1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms simple global variables that never have their address
11 // taken.  If obviously true, it marks read/write globals as constant, deletes
12 // variables only stored to, etc.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/IPO/GlobalOpt.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/BinaryFormat/Dwarf.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/AtomicOrdering.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MathExtras.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Transforms/IPO.h"
63 #include "llvm/Transforms/Utils/CtorUtils.h"
64 #include "llvm/Transforms/Utils/Evaluator.h"
65 #include "llvm/Transforms/Utils/GlobalStatus.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include <cassert>
68 #include <cstdint>
69 #include <utility>
70 #include <vector>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "globalopt"
75 
76 STATISTIC(NumMarked    , "Number of globals marked constant");
77 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
78 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
79 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
80 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
81 STATISTIC(NumDeleted   , "Number of globals deleted");
82 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
83 STATISTIC(NumLocalized , "Number of globals localized");
84 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
85 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
86 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
87 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
88 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
89 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
90 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
91 
92 /// Is this global variable possibly used by a leak checker as a root?  If so,
93 /// we might not really want to eliminate the stores to it.
94 static bool isLeakCheckerRoot(GlobalVariable *GV) {
95   // A global variable is a root if it is a pointer, or could plausibly contain
96   // a pointer.  There are two challenges; one is that we could have a struct
97   // the has an inner member which is a pointer.  We recurse through the type to
98   // detect these (up to a point).  The other is that we may actually be a union
99   // of a pointer and another type, and so our LLVM type is an integer which
100   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
101   // potentially contained here.
102 
103   if (GV->hasPrivateLinkage())
104     return false;
105 
106   SmallVector<Type *, 4> Types;
107   Types.push_back(GV->getValueType());
108 
109   unsigned Limit = 20;
110   do {
111     Type *Ty = Types.pop_back_val();
112     switch (Ty->getTypeID()) {
113       default: break;
114       case Type::PointerTyID: return true;
115       case Type::ArrayTyID:
116       case Type::VectorTyID: {
117         SequentialType *STy = cast<SequentialType>(Ty);
118         Types.push_back(STy->getElementType());
119         break;
120       }
121       case Type::StructTyID: {
122         StructType *STy = cast<StructType>(Ty);
123         if (STy->isOpaque()) return true;
124         for (StructType::element_iterator I = STy->element_begin(),
125                  E = STy->element_end(); I != E; ++I) {
126           Type *InnerTy = *I;
127           if (isa<PointerType>(InnerTy)) return true;
128           if (isa<CompositeType>(InnerTy))
129             Types.push_back(InnerTy);
130         }
131         break;
132       }
133     }
134     if (--Limit == 0) return true;
135   } while (!Types.empty());
136   return false;
137 }
138 
139 /// Given a value that is stored to a global but never read, determine whether
140 /// it's safe to remove the store and the chain of computation that feeds the
141 /// store.
142 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
143   do {
144     if (isa<Constant>(V))
145       return true;
146     if (!V->hasOneUse())
147       return false;
148     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
149         isa<GlobalValue>(V))
150       return false;
151     if (isAllocationFn(V, TLI))
152       return true;
153 
154     Instruction *I = cast<Instruction>(V);
155     if (I->mayHaveSideEffects())
156       return false;
157     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
158       if (!GEP->hasAllConstantIndices())
159         return false;
160     } else if (I->getNumOperands() != 1) {
161       return false;
162     }
163 
164     V = I->getOperand(0);
165   } while (true);
166 }
167 
168 /// This GV is a pointer root.  Loop over all users of the global and clean up
169 /// any that obviously don't assign the global a value that isn't dynamically
170 /// allocated.
171 static bool CleanupPointerRootUsers(GlobalVariable *GV,
172                                     const TargetLibraryInfo *TLI) {
173   // A brief explanation of leak checkers.  The goal is to find bugs where
174   // pointers are forgotten, causing an accumulating growth in memory
175   // usage over time.  The common strategy for leak checkers is to whitelist the
176   // memory pointed to by globals at exit.  This is popular because it also
177   // solves another problem where the main thread of a C++ program may shut down
178   // before other threads that are still expecting to use those globals.  To
179   // handle that case, we expect the program may create a singleton and never
180   // destroy it.
181 
182   bool Changed = false;
183 
184   // If Dead[n].first is the only use of a malloc result, we can delete its
185   // chain of computation and the store to the global in Dead[n].second.
186   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
187 
188   // Constants can't be pointers to dynamically allocated memory.
189   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
190        UI != E;) {
191     User *U = *UI++;
192     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
193       Value *V = SI->getValueOperand();
194       if (isa<Constant>(V)) {
195         Changed = true;
196         SI->eraseFromParent();
197       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
198         if (I->hasOneUse())
199           Dead.push_back(std::make_pair(I, SI));
200       }
201     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
202       if (isa<Constant>(MSI->getValue())) {
203         Changed = true;
204         MSI->eraseFromParent();
205       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
206         if (I->hasOneUse())
207           Dead.push_back(std::make_pair(I, MSI));
208       }
209     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
210       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
211       if (MemSrc && MemSrc->isConstant()) {
212         Changed = true;
213         MTI->eraseFromParent();
214       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
215         if (I->hasOneUse())
216           Dead.push_back(std::make_pair(I, MTI));
217       }
218     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
219       if (CE->use_empty()) {
220         CE->destroyConstant();
221         Changed = true;
222       }
223     } else if (Constant *C = dyn_cast<Constant>(U)) {
224       if (isSafeToDestroyConstant(C)) {
225         C->destroyConstant();
226         // This could have invalidated UI, start over from scratch.
227         Dead.clear();
228         CleanupPointerRootUsers(GV, TLI);
229         return true;
230       }
231     }
232   }
233 
234   for (int i = 0, e = Dead.size(); i != e; ++i) {
235     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
236       Dead[i].second->eraseFromParent();
237       Instruction *I = Dead[i].first;
238       do {
239         if (isAllocationFn(I, TLI))
240           break;
241         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
242         if (!J)
243           break;
244         I->eraseFromParent();
245         I = J;
246       } while (true);
247       I->eraseFromParent();
248     }
249   }
250 
251   return Changed;
252 }
253 
254 /// We just marked GV constant.  Loop over all users of the global, cleaning up
255 /// the obvious ones.  This is largely just a quick scan over the use list to
256 /// clean up the easy and obvious cruft.  This returns true if it made a change.
257 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
258                                        const DataLayout &DL,
259                                        TargetLibraryInfo *TLI) {
260   bool Changed = false;
261   // Note that we need to use a weak value handle for the worklist items. When
262   // we delete a constant array, we may also be holding pointer to one of its
263   // elements (or an element of one of its elements if we're dealing with an
264   // array of arrays) in the worklist.
265   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
266   while (!WorkList.empty()) {
267     Value *UV = WorkList.pop_back_val();
268     if (!UV)
269       continue;
270 
271     User *U = cast<User>(UV);
272 
273     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
274       if (Init) {
275         // Replace the load with the initializer.
276         LI->replaceAllUsesWith(Init);
277         LI->eraseFromParent();
278         Changed = true;
279       }
280     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
281       // Store must be unreachable or storing Init into the global.
282       SI->eraseFromParent();
283       Changed = true;
284     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
285       if (CE->getOpcode() == Instruction::GetElementPtr) {
286         Constant *SubInit = nullptr;
287         if (Init)
288           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
289         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
290       } else if ((CE->getOpcode() == Instruction::BitCast &&
291                   CE->getType()->isPointerTy()) ||
292                  CE->getOpcode() == Instruction::AddrSpaceCast) {
293         // Pointer cast, delete any stores and memsets to the global.
294         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
295       }
296 
297       if (CE->use_empty()) {
298         CE->destroyConstant();
299         Changed = true;
300       }
301     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
302       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
303       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
304       // and will invalidate our notion of what Init is.
305       Constant *SubInit = nullptr;
306       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
307         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
308             ConstantFoldInstruction(GEP, DL, TLI));
309         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
310           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
311 
312         // If the initializer is an all-null value and we have an inbounds GEP,
313         // we already know what the result of any load from that GEP is.
314         // TODO: Handle splats.
315         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
316           SubInit = Constant::getNullValue(GEP->getResultElementType());
317       }
318       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
319 
320       if (GEP->use_empty()) {
321         GEP->eraseFromParent();
322         Changed = true;
323       }
324     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
325       if (MI->getRawDest() == V) {
326         MI->eraseFromParent();
327         Changed = true;
328       }
329 
330     } else if (Constant *C = dyn_cast<Constant>(U)) {
331       // If we have a chain of dead constantexprs or other things dangling from
332       // us, and if they are all dead, nuke them without remorse.
333       if (isSafeToDestroyConstant(C)) {
334         C->destroyConstant();
335         CleanupConstantGlobalUsers(V, Init, DL, TLI);
336         return true;
337       }
338     }
339   }
340   return Changed;
341 }
342 
343 /// Return true if the specified instruction is a safe user of a derived
344 /// expression from a global that we want to SROA.
345 static bool isSafeSROAElementUse(Value *V) {
346   // We might have a dead and dangling constant hanging off of here.
347   if (Constant *C = dyn_cast<Constant>(V))
348     return isSafeToDestroyConstant(C);
349 
350   Instruction *I = dyn_cast<Instruction>(V);
351   if (!I) return false;
352 
353   // Loads are ok.
354   if (isa<LoadInst>(I)) return true;
355 
356   // Stores *to* the pointer are ok.
357   if (StoreInst *SI = dyn_cast<StoreInst>(I))
358     return SI->getOperand(0) != V;
359 
360   // Otherwise, it must be a GEP.
361   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
362   if (!GEPI) return false;
363 
364   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
365       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
366     return false;
367 
368   for (User *U : GEPI->users())
369     if (!isSafeSROAElementUse(U))
370       return false;
371   return true;
372 }
373 
374 /// U is a direct user of the specified global value.  Look at it and its uses
375 /// and decide whether it is safe to SROA this global.
376 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
377   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
378   if (!isa<GetElementPtrInst>(U) &&
379       (!isa<ConstantExpr>(U) ||
380        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
381     return false;
382 
383   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
384   // don't like < 3 operand CE's, and we don't like non-constant integer
385   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
386   // value of C.
387   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
388       !cast<Constant>(U->getOperand(1))->isNullValue() ||
389       !isa<ConstantInt>(U->getOperand(2)))
390     return false;
391 
392   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
393   ++GEPI;  // Skip over the pointer index.
394 
395   // If this is a use of an array allocation, do a bit more checking for sanity.
