1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/BinaryFormat/Dwarf.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Use.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/IPO.h"
66 #include "llvm/Transforms/Utils/CtorUtils.h"
67 #include "llvm/Transforms/Utils/Evaluator.h"
68 #include "llvm/Transforms/Utils/GlobalStatus.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include <cassert>
71 #include <cstdint>
72 #include <utility>
73 #include <vector>
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "globalopt"
78 
79 STATISTIC(NumMarked    , "Number of globals marked constant");
80 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
81 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83 STATISTIC(NumDeleted   , "Number of globals deleted");
84 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
85 STATISTIC(NumLocalized , "Number of globals localized");
86 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
87 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93 STATISTIC(NumInternalFunc, "Number of internal functions");
94 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 
96 static cl::opt<bool>
97     EnableColdCCStressTest("enable-coldcc-stress-test",
98                            cl::desc("Enable stress test of coldcc by adding "
99                                     "calling conv to all internal functions."),
100                            cl::init(false), cl::Hidden);
101 
102 static cl::opt<int> ColdCCRelFreq(
103     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
104     cl::desc(
105         "Maximum block frequency, expressed as a percentage of caller's "
106         "entry frequency, for a call site to be considered cold for enabling"
107         "coldcc"));
108 
109 /// Is this global variable possibly used by a leak checker as a root?  If so,
110 /// we might not really want to eliminate the stores to it.
111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112   // A global variable is a root if it is a pointer, or could plausibly contain
113   // a pointer.  There are two challenges; one is that we could have a struct
114   // the has an inner member which is a pointer.  We recurse through the type to
115   // detect these (up to a point).  The other is that we may actually be a union
116   // of a pointer and another type, and so our LLVM type is an integer which
117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118   // potentially contained here.
119 
120   if (GV->hasPrivateLinkage())
121     return false;
122 
123   SmallVector<Type *, 4> Types;
124   Types.push_back(GV->getValueType());
125 
126   unsigned Limit = 20;
127   do {
128     Type *Ty = Types.pop_back_val();
129     switch (Ty->getTypeID()) {
130       default: break;
131       case Type::PointerTyID:
132         return true;
133       case Type::FixedVectorTyID:
134       case Type::ScalableVectorTyID:
135         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
136           return true;
137         break;
138       case Type::ArrayTyID:
139         Types.push_back(cast<ArrayType>(Ty)->getElementType());
140         break;
141       case Type::StructTyID: {
142         StructType *STy = cast<StructType>(Ty);
143         if (STy->isOpaque()) return true;
144         for (StructType::element_iterator I = STy->element_begin(),
145                  E = STy->element_end(); I != E; ++I) {
146           Type *InnerTy = *I;
147           if (isa<PointerType>(InnerTy)) return true;
148           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
149               isa<VectorType>(InnerTy))
150             Types.push_back(InnerTy);
151         }
152         break;
153       }
154     }
155     if (--Limit == 0) return true;
156   } while (!Types.empty());
157   return false;
158 }
159 
160 /// Given a value that is stored to a global but never read, determine whether
161 /// it's safe to remove the store and the chain of computation that feeds the
162 /// store.
163 static bool IsSafeComputationToRemove(
164     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
165   do {
166     if (isa<Constant>(V))
167       return true;
168     if (!V->hasOneUse())
169       return false;
170     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
171         isa<GlobalValue>(V))
172       return false;
173     if (isAllocationFn(V, GetTLI))
174       return true;
175 
176     Instruction *I = cast<Instruction>(V);
177     if (I->mayHaveSideEffects())
178       return false;
179     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
180       if (!GEP->hasAllConstantIndices())
181         return false;
182     } else if (I->getNumOperands() != 1) {
183       return false;
184     }
185 
186     V = I->getOperand(0);
187   } while (true);
188 }
189 
190 /// This GV is a pointer root.  Loop over all users of the global and clean up
191 /// any that obviously don't assign the global a value that isn't dynamically
192 /// allocated.
193 static bool
194 CleanupPointerRootUsers(GlobalVariable *GV,
195                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
196   // A brief explanation of leak checkers.  The goal is to find bugs where
197   // pointers are forgotten, causing an accumulating growth in memory
198   // usage over time.  The common strategy for leak checkers is to explicitly
199   // allow the memory pointed to by globals at exit.  This is popular because it
200   // also solves another problem where the main thread of a C++ program may shut
201   // down before other threads that are still expecting to use those globals. To
202   // handle that case, we expect the program may create a singleton and never
203   // destroy it.
204 
205   bool Changed = false;
206 
207   // If Dead[n].first is the only use of a malloc result, we can delete its
208   // chain of computation and the store to the global in Dead[n].second.
209   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
210 
211   // Constants can't be pointers to dynamically allocated memory.
212   for (User *U : llvm::make_early_inc_range(GV->users())) {
213     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
214       Value *V = SI->getValueOperand();
215       if (isa<Constant>(V)) {
216         Changed = true;
217         SI->eraseFromParent();
218       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
219         if (I->hasOneUse())
220           Dead.push_back(std::make_pair(I, SI));
221       }
222     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
223       if (isa<Constant>(MSI->getValue())) {
224         Changed = true;
225         MSI->eraseFromParent();
226       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
227         if (I->hasOneUse())
228           Dead.push_back(std::make_pair(I, MSI));
229       }
230     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
231       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
232       if (MemSrc && MemSrc->isConstant()) {
233         Changed = true;
234         MTI->eraseFromParent();
235       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
236         if (I->hasOneUse())
237           Dead.push_back(std::make_pair(I, MTI));
238       }
239     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
240       if (CE->use_empty()) {
241         CE->destroyConstant();
242         Changed = true;
243       }
244     } else if (Constant *C = dyn_cast<Constant>(U)) {
245       if (isSafeToDestroyConstant(C)) {
246         C->destroyConstant();
247         // This could have invalidated UI, start over from scratch.
248         Dead.clear();
249         CleanupPointerRootUsers(GV, GetTLI);
250         return true;
251       }
252     }
253   }
254 
255   for (int i = 0, e = Dead.size(); i != e; ++i) {
256     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
257       Dead[i].second->eraseFromParent();
258       Instruction *I = Dead[i].first;
259       do {
260         if (isAllocationFn(I, GetTLI))
261           break;
262         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
263         if (!J)
264           break;
265         I->eraseFromParent();
266         I = J;
267       } while (true);
268       I->eraseFromParent();
269       Changed = true;
270     }
271   }
272 
273   return Changed;
274 }
275 
276 /// We just marked GV constant.  Loop over all users of the global, cleaning up
277 /// the obvious ones.  This is largely just a quick scan over the use list to
278 /// clean up the easy and obvious cruft.  This returns true if it made a change.
279 static bool CleanupConstantGlobalUsers(GlobalVariable *GV,
280                                        const DataLayout &DL) {
281   Constant *Init = GV->getInitializer();
282   SmallVector<User *, 8> WorkList(GV->users());
283   SmallPtrSet<User *, 8> Visited;
284   bool Changed = false;
285 
286   SmallVector<WeakTrackingVH> MaybeDeadInsts;
287   auto EraseFromParent = [&](Instruction *I) {
288     for (Value *Op : I->operands())
289       if (auto *OpI = dyn_cast<Instruction>(Op))
290         MaybeDeadInsts.push_back(OpI);
291     I->eraseFromParent();
292     Changed = true;
293   };
294   while (!WorkList.empty()) {
295     User *U = WorkList.pop_back_val();
296     if (!Visited.insert(U).second)
297       continue;
298 
299     if (auto *BO = dyn_cast<BitCastOperator>(U))
300       append_range(WorkList, BO->users());
301     if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(U))
302       append_range(WorkList, ASC->users());
303     else if (auto *GEP = dyn_cast<GEPOperator>(U))
304       append_range(WorkList, GEP->users());
305     else if (auto *LI = dyn_cast<LoadInst>(U)) {
306       // A load from a uniform value is always the same, regardless of any
307       // applied offset.
308       Type *Ty = LI->getType();
309       if (Constant *Res = ConstantFoldLoadFromUniformValue(Init, Ty)) {
310         LI->replaceAllUsesWith(Res);
311         EraseFromParent(LI);
312         continue;
313       }
314 
315       Value *PtrOp = LI->getPointerOperand();
316       APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
317       PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
318           DL, Offset, /* AllowNonInbounds */ true);
319       if (PtrOp == GV) {
320         if (auto *Value = ConstantFoldLoadFromConst(Init, Ty, Offset, DL)) {
321           LI->replaceAllUsesWith(Value);
322           EraseFromParent(LI);
323         }
324       }
325     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
326       // Store must be unreachable or storing Init into the global.
327       EraseFromParent(SI);
328     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
329       if (getUnderlyingObject(MI->getRawDest()) == GV)
330         EraseFromParent(MI);
331     }
332   }
333 
334   Changed |=
335       RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts);
336   GV->removeDeadConstantUsers();
337   return Changed;
338 }
339 
340 /// Look at all uses of the global and determine which (offset, type) pairs it
341 /// can be split into.
342 static bool collectSRATypes(DenseMap<uint64_t, Type *> &Types, GlobalValue *GV,
343                             const DataLayout &DL) {
344   SmallVector<Use *, 16> Worklist;
345   SmallPtrSet<Use *, 16> Visited;
346   auto AppendUses = [&](Value *V) {
347     for (Use &U : V->uses())
348       if (Visited.insert(&U).second)
349         Worklist.push_back(&U);
350   };
351   AppendUses(GV);
352   while (!Worklist.empty()) {
353     Use *U = Worklist.pop_back_val();
354     User *V = U->getUser();
355     if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V)) {
356       AppendUses(V);
357       continue;
358     }
359 
360     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
361       if (!GEP->hasAllConstantIndices())
362         return false;
363       AppendUses(V);
364       continue;
365     }
366 
367     if (Value *Ptr = getLoadStorePointerOperand(V)) {
368       // This is storing the global address into somewhere, not storing into
369       // the global.
370       if (isa<StoreInst>(V) && U->getOperandNo() == 0)
371         return false;
372 
373       APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
374       Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
375                                                    /* AllowNonInbounds */ true);
376       if (Ptr != GV || Offset.getActiveBits() >= 64)
377         return false;
378 
379       // TODO: We currently require that all accesses at a given offset must
380       // use the same type. This could be relaxed.
