1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "globalopt" 17 #include "llvm/Transforms/IPO.h" 18 #include "llvm/CallingConv.h" 19 #include "llvm/Constants.h" 20 #include "llvm/DerivedTypes.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/IntrinsicInst.h" 23 #include "llvm/Module.h" 24 #include "llvm/Pass.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Target/TargetData.h" 28 #include "llvm/Support/CallSite.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/GetElementPtrTypeIterator.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/STLExtras.h" 39 #include <algorithm> 40 using namespace llvm; 41 42 STATISTIC(NumMarked , "Number of globals marked constant"); 43 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 44 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 45 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 46 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 47 STATISTIC(NumDeleted , "Number of globals deleted"); 48 STATISTIC(NumFnDeleted , "Number of functions deleted"); 49 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 50 STATISTIC(NumLocalized , "Number of globals localized"); 51 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 52 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 53 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 54 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 55 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 56 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 57 58 namespace { 59 struct GlobalStatus; 60 struct GlobalOpt : public ModulePass { 61 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 62 } 63 static char ID; // Pass identification, replacement for typeid 64 GlobalOpt() : ModulePass(ID) { 65 initializeGlobalOptPass(*PassRegistry::getPassRegistry()); 66 } 67 68 bool runOnModule(Module &M); 69 70 private: 71 GlobalVariable *FindGlobalCtors(Module &M); 72 bool OptimizeFunctions(Module &M); 73 bool OptimizeGlobalVars(Module &M); 74 bool OptimizeGlobalAliases(Module &M); 75 bool OptimizeGlobalCtorsList(GlobalVariable *&GCL); 76 bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI); 77 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI, 78 const SmallPtrSet<const PHINode*, 16> &PHIUsers, 79 const GlobalStatus &GS); 80 }; 81 } 82 83 char GlobalOpt::ID = 0; 84 INITIALIZE_PASS(GlobalOpt, "globalopt", 85 "Global Variable Optimizer", false, false) 86 87 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); } 88 89 namespace { 90 91 /// GlobalStatus - As we analyze each global, keep track of some information 92 /// about it. If we find out that the address of the global is taken, none of 93 /// this info will be accurate. 94 struct GlobalStatus { 95 /// isCompared - True if the global's address is used in a comparison. 96 bool isCompared; 97 98 /// isLoaded - True if the global is ever loaded. If the global isn't ever 99 /// loaded it can be deleted. 100 bool isLoaded; 101 102 /// StoredType - Keep track of what stores to the global look like. 103 /// 104 enum StoredType { 105 /// NotStored - There is no store to this global. It can thus be marked 106 /// constant. 107 NotStored, 108 109 /// isInitializerStored - This global is stored to, but the only thing 110 /// stored is the constant it was initialized with. This is only tracked 111 /// for scalar globals. 112 isInitializerStored, 113 114 /// isStoredOnce - This global is stored to, but only its initializer and 115 /// one other value is ever stored to it. If this global isStoredOnce, we 116 /// track the value stored to it in StoredOnceValue below. This is only 117 /// tracked for scalar globals. 118 isStoredOnce, 119 120 /// isStored - This global is stored to by multiple values or something else 121 /// that we cannot track. 122 isStored 123 } StoredType; 124 125 /// StoredOnceValue - If only one value (besides the initializer constant) is 126 /// ever stored to this global, keep track of what value it is. 127 Value *StoredOnceValue; 128 129 /// AccessingFunction/HasMultipleAccessingFunctions - These start out 130 /// null/false. When the first accessing function is noticed, it is recorded. 131 /// When a second different accessing function is noticed, 132 /// HasMultipleAccessingFunctions is set to true. 133 const Function *AccessingFunction; 134 bool HasMultipleAccessingFunctions; 135 136 /// HasNonInstructionUser - Set to true if this global has a user that is not 137 /// an instruction (e.g. a constant expr or GV initializer). 138 bool HasNonInstructionUser; 139 140 /// HasPHIUser - Set to true if this global has a user that is a PHI node. 141 bool HasPHIUser; 142 143 GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored), 144 StoredOnceValue(0), AccessingFunction(0), 145 HasMultipleAccessingFunctions(false), HasNonInstructionUser(false), 146 HasPHIUser(false) {} 147 }; 148 149 } 150 151 // SafeToDestroyConstant - It is safe to destroy a constant iff it is only used 152 // by constants itself. Note that constants cannot be cyclic, so this test is 153 // pretty easy to implement recursively. 154 // 155 static bool SafeToDestroyConstant(const Constant *C) { 156 if (isa<GlobalValue>(C)) return false; 157 158 for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; 159 ++UI) 160 if (const Constant *CU = dyn_cast<Constant>(*UI)) { 161 if (!SafeToDestroyConstant(CU)) return false; 162 } else 163 return false; 164 return true; 165 } 166 167 168 /// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus 169 /// structure. If the global has its address taken, return true to indicate we 170 /// can't do anything with it. 171 /// 172 static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS, 173 SmallPtrSet<const PHINode*, 16> &PHIUsers) { 174 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 175 ++UI) { 176 const User *U = *UI; 177 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 178 GS.HasNonInstructionUser = true; 179 180 // If the result of the constantexpr isn't pointer type, then we won't 181 // know to expect it in various places. Just reject early. 182 if (!isa<PointerType>(CE->getType())) return true; 183 184 if (AnalyzeGlobal(CE, GS, PHIUsers)) return true; 185 } else if (const Instruction *I = dyn_cast<Instruction>(U)) { 186 if (!GS.HasMultipleAccessingFunctions) { 187 const Function *F = I->getParent()->getParent(); 188 if (GS.AccessingFunction == 0) 189 GS.AccessingFunction = F; 190 else if (GS.AccessingFunction != F) 191 GS.HasMultipleAccessingFunctions = true; 192 } 193 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 194 GS.isLoaded = true; 195 if (LI->isVolatile()) return true; // Don't hack on volatile loads. 196 } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { 197 // Don't allow a store OF the address, only stores TO the address. 198 if (SI->getOperand(0) == V) return true; 199 200 if (SI->isVolatile()) return true; // Don't hack on volatile stores. 201 202 // If this is a direct store to the global (i.e., the global is a scalar 203 // value, not an aggregate), keep more specific information about 204 // stores. 205 if (GS.StoredType != GlobalStatus::isStored) { 206 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>( 207 SI->getOperand(1))) { 208 Value *StoredVal = SI->getOperand(0); 209 if (StoredVal == GV->getInitializer()) { 210 if (GS.StoredType < GlobalStatus::isInitializerStored) 211 GS.StoredType = GlobalStatus::isInitializerStored; 212 } else if (isa<LoadInst>(StoredVal) && 213 cast<LoadInst>(StoredVal)->getOperand(0) == GV) { 214 if (GS.StoredType < GlobalStatus::isInitializerStored) 215 GS.StoredType = GlobalStatus::isInitializerStored; 216 } else if (GS.StoredType < GlobalStatus::isStoredOnce) { 217 GS.StoredType = GlobalStatus::isStoredOnce; 218 GS.StoredOnceValue = StoredVal; 219 } else if (GS.StoredType == GlobalStatus::isStoredOnce && 220 GS.StoredOnceValue == StoredVal) { 221 // noop. 222 } else { 223 GS.StoredType = GlobalStatus::isStored; 224 } 225 } else { 226 GS.StoredType = GlobalStatus::isStored; 227 } 228 } 229 } else if (isa<GetElementPtrInst>(I)) { 230 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 231 } else if (isa<SelectInst>(I)) { 232 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 233 } else if (const PHINode *PN = dyn_cast<PHINode>(I)) { 234 // PHI nodes we can check just like select or GEP instructions, but we 235 // have to be careful about infinite recursion. 236 if (PHIUsers.insert(PN)) // Not already visited. 237 if (AnalyzeGlobal(I, GS, PHIUsers)) return true; 238 GS.HasPHIUser = true; 239 } else if (isa<CmpInst>(I)) { 240 GS.isCompared = true; 241 } else if (isa<MemTransferInst>(I)) { 242 const MemTransferInst *MTI = cast<MemTransferInst>(I); 243 if (MTI->getArgOperand(0) == V) 244 GS.StoredType = GlobalStatus::isStored; 245 if (MTI->getArgOperand(1) == V) 246 GS.isLoaded = true; 247 } else if (isa<MemSetInst>(I)) { 248 assert(cast<MemSetInst>(I)->getArgOperand(0) == V && 249 "Memset only takes one pointer!"); 250 GS.StoredType = GlobalStatus::isStored; 251 } else { 252 return true; // Any other non-load instruction might take address! 253 } 254 } else if (const Constant *C = dyn_cast<Constant>(U)) { 255 GS.HasNonInstructionUser = true; 256 // We might have a dead and dangling constant hanging off of here. 257 if (!SafeToDestroyConstant(C)) 258 return true; 259 } else { 260 GS.HasNonInstructionUser = true; 261 // Otherwise must be some other user. 262 return true; 263 } 264 } 265 266 return false; 267 } 268 269 static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) { 270 ConstantInt *CI = dyn_cast<ConstantInt>(Idx); 271 if (!CI) return 0; 272 unsigned IdxV = CI->getZExtValue(); 273 274 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) { 275 if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV); 276 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) { 277 if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV); 278 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) { 279 if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV); 280 } else if (isa<ConstantAggregateZero>(Agg)) { 281 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) { 282 if (IdxV < STy->getNumElements()) 283 return Constant::getNullValue(STy->getElementType(IdxV)); 284 } else if (const SequentialType *STy = 285 dyn_cast<SequentialType>(Agg->getType())) { 286 return Constant::getNullValue(STy->getElementType()); 287 } 288 } else if (isa<UndefValue>(Agg)) { 289 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) { 290 if (IdxV < STy->getNumElements()) 291 return UndefValue::get(STy->getElementType(IdxV)); 292 } else if (const SequentialType *STy = 293 dyn_cast<SequentialType>(Agg->getType())) { 294 return UndefValue::get(STy->getElementType()); 295 } 296 } 297 return 0; 298 } 299 300 301 /// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all 302 /// users of the global, cleaning up the obvious ones. This is largely just a 303 /// quick scan over the use list to clean up the easy and obvious cruft. This 304 /// returns true if it made a change. 305 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) { 306 bool Changed = false; 307 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) { 308 User *U = *UI++; 309 310 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 311 if (Init) { 312 // Replace the load with the initializer. 313 LI->replaceAllUsesWith(Init); 314 LI->eraseFromParent(); 315 Changed = true; 316 } 317 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 318 // Store must be unreachable or storing Init into the global. 319 SI->eraseFromParent(); 320 Changed = true; 321 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 322 if (CE->getOpcode() == Instruction::GetElementPtr) { 323 Constant *SubInit = 0; 324 if (Init) 325 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 326 Changed |= CleanupConstantGlobalUsers(CE, SubInit); 327 } else if (CE->getOpcode() == Instruction::BitCast && 328 CE->getType()->isPointerTy()) { 329 // Pointer cast, delete any stores and memsets to the global. 330 Changed |= CleanupConstantGlobalUsers(CE, 0); 331 } 332 333 if (CE->use_empty()) { 334 CE->destroyConstant(); 335 Changed = true; 336 } 337 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 338 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 339 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 340 // and will invalidate our notion of what Init is. 341 Constant *SubInit = 0; 342 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 343 ConstantExpr *CE = 344 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP)); 345 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 346 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 347 } 348 Changed |= CleanupConstantGlobalUsers(GEP, SubInit); 349 350 if (GEP->use_empty()) { 351 GEP->eraseFromParent(); 352 Changed = true; 353 } 354 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 355 if (MI->getRawDest() == V) { 356 MI->eraseFromParent(); 357 Changed = true; 358 } 359 360 } else if (Constant *C = dyn_cast<Constant>(U)) { 361 // If we have a chain of dead constantexprs or other things dangling from 362 // us, and if they are all dead, nuke them without remorse. 