396   if (GEPI.isSequential()) {
397     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
398 
399     // Check to make sure that index falls within the array.  If not,
400     // something funny is going on, so we won't do the optimization.
401     //
402     if (GEPI.isBoundedSequential() &&
403         Idx->getZExtValue() >= GEPI.getSequentialNumElements())
404       return false;
405 
406     // We cannot scalar repl this level of the array unless any array
407     // sub-indices are in-range constants.  In particular, consider:
408     // A[0][i].  We cannot know that the user isn't doing invalid things like
409     // allowing i to index an out-of-range subscript that accesses A[1].
410     //
411     // Scalar replacing *just* the outer index of the array is probably not
412     // going to be a win anyway, so just give up.
413     for (++GEPI; // Skip array index.
414          GEPI != E;
415          ++GEPI) {
416       if (GEPI.isStruct())
417         continue;
418 
419       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
420       if (!IdxVal ||
421           (GEPI.isBoundedSequential() &&
422            IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
423         return false;
424     }
425   }
426 
427   return llvm::all_of(U->users(),
428                       [](User *UU) { return isSafeSROAElementUse(UU); });
429 }
430 
431 /// Look at all uses of the global and decide whether it is safe for us to
432 /// perform this transformation.
433 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
434   for (User *U : GV->users())
435     if (!IsUserOfGlobalSafeForSRA(U, GV))
436       return false;
437 
438   return true;
439 }
440 
441 /// Copy over the debug info for a variable to its SRA replacements.
442 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
443                                  uint64_t FragmentOffsetInBits,
444                                  uint64_t FragmentSizeInBits,
445                                  unsigned NumElements) {
446   SmallVector<DIGlobalVariableExpression *, 1> GVs;
447   GV->getDebugInfo(GVs);
448   for (auto *GVE : GVs) {
449     DIVariable *Var = GVE->getVariable();
450     DIExpression *Expr = GVE->getExpression();
451     if (NumElements > 1) {
452       if (auto E = DIExpression::createFragmentExpression(
453               Expr, FragmentOffsetInBits, FragmentSizeInBits))
454         Expr = *E;
455       else
456         return;
457     }
458     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
459     NGV->addDebugInfo(NGVE);
460   }
461 }
462 
463 /// Perform scalar replacement of aggregates on the specified global variable.
464 /// This opens the door for other optimizations by exposing the behavior of the
465 /// program in a more fine-grained way.  We have determined that this
466 /// transformation is safe already.  We return the first global variable we
467 /// insert so that the caller can reprocess it.
468 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
469   // Make sure this global only has simple uses that we can SRA.
470   if (!GlobalUsersSafeToSRA(GV))
471     return nullptr;
472 
473   assert(GV->hasLocalLinkage());
474   Constant *Init = GV->getInitializer();
475   Type *Ty = Init->getType();
476 
477   std::vector<GlobalVariable *> NewGlobals;
478   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
479 
480   // Get the alignment of the global, either explicit or target-specific.
481   unsigned StartAlignment = GV->getAlignment();
482   if (StartAlignment == 0)
483     StartAlignment = DL.getABITypeAlignment(GV->getType());
484 
485   if (StructType *STy = dyn_cast<StructType>(Ty)) {
486     unsigned NumElements = STy->getNumElements();
487     NewGlobals.reserve(NumElements);
488     const StructLayout &Layout = *DL.getStructLayout(STy);
489     for (unsigned i = 0, e = NumElements; i != e; ++i) {
490       Constant *In = Init->getAggregateElement(i);
491       assert(In && "Couldn't get element of initializer?");
492       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
493                                                GlobalVariable::InternalLinkage,
494                                                In, GV->getName()+"."+Twine(i),
495                                                GV->getThreadLocalMode(),
496                                               GV->getType()->getAddressSpace());
497       NGV->setExternallyInitialized(GV->isExternallyInitialized());
498       NGV->copyAttributesFrom(GV);
499       Globals.push_back(NGV);
500       NewGlobals.push_back(NGV);
501 
502       // Calculate the known alignment of the field.  If the original aggregate
503       // had 256 byte alignment for example, something might depend on that:
504       // propagate info to each field.
505       uint64_t FieldOffset = Layout.getElementOffset(i);
506       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
507       if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
508         NGV->setAlignment(NewAlign);
509 
510       // Copy over the debug info for the variable.
511       uint64_t Size = DL.getTypeSizeInBits(NGV->getValueType());
512       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i);
513       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements);
514     }
515   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
516     unsigned NumElements = STy->getNumElements();
517     if (NumElements > 16 && GV->hasNUsesOrMore(16))
518       return nullptr; // It's not worth it.
519     NewGlobals.reserve(NumElements);
520     auto ElTy = STy->getElementType();
521     uint64_t EltSize = DL.getTypeAllocSize(ElTy);
522     unsigned EltAlign = DL.getABITypeAlignment(ElTy);
523     uint64_t FragmentSizeInBits = DL.getTypeSizeInBits(ElTy);
524     for (unsigned i = 0, e = NumElements; i != e; ++i) {
525       Constant *In = Init->getAggregateElement(i);
526       assert(In && "Couldn't get element of initializer?");
527 
528       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
529                                                GlobalVariable::InternalLinkage,
530                                                In, GV->getName()+"."+Twine(i),
531                                                GV->getThreadLocalMode(),
532                                               GV->getType()->getAddressSpace());
533       NGV->setExternallyInitialized(GV->isExternallyInitialized());
534       NGV->copyAttributesFrom(GV);
535       Globals.push_back(NGV);
536       NewGlobals.push_back(NGV);
537 
538       // Calculate the known alignment of the field.  If the original aggregate
539       // had 256 byte alignment for example, something might depend on that:
540       // propagate info to each field.
541       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
542       if (NewAlign > EltAlign)
543         NGV->setAlignment(NewAlign);
544       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits,
545                            NumElements);
546     }
547   }
548 
549   if (NewGlobals.empty())
550     return nullptr;
551 
552   DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
553 
554   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
555 
556   // Loop over all of the uses of the global, replacing the constantexpr geps,
557   // with smaller constantexpr geps or direct references.
558   while (!GV->use_empty()) {
559     User *GEP = GV->user_back();
560     assert(((isa<ConstantExpr>(GEP) &&
561              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
562             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
563 
564     // Ignore the 1th operand, which has to be zero or else the program is quite
565     // broken (undefined).  Get the 2nd operand, which is the structure or array
566     // index.
567     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
568     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
569 
570     Value *NewPtr = NewGlobals[Val];
571     Type *NewTy = NewGlobals[Val]->getValueType();
572 
573     // Form a shorter GEP if needed.
574     if (GEP->getNumOperands() > 3) {
575       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
576         SmallVector<Constant*, 8> Idxs;
577         Idxs.push_back(NullInt);
578         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
579           Idxs.push_back(CE->getOperand(i));
580         NewPtr =
581             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
582       } else {
583         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
584         SmallVector<Value*, 8> Idxs;
585         Idxs.push_back(NullInt);
586         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
587           Idxs.push_back(GEPI->getOperand(i));
588         NewPtr = GetElementPtrInst::Create(
589             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
590       }
591     }
592     GEP->replaceAllUsesWith(NewPtr);
593 
594     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
595       GEPI->eraseFromParent();
596     else
597       cast<ConstantExpr>(GEP)->destroyConstant();
598   }
599 
600   // Delete the old global, now that it is dead.
601   Globals.erase(GV);
602   ++NumSRA;
603 
604   // Loop over the new globals array deleting any globals that are obviously
605   // dead.  This can arise due to scalarization of a structure or an array that
606   // has elements that are dead.
607   unsigned FirstGlobal = 0;
608   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
609     if (NewGlobals[i]->use_empty()) {
610       Globals.erase(NewGlobals[i]);
611       if (FirstGlobal == i) ++FirstGlobal;
612     }
613 
614   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
615 }
616 
617 /// Return true if all users of the specified value will trap if the value is
618 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
619 /// reprocessing them.
620 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
621                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
622   for (const User *U : V->users())
623     if (isa<LoadInst>(U)) {
624       // Will trap.
625     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
626       if (SI->getOperand(0) == V) {
627         //cerr << "NONTRAPPING USE: " << *U;
628         return false;  // Storing the value.
629       }
630     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
631       if (CI->getCalledValue() != V) {
632         //cerr << "NONTRAPPING USE: " << *U;
633         return false;  // Not calling the ptr
634       }
635     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
636       if (II->getCalledValue() != V) {
637         //cerr << "NONTRAPPING USE: " << *U;
638         return false;  // Not calling the ptr
639       }
640     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
641       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
642     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
643       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
644     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
645       // If we've already seen this phi node, ignore it, it has already been
646       // checked.
647       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
648         return false;
649     } else if (isa<ICmpInst>(U) &&
650                isa<ConstantPointerNull>(U->getOperand(1))) {
651       // Ignore icmp X, null
652     } else {
653       //cerr << "NONTRAPPING USE: " << *U;
654       return false;
655     }
656 
657   return true;
658 }
659 
660 /// Return true if all uses of any loads from GV will trap if the loaded value
661 /// is null.  Note that this also permits comparisons of the loaded value
662 /// against null, as a special case.
663 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
664   for (const User *U : GV->users())
665     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
666       SmallPtrSet<const PHINode*, 8> PHIs;
667       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
668         return false;
669     } else if (isa<StoreInst>(U)) {
670       // Ignore stores to the global.
671     } else {
672       // We don't know or understand this user, bail out.
673       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
674       return false;
675     }
676   return true;
677 }
678 
679 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
680   bool Changed = false;
681   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
682     Instruction *I = cast<Instruction>(*UI++);
683     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
684       LI->setOperand(0, NewV);
685       Changed = true;
686     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
687       if (SI->getOperand(1) == V) {
688         SI->setOperand(1, NewV);
689         Changed = true;
690       }
691     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
692       CallSite CS(I);
693       if (CS.getCalledValue() == V) {
694         // Calling through the pointer!  Turn into a direct call, but be careful
695         // that the pointer is not also being passed as an argument.
696         CS.setCalledFunction(NewV);
697         Changed = true;
698         bool PassedAsArg = false;
699         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
700           if (CS.getArgument(i) == V) {
701             PassedAsArg = true;
702             CS.setArgument(i, NewV);
703           }
704 
705         if (PassedAsArg) {
706           // Being passed as an argument also.  Be careful to not invalidate UI!
