<Constant>(U)) { 244 if (isSafeToDestroyConstant(C)) { 245 C->destroyConstant(); 246 // This could have invalidated UI, start over from scratch. 247 Dead.clear(); 248 CleanupPointerRootUsers(GV, GetTLI); 249 return true; 250 } 251 } 252 } 253 254 for (int i = 0, e = Dead.size(); i != e; ++i) { 255 if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) { 256 Dead[i].second->eraseFromParent(); 257 Instruction *I = Dead[i].first; 258 do { 259 if (isAllocationFn(I, GetTLI)) 260 break; 261 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 262 if (!J) 263 break; 264 I->eraseFromParent(); 265 I = J; 266 } while (true); 267 I->eraseFromParent(); 268 Changed = true; 269 } 270 } 271 272 return Changed; 273 } 274 275 /// We just marked GV constant. Loop over all users of the global, cleaning up 276 /// the obvious ones. This is largely just a quick scan over the use list to 277 /// clean up the easy and obvious cruft. This returns true if it made a change. 278 static bool CleanupConstantGlobalUsers(GlobalVariable *GV, 279 const DataLayout &DL) { 280 Constant *Init = GV->getInitializer(); 281 SmallVector<User *, 8> WorkList(GV->users()); 282 SmallPtrSet<User *, 8> Visited; 283 bool Changed = false; 284 285 SmallVector<WeakTrackingVH> MaybeDeadInsts; 286 auto EraseFromParent = [&](Instruction *I) { 287 for (Value *Op : I->operands()) 288 if (auto *OpI = dyn_cast<Instruction>(Op)) 289 MaybeDeadInsts.push_back(OpI); 290 I->eraseFromParent(); 291 Changed = true; 292 }; 293 while (!WorkList.empty()) { 294 User *U = WorkList.pop_back_val(); 295 if (!Visited.insert(U).second) 296 continue; 297 298 if (auto *BO = dyn_cast<BitCastOperator>(U)) 299 append_range(WorkList, BO->users()); 300 if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(U)) 301 append_range(WorkList, ASC->users()); 302 else if (auto *GEP = dyn_cast<GEPOperator>(U)) 303 append_range(WorkList, GEP->users()); 304 else if (auto *LI = dyn_cast<LoadInst>(U)) { 305 // A load from a uniform value is always the same, regardless of any 306 // applied offset. 307 Type *Ty = LI->getType(); 308 if (Constant *Res = ConstantFoldLoadFromUniformValue(Init, Ty)) { 309 LI->replaceAllUsesWith(Res); 310 EraseFromParent(LI); 311 continue; 312 } 313 314 Value *PtrOp = LI->getPointerOperand(); 315 APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 316 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 317 DL, Offset, /* AllowNonInbounds */ true); 318 if (PtrOp == GV) { 319 if (auto *Value = ConstantFoldLoadFromConst(Init, Ty, Offset, DL)) { 320 LI->replaceAllUsesWith(Value); 321 EraseFromParent(LI); 322 } 323 } 324 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 325 // Store must be unreachable or storing Init into the global. 326 EraseFromParent(SI); 327 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 328 if (getUnderlyingObject(MI->getRawDest()) == GV) 329 EraseFromParent(MI); 330 } 331 } 332 333 Changed |= 334 RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts); 335 GV->removeDeadConstantUsers(); 336 return Changed; 337 } 338 339 /// Look at all uses of the global and determine which (offset, type) pairs it 340 /// can be split into. 341 static bool collectSRATypes(DenseMap<uint64_t, Type *> &Types, GlobalValue *GV, 342 const DataLayout &DL) { 343 SmallVector<Use *, 16> Worklist; 344 SmallPtrSet<Use *, 16> Visited; 345 auto AppendUses = [&](Value *V) { 346 for (Use &U : V->uses()) 347 if (Visited.insert(&U).second) 348 Worklist.push_back(&U); 349 }; 350 AppendUses(GV); 351 while (!Worklist.empty()) { 352 Use *U = Worklist.pop_back_val(); 353 User *V = U->getUser(); 354 355 auto *GEP = dyn_cast<GEPOperator>(V); 356 if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) || 357 (GEP && GEP->hasAllConstantIndices())) { 358 AppendUses(V); 359 continue; 360 } 361 362 if (Value *Ptr = getLoadStorePointerOperand(V)) { 363 // This is storing the global address into somewhere, not storing into 364 // the global. 365 if (isa<StoreInst>(V) && U->getOperandNo() == 0) 366 return false; 367 368 APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 369 Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset, 370 /* AllowNonInbounds */ true); 371 if (Ptr != GV || Offset.getActiveBits() >= 64) 372 return false; 373 374 // TODO: We currently require that all accesses at a given offset must 375 // use the same type. This could be relaxed. 376 Type *Ty = getLoadStoreType(V); 377 auto It = Types.try_emplace(Offset.getZExtValue(), Ty).first; 378 if (Ty != It->second) 379 return false; 380 continue; 381 } 382 383 // Ignore dead constant users. 384 if (auto *C = dyn_cast<Constant>(V)) { 385 if (!isSafeToDestroyConstant(C)) 386 return false; 387 continue; 388 } 389 390 // Unknown user. 391 return false; 392 } 393 394 return true; 395 } 396 397 /// Copy over the debug info for a variable to its SRA replacements. 398 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 399 uint64_t FragmentOffsetInBits, 400 uint64_t FragmentSizeInBits, 401 uint64_t VarSize) { 402 SmallVector<DIGlobalVariableExpression *, 1> GVs; 403 GV->getDebugInfo(GVs); 404 for (auto *GVE : GVs) { 405 DIVariable *Var = GVE->getVariable(); 406 DIExpression *Expr = GVE->getExpression(); 407 int64_t CurVarOffsetInBytes = 0; 408 uint64_t CurVarOffsetInBits = 0; 409 410 // Calculate the offset (Bytes), Continue if unknown. 411 if (!Expr->extractIfOffset(CurVarOffsetInBytes)) 412 continue; 413 414 // Ignore negative offset. 415 if (CurVarOffsetInBytes < 0) 416 continue; 417 418 // Convert offset to bits. 419 CurVarOffsetInBits = CHAR_BIT * (uint64_t)CurVarOffsetInBytes; 420 421 // Current var starts after the fragment, ignore. 422 if (CurVarOffsetInBits >= (FragmentOffsetInBits + FragmentSizeInBits)) 423 continue; 424 425 uint64_t CurVarSize = Var->getType()->getSizeInBits(); 426 // Current variable ends before start of fragment, ignore. 427 if (CurVarSize != 0 && 428 (CurVarOffsetInBits + CurVarSize) <= FragmentOffsetInBits) 429 continue; 430 431 // Current variable fits in the fragment. 432 if (CurVarOffsetInBits == FragmentOffsetInBits && 433 CurVarSize == FragmentSizeInBits) 434 Expr = DIExpression::get(Expr->getContext(), {}); 435 // If the FragmentSize is smaller than the variable, 436 // emit a fragment expression. 437 else if (FragmentSizeInBits < VarSize) { 438 if (auto E = DIExpression::createFragmentExpression( 439 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 440 Expr = *E; 441 else 442 return; 443 } 444 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 445 NGV->addDebugInfo(NGVE); 446 } 447 } 448 449 /// Perform scalar replacement of aggregates on the specified global variable. 450 /// This opens the door for other optimizations by exposing the behavior of the 451 /// program in a more fine-grained way. We have determined that this 452 /// transformation is safe already. We return the first global variable we 453 /// insert so that the caller can reprocess it. 454 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 455 assert(GV->hasLocalLinkage()); 456 457 // Collect types to split into. 458 DenseMap<uint64_t, Type *> Types; 459 if (!collectSRATypes(Types, GV, DL) || Types.empty()) 460 return nullptr; 461 462 // Make sure we don't SRA back to the same type. 463 if (Types.size() == 1 && Types.begin()->second == GV->getValueType()) 464 return nullptr; 465 466 // Don't perform SRA if we would have to split into many globals. 467 if (Types.size() > 16) 468 return nullptr; 469 470 // Sort by offset. 471 SmallVector<std::pair<uint64_t, Type *>, 16> TypesVector; 472 append_range(TypesVector, Types); 473 sort(TypesVector, 474 [](const auto &A, const auto &B) { return A.first < B.first; }); 475 476 // Check that the types are non-overlapping. 477 uint64_t Offset = 0; 478 for (const auto &Pair : TypesVector) { 479 // Overlaps with previous type. 480 if (Pair.first < Offset) 481 return nullptr; 482 483 Offset = Pair.first + DL.getTypeAllocSize(Pair.second); 484 } 485 486 // Some accesses go beyond the end of the global, don't bother. 487 if (Offset > DL.getTypeAllocSize(GV->getValueType())) 488 return nullptr; 489 490 // Collect initializers for new globals. 491 Constant *OrigInit = GV->getInitializer(); 492 DenseMap<uint64_t, Constant *> Initializers; 493 for (const auto &Pair : Types) { 494 Constant *NewInit = ConstantFoldLoadFromConst(OrigInit, Pair.second, 495 APInt(64, Pair.first), DL); 496 if (!NewInit) { 497 LLVM_DEBUG(dbgs() << "Global SRA: Failed to evaluate initializer of " 498 << *GV << " with type " << *Pair.second << " at offset " 499 << Pair.first << "\n"); 500 return nullptr; 501 } 502 Initializers.insert({Pair.first, NewInit}); 503 } 504 505 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 506 507 // Get the alignment of the global, either explicit or target-specific. 508 Align StartAlignment = 509 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 510 uint64_t VarSize = DL.getTypeSizeInBits(GV->getValueType()); 511 512 // Create replacement globals. 513 DenseMap<uint64_t, GlobalVariable *> NewGlobals; 514 unsigned NameSuffix = 0; 515 for (auto &Pair : TypesVector) { 516 uint64_t Offset = Pair.first; 517 Type *Ty = Pair.second; 518 GlobalVariable *NGV = new GlobalVariable( 519 *GV->getParent(), Ty, false, GlobalVariable::InternalLinkage, 520 Initializers[Offset], GV->getName() + "." + Twine(NameSuffix++), GV, 521 GV->getThreadLocalMode(), GV->getAddressSpace()); 522 NGV->copyAttributesFrom(GV); 523 NewGlobals.insert({Offset, NGV}); 524 525 // Calculate the known alignment of the field. If the original aggregate 526 // had 256 byte alignment for example, something might depend on that: 527 // propagate info to each field. 528 Align NewAlign = commonAlignment(StartAlignment, Offset); 529 if (NewAlign > DL.getABITypeAlign(Ty)) 530 NGV->setAlignment(NewAlign); 531 532 // Copy over the debug info for the variable. 533 transferSRADebugInfo(GV, NGV, Offset * 8, DL.getTypeAllocSizeInBits(Ty), 534 VarSize); 535 } 536 537 // Replace uses of the original global with uses of the new global. 