1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/GlobalOpt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/ADT/iterator_range.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/BinaryFormat/Dwarf.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Use.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/AtomicOrdering.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MathExtras.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Transforms/IPO.h" 63 #include "llvm/Transforms/Utils/CtorUtils.h" 64 #include "llvm/Transforms/Utils/Evaluator.h" 65 #include "llvm/Transforms/Utils/GlobalStatus.h" 66 #include "llvm/Transforms/Utils/Local.h" 67 #include <cassert> 68 #include <cstdint> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "globalopt" 75 76 STATISTIC(NumMarked , "Number of globals marked constant"); 77 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 78 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 79 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 80 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 81 STATISTIC(NumDeleted , "Number of globals deleted"); 82 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 83 STATISTIC(NumLocalized , "Number of globals localized"); 84 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 85 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 86 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 87 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 88 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 89 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 90 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 91 92 /// Is this global variable possibly used by a leak checker as a root? If so, 93 /// we might not really want to eliminate the stores to it. 94 static bool isLeakCheckerRoot(GlobalVariable *GV) { 95 // A global variable is a root if it is a pointer, or could plausibly contain 96 // a pointer. There are two challenges; one is that we could have a struct 97 // the has an inner member which is a pointer. We recurse through the type to 98 // detect these (up to a point). The other is that we may actually be a union 99 // of a pointer and another type, and so our LLVM type is an integer which 100 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 101 // potentially contained here. 102 103 if (GV->hasPrivateLinkage()) 104 return false; 105 106 SmallVector<Type *, 4> Types; 107 Types.push_back(GV->getValueType()); 108 109 unsigned Limit = 20; 110 do { 111 Type *Ty = Types.pop_back_val(); 112 switch (Ty->getTypeID()) { 113 default: break; 114 case Type::PointerTyID: return true; 115 case Type::ArrayTyID: 116 case Type::VectorTyID: { 117 SequentialType *STy = cast<SequentialType>(Ty); 118 Types.push_back(STy->getElementType()); 119 break; 120 } 121 case Type::StructTyID: { 122 StructType *STy = cast<StructType>(Ty); 123 if (STy->isOpaque()) return true; 124 for (StructType::element_iterator I = STy->element_begin(), 125 E = STy->element_end(); I != E; ++I) { 126 Type *InnerTy = *I; 127 if (isa<PointerType>(InnerTy)) return true; 128 if (isa<CompositeType>(InnerTy)) 129 Types.push_back(InnerTy); 130 } 131 break; 132 } 133 } 134 if (--Limit == 0) return true; 135 } while (!Types.empty()); 136 return false; 137 } 138 139 /// Given a value that is stored to a global but never read, determine whether 140 /// it's safe to remove the store and the chain of computation that feeds the 141 /// store. 142 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 143 do { 144 if (isa<Constant>(V)) 145 return true; 146 if (!V->hasOneUse()) 147 return false; 148 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 149 isa<GlobalValue>(V)) 150 return false; 151 if (isAllocationFn(V, TLI)) 152 return true; 153 154 Instruction *I = cast<Instruction>(V); 155 if (I->mayHaveSideEffects()) 156 return false; 157 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 158 if (!GEP->hasAllConstantIndices()) 159 return false; 160 } else if (I->getNumOperands() != 1) { 161 return false; 162 } 163 164 V = I->getOperand(0); 165 } while (true); 166 } 167 168 /// This GV is a pointer root. Loop over all users of the global and clean up 169 /// any that obviously don't assign the global a value that isn't dynamically 170 /// allocated. 171 static bool CleanupPointerRootUsers(GlobalVariable *GV, 172 const TargetLibraryInfo *TLI) { 173 // A brief explanation of leak checkers. The goal is to find bugs where 174 // pointers are forgotten, causing an accumulating growth in memory 175 // usage over time. The common strategy for leak checkers is to whitelist the 176 // memory pointed to by globals at exit. This is popular because it also 177 // solves another problem where the main thread of a C++ program may shut down 178 // before other threads that are still expecting to use those globals. To 179 // handle that case, we expect the program may create a singleton and never 180 // destroy it. 181 182 bool Changed = false; 183 184 // If Dead[n].first is the only use of a malloc result, we can delete its 185 // chain of computation and the store to the global in Dead[n].second. 186 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 187 188 // Constants can't be pointers to dynamically allocated memory. 189 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 190 UI != E;) { 191 User *U = *UI++; 192 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 193 Value *V = SI->getValueOperand(); 194 if (isa<Constant>(V)) { 195 Changed = true; 196 SI->eraseFromParent(); 197 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 198 if (I->hasOneUse()) 199 Dead.push_back(std::make_pair(I, SI)); 200 } 201 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 202 if (isa<Constant>(MSI->getValue())) { 203 Changed = true; 204 MSI->eraseFromParent(); 205 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 206 if (I->hasOneUse()) 207 Dead.push_back(std::make_pair(I, MSI)); 208 } 209 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 210 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 211 if (MemSrc && MemSrc->isConstant()) { 212 Changed = true; 213 MTI->eraseFromParent(); 214 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 215 if (I->hasOneUse()) 216 Dead.push_back(std::make_pair(I, MTI)); 217 } 218 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 219 if (CE->use_empty()) { 220 CE->destroyConstant(); 221 Changed = true; 222 } 223 } else if (Constant *C = dyn_cast<Constant>(U)) { 224 if (isSafeToDestroyConstant(C)) { 225 C->destroyConstant(); 226 // This could have invalidated UI, start over from scratch. 227 Dead.clear(); 228 CleanupPointerRootUsers(GV, TLI); 229 return true; 230 } 231 } 232 } 233 234 for (int i = 0, e = Dead.size(); i != e; ++i) { 235 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 236 Dead[i].second->eraseFromParent(); 237 Instruction *I = Dead[i].first; 238 do { 239 if (isAllocationFn(I, TLI)) 240 break; 241 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 242 if (!J) 243 break; 244 I->eraseFromParent(); 245 I = J; 246 } while (true); 247 I->eraseFromParent(); 248 } 249 } 250 251 return Changed; 252 } 253 254 /// We just marked GV constant. Loop over all users of the global, cleaning up 255 /// the obvious ones. This is largely just a quick scan over the use list to 256 /// clean up the easy and obvious cruft. This returns true if it made a change. 257 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 258 const DataLayout &DL, 259 TargetLibraryInfo *TLI) { 260 bool Changed = false; 261 // Note that we need to use a weak value handle for the worklist items. When 262 // we delete a constant array, we may also be holding pointer to one of its 263 // elements (or an element of one of its elements if we're dealing with an 264 // array of arrays) in the worklist. 265 SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end()); 266 while (!WorkList.empty()) { 267 Value *UV = WorkList.pop_back_val(); 268 if (!UV) 269 continue; 270 271 User *U = cast<User>(UV); 272 273 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 274 if (Init) { 275 // Replace the load with the initializer. 276 LI->replaceAllUsesWith(Init); 277 LI->eraseFromParent(); 278 Changed = true; 279 } 280 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 281 // Store must be unreachable or storing Init into the global. 282 SI->eraseFromParent(); 283 Changed = true; 284 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 285 if (CE->getOpcode() == Instruction::GetElementPtr) { 286 Constant *SubInit = nullptr; 287 if (Init) 288 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 289 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 290 } else if ((CE->getOpcode() == Instruction::BitCast && 291 CE->getType()->isPointerTy()) || 292 CE->getOpcode() == Instruction::AddrSpaceCast) { 293 // Pointer cast, delete any stores and memsets to the global. 294 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 295 } 296 297 if (CE->use_empty()) { 298 CE->destroyConstant(); 299 Changed = true; 300 } 301 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 302 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 303 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 304 // and will invalidate our notion of what Init is. 305 Constant *SubInit = nullptr; 306 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 307 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 308 ConstantFoldInstruction(GEP, DL, TLI)); 309 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 310 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 311 312 // If the initializer is an all-null value and we have an inbounds GEP, 313 // we already know what the result of any load from that GEP is. 314 // TODO: Handle splats. 315 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 316 SubInit = Constant::getNullValue(GEP->getResultElementType()); 317 } 318 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 319 320 if (GEP->use_empty()) { 321 GEP->eraseFromParent(); 322 Changed = true; 323 } 324 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 325 if (MI->getRawDest() == V) { 326 MI->eraseFromParent(); 327 Changed = true; 328 } 329 330 } else if (Constant *C = dyn_cast<Constant>(U)) { 331 // If we have a chain of dead constantexprs or other things dangling from 332 // us, and if they are all dead, nuke them without remorse. 333 if (isSafeToDestroyConstant(C)) { 334 C->destroyConstant(); 335 CleanupConstantGlobalUsers(V, Init, DL, TLI); 336 return true; 337 } 338 } 339 } 340 return Changed; 341 } 342 343 /// Return true if the specified instruction is a safe user of a derived 344 /// expression from a global that we want to SROA. 345 static bool isSafeSROAElementUse(Value *V) { 346 // We might have a dead and dangling constant hanging off of here. 347 if (Constant *C = dyn_cast<Constant>(V)) 348 return isSafeToDestroyConstant(C); 349 350 Instruction *I = dyn_cast<Instruction>(V); 351 if (!I) return false; 352 353 // Loads are ok. 354 if (isa<LoadInst>(I)) return true; 355 356 // Stores *to* the pointer are ok. 357 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 358 return SI->getOperand(0) != V; 359 360 // Otherwise, it must be a GEP. 361 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 362 if (!GEPI) return false; 363 364 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 365 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 366 return false; 367 368 for (User *U : GEPI->users()) 369 if (!isSafeSROAElementUse(U)) 370 return false; 371 return true; 372 } 373 374 /// U is a direct user of the specified global value. Look at it and its uses 375 /// and decide whether it is safe to SROA this global. 376 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 377 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 378 if (!isa<GetElementPtrInst>(U) && 379 (!isa<ConstantExpr>(U) || 380 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 381 return false; 382 383 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 384 // don't like < 3 operand CE's, and we don't like non-constant integer 385 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 386 // value of C. 387 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 388 !cast<Constant>(U->getOperand(1))->isNullValue() || 389 !isa<ConstantInt>(U->getOperand(2))) 390 return false; 391 392 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 393 ++GEPI; // Skip over the pointer index. 