707           UI = V->user_begin();
708         }
709       }
710     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
711       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
712                                 ConstantExpr::getCast(CI->getOpcode(),
713                                                       NewV, CI->getType()));
714       if (CI->use_empty()) {
715         Changed = true;
716         CI->eraseFromParent();
717       }
718     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
719       // Should handle GEP here.
720       SmallVector<Constant*, 8> Idxs;
721       Idxs.reserve(GEPI->getNumOperands()-1);
722       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
723            i != e; ++i)
724         if (Constant *C = dyn_cast<Constant>(*i))
725           Idxs.push_back(C);
726         else
727           break;
728       if (Idxs.size() == GEPI->getNumOperands()-1)
729         Changed |= OptimizeAwayTrappingUsesOfValue(
730             GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
731       if (GEPI->use_empty()) {
732         Changed = true;
733         GEPI->eraseFromParent();
734       }
735     }
736   }
737 
738   return Changed;
739 }
740 
741 /// The specified global has only one non-null value stored into it.  If there
742 /// are uses of the loaded value that would trap if the loaded value is
743 /// dynamically null, then we know that they cannot be reachable with a null
744 /// optimize away the load.
745 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
746                                             const DataLayout &DL,
747                                             TargetLibraryInfo *TLI) {
748   bool Changed = false;
749 
750   // Keep track of whether we are able to remove all the uses of the global
751   // other than the store that defines it.
752   bool AllNonStoreUsesGone = true;
753 
754   // Replace all uses of loads with uses of uses of the stored value.
755   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
756     User *GlobalUser = *GUI++;
757     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
758       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
759       // If we were able to delete all uses of the loads
760       if (LI->use_empty()) {
761         LI->eraseFromParent();
762         Changed = true;
763       } else {
764         AllNonStoreUsesGone = false;
765       }
766     } else if (isa<StoreInst>(GlobalUser)) {
767       // Ignore the store that stores "LV" to the global.
768       assert(GlobalUser->getOperand(1) == GV &&
769              "Must be storing *to* the global");
770     } else {
771       AllNonStoreUsesGone = false;
772 
773       // If we get here we could have other crazy uses that are transitively
774       // loaded.
775       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
776               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
777               isa<BitCastInst>(GlobalUser) ||
778               isa<GetElementPtrInst>(GlobalUser)) &&
779              "Only expect load and stores!");
780     }
781   }
782 
783   if (Changed) {
784     DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n");
785     ++NumGlobUses;
786   }
787 
788   // If we nuked all of the loads, then none of the stores are needed either,
789   // nor is the global.
790   if (AllNonStoreUsesGone) {
791     if (isLeakCheckerRoot(GV)) {
792       Changed |= CleanupPointerRootUsers(GV, TLI);
793     } else {
794       Changed = true;
795       CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
796     }
797     if (GV->use_empty()) {
798       DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
799       Changed = true;
800       GV->eraseFromParent();
801       ++NumDeleted;
802     }
803   }
804   return Changed;
805 }
806 
807 /// Walk the use list of V, constant folding all of the instructions that are
808 /// foldable.
809 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
810                                 TargetLibraryInfo *TLI) {
811   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
812     if (Instruction *I = dyn_cast<Instruction>(*UI++))
813       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
814         I->replaceAllUsesWith(NewC);
815 
816         // Advance UI to the next non-I use to avoid invalidating it!
817         // Instructions could multiply use V.
818         while (UI != E && *UI == I)
819           ++UI;
820         if (isInstructionTriviallyDead(I, TLI))
821           I->eraseFromParent();
822       }
823 }
824 
825 /// This function takes the specified global variable, and transforms the
826 /// program as if it always contained the result of the specified malloc.
827 /// Because it is always the result of the specified malloc, there is no reason
828 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
829 /// loads of GV as uses of the new global.
830 static GlobalVariable *
831 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
832                               ConstantInt *NElements, const DataLayout &DL,
833                               TargetLibraryInfo *TLI) {
834   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
835 
836   Type *GlobalType;
837   if (NElements->getZExtValue() == 1)
838     GlobalType = AllocTy;
839   else
840     // If we have an array allocation, the global variable is of an array.
841     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
842 
843   // Create the new global variable.  The contents of the malloc'd memory is
844   // undefined, so initialize with an undef value.
845   GlobalVariable *NewGV = new GlobalVariable(
846       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
847       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
848       GV->getThreadLocalMode());
849 
850   // If there are bitcast users of the malloc (which is typical, usually we have
851   // a malloc + bitcast) then replace them with uses of the new global.  Update
852   // other users to use the global as well.
853   BitCastInst *TheBC = nullptr;
854   while (!CI->use_empty()) {
855     Instruction *User = cast<Instruction>(CI->user_back());
856     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
857       if (BCI->getType() == NewGV->getType()) {
858         BCI->replaceAllUsesWith(NewGV);
859         BCI->eraseFromParent();
860       } else {
861         BCI->setOperand(0, NewGV);
862       }
863     } else {
864       if (!TheBC)
865         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
866       User->replaceUsesOfWith(CI, TheBC);
867     }
868   }
869 
870   Constant *RepValue = NewGV;
871   if (NewGV->getType() != GV->getValueType())
872     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
873 
874   // If there is a comparison against null, we will insert a global bool to
875   // keep track of whether the global was initialized yet or not.
876   GlobalVariable *InitBool =
877     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
878                        GlobalValue::InternalLinkage,
879                        ConstantInt::getFalse(GV->getContext()),
880                        GV->getName()+".init", GV->getThreadLocalMode());
881   bool InitBoolUsed = false;
882 
883   // Loop over all uses of GV, processing them in turn.
884   while (!GV->use_empty()) {
885     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
886       // The global is initialized when the store to it occurs.
887       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
888                     SI->getOrdering(), SI->getSyncScopeID(), SI);
889       SI->eraseFromParent();
890       continue;
891     }
892 
893     LoadInst *LI = cast<LoadInst>(GV->user_back());
894     while (!LI->use_empty()) {
895       Use &LoadUse = *LI->use_begin();
896       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
897       if (!ICI) {
898         LoadUse = RepValue;
899         continue;
900       }
901 
902       // Replace the cmp X, 0 with a use of the bool value.
903       // Sink the load to where the compare was, if atomic rules allow us to.
904       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
905                                LI->getOrdering(), LI->getSyncScopeID(),
906                                LI->isUnordered() ? (Instruction*)ICI : LI);
907       InitBoolUsed = true;
908       switch (ICI->getPredicate()) {
909       default: llvm_unreachable("Unknown ICmp Predicate!");
910       case ICmpInst::ICMP_ULT:
911       case ICmpInst::ICMP_SLT:   // X < null -> always false
912         LV = ConstantInt::getFalse(GV->getContext());
913         break;
914       case ICmpInst::ICMP_ULE:
915       case ICmpInst::ICMP_SLE:
916       case ICmpInst::ICMP_EQ:
917         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
918         break;
919       case ICmpInst::ICMP_NE:
920       case ICmpInst::ICMP_UGE:
921       case ICmpInst::ICMP_SGE:
922       case ICmpInst::ICMP_UGT:
923       case ICmpInst::ICMP_SGT:
924         break;  // no change.
925       }
926       ICI->replaceAllUsesWith(LV);
927       ICI->eraseFromParent();
928     }
929     LI->eraseFromParent();
930   }
931 
932   // If the initialization boolean was used, insert it, otherwise delete it.
933   if (!InitBoolUsed) {
934     while (!InitBool->use_empty())  // Delete initializations
935       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
936     delete InitBool;
937   } else
938     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
939 
940   // Now the GV is dead, nuke it and the malloc..
941   GV->eraseFromParent();
942   CI->eraseFromParent();
943 
944   // To further other optimizations, loop over all users of NewGV and try to
945   // constant prop them.  This will promote GEP instructions with constant
946   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
947   ConstantPropUsersOf(NewGV, DL, TLI);
948   if (RepValue != NewGV)
949     ConstantPropUsersOf(RepValue, DL, TLI);
950 
951   return NewGV;
952 }
953 
954 /// Scan the use-list of V checking to make sure that there are no complex uses
955 /// of V.  We permit simple things like dereferencing the pointer, but not
956 /// storing through the address, unless it is to the specified global.
957 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
958                                                       const GlobalVariable *GV,
959                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
960   for (const User *U : V->users()) {
961     const Instruction *Inst = cast<Instruction>(U);
962 
963     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
964       continue; // Fine, ignore.
965     }
966 
967     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
968       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
969         return false;  // Storing the pointer itself... bad.
970       continue; // Otherwise, storing through it, or storing into GV... fine.
971     }
972 
973     // Must index into the array and into the struct.
974     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
975       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
976         return false;
977       continue;
978     }
979 
980     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
981       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
982       // cycles.
983       if (PHIs.insert(PN).second)
984         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
985           return false;
986       continue;
987     }
988 
989     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
990       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
991         return false;
992       continue;
993     }
994 
995     return false;
996   }
997   return true;
998 }
999 
1000 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1001 /// allocation into loads from the global and uses of the resultant pointer.
1002 /// Further, delete the store into GV.  This assumes that these value pass the
1003 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1004 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1005                                           GlobalVariable *GV) {
1006   while (!Alloc->use_empty()) {
1007     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1008     Instruction *InsertPt = U;
1009     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1010       // If this is the store of the allocation into the global, remove it.
1011       if (SI->getOperand(1) == GV) {
1012         SI->eraseFromParent();
1013         continue;
1014       }
1015     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1016       // Insert the load in the corresponding predecessor, not right before the
1017       // PHI.
1018       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1019     } else if (isa<BitCastInst>(U)) {
1020       // Must be bitcast between the malloc and store to initialize the global.
1021       ReplaceUsesOfMallocWithGlobal(U, GV);
1022       U->eraseFromParent();
1023       continue;
1024     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1025       // If this is a "GEP bitcast" and the user is a store to the global, then
1026       // just process it as a bitcast.
1027       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1028         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1029           if (SI->getOperand(1) == GV) {
1030             // Must be bitcast GEP between the malloc and store to initialize
1031             // the global.
1032             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1033             GEPI->eraseFromParent();
1034             continue;
1035           }
1036     }
1037 
1038     // Insert a load from the global, and use it instead of the malloc.
1039     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1040     U->replaceUsesOfWith(Alloc, NL);
1041   }
1042 }
1043 
1044 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1045 /// perform heap SRA on.  This permits GEP's that index through the array and
1046 /// struct field, icmps of null, and PHIs.
1047 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1048                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1049                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1050   // We permit two users of the load: setcc comparing against the null
1051   // pointer, and a getelementptr of a specific form.