538 SmallVector<Value *, 16> Worklist; 539 SmallPtrSet<Value *, 16> Visited; 540 SmallVector<WeakTrackingVH, 16> DeadInsts; 541 auto AppendUsers = [&](Value *V) { 542 for (User *U : V->users()) 543 if (Visited.insert(U).second) 544 Worklist.push_back(U); 545 }; 546 AppendUsers(GV); 547 while (!Worklist.empty()) { 548 Value *V = Worklist.pop_back_val(); 549 if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) || 550 isa<GEPOperator>(V)) { 551 AppendUsers(V); 552 if (isa<Instruction>(V)) 553 DeadInsts.push_back(V); 554 continue; 555 } 556 557 if (Value *Ptr = getLoadStorePointerOperand(V)) { 558 APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 559 Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset, 560 /* AllowNonInbounds */ true); 561 assert(Ptr == GV && "Load/store must be from/to global"); 562 GlobalVariable *NGV = NewGlobals[Offset.getZExtValue()]; 563 assert(NGV && "Must have replacement global for this offset"); 564 565 // Update the pointer operand and recalculate alignment. 566 Align PrefAlign = DL.getPrefTypeAlign(getLoadStoreType(V)); 567 Align NewAlign = 568 getOrEnforceKnownAlignment(NGV, PrefAlign, DL, cast<Instruction>(V)); 569 570 if (auto *LI = dyn_cast<LoadInst>(V)) { 571 LI->setOperand(0, NGV); 572 LI->setAlignment(NewAlign); 573 } else { 574 auto *SI = cast<StoreInst>(V); 575 SI->setOperand(1, NGV); 576 SI->setAlignment(NewAlign); 577 } 578 continue; 579 } 580 581 assert(isa<Constant>(V) && isSafeToDestroyConstant(cast<Constant>(V)) && 582 "Other users can only be dead constants"); 583 } 584 585 // Delete old instructions and global. 586 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts); 587 GV->removeDeadConstantUsers(); 588 GV->eraseFromParent(); 589 ++NumSRA; 590 591 assert(NewGlobals.size() > 0); 592 return NewGlobals.begin()->second; 593 } 594 595 /// Return true if all users of the specified value will trap if the value is 596 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 597 /// reprocessing them. 598 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 599 SmallPtrSetImpl<const PHINode*> &PHIs) { 600 for (const User *U : V->users()) { 601 if (const Instruction *I = dyn_cast<Instruction>(U)) { 602 // If null pointer is considered valid, then all uses are non-trapping. 603 // Non address-space 0 globals have already been pruned by the caller. 604 if (NullPointerIsDefined(I->getFunction())) 605 return false; 606 } 607 if (isa<LoadInst>(U)) { 608 // Will trap. 609 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 610 if (SI->getOperand(0) == V) { 611 //cerr << "NONTRAPPING USE: " << *U; 612 return false; // Storing the value. 613 } 614 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 615 if (CI->getCalledOperand() != V) { 616 //cerr << "NONTRAPPING USE: " << *U; 617 return false; // Not calling the ptr 618 } 619 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 620 if (II->getCalledOperand() != V) { 621 //cerr << "NONTRAPPING USE: " << *U; 622 return false; // Not calling the ptr 623 } 624 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 625 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 626 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 627 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 628 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 629 // If we've already seen this phi node, ignore it, it has already been 630 // checked. 631 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 632 return false; 633 } else if (isa<ICmpInst>(U) && 634 !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) && 635 isa<LoadInst>(U->getOperand(0)) && 636 isa<ConstantPointerNull>(U->getOperand(1))) { 637 assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0)) 638 ->getPointerOperand() 639 ->stripPointerCasts()) && 640 "Should be GlobalVariable"); 641 // This and only this kind of non-signed ICmpInst is to be replaced with 642 // the comparing of the value of the created global init bool later in 643 // optimizeGlobalAddressOfAllocation for the global variable. 644 } else { 645 //cerr << "NONTRAPPING USE: " << *U; 646 return false; 647 } 648 } 649 return true; 650 } 651 652 /// Return true if all uses of any loads from GV will trap if the loaded value 653 /// is null. Note that this also permits comparisons of the loaded value 654 /// against null, as a special case. 655 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 656 SmallVector<const Value *, 4> Worklist; 657 Worklist.push_back(GV); 658 while (!Worklist.empty()) { 659 const Value *P = Worklist.pop_back_val(); 660 for (auto *U : P->users()) { 661 if (auto *LI = dyn_cast<LoadInst>(U)) { 662 SmallPtrSet<const PHINode *, 8> PHIs; 663 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 664 return false; 665 } else if (auto *SI = dyn_cast<StoreInst>(U)) { 666 // Ignore stores to the global. 667 if (SI->getPointerOperand() != P) 668 return false; 669 } else if (auto *CE = dyn_cast<ConstantExpr>(U)) { 670 if (CE->stripPointerCasts() != GV) 671 return false; 672 // Check further the ConstantExpr. 673 Worklist.push_back(CE); 674 } else { 675 // We don't know or understand this user, bail out. 676 return false; 677 } 678 } 679 } 680 681 return true; 682 } 683 684 /// Get all the loads/store uses for global variable \p GV. 685 static void allUsesOfLoadAndStores(GlobalVariable *GV, 686 SmallVector<Value *, 4> &Uses) { 687 SmallVector<Value *, 4> Worklist; 688 Worklist.push_back(GV); 689 while (!Worklist.empty()) { 690 auto *P = Worklist.pop_back_val(); 691 for (auto *U : P->users()) { 692 if (auto *CE = dyn_cast<ConstantExpr>(U)) { 693 Worklist.push_back(CE); 694 continue; 695 } 696 697 assert((isa<LoadInst>(U) || isa<StoreInst>(U)) && 698 "Expect only load or store instructions"); 699 Uses.push_back(U); 700 } 701 } 702 } 703 704 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 705 bool Changed = false; 706 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 707 Instruction *I = cast<Instruction>(*UI++); 708 // Uses are non-trapping if null pointer is considered valid. 709 // Non address-space 0 globals are already pruned by the caller. 710 if (NullPointerIsDefined(I->getFunction())) 711 return false; 712 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 713 LI->setOperand(0, NewV); 714 Changed = true; 715 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 716 if (SI->getOperand(1) == V) { 717 SI->setOperand(1, NewV); 718 Changed = true; 719 } 720 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 721 CallBase *CB = cast<CallBase>(I); 722 if (CB->getCalledOperand() == V) { 723 // Calling through the pointer! Turn into a direct call, but be careful 724 // that the pointer is not also being passed as an argument. 725 CB->setCalledOperand(NewV); 726 Changed = true; 727 bool PassedAsArg = false; 728 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 729 if (CB->getArgOperand(i) == V) { 730 PassedAsArg = true; 731 CB->setArgOperand(i, NewV); 732 } 733 734 if (PassedAsArg) { 735 // Being passed as an argument also. Be careful to not invalidate UI! 736 UI = V->user_begin(); 737 } 738 } 739 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 740 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 741 ConstantExpr::getCast(CI->getOpcode(), 742 NewV, CI->getType())); 743 if (CI->use_empty()) { 744 Changed = true; 745 CI->eraseFromParent(); 746 } 747 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 748 // Should handle GEP here. 749 SmallVector<Constant*, 8> Idxs; 750 Idxs.reserve(GEPI->getNumOperands()-1); 751 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 752 i != e; ++i) 753 if (Constant *C = dyn_cast<Constant>(*i)) 754 Idxs.push_back(C); 755 else 756 break; 757 if (Idxs.size() == GEPI->getNumOperands()-1) 758 Changed |= OptimizeAwayTrappingUsesOfValue( 759 GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(), 760 NewV, Idxs)); 761 if (GEPI->use_empty()) { 762 Changed = true; 763 GEPI->eraseFromParent(); 764 } 765 } 766 } 767 768 return Changed; 769 } 770 771 /// The specified global has only one non-null value stored into it. If there 772 /// are uses of the loaded value that would trap if the loaded value is 773 /// dynamically null, then we know that they cannot be reachable with a null 774 /// optimize away the load. 775 static bool OptimizeAwayTrappingUsesOfLoads( 776 GlobalVariable *GV, Constant *LV, const DataLayout &DL, 777 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 778 bool Changed = false; 779 780 // Keep track of whether we are able to remove all the uses of the global 781 // other than the store that defines it. 782 bool AllNonStoreUsesGone = true; 783 784 // Replace all uses of loads with uses of uses of the stored value. 785 for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) { 786 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 787 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 788 // If we were able to delete all uses of the loads 789 if (LI->use_empty()) { 790 LI->eraseFromParent(); 791 Changed = true; 792 } else { 793 AllNonStoreUsesGone = false; 794 } 795 } else if (isa<StoreInst>(GlobalUser)) { 796 // Ignore the store that stores "LV" to the global. 797 assert(GlobalUser->getOperand(1) == GV && 798 "Must be storing *to* the global"); 799 } else { 800 AllNonStoreUsesGone = false; 801 802 // If we get here we could have other crazy uses that are transitively 803 // loaded. 804 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 805 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 806 isa<BitCastInst>(GlobalUser) || 807 isa<GetElementPtrInst>(GlobalUser)) && 808 "Only expect load and stores!"); 809 } 810 } 811 812 if (Changed) { 813 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV 814 << "\n"); 815 ++NumGlobUses; 816 } 817 818 // If we nuked all of the loads, then none of the stores are needed either, 819 // nor is the global. 820 if (AllNonStoreUsesGone) { 821 if (isLeakCheckerRoot(GV)) { 822 Changed |= CleanupPointerRootUsers(GV, GetTLI); 823 } else { 824 Changed = true; 825 CleanupConstantGlobalUsers(GV, DL); 826 } 827 if (GV->use_empty()) { 828 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 829 Changed = true; 830 GV->eraseFromParent(); 831 ++NumDeleted; 832 } 833 } 834 return Changed; 835 } 836 837 /// Walk the use list of V, constant folding all of the instructions that are 838 /// foldable. 