363 if (SafeToDestroyConstant(C)) { 364 C->destroyConstant(); 365 // This could have invalidated UI, start over from scratch. 366 CleanupConstantGlobalUsers(V, Init); 367 return true; 368 } 369 } 370 } 371 return Changed; 372 } 373 374 /// isSafeSROAElementUse - Return true if the specified instruction is a safe 375 /// user of a derived expression from a global that we want to SROA. 376 static bool isSafeSROAElementUse(Value *V) { 377 // We might have a dead and dangling constant hanging off of here. 378 if (Constant *C = dyn_cast<Constant>(V)) 379 return SafeToDestroyConstant(C); 380 381 Instruction *I = dyn_cast<Instruction>(V); 382 if (!I) return false; 383 384 // Loads are ok. 385 if (isa<LoadInst>(I)) return true; 386 387 // Stores *to* the pointer are ok. 388 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 389 return SI->getOperand(0) != V; 390 391 // Otherwise, it must be a GEP. 392 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 393 if (GEPI == 0) return false; 394 395 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 396 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 397 return false; 398 399 for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end(); 400 I != E; ++I) 401 if (!isSafeSROAElementUse(*I)) 402 return false; 403 return true; 404 } 405 406 407 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value. 408 /// Look at it and its uses and decide whether it is safe to SROA this global. 409 /// 410 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 411 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 412 if (!isa<GetElementPtrInst>(U) && 413 (!isa<ConstantExpr>(U) || 414 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 415 return false; 416 417 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 418 // don't like < 3 operand CE's, and we don't like non-constant integer 419 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 420 // value of C. 421 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 422 !cast<Constant>(U->getOperand(1))->isNullValue() || 423 !isa<ConstantInt>(U->getOperand(2))) 424 return false; 425 426 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 427 ++GEPI; // Skip over the pointer index. 428 429 // If this is a use of an array allocation, do a bit more checking for sanity. 430 if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 431 uint64_t NumElements = AT->getNumElements(); 432 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 433 434 // Check to make sure that index falls within the array. If not, 435 // something funny is going on, so we won't do the optimization. 436 // 437 if (Idx->getZExtValue() >= NumElements) 438 return false; 439 440 // We cannot scalar repl this level of the array unless any array 441 // sub-indices are in-range constants. In particular, consider: 442 // A[0][i]. We cannot know that the user isn't doing invalid things like 443 // allowing i to index an out-of-range subscript that accesses A[1]. 444 // 445 // Scalar replacing *just* the outer index of the array is probably not 446 // going to be a win anyway, so just give up. 447 for (++GEPI; // Skip array index. 448 GEPI != E; 449 ++GEPI) { 450 uint64_t NumElements; 451 if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 452 NumElements = SubArrayTy->getNumElements(); 453 else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 454 NumElements = SubVectorTy->getNumElements(); 455 else { 456 assert((*GEPI)->isStructTy() && 457 "Indexed GEP type is not array, vector, or struct!"); 458 continue; 459 } 460 461 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 462 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 463 return false; 464 } 465 } 466 467 for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I) 468 if (!isSafeSROAElementUse(*I)) 469 return false; 470 return true; 471 } 472 473 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it 474 /// is safe for us to perform this transformation. 475 /// 476 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 477 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); 478 UI != E; ++UI) { 479 if (!IsUserOfGlobalSafeForSRA(*UI, GV)) 480 return false; 481 } 482 return true; 483 } 484 485 486 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global 487 /// variable. This opens the door for other optimizations by exposing the 488 /// behavior of the program in a more fine-grained way. We have determined that 489 /// this transformation is safe already. We return the first global variable we 490 /// insert so that the caller can reprocess it. 491 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) { 492 // Make sure this global only has simple uses that we can SRA. 493 if (!GlobalUsersSafeToSRA(GV)) 494 return 0; 495 496 assert(GV->hasLocalLinkage() && !GV->isConstant()); 497 Constant *Init = GV->getInitializer(); 498 const Type *Ty = Init->getType(); 499 500 std::vector<GlobalVariable*> NewGlobals; 501 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 502 503 // Get the alignment of the global, either explicit or target-specific. 504 unsigned StartAlignment = GV->getAlignment(); 505 if (StartAlignment == 0) 506 StartAlignment = TD.getABITypeAlignment(GV->getType()); 507 508 if (const StructType *STy = dyn_cast<StructType>(Ty)) { 509 NewGlobals.reserve(STy->getNumElements()); 510 const StructLayout &Layout = *TD.getStructLayout(STy); 511 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 512 Constant *In = getAggregateConstantElement(Init, 513 ConstantInt::get(Type::getInt32Ty(STy->getContext()), i)); 514 assert(In && "Couldn't get element of initializer?"); 515 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 516 GlobalVariable::InternalLinkage, 517 In, GV->getName()+"."+Twine(i), 518 GV->isThreadLocal(), 519 GV->getType()->getAddressSpace()); 520 Globals.insert(GV, NGV); 521 NewGlobals.push_back(NGV); 522 523 // Calculate the known alignment of the field. If the original aggregate 524 // had 256 byte alignment for example, something might depend on that: 525 // propagate info to each field. 526 uint64_t FieldOffset = Layout.getElementOffset(i); 527 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 528 if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i))) 529 NGV->setAlignment(NewAlign); 530 } 531 } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 532 unsigned NumElements = 0; 533 if (const ArrayType *ATy = dyn_cast<ArrayType>(STy)) 534 NumElements = ATy->getNumElements(); 535 else 536 NumElements = cast<VectorType>(STy)->getNumElements(); 537 538 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 539 return 0; // It's not worth it. 540 NewGlobals.reserve(NumElements); 541 542 uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType()); 543 unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType()); 544 for (unsigned i = 0, e = NumElements; i != e; ++i) { 545 Constant *In = getAggregateConstantElement(Init, 546 ConstantInt::get(Type::getInt32Ty(Init->getContext()), i)); 547 assert(In && "Couldn't get element of initializer?"); 548 549 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 550 GlobalVariable::InternalLinkage, 551 In, GV->getName()+"."+Twine(i), 552 GV->isThreadLocal(), 553 GV->getType()->getAddressSpace()); 554 Globals.insert(GV, NGV); 555 NewGlobals.push_back(NGV); 556 557 // Calculate the known alignment of the field. If the original aggregate 558 // had 256 byte alignment for example, something might depend on that: 559 // propagate info to each field. 560 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 561 if (NewAlign > EltAlign) 562 NGV->setAlignment(NewAlign); 563 } 564 } 565 566 if (NewGlobals.empty()) 567 return 0; 568 569 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV); 570 571 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 572 573 // Loop over all of the uses of the global, replacing the constantexpr geps, 574 // with smaller constantexpr geps or direct references. 575 while (!GV->use_empty()) { 576 User *GEP = GV->use_back(); 577 assert(((isa<ConstantExpr>(GEP) && 578 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 579 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 580 581 // Ignore the 1th operand, which has to be zero or else the program is quite 582 // broken (undefined). Get the 2nd operand, which is the structure or array 583 // index. 584 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 585 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 586 587 Value *NewPtr = NewGlobals[Val]; 588 589 // Form a shorter GEP if needed. 590 if (GEP->getNumOperands() > 3) { 591 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 592 SmallVector<Constant*, 8> Idxs; 593 Idxs.push_back(NullInt); 594 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 595 Idxs.push_back(CE->getOperand(i)); 596 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), 597 &Idxs[0], Idxs.size()); 598 } else { 599 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 600 SmallVector<Value*, 8> Idxs; 601 Idxs.push_back(NullInt); 602 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 603 Idxs.push_back(GEPI->getOperand(i)); 604 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(), 605 GEPI->getName()+"."+Twine(Val),GEPI); 606 } 607 } 608 GEP->replaceAllUsesWith(NewPtr); 609 610 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 611 GEPI->eraseFromParent(); 612 else 613 cast<ConstantExpr>(GEP)->destroyConstant(); 614 } 615 616 // Delete the old global, now that it is dead. 617 Globals.erase(GV); 618 ++NumSRA; 619 620 // Loop over the new globals array deleting any globals that are obviously 621 // dead. This can arise due to scalarization of a structure or an array that 622 // has elements that are dead. 623 unsigned FirstGlobal = 0; 624 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 625 if (NewGlobals[i]->use_empty()) { 626 Globals.erase(NewGlobals[i]); 627 if (FirstGlobal == i) ++FirstGlobal; 628 } 629 630 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0; 631 } 632 633 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified 634 /// value will trap if the value is dynamically null. PHIs keeps track of any 635 /// phi nodes we've seen to avoid reprocessing them. 636 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 637 SmallPtrSet<const PHINode*, 8> &PHIs) { 638 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 639 ++UI) { 640 const User *U = *UI; 641 642 if (isa<LoadInst>(U)) { 643 // Will trap. 644 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 645 if (SI->getOperand(0) == V) { 646 //cerr << "NONTRAPPING USE: " << *U; 647 return false; // Storing the value. 648 } 649 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 650 if (CI->getCalledValue() != V) { 651 //cerr << "NONTRAPPING USE: " << *U; 652 return false; // Not calling the ptr 653 } 654 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 655 if (II->getCalledValue() != V) { 656 //cerr << "NONTRAPPING USE: " << *U; 657 return false; // Not calling the ptr 658 } 659 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 660 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 661 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 662 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 663 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 664 // If we've already seen this phi node, ignore it, it has already been 665 // checked. 666 if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 667 return false; 668 } else if (isa<ICmpInst>(U) && 669 isa<ConstantPointerNull>(UI->getOperand(1))) { 670 // Ignore icmp X, null 671 } else { 672 //cerr << "NONTRAPPING USE: " << *U; 673 return false; 674 } 675 } 676 return true; 677 } 678 679 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads 680 /// from GV will trap if the loaded value is null. Note that this also permits 681 /// comparisons of the loaded value against null, as a special case. 682 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 683 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 684 UI != E; ++UI) { 685 const User *U = *UI; 686 687 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 688 SmallPtrSet<const PHINode*, 8> PHIs; 689 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 690 return false; 691 } else if (isa<StoreInst>(U)) { 692 // Ignore stores to the global. 