1052   for (const User *U : V->users()) {
1053     const Instruction *UI = cast<Instruction>(U);
1054 
1055     // Comparison against null is ok.
1056     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1057       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1058         return false;
1059       continue;
1060     }
1061 
1062     // getelementptr is also ok, but only a simple form.
1063     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1064       // Must index into the array and into the struct.
1065       if (GEPI->getNumOperands() < 3)
1066         return false;
1067 
1068       // Otherwise the GEP is ok.
1069       continue;
1070     }
1071 
1072     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1073       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1074         // This means some phi nodes are dependent on each other.
1075         // Avoid infinite looping!
1076         return false;
1077       if (!LoadUsingPHIs.insert(PN).second)
1078         // If we have already analyzed this PHI, then it is safe.
1079         continue;
1080 
1081       // Make sure all uses of the PHI are simple enough to transform.
1082       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1083                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1084         return false;
1085 
1086       continue;
1087     }
1088 
1089     // Otherwise we don't know what this is, not ok.
1090     return false;
1091   }
1092 
1093   return true;
1094 }
1095 
1096 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1097 /// return true.
1098 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1099                                                     Instruction *StoredVal) {
1100   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1101   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1102   for (const User *U : GV->users())
1103     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1104       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1105                                           LoadUsingPHIsPerLoad))
1106         return false;
1107       LoadUsingPHIsPerLoad.clear();
1108     }
1109 
1110   // If we reach here, we know that all uses of the loads and transitive uses
1111   // (through PHI nodes) are simple enough to transform.  However, we don't know
1112   // that all inputs the to the PHI nodes are in the same equivalence sets.
1113   // Check to verify that all operands of the PHIs are either PHIS that can be
1114   // transformed, loads from GV, or MI itself.
1115   for (const PHINode *PN : LoadUsingPHIs) {
1116     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1117       Value *InVal = PN->getIncomingValue(op);
1118 
1119       // PHI of the stored value itself is ok.
1120       if (InVal == StoredVal) continue;
1121 
1122       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1123         // One of the PHIs in our set is (optimistically) ok.
1124         if (LoadUsingPHIs.count(InPN))
1125           continue;
1126         return false;
1127       }
1128 
1129       // Load from GV is ok.
1130       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1131         if (LI->getOperand(0) == GV)
1132           continue;
1133 
1134       // UNDEF? NULL?
1135 
1136       // Anything else is rejected.
1137       return false;
1138     }
1139   }
1140 
1141   return true;
1142 }
1143 
1144 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1145               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1146                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1147   std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1148 
1149   if (FieldNo >= FieldVals.size())
1150     FieldVals.resize(FieldNo+1);
1151 
1152   // If we already have this value, just reuse the previously scalarized
1153   // version.
1154   if (Value *FieldVal = FieldVals[FieldNo])
1155     return FieldVal;
1156 
1157   // Depending on what instruction this is, we have several cases.
1158   Value *Result;
1159   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1160     // This is a scalarized version of the load from the global.  Just create
1161     // a new Load of the scalarized global.
1162     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1163                                            InsertedScalarizedValues,
1164                                            PHIsToRewrite),
1165                           LI->getName()+".f"+Twine(FieldNo), LI);
1166   } else {
1167     PHINode *PN = cast<PHINode>(V);
1168     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1169     // field.
1170 
1171     PointerType *PTy = cast<PointerType>(PN->getType());
1172     StructType *ST = cast<StructType>(PTy->getElementType());
1173 
1174     unsigned AS = PTy->getAddressSpace();
1175     PHINode *NewPN =
1176       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1177                      PN->getNumIncomingValues(),
1178                      PN->getName()+".f"+Twine(FieldNo), PN);
1179     Result = NewPN;
1180     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1181   }
1182 
1183   return FieldVals[FieldNo] = Result;
1184 }
1185 
1186 /// Given a load instruction and a value derived from the load, rewrite the
1187 /// derived value to use the HeapSRoA'd load.
1188 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1189               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1190                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1191   // If this is a comparison against null, handle it.
1192   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1193     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1194     // If we have a setcc of the loaded pointer, we can use a setcc of any
1195     // field.
1196     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1197                                    InsertedScalarizedValues, PHIsToRewrite);
1198 
1199     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1200                               Constant::getNullValue(NPtr->getType()),
1201                               SCI->getName());
1202     SCI->replaceAllUsesWith(New);
1203     SCI->eraseFromParent();
1204     return;
1205   }
1206 
1207   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1208   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1209     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1210            && "Unexpected GEPI!");
1211 
1212     // Load the pointer for this field.
1213     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1214     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1215                                      InsertedScalarizedValues, PHIsToRewrite);
1216 
1217     // Create the new GEP idx vector.
1218     SmallVector<Value*, 8> GEPIdx;
1219     GEPIdx.push_back(GEPI->getOperand(1));
1220     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1221 
1222     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1223                                              GEPI->getName(), GEPI);
1224     GEPI->replaceAllUsesWith(NGEPI);
1225     GEPI->eraseFromParent();
1226     return;
1227   }
1228 
1229   // Recursively transform the users of PHI nodes.  This will lazily create the
1230   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1231   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1232   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1233   // already been seen first by another load, so its uses have already been
1234   // processed.
1235   PHINode *PN = cast<PHINode>(LoadUser);
1236   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1237                                               std::vector<Value *>())).second)
1238     return;
1239 
1240   // If this is the first time we've seen this PHI, recursively process all
1241   // users.
1242   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1243     Instruction *User = cast<Instruction>(*UI++);
1244     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1245   }
1246 }
1247 
1248 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1249 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1250 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1251 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1252               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1253                   std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1254   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1255     Instruction *User = cast<Instruction>(*UI++);
1256     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1257   }
1258 
1259   if (Load->use_empty()) {
1260     Load->eraseFromParent();
1261     InsertedScalarizedValues.erase(Load);
1262   }
1263 }
1264 
1265 /// CI is an allocation of an array of structures.  Break it up into multiple
1266 /// allocations of arrays of the fields.
1267 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1268                                             Value *NElems, const DataLayout &DL,
1269                                             const TargetLibraryInfo *TLI) {
1270   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1271   Type *MAT = getMallocAllocatedType(CI, TLI);
1272   StructType *STy = cast<StructType>(MAT);
1273 
1274   // There is guaranteed to be at least one use of the malloc (storing
1275   // it into GV).  If there are other uses, change them to be uses of
1276   // the global to simplify later code.  This also deletes the store
1277   // into GV.
1278   ReplaceUsesOfMallocWithGlobal(CI, GV);
1279 
1280   // Okay, at this point, there are no users of the malloc.  Insert N
1281   // new mallocs at the same place as CI, and N globals.
1282   std::vector<Value *> FieldGlobals;
1283   std::vector<Value *> FieldMallocs;
1284 
1285   SmallVector<OperandBundleDef, 1> OpBundles;
1286   CI->getOperandBundlesAsDefs(OpBundles);
1287 
1288   unsigned AS = GV->getType()->getPointerAddressSpace();
1289   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1290     Type *FieldTy = STy->getElementType(FieldNo);
1291     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1292 
1293     GlobalVariable *NGV = new GlobalVariable(
1294         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1295         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1296         nullptr, GV->getThreadLocalMode());
1297     NGV->copyAttributesFrom(GV);
1298     FieldGlobals.push_back(NGV);
1299 
1300     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1301     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1302       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1303     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1304     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1305                                         ConstantInt::get(IntPtrTy, TypeSize),
1306                                         NElems, OpBundles, nullptr,
1307                                         CI->getName() + ".f" + Twine(FieldNo));
1308     FieldMallocs.push_back(NMI);
1309     new StoreInst(NMI, NGV, CI);
1310   }
1311 
1312   // The tricky aspect of this transformation is handling the case when malloc
1313   // fails.  In the original code, malloc failing would set the result pointer
1314   // of malloc to null.  In this case, some mallocs could succeed and others
1315   // could fail.  As such, we emit code that looks like this:
1316   //    F0 = malloc(field0)
1317   //    F1 = malloc(field1)
1318   //    F2 = malloc(field2)
1319   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1320   //      if (F0) { free(F0); F0 = 0; }
1321   //      if (F1) { free(F1); F1 = 0; }
1322   //      if (F2) { free(F2); F2 = 0; }
1323   //    }
1324   // The malloc can also fail if its argument is too large.
1325   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1326   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1327                                   ConstantZero, "isneg");
1328   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1329     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1330                              Constant::getNullValue(FieldMallocs[i]->getType()),
1331                                "isnull");
1332     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1333   }
1334 
1335   // Split the basic block at the old malloc.
1336   BasicBlock *OrigBB = CI->getParent();
1337   BasicBlock *ContBB =
1338       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1339 
1340   // Create the block to check the first condition.  Put all these blocks at the
1341   // end of the function as they are unlikely to be executed.
1342   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1343                                                 "malloc_ret_null",
1344                                                 OrigBB->getParent());
1345 
1346   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1347   // branch on RunningOr.
1348   OrigBB->getTerminator()->eraseFromParent();
1349   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1350 
1351   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1352   // pointer, because some may be null while others are not.
1353   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1354     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1355     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1356                               Constant::getNullValue(GVVal->getType()));
1357     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1358                                                OrigBB->getParent());
1359     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1360                                                OrigBB->getParent());
1361     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1362                                          Cmp, NullPtrBlock);
1363 
1364     // Fill in FreeBlock.
1365     CallInst::CreateFree(GVVal, OpBundles, BI);
1366     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1367                   FreeBlock);
1368     BranchInst::Create(NextBlock, FreeBlock);
1369 
1370     NullPtrBlock = NextBlock;
1371   }
1372 
1373   BranchInst::Create(ContBB, NullPtrBlock);
1374 
1375   // CI is no longer needed, remove it.
1376   CI->eraseFromParent();
1377 
1378   /// As we process loads, if we can't immediately update all uses of the load,
1379   /// keep track of what scalarized loads are inserted for a given load.
1380   DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1381   InsertedScalarizedValues[GV] = FieldGlobals;
1382 
1383   std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1384 
1385   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1386   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1387   // of the per-field globals instead.
1388   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1389     Instruction *User = cast<Instruction>(*UI++);
1390 
1391     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1392       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1393       continue;
1394     }
1395 
1396     // Must be a store of null.
1397     StoreInst *SI = cast<StoreInst>(User);
1398     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1399            "Unexpected heap-sra user!");
1400 
1401     // Insert a store of null into each global.
1402     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1403       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1404       Constant *Null = Constant::getNullValue(ValTy);
1405       new StoreInst(Null, FieldGlobals[i], SI);
1406     }
1407     // Erase the original store.