839 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 840 TargetLibraryInfo *TLI) { 841 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 842 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 843 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 844 I->replaceAllUsesWith(NewC); 845 846 // Advance UI to the next non-I use to avoid invalidating it! 847 // Instructions could multiply use V. 848 while (UI != E && *UI == I) 849 ++UI; 850 if (isInstructionTriviallyDead(I, TLI)) 851 I->eraseFromParent(); 852 } 853 } 854 855 /// This function takes the specified global variable, and transforms the 856 /// program as if it always contained the result of the specified malloc. 857 /// Because it is always the result of the specified malloc, there is no reason 858 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 859 /// loads of GV as uses of the new global. 860 static GlobalVariable * 861 OptimizeGlobalAddressOfAllocation(GlobalVariable *GV, CallInst *CI, 862 uint64_t AllocSize, Constant *InitVal, 863 const DataLayout &DL, 864 TargetLibraryInfo *TLI) { 865 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI 866 << '\n'); 867 868 // Create global of type [AllocSize x i8]. 869 Type *GlobalType = ArrayType::get(Type::getInt8Ty(GV->getContext()), 870 AllocSize); 871 872 // Create the new global variable. The contents of the allocated memory is 873 // undefined initially, so initialize with an undef value. 874 GlobalVariable *NewGV = new GlobalVariable( 875 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 876 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 877 GV->getThreadLocalMode()); 878 879 // Initialize the global at the point of the original call. Note that this 880 // is a different point from the initialization referred to below for the 881 // nullability handling. Sublety: We have not proven the original global was 882 // only initialized once. As such, we can not fold this into the initializer 883 // of the new global as may need to re-init the storage multiple times. 884 if (!isa<UndefValue>(InitVal)) { 885 IRBuilder<> Builder(CI->getNextNode()); 886 // TODO: Use alignment above if align!=1 887 Builder.CreateMemSet(NewGV, InitVal, AllocSize, None); 888 } 889 890 // Update users of the allocation to use the new global instead. 891 BitCastInst *TheBC = nullptr; 892 while (!CI->use_empty()) { 893 Instruction *User = cast<Instruction>(CI->user_back()); 894 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 895 if (BCI->getType() == NewGV->getType()) { 896 BCI->replaceAllUsesWith(NewGV); 897 BCI->eraseFromParent(); 898 } else { 899 BCI->setOperand(0, NewGV); 900 } 901 } else { 902 if (!TheBC) 903 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 904 User->replaceUsesOfWith(CI, TheBC); 905 } 906 } 907 908 SmallSetVector<Constant *, 1> RepValues; 909 RepValues.insert(NewGV); 910 911 // If there is a comparison against null, we will insert a global bool to 912 // keep track of whether the global was initialized yet or not. 913 GlobalVariable *InitBool = 914 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 915 GlobalValue::InternalLinkage, 916 ConstantInt::getFalse(GV->getContext()), 917 GV->getName()+".init", GV->getThreadLocalMode()); 918 bool InitBoolUsed = false; 919 920 // Loop over all instruction uses of GV, processing them in turn. 921 SmallVector<Value *, 4> Guses; 922 allUsesOfLoadAndStores(GV, Guses); 923 for (auto *U : Guses) { 924 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 925 // The global is initialized when the store to it occurs. If the stored 926 // value is null value, the global bool is set to false, otherwise true. 927 new StoreInst(ConstantInt::getBool( 928 GV->getContext(), 929 !isa<ConstantPointerNull>(SI->getValueOperand())), 930 InitBool, false, Align(1), SI->getOrdering(), 931 SI->getSyncScopeID(), SI); 932 SI->eraseFromParent(); 933 continue; 934 } 935 936 LoadInst *LI = cast<LoadInst>(U); 937 while (!LI->use_empty()) { 938 Use &LoadUse = *LI->use_begin(); 939 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 940 if (!ICI) { 941 auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType()); 942 RepValues.insert(CE); 943 LoadUse.set(CE); 944 continue; 945 } 946 947 // Replace the cmp X, 0 with a use of the bool value. 948 Value *LV = new LoadInst(InitBool->getValueType(), InitBool, 949 InitBool->getName() + ".val", false, Align(1), 950 LI->getOrdering(), LI->getSyncScopeID(), LI); 951 InitBoolUsed = true; 952 switch (ICI->getPredicate()) { 953 default: llvm_unreachable("Unknown ICmp Predicate!"); 954 case ICmpInst::ICMP_ULT: // X < null -> always false 955 LV = ConstantInt::getFalse(GV->getContext()); 956 break; 957 case ICmpInst::ICMP_UGE: // X >= null -> always true 958 LV = ConstantInt::getTrue(GV->getContext()); 959 break; 960 case ICmpInst::ICMP_ULE: 961 case ICmpInst::ICMP_EQ: 962 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 963 break; 964 case ICmpInst::ICMP_NE: 965 case ICmpInst::ICMP_UGT: 966 break; // no change. 967 } 968 ICI->replaceAllUsesWith(LV); 969 ICI->eraseFromParent(); 970 } 971 LI->eraseFromParent(); 972 } 973 974 // If the initialization boolean was used, insert it, otherwise delete it. 975 if (!InitBoolUsed) { 976 while (!InitBool->use_empty()) // Delete initializations 977 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 978 delete InitBool; 979 } else 980 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 981 982 // Now the GV is dead, nuke it and the allocation.. 983 GV->eraseFromParent(); 984 CI->eraseFromParent(); 985 986 // To further other optimizations, loop over all users of NewGV and try to 987 // constant prop them. This will promote GEP instructions with constant 988 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 989 for (auto *CE : RepValues) 990 ConstantPropUsersOf(CE, DL, TLI); 991 992 return NewGV; 993 } 994 995 /// Scan the use-list of GV checking to make sure that there are no complex uses 996 /// of GV. We permit simple things like dereferencing the pointer, but not 997 /// storing through the address, unless it is to the specified global. 998 static bool 999 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI, 1000 const GlobalVariable *GV) { 1001 SmallPtrSet<const Value *, 4> Visited; 1002 SmallVector<const Value *, 4> Worklist; 1003 Worklist.push_back(CI); 1004 1005 while (!Worklist.empty()) { 1006 const Value *V = Worklist.pop_back_val(); 1007 if (!Visited.insert(V).second) 1008 continue; 1009 1010 for (const Use &VUse : V->uses()) { 1011 const User *U = VUse.getUser(); 1012 if (isa<LoadInst>(U) || isa<CmpInst>(U)) 1013 continue; // Fine, ignore. 1014 1015 if (auto *SI = dyn_cast<StoreInst>(U)) { 1016 if (SI->getValueOperand() == V && 1017 SI->getPointerOperand()->stripPointerCasts() != GV) 1018 return false; // Storing the pointer not into GV... bad. 1019 continue; // Otherwise, storing through it, or storing into GV... fine. 1020 } 1021 1022 if (auto *BCI = dyn_cast<BitCastInst>(U)) { 1023 Worklist.push_back(BCI); 1024 continue; 1025 } 1026 1027 if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1028 Worklist.push_back(GEPI); 1029 continue; 1030 } 1031 1032 return false; 1033 } 1034 } 1035 1036 return true; 1037 } 1038 1039 /// If we have a global that is only initialized with a fixed size allocation 1040 /// try to transform the program to use global memory instead of heap 1041 /// allocated memory. This eliminates dynamic allocation, avoids an indirection 1042 /// accessing the data, and exposes the resultant global to further GlobalOpt. 1043 static bool tryToOptimizeStoreOfAllocationToGlobal(GlobalVariable *GV, 1044 CallInst *CI, 1045 AtomicOrdering Ordering, 1046 const DataLayout &DL, 1047 TargetLibraryInfo *TLI) { 1048 if (!isAllocRemovable(CI, TLI)) 1049 // Must be able to remove the call when we get done.. 1050 return false; 1051 1052 Type *Int8Ty = Type::getInt8Ty(CI->getFunction()->getContext()); 1053 Constant *InitVal = getInitialValueOfAllocation(CI, TLI, Int8Ty); 1054 if (!InitVal) 1055 // Must be able to emit a memset for initialization 1056 return false; 1057 1058 uint64_t AllocSize; 1059 if (!getObjectSize(CI, AllocSize, DL, TLI, ObjectSizeOpts())) 1060 return false; 1061 1062 // Restrict this transformation to only working on small allocations 1063 // (2048 bytes currently), as we don't want to introduce a 16M global or 1064 // something. 1065 if (AllocSize >= 2048) 1066 return false; 1067 1068 // We can't optimize this global unless all uses of it are *known* to be 1069 // of the malloc value, not of the null initializer value (consider a use 1070 // that compares the global's value against zero to see if the malloc has 1071 // been reached). To do this, we check to see if all uses of the global 1072 // would trap if the global were null: this proves that they must all 1073 // happen after the malloc. 1074 if (!allUsesOfLoadedValueWillTrapIfNull(GV)) 1075 return false; 1076 1077 // We can't optimize this if the malloc itself is used in a complex way, 1078 // for example, being stored into multiple globals. This allows the 1079 // malloc to be stored into the specified global, loaded, gep, icmp'd. 1080 // These are all things we could transform to using the global for. 1081 if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV)) 1082 return false; 1083 1084 OptimizeGlobalAddressOfAllocation(GV, CI, AllocSize, InitVal, DL, TLI); 1085 return true; 1086 } 1087 1088 // Try to optimize globals based on the knowledge that only one value (besides 1089 // its initializer) is ever stored to the global. 1090 static bool 1091 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1092 AtomicOrdering Ordering, const DataLayout &DL, 1093 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1094 // Ignore no-op GEPs and bitcasts. 1095 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1096 1097 // If we are dealing with a pointer global that is initialized to null and 1098 // only has one (non-null) value stored into it, then we can optimize any 1099 // users of the loaded value (often calls and loads) that would trap if the 1100 // value was null. 1101 if (GV->getInitializer()->getType()->isPointerTy() && 1102 GV->getInitializer()->isNullValue() && 1103 StoredOnceVal->getType()->isPointerTy() && 1104 !NullPointerIsDefined( 1105 nullptr /* F */, 1106 GV->getInitializer()->getType()->getPointerAddressSpace())) { 1107 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1108 if (GV->getInitializer()->getType() != SOVC->getType()) 1109 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1110 1111 // Optimize away any trapping uses of the loaded value. 