394 395 // If this is a use of an array allocation, do a bit more checking for sanity. 396 if (GEPI.isSequential()) { 397 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 398 399 // Check to make sure that index falls within the array. If not, 400 // something funny is going on, so we won't do the optimization. 401 // 402 if (GEPI.isBoundedSequential() && 403 Idx->getZExtValue() >= GEPI.getSequentialNumElements()) 404 return false; 405 406 // We cannot scalar repl this level of the array unless any array 407 // sub-indices are in-range constants. In particular, consider: 408 // A[0][i]. We cannot know that the user isn't doing invalid things like 409 // allowing i to index an out-of-range subscript that accesses A[1]. 410 // 411 // Scalar replacing *just* the outer index of the array is probably not 412 // going to be a win anyway, so just give up. 413 for (++GEPI; // Skip array index. 414 GEPI != E; 415 ++GEPI) { 416 if (GEPI.isStruct()) 417 continue; 418 419 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 420 if (!IdxVal || 421 (GEPI.isBoundedSequential() && 422 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 423 return false; 424 } 425 } 426 427 return llvm::all_of(U->users(), 428 [](User *UU) { return isSafeSROAElementUse(UU); }); 429 } 430 431 /// Look at all uses of the global and decide whether it is safe for us to 432 /// perform this transformation. 433 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 434 for (User *U : GV->users()) 435 if (!IsUserOfGlobalSafeForSRA(U, GV)) 436 return false; 437 438 return true; 439 } 440 441 /// Copy over the debug info for a variable to its SRA replacements. 442 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 443 uint64_t FragmentOffsetInBits, 444 uint64_t FragmentSizeInBits, 445 unsigned NumElements) { 446 SmallVector<DIGlobalVariableExpression *, 1> GVs; 447 GV->getDebugInfo(GVs); 448 for (auto *GVE : GVs) { 449 DIVariable *Var = GVE->getVariable(); 450 DIExpression *Expr = GVE->getExpression(); 451 if (NumElements > 1) { 452 if (auto E = DIExpression::createFragmentExpression( 453 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 454 Expr = *E; 455 else 456 return; 457 } 458 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 459 NGV->addDebugInfo(NGVE); 460 } 461 } 462 463 /// Perform scalar replacement of aggregates on the specified global variable. 464 /// This opens the door for other optimizations by exposing the behavior of the 465 /// program in a more fine-grained way. We have determined that this 466 /// transformation is safe already. We return the first global variable we 467 /// insert so that the caller can reprocess it. 468 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 469 // Make sure this global only has simple uses that we can SRA. 470 if (!GlobalUsersSafeToSRA(GV)) 471 return nullptr; 472 473 assert(GV->hasLocalLinkage()); 474 Constant *Init = GV->getInitializer(); 475 Type *Ty = Init->getType(); 476 477 std::vector<GlobalVariable *> NewGlobals; 478 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 479 480 // Get the alignment of the global, either explicit or target-specific. 481 unsigned StartAlignment = GV->getAlignment(); 482 if (StartAlignment == 0) 483 StartAlignment = DL.getABITypeAlignment(GV->getType()); 484 485 if (StructType *STy = dyn_cast<StructType>(Ty)) { 486 unsigned NumElements = STy->getNumElements(); 487 NewGlobals.reserve(NumElements); 488 const StructLayout &Layout = *DL.getStructLayout(STy); 489 for (unsigned i = 0, e = NumElements; i != e; ++i) { 490 Constant *In = Init->getAggregateElement(i); 491 assert(In && "Couldn't get element of initializer?"); 492 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 493 GlobalVariable::InternalLinkage, 494 In, GV->getName()+"."+Twine(i), 495 GV->getThreadLocalMode(), 496 GV->getType()->getAddressSpace()); 497 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 498 NGV->copyAttributesFrom(GV); 499 Globals.push_back(NGV); 500 NewGlobals.push_back(NGV); 501 502 // Calculate the known alignment of the field. If the original aggregate 503 // had 256 byte alignment for example, something might depend on that: 504 // propagate info to each field. 505 uint64_t FieldOffset = Layout.getElementOffset(i); 506 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 507 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 508 NGV->setAlignment(NewAlign); 509 510 // Copy over the debug info for the variable. 511 uint64_t Size = DL.getTypeSizeInBits(NGV->getValueType()); 512 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i); 513 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements); 514 } 515 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 516 unsigned NumElements = STy->getNumElements(); 517 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 518 return nullptr; // It's not worth it. 519 NewGlobals.reserve(NumElements); 520 auto ElTy = STy->getElementType(); 521 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 522 unsigned EltAlign = DL.getABITypeAlignment(ElTy); 523 uint64_t FragmentSizeInBits = DL.getTypeSizeInBits(ElTy); 524 for (unsigned i = 0, e = NumElements; i != e; ++i) { 525 Constant *In = Init->getAggregateElement(i); 526 assert(In && "Couldn't get element of initializer?"); 527 528 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 529 GlobalVariable::InternalLinkage, 530 In, GV->getName()+"."+Twine(i), 531 GV->getThreadLocalMode(), 532 GV->getType()->getAddressSpace()); 533 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 534 NGV->copyAttributesFrom(GV); 535 Globals.push_back(NGV); 536 NewGlobals.push_back(NGV); 537 538 // Calculate the known alignment of the field. If the original aggregate 539 // had 256 byte alignment for example, something might depend on that: 540 // propagate info to each field. 541 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 542 if (NewAlign > EltAlign) 543 NGV->setAlignment(NewAlign); 544 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits, 545 NumElements); 546 } 547 } 548 549 if (NewGlobals.empty()) 550 return nullptr; 551 552 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 553 554 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 555 556 // Loop over all of the uses of the global, replacing the constantexpr geps, 557 // with smaller constantexpr geps or direct references. 558 while (!GV->use_empty()) { 559 User *GEP = GV->user_back(); 560 assert(((isa<ConstantExpr>(GEP) && 561 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 562 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 563 564 // Ignore the 1th operand, which has to be zero or else the program is quite 565 // broken (undefined). Get the 2nd operand, which is the structure or array 566 // index. 567 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 568 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 569 570 Value *NewPtr = NewGlobals[Val]; 571 Type *NewTy = NewGlobals[Val]->getValueType(); 572 573 // Form a shorter GEP if needed. 574 if (GEP->getNumOperands() > 3) { 575 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 576 SmallVector<Constant*, 8> Idxs; 577 Idxs.push_back(NullInt); 578 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 579 Idxs.push_back(CE->getOperand(i)); 580 NewPtr = 581 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 582 } else { 583 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 584 SmallVector<Value*, 8> Idxs; 585 Idxs.push_back(NullInt); 586 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 587 Idxs.push_back(GEPI->getOperand(i)); 588 NewPtr = GetElementPtrInst::Create( 589 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 590 } 591 } 592 GEP->replaceAllUsesWith(NewPtr); 593 594 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 595 GEPI->eraseFromParent(); 596 else 597 cast<ConstantExpr>(GEP)->destroyConstant(); 598 } 599 600 // Delete the old global, now that it is dead. 601 Globals.erase(GV); 602 ++NumSRA; 603 604 // Loop over the new globals array deleting any globals that are obviously 605 // dead. This can arise due to scalarization of a structure or an array that 606 // has elements that are dead. 607 unsigned FirstGlobal = 0; 608 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 609 if (NewGlobals[i]->use_empty()) { 610 Globals.erase(NewGlobals[i]); 611 if (FirstGlobal == i) ++FirstGlobal; 612 } 613 614 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 615 } 616 617 /// Return true if all users of the specified value will trap if the value is 618 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 619 /// reprocessing them. 620 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 621 SmallPtrSetImpl<const PHINode*> &PHIs) { 622 for (const User *U : V->users()) 623 if (isa<LoadInst>(U)) { 624 // Will trap. 625 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 626 if (SI->getOperand(0) == V) { 627 //cerr << "NONTRAPPING USE: " << *U; 628 return false; // Storing the value. 629 } 630 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 631 if (CI->getCalledValue() != V) { 632 //cerr << "NONTRAPPING USE: " << *U; 633 return false; // Not calling the ptr 634 } 635 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 636 if (II->getCalledValue() != V) { 637 //cerr << "NONTRAPPING USE: " << *U; 638 return false; // Not calling the ptr 639 } 640 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 641 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 642 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 643 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 644 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 645 // If we've already seen this phi node, ignore it, it has already been 646 // checked. 647 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 648 return false; 649 } else if (isa<ICmpInst>(U) && 650 isa<ConstantPointerNull>(U->getOperand(1))) { 651 // Ignore icmp X, null 652 } else { 653 //cerr << "NONTRAPPING USE: " << *U; 654 return false; 655 } 656 657 return true; 658 } 659 660 /// Return true if all uses of any loads from GV will trap if the loaded value 661 /// is null. Note that this also permits comparisons of the loaded value 662 /// against null, as a special case. 663 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 664 for (const User *U : GV->users()) 665 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 666 SmallPtrSet<const PHINode*, 8> PHIs; 667 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 668 return false; 669 } else if (isa<StoreInst>(U)) { 670 // Ignore stores to the global. 671 } else { 672 // We don't know or understand this user, bail out. 673 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 674 return false; 675 } 676 return true; 677 } 678 679 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 680 bool Changed = false; 681 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 682 Instruction *I = cast<Instruction>(*UI++); 683 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 684 LI->setOperand(0, NewV); 685 Changed = true; 686 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 687 if (SI->getOperand(1) == V) { 688 SI->setOperand(1, NewV); 689 Changed = true; 690 } 691 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 692 CallSite CS(I); 693 if (CS.getCalledValue() == V) { 694 // Calling through the pointer! Turn into a direct call, but be careful 695 // that the pointer is not also being passed as an argument. 