1408     SI->eraseFromParent();
1409   }
1410 
1411   // While we have PHIs that are interesting to rewrite, do it.
1412   while (!PHIsToRewrite.empty()) {
1413     PHINode *PN = PHIsToRewrite.back().first;
1414     unsigned FieldNo = PHIsToRewrite.back().second;
1415     PHIsToRewrite.pop_back();
1416     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1417     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1418 
1419     // Add all the incoming values.  This can materialize more phis.
1420     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1421       Value *InVal = PN->getIncomingValue(i);
1422       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1423                                PHIsToRewrite);
1424       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1425     }
1426   }
1427 
1428   // Drop all inter-phi links and any loads that made it this far.
1429   for (DenseMap<Value *, std::vector<Value *>>::iterator
1430        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1431        I != E; ++I) {
1432     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1433       PN->dropAllReferences();
1434     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1435       LI->dropAllReferences();
1436   }
1437 
1438   // Delete all the phis and loads now that inter-references are dead.
1439   for (DenseMap<Value *, std::vector<Value *>>::iterator
1440        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1441        I != E; ++I) {
1442     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1443       PN->eraseFromParent();
1444     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1445       LI->eraseFromParent();
1446   }
1447 
1448   // The old global is now dead, remove it.
1449   GV->eraseFromParent();
1450 
1451   ++NumHeapSRA;
1452   return cast<GlobalVariable>(FieldGlobals[0]);
1453 }
1454 
1455 /// This function is called when we see a pointer global variable with a single
1456 /// value stored it that is a malloc or cast of malloc.
1457 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1458                                                Type *AllocTy,
1459                                                AtomicOrdering Ordering,
1460                                                const DataLayout &DL,
1461                                                TargetLibraryInfo *TLI) {
1462   // If this is a malloc of an abstract type, don't touch it.
1463   if (!AllocTy->isSized())
1464     return false;
1465 
1466   // We can't optimize this global unless all uses of it are *known* to be
1467   // of the malloc value, not of the null initializer value (consider a use
1468   // that compares the global's value against zero to see if the malloc has
1469   // been reached).  To do this, we check to see if all uses of the global
1470   // would trap if the global were null: this proves that they must all
1471   // happen after the malloc.
1472   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1473     return false;
1474 
1475   // We can't optimize this if the malloc itself is used in a complex way,
1476   // for example, being stored into multiple globals.  This allows the
1477   // malloc to be stored into the specified global, loaded icmp'd, and
1478   // GEP'd.  These are all things we could transform to using the global
1479   // for.
1480   SmallPtrSet<const PHINode*, 8> PHIs;
1481   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1482     return false;
1483 
1484   // If we have a global that is only initialized with a fixed size malloc,
1485   // transform the program to use global memory instead of malloc'd memory.
1486   // This eliminates dynamic allocation, avoids an indirection accessing the
1487   // data, and exposes the resultant global to further GlobalOpt.
1488   // We cannot optimize the malloc if we cannot determine malloc array size.
1489   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1490   if (!NElems)
1491     return false;
1492 
1493   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1494     // Restrict this transformation to only working on small allocations
1495     // (2048 bytes currently), as we don't want to introduce a 16M global or
1496     // something.
1497     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1498       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1499       return true;
1500     }
1501 
1502   // If the allocation is an array of structures, consider transforming this
1503   // into multiple malloc'd arrays, one for each field.  This is basically
1504   // SRoA for malloc'd memory.
1505 
1506   if (Ordering != AtomicOrdering::NotAtomic)
1507     return false;
1508 
1509   // If this is an allocation of a fixed size array of structs, analyze as a
1510   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1511   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1512     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1513       AllocTy = AT->getElementType();
1514 
1515   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1516   if (!AllocSTy)
1517     return false;
1518 
1519   // This the structure has an unreasonable number of fields, leave it
1520   // alone.
1521   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1522       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1523 
1524     // If this is a fixed size array, transform the Malloc to be an alloc of
1525     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1526     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1527       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1528       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1529       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1530       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1531       SmallVector<OperandBundleDef, 1> OpBundles;
1532       CI->getOperandBundlesAsDefs(OpBundles);
1533       Instruction *Malloc =
1534           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1535                                  OpBundles, nullptr, CI->getName());
1536       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1537       CI->replaceAllUsesWith(Cast);
1538       CI->eraseFromParent();
1539       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1540         CI = cast<CallInst>(BCI->getOperand(0));
1541       else
1542         CI = cast<CallInst>(Malloc);
1543     }
1544 
1545     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1546                          TLI);
1547     return true;
1548   }
1549 
1550   return false;
1551 }
1552 
1553 // Try to optimize globals based on the knowledge that only one value (besides
1554 // its initializer) is ever stored to the global.
1555 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1556                                      AtomicOrdering Ordering,
1557                                      const DataLayout &DL,
1558                                      TargetLibraryInfo *TLI) {
1559   // Ignore no-op GEPs and bitcasts.
1560   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1561 
1562   // If we are dealing with a pointer global that is initialized to null and
1563   // only has one (non-null) value stored into it, then we can optimize any
1564   // users of the loaded value (often calls and loads) that would trap if the
1565   // value was null.
1566   if (GV->getInitializer()->getType()->isPointerTy() &&
1567       GV->getInitializer()->isNullValue()) {
1568     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1569       if (GV->getInitializer()->getType() != SOVC->getType())
1570         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1571 
1572       // Optimize away any trapping uses of the loaded value.
1573       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1574         return true;
1575     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1576       Type *MallocType = getMallocAllocatedType(CI, TLI);
1577       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1578                                                            Ordering, DL, TLI))
1579         return true;
1580     }
1581   }
1582 
1583   return false;
1584 }
1585 
1586 /// At this point, we have learned that the only two values ever stored into GV
1587 /// are its initializer and OtherVal.  See if we can shrink the global into a
1588 /// boolean and select between the two values whenever it is used.  This exposes
1589 /// the values to other scalar optimizations.
1590 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1591   Type *GVElType = GV->getValueType();
1592 
1593   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1594   // an FP value, pointer or vector, don't do this optimization because a select
1595   // between them is very expensive and unlikely to lead to later
1596   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1597   // where v1 and v2 both require constant pool loads, a big loss.
1598   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1599       GVElType->isFloatingPointTy() ||
1600       GVElType->isPointerTy() || GVElType->isVectorTy())
1601     return false;
1602 
1603   // Walk the use list of the global seeing if all the uses are load or store.
1604   // If there is anything else, bail out.
1605   for (User *U : GV->users())
1606     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1607       return false;
1608 
1609   DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1610 
1611   // Create the new global, initializing it to false.
1612   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1613                                              false,
1614                                              GlobalValue::InternalLinkage,
1615                                         ConstantInt::getFalse(GV->getContext()),
1616                                              GV->getName()+".b",
1617                                              GV->getThreadLocalMode(),
1618                                              GV->getType()->getAddressSpace());
1619   NewGV->copyAttributesFrom(GV);
1620   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1621 
1622   Constant *InitVal = GV->getInitializer();
1623   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1624          "No reason to shrink to bool!");
1625 
1626   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1627   GV->getDebugInfo(GVs);
1628 
1629   // If initialized to zero and storing one into the global, we can use a cast
1630   // instead of a select to synthesize the desired value.
1631   bool IsOneZero = false;
1632   bool EmitOneOrZero = true;
1633   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)){
1634     IsOneZero = InitVal->isNullValue() && CI->isOne();
1635 
1636     if (ConstantInt *CIInit = dyn_cast<ConstantInt>(GV->getInitializer())){
1637       uint64_t ValInit = CIInit->getZExtValue();
1638       uint64_t ValOther = CI->getZExtValue();
1639       uint64_t ValMinus = ValOther - ValInit;
1640 
1641       for(auto *GVe : GVs){
1642         DIGlobalVariable *DGV = GVe->getVariable();
1643         DIExpression *E = GVe->getExpression();
1644 
1645         // It is expected that the address of global optimized variable is on
1646         // top of the stack. After optimization, value of that variable will
1647         // be ether 0 for initial value or 1 for other value. The following
1648         // expression should return constant integer value depending on the
1649         // value at global object address:
1650         // val * (ValOther - ValInit) + ValInit:
1651         // DW_OP_deref DW_OP_constu <ValMinus>
1652         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1653         E = DIExpression::get(NewGV->getContext(),
1654                              {dwarf::DW_OP_deref,
1655                               dwarf::DW_OP_constu,
1656                               ValMinus,
1657                               dwarf::DW_OP_mul,
1658                               dwarf::DW_OP_constu,
1659                               ValInit,
1660                               dwarf::DW_OP_plus,
1661                               dwarf::DW_OP_stack_value});
1662         DIGlobalVariableExpression *DGVE =
1663           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1664         NewGV->addDebugInfo(DGVE);
1665      }
1666      EmitOneOrZero = false;
1667     }
1668   }
1669 
1670   if (EmitOneOrZero) {
1671      // FIXME: This will only emit address for debugger on which will
1672      // be written only 0 or 1.
1673      for(auto *GV : GVs)
1674        NewGV->addDebugInfo(GV);
1675    }
1676 
1677   while (!GV->use_empty()) {
1678     Instruction *UI = cast<Instruction>(GV->user_back());
1679     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1680       // Change the store into a boolean store.
1681       bool StoringOther = SI->getOperand(0) == OtherVal;
1682       // Only do this if we weren't storing a loaded value.
1683       Value *StoreVal;
1684       if (StoringOther || SI->getOperand(0) == InitVal) {
1685         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1686                                     StoringOther);
1687       } else {
1688         // Otherwise, we are storing a previously loaded copy.  To do this,
1689         // change the copy from copying the original value to just copying the
1690         // bool.
1691         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1692 
1693         // If we've already replaced the input, StoredVal will be a cast or
1694         // select instruction.  If not, it will be a load of the original
1695         // global.
1696         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1697           assert(LI->getOperand(0) == GV && "Not a copy!");
1698           // Insert a new load, to preserve the saved value.
1699           StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1700                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1701         } else {
1702           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1703                  "This is not a form that we understand!");
1704           StoreVal = StoredVal->getOperand(0);
1705           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1706         }
1707       }
1708       new StoreInst(StoreVal, NewGV, false, 0,
1709                     SI->getOrdering(), SI->getSyncScopeID(), SI);
1710     } else {
1711       // Change the load into a load of bool then a select.