693 } else { 694 // We don't know or understand this user, bail out. 695 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 696 return false; 697 } 698 } 699 return true; 700 } 701 702 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 703 bool Changed = false; 704 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) { 705 Instruction *I = cast<Instruction>(*UI++); 706 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 707 LI->setOperand(0, NewV); 708 Changed = true; 709 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 710 if (SI->getOperand(1) == V) { 711 SI->setOperand(1, NewV); 712 Changed = true; 713 } 714 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 715 CallSite CS(I); 716 if (CS.getCalledValue() == V) { 717 // Calling through the pointer! Turn into a direct call, but be careful 718 // that the pointer is not also being passed as an argument. 719 CS.setCalledFunction(NewV); 720 Changed = true; 721 bool PassedAsArg = false; 722 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 723 if (CS.getArgument(i) == V) { 724 PassedAsArg = true; 725 CS.setArgument(i, NewV); 726 } 727 728 if (PassedAsArg) { 729 // Being passed as an argument also. Be careful to not invalidate UI! 730 UI = V->use_begin(); 731 } 732 } 733 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 734 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 735 ConstantExpr::getCast(CI->getOpcode(), 736 NewV, CI->getType())); 737 if (CI->use_empty()) { 738 Changed = true; 739 CI->eraseFromParent(); 740 } 741 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 742 // Should handle GEP here. 743 SmallVector<Constant*, 8> Idxs; 744 Idxs.reserve(GEPI->getNumOperands()-1); 745 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 746 i != e; ++i) 747 if (Constant *C = dyn_cast<Constant>(*i)) 748 Idxs.push_back(C); 749 else 750 break; 751 if (Idxs.size() == GEPI->getNumOperands()-1) 752 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI, 753 ConstantExpr::getGetElementPtr(NewV, &Idxs[0], 754 Idxs.size())); 755 if (GEPI->use_empty()) { 756 Changed = true; 757 GEPI->eraseFromParent(); 758 } 759 } 760 } 761 762 return Changed; 763 } 764 765 766 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null 767 /// value stored into it. If there are uses of the loaded value that would trap 768 /// if the loaded value is dynamically null, then we know that they cannot be 769 /// reachable with a null optimize away the load. 770 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) { 771 bool Changed = false; 772 773 // Keep track of whether we are able to remove all the uses of the global 774 // other than the store that defines it. 775 bool AllNonStoreUsesGone = true; 776 777 // Replace all uses of loads with uses of uses of the stored value. 778 for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){ 779 User *GlobalUser = *GUI++; 780 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 781 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 782 // If we were able to delete all uses of the loads 783 if (LI->use_empty()) { 784 LI->eraseFromParent(); 785 Changed = true; 786 } else { 787 AllNonStoreUsesGone = false; 788 } 789 } else if (isa<StoreInst>(GlobalUser)) { 790 // Ignore the store that stores "LV" to the global. 791 assert(GlobalUser->getOperand(1) == GV && 792 "Must be storing *to* the global"); 793 } else { 794 AllNonStoreUsesGone = false; 795 796 // If we get here we could have other crazy uses that are transitively 797 // loaded. 798 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 799 isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!"); 800 } 801 } 802 803 if (Changed) { 804 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV); 805 ++NumGlobUses; 806 } 807 808 // If we nuked all of the loads, then none of the stores are needed either, 809 // nor is the global. 810 if (AllNonStoreUsesGone) { 811 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 812 CleanupConstantGlobalUsers(GV, 0); 813 if (GV->use_empty()) { 814 GV->eraseFromParent(); 815 ++NumDeleted; 816 } 817 Changed = true; 818 } 819 return Changed; 820 } 821 822 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the 823 /// instructions that are foldable. 824 static void ConstantPropUsersOf(Value *V) { 825 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) 826 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 827 if (Constant *NewC = ConstantFoldInstruction(I)) { 828 I->replaceAllUsesWith(NewC); 829 830 // Advance UI to the next non-I use to avoid invalidating it! 831 // Instructions could multiply use V. 832 while (UI != E && *UI == I) 833 ++UI; 834 I->eraseFromParent(); 835 } 836 } 837 838 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global 839 /// variable, and transforms the program as if it always contained the result of 840 /// the specified malloc. Because it is always the result of the specified 841 /// malloc, there is no reason to actually DO the malloc. Instead, turn the 842 /// malloc into a global, and any loads of GV as uses of the new global. 843 static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, 844 CallInst *CI, 845 const Type *AllocTy, 846 ConstantInt *NElements, 847 TargetData* TD) { 848 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 849 850 const Type *GlobalType; 851 if (NElements->getZExtValue() == 1) 852 GlobalType = AllocTy; 853 else 854 // If we have an array allocation, the global variable is of an array. 855 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 856 857 // Create the new global variable. The contents of the malloc'd memory is 858 // undefined, so initialize with an undef value. 859 GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(), 860 GlobalType, false, 861 GlobalValue::InternalLinkage, 862 UndefValue::get(GlobalType), 863 GV->getName()+".body", 864 GV, 865 GV->isThreadLocal()); 866 867 // If there are bitcast users of the malloc (which is typical, usually we have 868 // a malloc + bitcast) then replace them with uses of the new global. Update 869 // other users to use the global as well. 870 BitCastInst *TheBC = 0; 871 while (!CI->use_empty()) { 872 Instruction *User = cast<Instruction>(CI->use_back()); 873 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 874 if (BCI->getType() == NewGV->getType()) { 875 BCI->replaceAllUsesWith(NewGV); 876 BCI->eraseFromParent(); 877 } else { 878 BCI->setOperand(0, NewGV); 879 } 880 } else { 881 if (TheBC == 0) 882 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 883 User->replaceUsesOfWith(CI, TheBC); 884 } 885 } 886 887 Constant *RepValue = NewGV; 888 if (NewGV->getType() != GV->getType()->getElementType()) 889 RepValue = ConstantExpr::getBitCast(RepValue, 890 GV->getType()->getElementType()); 891 892 // If there is a comparison against null, we will insert a global bool to 893 // keep track of whether the global was initialized yet or not. 894 GlobalVariable *InitBool = 895 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 896 GlobalValue::InternalLinkage, 897 ConstantInt::getFalse(GV->getContext()), 898 GV->getName()+".init", GV->isThreadLocal()); 899 bool InitBoolUsed = false; 900 901 // Loop over all uses of GV, processing them in turn. 902 while (!GV->use_empty()) { 903 if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) { 904 // The global is initialized when the store to it occurs. 905 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, SI); 906 SI->eraseFromParent(); 907 continue; 908 } 909 910 LoadInst *LI = cast<LoadInst>(GV->use_back()); 911 while (!LI->use_empty()) { 912 Use &LoadUse = LI->use_begin().getUse(); 913 if (!isa<ICmpInst>(LoadUse.getUser())) { 914 LoadUse = RepValue; 915 continue; 916 } 917 918 ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser()); 919 // Replace the cmp X, 0 with a use of the bool value. 920 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI); 921 InitBoolUsed = true; 922 switch (ICI->getPredicate()) { 923 default: llvm_unreachable("Unknown ICmp Predicate!"); 924 case ICmpInst::ICMP_ULT: 925 case ICmpInst::ICMP_SLT: // X < null -> always false 926 LV = ConstantInt::getFalse(GV->getContext()); 927 break; 928 case ICmpInst::ICMP_ULE: 929 case ICmpInst::ICMP_SLE: 930 case ICmpInst::ICMP_EQ: 931 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 932 break; 933 case ICmpInst::ICMP_NE: 934 case ICmpInst::ICMP_UGE: 935 case ICmpInst::ICMP_SGE: 936 case ICmpInst::ICMP_UGT: 937 case ICmpInst::ICMP_SGT: 938 break; // no change. 939 } 940 ICI->replaceAllUsesWith(LV); 941 ICI->eraseFromParent(); 942 } 943 LI->eraseFromParent(); 944 } 945 946 // If the initialization boolean was used, insert it, otherwise delete it. 947 if (!InitBoolUsed) { 948 while (!InitBool->use_empty()) // Delete initializations 949 cast<StoreInst>(InitBool->use_back())->eraseFromParent(); 950 delete InitBool; 951 } else 952 GV->getParent()->getGlobalList().insert(GV, InitBool); 953 954 // Now the GV is dead, nuke it and the malloc.. 955 GV->eraseFromParent(); 956 CI->eraseFromParent(); 957 958 // To further other optimizations, loop over all users of NewGV and try to 959 // constant prop them. This will promote GEP instructions with constant 960 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 961 ConstantPropUsersOf(NewGV); 962 if (RepValue != NewGV) 963 ConstantPropUsersOf(RepValue); 964 965 return NewGV; 966 } 967 968 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking 969 /// to make sure that there are no complex uses of V. We permit simple things 970 /// like dereferencing the pointer, but not storing through the address, unless 971 /// it is to the specified global. 972 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 973 const GlobalVariable *GV, 974 SmallPtrSet<const PHINode*, 8> &PHIs) { 975 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 976 UI != E; ++UI) { 977 const Instruction *Inst = cast<Instruction>(*UI); 978 979 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 980 continue; // Fine, ignore. 981 } 982 983 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 984 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 985 return false; // Storing the pointer itself... bad. 986 continue; // Otherwise, storing through it, or storing into GV... fine. 987 } 988 989 // Must index into the array and into the struct. 990 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 991 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 992 return false; 993 continue; 994 } 995 996 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 997 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 998 // cycles. 999 if (PHIs.insert(PN)) 1000 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 1001 return false; 1002 continue; 1003 } 1004 1005 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 1006 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 1007 return false; 1008 continue; 1009 } 1010 1011 return false; 1012 } 1013 return true; 1014 } 1015 1016 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV 1017 /// somewhere. Transform all uses of the allocation into loads from the 1018 /// global and uses of the resultant pointer. Further, delete the store into 1019 /// GV. This assumes that these value pass the 1020 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1021 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1022 GlobalVariable *GV) { 1023 while (!Alloc->use_empty()) { 1024 Instruction *U = cast<Instruction>(*Alloc->use_begin()); 1025 Instruction *InsertPt = U; 1026 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1027 // If this is the store of the allocation into the global, remove it. 1028 if (SI->getOperand(1) == GV) { 1029 SI->eraseFromParent(); 1030 continue; 1031 } 1032 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1033 // Insert the load in the corresponding predecessor, not right before the 1034 // PHI. 1035 InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator(); 1036 } else if (isa<BitCastInst>(U)) { 1037 // Must be bitcast between the malloc and store to initialize the global. 1038 ReplaceUsesOfMallocWithGlobal(U, GV); 1039 U->eraseFromParent(); 1040 continue; 1041 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1042 // If this is a "GEP bitcast" and the user is a store to the global, then 1043 // just process it as a bitcast. 1044 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1045 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back())) 1046 if (SI->getOperand(1) == GV) { 1047 // Must be bitcast GEP between the malloc and store to initialize 1048 // the global. 1049 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1050 GEPI->eraseFromParent(); 1051 continue; 1052 } 1053 } 1054 1055 // Insert a load from the global, and use it instead of the malloc. 