1112 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI)) 1113 return true; 1114 } else if (isAllocationFn(StoredOnceVal, GetTLI)) { 1115 if (auto *CI = dyn_cast<CallInst>(StoredOnceVal)) { 1116 auto *TLI = &GetTLI(*CI->getFunction()); 1117 if (tryToOptimizeStoreOfAllocationToGlobal(GV, CI, Ordering, DL, TLI)) 1118 return true; 1119 } 1120 } 1121 } 1122 1123 return false; 1124 } 1125 1126 /// At this point, we have learned that the only two values ever stored into GV 1127 /// are its initializer and OtherVal. See if we can shrink the global into a 1128 /// boolean and select between the two values whenever it is used. This exposes 1129 /// the values to other scalar optimizations. 1130 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1131 Type *GVElType = GV->getValueType(); 1132 1133 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1134 // an FP value, pointer or vector, don't do this optimization because a select 1135 // between them is very expensive and unlikely to lead to later 1136 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1137 // where v1 and v2 both require constant pool loads, a big loss. 1138 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1139 GVElType->isFloatingPointTy() || 1140 GVElType->isPointerTy() || GVElType->isVectorTy()) 1141 return false; 1142 1143 // Walk the use list of the global seeing if all the uses are load or store. 1144 // If there is anything else, bail out. 1145 for (User *U : GV->users()) { 1146 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1147 return false; 1148 if (getLoadStoreType(U) != GVElType) 1149 return false; 1150 } 1151 1152 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1153 1154 // Create the new global, initializing it to false. 1155 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1156 false, 1157 GlobalValue::InternalLinkage, 1158 ConstantInt::getFalse(GV->getContext()), 1159 GV->getName()+".b", 1160 GV->getThreadLocalMode(), 1161 GV->getType()->getAddressSpace()); 1162 NewGV->copyAttributesFrom(GV); 1163 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1164 1165 Constant *InitVal = GV->getInitializer(); 1166 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1167 "No reason to shrink to bool!"); 1168 1169 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1170 GV->getDebugInfo(GVs); 1171 1172 // If initialized to zero and storing one into the global, we can use a cast 1173 // instead of a select to synthesize the desired value. 1174 bool IsOneZero = false; 1175 bool EmitOneOrZero = true; 1176 auto *CI = dyn_cast<ConstantInt>(OtherVal); 1177 if (CI && CI->getValue().getActiveBits() <= 64) { 1178 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1179 1180 auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer()); 1181 if (CIInit && CIInit->getValue().getActiveBits() <= 64) { 1182 uint64_t ValInit = CIInit->getZExtValue(); 1183 uint64_t ValOther = CI->getZExtValue(); 1184 uint64_t ValMinus = ValOther - ValInit; 1185 1186 for(auto *GVe : GVs){ 1187 DIGlobalVariable *DGV = GVe->getVariable(); 1188 DIExpression *E = GVe->getExpression(); 1189 const DataLayout &DL = GV->getParent()->getDataLayout(); 1190 unsigned SizeInOctets = 1191 DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8; 1192 1193 // It is expected that the address of global optimized variable is on 1194 // top of the stack. After optimization, value of that variable will 1195 // be ether 0 for initial value or 1 for other value. The following 1196 // expression should return constant integer value depending on the 1197 // value at global object address: 1198 // val * (ValOther - ValInit) + ValInit: 1199 // DW_OP_deref DW_OP_constu <ValMinus> 1200 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1201 SmallVector<uint64_t, 12> Ops = { 1202 dwarf::DW_OP_deref_size, SizeInOctets, 1203 dwarf::DW_OP_constu, ValMinus, 1204 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1205 dwarf::DW_OP_plus}; 1206 bool WithStackValue = true; 1207 E = DIExpression::prependOpcodes(E, Ops, WithStackValue); 1208 DIGlobalVariableExpression *DGVE = 1209 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1210 NewGV->addDebugInfo(DGVE); 1211 } 1212 EmitOneOrZero = false; 1213 } 1214 } 1215 1216 if (EmitOneOrZero) { 1217 // FIXME: This will only emit address for debugger on which will 1218 // be written only 0 or 1. 1219 for(auto *GV : GVs) 1220 NewGV->addDebugInfo(GV); 1221 } 1222 1223 while (!GV->use_empty()) { 1224 Instruction *UI = cast<Instruction>(GV->user_back()); 1225 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1226 // Change the store into a boolean store. 1227 bool StoringOther = SI->getOperand(0) == OtherVal; 1228 // Only do this if we weren't storing a loaded value. 1229 Value *StoreVal; 1230 if (StoringOther || SI->getOperand(0) == InitVal) { 1231 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1232 StoringOther); 1233 } else { 1234 // Otherwise, we are storing a previously loaded copy. To do this, 1235 // change the copy from copying the original value to just copying the 1236 // bool. 1237 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1238 1239 // If we've already replaced the input, StoredVal will be a cast or 1240 // select instruction. If not, it will be a load of the original 1241 // global. 1242 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1243 assert(LI->getOperand(0) == GV && "Not a copy!"); 1244 // Insert a new load, to preserve the saved value. 1245 StoreVal = new LoadInst(NewGV->getValueType(), NewGV, 1246 LI->getName() + ".b", false, Align(1), 1247 LI->getOrdering(), LI->getSyncScopeID(), LI); 1248 } else { 1249 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1250 "This is not a form that we understand!"); 1251 StoreVal = StoredVal->getOperand(0); 1252 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1253 } 1254 } 1255 StoreInst *NSI = 1256 new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(), 1257 SI->getSyncScopeID(), SI); 1258 NSI->setDebugLoc(SI->getDebugLoc()); 1259 } else { 1260 // Change the load into a load of bool then a select. 1261 LoadInst *LI = cast<LoadInst>(UI); 1262 LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV, 1263 LI->getName() + ".b", false, Align(1), 1264 LI->getOrdering(), LI->getSyncScopeID(), LI); 1265 Instruction *NSI; 1266 if (IsOneZero) 1267 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1268 else 1269 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1270 NSI->takeName(LI); 1271 // Since LI is split into two instructions, NLI and NSI both inherit the 1272 // same DebugLoc 1273 NLI->setDebugLoc(LI->getDebugLoc()); 1274 NSI->setDebugLoc(LI->getDebugLoc()); 1275 LI->replaceAllUsesWith(NSI); 1276 } 1277 UI->eraseFromParent(); 1278 } 1279 1280 // Retain the name of the old global variable. People who are debugging their 1281 // programs may expect these variables to be named the same. 1282 NewGV->takeName(GV); 1283 GV->eraseFromParent(); 1284 return true; 1285 } 1286 1287 static bool deleteIfDead( 1288 GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1289 GV.removeDeadConstantUsers(); 1290 1291 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1292 return false; 1293 1294 if (const Comdat *C = GV.getComdat()) 1295 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1296 return false; 1297 1298 bool Dead; 1299 if (auto *F = dyn_cast<Function>(&GV)) 1300 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1301 else 1302 Dead = GV.use_empty(); 1303 if (!Dead) 1304 return false; 1305 1306 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1307 GV.eraseFromParent(); 1308 ++NumDeleted; 1309 return true; 1310 } 1311 1312 static bool isPointerValueDeadOnEntryToFunction( 1313 const Function *F, GlobalValue *GV, 1314 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1315 // Find all uses of GV. We expect them all to be in F, and if we can't 1316 // identify any of the uses we bail out. 1317 // 1318 // On each of these uses, identify if the memory that GV points to is 1319 // used/required/live at the start of the function. If it is not, for example 1320 // if the first thing the function does is store to the GV, the GV can 1321 // possibly be demoted. 1322 // 1323 // We don't do an exhaustive search for memory operations - simply look 1324 // through bitcasts as they're quite common and benign. 1325 const DataLayout &DL = GV->getParent()->getDataLayout(); 1326 SmallVector<LoadInst *, 4> Loads; 1327 SmallVector<StoreInst *, 4> Stores; 1328 for (auto *U : GV->users()) { 1329 if (Operator::getOpcode(U) == Instruction::BitCast) { 1330 for (auto *UU : U->users()) { 1331 if (auto *LI = dyn_cast<LoadInst>(UU)) 1332 Loads.push_back(LI); 1333 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1334 Stores.push_back(SI); 1335 else 1336 return false; 1337 } 1338 continue; 1339 } 1340 1341 Instruction *I = dyn_cast<Instruction>(U); 1342 if (!I) 1343 return false; 1344 assert(I->getParent()->getParent() == F); 1345 1346 if (auto *LI = dyn_cast<LoadInst>(I)) 1347 Loads.push_back(LI); 1348 else if (auto *SI = dyn_cast<StoreInst>(I)) 1349 Stores.push_back(SI); 1350 else 1351 return false; 1352 } 1353 1354 // We have identified all uses of GV into loads and stores. Now check if all 1355 // of them are known not to depend on the value of the global at the function 1356 // entry point. We do this by ensuring that every load is dominated by at 1357 // least one store. 1358 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1359 1360 // The below check is quadratic. Check we're not going to do too many tests. 1361 // FIXME: Even though this will always have worst-case quadratic time, we 1362 // could put effort into minimizing the average time by putting stores that 1363 // have been shown to dominate at least one load at the beginning of the 1364 // Stores array, making subsequent dominance checks more likely to succeed 1365 // early. 1366 // 1367 // The threshold here is fairly large because global->local demotion is a 1368 // very powerful optimization should it fire. 1369 const unsigned Threshold = 100; 1370 if (Loads.size() * Stores.size() > Threshold) 1371 return false; 1372 1373 for (auto *L : Loads) { 1374 auto *LTy = L->getType(); 1375 if (none_of(Stores, [&](const StoreInst *S) { 1376 auto *STy = S->getValueOperand()->getType(); 1377 // The load is only dominated by the store if DomTree says so 1378 // and the number of bits loaded in L is less than or equal to 1379 // the number of bits stored in S. 1380 return DT.dominates(S, L) && 1381 DL.getTypeStoreSize(LTy).getFixedSize() <= 1382 DL.getTypeStoreSize(STy).getFixedSize(); 1383 })) 1384 return false; 1385 } 1386 // All loads have known dependences inside F, so the global can be localized. 