1712       LoadInst *LI = cast<LoadInst>(UI);
1713       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1714                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1715       Value *NSI;
1716       if (IsOneZero)
1717         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1718       else
1719         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1720       NSI->takeName(LI);
1721       LI->replaceAllUsesWith(NSI);
1722     }
1723     UI->eraseFromParent();
1724   }
1725 
1726   // Retain the name of the old global variable. People who are debugging their
1727   // programs may expect these variables to be named the same.
1728   NewGV->takeName(GV);
1729   GV->eraseFromParent();
1730   return true;
1731 }
1732 
1733 static bool deleteIfDead(GlobalValue &GV,
1734                          SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
1735   GV.removeDeadConstantUsers();
1736 
1737   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1738     return false;
1739 
1740   if (const Comdat *C = GV.getComdat())
1741     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1742       return false;
1743 
1744   bool Dead;
1745   if (auto *F = dyn_cast<Function>(&GV))
1746     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1747   else
1748     Dead = GV.use_empty();
1749   if (!Dead)
1750     return false;
1751 
1752   DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1753   GV.eraseFromParent();
1754   ++NumDeleted;
1755   return true;
1756 }
1757 
1758 static bool isPointerValueDeadOnEntryToFunction(
1759     const Function *F, GlobalValue *GV,
1760     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1761   // Find all uses of GV. We expect them all to be in F, and if we can't
1762   // identify any of the uses we bail out.
1763   //
1764   // On each of these uses, identify if the memory that GV points to is
1765   // used/required/live at the start of the function. If it is not, for example
1766   // if the first thing the function does is store to the GV, the GV can
1767   // possibly be demoted.
1768   //
1769   // We don't do an exhaustive search for memory operations - simply look
1770   // through bitcasts as they're quite common and benign.
1771   const DataLayout &DL = GV->getParent()->getDataLayout();
1772   SmallVector<LoadInst *, 4> Loads;
1773   SmallVector<StoreInst *, 4> Stores;
1774   for (auto *U : GV->users()) {
1775     if (Operator::getOpcode(U) == Instruction::BitCast) {
1776       for (auto *UU : U->users()) {
1777         if (auto *LI = dyn_cast<LoadInst>(UU))
1778           Loads.push_back(LI);
1779         else if (auto *SI = dyn_cast<StoreInst>(UU))
1780           Stores.push_back(SI);
1781         else
1782           return false;
1783       }
1784       continue;
1785     }
1786 
1787     Instruction *I = dyn_cast<Instruction>(U);
1788     if (!I)
1789       return false;
1790     assert(I->getParent()->getParent() == F);
1791 
1792     if (auto *LI = dyn_cast<LoadInst>(I))
1793       Loads.push_back(LI);
1794     else if (auto *SI = dyn_cast<StoreInst>(I))
1795       Stores.push_back(SI);
1796     else
1797       return false;
1798   }
1799 
1800   // We have identified all uses of GV into loads and stores. Now check if all
1801   // of them are known not to depend on the value of the global at the function
1802   // entry point. We do this by ensuring that every load is dominated by at
1803   // least one store.
1804   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1805 
1806   // The below check is quadratic. Check we're not going to do too many tests.
1807   // FIXME: Even though this will always have worst-case quadratic time, we
1808   // could put effort into minimizing the average time by putting stores that
1809   // have been shown to dominate at least one load at the beginning of the
1810   // Stores array, making subsequent dominance checks more likely to succeed
1811   // early.
1812   //
1813   // The threshold here is fairly large because global->local demotion is a
1814   // very powerful optimization should it fire.
1815   const unsigned Threshold = 100;
1816   if (Loads.size() * Stores.size() > Threshold)
1817     return false;
1818 
1819   for (auto *L : Loads) {
1820     auto *LTy = L->getType();
1821     if (none_of(Stores, [&](const StoreInst *S) {
1822           auto *STy = S->getValueOperand()->getType();
1823           // The load is only dominated by the store if DomTree says so
1824           // and the number of bits loaded in L is less than or equal to
1825           // the number of bits stored in S.
1826           return DT.dominates(S, L) &&
1827                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1828         }))
1829       return false;
1830   }
1831   // All loads have known dependences inside F, so the global can be localized.
1832   return true;
1833 }
1834 
1835 /// C may have non-instruction users. Can all of those users be turned into
1836 /// instructions?
1837 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1838   // We don't do this exhaustively. The most common pattern that we really need
1839   // to care about is a constant GEP or constant bitcast - so just looking
1840   // through one single ConstantExpr.
1841   //
1842   // The set of constants that this function returns true for must be able to be
1843   // handled by makeAllConstantUsesInstructions.
1844   for (auto *U : C->users()) {
1845     if (isa<Instruction>(U))
1846       continue;
1847     if (!isa<ConstantExpr>(U))
1848       // Non instruction, non-constantexpr user; cannot convert this.
1849       return false;
1850     for (auto *UU : U->users())
1851       if (!isa<Instruction>(UU))
1852         // A constantexpr used by another constant. We don't try and recurse any
1853         // further but just bail out at this point.
1854         return false;
1855   }
1856 
1857   return true;
1858 }
1859 
1860 /// C may have non-instruction users, and
1861 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1862 /// non-instruction users to instructions.
1863 static void makeAllConstantUsesInstructions(Constant *C) {
1864   SmallVector<ConstantExpr*,4> Users;
1865   for (auto *U : C->users()) {
1866     if (isa<ConstantExpr>(U))
1867       Users.push_back(cast<ConstantExpr>(U));
1868     else
1869       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1870       // should not have returned true for C.
1871       assert(
1872           isa<Instruction>(U) &&
1873           "Can't transform non-constantexpr non-instruction to instruction!");
1874   }
1875 
1876   SmallVector<Value*,4> UUsers;
1877   for (auto *U : Users) {
1878     UUsers.clear();
1879     for (auto *UU : U->users())
1880       UUsers.push_back(UU);
1881     for (auto *UU : UUsers) {
1882       Instruction *UI = cast<Instruction>(UU);
1883       Instruction *NewU = U->getAsInstruction();
1884       NewU->insertBefore(UI);
1885       UI->replaceUsesOfWith(U, NewU);
1886     }
1887     // We've replaced all the uses, so destroy the constant. (destroyConstant
1888     // will update value handles and metadata.)
1889     U->destroyConstant();
1890   }
1891 }
1892 
1893 /// Analyze the specified global variable and optimize
1894 /// it if possible.  If we make a change, return true.
1895 static bool processInternalGlobal(
1896     GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI,
1897     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1898   auto &DL = GV->getParent()->getDataLayout();
1899   // If this is a first class global and has only one accessing function and
1900   // this function is non-recursive, we replace the global with a local alloca
1901   // in this function.
1902   //
1903   // NOTE: It doesn't make sense to promote non-single-value types since we
1904   // are just replacing static memory to stack memory.
1905   //
1906   // If the global is in different address space, don't bring it to stack.
1907   if (!GS.HasMultipleAccessingFunctions &&
1908       GS.AccessingFunction &&
1909       GV->getValueType()->isSingleValueType() &&
1910       GV->getType()->getAddressSpace() == 0 &&
1911       !GV->isExternallyInitialized() &&
1912       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1913       GS.AccessingFunction->doesNotRecurse() &&
1914       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1915                                           LookupDomTree)) {
1916     const DataLayout &DL = GV->getParent()->getDataLayout();
1917 
1918     DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1919     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1920                                                    ->getEntryBlock().begin());
1921     Type *ElemTy = GV->getValueType();
1922     // FIXME: Pass Global's alignment when globals have alignment
1923     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1924                                         GV->getName(), &FirstI);
1925     if (!isa<UndefValue>(GV->getInitializer()))
1926       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1927 
1928     makeAllConstantUsesInstructions(GV);
1929 
1930     GV->replaceAllUsesWith(Alloca);
1931     GV->eraseFromParent();
1932     ++NumLocalized;
1933     return true;
1934   }
1935 
1936   // If the global is never loaded (but may be stored to), it is dead.
1937   // Delete it now.
1938   if (!GS.IsLoaded) {
1939     DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1940 
1941     bool Changed;
1942     if (isLeakCheckerRoot(GV)) {
1943       // Delete any constant stores to the global.
1944       Changed = CleanupPointerRootUsers(GV, TLI);
1945     } else {
1946       // Delete any stores we can find to the global.  We may not be able to
1947       // make it completely dead though.
1948       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1949     }
1950 
1951     // If the global is dead now, delete it.
1952     if (GV->use_empty()) {
1953       GV->eraseFromParent();
1954       ++NumDeleted;
1955       Changed = true;
1956     }
1957     return Changed;
1958 
1959   }
1960   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1961     DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1962     GV->setConstant(true);
1963 
1964     // Clean up any obviously simplifiable users now.
1965     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1966 
1967     // If the global is dead now, just nuke it.
1968     if (GV->use_empty()) {
1969       DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1970             << "all users and delete global!\n");
1971       GV->eraseFromParent();
1972       ++NumDeleted;
1973       return true;
1974     }
1975 
1976     // Fall through to the next check; see if we can optimize further.
1977     ++NumMarked;
1978   }
1979   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1980     const DataLayout &DL = GV->getParent()->getDataLayout();
1981     if (SRAGlobal(GV, DL))
1982       return true;
1983   }
1984   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1985     // If the initial value for the global was an undef value, and if only
1986     // one other value was stored into it, we can just change the
1987     // initializer to be the stored value, then delete all stores to the
1988     // global.  This allows us to mark it constant.
1989     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1990       if (isa<UndefValue>(GV->getInitializer())) {
1991         // Change the initial value here.
1992         GV->setInitializer(SOVConstant);
1993 
1994         // Clean up any obviously simplifiable users now.
1995         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1996 
1997         if (GV->use_empty()) {
1998           DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1999                        << "simplify all users and delete global!\n");
2000           GV->eraseFromParent();
2001           ++NumDeleted;
2002         }
2003         ++NumSubstitute;
2004         return true;
2005       }
2006 
2007     // Try to optimize globals based on the knowledge that only one value
2008     // (besides its initializer) is ever stored to the global.
2009     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
2010       return true;
2011 
2012     // Otherwise, if the global was not a boolean, we can shrink it to be a
2013     // boolean.
2014     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2015       if (GS.Ordering == AtomicOrdering::NotAtomic) {
2016         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2017           ++NumShrunkToBool;
2018           return true;
2019         }
2020       }
2021     }
2022   }
2023 
2024   return false;
2025 }
2026 
2027 /// Analyze the specified global variable and optimize it if possible.  If we
2028 /// make a change, return true.