1056 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1057 U->replaceUsesOfWith(Alloc, NL); 1058 } 1059 } 1060 1061 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi 1062 /// of a load) are simple enough to perform heap SRA on. This permits GEP's 1063 /// that index through the array and struct field, icmps of null, and PHIs. 1064 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1065 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs, 1066 SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) { 1067 // We permit two users of the load: setcc comparing against the null 1068 // pointer, and a getelementptr of a specific form. 1069 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; 1070 ++UI) { 1071 const Instruction *User = cast<Instruction>(*UI); 1072 1073 // Comparison against null is ok. 1074 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) { 1075 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1076 return false; 1077 continue; 1078 } 1079 1080 // getelementptr is also ok, but only a simple form. 1081 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) { 1082 // Must index into the array and into the struct. 1083 if (GEPI->getNumOperands() < 3) 1084 return false; 1085 1086 // Otherwise the GEP is ok. 1087 continue; 1088 } 1089 1090 if (const PHINode *PN = dyn_cast<PHINode>(User)) { 1091 if (!LoadUsingPHIsPerLoad.insert(PN)) 1092 // This means some phi nodes are dependent on each other. 1093 // Avoid infinite looping! 1094 return false; 1095 if (!LoadUsingPHIs.insert(PN)) 1096 // If we have already analyzed this PHI, then it is safe. 1097 continue; 1098 1099 // Make sure all uses of the PHI are simple enough to transform. 1100 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1101 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1102 return false; 1103 1104 continue; 1105 } 1106 1107 // Otherwise we don't know what this is, not ok. 1108 return false; 1109 } 1110 1111 return true; 1112 } 1113 1114 1115 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from 1116 /// GV are simple enough to perform HeapSRA, return true. 1117 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1118 Instruction *StoredVal) { 1119 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1120 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1121 for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); 1122 UI != E; ++UI) 1123 if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) { 1124 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1125 LoadUsingPHIsPerLoad)) 1126 return false; 1127 LoadUsingPHIsPerLoad.clear(); 1128 } 1129 1130 // If we reach here, we know that all uses of the loads and transitive uses 1131 // (through PHI nodes) are simple enough to transform. However, we don't know 1132 // that all inputs the to the PHI nodes are in the same equivalence sets. 1133 // Check to verify that all operands of the PHIs are either PHIS that can be 1134 // transformed, loads from GV, or MI itself. 1135 for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin() 1136 , E = LoadUsingPHIs.end(); I != E; ++I) { 1137 const PHINode *PN = *I; 1138 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1139 Value *InVal = PN->getIncomingValue(op); 1140 1141 // PHI of the stored value itself is ok. 1142 if (InVal == StoredVal) continue; 1143 1144 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1145 // One of the PHIs in our set is (optimistically) ok. 1146 if (LoadUsingPHIs.count(InPN)) 1147 continue; 1148 return false; 1149 } 1150 1151 // Load from GV is ok. 1152 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1153 if (LI->getOperand(0) == GV) 1154 continue; 1155 1156 // UNDEF? NULL? 1157 1158 // Anything else is rejected. 1159 return false; 1160 } 1161 } 1162 1163 return true; 1164 } 1165 1166 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1167 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1168 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1169 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1170 1171 if (FieldNo >= FieldVals.size()) 1172 FieldVals.resize(FieldNo+1); 1173 1174 // If we already have this value, just reuse the previously scalarized 1175 // version. 1176 if (Value *FieldVal = FieldVals[FieldNo]) 1177 return FieldVal; 1178 1179 // Depending on what instruction this is, we have several cases. 1180 Value *Result; 1181 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1182 // This is a scalarized version of the load from the global. Just create 1183 // a new Load of the scalarized global. 1184 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1185 InsertedScalarizedValues, 1186 PHIsToRewrite), 1187 LI->getName()+".f"+Twine(FieldNo), LI); 1188 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1189 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1190 // field. 1191 const StructType *ST = 1192 cast<StructType>(cast<PointerType>(PN->getType())->getElementType()); 1193 1194 Result = 1195 PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)), 1196 PN->getName()+".f"+Twine(FieldNo), PN); 1197 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1198 } else { 1199 llvm_unreachable("Unknown usable value"); 1200 Result = 0; 1201 } 1202 1203 return FieldVals[FieldNo] = Result; 1204 } 1205 1206 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from 1207 /// the load, rewrite the derived value to use the HeapSRoA'd load. 1208 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1209 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1210 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1211 // If this is a comparison against null, handle it. 1212 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1213 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1214 // If we have a setcc of the loaded pointer, we can use a setcc of any 1215 // field. 1216 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1217 InsertedScalarizedValues, PHIsToRewrite); 1218 1219 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1220 Constant::getNullValue(NPtr->getType()), 1221 SCI->getName()); 1222 SCI->replaceAllUsesWith(New); 1223 SCI->eraseFromParent(); 1224 return; 1225 } 1226 1227 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1228 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1229 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1230 && "Unexpected GEPI!"); 1231 1232 // Load the pointer for this field. 1233 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1234 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1235 InsertedScalarizedValues, PHIsToRewrite); 1236 1237 // Create the new GEP idx vector. 1238 SmallVector<Value*, 8> GEPIdx; 1239 GEPIdx.push_back(GEPI->getOperand(1)); 1240 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1241 1242 Value *NGEPI = GetElementPtrInst::Create(NewPtr, 1243 GEPIdx.begin(), GEPIdx.end(), 1244 GEPI->getName(), GEPI); 1245 GEPI->replaceAllUsesWith(NGEPI); 1246 GEPI->eraseFromParent(); 1247 return; 1248 } 1249 1250 // Recursively transform the users of PHI nodes. This will lazily create the 1251 // PHIs that are needed for individual elements. Keep track of what PHIs we 1252 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1253 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1254 // already been seen first by another load, so its uses have already been 1255 // processed. 1256 PHINode *PN = cast<PHINode>(LoadUser); 1257 bool Inserted; 1258 DenseMap<Value*, std::vector<Value*> >::iterator InsertPos; 1259 tie(InsertPos, Inserted) = 1260 InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>())); 1261 if (!Inserted) return; 1262 1263 // If this is the first time we've seen this PHI, recursively process all 1264 // users. 1265 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) { 1266 Instruction *User = cast<Instruction>(*UI++); 1267 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1268 } 1269 } 1270 1271 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr 1272 /// is a value loaded from the global. Eliminate all uses of Ptr, making them 1273 /// use FieldGlobals instead. All uses of loaded values satisfy 1274 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1275 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1276 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1277 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1278 for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end(); 1279 UI != E; ) { 1280 Instruction *User = cast<Instruction>(*UI++); 1281 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1282 } 1283 1284 if (Load->use_empty()) { 1285 Load->eraseFromParent(); 1286 InsertedScalarizedValues.erase(Load); 1287 } 1288 } 1289 1290 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures. Break 1291 /// it up into multiple allocations of arrays of the fields. 1292 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1293 Value* NElems, TargetData *TD) { 1294 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1295 const Type* MAT = getMallocAllocatedType(CI); 1296 const StructType *STy = cast<StructType>(MAT); 1297 1298 // There is guaranteed to be at least one use of the malloc (storing 1299 // it into GV). If there are other uses, change them to be uses of 1300 // the global to simplify later code. This also deletes the store 1301 // into GV. 1302 ReplaceUsesOfMallocWithGlobal(CI, GV); 1303 1304 // Okay, at this point, there are no users of the malloc. Insert N 1305 // new mallocs at the same place as CI, and N globals. 1306 std::vector<Value*> FieldGlobals; 1307 std::vector<Value*> FieldMallocs; 1308 1309 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1310 const Type *FieldTy = STy->getElementType(FieldNo); 1311 const PointerType *PFieldTy = PointerType::getUnqual(FieldTy); 1312 1313 GlobalVariable *NGV = 1314 new GlobalVariable(*GV->getParent(), 1315 PFieldTy, false, GlobalValue::InternalLinkage, 1316 Constant::getNullValue(PFieldTy), 1317 GV->getName() + ".f" + Twine(FieldNo), GV, 1318 GV->isThreadLocal()); 1319 FieldGlobals.push_back(NGV); 1320 1321 unsigned TypeSize = TD->getTypeAllocSize(FieldTy); 1322 if (const StructType *ST = dyn_cast<StructType>(FieldTy)) 1323 TypeSize = TD->getStructLayout(ST)->getSizeInBytes(); 1324 const Type *IntPtrTy = TD->getIntPtrType(CI->getContext()); 1325 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1326 ConstantInt::get(IntPtrTy, TypeSize), 1327 NElems, 0, 1328 CI->getName() + ".f" + Twine(FieldNo)); 1329 FieldMallocs.push_back(NMI); 1330 new StoreInst(NMI, NGV, CI); 1331 } 1332 1333 // The tricky aspect of this transformation is handling the case when malloc 1334 // fails. In the original code, malloc failing would set the result pointer 1335 // of malloc to null. In this case, some mallocs could succeed and others 1336 // could fail. As such, we emit code that looks like this: 1337 // F0 = malloc(field0) 1338 // F1 = malloc(field1) 1339 // F2 = malloc(field2) 1340 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1341 // if (F0) { free(F0); F0 = 0; } 1342 // if (F1) { free(F1); F1 = 0; } 1343 // if (F2) { free(F2); F2 = 0; } 1344 // } 1345 // The malloc can also fail if its argument is too large. 1346 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1347 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1348 ConstantZero, "isneg"); 1349 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1350 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1351 Constant::getNullValue(FieldMallocs[i]->getType()), 1352 "isnull"); 1353 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1354 } 1355 1356 // Split the basic block at the old malloc. 1357 BasicBlock *OrigBB = CI->getParent(); 1358 BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont"); 1359 1360 // Create the block to check the first condition. Put all these blocks at the 1361 // end of the function as they are unlikely to be executed. 1362 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1363 "malloc_ret_null", 1364 OrigBB->getParent()); 1365 1366 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1367 // branch on RunningOr. 1368 OrigBB->getTerminator()->eraseFromParent(); 1369 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1370 1371 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1372 // pointer, because some may be null while others are not. 1373 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1374 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1375 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1376 Constant::getNullValue(GVVal->getType()), 1377 "tmp"); 1378 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1379 OrigBB->getParent()); 1380 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1381 OrigBB->getParent()); 1382 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1383 Cmp, NullPtrBlock); 1384 1385 // Fill in FreeBlock. 