696 CS.setCalledFunction(NewV); 697 Changed = true; 698 bool PassedAsArg = false; 699 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 700 if (CS.getArgument(i) == V) { 701 PassedAsArg = true; 702 CS.setArgument(i, NewV); 703 } 704 705 if (PassedAsArg) { 706 // Being passed as an argument also. Be careful to not invalidate UI! 707 UI = V->user_begin(); 708 } 709 } 710 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 711 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 712 ConstantExpr::getCast(CI->getOpcode(), 713 NewV, CI->getType())); 714 if (CI->use_empty()) { 715 Changed = true; 716 CI->eraseFromParent(); 717 } 718 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 719 // Should handle GEP here. 720 SmallVector<Constant*, 8> Idxs; 721 Idxs.reserve(GEPI->getNumOperands()-1); 722 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 723 i != e; ++i) 724 if (Constant *C = dyn_cast<Constant>(*i)) 725 Idxs.push_back(C); 726 else 727 break; 728 if (Idxs.size() == GEPI->getNumOperands()-1) 729 Changed |= OptimizeAwayTrappingUsesOfValue( 730 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 731 if (GEPI->use_empty()) { 732 Changed = true; 733 GEPI->eraseFromParent(); 734 } 735 } 736 } 737 738 return Changed; 739 } 740 741 /// The specified global has only one non-null value stored into it. If there 742 /// are uses of the loaded value that would trap if the loaded value is 743 /// dynamically null, then we know that they cannot be reachable with a null 744 /// optimize away the load. 745 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 746 const DataLayout &DL, 747 TargetLibraryInfo *TLI) { 748 bool Changed = false; 749 750 // Keep track of whether we are able to remove all the uses of the global 751 // other than the store that defines it. 752 bool AllNonStoreUsesGone = true; 753 754 // Replace all uses of loads with uses of uses of the stored value. 755 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 756 User *GlobalUser = *GUI++; 757 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 758 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 759 // If we were able to delete all uses of the loads 760 if (LI->use_empty()) { 761 LI->eraseFromParent(); 762 Changed = true; 763 } else { 764 AllNonStoreUsesGone = false; 765 } 766 } else if (isa<StoreInst>(GlobalUser)) { 767 // Ignore the store that stores "LV" to the global. 768 assert(GlobalUser->getOperand(1) == GV && 769 "Must be storing *to* the global"); 770 } else { 771 AllNonStoreUsesGone = false; 772 773 // If we get here we could have other crazy uses that are transitively 774 // loaded. 775 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 776 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 777 isa<BitCastInst>(GlobalUser) || 778 isa<GetElementPtrInst>(GlobalUser)) && 779 "Only expect load and stores!"); 780 } 781 } 782 783 if (Changed) { 784 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n"); 785 ++NumGlobUses; 786 } 787 788 // If we nuked all of the loads, then none of the stores are needed either, 789 // nor is the global. 790 if (AllNonStoreUsesGone) { 791 if (isLeakCheckerRoot(GV)) { 792 Changed |= CleanupPointerRootUsers(GV, TLI); 793 } else { 794 Changed = true; 795 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 796 } 797 if (GV->use_empty()) { 798 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 799 Changed = true; 800 GV->eraseFromParent(); 801 ++NumDeleted; 802 } 803 } 804 return Changed; 805 } 806 807 /// Walk the use list of V, constant folding all of the instructions that are 808 /// foldable. 809 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 810 TargetLibraryInfo *TLI) { 811 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 812 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 813 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 814 I->replaceAllUsesWith(NewC); 815 816 // Advance UI to the next non-I use to avoid invalidating it! 817 // Instructions could multiply use V. 818 while (UI != E && *UI == I) 819 ++UI; 820 if (isInstructionTriviallyDead(I, TLI)) 821 I->eraseFromParent(); 822 } 823 } 824 825 /// This function takes the specified global variable, and transforms the 826 /// program as if it always contained the result of the specified malloc. 827 /// Because it is always the result of the specified malloc, there is no reason 828 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 829 /// loads of GV as uses of the new global. 830 static GlobalVariable * 831 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 832 ConstantInt *NElements, const DataLayout &DL, 833 TargetLibraryInfo *TLI) { 834 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 835 836 Type *GlobalType; 837 if (NElements->getZExtValue() == 1) 838 GlobalType = AllocTy; 839 else 840 // If we have an array allocation, the global variable is of an array. 841 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 842 843 // Create the new global variable. The contents of the malloc'd memory is 844 // undefined, so initialize with an undef value. 845 GlobalVariable *NewGV = new GlobalVariable( 846 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 847 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 848 GV->getThreadLocalMode()); 849 850 // If there are bitcast users of the malloc (which is typical, usually we have 851 // a malloc + bitcast) then replace them with uses of the new global. Update 852 // other users to use the global as well. 853 BitCastInst *TheBC = nullptr; 854 while (!CI->use_empty()) { 855 Instruction *User = cast<Instruction>(CI->user_back()); 856 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 857 if (BCI->getType() == NewGV->getType()) { 858 BCI->replaceAllUsesWith(NewGV); 859 BCI->eraseFromParent(); 860 } else { 861 BCI->setOperand(0, NewGV); 862 } 863 } else { 864 if (!TheBC) 865 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 866 User->replaceUsesOfWith(CI, TheBC); 867 } 868 } 869 870 Constant *RepValue = NewGV; 871 if (NewGV->getType() != GV->getValueType()) 872 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 873 874 // If there is a comparison against null, we will insert a global bool to 875 // keep track of whether the global was initialized yet or not. 876 GlobalVariable *InitBool = 877 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 878 GlobalValue::InternalLinkage, 879 ConstantInt::getFalse(GV->getContext()), 880 GV->getName()+".init", GV->getThreadLocalMode()); 881 bool InitBoolUsed = false; 882 883 // Loop over all uses of GV, processing them in turn. 884 while (!GV->use_empty()) { 885 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 886 // The global is initialized when the store to it occurs. 887 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 888 SI->getOrdering(), SI->getSyncScopeID(), SI); 889 SI->eraseFromParent(); 890 continue; 891 } 892 893 LoadInst *LI = cast<LoadInst>(GV->user_back()); 894 while (!LI->use_empty()) { 895 Use &LoadUse = *LI->use_begin(); 896 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 897 if (!ICI) { 898 LoadUse = RepValue; 899 continue; 900 } 901 902 // Replace the cmp X, 0 with a use of the bool value. 903 // Sink the load to where the compare was, if atomic rules allow us to. 904 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 905 LI->getOrdering(), LI->getSyncScopeID(), 906 LI->isUnordered() ? (Instruction*)ICI : LI); 907 InitBoolUsed = true; 908 switch (ICI->getPredicate()) { 909 default: llvm_unreachable("Unknown ICmp Predicate!"); 910 case ICmpInst::ICMP_ULT: 911 case ICmpInst::ICMP_SLT: // X < null -> always false 912 LV = ConstantInt::getFalse(GV->getContext()); 913 break; 914 case ICmpInst::ICMP_ULE: 915 case ICmpInst::ICMP_SLE: 916 case ICmpInst::ICMP_EQ: 917 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 918 break; 919 case ICmpInst::ICMP_NE: 920 case ICmpInst::ICMP_UGE: 921 case ICmpInst::ICMP_SGE: 922 case ICmpInst::ICMP_UGT: 923 case ICmpInst::ICMP_SGT: 924 break; // no change. 925 } 926 ICI->replaceAllUsesWith(LV); 927 ICI->eraseFromParent(); 928 } 929 LI->eraseFromParent(); 930 } 931 932 // If the initialization boolean was used, insert it, otherwise delete it. 933 if (!InitBoolUsed) { 934 while (!InitBool->use_empty()) // Delete initializations 935 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 936 delete InitBool; 937 } else 938 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 939 940 // Now the GV is dead, nuke it and the malloc.. 941 GV->eraseFromParent(); 942 CI->eraseFromParent(); 943 944 // To further other optimizations, loop over all users of NewGV and try to 945 // constant prop them. This will promote GEP instructions with constant 946 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 947 ConstantPropUsersOf(NewGV, DL, TLI); 948 if (RepValue != NewGV) 949 ConstantPropUsersOf(RepValue, DL, TLI); 950 951 return NewGV; 952 } 953 954 /// Scan the use-list of V checking to make sure that there are no complex uses 955 /// of V. We permit simple things like dereferencing the pointer, but not 956 /// storing through the address, unless it is to the specified global. 957 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 958 const GlobalVariable *GV, 959 SmallPtrSetImpl<const PHINode*> &PHIs) { 960 for (const User *U : V->users()) { 961 const Instruction *Inst = cast<Instruction>(U); 962 963 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 964 continue; // Fine, ignore. 965 } 966 967 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 968 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 969 return false; // Storing the pointer itself... bad. 970 continue; // Otherwise, storing through it, or storing into GV... fine. 971 } 972 973 // Must index into the array and into the struct. 974 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 975 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 976 return false; 977 continue; 978 } 979 980 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 981 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 982 // cycles. 983 if (PHIs.insert(PN).second) 984 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 985 return false; 986 continue; 987 } 988 989 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 990 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 991 return false; 992 continue; 993 } 994 995 return false; 996 } 997 return true; 998 } 999 1000 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the 1001 /// allocation into loads from the global and uses of the resultant pointer. 1002 /// Further, delete the store into GV. This assumes that these value pass the 1003 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1004 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1005 GlobalVariable *GV) { 1006 while (!Alloc->use_empty()) { 1007 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 1008 Instruction *InsertPt = U; 1009 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1010 // If this is the store of the allocation into the global, remove it. 1011 if (SI->getOperand(1) == GV) { 1012 SI->eraseFromParent(); 1013 continue; 1014 } 1015 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1016 // Insert the load in the corresponding predecessor, not right before the 1017 // PHI. 1018 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 1019 } else if (isa<BitCastInst>(U)) { 1020 // Must be bitcast between the malloc and store to initialize the global. 1021 ReplaceUsesOfMallocWithGlobal(U, GV); 1022 U->eraseFromParent(); 1023 continue; 1024 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1025 // If this is a "GEP bitcast" and the user is a store to the global, then 1026 // just process it as a bitcast. 1027 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1028 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1029 if (SI->getOperand(1) == GV) { 1030 // Must be bitcast GEP between the malloc and store to initialize 1031 // the global. 1032 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1033 GEPI->eraseFromParent(); 1034 continue; 1035 } 1036 } 1037 1038 // Insert a load from the global, and use it instead of the malloc. 