2029 static bool
2030 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI,
2031               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2032   if (GV.getName().startswith("llvm."))
2033     return false;
2034 
2035   GlobalStatus GS;
2036 
2037   if (GlobalStatus::analyzeGlobal(&GV, GS))
2038     return false;
2039 
2040   bool Changed = false;
2041   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2042     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2043                                                : GlobalValue::UnnamedAddr::Local;
2044     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2045       GV.setUnnamedAddr(NewUnnamedAddr);
2046       NumUnnamed++;
2047       Changed = true;
2048     }
2049   }
2050 
2051   // Do more involved optimizations if the global is internal.
2052   if (!GV.hasLocalLinkage())
2053     return Changed;
2054 
2055   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2056   if (!GVar)
2057     return Changed;
2058 
2059   if (GVar->isConstant() || !GVar->hasInitializer())
2060     return Changed;
2061 
2062   return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed;
2063 }
2064 
2065 /// Walk all of the direct calls of the specified function, changing them to
2066 /// FastCC.
2067 static void ChangeCalleesToFastCall(Function *F) {
2068   for (User *U : F->users()) {
2069     if (isa<BlockAddress>(U))
2070       continue;
2071     CallSite CS(cast<Instruction>(U));
2072     CS.setCallingConv(CallingConv::Fast);
2073   }
2074 }
2075 
2076 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) {
2077   // There can be at most one attribute set with a nest attribute.
2078   unsigned NestIndex;
2079   if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex))
2080     return Attrs.removeAttribute(C, NestIndex, Attribute::Nest);
2081   return Attrs;
2082 }
2083 
2084 static void RemoveNestAttribute(Function *F) {
2085   F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2086   for (User *U : F->users()) {
2087     if (isa<BlockAddress>(U))
2088       continue;
2089     CallSite CS(cast<Instruction>(U));
2090     CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
2091   }
2092 }
2093 
2094 /// Return true if this is a calling convention that we'd like to change.  The
2095 /// idea here is that we don't want to mess with the convention if the user
2096 /// explicitly requested something with performance implications like coldcc,
2097 /// GHC, or anyregcc.
2098 static bool isProfitableToMakeFastCC(Function *F) {
2099   CallingConv::ID CC = F->getCallingConv();
2100   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2101   return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
2102 }
2103 
2104 static bool
2105 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI,
2106                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2107                   SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2108   bool Changed = false;
2109   // Optimize functions.
2110   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2111     Function *F = &*FI++;
2112     // Functions without names cannot be referenced outside this module.
2113     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2114       F->setLinkage(GlobalValue::InternalLinkage);
2115 
2116     if (deleteIfDead(*F, NotDiscardableComdats)) {
2117       Changed = true;
2118       continue;
2119     }
2120 
2121     // LLVM's definition of dominance allows instructions that are cyclic
2122     // in unreachable blocks, e.g.:
2123     // %pat = select i1 %condition, @global, i16* %pat
2124     // because any instruction dominates an instruction in a block that's
2125     // not reachable from entry.
2126     // So, remove unreachable blocks from the function, because a) there's
2127     // no point in analyzing them and b) GlobalOpt should otherwise grow
2128     // some more complicated logic to break these cycles.
2129     // Removing unreachable blocks might invalidate the dominator so we
2130     // recalculate it.
2131     if (!F->isDeclaration()) {
2132       if (removeUnreachableBlocks(*F)) {
2133         auto &DT = LookupDomTree(*F);
2134         DT.recalculate(*F);
2135         Changed = true;
2136       }
2137     }
2138 
2139     Changed |= processGlobal(*F, TLI, LookupDomTree);
2140 
2141     if (!F->hasLocalLinkage())
2142       continue;
2143     if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
2144         !F->hasAddressTaken()) {
2145       // If this function has a calling convention worth changing, is not a
2146       // varargs function, and is only called directly, promote it to use the
2147       // Fast calling convention.
2148       F->setCallingConv(CallingConv::Fast);
2149       ChangeCalleesToFastCall(F);
2150       ++NumFastCallFns;
2151       Changed = true;
2152     }
2153 
2154     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2155         !F->hasAddressTaken()) {
2156       // The function is not used by a trampoline intrinsic, so it is safe
2157       // to remove the 'nest' attribute.
2158       RemoveNestAttribute(F);
2159       ++NumNestRemoved;
2160       Changed = true;
2161     }
2162   }
2163   return Changed;
2164 }
2165 
2166 static bool
2167 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI,
2168                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2169                    SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2170   bool Changed = false;
2171 
2172   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2173        GVI != E; ) {
2174     GlobalVariable *GV = &*GVI++;
2175     // Global variables without names cannot be referenced outside this module.
2176     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2177       GV->setLinkage(GlobalValue::InternalLinkage);
2178     // Simplify the initializer.
2179     if (GV->hasInitializer())
2180       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2181         auto &DL = M.getDataLayout();
2182         Constant *New = ConstantFoldConstant(C, DL, TLI);
2183         if (New && New != C)
2184           GV->setInitializer(New);
2185       }
2186 
2187     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2188       Changed = true;
2189       continue;
2190     }
2191 
2192     Changed |= processGlobal(*GV, TLI, LookupDomTree);
2193   }
2194   return Changed;
2195 }
2196 
2197 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2198 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2199 /// GEP operands of Addr [0, OpNo) have been stepped into.
2200 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2201                                    ConstantExpr *Addr, unsigned OpNo) {
2202   // Base case of the recursion.
2203   if (OpNo == Addr->getNumOperands()) {
2204     assert(Val->getType() == Init->getType() && "Type mismatch!");
2205     return Val;
2206   }
2207 
2208   SmallVector<Constant*, 32> Elts;
2209   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2210     // Break up the constant into its elements.
2211     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2212       Elts.push_back(Init->getAggregateElement(i));
2213 
2214     // Replace the element that we are supposed to.
2215     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2216     unsigned Idx = CU->getZExtValue();
2217     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2218     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2219 
2220     // Return the modified struct.
2221     return ConstantStruct::get(STy, Elts);
2222   }
2223 
2224   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2225   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2226   uint64_t NumElts = InitTy->getNumElements();
2227 
2228   // Break up the array into elements.
2229   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2230     Elts.push_back(Init->getAggregateElement(i));
2231 
2232   assert(CI->getZExtValue() < NumElts);
2233   Elts[CI->getZExtValue()] =
2234     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2235 
2236   if (Init->getType()->isArrayTy())
2237     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2238   return ConstantVector::get(Elts);
2239 }
2240 
2241 /// We have decided that Addr (which satisfies the predicate
2242 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2243 static void CommitValueTo(Constant *Val, Constant *Addr) {
2244   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2245     assert(GV->hasInitializer());
2246     GV->setInitializer(Val);
2247     return;
2248   }
2249 
2250   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2251   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2252   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2253 }
2254 
2255 /// Evaluate static constructors in the function, if we can.  Return true if we
2256 /// can, false otherwise.
2257 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2258                                       TargetLibraryInfo *TLI) {
2259   // Call the function.
2260   Evaluator Eval(DL, TLI);
2261   Constant *RetValDummy;
2262   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2263                                            SmallVector<Constant*, 0>());
2264 
2265   if (EvalSuccess) {
2266     ++NumCtorsEvaluated;
2267 
2268     // We succeeded at evaluation: commit the result.
2269     DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2270           << F->getName() << "' to " << Eval.getMutatedMemory().size()
2271           << " stores.\n");
2272     for (const auto &I : Eval.getMutatedMemory())
2273       CommitValueTo(I.second, I.first);
2274     for (GlobalVariable *GV : Eval.getInvariants())
2275       GV->setConstant(true);
2276   }
2277 
2278   return EvalSuccess;
2279 }
2280 
2281 static int compareNames(Constant *const *A, Constant *const *B) {
2282   Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
2283   Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
2284   return AStripped->getName().compare(BStripped->getName());
2285 }
2286 
2287 static void setUsedInitializer(GlobalVariable &V,
2288                                const SmallPtrSet<GlobalValue *, 8> &Init) {
2289   if (Init.empty()) {
2290     V.eraseFromParent();
2291     return;
2292   }
2293 
2294   // Type of pointer to the array of pointers.
2295   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2296 
2297   SmallVector<Constant *, 8> UsedArray;
2298   for (GlobalValue *GV : Init) {
2299     Constant *Cast
2300       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2301     UsedArray.push_back(Cast);
2302   }
2303   // Sort to get deterministic order.
2304   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2305   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2306 
2307   Module *M = V.getParent();
2308   V.removeFromParent();
2309   GlobalVariable *NV =
2310       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2311                          ConstantArray::get(ATy, UsedArray), "");
2312   NV->takeName(&V);
2313   NV->setSection("llvm.metadata");
2314   delete &V;
2315 }
2316 
2317 namespace {
2318 
2319 /// An easy to access representation of llvm.used and llvm.compiler.used.
2320 class LLVMUsed {
2321   SmallPtrSet<GlobalValue *, 8> Used;
2322   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2323   GlobalVariable *UsedV;
2324   GlobalVariable *CompilerUsedV;
2325 
2326 public:
2327   LLVMUsed(Module &M) {
2328     UsedV = collectUsedGlobalVariables(M, Used, false);
2329     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2330   }
2331 
2332   using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2333   using used_iterator_range = iterator_range<iterator>;
2334 
2335   iterator usedBegin() { return Used.begin(); }
2336   iterator usedEnd() { return Used.end(); }
2337 
2338   used_iterator_range used() {
2339     return used_iterator_range(usedBegin(), usedEnd());
2340   }
2341 
2342   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2343   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2344 
2345   used_iterator_range compilerUsed() {
2346     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2347   }
2348 
2349   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2350 
2351   bool compilerUsedCount(GlobalValue *GV) const {
2352     return CompilerUsed.count(GV);
2353   }
2354 
2355   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2356   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2357   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2358 
2359   bool compilerUsedInsert(GlobalValue *GV) {
2360     return CompilerUsed.insert(GV).second;
2361   }
2362 
2363   void syncVariablesAndSets() {
2364     if (UsedV)
2365       setUsedInitializer(*UsedV, Used);
2366     if (CompilerUsedV)
2367       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2368   }
2369 };
2370 
2371 } // end anonymous namespace
2372 
2373 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2374   if (GA.use_empty()) // No use at all.
2375     return false;
2376 
2377   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2378          "We should have removed the duplicated "
2379          "element from llvm.compiler.used");
2380   if (!GA.hasOneUse())
2381     // Strictly more than one use. So at least one is not in llvm.used and
2382     // llvm.compiler.used.