1386 CallInst::CreateFree(GVVal, BI); 1387 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1388 FreeBlock); 1389 BranchInst::Create(NextBlock, FreeBlock); 1390 1391 NullPtrBlock = NextBlock; 1392 } 1393 1394 BranchInst::Create(ContBB, NullPtrBlock); 1395 1396 // CI is no longer needed, remove it. 1397 CI->eraseFromParent(); 1398 1399 /// InsertedScalarizedLoads - As we process loads, if we can't immediately 1400 /// update all uses of the load, keep track of what scalarized loads are 1401 /// inserted for a given load. 1402 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1403 InsertedScalarizedValues[GV] = FieldGlobals; 1404 1405 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1406 1407 // Okay, the malloc site is completely handled. All of the uses of GV are now 1408 // loads, and all uses of those loads are simple. Rewrite them to use loads 1409 // of the per-field globals instead. 1410 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) { 1411 Instruction *User = cast<Instruction>(*UI++); 1412 1413 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1414 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1415 continue; 1416 } 1417 1418 // Must be a store of null. 1419 StoreInst *SI = cast<StoreInst>(User); 1420 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1421 "Unexpected heap-sra user!"); 1422 1423 // Insert a store of null into each global. 1424 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1425 const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType()); 1426 Constant *Null = Constant::getNullValue(PT->getElementType()); 1427 new StoreInst(Null, FieldGlobals[i], SI); 1428 } 1429 // Erase the original store. 1430 SI->eraseFromParent(); 1431 } 1432 1433 // While we have PHIs that are interesting to rewrite, do it. 1434 while (!PHIsToRewrite.empty()) { 1435 PHINode *PN = PHIsToRewrite.back().first; 1436 unsigned FieldNo = PHIsToRewrite.back().second; 1437 PHIsToRewrite.pop_back(); 1438 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1439 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1440 1441 // Add all the incoming values. This can materialize more phis. 1442 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1443 Value *InVal = PN->getIncomingValue(i); 1444 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1445 PHIsToRewrite); 1446 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1447 } 1448 } 1449 1450 // Drop all inter-phi links and any loads that made it this far. 1451 for (DenseMap<Value*, std::vector<Value*> >::iterator 1452 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1453 I != E; ++I) { 1454 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1455 PN->dropAllReferences(); 1456 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1457 LI->dropAllReferences(); 1458 } 1459 1460 // Delete all the phis and loads now that inter-references are dead. 1461 for (DenseMap<Value*, std::vector<Value*> >::iterator 1462 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1463 I != E; ++I) { 1464 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1465 PN->eraseFromParent(); 1466 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1467 LI->eraseFromParent(); 1468 } 1469 1470 // The old global is now dead, remove it. 1471 GV->eraseFromParent(); 1472 1473 ++NumHeapSRA; 1474 return cast<GlobalVariable>(FieldGlobals[0]); 1475 } 1476 1477 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a 1478 /// pointer global variable with a single value stored it that is a malloc or 1479 /// cast of malloc. 1480 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, 1481 CallInst *CI, 1482 const Type *AllocTy, 1483 Module::global_iterator &GVI, 1484 TargetData *TD) { 1485 if (!TD) 1486 return false; 1487 1488 // If this is a malloc of an abstract type, don't touch it. 1489 if (!AllocTy->isSized()) 1490 return false; 1491 1492 // We can't optimize this global unless all uses of it are *known* to be 1493 // of the malloc value, not of the null initializer value (consider a use 1494 // that compares the global's value against zero to see if the malloc has 1495 // been reached). To do this, we check to see if all uses of the global 1496 // would trap if the global were null: this proves that they must all 1497 // happen after the malloc. 1498 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1499 return false; 1500 1501 // We can't optimize this if the malloc itself is used in a complex way, 1502 // for example, being stored into multiple globals. This allows the 1503 // malloc to be stored into the specified global, loaded setcc'd, and 1504 // GEP'd. These are all things we could transform to using the global 1505 // for. 1506 SmallPtrSet<const PHINode*, 8> PHIs; 1507 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1508 return false; 1509 1510 // If we have a global that is only initialized with a fixed size malloc, 1511 // transform the program to use global memory instead of malloc'd memory. 1512 // This eliminates dynamic allocation, avoids an indirection accessing the 1513 // data, and exposes the resultant global to further GlobalOpt. 1514 // We cannot optimize the malloc if we cannot determine malloc array size. 1515 Value *NElems = getMallocArraySize(CI, TD, true); 1516 if (!NElems) 1517 return false; 1518 1519 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1520 // Restrict this transformation to only working on small allocations 1521 // (2048 bytes currently), as we don't want to introduce a 16M global or 1522 // something. 1523 if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) { 1524 GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD); 1525 return true; 1526 } 1527 1528 // If the allocation is an array of structures, consider transforming this 1529 // into multiple malloc'd arrays, one for each field. This is basically 1530 // SRoA for malloc'd memory. 1531 1532 // If this is an allocation of a fixed size array of structs, analyze as a 1533 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1534 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1535 if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1536 AllocTy = AT->getElementType(); 1537 1538 const StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1539 if (!AllocSTy) 1540 return false; 1541 1542 // This the structure has an unreasonable number of fields, leave it 1543 // alone. 1544 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1545 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1546 1547 // If this is a fixed size array, transform the Malloc to be an alloc of 1548 // structs. malloc [100 x struct],1 -> malloc struct, 100 1549 if (const ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) { 1550 const Type *IntPtrTy = TD->getIntPtrType(CI->getContext()); 1551 unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes(); 1552 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1553 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1554 Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, 1555 AllocSize, NumElements, 1556 0, CI->getName()); 1557 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1558 CI->replaceAllUsesWith(Cast); 1559 CI->eraseFromParent(); 1560 CI = dyn_cast<BitCastInst>(Malloc) ? 1561 extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc); 1562 } 1563 1564 GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD); 1565 return true; 1566 } 1567 1568 return false; 1569 } 1570 1571 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge 1572 // that only one value (besides its initializer) is ever stored to the global. 1573 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1574 Module::global_iterator &GVI, 1575 TargetData *TD) { 1576 // Ignore no-op GEPs and bitcasts. 1577 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1578 1579 // If we are dealing with a pointer global that is initialized to null and 1580 // only has one (non-null) value stored into it, then we can optimize any 1581 // users of the loaded value (often calls and loads) that would trap if the 1582 // value was null. 1583 if (GV->getInitializer()->getType()->isPointerTy() && 1584 GV->getInitializer()->isNullValue()) { 1585 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1586 if (GV->getInitializer()->getType() != SOVC->getType()) 1587 SOVC = 1588 ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1589 1590 // Optimize away any trapping uses of the loaded value. 1591 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC)) 1592 return true; 1593 } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) { 1594 const Type* MallocType = getMallocAllocatedType(CI); 1595 if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1596 GVI, TD)) 1597 return true; 1598 } 1599 } 1600 1601 return false; 1602 } 1603 1604 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only 1605 /// two values ever stored into GV are its initializer and OtherVal. See if we 1606 /// can shrink the global into a boolean and select between the two values 1607 /// whenever it is used. This exposes the values to other scalar optimizations. 1608 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1609 const Type *GVElType = GV->getType()->getElementType(); 1610 1611 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1612 // an FP value, pointer or vector, don't do this optimization because a select 1613 // between them is very expensive and unlikely to lead to later 1614 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1615 // where v1 and v2 both require constant pool loads, a big loss. 1616 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1617 GVElType->isFloatingPointTy() || 1618 GVElType->isPointerTy() || GVElType->isVectorTy()) 1619 return false; 1620 1621 // Walk the use list of the global seeing if all the uses are load or store. 1622 // If there is anything else, bail out. 1623 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){ 1624 User *U = *I; 1625 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1626 return false; 1627 } 1628 1629 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV); 1630 1631 // Create the new global, initializing it to false. 1632 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1633 false, 1634 GlobalValue::InternalLinkage, 1635 ConstantInt::getFalse(GV->getContext()), 1636 GV->getName()+".b", 1637 GV->isThreadLocal()); 1638 GV->getParent()->getGlobalList().insert(GV, NewGV); 1639 1640 Constant *InitVal = GV->getInitializer(); 1641 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1642 "No reason to shrink to bool!"); 1643 1644 // If initialized to zero and storing one into the global, we can use a cast 1645 // instead of a select to synthesize the desired value. 1646 bool IsOneZero = false; 1647 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1648 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1649 1650 while (!GV->use_empty()) { 1651 Instruction *UI = cast<Instruction>(GV->use_back()); 1652 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1653 // Change the store into a boolean store. 1654 bool StoringOther = SI->getOperand(0) == OtherVal; 1655 // Only do this if we weren't storing a loaded value. 1656 Value *StoreVal; 1657 if (StoringOther || SI->getOperand(0) == InitVal) 1658 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1659 StoringOther); 1660 else { 1661 // Otherwise, we are storing a previously loaded copy. To do this, 1662 // change the copy from copying the original value to just copying the 1663 // bool. 1664 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1665 1666 // If we've already replaced the input, StoredVal will be a cast or 1667 // select instruction. If not, it will be a load of the original 1668 // global. 1669 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1670 assert(LI->getOperand(0) == GV && "Not a copy!"); 1671 // Insert a new load, to preserve the saved value. 1672 StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI); 1673 } else { 1674 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1675 "This is not a form that we understand!"); 1676 StoreVal = StoredVal->getOperand(0); 1677 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1678 } 1679 } 1680 new StoreInst(StoreVal, NewGV, SI); 1681 } else { 1682 // Change the load into a load of bool then a select. 1683 LoadInst *LI = cast<LoadInst>(UI); 1684 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI); 1685 Value *NSI; 1686 if (IsOneZero) 1687 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1688 else 1689 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1690 NSI->takeName(LI); 1691 LI->replaceAllUsesWith(NSI); 1692 } 1693 UI->eraseFromParent(); 1694 } 1695 1696 GV->eraseFromParent(); 1697 return true; 1698 } 1699 1700 1701 /// ProcessInternalGlobal - Analyze the specified global variable and optimize 1702 /// it if possible. If we make a change, return true. 1703 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV, 1704 Module::global_iterator &GVI) { 1705 if (!GV->hasLocalLinkage()) 1706 return false; 1707 1708 // Do more involved optimizations if the global is internal. 