1039 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1040 U->replaceUsesOfWith(Alloc, NL); 1041 } 1042 } 1043 1044 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to 1045 /// perform heap SRA on. This permits GEP's that index through the array and 1046 /// struct field, icmps of null, and PHIs. 1047 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1048 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1049 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1050 // We permit two users of the load: setcc comparing against the null 1051 // pointer, and a getelementptr of a specific form. 1052 for (const User *U : V->users()) { 1053 const Instruction *UI = cast<Instruction>(U); 1054 1055 // Comparison against null is ok. 1056 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1057 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1058 return false; 1059 continue; 1060 } 1061 1062 // getelementptr is also ok, but only a simple form. 1063 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1064 // Must index into the array and into the struct. 1065 if (GEPI->getNumOperands() < 3) 1066 return false; 1067 1068 // Otherwise the GEP is ok. 1069 continue; 1070 } 1071 1072 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1073 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1074 // This means some phi nodes are dependent on each other. 1075 // Avoid infinite looping! 1076 return false; 1077 if (!LoadUsingPHIs.insert(PN).second) 1078 // If we have already analyzed this PHI, then it is safe. 1079 continue; 1080 1081 // Make sure all uses of the PHI are simple enough to transform. 1082 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1083 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1084 return false; 1085 1086 continue; 1087 } 1088 1089 // Otherwise we don't know what this is, not ok. 1090 return false; 1091 } 1092 1093 return true; 1094 } 1095 1096 /// If all users of values loaded from GV are simple enough to perform HeapSRA, 1097 /// return true. 1098 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1099 Instruction *StoredVal) { 1100 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1101 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1102 for (const User *U : GV->users()) 1103 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1104 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1105 LoadUsingPHIsPerLoad)) 1106 return false; 1107 LoadUsingPHIsPerLoad.clear(); 1108 } 1109 1110 // If we reach here, we know that all uses of the loads and transitive uses 1111 // (through PHI nodes) are simple enough to transform. However, we don't know 1112 // that all inputs the to the PHI nodes are in the same equivalence sets. 1113 // Check to verify that all operands of the PHIs are either PHIS that can be 1114 // transformed, loads from GV, or MI itself. 1115 for (const PHINode *PN : LoadUsingPHIs) { 1116 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1117 Value *InVal = PN->getIncomingValue(op); 1118 1119 // PHI of the stored value itself is ok. 1120 if (InVal == StoredVal) continue; 1121 1122 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1123 // One of the PHIs in our set is (optimistically) ok. 1124 if (LoadUsingPHIs.count(InPN)) 1125 continue; 1126 return false; 1127 } 1128 1129 // Load from GV is ok. 1130 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1131 if (LI->getOperand(0) == GV) 1132 continue; 1133 1134 // UNDEF? NULL? 1135 1136 // Anything else is rejected. 1137 return false; 1138 } 1139 } 1140 1141 return true; 1142 } 1143 1144 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1145 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1146 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1147 std::vector<Value *> &FieldVals = InsertedScalarizedValues[V]; 1148 1149 if (FieldNo >= FieldVals.size()) 1150 FieldVals.resize(FieldNo+1); 1151 1152 // If we already have this value, just reuse the previously scalarized 1153 // version. 1154 if (Value *FieldVal = FieldVals[FieldNo]) 1155 return FieldVal; 1156 1157 // Depending on what instruction this is, we have several cases. 1158 Value *Result; 1159 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1160 // This is a scalarized version of the load from the global. Just create 1161 // a new Load of the scalarized global. 1162 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1163 InsertedScalarizedValues, 1164 PHIsToRewrite), 1165 LI->getName()+".f"+Twine(FieldNo), LI); 1166 } else { 1167 PHINode *PN = cast<PHINode>(V); 1168 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1169 // field. 1170 1171 PointerType *PTy = cast<PointerType>(PN->getType()); 1172 StructType *ST = cast<StructType>(PTy->getElementType()); 1173 1174 unsigned AS = PTy->getAddressSpace(); 1175 PHINode *NewPN = 1176 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1177 PN->getNumIncomingValues(), 1178 PN->getName()+".f"+Twine(FieldNo), PN); 1179 Result = NewPN; 1180 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1181 } 1182 1183 return FieldVals[FieldNo] = Result; 1184 } 1185 1186 /// Given a load instruction and a value derived from the load, rewrite the 1187 /// derived value to use the HeapSRoA'd load. 1188 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1189 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1190 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1191 // If this is a comparison against null, handle it. 1192 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1193 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1194 // If we have a setcc of the loaded pointer, we can use a setcc of any 1195 // field. 1196 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1197 InsertedScalarizedValues, PHIsToRewrite); 1198 1199 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1200 Constant::getNullValue(NPtr->getType()), 1201 SCI->getName()); 1202 SCI->replaceAllUsesWith(New); 1203 SCI->eraseFromParent(); 1204 return; 1205 } 1206 1207 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1208 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1209 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1210 && "Unexpected GEPI!"); 1211 1212 // Load the pointer for this field. 1213 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1214 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1215 InsertedScalarizedValues, PHIsToRewrite); 1216 1217 // Create the new GEP idx vector. 1218 SmallVector<Value*, 8> GEPIdx; 1219 GEPIdx.push_back(GEPI->getOperand(1)); 1220 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1221 1222 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1223 GEPI->getName(), GEPI); 1224 GEPI->replaceAllUsesWith(NGEPI); 1225 GEPI->eraseFromParent(); 1226 return; 1227 } 1228 1229 // Recursively transform the users of PHI nodes. This will lazily create the 1230 // PHIs that are needed for individual elements. Keep track of what PHIs we 1231 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1232 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1233 // already been seen first by another load, so its uses have already been 1234 // processed. 1235 PHINode *PN = cast<PHINode>(LoadUser); 1236 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1237 std::vector<Value *>())).second) 1238 return; 1239 1240 // If this is the first time we've seen this PHI, recursively process all 1241 // users. 1242 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1243 Instruction *User = cast<Instruction>(*UI++); 1244 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1245 } 1246 } 1247 1248 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1249 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1250 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1251 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1252 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1253 std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) { 1254 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1255 Instruction *User = cast<Instruction>(*UI++); 1256 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1257 } 1258 1259 if (Load->use_empty()) { 1260 Load->eraseFromParent(); 1261 InsertedScalarizedValues.erase(Load); 1262 } 1263 } 1264 1265 /// CI is an allocation of an array of structures. Break it up into multiple 1266 /// allocations of arrays of the fields. 1267 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1268 Value *NElems, const DataLayout &DL, 1269 const TargetLibraryInfo *TLI) { 1270 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1271 Type *MAT = getMallocAllocatedType(CI, TLI); 1272 StructType *STy = cast<StructType>(MAT); 1273 1274 // There is guaranteed to be at least one use of the malloc (storing 1275 // it into GV). If there are other uses, change them to be uses of 1276 // the global to simplify later code. This also deletes the store 1277 // into GV. 1278 ReplaceUsesOfMallocWithGlobal(CI, GV); 1279 1280 // Okay, at this point, there are no users of the malloc. Insert N 1281 // new mallocs at the same place as CI, and N globals. 1282 std::vector<Value *> FieldGlobals; 1283 std::vector<Value *> FieldMallocs; 1284 1285 SmallVector<OperandBundleDef, 1> OpBundles; 1286 CI->getOperandBundlesAsDefs(OpBundles); 1287 1288 unsigned AS = GV->getType()->getPointerAddressSpace(); 1289 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1290 Type *FieldTy = STy->getElementType(FieldNo); 1291 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1292 1293 GlobalVariable *NGV = new GlobalVariable( 1294 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1295 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1296 nullptr, GV->getThreadLocalMode()); 1297 NGV->copyAttributesFrom(GV); 1298 FieldGlobals.push_back(NGV); 1299 1300 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1301 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1302 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1303 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1304 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1305 ConstantInt::get(IntPtrTy, TypeSize), 1306 NElems, OpBundles, nullptr, 1307 CI->getName() + ".f" + Twine(FieldNo)); 1308 FieldMallocs.push_back(NMI); 1309 new StoreInst(NMI, NGV, CI); 1310 } 1311 1312 // The tricky aspect of this transformation is handling the case when malloc 1313 // fails. In the original code, malloc failing would set the result pointer 1314 // of malloc to null. In this case, some mallocs could succeed and others 1315 // could fail. As such, we emit code that looks like this: 1316 // F0 = malloc(field0) 1317 // F1 = malloc(field1) 1318 // F2 = malloc(field2) 1319 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1320 // if (F0) { free(F0); F0 = 0; } 1321 // if (F1) { free(F1); F1 = 0; } 1322 // if (F2) { free(F2); F2 = 0; } 1323 // } 1324 // The malloc can also fail if its argument is too large. 1325 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1326 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1327 ConstantZero, "isneg"); 1328 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1329 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1330 Constant::getNullValue(FieldMallocs[i]->getType()), 1331 "isnull"); 1332 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1333 } 1334 1335 // Split the basic block at the old malloc. 1336 BasicBlock *OrigBB = CI->getParent(); 1337 BasicBlock *ContBB = 1338 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1339 1340 // Create the block to check the first condition. Put all these blocks at the 1341 // end of the function as they are unlikely to be executed. 1342 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1343 "malloc_ret_null", 1344 OrigBB->getParent()); 1345 1346 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1347 // branch on RunningOr. 1348 OrigBB->getTerminator()->eraseFromParent(); 1349 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1350 1351 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1352 // pointer, because some may be null while others are not. 1353 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1354 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1355 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1356 Constant::getNullValue(GVVal->getType())); 1357 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1358 OrigBB->getParent()); 1359 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1360 OrigBB->getParent()); 1361 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1362 Cmp, NullPtrBlock); 1363 1364 // Fill in FreeBlock. 