381       Type *Ty = getLoadStoreType(V);
382       auto It = Types.try_emplace(Offset.getZExtValue(), Ty).first;
383       if (Ty != It->second)
384         return false;
385       continue;
386     }
387 
388     // Ignore dead constant users.
389     if (auto *C = dyn_cast<Constant>(V)) {
390       if (!isSafeToDestroyConstant(C))
391         return false;
392       continue;
393     }
394 
395     // Unknown user.
396     return false;
397   }
398 
399   return true;
400 }
401 
402 /// Copy over the debug info for a variable to its SRA replacements.
403 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
404                                  uint64_t FragmentOffsetInBits,
405                                  uint64_t FragmentSizeInBits,
406                                  uint64_t VarSize) {
407   SmallVector<DIGlobalVariableExpression *, 1> GVs;
408   GV->getDebugInfo(GVs);
409   for (auto *GVE : GVs) {
410     DIVariable *Var = GVE->getVariable();
411     DIExpression *Expr = GVE->getExpression();
412     // If the FragmentSize is smaller than the variable,
413     // emit a fragment expression.
414     if (FragmentSizeInBits < VarSize) {
415       if (auto E = DIExpression::createFragmentExpression(
416               Expr, FragmentOffsetInBits, FragmentSizeInBits))
417         Expr = *E;
418       else
419         return;
420     }
421     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
422     NGV->addDebugInfo(NGVE);
423   }
424 }
425 
426 /// Perform scalar replacement of aggregates on the specified global variable.
427 /// This opens the door for other optimizations by exposing the behavior of the
428 /// program in a more fine-grained way.  We have determined that this
429 /// transformation is safe already.  We return the first global variable we
430 /// insert so that the caller can reprocess it.
431 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
432   assert(GV->hasLocalLinkage());
433 
434   // Collect types to split into.
435   DenseMap<uint64_t, Type *> Types;
436   if (!collectSRATypes(Types, GV, DL) || Types.empty())
437     return nullptr;
438 
439   // Make sure we don't SRA back to the same type.
440   if (Types.size() == 1 && Types.begin()->second == GV->getValueType())
441     return nullptr;
442 
443   // Don't perform SRA if we would have to split into many globals.
444   if (Types.size() > 16)
445     return nullptr;
446 
447   // Sort by offset.
448   SmallVector<std::pair<uint64_t, Type *>, 16> TypesVector;
449   append_range(TypesVector, Types);
450   sort(TypesVector,
451        [](const auto &A, const auto &B) { return A.first < B.first; });
452 
453   // Check that the types are non-overlapping.
454   uint64_t Offset = 0;
455   for (const auto &Pair : TypesVector) {
456     // Overlaps with previous type.
457     if (Pair.first < Offset)
458       return nullptr;
459 
460     Offset = Pair.first + DL.getTypeAllocSize(Pair.second);
461   }
462 
463   // Some accesses go beyond the end of the global, don't bother.
464   if (Offset > DL.getTypeAllocSize(GV->getValueType()))
465     return nullptr;
466 
467   // Collect initializers for new globals.
468   Constant *OrigInit = GV->getInitializer();
469   DenseMap<uint64_t, Constant *> Initializers;
470   for (const auto &Pair : Types) {
471     Constant *NewInit = ConstantFoldLoadFromConst(OrigInit, Pair.second,
472                                                   APInt(64, Pair.first), DL);
473     if (!NewInit) {
474       LLVM_DEBUG(dbgs() << "Global SRA: Failed to evaluate initializer of "
475                         << *GV << " with type " << *Pair.second << " at offset "
476                         << Pair.first << "\n");
477       return nullptr;
478     }
479     Initializers.insert({Pair.first, NewInit});
480   }
481 
482   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
483 
484   // Get the alignment of the global, either explicit or target-specific.
485   Align StartAlignment =
486       DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
487   uint64_t VarSize = DL.getTypeSizeInBits(GV->getValueType());
488 
489   // Create replacement globals.
490   DenseMap<uint64_t, GlobalVariable *> NewGlobals;
491   unsigned NameSuffix = 0;
492   for (auto &Pair : TypesVector) {
493     uint64_t Offset = Pair.first;
494     Type *Ty = Pair.second;
495     GlobalVariable *NGV = new GlobalVariable(
496         *GV->getParent(), Ty, false, GlobalVariable::InternalLinkage,
497         Initializers[Offset], GV->getName() + "." + Twine(NameSuffix++), GV,
498         GV->getThreadLocalMode(), GV->getAddressSpace());
499     NGV->copyAttributesFrom(GV);
500     NewGlobals.insert({Offset, NGV});
501 
502     // Calculate the known alignment of the field.  If the original aggregate
503     // had 256 byte alignment for example, something might depend on that:
504     // propagate info to each field.
505     Align NewAlign = commonAlignment(StartAlignment, Offset);
506     if (NewAlign > DL.getABITypeAlign(Ty))
507       NGV->setAlignment(NewAlign);
508 
509     // Copy over the debug info for the variable.
510     transferSRADebugInfo(GV, NGV, Offset * 8, DL.getTypeAllocSizeInBits(Ty),
511                          VarSize);
512   }
513 
514   // Replace uses of the original global with uses of the new global.
515   SmallVector<Value *, 16> Worklist;
516   SmallPtrSet<Value *, 16> Visited;
517   SmallVector<WeakTrackingVH, 16> DeadInsts;
518   auto AppendUsers = [&](Value *V) {
519     for (User *U : V->users())
520       if (Visited.insert(U).second)
521         Worklist.push_back(U);
522   };
523   AppendUsers(GV);
524   while (!Worklist.empty()) {
525     Value *V = Worklist.pop_back_val();
526     if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) ||
527         isa<GEPOperator>(V)) {
528       AppendUsers(V);
529       if (isa<Instruction>(V))
530         DeadInsts.push_back(V);
531       continue;
532     }
533 
534     if (Value *Ptr = getLoadStorePointerOperand(V)) {
535       APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
536       Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
537                                                    /* AllowNonInbounds */ true);
538       assert(Ptr == GV && "Load/store must be from/to global");
539       GlobalVariable *NGV = NewGlobals[Offset.getZExtValue()];
540       assert(NGV && "Must have replacement global for this offset");
541 
542       // Update the pointer operand and recalculate alignment.
543       Align PrefAlign = DL.getPrefTypeAlign(getLoadStoreType(V));
544       Align NewAlign =
545           getOrEnforceKnownAlignment(NGV, PrefAlign, DL, cast<Instruction>(V));
546 
547       if (auto *LI = dyn_cast<LoadInst>(V)) {
548         LI->setOperand(0, NGV);
549         LI->setAlignment(NewAlign);
550       } else {
551         auto *SI = cast<StoreInst>(V);
552         SI->setOperand(1, NGV);
553         SI->setAlignment(NewAlign);
554       }
555       continue;
556     }
557 
558     assert(isa<Constant>(V) && isSafeToDestroyConstant(cast<Constant>(V)) &&
559            "Other users can only be dead constants");
560   }
561 
562   // Delete old instructions and global.
563   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
564   GV->removeDeadConstantUsers();
565   GV->eraseFromParent();
566   ++NumSRA;
567 
568   assert(NewGlobals.size() > 0);
569   return NewGlobals.begin()->second;
570 }
571 
572 /// Return true if all users of the specified value will trap if the value is
573 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
574 /// reprocessing them.
575 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
576                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
577   for (const User *U : V->users()) {
578     if (const Instruction *I = dyn_cast<Instruction>(U)) {
579       // If null pointer is considered valid, then all uses are non-trapping.
580       // Non address-space 0 globals have already been pruned by the caller.
581       if (NullPointerIsDefined(I->getFunction()))
582         return false;
583     }
584     if (isa<LoadInst>(U)) {
585       // Will trap.
586     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
587       if (SI->getOperand(0) == V) {
588         //cerr << "NONTRAPPING USE: " << *U;
589         return false;  // Storing the value.
590       }
591     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
592       if (CI->getCalledOperand() != V) {
593         //cerr << "NONTRAPPING USE: " << *U;
594         return false;  // Not calling the ptr
595       }
596     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
597       if (II->getCalledOperand() != V) {
598         //cerr << "NONTRAPPING USE: " << *U;
599         return false;  // Not calling the ptr
600       }
601     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
602       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
603     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
604       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
605     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
606       // If we've already seen this phi node, ignore it, it has already been
607       // checked.
608       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
609         return false;
610     } else if (isa<ICmpInst>(U) &&
611                !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) &&
612                isa<LoadInst>(U->getOperand(0)) &&
613                isa<ConstantPointerNull>(U->getOperand(1))) {
614       assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0))
615                                   ->getPointerOperand()
616                                   ->stripPointerCasts()) &&
617              "Should be GlobalVariable");
618       // This and only this kind of non-signed ICmpInst is to be replaced with
619       // the comparing of the value of the created global init bool later in
620       // optimizeGlobalAddressOfAllocation for the global variable.
621     } else {
622       //cerr << "NONTRAPPING USE: " << *U;
623       return false;
624     }
625   }
626   return true;
627 }
628 
629 /// Return true if all uses of any loads from GV will trap if the loaded value
630 /// is null.  Note that this also permits comparisons of the loaded value
631 /// against null, as a special case.
632 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
633   SmallVector<const Value *, 4> Worklist;
634   Worklist.push_back(GV);
635   while (!Worklist.empty()) {
636     const Value *P = Worklist.pop_back_val();
637     for (auto *U : P->users()) {
638       if (auto *LI = dyn_cast<LoadInst>(U)) {
639         SmallPtrSet<const PHINode *, 8> PHIs;
640         if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
641           return false;
642       } else if (auto *SI = dyn_cast<StoreInst>(U)) {
643         // Ignore stores to the global.
644         if (SI->getPointerOperand() != P)
645           return false;
646       } else if (auto *CE = dyn_cast<ConstantExpr>(U)) {
647         if (CE->stripPointerCasts() != GV)
648           return false;
649         // Check further the ConstantExpr.
650         Worklist.push_back(CE);
651       } else {
652         // We don't know or understand this user, bail out.
653         return false;
654       }
655     }
656   }
657 
658   return true;
659 }
660 
661 /// Get all the loads/store uses for global variable \p GV.