2383     return true;
2384 
2385   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2386   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2387 }
2388 
2389 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2390                                                const LLVMUsed &U) {
2391   unsigned N = 2;
2392   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2393          "We should have removed the duplicated "
2394          "element from llvm.compiler.used");
2395   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2396     ++N;
2397   return V.hasNUsesOrMore(N);
2398 }
2399 
2400 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2401   if (!GA.hasLocalLinkage())
2402     return true;
2403 
2404   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2405 }
2406 
2407 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2408                              bool &RenameTarget) {
2409   RenameTarget = false;
2410   bool Ret = false;
2411   if (hasUseOtherThanLLVMUsed(GA, U))
2412     Ret = true;
2413 
2414   // If the alias is externally visible, we may still be able to simplify it.
2415   if (!mayHaveOtherReferences(GA, U))
2416     return Ret;
2417 
2418   // If the aliasee has internal linkage, give it the name and linkage
2419   // of the alias, and delete the alias.  This turns:
2420   //   define internal ... @f(...)
2421   //   @a = alias ... @f
2422   // into:
2423   //   define ... @a(...)
2424   Constant *Aliasee = GA.getAliasee();
2425   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2426   if (!Target->hasLocalLinkage())
2427     return Ret;
2428 
2429   // Do not perform the transform if multiple aliases potentially target the
2430   // aliasee. This check also ensures that it is safe to replace the section
2431   // and other attributes of the aliasee with those of the alias.
2432   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2433     return Ret;
2434 
2435   RenameTarget = true;
2436   return true;
2437 }
2438 
2439 static bool
2440 OptimizeGlobalAliases(Module &M,
2441                       SmallSet<const Comdat *, 8> &NotDiscardableComdats) {
2442   bool Changed = false;
2443   LLVMUsed Used(M);
2444 
2445   for (GlobalValue *GV : Used.used())
2446     Used.compilerUsedErase(GV);
2447 
2448   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2449        I != E;) {
2450     GlobalAlias *J = &*I++;
2451 
2452     // Aliases without names cannot be referenced outside this module.
2453     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2454       J->setLinkage(GlobalValue::InternalLinkage);
2455 
2456     if (deleteIfDead(*J, NotDiscardableComdats)) {
2457       Changed = true;
2458       continue;
2459     }
2460 
2461     // If the aliasee may change at link time, nothing can be done - bail out.
2462     if (J->isInterposable())
2463       continue;
2464 
2465     Constant *Aliasee = J->getAliasee();
2466     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2467     // We can't trivially replace the alias with the aliasee if the aliasee is
2468     // non-trivial in some way.
2469     // TODO: Try to handle non-zero GEPs of local aliasees.
2470     if (!Target)
2471       continue;
2472     Target->removeDeadConstantUsers();
2473 
2474     // Make all users of the alias use the aliasee instead.
2475     bool RenameTarget;
2476     if (!hasUsesToReplace(*J, Used, RenameTarget))
2477       continue;
2478 
2479     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2480     ++NumAliasesResolved;
2481     Changed = true;
2482 
2483     if (RenameTarget) {
2484       // Give the aliasee the name, linkage and other attributes of the alias.
2485       Target->takeName(&*J);
2486       Target->setLinkage(J->getLinkage());
2487       Target->setDSOLocal(J->isDSOLocal());
2488       Target->setVisibility(J->getVisibility());
2489       Target->setDLLStorageClass(J->getDLLStorageClass());
2490 
2491       if (Used.usedErase(&*J))
2492         Used.usedInsert(Target);
2493 
2494       if (Used.compilerUsedErase(&*J))
2495         Used.compilerUsedInsert(Target);
2496     } else if (mayHaveOtherReferences(*J, Used))
2497       continue;
2498 
2499     // Delete the alias.
2500     M.getAliasList().erase(J);
2501     ++NumAliasesRemoved;
2502     Changed = true;
2503   }
2504 
2505   Used.syncVariablesAndSets();
2506 
2507   return Changed;
2508 }
2509 
2510 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2511   LibFunc F = LibFunc_cxa_atexit;
2512   if (!TLI->has(F))
2513     return nullptr;
2514 
2515   Function *Fn = M.getFunction(TLI->getName(F));
2516   if (!Fn)
2517     return nullptr;
2518 
2519   // Make sure that the function has the correct prototype.
2520   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2521     return nullptr;
2522 
2523   return Fn;
2524 }
2525 
2526 /// Returns whether the given function is an empty C++ destructor and can
2527 /// therefore be eliminated.
2528 /// Note that we assume that other optimization passes have already simplified
2529 /// the code so we only look for a function with a single basic block, where
2530 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2531 /// other side-effect free instructions.
2532 static bool cxxDtorIsEmpty(const Function &Fn,
2533                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
2534   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2535   // nounwind, but that doesn't seem worth doing.
2536   if (Fn.isDeclaration())
2537     return false;
2538 
2539   if (++Fn.begin() != Fn.end())
2540     return false;
2541 
2542   const BasicBlock &EntryBlock = Fn.getEntryBlock();
2543   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2544        I != E; ++I) {
2545     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2546       // Ignore debug intrinsics.
2547       if (isa<DbgInfoIntrinsic>(CI))
2548         continue;
2549 
2550       const Function *CalledFn = CI->getCalledFunction();
2551 
2552       if (!CalledFn)
2553         return false;
2554 
2555       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2556 
2557       // Don't treat recursive functions as empty.
2558       if (!NewCalledFunctions.insert(CalledFn).second)
2559         return false;
2560 
2561       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2562         return false;
2563     } else if (isa<ReturnInst>(*I))
2564       return true; // We're done.
2565     else if (I->mayHaveSideEffects())
2566       return false; // Destructor with side effects, bail.
2567   }
2568 
2569   return false;
2570 }
2571 
2572 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2573   /// Itanium C++ ABI p3.3.5:
2574   ///
2575   ///   After constructing a global (or local static) object, that will require
2576   ///   destruction on exit, a termination function is registered as follows:
2577   ///
2578   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2579   ///
2580   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2581   ///   call f(p) when DSO d is unloaded, before all such termination calls
2582   ///   registered before this one. It returns zero if registration is
2583   ///   successful, nonzero on failure.
2584 
2585   // This pass will look for calls to __cxa_atexit where the function is trivial
2586   // and remove them.
2587   bool Changed = false;
2588 
2589   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2590        I != E;) {
2591     // We're only interested in calls. Theoretically, we could handle invoke
2592     // instructions as well, but neither llvm-gcc nor clang generate invokes
2593     // to __cxa_atexit.
2594     CallInst *CI = dyn_cast<CallInst>(*I++);
2595     if (!CI)
2596       continue;
2597 
2598     Function *DtorFn =
2599       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2600     if (!DtorFn)
2601       continue;
2602 
2603     SmallPtrSet<const Function *, 8> CalledFunctions;
2604     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2605       continue;
2606 
2607     // Just remove the call.
2608     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2609     CI->eraseFromParent();
2610 
2611     ++NumCXXDtorsRemoved;
2612 
2613     Changed |= true;
2614   }
2615 
2616   return Changed;
2617 }
2618 
2619 static bool optimizeGlobalsInModule(
2620     Module &M, const DataLayout &DL, TargetLibraryInfo *TLI,
2621     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2622   SmallSet<const Comdat *, 8> NotDiscardableComdats;
2623   bool Changed = false;
2624   bool LocalChange = true;
2625   while (LocalChange) {
2626     LocalChange = false;
2627 
2628     NotDiscardableComdats.clear();
2629     for (const GlobalVariable &GV : M.globals())
2630       if (const Comdat *C = GV.getComdat())
2631         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2632           NotDiscardableComdats.insert(C);
2633     for (Function &F : M)
2634       if (const Comdat *C = F.getComdat())
2635         if (!F.isDefTriviallyDead())
2636           NotDiscardableComdats.insert(C);
2637     for (GlobalAlias &GA : M.aliases())
2638       if (const Comdat *C = GA.getComdat())
2639         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2640           NotDiscardableComdats.insert(C);
2641 
2642     // Delete functions that are trivially dead, ccc -> fastcc
2643     LocalChange |=
2644         OptimizeFunctions(M, TLI, LookupDomTree, NotDiscardableComdats);
2645 
2646     // Optimize global_ctors list.
2647     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2648       return EvaluateStaticConstructor(F, DL, TLI);
2649     });
2650 
2651     // Optimize non-address-taken globals.
2652     LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree,
2653                                       NotDiscardableComdats);
2654 
2655     // Resolve aliases, when possible.
2656     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2657 
2658     // Try to remove trivial global destructors if they are not removed
2659     // already.
2660     Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
2661     if (CXAAtExitFn)
2662       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2663 
2664     Changed |= LocalChange;
2665   }
2666 
2667   // TODO: Move all global ctors functions to the end of the module for code
2668   // layout.
2669 
2670   return Changed;
2671 }
2672 
2673 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2674     auto &DL = M.getDataLayout();
2675     auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
2676     auto &FAM =
2677         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2678     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2679       return FAM.getResult<DominatorTreeAnalysis>(F);
2680     };
2681     if (!optimizeGlobalsInModule(M, DL, &TLI, LookupDomTree))
2682       return PreservedAnalyses::all();
2683     return PreservedAnalyses::none();
2684 }
2685 
2686 namespace {
2687 
2688 struct GlobalOptLegacyPass : public ModulePass {
2689   static char ID; // Pass identification, replacement for typeid
2690 
2691   GlobalOptLegacyPass() : ModulePass(ID) {
2692     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2693   }
2694 
2695   bool runOnModule(Module &M) override {
2696     if (skipModule(M))
2697       return false;
2698 
2699     auto &DL = M.getDataLayout();
2700     auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2701     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2702       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2703     };
2704     return optimizeGlobalsInModule(M, DL, TLI, LookupDomTree);
2705   }
2706 
2707   void getAnalysisUsage(AnalysisUsage &AU) const override {
2708     AU.addRequired<TargetLibraryInfoWrapperPass>();
2709     AU.addRequired<DominatorTreeWrapperPass>();
2710   }
2711 };
2712 
2713 } // end anonymous namespace
2714 
2715 char GlobalOptLegacyPass::ID = 0;
2716 
2717 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2718                       "Global Variable Optimizer", false, false)
2719 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2720 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2721 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2722                     "Global Variable Optimizer", false, false)
2723 
2724 ModulePass *llvm::createGlobalOptimizerPass() {
2725   return new GlobalOptLegacyPass();
2726 }
2727