1387 return true; 1388 } 1389 1390 /// C may have non-instruction users. Can all of those users be turned into 1391 /// instructions? 1392 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1393 // We don't do this exhaustively. The most common pattern that we really need 1394 // to care about is a constant GEP or constant bitcast - so just looking 1395 // through one single ConstantExpr. 1396 // 1397 // The set of constants that this function returns true for must be able to be 1398 // handled by makeAllConstantUsesInstructions. 1399 for (auto *U : C->users()) { 1400 if (isa<Instruction>(U)) 1401 continue; 1402 if (!isa<ConstantExpr>(U)) 1403 // Non instruction, non-constantexpr user; cannot convert this. 1404 return false; 1405 for (auto *UU : U->users()) 1406 if (!isa<Instruction>(UU)) 1407 // A constantexpr used by another constant. We don't try and recurse any 1408 // further but just bail out at this point. 1409 return false; 1410 } 1411 1412 return true; 1413 } 1414 1415 /// C may have non-instruction users, and 1416 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1417 /// non-instruction users to instructions. 1418 static void makeAllConstantUsesInstructions(Constant *C) { 1419 SmallVector<ConstantExpr*,4> Users; 1420 for (auto *U : C->users()) { 1421 if (isa<ConstantExpr>(U)) 1422 Users.push_back(cast<ConstantExpr>(U)); 1423 else 1424 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1425 // should not have returned true for C. 1426 assert( 1427 isa<Instruction>(U) && 1428 "Can't transform non-constantexpr non-instruction to instruction!"); 1429 } 1430 1431 SmallVector<Value*,4> UUsers; 1432 for (auto *U : Users) { 1433 UUsers.clear(); 1434 append_range(UUsers, U->users()); 1435 for (auto *UU : UUsers) { 1436 Instruction *UI = cast<Instruction>(UU); 1437 Instruction *NewU = U->getAsInstruction(UI); 1438 UI->replaceUsesOfWith(U, NewU); 1439 } 1440 // We've replaced all the uses, so destroy the constant. (destroyConstant 1441 // will update value handles and metadata.) 1442 U->destroyConstant(); 1443 } 1444 } 1445 1446 /// Analyze the specified global variable and optimize 1447 /// it if possible. If we make a change, return true. 1448 static bool 1449 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, 1450 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1451 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1452 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1453 auto &DL = GV->getParent()->getDataLayout(); 1454 // If this is a first class global and has only one accessing function and 1455 // this function is non-recursive, we replace the global with a local alloca 1456 // in this function. 1457 // 1458 // NOTE: It doesn't make sense to promote non-single-value types since we 1459 // are just replacing static memory to stack memory. 1460 // 1461 // If the global is in different address space, don't bring it to stack. 1462 if (!GS.HasMultipleAccessingFunctions && 1463 GS.AccessingFunction && 1464 GV->getValueType()->isSingleValueType() && 1465 GV->getType()->getAddressSpace() == 0 && 1466 !GV->isExternallyInitialized() && 1467 allNonInstructionUsersCanBeMadeInstructions(GV) && 1468 GS.AccessingFunction->doesNotRecurse() && 1469 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1470 LookupDomTree)) { 1471 const DataLayout &DL = GV->getParent()->getDataLayout(); 1472 1473 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1474 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1475 ->getEntryBlock().begin()); 1476 Type *ElemTy = GV->getValueType(); 1477 // FIXME: Pass Global's alignment when globals have alignment 1478 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1479 GV->getName(), &FirstI); 1480 if (!isa<UndefValue>(GV->getInitializer())) 1481 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1482 1483 makeAllConstantUsesInstructions(GV); 1484 1485 GV->replaceAllUsesWith(Alloca); 1486 GV->eraseFromParent(); 1487 ++NumLocalized; 1488 return true; 1489 } 1490 1491 bool Changed = false; 1492 1493 // If the global is never loaded (but may be stored to), it is dead. 1494 // Delete it now. 1495 if (!GS.IsLoaded) { 1496 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1497 1498 if (isLeakCheckerRoot(GV)) { 1499 // Delete any constant stores to the global. 1500 Changed = CleanupPointerRootUsers(GV, GetTLI); 1501 } else { 1502 // Delete any stores we can find to the global. We may not be able to 1503 // make it completely dead though. 1504 Changed = CleanupConstantGlobalUsers(GV, DL); 1505 } 1506 1507 // If the global is dead now, delete it. 1508 if (GV->use_empty()) { 1509 GV->eraseFromParent(); 1510 ++NumDeleted; 1511 Changed = true; 1512 } 1513 return Changed; 1514 1515 } 1516 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1517 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1518 1519 // Don't actually mark a global constant if it's atomic because atomic loads 1520 // are implemented by a trivial cmpxchg in some edge-cases and that usually 1521 // requires write access to the variable even if it's not actually changed. 1522 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1523 assert(!GV->isConstant() && "Expected a non-constant global"); 1524 GV->setConstant(true); 1525 Changed = true; 1526 } 1527 1528 // Clean up any obviously simplifiable users now. 1529 Changed |= CleanupConstantGlobalUsers(GV, DL); 1530 1531 // If the global is dead now, just nuke it. 1532 if (GV->use_empty()) { 1533 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1534 << "all users and delete global!\n"); 1535 GV->eraseFromParent(); 1536 ++NumDeleted; 1537 return true; 1538 } 1539 1540 // Fall through to the next check; see if we can optimize further. 1541 ++NumMarked; 1542 } 1543 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1544 const DataLayout &DL = GV->getParent()->getDataLayout(); 1545 if (SRAGlobal(GV, DL)) 1546 return true; 1547 } 1548 Value *StoredOnceValue = GS.getStoredOnceValue(); 1549 if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) { 1550 // Avoid speculating constant expressions that might trap (div/rem). 1551 auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue); 1552 if (SOVConstant && SOVConstant->canTrap()) 1553 return Changed; 1554 1555 Function &StoreFn = 1556 const_cast<Function &>(*GS.StoredOnceStore->getFunction()); 1557 bool CanHaveNonUndefGlobalInitializer = 1558 GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace( 1559 GV->getType()->getAddressSpace()); 1560 // If the initial value for the global was an undef value, and if only 1561 // one other value was stored into it, we can just change the 1562 // initializer to be the stored value, then delete all stores to the 1563 // global. This allows us to mark it constant. 1564 // This is restricted to address spaces that allow globals to have 1565 // initializers. NVPTX, for example, does not support initializers for 1566 // shared memory (AS 3). 1567 if (SOVConstant && isa<UndefValue>(GV->getInitializer()) && 1568 DL.getTypeAllocSize(SOVConstant->getType()) == 1569 DL.getTypeAllocSize(GV->getValueType()) && 1570 CanHaveNonUndefGlobalInitializer) { 1571 if (SOVConstant->getType() == GV->getValueType()) { 1572 // Change the initializer in place. 1573 GV->setInitializer(SOVConstant); 1574 } else { 1575 // Create a new global with adjusted type. 1576 auto *NGV = new GlobalVariable( 1577 *GV->getParent(), SOVConstant->getType(), GV->isConstant(), 1578 GV->getLinkage(), SOVConstant, "", GV, GV->getThreadLocalMode(), 1579 GV->getAddressSpace()); 1580 NGV->takeName(GV); 1581 NGV->copyAttributesFrom(GV); 1582 GV->replaceAllUsesWith(ConstantExpr::getBitCast(NGV, GV->getType())); 1583 GV->eraseFromParent(); 1584 GV = NGV; 1585 } 1586 1587 // Clean up any obviously simplifiable users now. 1588 CleanupConstantGlobalUsers(GV, DL); 1589 1590 if (GV->use_empty()) { 1591 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1592 << "simplify all users and delete global!\n"); 1593 GV->eraseFromParent(); 1594 ++NumDeleted; 1595 } 1596 ++NumSubstitute; 1597 return true; 1598 } 1599 1600 // Try to optimize globals based on the knowledge that only one value 1601 // (besides its initializer) is ever stored to the global. 1602 if (optimizeOnceStoredGlobal(GV, StoredOnceValue, GS.Ordering, DL, GetTLI)) 1603 return true; 1604 1605 // Otherwise, if the global was not a boolean, we can shrink it to be a 1606 // boolean. Skip this optimization for AS that doesn't allow an initializer. 1607 if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic && 1608 (!isa<UndefValue>(GV->getInitializer()) || 1609 CanHaveNonUndefGlobalInitializer)) { 1610 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1611 ++NumShrunkToBool; 1612 return true; 1613 } 1614 } 1615 } 1616 1617 return Changed; 1618 } 1619 1620 /// Analyze the specified global variable and optimize it if possible. If we 1621 /// make a change, return true. 1622 static bool 1623 processGlobal(GlobalValue &GV, 1624 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1625 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1626 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1627 if (GV.getName().startswith("llvm.")) 1628 return false; 1629 1630 GlobalStatus GS; 1631 1632 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1633 return false; 1634 1635 bool Changed = false; 1636 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 1637 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 1638 : GlobalValue::UnnamedAddr::Local; 1639 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 1640 GV.setUnnamedAddr(NewUnnamedAddr); 1641 NumUnnamed++; 1642 Changed = true; 1643 } 1644 } 1645 1646 // Do more involved optimizations if the global is internal. 1647 if (!GV.hasLocalLinkage()) 1648 return Changed; 1649 1650 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1651 if (!GVar) 1652 return Changed; 1653 1654 if (GVar->isConstant() || !GVar->hasInitializer()) 1655 return Changed; 1656 1657 return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) || 1658 Changed; 1659 } 1660 1661 /// Walk all of the direct calls of the specified function, changing them to 1662 /// FastCC. 