662 static void allUsesOfLoadAndStores(GlobalVariable *GV,
663                                    SmallVector<Value *, 4> &Uses) {
664   SmallVector<Value *, 4> Worklist;
665   Worklist.push_back(GV);
666   while (!Worklist.empty()) {
667     auto *P = Worklist.pop_back_val();
668     for (auto *U : P->users()) {
669       if (auto *CE = dyn_cast<ConstantExpr>(U)) {
670         Worklist.push_back(CE);
671         continue;
672       }
673 
674       assert((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
675              "Expect only load or store instructions");
676       Uses.push_back(U);
677     }
678   }
679 }
680 
681 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
682   bool Changed = false;
683   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
684     Instruction *I = cast<Instruction>(*UI++);
685     // Uses are non-trapping if null pointer is considered valid.
686     // Non address-space 0 globals are already pruned by the caller.
687     if (NullPointerIsDefined(I->getFunction()))
688       return false;
689     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
690       LI->setOperand(0, NewV);
691       Changed = true;
692     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
693       if (SI->getOperand(1) == V) {
694         SI->setOperand(1, NewV);
695         Changed = true;
696       }
697     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
698       CallBase *CB = cast<CallBase>(I);
699       if (CB->getCalledOperand() == V) {
700         // Calling through the pointer!  Turn into a direct call, but be careful
701         // that the pointer is not also being passed as an argument.
702         CB->setCalledOperand(NewV);
703         Changed = true;
704         bool PassedAsArg = false;
705         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
706           if (CB->getArgOperand(i) == V) {
707             PassedAsArg = true;
708             CB->setArgOperand(i, NewV);
709           }
710 
711         if (PassedAsArg) {
712           // Being passed as an argument also.  Be careful to not invalidate UI!
713           UI = V->user_begin();
714         }
715       }
716     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
717       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
718                                 ConstantExpr::getCast(CI->getOpcode(),
719                                                       NewV, CI->getType()));
720       if (CI->use_empty()) {
721         Changed = true;
722         CI->eraseFromParent();
723       }
724     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
725       // Should handle GEP here.
726       SmallVector<Constant*, 8> Idxs;
727       Idxs.reserve(GEPI->getNumOperands()-1);
728       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
729            i != e; ++i)
730         if (Constant *C = dyn_cast<Constant>(*i))
731           Idxs.push_back(C);
732         else
733           break;
734       if (Idxs.size() == GEPI->getNumOperands()-1)
735         Changed |= OptimizeAwayTrappingUsesOfValue(
736             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
737                                                  NewV, Idxs));
738       if (GEPI->use_empty()) {
739         Changed = true;
740         GEPI->eraseFromParent();
741       }
742     }
743   }
744 
745   return Changed;
746 }
747 
748 /// The specified global has only one non-null value stored into it.  If there
749 /// are uses of the loaded value that would trap if the loaded value is
750 /// dynamically null, then we know that they cannot be reachable with a null
751 /// optimize away the load.
752 static bool OptimizeAwayTrappingUsesOfLoads(
753     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
754     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
755   bool Changed = false;
756 
757   // Keep track of whether we are able to remove all the uses of the global
758   // other than the store that defines it.
759   bool AllNonStoreUsesGone = true;
760 
761   // Replace all uses of loads with uses of uses of the stored value.
762   for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) {
763     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
764       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
765       // If we were able to delete all uses of the loads
766       if (LI->use_empty()) {
767         LI->eraseFromParent();
768         Changed = true;
769       } else {
770         AllNonStoreUsesGone = false;
771       }
772     } else if (isa<StoreInst>(GlobalUser)) {
773       // Ignore the store that stores "LV" to the global.
774       assert(GlobalUser->getOperand(1) == GV &&
775              "Must be storing *to* the global");
776     } else {
777       AllNonStoreUsesGone = false;
778 
779       // If we get here we could have other crazy uses that are transitively
780       // loaded.
781       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
782               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
783               isa<BitCastInst>(GlobalUser) ||
784               isa<GetElementPtrInst>(GlobalUser)) &&
785              "Only expect load and stores!");
786     }
787   }
788 
789   if (Changed) {
790     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
791                       << "\n");
792     ++NumGlobUses;
793   }
794 
795   // If we nuked all of the loads, then none of the stores are needed either,
796   // nor is the global.
797   if (AllNonStoreUsesGone) {
798     if (isLeakCheckerRoot(GV)) {
799       Changed |= CleanupPointerRootUsers(GV, GetTLI);
800     } else {
801       Changed = true;
802       CleanupConstantGlobalUsers(GV, DL);
803     }
804     if (GV->use_empty()) {
805       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
806       Changed = true;
807       GV->eraseFromParent();
808       ++NumDeleted;
809     }
810   }
811   return Changed;
812 }
813 
814 /// Walk the use list of V, constant folding all of the instructions that are
815 /// foldable.
816 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
817                                 TargetLibraryInfo *TLI) {
818   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
819     if (Instruction *I = dyn_cast<Instruction>(*UI++))
820       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
821         I->replaceAllUsesWith(NewC);
822 
823         // Advance UI to the next non-I use to avoid invalidating it!
824         // Instructions could multiply use V.
825         while (UI != E && *UI == I)
826           ++UI;
827         if (isInstructionTriviallyDead(I, TLI))
828           I->eraseFromParent();
829       }
830 }
831 
832 /// This function takes the specified global variable, and transforms the
833 /// program as if it always contained the result of the specified malloc.
834 /// Because it is always the result of the specified malloc, there is no reason
835 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
836 /// loads of GV as uses of the new global.
837 static GlobalVariable *
838 OptimizeGlobalAddressOfAllocation(GlobalVariable *GV, CallInst *CI,
839                                   uint64_t AllocSize, Constant *InitVal,
840                                   const DataLayout &DL,
841                                   TargetLibraryInfo *TLI) {
842   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
843                     << '\n');
844 
845   // Create global of type [AllocSize x i8].
846   Type *GlobalType = ArrayType::get(Type::getInt8Ty(GV->getContext()),
847                                     AllocSize);
848 
849   // Create the new global variable.  The contents of the allocated memory is
850   // undefined initially, so initialize with an undef value.
851   GlobalVariable *NewGV = new GlobalVariable(
852       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
853       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
854       GV->getThreadLocalMode());
855 
856   // Initialize the global at the point of the original call.  Note that this
857   // is a different point from the initialization referred to below for the
858   // nullability handling.  Sublety: We have not proven the original global was
859   // only initialized once.  As such, we can not fold this into the initializer
860   // of the new global as may need to re-init the storage multiple times.
861   if (!isa<UndefValue>(InitVal)) {
862     IRBuilder<> Builder(CI->getNextNode());
863     // TODO: Use alignment above if align!=1
864     Builder.CreateMemSet(NewGV, InitVal, AllocSize, None);
865   }
866 
867   // Update users of the allocation to use the new global instead.
868   BitCastInst *TheBC = nullptr;
869   while (!CI->use_empty()) {
870     Instruction *User = cast<Instruction>(CI->user_back());
871     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
872       if (BCI->getType() == NewGV->getType()) {
873         BCI->replaceAllUsesWith(NewGV);
874         BCI->eraseFromParent();
875       } else {
876         BCI->setOperand(0, NewGV);
877       }
878     } else {
879       if (!TheBC)
880         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
881       User->replaceUsesOfWith(CI, TheBC);
882     }
883   }
884 
885   SmallPtrSet<Constant *, 1> RepValues;
886   RepValues.insert(NewGV);
887 
888   // If there is a comparison against null, we will insert a global bool to
889   // keep track of whether the global was initialized yet or not.
890   GlobalVariable *InitBool =
891     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
892                        GlobalValue::InternalLinkage,
893                        ConstantInt::getFalse(GV->getContext()),
894                        GV->getName()+".init", GV->getThreadLocalMode());
895   bool InitBoolUsed = false;
896 
897   // Loop over all instruction uses of GV, processing them in turn.
898   SmallVector<Value *, 4> Guses;
899   allUsesOfLoadAndStores(GV, Guses);
900   for (auto *U : Guses) {
901     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
902       // The global is initialized when the store to it occurs. If the stored
903       // value is null value, the global bool is set to false, otherwise true.
904       new StoreInst(ConstantInt::getBool(
905                         GV->getContext(),
906                         !isa<ConstantPointerNull>(SI->getValueOperand())),
907                     InitBool, false, Align(1), SI->getOrdering(),
908                     SI->getSyncScopeID(), SI);
909       SI->eraseFromParent();
910       continue;
911     }
912 
913     LoadInst *LI = cast<LoadInst>(U);
914     while (!LI->use_empty()) {
915       Use &LoadUse = *LI->use_begin();
916       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
917       if (!ICI) {
918         auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType());
919         RepValues.insert(CE);
920         LoadUse.set(CE);
921         continue;
922       }
923 
924       // Replace the cmp X, 0 with a use of the bool value.
925       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
926                                InitBool->getName() + ".val", false, Align(1),
927                                LI->getOrdering(), LI->getSyncScopeID(), LI);
928       InitBoolUsed = true;
929       switch (ICI->getPredicate()) {
930       default: llvm_unreachable("Unknown ICmp Predicate!");
931       case ICmpInst::ICMP_ULT: // X < null -> always false
932         LV = ConstantInt::getFalse(GV->getContext());
933         break;
934       case ICmpInst::ICMP_UGE: // X >= null -> always true
935         LV = ConstantInt::getTrue(GV->getContext());
936         break;
937       case ICmpInst::ICMP_ULE:
938       case ICmpInst::ICMP_EQ:
939         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
940         break;
941       case ICmpInst::ICMP_NE:
942       case ICmpInst::ICMP_UGT:
943         break;  // no change.
944       }
945       ICI->replaceAllUsesWith(LV);
946       ICI->eraseFromParent();
947     }
948     LI->eraseFromParent();
949   }
950 
951   // If the initialization boolean was used, insert it, otherwise delete it.
952   if (!InitBoolUsed) {
953     while (!InitBool->use_empty())  // Delete initializations
954       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
955     delete InitBool;
956   } else
957     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
958 
959   // Now the GV is dead, nuke it and the allocation..
960   GV->eraseFromParent();
961   CI->eraseFromParent();
962 
963   // To further other optimizations, loop over all users of NewGV and try to
964   // constant prop them.  This will promote GEP instructions with constant
965   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
966   for (auto *CE : RepValues)
967     ConstantPropUsersOf(CE, DL, TLI);
968 
969   return NewGV;
970 }
971 
972 /// Scan the use-list of GV checking to make sure that there are no complex uses
973 /// of GV.  We permit simple things like dereferencing the pointer, but not
974 /// storing through the address, unless it is to the specified global.