1365 CallInst::CreateFree(GVVal, OpBundles, BI); 1366 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1367 FreeBlock); 1368 BranchInst::Create(NextBlock, FreeBlock); 1369 1370 NullPtrBlock = NextBlock; 1371 } 1372 1373 BranchInst::Create(ContBB, NullPtrBlock); 1374 1375 // CI is no longer needed, remove it. 1376 CI->eraseFromParent(); 1377 1378 /// As we process loads, if we can't immediately update all uses of the load, 1379 /// keep track of what scalarized loads are inserted for a given load. 1380 DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues; 1381 InsertedScalarizedValues[GV] = FieldGlobals; 1382 1383 std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite; 1384 1385 // Okay, the malloc site is completely handled. All of the uses of GV are now 1386 // loads, and all uses of those loads are simple. Rewrite them to use loads 1387 // of the per-field globals instead. 1388 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1389 Instruction *User = cast<Instruction>(*UI++); 1390 1391 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1392 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1393 continue; 1394 } 1395 1396 // Must be a store of null. 1397 StoreInst *SI = cast<StoreInst>(User); 1398 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1399 "Unexpected heap-sra user!"); 1400 1401 // Insert a store of null into each global. 1402 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1403 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1404 Constant *Null = Constant::getNullValue(ValTy); 1405 new StoreInst(Null, FieldGlobals[i], SI); 1406 } 1407 // Erase the original store. 1408 SI->eraseFromParent(); 1409 } 1410 1411 // While we have PHIs that are interesting to rewrite, do it. 1412 while (!PHIsToRewrite.empty()) { 1413 PHINode *PN = PHIsToRewrite.back().first; 1414 unsigned FieldNo = PHIsToRewrite.back().second; 1415 PHIsToRewrite.pop_back(); 1416 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1417 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1418 1419 // Add all the incoming values. This can materialize more phis. 1420 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1421 Value *InVal = PN->getIncomingValue(i); 1422 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1423 PHIsToRewrite); 1424 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1425 } 1426 } 1427 1428 // Drop all inter-phi links and any loads that made it this far. 1429 for (DenseMap<Value *, std::vector<Value *>>::iterator 1430 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1431 I != E; ++I) { 1432 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1433 PN->dropAllReferences(); 1434 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1435 LI->dropAllReferences(); 1436 } 1437 1438 // Delete all the phis and loads now that inter-references are dead. 1439 for (DenseMap<Value *, std::vector<Value *>>::iterator 1440 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1441 I != E; ++I) { 1442 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1443 PN->eraseFromParent(); 1444 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1445 LI->eraseFromParent(); 1446 } 1447 1448 // The old global is now dead, remove it. 1449 GV->eraseFromParent(); 1450 1451 ++NumHeapSRA; 1452 return cast<GlobalVariable>(FieldGlobals[0]); 1453 } 1454 1455 /// This function is called when we see a pointer global variable with a single 1456 /// value stored it that is a malloc or cast of malloc. 1457 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1458 Type *AllocTy, 1459 AtomicOrdering Ordering, 1460 const DataLayout &DL, 1461 TargetLibraryInfo *TLI) { 1462 // If this is a malloc of an abstract type, don't touch it. 1463 if (!AllocTy->isSized()) 1464 return false; 1465 1466 // We can't optimize this global unless all uses of it are *known* to be 1467 // of the malloc value, not of the null initializer value (consider a use 1468 // that compares the global's value against zero to see if the malloc has 1469 // been reached). To do this, we check to see if all uses of the global 1470 // would trap if the global were null: this proves that they must all 1471 // happen after the malloc. 1472 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1473 return false; 1474 1475 // We can't optimize this if the malloc itself is used in a complex way, 1476 // for example, being stored into multiple globals. This allows the 1477 // malloc to be stored into the specified global, loaded icmp'd, and 1478 // GEP'd. These are all things we could transform to using the global 1479 // for. 1480 SmallPtrSet<const PHINode*, 8> PHIs; 1481 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1482 return false; 1483 1484 // If we have a global that is only initialized with a fixed size malloc, 1485 // transform the program to use global memory instead of malloc'd memory. 1486 // This eliminates dynamic allocation, avoids an indirection accessing the 1487 // data, and exposes the resultant global to further GlobalOpt. 1488 // We cannot optimize the malloc if we cannot determine malloc array size. 1489 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1490 if (!NElems) 1491 return false; 1492 1493 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1494 // Restrict this transformation to only working on small allocations 1495 // (2048 bytes currently), as we don't want to introduce a 16M global or 1496 // something. 1497 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1498 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1499 return true; 1500 } 1501 1502 // If the allocation is an array of structures, consider transforming this 1503 // into multiple malloc'd arrays, one for each field. This is basically 1504 // SRoA for malloc'd memory. 1505 1506 if (Ordering != AtomicOrdering::NotAtomic) 1507 return false; 1508 1509 // If this is an allocation of a fixed size array of structs, analyze as a 1510 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1511 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1512 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1513 AllocTy = AT->getElementType(); 1514 1515 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1516 if (!AllocSTy) 1517 return false; 1518 1519 // This the structure has an unreasonable number of fields, leave it 1520 // alone. 1521 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1522 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1523 1524 // If this is a fixed size array, transform the Malloc to be an alloc of 1525 // structs. malloc [100 x struct],1 -> malloc struct, 100 1526 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1527 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1528 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1529 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1530 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1531 SmallVector<OperandBundleDef, 1> OpBundles; 1532 CI->getOperandBundlesAsDefs(OpBundles); 1533 Instruction *Malloc = 1534 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements, 1535 OpBundles, nullptr, CI->getName()); 1536 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1537 CI->replaceAllUsesWith(Cast); 1538 CI->eraseFromParent(); 1539 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1540 CI = cast<CallInst>(BCI->getOperand(0)); 1541 else 1542 CI = cast<CallInst>(Malloc); 1543 } 1544 1545 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1546 TLI); 1547 return true; 1548 } 1549 1550 return false; 1551 } 1552 1553 // Try to optimize globals based on the knowledge that only one value (besides 1554 // its initializer) is ever stored to the global. 1555 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1556 AtomicOrdering Ordering, 1557 const DataLayout &DL, 1558 TargetLibraryInfo *TLI) { 1559 // Ignore no-op GEPs and bitcasts. 1560 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1561 1562 // If we are dealing with a pointer global that is initialized to null and 1563 // only has one (non-null) value stored into it, then we can optimize any 1564 // users of the loaded value (often calls and loads) that would trap if the 1565 // value was null. 1566 if (GV->getInitializer()->getType()->isPointerTy() && 1567 GV->getInitializer()->isNullValue()) { 1568 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1569 if (GV->getInitializer()->getType() != SOVC->getType()) 1570 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1571 1572 // Optimize away any trapping uses of the loaded value. 1573 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1574 return true; 1575 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1576 Type *MallocType = getMallocAllocatedType(CI, TLI); 1577 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1578 Ordering, DL, TLI)) 1579 return true; 1580 } 1581 } 1582 1583 return false; 1584 } 1585 1586 /// At this point, we have learned that the only two values ever stored into GV 1587 /// are its initializer and OtherVal. See if we can shrink the global into a 1588 /// boolean and select between the two values whenever it is used. This exposes 1589 /// the values to other scalar optimizations. 1590 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1591 Type *GVElType = GV->getValueType(); 1592 1593 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1594 // an FP value, pointer or vector, don't do this optimization because a select 1595 // between them is very expensive and unlikely to lead to later 1596 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1597 // where v1 and v2 both require constant pool loads, a big loss. 1598 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1599 GVElType->isFloatingPointTy() || 1600 GVElType->isPointerTy() || GVElType->isVectorTy()) 1601 return false; 1602 1603 // Walk the use list of the global seeing if all the uses are load or store. 1604 // If there is anything else, bail out. 1605 for (User *U : GV->users()) 1606 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1607 return false; 1608 1609 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1610 1611 // Create the new global, initializing it to false. 1612 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1613 false, 1614 GlobalValue::InternalLinkage, 1615 ConstantInt::getFalse(GV->getContext()), 1616 GV->getName()+".b", 1617 GV->getThreadLocalMode(), 1618 GV->getType()->getAddressSpace()); 1619 NewGV->copyAttributesFrom(GV); 1620 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1621 1622 Constant *InitVal = GV->getInitializer(); 1623 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1624 "No reason to shrink to bool!"); 1625 1626 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1627 GV->getDebugInfo(GVs); 1628 1629 // If initialized to zero and storing one into the global, we can use a cast 1630 // instead of a select to synthesize the desired value. 1631 bool IsOneZero = false; 1632 bool EmitOneOrZero = true; 1633 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)){ 1634 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1635 1636 if (ConstantInt *CIInit = dyn_cast<ConstantInt>(GV->getInitializer())){ 1637 uint64_t ValInit = CIInit->getZExtValue(); 1638 uint64_t ValOther = CI->getZExtValue(); 1639 uint64_t ValMinus = ValOther - ValInit; 1640 1641 for(auto *GVe : GVs){ 1642 DIGlobalVariable *DGV = GVe->getVariable(); 1643 DIExpression *E = GVe->getExpression(); 1644 1645 // It is expected that the address of global optimized variable is on 1646 // top of the stack. After optimization, value of that variable will 1647 // be ether 0 for initial value or 1 for other value. The following 1648 // expression should return constant integer value depending on the 1649 // value at global object address: 1650 // val * (ValOther - ValInit) + ValInit: 1651 // DW_OP_deref DW_OP_constu <ValMinus> 1652 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1653 E = DIExpression::get(NewGV->getContext(), 1654 {dwarf::DW_OP_deref, 1655 dwarf::DW_OP_constu, 1656 ValMinus, 1657 dwarf::DW_OP_mul, 1658 dwarf::DW_OP_constu, 1659 ValInit, 1660 dwarf::DW_OP_plus, 1661 dwarf::DW_OP_stack_value}); 1662 DIGlobalVariableExpression *DGVE = 1663 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1664 NewGV->addDebugInfo(DGVE); 1665 } 1666 EmitOneOrZero = false; 1667 } 1668 } 1669 1670 if (EmitOneOrZero) { 1671 // FIXME: This will only emit address for debugger on which will 1672 // be written only 0 or 1. 