1663 static void ChangeCalleesToFastCall(Function *F) { 1664 for (User *U : F->users()) { 1665 if (isa<BlockAddress>(U)) 1666 continue; 1667 cast<CallBase>(U)->setCallingConv(CallingConv::Fast); 1668 } 1669 } 1670 1671 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, 1672 Attribute::AttrKind A) { 1673 unsigned AttrIndex; 1674 if (Attrs.hasAttrSomewhere(A, &AttrIndex)) 1675 return Attrs.removeAttributeAtIndex(C, AttrIndex, A); 1676 return Attrs; 1677 } 1678 1679 static void RemoveAttribute(Function *F, Attribute::AttrKind A) { 1680 F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A)); 1681 for (User *U : F->users()) { 1682 if (isa<BlockAddress>(U)) 1683 continue; 1684 CallBase *CB = cast<CallBase>(U); 1685 CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A)); 1686 } 1687 } 1688 1689 /// Return true if this is a calling convention that we'd like to change. The 1690 /// idea here is that we don't want to mess with the convention if the user 1691 /// explicitly requested something with performance implications like coldcc, 1692 /// GHC, or anyregcc. 1693 static bool hasChangeableCC(Function *F) { 1694 CallingConv::ID CC = F->getCallingConv(); 1695 1696 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 1697 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 1698 return false; 1699 1700 // FIXME: Change CC for the whole chain of musttail calls when possible. 1701 // 1702 // Can't change CC of the function that either has musttail calls, or is a 1703 // musttail callee itself 1704 for (User *U : F->users()) { 1705 if (isa<BlockAddress>(U)) 1706 continue; 1707 CallInst* CI = dyn_cast<CallInst>(U); 1708 if (!CI) 1709 continue; 1710 1711 if (CI->isMustTailCall()) 1712 return false; 1713 } 1714 1715 for (BasicBlock &BB : *F) 1716 if (BB.getTerminatingMustTailCall()) 1717 return false; 1718 1719 return true; 1720 } 1721 1722 /// Return true if the block containing the call site has a BlockFrequency of 1723 /// less than ColdCCRelFreq% of the entry block. 1724 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) { 1725 const BranchProbability ColdProb(ColdCCRelFreq, 100); 1726 auto *CallSiteBB = CB.getParent(); 1727 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 1728 auto CallerEntryFreq = 1729 CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock())); 1730 return CallSiteFreq < CallerEntryFreq * ColdProb; 1731 } 1732 1733 // This function checks if the input function F is cold at all call sites. It 1734 // also looks each call site's containing function, returning false if the 1735 // caller function contains other non cold calls. The input vector AllCallsCold 1736 // contains a list of functions that only have call sites in cold blocks. 1737 static bool 1738 isValidCandidateForColdCC(Function &F, 1739 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1740 const std::vector<Function *> &AllCallsCold) { 1741 1742 if (F.user_empty()) 1743 return false; 1744 1745 for (User *U : F.users()) { 1746 if (isa<BlockAddress>(U)) 1747 continue; 1748 1749 CallBase &CB = cast<CallBase>(*U); 1750 Function *CallerFunc = CB.getParent()->getParent(); 1751 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 1752 if (!isColdCallSite(CB, CallerBFI)) 1753 return false; 1754 if (!llvm::is_contained(AllCallsCold, CallerFunc)) 1755 return false; 1756 } 1757 return true; 1758 } 1759 1760 static void changeCallSitesToColdCC(Function *F) { 1761 for (User *U : F->users()) { 1762 if (isa<BlockAddress>(U)) 1763 continue; 1764 cast<CallBase>(U)->setCallingConv(CallingConv::Cold); 1765 } 1766 } 1767 1768 // This function iterates over all the call instructions in the input Function 1769 // and checks that all call sites are in cold blocks and are allowed to use the 1770 // coldcc calling convention. 1771 static bool 1772 hasOnlyColdCalls(Function &F, 1773 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { 1774 for (BasicBlock &BB : F) { 1775 for (Instruction &I : BB) { 1776 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1777 // Skip over isline asm instructions since they aren't function calls. 1778 if (CI->isInlineAsm()) 1779 continue; 1780 Function *CalledFn = CI->getCalledFunction(); 1781 if (!CalledFn) 1782 return false; 1783 if (!CalledFn->hasLocalLinkage()) 1784 return false; 1785 // Skip over intrinsics since they won't remain as function calls. 1786 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 1787 continue; 1788 // Check if it's valid to use coldcc calling convention. 1789 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || 1790 CalledFn->hasAddressTaken()) 1791 return false; 1792 BlockFrequencyInfo &CallerBFI = GetBFI(F); 1793 if (!isColdCallSite(*CI, CallerBFI)) 1794 return false; 1795 } 1796 } 1797 } 1798 return true; 1799 } 1800 1801 static bool hasMustTailCallers(Function *F) { 1802 for (User *U : F->users()) { 1803 CallBase *CB = dyn_cast<CallBase>(U); 1804 if (!CB) { 1805 assert(isa<BlockAddress>(U) && 1806 "Expected either CallBase or BlockAddress"); 1807 continue; 1808 } 1809 if (CB->isMustTailCall()) 1810 return true; 1811 } 1812 return false; 1813 } 1814 1815 static bool hasInvokeCallers(Function *F) { 1816 for (User *U : F->users()) 1817 if (isa<InvokeInst>(U)) 1818 return true; 1819 return false; 1820 } 1821 1822 static void RemovePreallocated(Function *F) { 1823 RemoveAttribute(F, Attribute::Preallocated); 1824 1825 auto *M = F->getParent(); 1826 1827 IRBuilder<> Builder(M->getContext()); 1828 1829 // Cannot modify users() while iterating over it, so make a copy. 1830 SmallVector<User *, 4> PreallocatedCalls(F->users()); 1831 for (User *U : PreallocatedCalls) { 1832 CallBase *CB = dyn_cast<CallBase>(U); 1833 if (!CB) 1834 continue; 1835 1836 assert( 1837 !CB->isMustTailCall() && 1838 "Shouldn't call RemotePreallocated() on a musttail preallocated call"); 1839 // Create copy of call without "preallocated" operand bundle. 1840 SmallVector<OperandBundleDef, 1> OpBundles; 1841 CB->getOperandBundlesAsDefs(OpBundles); 1842 CallBase *PreallocatedSetup = nullptr; 1843 for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) { 1844 if (It->getTag() == "preallocated") { 1845 PreallocatedSetup = cast<CallBase>(*It->input_begin()); 1846 OpBundles.erase(It); 1847 break; 1848 } 1849 } 1850 assert(PreallocatedSetup && "Did not find preallocated bundle"); 1851 uint64_t ArgCount = 1852 cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue(); 1853 1854 assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) && 1855 "Unknown indirect call type"); 1856 CallBase *NewCB = CallBase::Create(CB, OpBundles, CB); 1857 CB->replaceAllUsesWith(NewCB); 1858 NewCB->takeName(CB); 1859 CB->eraseFromParent(); 1860 1861 Builder.SetInsertPoint(PreallocatedSetup); 1862 auto *StackSave = 1863 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave)); 1864 1865 Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction()); 1866 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore), 1867 StackSave); 1868 1869 // Replace @llvm.call.preallocated.arg() with alloca. 1870 // Cannot modify users() while iterating over it, so make a copy. 1871 // @llvm.call.preallocated.arg() can be called with the same index multiple 1872 // times. So for each @llvm.call.preallocated.arg(), we see if we have 1873 // already created a Value* for the index, and if not, create an alloca and 1874 // bitcast right after the @llvm.call.preallocated.setup() so that it 1875 // dominates all uses. 1876 SmallVector<Value *, 2> ArgAllocas(ArgCount); 1877 SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users()); 1878 for (auto *User : PreallocatedArgs) { 1879 auto *UseCall = cast<CallBase>(User); 1880 assert(UseCall->getCalledFunction()->getIntrinsicID() == 1881 Intrinsic::call_preallocated_arg && 1882 "preallocated token use was not a llvm.call.preallocated.arg"); 1883 uint64_t AllocArgIndex = 1884 cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue(); 1885 Value *AllocaReplacement = ArgAllocas[AllocArgIndex]; 1886 if (!AllocaReplacement) { 1887 auto AddressSpace = UseCall->getType()->getPointerAddressSpace(); 1888 auto *ArgType = 1889 UseCall->getFnAttr(Attribute::Preallocated).getValueAsType(); 1890 auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction(); 1891 Builder.SetInsertPoint(InsertBefore); 1892 auto *Alloca = 1893 Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg"); 1894 auto *BitCast = Builder.CreateBitCast( 1895 Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName()); 1896 ArgAllocas[AllocArgIndex] = BitCast; 1897 AllocaReplacement = BitCast; 1898 } 1899 1900 UseCall->replaceAllUsesWith(AllocaReplacement); 1901 UseCall->eraseFromParent(); 1902 } 1903 // Remove @llvm.call.preallocated.setup(). 1904 cast<Instruction>(PreallocatedSetup)->eraseFromParent(); 1905 } 1906 } 1907 1908 static bool 1909 OptimizeFunctions(Module &M, 1910 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1911 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1912 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1913 function_ref<DominatorTree &(Function &)> LookupDomTree, 1914 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1915 1916 bool Changed = false; 1917 1918 std::vector<Function *> AllCallsCold; 1919 for (Function &F : llvm::make_early_inc_range(M)) 1920 if (hasOnlyColdCalls(F, GetBFI)) 1921 AllCallsCold.push_back(&F); 1922 1923 // Optimize functions. 1924 for (Function &F : llvm::make_early_inc_range(M)) { 1925 // Don't perform global opt pass on naked functions; we don't want fast 1926 // calling conventions for naked functions. 1927 if (F.hasFnAttribute(Attribute::Naked)) 1928 continue; 1929 1930 // Functions without names cannot be referenced outside this module. 1931 if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage()) 1932 F.setLinkage(GlobalValue::InternalLinkage); 1933 1934 if (deleteIfDead(F, NotDiscardableComdats)) { 1935 Changed = true; 1936 continue; 1937 } 1938 1939 // LLVM's definition of dominance allows instructions that are cyclic 1940 // in unreachable blocks, e.g.: 1941 // %pat = select i1 %condition, @global, i16* %pat 1942 // because any instruction dominates an instruction in a block that's 1943 // not reachable from entry. 