975 static bool
976 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI,
977                                           const GlobalVariable *GV) {
978   SmallPtrSet<const Value *, 4> Visited;
979   SmallVector<const Value *, 4> Worklist;
980   Worklist.push_back(CI);
981 
982   while (!Worklist.empty()) {
983     const Value *V = Worklist.pop_back_val();
984     if (!Visited.insert(V).second)
985       continue;
986 
987     for (const Use &VUse : V->uses()) {
988       const User *U = VUse.getUser();
989       if (isa<LoadInst>(U) || isa<CmpInst>(U))
990         continue; // Fine, ignore.
991 
992       if (auto *SI = dyn_cast<StoreInst>(U)) {
993         if (SI->getValueOperand() == V &&
994             SI->getPointerOperand()->stripPointerCasts() != GV)
995           return false; // Storing the pointer not into GV... bad.
996         continue; // Otherwise, storing through it, or storing into GV... fine.
997       }
998 
999       if (auto *BCI = dyn_cast<BitCastInst>(U)) {
1000         Worklist.push_back(BCI);
1001         continue;
1002       }
1003 
1004       if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1005         Worklist.push_back(GEPI);
1006         continue;
1007       }
1008 
1009       return false;
1010     }
1011   }
1012 
1013   return true;
1014 }
1015 
1016 /// If we have a global that is only initialized with a fixed size allocation
1017 /// try to transform the program to use global memory instead of heap
1018 /// allocated memory. This eliminates dynamic allocation, avoids an indirection
1019 /// accessing the data, and exposes the resultant global to further GlobalOpt.
1020 static bool tryToOptimizeStoreOfAllocationToGlobal(GlobalVariable *GV,
1021                                                    CallInst *CI,
1022                                                    AtomicOrdering Ordering,
1023                                                    const DataLayout &DL,
1024                                                    TargetLibraryInfo *TLI) {
1025   if (!isAllocRemovable(CI, TLI))
1026     // Must be able to remove the call when we get done..
1027     return false;
1028 
1029   Type *Int8Ty = Type::getInt8Ty(CI->getFunction()->getContext());
1030   Constant *InitVal = getInitialValueOfAllocation(CI, TLI, Int8Ty);
1031   if (!InitVal)
1032     // Must be able to emit a memset for initialization
1033     return false;
1034 
1035   uint64_t AllocSize;
1036   if (!getObjectSize(CI, AllocSize, DL, TLI, ObjectSizeOpts()))
1037     return false;
1038 
1039   // Restrict this transformation to only working on small allocations
1040   // (2048 bytes currently), as we don't want to introduce a 16M global or
1041   // something.
1042   if (AllocSize >= 2048)
1043     return false;
1044 
1045   // We can't optimize this global unless all uses of it are *known* to be
1046   // of the malloc value, not of the null initializer value (consider a use
1047   // that compares the global's value against zero to see if the malloc has
1048   // been reached).  To do this, we check to see if all uses of the global
1049   // would trap if the global were null: this proves that they must all
1050   // happen after the malloc.
1051   if (!allUsesOfLoadedValueWillTrapIfNull(GV))
1052     return false;
1053 
1054   // We can't optimize this if the malloc itself is used in a complex way,
1055   // for example, being stored into multiple globals.  This allows the
1056   // malloc to be stored into the specified global, loaded, gep, icmp'd.
1057   // These are all things we could transform to using the global for.
1058   if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV))
1059     return false;
1060 
1061   OptimizeGlobalAddressOfAllocation(GV, CI, AllocSize, InitVal, DL, TLI);
1062   return true;
1063 }
1064 
1065 // Try to optimize globals based on the knowledge that only one value (besides
1066 // its initializer) is ever stored to the global.
1067 static bool
1068 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1069                          AtomicOrdering Ordering, const DataLayout &DL,
1070                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1071   // Ignore no-op GEPs and bitcasts.
1072   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1073 
1074   // If we are dealing with a pointer global that is initialized to null and
1075   // only has one (non-null) value stored into it, then we can optimize any
1076   // users of the loaded value (often calls and loads) that would trap if the
1077   // value was null.
1078   if (GV->getInitializer()->getType()->isPointerTy() &&
1079       GV->getInitializer()->isNullValue() &&
1080       StoredOnceVal->getType()->isPointerTy() &&
1081       !NullPointerIsDefined(
1082           nullptr /* F */,
1083           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1084     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1085       if (GV->getInitializer()->getType() != SOVC->getType())
1086         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1087 
1088       // Optimize away any trapping uses of the loaded value.
1089       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1090         return true;
1091     } else if (isAllocationFn(StoredOnceVal, GetTLI)) {
1092       if (auto *CI = dyn_cast<CallInst>(StoredOnceVal)) {
1093         auto *TLI = &GetTLI(*CI->getFunction());
1094         if (tryToOptimizeStoreOfAllocationToGlobal(GV, CI, Ordering, DL, TLI))
1095           return true;
1096       }
1097     }
1098   }
1099 
1100   return false;
1101 }
1102 
1103 /// At this point, we have learned that the only two values ever stored into GV
1104 /// are its initializer and OtherVal.  See if we can shrink the global into a
1105 /// boolean and select between the two values whenever it is used.  This exposes
1106 /// the values to other scalar optimizations.
1107 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1108   Type *GVElType = GV->getValueType();
1109 
1110   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1111   // an FP value, pointer or vector, don't do this optimization because a select
1112   // between them is very expensive and unlikely to lead to later
1113   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1114   // where v1 and v2 both require constant pool loads, a big loss.
1115   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1116       GVElType->isFloatingPointTy() ||
1117       GVElType->isPointerTy() || GVElType->isVectorTy())
1118     return false;
1119 
1120   // Walk the use list of the global seeing if all the uses are load or store.
1121   // If there is anything else, bail out.
1122   for (User *U : GV->users()) {
1123     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1124       return false;
1125     if (getLoadStoreType(U) != GVElType)
1126       return false;
1127   }
1128 
1129   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1130 
1131   // Create the new global, initializing it to false.
1132   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1133                                              false,
1134                                              GlobalValue::InternalLinkage,
1135                                         ConstantInt::getFalse(GV->getContext()),
1136                                              GV->getName()+".b",
1137                                              GV->getThreadLocalMode(),
1138                                              GV->getType()->getAddressSpace());
1139   NewGV->copyAttributesFrom(GV);
1140   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1141 
1142   Constant *InitVal = GV->getInitializer();
1143   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1144          "No reason to shrink to bool!");
1145 
1146   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1147   GV->getDebugInfo(GVs);
1148 
1149   // If initialized to zero and storing one into the global, we can use a cast
1150   // instead of a select to synthesize the desired value.
1151   bool IsOneZero = false;
1152   bool EmitOneOrZero = true;
1153   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1154   if (CI && CI->getValue().getActiveBits() <= 64) {
1155     IsOneZero = InitVal->isNullValue() && CI->isOne();
1156 
1157     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1158     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1159       uint64_t ValInit = CIInit->getZExtValue();
1160       uint64_t ValOther = CI->getZExtValue();
1161       uint64_t ValMinus = ValOther - ValInit;
1162 
1163       for(auto *GVe : GVs){
1164         DIGlobalVariable *DGV = GVe->getVariable();
1165         DIExpression *E = GVe->getExpression();
1166         const DataLayout &DL = GV->getParent()->getDataLayout();
1167         unsigned SizeInOctets =
1168             DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8;
1169 
1170         // It is expected that the address of global optimized variable is on
1171         // top of the stack. After optimization, value of that variable will
1172         // be ether 0 for initial value or 1 for other value. The following
1173         // expression should return constant integer value depending on the
1174         // value at global object address:
1175         // val * (ValOther - ValInit) + ValInit:
1176         // DW_OP_deref DW_OP_constu <ValMinus>
1177         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1178         SmallVector<uint64_t, 12> Ops = {
1179             dwarf::DW_OP_deref_size, SizeInOctets,
1180             dwarf::DW_OP_constu, ValMinus,
1181             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1182             dwarf::DW_OP_plus};
1183         bool WithStackValue = true;
1184         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1185         DIGlobalVariableExpression *DGVE =
1186           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1187         NewGV->addDebugInfo(DGVE);
1188      }
1189      EmitOneOrZero = false;
1190     }
1191   }
1192 
1193   if (EmitOneOrZero) {
1194      // FIXME: This will only emit address for debugger on which will
1195      // be written only 0 or 1.
1196      for(auto *GV : GVs)
1197        NewGV->addDebugInfo(GV);
1198    }
1199 
1200   while (!GV->use_empty()) {
1201     Instruction *UI = cast<Instruction>(GV->user_back());
1202     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1203       // Change the store into a boolean store.
1204       bool StoringOther = SI->getOperand(0) == OtherVal;
1205       // Only do this if we weren't storing a loaded value.
1206       Value *StoreVal;
1207       if (StoringOther || SI->getOperand(0) == InitVal) {
1208         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1209                                     StoringOther);
1210       } else {
1211         // Otherwise, we are storing a previously loaded copy.  To do this,
1212         // change the copy from copying the original value to just copying the
1213         // bool.
1214         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1215 
1216         // If we've already replaced the input, StoredVal will be a cast or
1217         // select instruction.  If not, it will be a load of the original
1218         // global.
1219         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1220           assert(LI->getOperand(0) == GV && "Not a copy!");
1221           // Insert a new load, to preserve the saved value.
1222           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1223                                   LI->getName() + ".b", false, Align(1),
1224                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1225         } else {
1226           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1227                  "This is not a form that we understand!");
1228           StoreVal = StoredVal->getOperand(0);
1229           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1230         }
1231       }
1232       StoreInst *NSI =
1233           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1234                         SI->getSyncScopeID(), SI);
1235       NSI->setDebugLoc(SI->getDebugLoc());
1236     } else {
1237       // Change the load into a load of bool then a select.
1238       LoadInst *LI = cast<LoadInst>(UI);
1239       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1240                                    LI->getName() + ".b", false, Align(1),
1241                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1242       Instruction *NSI;
1243       if (IsOneZero)
1244         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1245       else
1246         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1247       NSI->takeName(LI);
1248       // Since LI is split into two instructions, NLI and NSI both inherit the
1249       // same DebugLoc
1250       NLI->setDebugLoc(LI->getDebugLoc());
1251       NSI->setDebugLoc(LI->getDebugLoc());
1252       LI->replaceAllUsesWith(NSI);
1253     }
1254     UI->eraseFromParent();
1255   }
1256 
1257   // Retain the name of the old global variable. People who are debugging their
1258   // programs may expect these variables to be named the same.