1673 for(auto *GV : GVs) 1674 NewGV->addDebugInfo(GV); 1675 } 1676 1677 while (!GV->use_empty()) { 1678 Instruction *UI = cast<Instruction>(GV->user_back()); 1679 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1680 // Change the store into a boolean store. 1681 bool StoringOther = SI->getOperand(0) == OtherVal; 1682 // Only do this if we weren't storing a loaded value. 1683 Value *StoreVal; 1684 if (StoringOther || SI->getOperand(0) == InitVal) { 1685 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1686 StoringOther); 1687 } else { 1688 // Otherwise, we are storing a previously loaded copy. To do this, 1689 // change the copy from copying the original value to just copying the 1690 // bool. 1691 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1692 1693 // If we've already replaced the input, StoredVal will be a cast or 1694 // select instruction. If not, it will be a load of the original 1695 // global. 1696 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1697 assert(LI->getOperand(0) == GV && "Not a copy!"); 1698 // Insert a new load, to preserve the saved value. 1699 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1700 LI->getOrdering(), LI->getSyncScopeID(), LI); 1701 } else { 1702 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1703 "This is not a form that we understand!"); 1704 StoreVal = StoredVal->getOperand(0); 1705 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1706 } 1707 } 1708 new StoreInst(StoreVal, NewGV, false, 0, 1709 SI->getOrdering(), SI->getSyncScopeID(), SI); 1710 } else { 1711 // Change the load into a load of bool then a select. 1712 LoadInst *LI = cast<LoadInst>(UI); 1713 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1714 LI->getOrdering(), LI->getSyncScopeID(), LI); 1715 Value *NSI; 1716 if (IsOneZero) 1717 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1718 else 1719 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1720 NSI->takeName(LI); 1721 LI->replaceAllUsesWith(NSI); 1722 } 1723 UI->eraseFromParent(); 1724 } 1725 1726 // Retain the name of the old global variable. People who are debugging their 1727 // programs may expect these variables to be named the same. 1728 NewGV->takeName(GV); 1729 GV->eraseFromParent(); 1730 return true; 1731 } 1732 1733 static bool deleteIfDead(GlobalValue &GV, 1734 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 1735 GV.removeDeadConstantUsers(); 1736 1737 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1738 return false; 1739 1740 if (const Comdat *C = GV.getComdat()) 1741 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1742 return false; 1743 1744 bool Dead; 1745 if (auto *F = dyn_cast<Function>(&GV)) 1746 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1747 else 1748 Dead = GV.use_empty(); 1749 if (!Dead) 1750 return false; 1751 1752 DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1753 GV.eraseFromParent(); 1754 ++NumDeleted; 1755 return true; 1756 } 1757 1758 static bool isPointerValueDeadOnEntryToFunction( 1759 const Function *F, GlobalValue *GV, 1760 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1761 // Find all uses of GV. We expect them all to be in F, and if we can't 1762 // identify any of the uses we bail out. 1763 // 1764 // On each of these uses, identify if the memory that GV points to is 1765 // used/required/live at the start of the function. If it is not, for example 1766 // if the first thing the function does is store to the GV, the GV can 1767 // possibly be demoted. 1768 // 1769 // We don't do an exhaustive search for memory operations - simply look 1770 // through bitcasts as they're quite common and benign. 1771 const DataLayout &DL = GV->getParent()->getDataLayout(); 1772 SmallVector<LoadInst *, 4> Loads; 1773 SmallVector<StoreInst *, 4> Stores; 1774 for (auto *U : GV->users()) { 1775 if (Operator::getOpcode(U) == Instruction::BitCast) { 1776 for (auto *UU : U->users()) { 1777 if (auto *LI = dyn_cast<LoadInst>(UU)) 1778 Loads.push_back(LI); 1779 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1780 Stores.push_back(SI); 1781 else 1782 return false; 1783 } 1784 continue; 1785 } 1786 1787 Instruction *I = dyn_cast<Instruction>(U); 1788 if (!I) 1789 return false; 1790 assert(I->getParent()->getParent() == F); 1791 1792 if (auto *LI = dyn_cast<LoadInst>(I)) 1793 Loads.push_back(LI); 1794 else if (auto *SI = dyn_cast<StoreInst>(I)) 1795 Stores.push_back(SI); 1796 else 1797 return false; 1798 } 1799 1800 // We have identified all uses of GV into loads and stores. Now check if all 1801 // of them are known not to depend on the value of the global at the function 1802 // entry point. We do this by ensuring that every load is dominated by at 1803 // least one store. 1804 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1805 1806 // The below check is quadratic. Check we're not going to do too many tests. 1807 // FIXME: Even though this will always have worst-case quadratic time, we 1808 // could put effort into minimizing the average time by putting stores that 1809 // have been shown to dominate at least one load at the beginning of the 1810 // Stores array, making subsequent dominance checks more likely to succeed 1811 // early. 1812 // 1813 // The threshold here is fairly large because global->local demotion is a 1814 // very powerful optimization should it fire. 1815 const unsigned Threshold = 100; 1816 if (Loads.size() * Stores.size() > Threshold) 1817 return false; 1818 1819 for (auto *L : Loads) { 1820 auto *LTy = L->getType(); 1821 if (none_of(Stores, [&](const StoreInst *S) { 1822 auto *STy = S->getValueOperand()->getType(); 1823 // The load is only dominated by the store if DomTree says so 1824 // and the number of bits loaded in L is less than or equal to 1825 // the number of bits stored in S. 1826 return DT.dominates(S, L) && 1827 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1828 })) 1829 return false; 1830 } 1831 // All loads have known dependences inside F, so the global can be localized. 1832 return true; 1833 } 1834 1835 /// C may have non-instruction users. Can all of those users be turned into 1836 /// instructions? 1837 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1838 // We don't do this exhaustively. The most common pattern that we really need 1839 // to care about is a constant GEP or constant bitcast - so just looking 1840 // through one single ConstantExpr. 1841 // 1842 // The set of constants that this function returns true for must be able to be 1843 // handled by makeAllConstantUsesInstructions. 1844 for (auto *U : C->users()) { 1845 if (isa<Instruction>(U)) 1846 continue; 1847 if (!isa<ConstantExpr>(U)) 1848 // Non instruction, non-constantexpr user; cannot convert this. 1849 return false; 1850 for (auto *UU : U->users()) 1851 if (!isa<Instruction>(UU)) 1852 // A constantexpr used by another constant. We don't try and recurse any 1853 // further but just bail out at this point. 1854 return false; 1855 } 1856 1857 return true; 1858 } 1859 1860 /// C may have non-instruction users, and 1861 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1862 /// non-instruction users to instructions. 1863 static void makeAllConstantUsesInstructions(Constant *C) { 1864 SmallVector<ConstantExpr*,4> Users; 1865 for (auto *U : C->users()) { 1866 if (isa<ConstantExpr>(U)) 1867 Users.push_back(cast<ConstantExpr>(U)); 1868 else 1869 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1870 // should not have returned true for C. 1871 assert( 1872 isa<Instruction>(U) && 1873 "Can't transform non-constantexpr non-instruction to instruction!"); 1874 } 1875 1876 SmallVector<Value*,4> UUsers; 1877 for (auto *U : Users) { 1878 UUsers.clear(); 1879 for (auto *UU : U->users()) 1880 UUsers.push_back(UU); 1881 for (auto *UU : UUsers) { 1882 Instruction *UI = cast<Instruction>(UU); 1883 Instruction *NewU = U->getAsInstruction(); 1884 NewU->insertBefore(UI); 1885 UI->replaceUsesOfWith(U, NewU); 1886 } 1887 // We've replaced all the uses, so destroy the constant. (destroyConstant 1888 // will update value handles and metadata.) 1889 U->destroyConstant(); 1890 } 1891 } 1892 1893 /// Analyze the specified global variable and optimize 1894 /// it if possible. If we make a change, return true. 1895 static bool processInternalGlobal( 1896 GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI, 1897 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1898 auto &DL = GV->getParent()->getDataLayout(); 1899 // If this is a first class global and has only one accessing function and 1900 // this function is non-recursive, we replace the global with a local alloca 1901 // in this function. 1902 // 1903 // NOTE: It doesn't make sense to promote non-single-value types since we 1904 // are just replacing static memory to stack memory. 1905 // 1906 // If the global is in different address space, don't bring it to stack. 1907 if (!GS.HasMultipleAccessingFunctions && 1908 GS.AccessingFunction && 1909 GV->getValueType()->isSingleValueType() && 1910 GV->getType()->getAddressSpace() == 0 && 1911 !GV->isExternallyInitialized() && 1912 allNonInstructionUsersCanBeMadeInstructions(GV) && 1913 GS.AccessingFunction->doesNotRecurse() && 1914 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1915 LookupDomTree)) { 1916 const DataLayout &DL = GV->getParent()->getDataLayout(); 1917 1918 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1919 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1920 ->getEntryBlock().begin()); 1921 Type *ElemTy = GV->getValueType(); 1922 // FIXME: Pass Global's alignment when globals have alignment 1923 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1924 GV->getName(), &FirstI); 1925 if (!isa<UndefValue>(GV->getInitializer())) 1926 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1927 1928 makeAllConstantUsesInstructions(GV); 1929 1930 GV->replaceAllUsesWith(Alloca); 1931 GV->eraseFromParent(); 1932 ++NumLocalized; 1933 return true; 1934 } 1935 1936 // If the global is never loaded (but may be stored to), it is dead. 1937 // Delete it now. 1938 if (!GS.IsLoaded) { 1939 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1940 1941 bool Changed; 1942 if (isLeakCheckerRoot(GV)) { 1943 // Delete any constant stores to the global. 1944 Changed = CleanupPointerRootUsers(GV, TLI); 1945 } else { 1946 // Delete any stores we can find to the global. We may not be able to 1947 // make it completely dead though. 1948 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1949 } 1950 1951 // If the global is dead now, delete it. 1952 if (GV->use_empty()) { 1953 GV->eraseFromParent(); 1954 ++NumDeleted; 1955 Changed = true; 1956 } 1957 return Changed; 1958 1959 } 1960 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1961 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1962 GV->setConstant(true); 1963 1964 // Clean up any obviously simplifiable users now. 1965 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1966 1967 // If the global is dead now, just nuke it. 1968 if (GV->use_empty()) { 1969 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1970 << "all users and delete global!\n"); 1971 GV->eraseFromParent(); 1972 ++NumDeleted; 1973 return true; 1974 } 1975 1976 // Fall through to the next check; see if we can optimize further. 1977 ++NumMarked; 1978 } 1979 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1980 const DataLayout &DL = GV->getParent()->getDataLayout(); 1981 if (SRAGlobal(GV, DL)) 1982 return true; 1983 } 1984 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1985 // If the initial value for the global was an undef value, and if only 1986 // one other value was stored into it, we can just change the 1987 // initializer to be the stored value, then delete all stores to the 1988 // global. This allows us to mark it constant. 1989 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1990 if (isa<UndefValue>(GV->getInitializer())) { 1991 // Change the initial value here. 1992 GV->setInitializer(SOVConstant); 1993 1994 // Clean up any obviously simplifiable users now. 1995 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1996 1997 if (GV->use_empty()) { 1998 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1999 << "simplify all users and delete global!