1709 GV->removeDeadConstantUsers(); 1710 1711 if (GV->use_empty()) { 1712 DEBUG(dbgs() << "GLOBAL DEAD: " << *GV); 1713 GV->eraseFromParent(); 1714 ++NumDeleted; 1715 return true; 1716 } 1717 1718 SmallPtrSet<const PHINode*, 16> PHIUsers; 1719 GlobalStatus GS; 1720 1721 if (AnalyzeGlobal(GV, GS, PHIUsers)) 1722 return false; 1723 1724 if (!GS.isCompared && !GV->hasUnnamedAddr()) { 1725 GV->setUnnamedAddr(true); 1726 NumUnnamed++; 1727 } 1728 1729 if (GV->isConstant() || !GV->hasInitializer()) 1730 return false; 1731 1732 return ProcessInternalGlobal(GV, GVI, PHIUsers, GS); 1733 } 1734 1735 /// ProcessInternalGlobal - Analyze the specified global variable and optimize 1736 /// it if possible. If we make a change, return true. 1737 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV, 1738 Module::global_iterator &GVI, 1739 const SmallPtrSet<const PHINode*, 16> &PHIUsers, 1740 const GlobalStatus &GS) { 1741 // If this is a first class global and has only one accessing function 1742 // and this function is main (which we know is not recursive we can make 1743 // this global a local variable) we replace the global with a local alloca 1744 // in this function. 1745 // 1746 // NOTE: It doesn't make sense to promote non single-value types since we 1747 // are just replacing static memory to stack memory. 1748 // 1749 // If the global is in different address space, don't bring it to stack. 1750 if (!GS.HasMultipleAccessingFunctions && 1751 GS.AccessingFunction && !GS.HasNonInstructionUser && 1752 GV->getType()->getElementType()->isSingleValueType() && 1753 GS.AccessingFunction->getName() == "main" && 1754 GS.AccessingFunction->hasExternalLinkage() && 1755 GV->getType()->getAddressSpace() == 0) { 1756 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV); 1757 Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1758 ->getEntryBlock().begin()); 1759 const Type* ElemTy = GV->getType()->getElementType(); 1760 // FIXME: Pass Global's alignment when globals have alignment 1761 AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI); 1762 if (!isa<UndefValue>(GV->getInitializer())) 1763 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1764 1765 GV->replaceAllUsesWith(Alloca); 1766 GV->eraseFromParent(); 1767 ++NumLocalized; 1768 return true; 1769 } 1770 1771 // If the global is never loaded (but may be stored to), it is dead. 1772 // Delete it now. 1773 if (!GS.isLoaded) { 1774 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV); 1775 1776 // Delete any stores we can find to the global. We may not be able to 1777 // make it completely dead though. 1778 bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer()); 1779 1780 // If the global is dead now, delete it. 1781 if (GV->use_empty()) { 1782 GV->eraseFromParent(); 1783 ++NumDeleted; 1784 Changed = true; 1785 } 1786 return Changed; 1787 1788 } else if (GS.StoredType <= GlobalStatus::isInitializerStored) { 1789 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV); 1790 GV->setConstant(true); 1791 1792 // Clean up any obviously simplifiable users now. 1793 CleanupConstantGlobalUsers(GV, GV->getInitializer()); 1794 1795 // If the global is dead now, just nuke it. 1796 if (GV->use_empty()) { 1797 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1798 << "all users and delete global!\n"); 1799 GV->eraseFromParent(); 1800 ++NumDeleted; 1801 } 1802 1803 ++NumMarked; 1804 return true; 1805 } else if (!GV->getInitializer()->getType()->isSingleValueType()) { 1806 if (TargetData *TD = getAnalysisIfAvailable<TargetData>()) 1807 if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) { 1808 GVI = FirstNewGV; // Don't skip the newly produced globals! 1809 return true; 1810 } 1811 } else if (GS.StoredType == GlobalStatus::isStoredOnce) { 1812 // If the initial value for the global was an undef value, and if only 1813 // one other value was stored into it, we can just change the 1814 // initializer to be the stored value, then delete all stores to the 1815 // global. This allows us to mark it constant. 1816 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1817 if (isa<UndefValue>(GV->getInitializer())) { 1818 // Change the initial value here. 1819 GV->setInitializer(SOVConstant); 1820 1821 // Clean up any obviously simplifiable users now. 1822 CleanupConstantGlobalUsers(GV, GV->getInitializer()); 1823 1824 if (GV->use_empty()) { 1825 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1826 << "simplify all users and delete global!\n"); 1827 GV->eraseFromParent(); 1828 ++NumDeleted; 1829 } else { 1830 GVI = GV; 1831 } 1832 ++NumSubstitute; 1833 return true; 1834 } 1835 1836 // Try to optimize globals based on the knowledge that only one value 1837 // (besides its initializer) is ever stored to the global. 1838 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI, 1839 getAnalysisIfAvailable<TargetData>())) 1840 return true; 1841 1842 // Otherwise, if the global was not a boolean, we can shrink it to be a 1843 // boolean. 1844 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1845 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1846 ++NumShrunkToBool; 1847 return true; 1848 } 1849 } 1850 1851 return false; 1852 } 1853 1854 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified 1855 /// function, changing them to FastCC. 1856 static void ChangeCalleesToFastCall(Function *F) { 1857 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 1858 CallSite User(cast<Instruction>(*UI)); 1859 User.setCallingConv(CallingConv::Fast); 1860 } 1861 } 1862 1863 static AttrListPtr StripNest(const AttrListPtr &Attrs) { 1864 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1865 if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0) 1866 continue; 1867 1868 // There can be only one. 1869 return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest); 1870 } 1871 1872 return Attrs; 1873 } 1874 1875 static void RemoveNestAttribute(Function *F) { 1876 F->setAttributes(StripNest(F->getAttributes())); 1877 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){ 1878 CallSite User(cast<Instruction>(*UI)); 1879 User.setAttributes(StripNest(User.getAttributes())); 1880 } 1881 } 1882 1883 bool GlobalOpt::OptimizeFunctions(Module &M) { 1884 bool Changed = false; 1885 // Optimize functions. 1886 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 1887 Function *F = FI++; 1888 // Functions without names cannot be referenced outside this module. 1889 if (!F->hasName() && !F->isDeclaration()) 1890 F->setLinkage(GlobalValue::InternalLinkage); 1891 F->removeDeadConstantUsers(); 1892 if (F->use_empty() && (F->hasLocalLinkage() || F->hasLinkOnceLinkage())) { 1893 F->eraseFromParent(); 1894 Changed = true; 1895 ++NumFnDeleted; 1896 } else if (F->hasLocalLinkage()) { 1897 if (F->getCallingConv() == CallingConv::C && !F->isVarArg() && 1898 !F->hasAddressTaken()) { 1899 // If this function has C calling conventions, is not a varargs 1900 // function, and is only called directly, promote it to use the Fast 1901 // calling convention. 1902 F->setCallingConv(CallingConv::Fast); 1903 ChangeCalleesToFastCall(F); 1904 ++NumFastCallFns; 1905 Changed = true; 1906 } 1907 1908 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 1909 !F->hasAddressTaken()) { 1910 // The function is not used by a trampoline intrinsic, so it is safe 1911 // to remove the 'nest' attribute. 1912 RemoveNestAttribute(F); 1913 ++NumNestRemoved; 1914 Changed = true; 1915 } 1916 } 1917 } 1918 return Changed; 1919 } 1920 1921 bool GlobalOpt::OptimizeGlobalVars(Module &M) { 1922 bool Changed = false; 1923 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 1924 GVI != E; ) { 1925 GlobalVariable *GV = GVI++; 1926 // Global variables without names cannot be referenced outside this module. 1927 if (!GV->hasName() && !GV->isDeclaration()) 1928 GV->setLinkage(GlobalValue::InternalLinkage); 1929 // Simplify the initializer. 1930 if (GV->hasInitializer()) 1931 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) { 1932 TargetData *TD = getAnalysisIfAvailable<TargetData>(); 1933 Constant *New = ConstantFoldConstantExpression(CE, TD); 1934 if (New && New != CE) 1935 GV->setInitializer(New); 1936 } 1937 1938 Changed |= ProcessGlobal(GV, GVI); 1939 } 1940 return Changed; 1941 } 1942 1943 /// FindGlobalCtors - Find the llvm.globalctors list, verifying that all 1944 /// initializers have an init priority of 65535. 1945 GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) { 1946 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); 1947 if (GV == 0) return 0; 1948 1949 // Found it, verify it's an array of { int, void()* }. 1950 const ArrayType *ATy =dyn_cast<ArrayType>(GV->getType()->getElementType()); 1951 if (!ATy) return 0; 1952 const StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 1953 if (!STy || STy->getNumElements() != 2 || 1954 !STy->getElementType(0)->isIntegerTy(32)) return 0; 1955 const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1)); 1956 if (!PFTy) return 0; 1957 const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType()); 1958 if (!FTy || !FTy->getReturnType()->isVoidTy() || 1959 FTy->isVarArg() || FTy->getNumParams() != 0) 1960 return 0; 1961 1962 // Verify that the initializer is simple enough for us to handle. We are 1963 // only allowed to optimize the initializer if it is unique. 1964 if (!GV->hasUniqueInitializer()) return 0; 1965 1966 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); 1967 if (!CA) return 0; 1968 1969 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) { 1970 ConstantStruct *CS = dyn_cast<ConstantStruct>(*i); 1971 if (CS == 0) return 0; 1972 1973 if (isa<ConstantPointerNull>(CS->getOperand(1))) 1974 continue; 1975 1976 // Must have a function or null ptr. 1977 if (!isa<Function>(CS->getOperand(1))) 1978 return 0; 1979 1980 // Init priority must be standard. 1981 ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0)); 1982 if (!CI || CI->getZExtValue() != 65535) 1983 return 0; 1984 } 1985 1986 return GV; 1987 } 1988 1989 /// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand, 1990 /// return a list of the functions and null terminator as a vector. 1991 static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) { 1992 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer()); 1993 std::vector<Function*> Result; 1994 Result.reserve(CA->getNumOperands()); 1995 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) { 1996 ConstantStruct *CS = cast<ConstantStruct>(*i); 1997 Result.push_back(dyn_cast<Function>(CS->getOperand(1))); 1998 } 1999 return Result; 2000 } 2001 2002 /// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the 2003 /// specified array, returning the new global to use. 2004 static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL, 2005 const std::vector<Function*> &Ctors) { 2006 // If we made a change, reassemble the initializer list. 2007 std::vector<Constant*> CSVals; 2008 CSVals.push_back(ConstantInt::get(Type::getInt32Ty(GCL->getContext()),65535)); 2009 CSVals.push_back(0); 2010 2011 // Create the new init list. 2012 std::vector<Constant*> CAList; 2013 for (unsigned i = 0, e = Ctors.size(); i != e; ++i) { 2014 if (Ctors[i]) { 2015 CSVals[1] = Ctors[i]; 2016 } else { 2017 const Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()), 2018 false); 2019 const PointerType *PFTy = PointerType::getUnqual(FTy); 2020 CSVals[1] = Constant::getNullValue(PFTy); 2021 CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 2022 2147483647); 2023 } 2024 CAList.push_back(ConstantStruct::get(GCL->getContext(), CSVals, false)); 2025 } 2026 2027 // Create the array initializer. 