1259   NewGV->takeName(GV);
1260   GV->eraseFromParent();
1261   return true;
1262 }
1263 
1264 static bool deleteIfDead(
1265     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1266   GV.removeDeadConstantUsers();
1267 
1268   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1269     return false;
1270 
1271   if (const Comdat *C = GV.getComdat())
1272     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1273       return false;
1274 
1275   bool Dead;
1276   if (auto *F = dyn_cast<Function>(&GV))
1277     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1278   else
1279     Dead = GV.use_empty();
1280   if (!Dead)
1281     return false;
1282 
1283   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1284   GV.eraseFromParent();
1285   ++NumDeleted;
1286   return true;
1287 }
1288 
1289 static bool isPointerValueDeadOnEntryToFunction(
1290     const Function *F, GlobalValue *GV,
1291     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1292   // Find all uses of GV. We expect them all to be in F, and if we can't
1293   // identify any of the uses we bail out.
1294   //
1295   // On each of these uses, identify if the memory that GV points to is
1296   // used/required/live at the start of the function. If it is not, for example
1297   // if the first thing the function does is store to the GV, the GV can
1298   // possibly be demoted.
1299   //
1300   // We don't do an exhaustive search for memory operations - simply look
1301   // through bitcasts as they're quite common and benign.
1302   const DataLayout &DL = GV->getParent()->getDataLayout();
1303   SmallVector<LoadInst *, 4> Loads;
1304   SmallVector<StoreInst *, 4> Stores;
1305   for (auto *U : GV->users()) {
1306     if (Operator::getOpcode(U) == Instruction::BitCast) {
1307       for (auto *UU : U->users()) {
1308         if (auto *LI = dyn_cast<LoadInst>(UU))
1309           Loads.push_back(LI);
1310         else if (auto *SI = dyn_cast<StoreInst>(UU))
1311           Stores.push_back(SI);
1312         else
1313           return false;
1314       }
1315       continue;
1316     }
1317 
1318     Instruction *I = dyn_cast<Instruction>(U);
1319     if (!I)
1320       return false;
1321     assert(I->getParent()->getParent() == F);
1322 
1323     if (auto *LI = dyn_cast<LoadInst>(I))
1324       Loads.push_back(LI);
1325     else if (auto *SI = dyn_cast<StoreInst>(I))
1326       Stores.push_back(SI);
1327     else
1328       return false;
1329   }
1330 
1331   // We have identified all uses of GV into loads and stores. Now check if all
1332   // of them are known not to depend on the value of the global at the function
1333   // entry point. We do this by ensuring that every load is dominated by at
1334   // least one store.
1335   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1336 
1337   // The below check is quadratic. Check we're not going to do too many tests.
1338   // FIXME: Even though this will always have worst-case quadratic time, we
1339   // could put effort into minimizing the average time by putting stores that
1340   // have been shown to dominate at least one load at the beginning of the
1341   // Stores array, making subsequent dominance checks more likely to succeed
1342   // early.
1343   //
1344   // The threshold here is fairly large because global->local demotion is a
1345   // very powerful optimization should it fire.
1346   const unsigned Threshold = 100;
1347   if (Loads.size() * Stores.size() > Threshold)
1348     return false;
1349 
1350   for (auto *L : Loads) {
1351     auto *LTy = L->getType();
1352     if (none_of(Stores, [&](const StoreInst *S) {
1353           auto *STy = S->getValueOperand()->getType();
1354           // The load is only dominated by the store if DomTree says so
1355           // and the number of bits loaded in L is less than or equal to
1356           // the number of bits stored in S.
1357           return DT.dominates(S, L) &&
1358                  DL.getTypeStoreSize(LTy).getFixedSize() <=
1359                      DL.getTypeStoreSize(STy).getFixedSize();
1360         }))
1361       return false;
1362   }
1363   // All loads have known dependences inside F, so the global can be localized.
1364   return true;
1365 }
1366 
1367 /// C may have non-instruction users. Can all of those users be turned into
1368 /// instructions?
1369 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1370   // We don't do this exhaustively. The most common pattern that we really need
1371   // to care about is a constant GEP or constant bitcast - so just looking
1372   // through one single ConstantExpr.
1373   //
1374   // The set of constants that this function returns true for must be able to be
1375   // handled by makeAllConstantUsesInstructions.
1376   for (auto *U : C->users()) {
1377     if (isa<Instruction>(U))
1378       continue;
1379     if (!isa<ConstantExpr>(U))
1380       // Non instruction, non-constantexpr user; cannot convert this.
1381       return false;
1382     for (auto *UU : U->users())
1383       if (!isa<Instruction>(UU))
1384         // A constantexpr used by another constant. We don't try and recurse any
1385         // further but just bail out at this point.
1386         return false;
1387   }
1388 
1389   return true;
1390 }
1391 
1392 /// C may have non-instruction users, and
1393 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1394 /// non-instruction users to instructions.
1395 static void makeAllConstantUsesInstructions(Constant *C) {
1396   SmallVector<ConstantExpr*,4> Users;
1397   for (auto *U : C->users()) {
1398     if (isa<ConstantExpr>(U))
1399       Users.push_back(cast<ConstantExpr>(U));
1400     else
1401       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1402       // should not have returned true for C.
1403       assert(
1404           isa<Instruction>(U) &&
1405           "Can't transform non-constantexpr non-instruction to instruction!");
1406   }
1407 
1408   SmallVector<Value*,4> UUsers;
1409   for (auto *U : Users) {
1410     UUsers.clear();
1411     append_range(UUsers, U->users());
1412     for (auto *UU : UUsers) {
1413       Instruction *UI = cast<Instruction>(UU);
1414       Instruction *NewU = U->getAsInstruction(UI);
1415       UI->replaceUsesOfWith(U, NewU);
1416     }
1417     // We've replaced all the uses, so destroy the constant. (destroyConstant
1418     // will update value handles and metadata.)
1419     U->destroyConstant();
1420   }
1421 }
1422 
1423 /// Analyze the specified global variable and optimize
1424 /// it if possible.  If we make a change, return true.
1425 static bool
1426 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1427                       function_ref<TargetTransformInfo &(Function &)> GetTTI,
1428                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1429                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1430   auto &DL = GV->getParent()->getDataLayout();
1431   // If this is a first class global and has only one accessing function and
1432   // this function is non-recursive, we replace the global with a local alloca
1433   // in this function.
1434   //
1435   // NOTE: It doesn't make sense to promote non-single-value types since we
1436   // are just replacing static memory to stack memory.
1437   //
1438   // If the global is in different address space, don't bring it to stack.
1439   if (!GS.HasMultipleAccessingFunctions &&
1440       GS.AccessingFunction &&
1441       GV->getValueType()->isSingleValueType() &&
1442       GV->getType()->getAddressSpace() == 0 &&
1443       !GV->isExternallyInitialized() &&
1444       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1445       GS.AccessingFunction->doesNotRecurse() &&
1446       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1447                                           LookupDomTree)) {
1448     const DataLayout &DL = GV->getParent()->getDataLayout();
1449 
1450     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1451     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1452                                                    ->getEntryBlock().begin());
1453     Type *ElemTy = GV->getValueType();
1454     // FIXME: Pass Global's alignment when globals have alignment
1455     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1456                                         GV->getName(), &FirstI);
1457     if (!isa<UndefValue>(GV->getInitializer()))
1458       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1459 
1460     makeAllConstantUsesInstructions(GV);
1461 
1462     GV->replaceAllUsesWith(Alloca);
1463     GV->eraseFromParent();
1464     ++NumLocalized;
1465     return true;
1466   }
1467 
1468   bool Changed = false;
1469 
1470   // If the global is never loaded (but may be stored to), it is dead.
1471   // Delete it now.
1472   if (!GS.IsLoaded) {
1473     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1474 
1475     if (isLeakCheckerRoot(GV)) {
1476       // Delete any constant stores to the global.
1477       Changed = CleanupPointerRootUsers(GV, GetTLI);
1478     } else {
1479       // Delete any stores we can find to the global.  We may not be able to
1480       // make it completely dead though.
1481       Changed = CleanupConstantGlobalUsers(GV, DL);
1482     }
1483 
1484     // If the global is dead now, delete it.
1485     if (GV->use_empty()) {
1486       GV->eraseFromParent();
1487       ++NumDeleted;
1488       Changed = true;
1489     }
1490     return Changed;
1491 
1492   }
1493   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1494     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1495 
1496     // Don't actually mark a global constant if it's atomic because atomic loads
1497     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1498     // requires write access to the variable even if it's not actually changed.
1499     if (GS.Ordering == AtomicOrdering::NotAtomic) {
1500       assert(!GV->isConstant() && "Expected a non-constant global");
1501       GV->setConstant(true);
1502       Changed = true;
1503     }
1504 
1505     // Clean up any obviously simplifiable users now.
1506     Changed |= CleanupConstantGlobalUsers(GV, DL);
1507 
1508     // If the global is dead now, just nuke it.
1509     if (GV->use_empty()) {
1510       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1511                         << "all users and delete global!\n");
1512       GV->eraseFromParent();
1513       ++NumDeleted;
1514       return true;
1515     }
1516 
1517     // Fall through to the next check; see if we can optimize further.
1518     ++NumMarked;
1519   }
1520   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1521     const DataLayout &DL = GV->getParent()->getDataLayout();
1522     if (SRAGlobal(GV, DL))
1523       return true;
1524   }
1525   Value *StoredOnceValue = GS.getStoredOnceValue();
1526   if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) {
1527     // Avoid speculating constant expressions that might trap (div/rem).
1528     auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue);
1529     if (SOVConstant && SOVConstant->canTrap())
1530       return Changed;
1531 
1532     Function &StoreFn =
1533         const_cast<Function &>(*GS.StoredOnceStore->getFunction());
1534     bool CanHaveNonUndefGlobalInitializer =
1535         GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace(
1536             GV->getType()->getAddressSpace());
1537     // If the initial value for the global was an undef value, and if only
1538     // one other value was stored into it, we can just change the
1539     // initializer to be the stored value, then delete all stores to the
1540     // global.  This allows us to mark it constant.
1541     // This is restricted to address spaces that allow globals to have
1542     // initializers. NVPTX, for example, does not support initializers for
1543     // shared memory (AS 3).