1944 // So, remove unreachable blocks from the function, because a) there's 1945 // no point in analyzing them and b) GlobalOpt should otherwise grow 1946 // some more complicated logic to break these cycles. 1947 // Removing unreachable blocks might invalidate the dominator so we 1948 // recalculate it. 1949 if (!F.isDeclaration()) { 1950 if (removeUnreachableBlocks(F)) { 1951 auto &DT = LookupDomTree(F); 1952 DT.recalculate(F); 1953 Changed = true; 1954 } 1955 } 1956 1957 Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree); 1958 1959 if (!F.hasLocalLinkage()) 1960 continue; 1961 1962 // If we have an inalloca parameter that we can safely remove the 1963 // inalloca attribute from, do so. This unlocks optimizations that 1964 // wouldn't be safe in the presence of inalloca. 1965 // FIXME: We should also hoist alloca affected by this to the entry 1966 // block if possible. 1967 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) && 1968 !F.hasAddressTaken() && !hasMustTailCallers(&F)) { 1969 RemoveAttribute(&F, Attribute::InAlloca); 1970 Changed = true; 1971 } 1972 1973 // FIXME: handle invokes 1974 // FIXME: handle musttail 1975 if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { 1976 if (!F.hasAddressTaken() && !hasMustTailCallers(&F) && 1977 !hasInvokeCallers(&F)) { 1978 RemovePreallocated(&F); 1979 Changed = true; 1980 } 1981 continue; 1982 } 1983 1984 if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) { 1985 NumInternalFunc++; 1986 TargetTransformInfo &TTI = GetTTI(F); 1987 // Change the calling convention to coldcc if either stress testing is 1988 // enabled or the target would like to use coldcc on functions which are 1989 // cold at all call sites and the callers contain no other non coldcc 1990 // calls. 1991 if (EnableColdCCStressTest || 1992 (TTI.useColdCCForColdCall(F) && 1993 isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) { 1994 F.setCallingConv(CallingConv::Cold); 1995 changeCallSitesToColdCC(&F); 1996 Changed = true; 1997 NumColdCC++; 1998 } 1999 } 2000 2001 if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) { 2002 // If this function has a calling convention worth changing, is not a 2003 // varargs function, and is only called directly, promote it to use the 2004 // Fast calling convention. 2005 F.setCallingConv(CallingConv::Fast); 2006 ChangeCalleesToFastCall(&F); 2007 ++NumFastCallFns; 2008 Changed = true; 2009 } 2010 2011 if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) && 2012 !F.hasAddressTaken()) { 2013 // The function is not used by a trampoline intrinsic, so it is safe 2014 // to remove the 'nest' attribute. 2015 RemoveAttribute(&F, Attribute::Nest); 2016 ++NumNestRemoved; 2017 Changed = true; 2018 } 2019 } 2020 return Changed; 2021 } 2022 2023 static bool 2024 OptimizeGlobalVars(Module &M, 2025 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2026 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2027 function_ref<DominatorTree &(Function &)> LookupDomTree, 2028 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2029 bool Changed = false; 2030 2031 for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) { 2032 // Global variables without names cannot be referenced outside this module. 2033 if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage()) 2034 GV.setLinkage(GlobalValue::InternalLinkage); 2035 // Simplify the initializer. 2036 if (GV.hasInitializer()) 2037 if (auto *C = dyn_cast<Constant>(GV.getInitializer())) { 2038 auto &DL = M.getDataLayout(); 2039 // TLI is not used in the case of a Constant, so use default nullptr 2040 // for that optional parameter, since we don't have a Function to 2041 // provide GetTLI anyway. 2042 Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); 2043 if (New != C) 2044 GV.setInitializer(New); 2045 } 2046 2047 if (deleteIfDead(GV, NotDiscardableComdats)) { 2048 Changed = true; 2049 continue; 2050 } 2051 2052 Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree); 2053 } 2054 return Changed; 2055 } 2056 2057 /// Evaluate static constructors in the function, if we can. Return true if we 2058 /// can, false otherwise. 2059 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2060 TargetLibraryInfo *TLI) { 2061 // Skip external functions. 2062 if (F->isDeclaration()) 2063 return false; 2064 // Call the function. 2065 Evaluator Eval(DL, TLI); 2066 Constant *RetValDummy; 2067 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2068 SmallVector<Constant*, 0>()); 2069 2070 if (EvalSuccess) { 2071 ++NumCtorsEvaluated; 2072 2073 // We succeeded at evaluation: commit the result. 2074 auto NewInitializers = Eval.getMutatedInitializers(); 2075 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2076 << F->getName() << "' to " << NewInitializers.size() 2077 << " stores.\n"); 2078 for (const auto &Pair : NewInitializers) 2079 Pair.first->setInitializer(Pair.second); 2080 for (GlobalVariable *GV : Eval.getInvariants()) 2081 GV->setConstant(true); 2082 } 2083 2084 return EvalSuccess; 2085 } 2086 2087 static int compareNames(Constant *const *A, Constant *const *B) { 2088 Value *AStripped = (*A)->stripPointerCasts(); 2089 Value *BStripped = (*B)->stripPointerCasts(); 2090 return AStripped->getName().compare(BStripped->getName()); 2091 } 2092 2093 static void setUsedInitializer(GlobalVariable &V, 2094 const SmallPtrSetImpl<GlobalValue *> &Init) { 2095 if (Init.empty()) { 2096 V.eraseFromParent(); 2097 return; 2098 } 2099 2100 // Type of pointer to the array of pointers. 2101 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2102 2103 SmallVector<Constant *, 8> UsedArray; 2104 for (GlobalValue *GV : Init) { 2105 Constant *Cast 2106 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2107 UsedArray.push_back(Cast); 2108 } 2109 // Sort to get deterministic order. 2110 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2111 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2112 2113 Module *M = V.getParent(); 2114 V.removeFromParent(); 2115 GlobalVariable *NV = 2116 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2117 ConstantArray::get(ATy, UsedArray), ""); 2118 NV->takeName(&V); 2119 NV->setSection("llvm.metadata"); 2120 delete &V; 2121 } 2122 2123 namespace { 2124 2125 /// An easy to access representation of llvm.used and llvm.compiler.used. 2126 class LLVMUsed { 2127 SmallPtrSet<GlobalValue *, 4> Used; 2128 SmallPtrSet<GlobalValue *, 4> CompilerUsed; 2129 GlobalVariable *UsedV; 2130 GlobalVariable *CompilerUsedV; 2131 2132 public: 2133 LLVMUsed(Module &M) { 2134 SmallVector<GlobalValue *, 4> Vec; 2135 UsedV = collectUsedGlobalVariables(M, Vec, false); 2136 Used = {Vec.begin(), Vec.end()}; 2137 Vec.clear(); 2138 CompilerUsedV = collectUsedGlobalVariables(M, Vec, true); 2139 CompilerUsed = {Vec.begin(), Vec.end()}; 2140 } 2141 2142 using iterator = SmallPtrSet<GlobalValue *, 4>::iterator; 2143 using used_iterator_range = iterator_range<iterator>; 2144 2145 iterator usedBegin() { return Used.begin(); } 2146 iterator usedEnd() { return Used.end(); } 2147 2148 used_iterator_range used() { 2149 return used_iterator_range(usedBegin(), usedEnd()); 2150 } 2151 2152 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2153 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2154 2155 used_iterator_range compilerUsed() { 2156 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2157 } 2158 2159 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2160 2161 bool compilerUsedCount(GlobalValue *GV) const { 2162 return CompilerUsed.count(GV); 2163 } 2164 2165 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2166 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2167 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2168 2169 bool compilerUsedInsert(GlobalValue *GV) { 2170 return CompilerUsed.insert(GV).second; 2171 } 2172 2173 void syncVariablesAndSets() { 2174 if (UsedV) 2175 setUsedInitializer(*UsedV, Used); 2176 if (CompilerUsedV) 2177 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2178 } 2179 }; 2180 2181 } // end anonymous namespace 2182 2183 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2184 if (GA.use_empty()) // No use at all. 2185 return false; 2186 2187 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2188 "We should have removed the duplicated " 2189 "element from llvm.compiler.used"); 2190 if (!GA.hasOneUse()) 2191 // Strictly more than one use. So at least one is not in llvm.used and 2192 // llvm.compiler.used. 2193 return true; 2194 2195 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2196 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2197 } 2198 2199 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2200 const LLVMUsed &U) { 2201 unsigned N = 2; 2202 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2203 "We should have removed the duplicated " 2204 "element from llvm.compiler.used"); 2205 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2206 ++N; 2207 return V.hasNUsesOrMore(N); 2208 } 2209 2210 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2211 if (!GA.hasLocalLinkage()) 2212 return true; 2213 2214 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2215 } 2216 2217 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2218 bool &RenameTarget) { 2219 RenameTarget = false; 2220 bool Ret = false; 2221 if (hasUseOtherThanLLVMUsed(GA, U)) 2222 Ret = true; 2223 2224 // If the alias is externally visible, we may still be able to simplify it. 2225 if (!mayHaveOtherReferences(GA, U)) 2226 return Ret; 2227 2228 // If the aliasee has internal linkage, give it the name and linkage 2229 // of the alias, and delete the alias. This turns: 2230 // define internal ... @f(...) 2231 // @a = alias ... @f 2232 // into: 2233 // define ... @a(...) 2234 Constant *Aliasee = GA.getAliasee(); 2235 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2236 if (!Target->hasLocalLinkage()) 2237 return Ret; 2238 2239 // Do not perform the transform if multiple aliases potentially target the 2240 // aliasee. This check also ensures that it is safe to replace the section 2241 // and other attributes of the aliasee with those of the alias. 