\n"); 2000 GV->eraseFromParent(); 2001 ++NumDeleted; 2002 } 2003 ++NumSubstitute; 2004 return true; 2005 } 2006 2007 // Try to optimize globals based on the knowledge that only one value 2008 // (besides its initializer) is ever stored to the global. 2009 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI)) 2010 return true; 2011 2012 // Otherwise, if the global was not a boolean, we can shrink it to be a 2013 // boolean. 2014 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 2015 if (GS.Ordering == AtomicOrdering::NotAtomic) { 2016 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 2017 ++NumShrunkToBool; 2018 return true; 2019 } 2020 } 2021 } 2022 } 2023 2024 return false; 2025 } 2026 2027 /// Analyze the specified global variable and optimize it if possible. If we 2028 /// make a change, return true. 2029 static bool 2030 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI, 2031 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2032 if (GV.getName().startswith("llvm.")) 2033 return false; 2034 2035 GlobalStatus GS; 2036 2037 if (GlobalStatus::analyzeGlobal(&GV, GS)) 2038 return false; 2039 2040 bool Changed = false; 2041 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 2042 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 2043 : GlobalValue::UnnamedAddr::Local; 2044 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 2045 GV.setUnnamedAddr(NewUnnamedAddr); 2046 NumUnnamed++; 2047 Changed = true; 2048 } 2049 } 2050 2051 // Do more involved optimizations if the global is internal. 2052 if (!GV.hasLocalLinkage()) 2053 return Changed; 2054 2055 auto *GVar = dyn_cast<GlobalVariable>(&GV); 2056 if (!GVar) 2057 return Changed; 2058 2059 if (GVar->isConstant() || !GVar->hasInitializer()) 2060 return Changed; 2061 2062 return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed; 2063 } 2064 2065 /// Walk all of the direct calls of the specified function, changing them to 2066 /// FastCC. 2067 static void ChangeCalleesToFastCall(Function *F) { 2068 for (User *U : F->users()) { 2069 if (isa<BlockAddress>(U)) 2070 continue; 2071 CallSite CS(cast<Instruction>(U)); 2072 CS.setCallingConv(CallingConv::Fast); 2073 } 2074 } 2075 2076 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) { 2077 // There can be at most one attribute set with a nest attribute. 2078 unsigned NestIndex; 2079 if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex)) 2080 return Attrs.removeAttribute(C, NestIndex, Attribute::Nest); 2081 return Attrs; 2082 } 2083 2084 static void RemoveNestAttribute(Function *F) { 2085 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 2086 for (User *U : F->users()) { 2087 if (isa<BlockAddress>(U)) 2088 continue; 2089 CallSite CS(cast<Instruction>(U)); 2090 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 2091 } 2092 } 2093 2094 /// Return true if this is a calling convention that we'd like to change. The 2095 /// idea here is that we don't want to mess with the convention if the user 2096 /// explicitly requested something with performance implications like coldcc, 2097 /// GHC, or anyregcc. 2098 static bool isProfitableToMakeFastCC(Function *F) { 2099 CallingConv::ID CC = F->getCallingConv(); 2100 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2101 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall; 2102 } 2103 2104 static bool 2105 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI, 2106 function_ref<DominatorTree &(Function &)> LookupDomTree, 2107 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2108 bool Changed = false; 2109 // Optimize functions. 2110 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2111 Function *F = &*FI++; 2112 // Functions without names cannot be referenced outside this module. 2113 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2114 F->setLinkage(GlobalValue::InternalLinkage); 2115 2116 if (deleteIfDead(*F, NotDiscardableComdats)) { 2117 Changed = true; 2118 continue; 2119 } 2120 2121 // LLVM's definition of dominance allows instructions that are cyclic 2122 // in unreachable blocks, e.g.: 2123 // %pat = select i1 %condition, @global, i16* %pat 2124 // because any instruction dominates an instruction in a block that's 2125 // not reachable from entry. 2126 // So, remove unreachable blocks from the function, because a) there's 2127 // no point in analyzing them and b) GlobalOpt should otherwise grow 2128 // some more complicated logic to break these cycles. 2129 // Removing unreachable blocks might invalidate the dominator so we 2130 // recalculate it. 2131 if (!F->isDeclaration()) { 2132 if (removeUnreachableBlocks(*F)) { 2133 auto &DT = LookupDomTree(*F); 2134 DT.recalculate(*F); 2135 Changed = true; 2136 } 2137 } 2138 2139 Changed |= processGlobal(*F, TLI, LookupDomTree); 2140 2141 if (!F->hasLocalLinkage()) 2142 continue; 2143 if (isProfitableToMakeFastCC(F) && !F->isVarArg() && 2144 !F->hasAddressTaken()) { 2145 // If this function has a calling convention worth changing, is not a 2146 // varargs function, and is only called directly, promote it to use the 2147 // Fast calling convention. 2148 F->setCallingConv(CallingConv::Fast); 2149 ChangeCalleesToFastCall(F); 2150 ++NumFastCallFns; 2151 Changed = true; 2152 } 2153 2154 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2155 !F->hasAddressTaken()) { 2156 // The function is not used by a trampoline intrinsic, so it is safe 2157 // to remove the 'nest' attribute. 2158 RemoveNestAttribute(F); 2159 ++NumNestRemoved; 2160 Changed = true; 2161 } 2162 } 2163 return Changed; 2164 } 2165 2166 static bool 2167 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI, 2168 function_ref<DominatorTree &(Function &)> LookupDomTree, 2169 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2170 bool Changed = false; 2171 2172 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2173 GVI != E; ) { 2174 GlobalVariable *GV = &*GVI++; 2175 // Global variables without names cannot be referenced outside this module. 2176 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2177 GV->setLinkage(GlobalValue::InternalLinkage); 2178 // Simplify the initializer. 2179 if (GV->hasInitializer()) 2180 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 2181 auto &DL = M.getDataLayout(); 2182 Constant *New = ConstantFoldConstant(C, DL, TLI); 2183 if (New && New != C) 2184 GV->setInitializer(New); 2185 } 2186 2187 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2188 Changed = true; 2189 continue; 2190 } 2191 2192 Changed |= processGlobal(*GV, TLI, LookupDomTree); 2193 } 2194 return Changed; 2195 } 2196 2197 /// Evaluate a piece of a constantexpr store into a global initializer. This 2198 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2199 /// GEP operands of Addr [0, OpNo) have been stepped into. 2200 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2201 ConstantExpr *Addr, unsigned OpNo) { 2202 // Base case of the recursion. 2203 if (OpNo == Addr->getNumOperands()) { 2204 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2205 return Val; 2206 } 2207 2208 SmallVector<Constant*, 32> Elts; 2209 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2210 // Break up the constant into its elements. 2211 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2212 Elts.push_back(Init->getAggregateElement(i)); 2213 2214 // Replace the element that we are supposed to. 2215 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2216 unsigned Idx = CU->getZExtValue(); 2217 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2218 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2219 2220 // Return the modified struct. 2221 return ConstantStruct::get(STy, Elts); 2222 } 2223 2224 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2225 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2226 uint64_t NumElts = InitTy->getNumElements(); 2227 2228 // Break up the array into elements. 2229 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2230 Elts.push_back(Init->getAggregateElement(i)); 2231 2232 assert(CI->getZExtValue() < NumElts); 2233 Elts[CI->getZExtValue()] = 2234 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2235 2236 if (Init->getType()->isArrayTy()) 2237 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2238 return ConstantVector::get(Elts); 2239 } 2240 2241 /// We have decided that Addr (which satisfies the predicate 2242 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2243 static void CommitValueTo(Constant *Val, Constant *Addr) { 2244 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2245 assert(GV->hasInitializer()); 2246 GV->setInitializer(Val); 2247 return; 2248 } 2249 2250 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2251 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2252 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2253 } 2254 2255 /// Evaluate static constructors in the function, if we can. Return true if we 2256 /// can, false otherwise. 2257 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2258 TargetLibraryInfo *TLI) { 2259 // Call the function. 2260 Evaluator Eval(DL, TLI); 2261 Constant *RetValDummy; 2262 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2263 SmallVector<Constant*, 0>()); 2264 2265 if (EvalSuccess) { 2266 ++NumCtorsEvaluated; 2267 2268 // We succeeded at evaluation: commit the result. 2269 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2270 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2271 << " stores.\n"); 2272 for (const auto &I : Eval.getMutatedMemory()) 2273 CommitValueTo(I.second, I.first); 2274 for (GlobalVariable *GV : Eval.getInvariants()) 2275 GV->setConstant(true); 2276 } 2277 2278 return EvalSuccess; 2279 } 2280 2281 static int compareNames(Constant *const *A, Constant *const *B) { 2282 Value *AStripped = (*A)->stripPointerCastsNoFollowAliases(); 2283 Value *BStripped = (*B)->stripPointerCastsNoFollowAliases(); 2284 return AStripped->getName().compare(BStripped->getName()); 2285 } 2286 2287 static void setUsedInitializer(GlobalVariable &V, 2288 const SmallPtrSet<GlobalValue *, 8> &Init) { 2289 if (Init.empty()) { 2290 V.eraseFromParent(); 2291 return; 2292 } 2293 2294 // Type of pointer to the array of pointers. 2295 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2296 2297 SmallVector<Constant *, 8> UsedArray; 2298 for (GlobalValue *GV : Init) { 2299 Constant *Cast 2300 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2301 UsedArray.push_back(Cast); 2302 } 2303 // Sort to get deterministic order. 