1544     if (SOVConstant && isa<UndefValue>(GV->getInitializer()) &&
1545         DL.getTypeAllocSize(SOVConstant->getType()) ==
1546             DL.getTypeAllocSize(GV->getValueType()) &&
1547         CanHaveNonUndefGlobalInitializer) {
1548       if (SOVConstant->getType() == GV->getValueType()) {
1549         // Change the initializer in place.
1550         GV->setInitializer(SOVConstant);
1551       } else {
1552         // Create a new global with adjusted type.
1553         auto *NGV = new GlobalVariable(
1554             *GV->getParent(), SOVConstant->getType(), GV->isConstant(),
1555             GV->getLinkage(), SOVConstant, "", GV, GV->getThreadLocalMode(),
1556             GV->getAddressSpace());
1557         NGV->takeName(GV);
1558         NGV->copyAttributesFrom(GV);
1559         GV->replaceAllUsesWith(ConstantExpr::getBitCast(NGV, GV->getType()));
1560         GV->eraseFromParent();
1561         GV = NGV;
1562       }
1563 
1564       // Clean up any obviously simplifiable users now.
1565       CleanupConstantGlobalUsers(GV, DL);
1566 
1567       if (GV->use_empty()) {
1568         LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1569                           << "simplify all users and delete global!\n");
1570         GV->eraseFromParent();
1571         ++NumDeleted;
1572       }
1573       ++NumSubstitute;
1574       return true;
1575     }
1576 
1577     // Try to optimize globals based on the knowledge that only one value
1578     // (besides its initializer) is ever stored to the global.
1579     if (optimizeOnceStoredGlobal(GV, StoredOnceValue, GS.Ordering, DL, GetTLI))
1580       return true;
1581 
1582     // Otherwise, if the global was not a boolean, we can shrink it to be a
1583     // boolean. Skip this optimization for AS that doesn't allow an initializer.
1584     if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic &&
1585         (!isa<UndefValue>(GV->getInitializer()) ||
1586          CanHaveNonUndefGlobalInitializer)) {
1587       if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1588         ++NumShrunkToBool;
1589         return true;
1590       }
1591     }
1592   }
1593 
1594   return Changed;
1595 }
1596 
1597 /// Analyze the specified global variable and optimize it if possible.  If we
1598 /// make a change, return true.
1599 static bool
1600 processGlobal(GlobalValue &GV,
1601               function_ref<TargetTransformInfo &(Function &)> GetTTI,
1602               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1603               function_ref<DominatorTree &(Function &)> LookupDomTree) {
1604   if (GV.getName().startswith("llvm."))
1605     return false;
1606 
1607   GlobalStatus GS;
1608 
1609   if (GlobalStatus::analyzeGlobal(&GV, GS))
1610     return false;
1611 
1612   bool Changed = false;
1613   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1614     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1615                                                : GlobalValue::UnnamedAddr::Local;
1616     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1617       GV.setUnnamedAddr(NewUnnamedAddr);
1618       NumUnnamed++;
1619       Changed = true;
1620     }
1621   }
1622 
1623   // Do more involved optimizations if the global is internal.
1624   if (!GV.hasLocalLinkage())
1625     return Changed;
1626 
1627   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1628   if (!GVar)
1629     return Changed;
1630 
1631   if (GVar->isConstant() || !GVar->hasInitializer())
1632     return Changed;
1633 
1634   return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) ||
1635          Changed;
1636 }
1637 
1638 /// Walk all of the direct calls of the specified function, changing them to
1639 /// FastCC.
1640 static void ChangeCalleesToFastCall(Function *F) {
1641   for (User *U : F->users()) {
1642     if (isa<BlockAddress>(U))
1643       continue;
1644     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
1645   }
1646 }
1647 
1648 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
1649                                Attribute::AttrKind A) {
1650   unsigned AttrIndex;
1651   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
1652     return Attrs.removeAttributeAtIndex(C, AttrIndex, A);
1653   return Attrs;
1654 }
1655 
1656 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
1657   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
1658   for (User *U : F->users()) {
1659     if (isa<BlockAddress>(U))
1660       continue;
1661     CallBase *CB = cast<CallBase>(U);
1662     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
1663   }
1664 }
1665 
1666 /// Return true if this is a calling convention that we'd like to change.  The
1667 /// idea here is that we don't want to mess with the convention if the user
1668 /// explicitly requested something with performance implications like coldcc,
1669 /// GHC, or anyregcc.
1670 static bool hasChangeableCC(Function *F) {
1671   CallingConv::ID CC = F->getCallingConv();
1672 
1673   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1674   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
1675     return false;
1676 
1677   // FIXME: Change CC for the whole chain of musttail calls when possible.
1678   //
1679   // Can't change CC of the function that either has musttail calls, or is a
1680   // musttail callee itself
1681   for (User *U : F->users()) {
1682     if (isa<BlockAddress>(U))
1683       continue;
1684     CallInst* CI = dyn_cast<CallInst>(U);
1685     if (!CI)
1686       continue;
1687 
1688     if (CI->isMustTailCall())
1689       return false;
1690   }
1691 
1692   for (BasicBlock &BB : *F)
1693     if (BB.getTerminatingMustTailCall())
1694       return false;
1695 
1696   return true;
1697 }
1698 
1699 /// Return true if the block containing the call site has a BlockFrequency of
1700 /// less than ColdCCRelFreq% of the entry block.
1701 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
1702   const BranchProbability ColdProb(ColdCCRelFreq, 100);
1703   auto *CallSiteBB = CB.getParent();
1704   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
1705   auto CallerEntryFreq =
1706       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
1707   return CallSiteFreq < CallerEntryFreq * ColdProb;
1708 }
1709 
1710 // This function checks if the input function F is cold at all call sites. It
1711 // also looks each call site's containing function, returning false if the
1712 // caller function contains other non cold calls. The input vector AllCallsCold
1713 // contains a list of functions that only have call sites in cold blocks.
1714 static bool
1715 isValidCandidateForColdCC(Function &F,
1716                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1717                           const std::vector<Function *> &AllCallsCold) {
1718 
1719   if (F.user_empty())
1720     return false;
1721 
1722   for (User *U : F.users()) {
1723     if (isa<BlockAddress>(U))
1724       continue;
1725 
1726     CallBase &CB = cast<CallBase>(*U);
1727     Function *CallerFunc = CB.getParent()->getParent();
1728     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
1729     if (!isColdCallSite(CB, CallerBFI))
1730       return false;
1731     if (!llvm::is_contained(AllCallsCold, CallerFunc))
1732       return false;
1733   }
1734   return true;
1735 }
1736 
1737 static void changeCallSitesToColdCC(Function *F) {
1738   for (User *U : F->users()) {
1739     if (isa<BlockAddress>(U))
1740       continue;
1741     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
1742   }
1743 }
1744 
1745 // This function iterates over all the call instructions in the input Function
1746 // and checks that all call sites are in cold blocks and are allowed to use the
1747 // coldcc calling convention.
1748 static bool
1749 hasOnlyColdCalls(Function &F,
1750                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
1751   for (BasicBlock &BB : F) {
1752     for (Instruction &I : BB) {
1753       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1754         // Skip over isline asm instructions since they aren't function calls.
1755         if (CI->isInlineAsm())
1756           continue;
1757         Function *CalledFn = CI->getCalledFunction();
1758         if (!CalledFn)
1759           return false;
1760         if (!CalledFn->hasLocalLinkage())
1761           return false;
1762         // Skip over instrinsics since they won't remain as function calls.
1763         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
1764           continue;
1765         // Check if it's valid to use coldcc calling convention.
1766         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
1767             CalledFn->hasAddressTaken())
1768           return false;
1769         BlockFrequencyInfo &CallerBFI = GetBFI(F);
1770         if (!isColdCallSite(*CI, CallerBFI))
1771           return false;
1772       }
1773     }
1774   }
1775   return true;
1776 }
1777 
1778 static bool hasMustTailCallers(Function *F) {
1779   for (User *U : F->users()) {
1780     CallBase *CB = dyn_cast<CallBase>(U);
1781     if (!CB) {
1782       assert(isa<BlockAddress>(U) &&
1783              "Expected either CallBase or BlockAddress");
1784       continue;
1785     }
1786     if (CB->isMustTailCall())
1787       return true;
1788   }
1789   return false;
1790 }
1791 
1792 static bool hasInvokeCallers(Function *F) {
1793   for (User *U : F->users())
1794     if (isa<InvokeInst>(U))
1795       return true;
1796   return false;
1797 }
1798 
1799 static void RemovePreallocated(Function *F) {
1800   RemoveAttribute(F, Attribute::Preallocated);
1801 
1802   auto *M = F->getParent();
1803 
1804   IRBuilder<> Builder(M->getContext());
1805 
1806   // Cannot modify users() while iterating over it, so make a copy.
1807   SmallVector<User *, 4> PreallocatedCalls(F->users());
1808   for (User *U : PreallocatedCalls) {
1809     CallBase *CB = dyn_cast<CallBase>(U);
1810     if (!CB)
1811       continue;
1812 
1813     assert(
1814         !CB->isMustTailCall() &&
1815         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
1816     // Create copy of call without "preallocated" operand bundle.
1817     SmallVector<OperandBundleDef, 1> OpBundles;
1818     CB->getOperandBundlesAsDefs(OpBundles);
1819     CallBase *PreallocatedSetup = nullptr;
1820     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
1821       if (It->getTag() == "preallocated") {
1822         PreallocatedSetup = cast<CallBase>(*It->input_begin());
1823         OpBundles.erase(It);
1824         break;
1825       }
1826     }
1827     assert(PreallocatedSetup && "Did not find preallocated bundle");
1828     uint64_t ArgCount =
1829         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
1830 
1831     assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
1832            "Unknown indirect call type");
1833     CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
1834     CB->replaceAllUsesWith(NewCB);
1835     NewCB->takeName(CB);
1836     CB->eraseFromParent();
1837 
1838     Builder.SetInsertPoint(PreallocatedSetup);
1839     auto *StackSave =
1840         Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
1841 
1842     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
1843     Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
1844                        StackSave);
1845 
1846     // Replace @llvm.call.preallocated.arg() with alloca.
1847     // Cannot modify users() while iterating over it, so make a copy.
1848     // @llvm.call.preallocated.arg() can be called with the same index multiple
1849     // times. So for each @llvm.call.preallocated.arg(), we see if we have
1850     // already created a Value* for the index, and if not, create an alloca and
1851     // bitcast right after the @llvm.call.preallocated.setup() so that it
1852     // dominates all uses.