2242 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2243 return Ret; 2244 2245 RenameTarget = true; 2246 return true; 2247 } 2248 2249 static bool 2250 OptimizeGlobalAliases(Module &M, 2251 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2252 bool Changed = false; 2253 LLVMUsed Used(M); 2254 2255 for (GlobalValue *GV : Used.used()) 2256 Used.compilerUsedErase(GV); 2257 2258 // Return whether GV is explicitly or implicitly dso_local and not replaceable 2259 // by another definition in the current linkage unit. 2260 auto IsModuleLocal = [](GlobalValue &GV) { 2261 return !GlobalValue::isInterposableLinkage(GV.getLinkage()) && 2262 (GV.isDSOLocal() || GV.isImplicitDSOLocal()); 2263 }; 2264 2265 for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) { 2266 // Aliases without names cannot be referenced outside this module. 2267 if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage()) 2268 J.setLinkage(GlobalValue::InternalLinkage); 2269 2270 if (deleteIfDead(J, NotDiscardableComdats)) { 2271 Changed = true; 2272 continue; 2273 } 2274 2275 // If the alias can change at link time, nothing can be done - bail out. 2276 if (!IsModuleLocal(J)) 2277 continue; 2278 2279 Constant *Aliasee = J.getAliasee(); 2280 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2281 // We can't trivially replace the alias with the aliasee if the aliasee is 2282 // non-trivial in some way. We also can't replace the alias with the aliasee 2283 // if the aliasee may be preemptible at runtime. On ELF, a non-preemptible 2284 // alias can be used to access the definition as if preemption did not 2285 // happen. 2286 // TODO: Try to handle non-zero GEPs of local aliasees. 2287 if (!Target || !IsModuleLocal(*Target)) 2288 continue; 2289 2290 Target->removeDeadConstantUsers(); 2291 2292 // Make all users of the alias use the aliasee instead. 2293 bool RenameTarget; 2294 if (!hasUsesToReplace(J, Used, RenameTarget)) 2295 continue; 2296 2297 J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType())); 2298 ++NumAliasesResolved; 2299 Changed = true; 2300 2301 if (RenameTarget) { 2302 // Give the aliasee the name, linkage and other attributes of the alias. 2303 Target->takeName(&J); 2304 Target->setLinkage(J.getLinkage()); 2305 Target->setDSOLocal(J.isDSOLocal()); 2306 Target->setVisibility(J.getVisibility()); 2307 Target->setDLLStorageClass(J.getDLLStorageClass()); 2308 2309 if (Used.usedErase(&J)) 2310 Used.usedInsert(Target); 2311 2312 if (Used.compilerUsedErase(&J)) 2313 Used.compilerUsedInsert(Target); 2314 } else if (mayHaveOtherReferences(J, Used)) 2315 continue; 2316 2317 // Delete the alias. 2318 M.getAliasList().erase(&J); 2319 ++NumAliasesRemoved; 2320 Changed = true; 2321 } 2322 2323 Used.syncVariablesAndSets(); 2324 2325 return Changed; 2326 } 2327 2328 static Function * 2329 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 2330 // Hack to get a default TLI before we have actual Function. 2331 auto FuncIter = M.begin(); 2332 if (FuncIter == M.end()) 2333 return nullptr; 2334 auto *TLI = &GetTLI(*FuncIter); 2335 2336 LibFunc F = LibFunc_cxa_atexit; 2337 if (!TLI->has(F)) 2338 return nullptr; 2339 2340 Function *Fn = M.getFunction(TLI->getName(F)); 2341 if (!Fn) 2342 return nullptr; 2343 2344 // Now get the actual TLI for Fn. 2345 TLI = &GetTLI(*Fn); 2346 2347 // Make sure that the function has the correct prototype. 2348 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2349 return nullptr; 2350 2351 return Fn; 2352 } 2353 2354 /// Returns whether the given function is an empty C++ destructor and can 2355 /// therefore be eliminated. 2356 /// Note that we assume that other optimization passes have already simplified 2357 /// the code so we simply check for 'ret'. 2358 static bool cxxDtorIsEmpty(const Function &Fn) { 2359 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2360 // nounwind, but that doesn't seem worth doing. 2361 if (Fn.isDeclaration()) 2362 return false; 2363 2364 for (auto &I : Fn.getEntryBlock()) { 2365 if (I.isDebugOrPseudoInst()) 2366 continue; 2367 if (isa<ReturnInst>(I)) 2368 return true; 2369 break; 2370 } 2371 return false; 2372 } 2373 2374 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2375 /// Itanium C++ ABI p3.3.5: 2376 /// 2377 /// After constructing a global (or local static) object, that will require 2378 /// destruction on exit, a termination function is registered as follows: 2379 /// 2380 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2381 /// 2382 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2383 /// call f(p) when DSO d is unloaded, before all such termination calls 2384 /// registered before this one. It returns zero if registration is 2385 /// successful, nonzero on failure. 2386 2387 // This pass will look for calls to __cxa_atexit where the function is trivial 2388 // and remove them. 2389 bool Changed = false; 2390 2391 for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) { 2392 // We're only interested in calls. Theoretically, we could handle invoke 2393 // instructions as well, but neither llvm-gcc nor clang generate invokes 2394 // to __cxa_atexit. 2395 CallInst *CI = dyn_cast<CallInst>(U); 2396 if (!CI) 2397 continue; 2398 2399 Function *DtorFn = 2400 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2401 if (!DtorFn || !cxxDtorIsEmpty(*DtorFn)) 2402 continue; 2403 2404 // Just remove the call. 2405 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2406 CI->eraseFromParent(); 2407 2408 ++NumCXXDtorsRemoved; 2409 2410 Changed |= true; 2411 } 2412 2413 return Changed; 2414 } 2415 2416 static bool optimizeGlobalsInModule( 2417 Module &M, const DataLayout &DL, 2418 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2419 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2420 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2421 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2422 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; 2423 bool Changed = false; 2424 bool LocalChange = true; 2425 Optional<uint32_t> FirstNotFullyEvaluatedPriority; 2426 2427 while (LocalChange) { 2428 LocalChange = false; 2429 2430 NotDiscardableComdats.clear(); 2431 for (const GlobalVariable &GV : M.globals()) 2432 if (const Comdat *C = GV.getComdat()) 2433 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2434 NotDiscardableComdats.insert(C); 2435 for (Function &F : M) 2436 if (const Comdat *C = F.getComdat()) 2437 if (!F.isDefTriviallyDead()) 2438 NotDiscardableComdats.insert(C); 2439 for (GlobalAlias &GA : M.aliases()) 2440 if (const Comdat *C = GA.getComdat()) 2441 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2442 NotDiscardableComdats.insert(C); 2443 2444 // Delete functions that are trivially dead, ccc -> fastcc 2445 LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, 2446 NotDiscardableComdats); 2447 2448 // Optimize global_ctors list. 2449 LocalChange |= 2450 optimizeGlobalCtorsList(M, [&](uint32_t Priority, Function *F) { 2451 if (FirstNotFullyEvaluatedPriority && 2452 *FirstNotFullyEvaluatedPriority != Priority) 2453 return false; 2454 bool Evaluated = EvaluateStaticConstructor(F, DL, &GetTLI(*F)); 2455 if (!Evaluated) 2456 FirstNotFullyEvaluatedPriority = Priority; 2457 return Evaluated; 2458 }); 2459 2460 // Optimize non-address-taken globals. 2461 LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree, 2462 NotDiscardableComdats); 2463 2464 // Resolve aliases, when possible. 2465 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2466 2467 // Try to remove trivial global destructors if they are not removed 2468 // already. 2469 Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI); 2470 if (CXAAtExitFn) 2471 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2472 2473 Changed |= LocalChange; 2474 } 2475 2476 // TODO: Move all global ctors functions to the end of the module for code 2477 // layout. 2478 2479 return Changed; 2480 } 2481 2482 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2483 auto &DL = M.getDataLayout(); 2484 auto &FAM = 2485 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2486 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2487 return FAM.getResult<DominatorTreeAnalysis>(F); 2488 }; 2489 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 2490 return FAM.getResult<TargetLibraryAnalysis>(F); 2491 }; 2492 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 2493 return FAM.getResult<TargetIRAnalysis>(F); 2494 }; 2495 2496 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 2497 return FAM.getResult<BlockFrequencyAnalysis>(F); 2498 }; 2499 2500 if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree)) 2501 return PreservedAnalyses::all(); 2502 return PreservedAnalyses::none(); 2503 } 2504 2505 namespace { 2506 2507 struct GlobalOptLegacyPass : public ModulePass { 2508 static char ID; // Pass identification, replacement for typeid 2509 2510 GlobalOptLegacyPass() : ModulePass(ID) { 2511 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2512 } 2513 2514 bool runOnModule(Module &M) override { 2515 if (skipModule(M)) 2516 return false; 2517 2518 auto &DL = M.getDataLayout(); 2519 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2520 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2521 }; 2522 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 2523 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2524 }; 2525 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 2526 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2527 }; 2528 2529 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { 2530 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 2531 }; 2532 2533 return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, 2534 LookupDomTree); 2535 } 2536 2537 void getAnalysisUsage(AnalysisUsage &AU) const override { 2538 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2539 AU.addRequired<TargetTransformInfoWrapperPass>(); 2540 AU.addRequired<DominatorTreeWrapperPass>(); 2541 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2542 } 2543 }; 2544 2545 } // end anonymous namespace 2546 2547 char GlobalOptLegacyPass::ID = 0; 2548 2549 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2550 "Global Variable Optimizer", false, false) 2551 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2552 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2553 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 2554 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2555 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2556 "Global Variable Optimizer", false, false) 2557 2558 ModulePass *llvm::createGlobalOptimizerPass() { 2559 return new GlobalOptLegacyPass(); 2560 } 2561