2028 const Type *StructTy = 2029 cast<ArrayType>(GCL->getType()->getElementType())->getElementType(); 2030 Constant *CA = ConstantArray::get(ArrayType::get(StructTy, 2031 CAList.size()), CAList); 2032 2033 // If we didn't change the number of elements, don't create a new GV. 2034 if (CA->getType() == GCL->getInitializer()->getType()) { 2035 GCL->setInitializer(CA); 2036 return GCL; 2037 } 2038 2039 // Create the new global and insert it next to the existing list. 2040 GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(), 2041 GCL->getLinkage(), CA, "", 2042 GCL->isThreadLocal()); 2043 GCL->getParent()->getGlobalList().insert(GCL, NGV); 2044 NGV->takeName(GCL); 2045 2046 // Nuke the old list, replacing any uses with the new one. 2047 if (!GCL->use_empty()) { 2048 Constant *V = NGV; 2049 if (V->getType() != GCL->getType()) 2050 V = ConstantExpr::getBitCast(V, GCL->getType()); 2051 GCL->replaceAllUsesWith(V); 2052 } 2053 GCL->eraseFromParent(); 2054 2055 if (Ctors.size()) 2056 return NGV; 2057 else 2058 return 0; 2059 } 2060 2061 2062 static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues, Value *V) { 2063 if (Constant *CV = dyn_cast<Constant>(V)) return CV; 2064 Constant *R = ComputedValues[V]; 2065 assert(R && "Reference to an uncomputed value!"); 2066 return R; 2067 } 2068 2069 static inline bool 2070 isSimpleEnoughValueToCommit(Constant *C, 2071 SmallPtrSet<Constant*, 8> &SimpleConstants); 2072 2073 2074 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be 2075 /// handled by the code generator. We don't want to generate something like: 2076 /// void *X = &X/42; 2077 /// because the code generator doesn't have a relocation that can handle that. 2078 /// 2079 /// This function should be called if C was not found (but just got inserted) 2080 /// in SimpleConstants to avoid having to rescan the same constants all the 2081 /// time. 2082 static bool isSimpleEnoughValueToCommitHelper(Constant *C, 2083 SmallPtrSet<Constant*, 8> &SimpleConstants) { 2084 // Simple integer, undef, constant aggregate zero, global addresses, etc are 2085 // all supported. 2086 if (C->getNumOperands() == 0 || isa<BlockAddress>(C) || 2087 isa<GlobalValue>(C)) 2088 return true; 2089 2090 // Aggregate values are safe if all their elements are. 2091 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2092 isa<ConstantVector>(C)) { 2093 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { 2094 Constant *Op = cast<Constant>(C->getOperand(i)); 2095 if (!isSimpleEnoughValueToCommit(Op, SimpleConstants)) 2096 return false; 2097 } 2098 return true; 2099 } 2100 2101 // We don't know exactly what relocations are allowed in constant expressions, 2102 // so we allow &global+constantoffset, which is safe and uniformly supported 2103 // across targets. 2104 ConstantExpr *CE = cast<ConstantExpr>(C); 2105 switch (CE->getOpcode()) { 2106 case Instruction::BitCast: 2107 case Instruction::IntToPtr: 2108 case Instruction::PtrToInt: 2109 // These casts are always fine if the casted value is. 2110 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants); 2111 2112 // GEP is fine if it is simple + constant offset. 2113 case Instruction::GetElementPtr: 2114 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) 2115 if (!isa<ConstantInt>(CE->getOperand(i))) 2116 return false; 2117 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants); 2118 2119 case Instruction::Add: 2120 // We allow simple+cst. 2121 if (!isa<ConstantInt>(CE->getOperand(1))) 2122 return false; 2123 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants); 2124 } 2125 return false; 2126 } 2127 2128 static inline bool 2129 isSimpleEnoughValueToCommit(Constant *C, 2130 SmallPtrSet<Constant*, 8> &SimpleConstants) { 2131 // If we already checked this constant, we win. 2132 if (!SimpleConstants.insert(C)) return true; 2133 // Check the constant. 2134 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants); 2135 } 2136 2137 2138 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple 2139 /// enough for us to understand. In particular, if it is a cast to anything 2140 /// other than from one pointer type to another pointer type, we punt. 2141 /// We basically just support direct accesses to globals and GEP's of 2142 /// globals. This should be kept up to date with CommitValueTo. 2143 static bool isSimpleEnoughPointerToCommit(Constant *C) { 2144 // Conservatively, avoid aggregate types. This is because we don't 2145 // want to worry about them partially overlapping other stores. 2146 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) 2147 return false; 2148 2149 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 2150 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2151 // external globals. 2152 return GV->hasUniqueInitializer(); 2153 2154 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2155 // Handle a constantexpr gep. 2156 if (CE->getOpcode() == Instruction::GetElementPtr && 2157 isa<GlobalVariable>(CE->getOperand(0)) && 2158 cast<GEPOperator>(CE)->isInBounds()) { 2159 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2160 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2161 // external globals. 2162 if (!GV->hasUniqueInitializer()) 2163 return false; 2164 2165 // The first index must be zero. 2166 ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin())); 2167 if (!CI || !CI->isZero()) return false; 2168 2169 // The remaining indices must be compile-time known integers within the 2170 // notional bounds of the corresponding static array types. 2171 if (!CE->isGEPWithNoNotionalOverIndexing()) 2172 return false; 2173 2174 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2175 2176 // A constantexpr bitcast from a pointer to another pointer is a no-op, 2177 // and we know how to evaluate it by moving the bitcast from the pointer 2178 // operand to the value operand. 2179 } else if (CE->getOpcode() == Instruction::BitCast && 2180 isa<GlobalVariable>(CE->getOperand(0))) { 2181 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or 2182 // external globals. 2183 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); 2184 } 2185 } 2186 2187 return false; 2188 } 2189 2190 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global 2191 /// initializer. This returns 'Init' modified to reflect 'Val' stored into it. 2192 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into. 2193 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2194 ConstantExpr *Addr, unsigned OpNo) { 2195 // Base case of the recursion. 2196 if (OpNo == Addr->getNumOperands()) { 2197 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2198 return Val; 2199 } 2200 2201 std::vector<Constant*> Elts; 2202 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) { 2203 2204 // Break up the constant into its elements. 2205 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) { 2206 for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i) 2207 Elts.push_back(cast<Constant>(*i)); 2208 } else if (isa<ConstantAggregateZero>(Init)) { 2209 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2210 Elts.push_back(Constant::getNullValue(STy->getElementType(i))); 2211 } else if (isa<UndefValue>(Init)) { 2212 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2213 Elts.push_back(UndefValue::get(STy->getElementType(i))); 2214 } else { 2215 llvm_unreachable("This code is out of sync with " 2216 " ConstantFoldLoadThroughGEPConstantExpr"); 2217 } 2218 2219 // Replace the element that we are supposed to. 2220 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2221 unsigned Idx = CU->getZExtValue(); 2222 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2223 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2224 2225 // Return the modified struct. 2226 return ConstantStruct::get(Init->getContext(), &Elts[0], Elts.size(), 2227 STy->isPacked()); 2228 } else { 2229 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2230 const SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2231 2232 uint64_t NumElts; 2233 if (const ArrayType *ATy = dyn_cast<ArrayType>(InitTy)) 2234 NumElts = ATy->getNumElements(); 2235 else 2236 NumElts = cast<VectorType>(InitTy)->getNumElements(); 2237 2238 2239 // Break up the array into elements. 2240 if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) { 2241 for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) 2242 Elts.push_back(cast<Constant>(*i)); 2243 } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) { 2244 for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i) 2245 Elts.push_back(cast<Constant>(*i)); 2246 } else if (isa<ConstantAggregateZero>(Init)) { 2247 Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType())); 2248 } else { 2249 assert(isa<UndefValue>(Init) && "This code is out of sync with " 2250 " ConstantFoldLoadThroughGEPConstantExpr"); 2251 Elts.assign(NumElts, UndefValue::get(InitTy->getElementType())); 2252 } 2253 2254 assert(CI->getZExtValue() < NumElts); 2255 Elts[CI->getZExtValue()] = 2256 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2257 2258 if (Init->getType()->isArrayTy()) 2259 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2260 else 2261 return ConstantVector::get(&Elts[0], Elts.size()); 2262 } 2263 } 2264 2265 /// CommitValueTo - We have decided that Addr (which satisfies the predicate 2266 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2267 static void CommitValueTo(Constant *Val, Constant *Addr) { 2268 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2269 assert(GV->hasInitializer()); 2270 GV->setInitializer(Val); 2271 return; 2272 } 2273 2274 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2275 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2276 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2277 } 2278 2279 /// ComputeLoadResult - Return the value that would be computed by a load from 2280 /// P after the stores reflected by 'memory' have been performed. If we can't 2281 /// decide, return null. 2282 static Constant *ComputeLoadResult(Constant *P, 2283 const DenseMap<Constant*, Constant*> &Memory) { 2284 // If this memory location has been recently stored, use the stored value: it 2285 // is the most up-to-date. 2286 DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P); 2287 if (I != Memory.end()) return I->second; 2288 2289 // Access it. 2290 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 2291 if (GV->hasDefinitiveInitializer()) 2292 return GV->getInitializer(); 2293 return 0; 2294 } 2295 2296 // Handle a constantexpr getelementptr. 2297 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) 2298 if (CE->getOpcode() == Instruction::GetElementPtr && 2299 isa<GlobalVariable>(CE->getOperand(0))) { 2300 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2301 if (GV->hasDefinitiveInitializer()) 2302 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); 2303 } 2304 2305 return 0; // don't know how to evaluate. 2306 } 2307 2308 /// EvaluateFunction - Evaluate a call to function F, returning true if 2309 /// successful, false if we can't evaluate it. ActualArgs contains the formal 2310 /// arguments for the function. 2311 static bool EvaluateFunction(Function *F, Constant *&RetVal, 2312 const SmallVectorImpl<Constant*> &ActualArgs, 2313 std::vector<Function*> &CallStack, 2314 DenseMap<Constant*, Constant*> &MutatedMemory, 2315 std::vector<GlobalVariable*> &AllocaTmps, 2316 SmallPtrSet<Constant*, 8> &SimpleConstants, 2317 const TargetData *TD) { 2318 // Check to see if this function is already executing (recursion). If so, 2319 // bail out. TODO: we might want to accept limited recursion. 2320 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end()) 2321 return false; 2322 2323 CallStack.push_back(F); 2324 2325 /// Values - As we compute SSA register values, we store their contents here. 2326 DenseMap<Value*, Constant*> Values; 2327 2328 // Initialize arguments to the incoming values specified. 2329 unsigned ArgNo = 0; 2330 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; 2331 ++AI, ++ArgNo) 2332 Values[AI] = ActualArgs[ArgNo]; 2333 2334 /// ExecutedBlocks - We only handle non-looping, non-recursive code. As such, 2335 /// we can only evaluate any one basic block at most once. This set keeps 2336 /// track of what we have executed so we can detect recursive cases etc. 2337 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; 2338 2339 // CurInst - The current instruction we're evaluating. 2340 BasicBlock::iterator CurInst = F->begin()->begin(); 2341 2342 // This is the main evaluation loop. 2343 while (1) { 2344 Constant *InstResult = 0; 2345 2346 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { 2347 if (SI->isVolatile()) return false; // no volatile accesses. 2348 Constant *Ptr = getVal(Values, SI->getOperand(1)); 2349 if (!isSimpleEnoughPointerToCommit(Ptr)) 2350 // If this is too complex for us to commit, reject it. 2351 return false; 2352 2353 Constant *Val = getVal(Values, SI->getOperand(0)); 2354 2355 // If this might be too difficult for the backend to handle (e.g. the addr 2356 // of one global variable divided by another) then we can't commit it. 2357 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants)) 2358 return false; 2359 2360 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 2361 if (CE->getOpcode() == Instruction::BitCast) { 2362 // If we're evaluating a store through a bitcast, then we need 2363 // to pull the bitcast off the pointer type and push it onto the 2364 // stored value. 2365 Ptr = CE->getOperand(0); 2366 2367 const Type *NewTy=cast<PointerType>(Ptr->getType())->getElementType(); 2368 2369 // In order to push the bitcast onto the stored value, a bitcast 2370 // from NewTy to Val's type must be legal. If it's not, we can try 2371 // introspecting NewTy to find a legal conversion. 