1853     SmallVector<Value *, 2> ArgAllocas(ArgCount);
1854     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
1855     for (auto *User : PreallocatedArgs) {
1856       auto *UseCall = cast<CallBase>(User);
1857       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
1858                  Intrinsic::call_preallocated_arg &&
1859              "preallocated token use was not a llvm.call.preallocated.arg");
1860       uint64_t AllocArgIndex =
1861           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
1862       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
1863       if (!AllocaReplacement) {
1864         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
1865         auto *ArgType =
1866             UseCall->getFnAttr(Attribute::Preallocated).getValueAsType();
1867         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
1868         Builder.SetInsertPoint(InsertBefore);
1869         auto *Alloca =
1870             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
1871         auto *BitCast = Builder.CreateBitCast(
1872             Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
1873         ArgAllocas[AllocArgIndex] = BitCast;
1874         AllocaReplacement = BitCast;
1875       }
1876 
1877       UseCall->replaceAllUsesWith(AllocaReplacement);
1878       UseCall->eraseFromParent();
1879     }
1880     // Remove @llvm.call.preallocated.setup().
1881     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
1882   }
1883 }
1884 
1885 static bool
1886 OptimizeFunctions(Module &M,
1887                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1888                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
1889                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1890                   function_ref<DominatorTree &(Function &)> LookupDomTree,
1891                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1892 
1893   bool Changed = false;
1894 
1895   std::vector<Function *> AllCallsCold;
1896   for (Function &F : llvm::make_early_inc_range(M))
1897     if (hasOnlyColdCalls(F, GetBFI))
1898       AllCallsCold.push_back(&F);
1899 
1900   // Optimize functions.
1901   for (Function &F : llvm::make_early_inc_range(M)) {
1902     // Don't perform global opt pass on naked functions; we don't want fast
1903     // calling conventions for naked functions.
1904     if (F.hasFnAttribute(Attribute::Naked))
1905       continue;
1906 
1907     // Functions without names cannot be referenced outside this module.
1908     if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage())
1909       F.setLinkage(GlobalValue::InternalLinkage);
1910 
1911     if (deleteIfDead(F, NotDiscardableComdats)) {
1912       Changed = true;
1913       continue;
1914     }
1915 
1916     // LLVM's definition of dominance allows instructions that are cyclic
1917     // in unreachable blocks, e.g.:
1918     // %pat = select i1 %condition, @global, i16* %pat
1919     // because any instruction dominates an instruction in a block that's
1920     // not reachable from entry.
1921     // So, remove unreachable blocks from the function, because a) there's
1922     // no point in analyzing them and b) GlobalOpt should otherwise grow
1923     // some more complicated logic to break these cycles.
1924     // Removing unreachable blocks might invalidate the dominator so we
1925     // recalculate it.
1926     if (!F.isDeclaration()) {
1927       if (removeUnreachableBlocks(F)) {
1928         auto &DT = LookupDomTree(F);
1929         DT.recalculate(F);
1930         Changed = true;
1931       }
1932     }
1933 
1934     Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree);
1935 
1936     if (!F.hasLocalLinkage())
1937       continue;
1938 
1939     // If we have an inalloca parameter that we can safely remove the
1940     // inalloca attribute from, do so. This unlocks optimizations that
1941     // wouldn't be safe in the presence of inalloca.
1942     // FIXME: We should also hoist alloca affected by this to the entry
1943     // block if possible.
1944     if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
1945         !F.hasAddressTaken() && !hasMustTailCallers(&F)) {
1946       RemoveAttribute(&F, Attribute::InAlloca);
1947       Changed = true;
1948     }
1949 
1950     // FIXME: handle invokes
1951     // FIXME: handle musttail
1952     if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
1953       if (!F.hasAddressTaken() && !hasMustTailCallers(&F) &&
1954           !hasInvokeCallers(&F)) {
1955         RemovePreallocated(&F);
1956         Changed = true;
1957       }
1958       continue;
1959     }
1960 
1961     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
1962       NumInternalFunc++;
1963       TargetTransformInfo &TTI = GetTTI(F);
1964       // Change the calling convention to coldcc if either stress testing is
1965       // enabled or the target would like to use coldcc on functions which are
1966       // cold at all call sites and the callers contain no other non coldcc
1967       // calls.
1968       if (EnableColdCCStressTest ||
1969           (TTI.useColdCCForColdCall(F) &&
1970            isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) {
1971         F.setCallingConv(CallingConv::Cold);
1972         changeCallSitesToColdCC(&F);
1973         Changed = true;
1974         NumColdCC++;
1975       }
1976     }
1977 
1978     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
1979       // If this function has a calling convention worth changing, is not a
1980       // varargs function, and is only called directly, promote it to use the
1981       // Fast calling convention.
1982       F.setCallingConv(CallingConv::Fast);
1983       ChangeCalleesToFastCall(&F);
1984       ++NumFastCallFns;
1985       Changed = true;
1986     }
1987 
1988     if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1989         !F.hasAddressTaken()) {
1990       // The function is not used by a trampoline intrinsic, so it is safe
1991       // to remove the 'nest' attribute.
1992       RemoveAttribute(&F, Attribute::Nest);
1993       ++NumNestRemoved;
1994       Changed = true;
1995     }
1996   }
1997   return Changed;
1998 }
1999 
2000 static bool
2001 OptimizeGlobalVars(Module &M,
2002                    function_ref<TargetTransformInfo &(Function &)> GetTTI,
2003                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2004                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2005                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2006   bool Changed = false;
2007 
2008   for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) {
2009     // Global variables without names cannot be referenced outside this module.
2010     if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage())
2011       GV.setLinkage(GlobalValue::InternalLinkage);
2012     // Simplify the initializer.
2013     if (GV.hasInitializer())
2014       if (auto *C = dyn_cast<Constant>(GV.getInitializer())) {
2015         auto &DL = M.getDataLayout();
2016         // TLI is not used in the case of a Constant, so use default nullptr
2017         // for that optional parameter, since we don't have a Function to
2018         // provide GetTLI anyway.
2019         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2020         if (New != C)
2021           GV.setInitializer(New);
2022       }
2023 
2024     if (deleteIfDead(GV, NotDiscardableComdats)) {
2025       Changed = true;
2026       continue;
2027     }
2028 
2029     Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree);
2030   }
2031   return Changed;
2032 }
2033 
2034 /// Evaluate static constructors in the function, if we can.  Return true if we
2035 /// can, false otherwise.
2036 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2037                                       TargetLibraryInfo *TLI) {
2038   // Call the function.
2039   Evaluator Eval(DL, TLI);
2040   Constant *RetValDummy;
2041   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2042                                            SmallVector<Constant*, 0>());
2043 
2044   if (EvalSuccess) {
2045     ++NumCtorsEvaluated;
2046 
2047     // We succeeded at evaluation: commit the result.
2048     auto NewInitializers = Eval.getMutatedInitializers();
2049     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2050                       << F->getName() << "' to " << NewInitializers.size()
2051                       << " stores.\n");
2052     for (const auto &Pair : NewInitializers)
2053       Pair.first->setInitializer(Pair.second);
2054     for (GlobalVariable *GV : Eval.getInvariants())
2055       GV->setConstant(true);
2056   }
2057 
2058   return EvalSuccess;
2059 }
2060 
2061 static int compareNames(Constant *const *A, Constant *const *B) {
2062   Value *AStripped = (*A)->stripPointerCasts();
2063   Value *BStripped = (*B)->stripPointerCasts();
2064   return AStripped->getName().compare(BStripped->getName());
2065 }
2066 
2067 static void setUsedInitializer(GlobalVariable &V,
2068                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2069   if (Init.empty()) {
2070     V.eraseFromParent();
2071     return;
2072   }
2073 
2074   // Type of pointer to the array of pointers.
2075   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2076 
2077   SmallVector<Constant *, 8> UsedArray;
2078   for (GlobalValue *GV : Init) {
2079     Constant *Cast
2080       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2081     UsedArray.push_back(Cast);
2082   }
2083   // Sort to get deterministic order.
2084   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2085   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2086 
2087   Module *M = V.getParent();
2088   V.removeFromParent();
2089   GlobalVariable *NV =
2090       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2091                          ConstantArray::get(ATy, UsedArray), "");
2092   NV->takeName(&V);
2093   NV->setSection("llvm.metadata");
2094   delete &V;
2095 }
2096 
2097 namespace {
2098 
2099 /// An easy to access representation of llvm.used and llvm.compiler.used.
2100 class LLVMUsed {
2101   SmallPtrSet<GlobalValue *, 4> Used;
2102   SmallPtrSet<GlobalValue *, 4> CompilerUsed;
2103   GlobalVariable *UsedV;
2104   GlobalVariable *CompilerUsedV;
2105 
2106 public:
2107   LLVMUsed(Module &M) {
2108     SmallVector<GlobalValue *, 4> Vec;
2109     UsedV = collectUsedGlobalVariables(M, Vec, false);
2110     Used = {Vec.begin(), Vec.end()};
2111     Vec.clear();
2112     CompilerUsedV = collectUsedGlobalVariables(M, Vec, true);
2113     CompilerUsed = {Vec.begin(), Vec.end()};
2114   }
2115 
2116   using iterator = SmallPtrSet<GlobalValue *, 4>::iterator;
2117   using used_iterator_range = iterator_range<iterator>;
2118 
2119   iterator usedBegin() { return Used.begin(); }
2120   iterator usedEnd() { return Used.end(); }
2121 
2122   used_iterator_range used() {
2123     return used_iterator_range(usedBegin(), usedEnd());
2124   }
2125 
2126   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2127   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2128 
2129   used_iterator_range compilerUsed() {
2130     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2131   }
2132 
2133   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2134 
2135   bool compilerUsedCount(GlobalValue *GV) const {
2136     return CompilerUsed.count(GV);
2137   }
2138 
2139   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2140   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2141   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2142 
2143   bool compilerUsedInsert(GlobalValue *GV) {
2144     return CompilerUsed.insert(GV).second;
2145   }
2146 
2147   void syncVariablesAndSets() {
2148     if (UsedV)
2149       setUsedInitializer(*UsedV, Used);
2150     if (CompilerUsedV)
2151       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2152   }
2153 };
2154 
2155 } // end anonymous namespace
2156 
2157 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2158   if (GA.use_empty()) // No use at all.