2304 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2305 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2306 2307 Module *M = V.getParent(); 2308 V.removeFromParent(); 2309 GlobalVariable *NV = 2310 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2311 ConstantArray::get(ATy, UsedArray), ""); 2312 NV->takeName(&V); 2313 NV->setSection("llvm.metadata"); 2314 delete &V; 2315 } 2316 2317 namespace { 2318 2319 /// An easy to access representation of llvm.used and llvm.compiler.used. 2320 class LLVMUsed { 2321 SmallPtrSet<GlobalValue *, 8> Used; 2322 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2323 GlobalVariable *UsedV; 2324 GlobalVariable *CompilerUsedV; 2325 2326 public: 2327 LLVMUsed(Module &M) { 2328 UsedV = collectUsedGlobalVariables(M, Used, false); 2329 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2330 } 2331 2332 using iterator = SmallPtrSet<GlobalValue *, 8>::iterator; 2333 using used_iterator_range = iterator_range<iterator>; 2334 2335 iterator usedBegin() { return Used.begin(); } 2336 iterator usedEnd() { return Used.end(); } 2337 2338 used_iterator_range used() { 2339 return used_iterator_range(usedBegin(), usedEnd()); 2340 } 2341 2342 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2343 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2344 2345 used_iterator_range compilerUsed() { 2346 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2347 } 2348 2349 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2350 2351 bool compilerUsedCount(GlobalValue *GV) const { 2352 return CompilerUsed.count(GV); 2353 } 2354 2355 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2356 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2357 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2358 2359 bool compilerUsedInsert(GlobalValue *GV) { 2360 return CompilerUsed.insert(GV).second; 2361 } 2362 2363 void syncVariablesAndSets() { 2364 if (UsedV) 2365 setUsedInitializer(*UsedV, Used); 2366 if (CompilerUsedV) 2367 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2368 } 2369 }; 2370 2371 } // end anonymous namespace 2372 2373 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2374 if (GA.use_empty()) // No use at all. 2375 return false; 2376 2377 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2378 "We should have removed the duplicated " 2379 "element from llvm.compiler.used"); 2380 if (!GA.hasOneUse()) 2381 // Strictly more than one use. So at least one is not in llvm.used and 2382 // llvm.compiler.used. 2383 return true; 2384 2385 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2386 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2387 } 2388 2389 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2390 const LLVMUsed &U) { 2391 unsigned N = 2; 2392 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2393 "We should have removed the duplicated " 2394 "element from llvm.compiler.used"); 2395 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2396 ++N; 2397 return V.hasNUsesOrMore(N); 2398 } 2399 2400 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2401 if (!GA.hasLocalLinkage()) 2402 return true; 2403 2404 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2405 } 2406 2407 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2408 bool &RenameTarget) { 2409 RenameTarget = false; 2410 bool Ret = false; 2411 if (hasUseOtherThanLLVMUsed(GA, U)) 2412 Ret = true; 2413 2414 // If the alias is externally visible, we may still be able to simplify it. 2415 if (!mayHaveOtherReferences(GA, U)) 2416 return Ret; 2417 2418 // If the aliasee has internal linkage, give it the name and linkage 2419 // of the alias, and delete the alias. This turns: 2420 // define internal ... @f(...) 2421 // @a = alias ... @f 2422 // into: 2423 // define ... @a(...) 2424 Constant *Aliasee = GA.getAliasee(); 2425 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2426 if (!Target->hasLocalLinkage()) 2427 return Ret; 2428 2429 // Do not perform the transform if multiple aliases potentially target the 2430 // aliasee. This check also ensures that it is safe to replace the section 2431 // and other attributes of the aliasee with those of the alias. 2432 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2433 return Ret; 2434 2435 RenameTarget = true; 2436 return true; 2437 } 2438 2439 static bool 2440 OptimizeGlobalAliases(Module &M, 2441 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2442 bool Changed = false; 2443 LLVMUsed Used(M); 2444 2445 for (GlobalValue *GV : Used.used()) 2446 Used.compilerUsedErase(GV); 2447 2448 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2449 I != E;) { 2450 GlobalAlias *J = &*I++; 2451 2452 // Aliases without names cannot be referenced outside this module. 2453 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2454 J->setLinkage(GlobalValue::InternalLinkage); 2455 2456 if (deleteIfDead(*J, NotDiscardableComdats)) { 2457 Changed = true; 2458 continue; 2459 } 2460 2461 // If the aliasee may change at link time, nothing can be done - bail out. 2462 if (J->isInterposable()) 2463 continue; 2464 2465 Constant *Aliasee = J->getAliasee(); 2466 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2467 // We can't trivially replace the alias with the aliasee if the aliasee is 2468 // non-trivial in some way. 2469 // TODO: Try to handle non-zero GEPs of local aliasees. 2470 if (!Target) 2471 continue; 2472 Target->removeDeadConstantUsers(); 2473 2474 // Make all users of the alias use the aliasee instead. 2475 bool RenameTarget; 2476 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2477 continue; 2478 2479 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2480 ++NumAliasesResolved; 2481 Changed = true; 2482 2483 if (RenameTarget) { 2484 // Give the aliasee the name, linkage and other attributes of the alias. 2485 Target->takeName(&*J); 2486 Target->setLinkage(J->getLinkage()); 2487 Target->setDSOLocal(J->isDSOLocal()); 2488 Target->setVisibility(J->getVisibility()); 2489 Target->setDLLStorageClass(J->getDLLStorageClass()); 2490 2491 if (Used.usedErase(&*J)) 2492 Used.usedInsert(Target); 2493 2494 if (Used.compilerUsedErase(&*J)) 2495 Used.compilerUsedInsert(Target); 2496 } else if (mayHaveOtherReferences(*J, Used)) 2497 continue; 2498 2499 // Delete the alias. 2500 M.getAliasList().erase(J); 2501 ++NumAliasesRemoved; 2502 Changed = true; 2503 } 2504 2505 Used.syncVariablesAndSets(); 2506 2507 return Changed; 2508 } 2509 2510 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2511 LibFunc F = LibFunc_cxa_atexit; 2512 if (!TLI->has(F)) 2513 return nullptr; 2514 2515 Function *Fn = M.getFunction(TLI->getName(F)); 2516 if (!Fn) 2517 return nullptr; 2518 2519 // Make sure that the function has the correct prototype. 2520 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2521 return nullptr; 2522 2523 return Fn; 2524 } 2525 2526 /// Returns whether the given function is an empty C++ destructor and can 2527 /// therefore be eliminated. 2528 /// Note that we assume that other optimization passes have already simplified 2529 /// the code so we only look for a function with a single basic block, where 2530 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2531 /// other side-effect free instructions. 2532 static bool cxxDtorIsEmpty(const Function &Fn, 2533 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2534 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2535 // nounwind, but that doesn't seem worth doing. 2536 if (Fn.isDeclaration()) 2537 return false; 2538 2539 if (++Fn.begin() != Fn.end()) 2540 return false; 2541 2542 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2543 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2544 I != E; ++I) { 2545 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2546 // Ignore debug intrinsics. 2547 if (isa<DbgInfoIntrinsic>(CI)) 2548 continue; 2549 2550 const Function *CalledFn = CI->getCalledFunction(); 2551 2552 if (!CalledFn) 2553 return false; 2554 2555 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2556 2557 // Don't treat recursive functions as empty. 2558 if (!NewCalledFunctions.insert(CalledFn).second) 2559 return false; 2560 2561 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2562 return false; 2563 } else if (isa<ReturnInst>(*I)) 2564 return true; // We're done. 2565 else if (I->mayHaveSideEffects()) 2566 return false; // Destructor with side effects, bail. 2567 } 2568 2569 return false; 2570 } 2571 2572 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2573 /// Itanium C++ ABI p3.3.5: 2574 /// 2575 /// After constructing a global (or local static) object, that will require 2576 /// destruction on exit, a termination function is registered as follows: 2577 /// 2578 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2579 /// 2580 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2581 /// call f(p) when DSO d is unloaded, before all such termination calls 2582 /// registered before this one. It returns zero if registration is 2583 /// successful, nonzero on failure. 2584 2585 // This pass will look for calls to __cxa_atexit where the function is trivial 2586 // and remove them. 2587 bool Changed = false; 2588 2589 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2590 I != E;) { 2591 // We're only interested in calls. Theoretically, we could handle invoke 2592 // instructions as well, but neither llvm-gcc nor clang generate invokes 2593 // to __cxa_atexit. 2594 CallInst *CI = dyn_cast<CallInst>(*I++); 2595 if (!CI) 2596 continue; 2597 2598 Function *DtorFn = 2599 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2600 if (!DtorFn) 2601 continue; 2602 2603 SmallPtrSet<const Function *, 8> CalledFunctions; 2604 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 2605 continue; 2606 2607 // Just remove the call. 2608 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2609 CI->eraseFromParent(); 2610 2611 ++NumCXXDtorsRemoved; 2612 2613 Changed |= true; 2614 } 2615 2616 return Changed; 2617 } 2618 2619 static bool optimizeGlobalsInModule( 2620 Module &M, const DataLayout &DL, TargetLibraryInfo *TLI, 2621 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2622 SmallSet<const Comdat *, 8> NotDiscardableComdats; 2623 bool Changed = false; 2624 bool LocalChange = true; 2625 while (LocalChange) { 2626 LocalChange = false; 2627 2628 NotDiscardableComdats.clear(); 2629 for (const GlobalVariable &GV : M.globals()) 2630 if (const Comdat *C = GV.getComdat()) 2631 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2632 NotDiscardableComdats.insert(C); 2633 for (Function &F : M) 2634 if (const Comdat *C = F.getComdat()) 2635 if (!F.isDefTriviallyDead()) 2636 NotDiscardableComdats.insert(C); 2637 for (GlobalAlias &GA : M.aliases()) 2638 if (const Comdat *C = GA.getComdat()) 2639 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2640 NotDiscardableComdats.insert(C); 2641 2642 // Delete functions that are trivially dead, ccc -> fastcc 2643 LocalChange |= 2644 OptimizeFunctions(M, TLI, LookupDomTree, NotDiscardableComdats); 2645 2646 // Optimize global_ctors list. 2647 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2648 return EvaluateStaticConstructor(F, DL, TLI); 2649 }); 2650 2651 // Optimize non-address-taken globals. 2652 LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree, 2653 NotDiscardableComdats); 2654 2655 // Resolve aliases, when possible. 2656 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2657 2658 // Try to remove trivial global destructors if they are not removed 2659 // already. 2660 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 2661 if (CXAAtExitFn) 2662 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2663 2664 Changed |= LocalChange; 2665 } 2666 2667 // TODO: Move all global ctors functions to the end of the module for code 2668 // layout. 2669 2670 return Changed; 2671 } 2672 2673 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2674 auto &DL = M.getDataLayout(); 2675 auto &TLI = AM.getResult<TargetLibraryAnalysis>(M); 2676 auto &FAM = 2677 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2678 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2679 return FAM.getResult<DominatorTreeAnalysis>(F); 2680 }; 2681 if (!optimizeGlobalsInModule(M, DL, &TLI, LookupDomTree)) 2682 return PreservedAnalyses::all(); 2683 return PreservedAnalyses::none(); 2684 } 2685 2686 namespace { 2687 2688 struct GlobalOptLegacyPass : public ModulePass { 2689 static char ID; // Pass identification, replacement for typeid 2690 2691 GlobalOptLegacyPass() : ModulePass(ID) { 2692 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2693 } 2694 2695 bool runOnModule(Module &M) override { 2696 if (skipModule(M)) 2697 return false; 2698 2699 auto &DL = M.getDataLayout(); 2700 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2701 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2702 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2703 }; 2704 return optimizeGlobalsInModule(M, DL, TLI, LookupDomTree); 2705 } 2706 2707 void getAnalysisUsage(AnalysisUsage &AU) const override { 2708 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2709 AU.addRequired<DominatorTreeWrapperPass>(); 2710 } 2711 }; 2712 2713 } // end anonymous namespace 2714 2715 char GlobalOptLegacyPass::ID = 0; 2716 2717 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2718 "Global Variable Optimizer", false, false) 2719 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2720 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2721 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2722 "Global Variable Optimizer", false, false) 2723 2724 ModulePass *llvm::createGlobalOptimizerPass() { 2725 return new GlobalOptLegacyPass(); 2726 } 2727