2372 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) { 2373 // If NewTy is a struct, we can convert the pointer to the struct 2374 // into a pointer to its first member. 2375 // FIXME: This could be extended to support arrays as well. 2376 if (const StructType *STy = dyn_cast<StructType>(NewTy)) { 2377 NewTy = STy->getTypeAtIndex(0U); 2378 2379 const IntegerType *IdxTy =IntegerType::get(NewTy->getContext(), 32); 2380 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); 2381 Constant * const IdxList[] = {IdxZero, IdxZero}; 2382 2383 Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList, 2); 2384 2385 // If we can't improve the situation by introspecting NewTy, 2386 // we have to give up. 2387 } else { 2388 return 0; 2389 } 2390 } 2391 2392 // If we found compatible types, go ahead and push the bitcast 2393 // onto the stored value. 2394 Val = ConstantExpr::getBitCast(Val, NewTy); 2395 } 2396 2397 MutatedMemory[Ptr] = Val; 2398 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { 2399 InstResult = ConstantExpr::get(BO->getOpcode(), 2400 getVal(Values, BO->getOperand(0)), 2401 getVal(Values, BO->getOperand(1))); 2402 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { 2403 InstResult = ConstantExpr::getCompare(CI->getPredicate(), 2404 getVal(Values, CI->getOperand(0)), 2405 getVal(Values, CI->getOperand(1))); 2406 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { 2407 InstResult = ConstantExpr::getCast(CI->getOpcode(), 2408 getVal(Values, CI->getOperand(0)), 2409 CI->getType()); 2410 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { 2411 InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)), 2412 getVal(Values, SI->getOperand(1)), 2413 getVal(Values, SI->getOperand(2))); 2414 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { 2415 Constant *P = getVal(Values, GEP->getOperand(0)); 2416 SmallVector<Constant*, 8> GEPOps; 2417 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); 2418 i != e; ++i) 2419 GEPOps.push_back(getVal(Values, *i)); 2420 InstResult = cast<GEPOperator>(GEP)->isInBounds() ? 2421 ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) : 2422 ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size()); 2423 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { 2424 if (LI->isVolatile()) return false; // no volatile accesses. 2425 InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)), 2426 MutatedMemory); 2427 if (InstResult == 0) return false; // Could not evaluate load. 2428 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { 2429 if (AI->isArrayAllocation()) return false; // Cannot handle array allocs. 2430 const Type *Ty = AI->getType()->getElementType(); 2431 AllocaTmps.push_back(new GlobalVariable(Ty, false, 2432 GlobalValue::InternalLinkage, 2433 UndefValue::get(Ty), 2434 AI->getName())); 2435 InstResult = AllocaTmps.back(); 2436 } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) { 2437 2438 // Debug info can safely be ignored here. 2439 if (isa<DbgInfoIntrinsic>(CI)) { 2440 ++CurInst; 2441 continue; 2442 } 2443 2444 // Cannot handle inline asm. 2445 if (isa<InlineAsm>(CI->getCalledValue())) return false; 2446 2447 // Resolve function pointers. 2448 Function *Callee = dyn_cast<Function>(getVal(Values, 2449 CI->getCalledValue())); 2450 if (!Callee) return false; // Cannot resolve. 2451 2452 SmallVector<Constant*, 8> Formals; 2453 CallSite CS(CI); 2454 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); 2455 i != e; ++i) 2456 Formals.push_back(getVal(Values, *i)); 2457 2458 if (Callee->isDeclaration()) { 2459 // If this is a function we can constant fold, do it. 2460 if (Constant *C = ConstantFoldCall(Callee, Formals.data(), 2461 Formals.size())) { 2462 InstResult = C; 2463 } else { 2464 return false; 2465 } 2466 } else { 2467 if (Callee->getFunctionType()->isVarArg()) 2468 return false; 2469 2470 Constant *RetVal; 2471 // Execute the call, if successful, use the return value. 2472 if (!EvaluateFunction(Callee, RetVal, Formals, CallStack, 2473 MutatedMemory, AllocaTmps, SimpleConstants, TD)) 2474 return false; 2475 InstResult = RetVal; 2476 } 2477 } else if (isa<TerminatorInst>(CurInst)) { 2478 BasicBlock *NewBB = 0; 2479 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { 2480 if (BI->isUnconditional()) { 2481 NewBB = BI->getSuccessor(0); 2482 } else { 2483 ConstantInt *Cond = 2484 dyn_cast<ConstantInt>(getVal(Values, BI->getCondition())); 2485 if (!Cond) return false; // Cannot determine. 2486 2487 NewBB = BI->getSuccessor(!Cond->getZExtValue()); 2488 } 2489 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { 2490 ConstantInt *Val = 2491 dyn_cast<ConstantInt>(getVal(Values, SI->getCondition())); 2492 if (!Val) return false; // Cannot determine. 2493 NewBB = SI->getSuccessor(SI->findCaseValue(Val)); 2494 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { 2495 Value *Val = getVal(Values, IBI->getAddress())->stripPointerCasts(); 2496 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) 2497 NewBB = BA->getBasicBlock(); 2498 else 2499 return false; // Cannot determine. 2500 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) { 2501 if (RI->getNumOperands()) 2502 RetVal = getVal(Values, RI->getOperand(0)); 2503 2504 CallStack.pop_back(); // return from fn. 2505 return true; // We succeeded at evaluating this ctor! 2506 } else { 2507 // invoke, unwind, unreachable. 2508 return false; // Cannot handle this terminator. 2509 } 2510 2511 // Okay, we succeeded in evaluating this control flow. See if we have 2512 // executed the new block before. If so, we have a looping function, 2513 // which we cannot evaluate in reasonable time. 2514 if (!ExecutedBlocks.insert(NewBB)) 2515 return false; // looped! 2516 2517 // Okay, we have never been in this block before. Check to see if there 2518 // are any PHI nodes. If so, evaluate them with information about where 2519 // we came from. 2520 BasicBlock *OldBB = CurInst->getParent(); 2521 CurInst = NewBB->begin(); 2522 PHINode *PN; 2523 for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) 2524 Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB)); 2525 2526 // Do NOT increment CurInst. We know that the terminator had no value. 2527 continue; 2528 } else { 2529 // Did not know how to evaluate this! 2530 return false; 2531 } 2532 2533 if (!CurInst->use_empty()) { 2534 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult)) 2535 InstResult = ConstantFoldConstantExpression(CE, TD); 2536 2537 Values[CurInst] = InstResult; 2538 } 2539 2540 // Advance program counter. 2541 ++CurInst; 2542 } 2543 } 2544 2545 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if 2546 /// we can. Return true if we can, false otherwise. 2547 static bool EvaluateStaticConstructor(Function *F, const TargetData *TD) { 2548 /// MutatedMemory - For each store we execute, we update this map. Loads 2549 /// check this to get the most up-to-date value. If evaluation is successful, 2550 /// this state is committed to the process. 2551 DenseMap<Constant*, Constant*> MutatedMemory; 2552 2553 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable 2554 /// to represent its body. This vector is needed so we can delete the 2555 /// temporary globals when we are done. 2556 std::vector<GlobalVariable*> AllocaTmps; 2557 2558 /// CallStack - This is used to detect recursion. In pathological situations 2559 /// we could hit exponential behavior, but at least there is nothing 2560 /// unbounded. 2561 std::vector<Function*> CallStack; 2562 2563 /// SimpleConstants - These are constants we have checked and know to be 2564 /// simple enough to live in a static initializer of a global. 2565 SmallPtrSet<Constant*, 8> SimpleConstants; 2566 2567 // Call the function. 2568 Constant *RetValDummy; 2569 bool EvalSuccess = EvaluateFunction(F, RetValDummy, 2570 SmallVector<Constant*, 0>(), CallStack, 2571 MutatedMemory, AllocaTmps, 2572 SimpleConstants, TD); 2573 2574 if (EvalSuccess) { 2575 // We succeeded at evaluation: commit the result. 2576 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2577 << F->getName() << "' to " << MutatedMemory.size() 2578 << " stores.\n"); 2579 for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(), 2580 E = MutatedMemory.end(); I != E; ++I) 2581 CommitValueTo(I->second, I->first); 2582 } 2583 2584 // At this point, we are done interpreting. If we created any 'alloca' 2585 // temporaries, release them now. 2586 while (!AllocaTmps.empty()) { 2587 GlobalVariable *Tmp = AllocaTmps.back(); 2588 AllocaTmps.pop_back(); 2589 2590 // If there are still users of the alloca, the program is doing something 2591 // silly, e.g. storing the address of the alloca somewhere and using it 2592 // later. Since this is undefined, we'll just make it be null. 2593 if (!Tmp->use_empty()) 2594 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType())); 2595 delete Tmp; 2596 } 2597 2598 return EvalSuccess; 2599 } 2600 2601 2602 2603 /// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible. 2604 /// Return true if anything changed. 2605 bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) { 2606 std::vector<Function*> Ctors = ParseGlobalCtors(GCL); 2607 bool MadeChange = false; 2608 if (Ctors.empty()) return false; 2609 2610 const TargetData *TD = getAnalysisIfAvailable<TargetData>(); 2611 // Loop over global ctors, optimizing them when we can. 2612 for (unsigned i = 0; i != Ctors.size(); ++i) { 2613 Function *F = Ctors[i]; 2614 // Found a null terminator in the middle of the list, prune off the rest of 2615 // the list. 2616 if (F == 0) { 2617 if (i != Ctors.size()-1) { 2618 Ctors.resize(i+1); 2619 MadeChange = true; 2620 } 2621 break; 2622 } 2623 2624 // We cannot simplify external ctor functions. 2625 if (F->empty()) continue; 2626 2627 // If we can evaluate the ctor at compile time, do. 2628 if (EvaluateStaticConstructor(F, TD)) { 2629 Ctors.erase(Ctors.begin()+i); 2630 MadeChange = true; 2631 --i; 2632 ++NumCtorsEvaluated; 2633 continue; 2634 } 2635 } 2636 2637 if (!MadeChange) return false; 2638 2639 GCL = InstallGlobalCtors(GCL, Ctors); 2640 return true; 2641 } 2642 2643 bool GlobalOpt::OptimizeGlobalAliases(Module &M) { 2644 bool Changed = false; 2645 2646 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2647 I != E;) { 2648 Module::alias_iterator J = I++; 2649 // Aliases without names cannot be referenced outside this module. 2650 if (!J->hasName() && !J->isDeclaration()) 2651 J->setLinkage(GlobalValue::InternalLinkage); 2652 // If the aliasee may change at link time, nothing can be done - bail out. 2653 if (J->mayBeOverridden()) 2654 continue; 2655 2656 Constant *Aliasee = J->getAliasee(); 2657 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2658 Target->removeDeadConstantUsers(); 2659 bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse(); 2660 2661 // Make all users of the alias use the aliasee instead. 2662 if (!J->use_empty()) { 2663 J->replaceAllUsesWith(Aliasee); 2664 ++NumAliasesResolved; 2665 Changed = true; 2666 } 2667 2668 // If the alias is externally visible, we may still be able to simplify it. 2669 if (!J->hasLocalLinkage()) { 2670 // If the aliasee has internal linkage, give it the name and linkage 2671 // of the alias, and delete the alias. This turns: 2672 // define internal ... @f(...) 2673 // @a = alias ... @f 2674 // into: 2675 // define ... @a(...) 2676 if (!Target->hasLocalLinkage()) 2677 continue; 2678 2679 // Do not perform the transform if multiple aliases potentially target the 2680 // aliasee. This check also ensures that it is safe to replace the section 2681 // and other attributes of the aliasee with those of the alias. 2682 if (!hasOneUse) 2683 continue; 2684 2685 // Give the aliasee the name, linkage and other attributes of the alias. 2686 Target->takeName(J); 2687 Target->setLinkage(J->getLinkage()); 2688 Target->GlobalValue::copyAttributesFrom(J); 2689 } 2690 2691 // Delete the alias. 2692 M.getAliasList().erase(J); 2693 ++NumAliasesRemoved; 2694 Changed = true; 2695 } 2696 2697 return Changed; 2698 } 2699 2700 bool GlobalOpt::runOnModule(Module &M) { 2701 bool Changed = false; 2702 2703 // Try to find the llvm.globalctors list. 2704 GlobalVariable *GlobalCtors = FindGlobalCtors(M); 2705 2706 bool LocalChange = true; 2707 while (LocalChange) { 2708 LocalChange = false; 2709 2710 // Delete functions that are trivially dead, ccc -> fastcc 2711 LocalChange |= OptimizeFunctions(M); 2712 2713 // Optimize global_ctors list. 2714 if (GlobalCtors) 2715 LocalChange |= OptimizeGlobalCtorsList(GlobalCtors); 2716 2717 // Optimize non-address-taken globals. 2718 LocalChange |= OptimizeGlobalVars(M); 2719 2720 // Resolve aliases, when possible. 2721 LocalChange |= OptimizeGlobalAliases(M); 2722 Changed |= LocalChange; 2723 } 2724 2725 // TODO: Move all global ctors functions to the end of the module for code 2726 // layout. 2727 2728 return Changed; 2729 } 2730