2159     return false;
2160 
2161   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2162          "We should have removed the duplicated "
2163          "element from llvm.compiler.used");
2164   if (!GA.hasOneUse())
2165     // Strictly more than one use. So at least one is not in llvm.used and
2166     // llvm.compiler.used.
2167     return true;
2168 
2169   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2170   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2171 }
2172 
2173 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2174                                                const LLVMUsed &U) {
2175   unsigned N = 2;
2176   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2177          "We should have removed the duplicated "
2178          "element from llvm.compiler.used");
2179   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2180     ++N;
2181   return V.hasNUsesOrMore(N);
2182 }
2183 
2184 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2185   if (!GA.hasLocalLinkage())
2186     return true;
2187 
2188   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2189 }
2190 
2191 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2192                              bool &RenameTarget) {
2193   RenameTarget = false;
2194   bool Ret = false;
2195   if (hasUseOtherThanLLVMUsed(GA, U))
2196     Ret = true;
2197 
2198   // If the alias is externally visible, we may still be able to simplify it.
2199   if (!mayHaveOtherReferences(GA, U))
2200     return Ret;
2201 
2202   // If the aliasee has internal linkage, give it the name and linkage
2203   // of the alias, and delete the alias.  This turns:
2204   //   define internal ... @f(...)
2205   //   @a = alias ... @f
2206   // into:
2207   //   define ... @a(...)
2208   Constant *Aliasee = GA.getAliasee();
2209   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2210   if (!Target->hasLocalLinkage())
2211     return Ret;
2212 
2213   // Do not perform the transform if multiple aliases potentially target the
2214   // aliasee. This check also ensures that it is safe to replace the section
2215   // and other attributes of the aliasee with those of the alias.
2216   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2217     return Ret;
2218 
2219   RenameTarget = true;
2220   return true;
2221 }
2222 
2223 static bool
2224 OptimizeGlobalAliases(Module &M,
2225                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2226   bool Changed = false;
2227   LLVMUsed Used(M);
2228 
2229   for (GlobalValue *GV : Used.used())
2230     Used.compilerUsedErase(GV);
2231 
2232   for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) {
2233     // Aliases without names cannot be referenced outside this module.
2234     if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage())
2235       J.setLinkage(GlobalValue::InternalLinkage);
2236 
2237     if (deleteIfDead(J, NotDiscardableComdats)) {
2238       Changed = true;
2239       continue;
2240     }
2241 
2242     // If the alias can change at link time, nothing can be done - bail out.
2243     if (J.isInterposable())
2244       continue;
2245 
2246     Constant *Aliasee = J.getAliasee();
2247     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2248     // We can't trivially replace the alias with the aliasee if the aliasee is
2249     // non-trivial in some way. We also can't replace the alias with the aliasee
2250     // if the aliasee is interposable because aliases point to the local
2251     // definition.
2252     // TODO: Try to handle non-zero GEPs of local aliasees.
2253     if (!Target || Target->isInterposable())
2254       continue;
2255     Target->removeDeadConstantUsers();
2256 
2257     // Make all users of the alias use the aliasee instead.
2258     bool RenameTarget;
2259     if (!hasUsesToReplace(J, Used, RenameTarget))
2260       continue;
2261 
2262     J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType()));
2263     ++NumAliasesResolved;
2264     Changed = true;
2265 
2266     if (RenameTarget) {
2267       // Give the aliasee the name, linkage and other attributes of the alias.
2268       Target->takeName(&J);
2269       Target->setLinkage(J.getLinkage());
2270       Target->setDSOLocal(J.isDSOLocal());
2271       Target->setVisibility(J.getVisibility());
2272       Target->setDLLStorageClass(J.getDLLStorageClass());
2273 
2274       if (Used.usedErase(&J))
2275         Used.usedInsert(Target);
2276 
2277       if (Used.compilerUsedErase(&J))
2278         Used.compilerUsedInsert(Target);
2279     } else if (mayHaveOtherReferences(J, Used))
2280       continue;
2281 
2282     // Delete the alias.
2283     M.getAliasList().erase(&J);
2284     ++NumAliasesRemoved;
2285     Changed = true;
2286   }
2287 
2288   Used.syncVariablesAndSets();
2289 
2290   return Changed;
2291 }
2292 
2293 static Function *
2294 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2295   // Hack to get a default TLI before we have actual Function.
2296   auto FuncIter = M.begin();
2297   if (FuncIter == M.end())
2298     return nullptr;
2299   auto *TLI = &GetTLI(*FuncIter);
2300 
2301   LibFunc F = LibFunc_cxa_atexit;
2302   if (!TLI->has(F))
2303     return nullptr;
2304 
2305   Function *Fn = M.getFunction(TLI->getName(F));
2306   if (!Fn)
2307     return nullptr;
2308 
2309   // Now get the actual TLI for Fn.
2310   TLI = &GetTLI(*Fn);
2311 
2312   // Make sure that the function has the correct prototype.
2313   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2314     return nullptr;
2315 
2316   return Fn;
2317 }
2318 
2319 /// Returns whether the given function is an empty C++ destructor and can
2320 /// therefore be eliminated.
2321 /// Note that we assume that other optimization passes have already simplified
2322 /// the code so we simply check for 'ret'.
2323 static bool cxxDtorIsEmpty(const Function &Fn) {
2324   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2325   // nounwind, but that doesn't seem worth doing.
2326   if (Fn.isDeclaration())
2327     return false;
2328 
2329   for (auto &I : Fn.getEntryBlock()) {
2330     if (I.isDebugOrPseudoInst())
2331       continue;
2332     if (isa<ReturnInst>(I))
2333       return true;
2334     break;
2335   }
2336   return false;
2337 }
2338 
2339 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2340   /// Itanium C++ ABI p3.3.5:
2341   ///
2342   ///   After constructing a global (or local static) object, that will require
2343   ///   destruction on exit, a termination function is registered as follows:
2344   ///
2345   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2346   ///
2347   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2348   ///   call f(p) when DSO d is unloaded, before all such termination calls
2349   ///   registered before this one. It returns zero if registration is
2350   ///   successful, nonzero on failure.
2351 
2352   // This pass will look for calls to __cxa_atexit where the function is trivial
2353   // and remove them.
2354   bool Changed = false;
2355 
2356   for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) {
2357     // We're only interested in calls. Theoretically, we could handle invoke
2358     // instructions as well, but neither llvm-gcc nor clang generate invokes
2359     // to __cxa_atexit.
2360     CallInst *CI = dyn_cast<CallInst>(U);
2361     if (!CI)
2362       continue;
2363 
2364     Function *DtorFn =
2365       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2366     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2367       continue;
2368 
2369     // Just remove the call.
2370     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2371     CI->eraseFromParent();
2372 
2373     ++NumCXXDtorsRemoved;
2374 
2375     Changed |= true;
2376   }
2377 
2378   return Changed;
2379 }
2380 
2381 static bool optimizeGlobalsInModule(
2382     Module &M, const DataLayout &DL,
2383     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2384     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2385     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2386     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2387   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2388   bool Changed = false;
2389   bool LocalChange = true;
2390   while (LocalChange) {
2391     LocalChange = false;
2392 
2393     NotDiscardableComdats.clear();
2394     for (const GlobalVariable &GV : M.globals())
2395       if (const Comdat *C = GV.getComdat())
2396         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2397           NotDiscardableComdats.insert(C);
2398     for (Function &F : M)
2399       if (const Comdat *C = F.getComdat())
2400         if (!F.isDefTriviallyDead())
2401           NotDiscardableComdats.insert(C);
2402     for (GlobalAlias &GA : M.aliases())
2403       if (const Comdat *C = GA.getComdat())
2404         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2405           NotDiscardableComdats.insert(C);
2406 
2407     // Delete functions that are trivially dead, ccc -> fastcc
2408     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2409                                      NotDiscardableComdats);
2410 
2411     // Optimize global_ctors list.
2412     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2413       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2414     });
2415 
2416     // Optimize non-address-taken globals.
2417     LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree,
2418                                       NotDiscardableComdats);
2419 
2420     // Resolve aliases, when possible.
2421     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2422 
2423     // Try to remove trivial global destructors if they are not removed
2424     // already.
2425     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2426     if (CXAAtExitFn)
2427       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2428 
2429     Changed |= LocalChange;
2430   }
2431 
2432   // TODO: Move all global ctors functions to the end of the module for code
2433   // layout.
2434 
2435   return Changed;
2436 }
2437 
2438 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2439     auto &DL = M.getDataLayout();
2440     auto &FAM =
2441         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2442     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2443       return FAM.getResult<DominatorTreeAnalysis>(F);
2444     };
2445     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2446       return FAM.getResult<TargetLibraryAnalysis>(F);
2447     };
2448     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2449       return FAM.getResult<TargetIRAnalysis>(F);
2450     };
2451 
2452     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2453       return FAM.getResult<BlockFrequencyAnalysis>(F);
2454     };
2455 
2456     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
2457       return PreservedAnalyses::all();
2458     return PreservedAnalyses::none();
2459 }
2460 
2461 namespace {
2462 
2463 struct GlobalOptLegacyPass : public ModulePass {
2464   static char ID; // Pass identification, replacement for typeid
2465 
2466   GlobalOptLegacyPass() : ModulePass(ID) {
2467     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2468   }
2469 
2470   bool runOnModule(Module &M) override {
2471     if (skipModule(M))
2472       return false;
2473 
2474     auto &DL = M.getDataLayout();
2475     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2476       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2477     };
2478     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
2479       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2480     };
2481     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2482       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2483     };
2484 
2485     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
2486       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
2487     };
2488 
2489     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
2490                                    LookupDomTree);
2491   }
2492 
2493   void getAnalysisUsage(AnalysisUsage &AU) const override {
2494     AU.addRequired<TargetLibraryInfoWrapperPass>();
2495     AU.addRequired<TargetTransformInfoWrapperPass>();
2496     AU.addRequired<DominatorTreeWrapperPass>();
2497     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2498   }
2499 };
2500 
2501 } // end anonymous namespace
2502 
2503 char GlobalOptLegacyPass::ID = 0;
2504 
2505 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2506                       "Global Variable Optimizer", false, false)
2507 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2508 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2509 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
2510 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2511 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2512                     "Global Variable Optimizer", false, false)
2513 
2514 ModulePass *llvm::createGlobalOptimizerPass() {
2515   return new GlobalOptLegacyPass();
2516 }
2517