1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/GlobalOpt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/ADT/iterator_range.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/BinaryFormat/Dwarf.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Use.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/AtomicOrdering.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MathExtras.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Transforms/IPO.h" 63 #include "llvm/Transforms/Utils/CtorUtils.h" 64 #include "llvm/Transforms/Utils/Evaluator.h" 65 #include "llvm/Transforms/Utils/GlobalStatus.h" 66 #include "llvm/Transforms/Utils/Local.h" 67 #include <cassert> 68 #include <cstdint> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "globalopt" 75 76 STATISTIC(NumMarked , "Number of globals marked constant"); 77 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 78 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 79 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 80 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 81 STATISTIC(NumDeleted , "Number of globals deleted"); 82 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 83 STATISTIC(NumLocalized , "Number of globals localized"); 84 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 85 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 86 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 87 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 88 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 89 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 90 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 91 92 /// Is this global variable possibly used by a leak checker as a root? If so, 93 /// we might not really want to eliminate the stores to it. 94 static bool isLeakCheckerRoot(GlobalVariable *GV) { 95 // A global variable is a root if it is a pointer, or could plausibly contain 96 // a pointer. There are two challenges; one is that we could have a struct 97 // the has an inner member which is a pointer. We recurse through the type to 98 // detect these (up to a point). The other is that we may actually be a union 99 // of a pointer and another type, and so our LLVM type is an integer which 100 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 101 // potentially contained here. 102 103 if (GV->hasPrivateLinkage()) 104 return false; 105 106 SmallVector<Type *, 4> Types; 107 Types.push_back(GV->getValueType()); 108 109 unsigned Limit = 20; 110 do { 111 Type *Ty = Types.pop_back_val(); 112 switch (Ty->getTypeID()) { 113 default: break; 114 case Type::PointerTyID: return true; 115 case Type::ArrayTyID: 116 case Type::VectorTyID: { 117 SequentialType *STy = cast<SequentialType>(Ty); 118 Types.push_back(STy->getElementType()); 119 break; 120 } 121 case Type::StructTyID: { 122 StructType *STy = cast<StructType>(Ty); 123 if (STy->isOpaque()) return true; 124 for (StructType::element_iterator I = STy->element_begin(), 125 E = STy->element_end(); I != E; ++I) { 126 Type *InnerTy = *I; 127 if (isa<PointerType>(InnerTy)) return true; 128 if (isa<CompositeType>(InnerTy)) 129 Types.push_back(InnerTy); 130 } 131 break; 132 } 133 } 134 if (--Limit == 0) return true; 135 } while (!Types.empty()); 136 return false; 137 } 138 139 /// Given a value that is stored to a global but never read, determine whether 140 /// it's safe to remove the store and the chain of computation that feeds the 141 /// store. 142 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 143 do { 144 if (isa<Constant>(V)) 145 return true; 146 if (!V->hasOneUse()) 147 return false; 148 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 149 isa<GlobalValue>(V)) 150 return false; 151 if (isAllocationFn(V, TLI)) 152 return true; 153 154 Instruction *I = cast<Instruction>(V); 155 if (I->mayHaveSideEffects()) 156 return false; 157 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 158 if (!GEP->hasAllConstantIndices()) 159 return false; 160 } else if (I->getNumOperands() != 1) { 161 return false; 162 } 163 164 V = I->getOperand(0); 165 } while (true); 166 } 167 168 /// This GV is a pointer root. Loop over all users of the global and clean up 169 /// any that obviously don't assign the global a value that isn't dynamically 170 /// allocated. 171 static bool CleanupPointerRootUsers(GlobalVariable *GV, 172 const TargetLibraryInfo *TLI) { 173 // A brief explanation of leak checkers. The goal is to find bugs where 174 // pointers are forgotten, causing an accumulating growth in memory 175 // usage over time. The common strategy for leak checkers is to whitelist the 176 // memory pointed to by globals at exit. This is popular because it also 177 // solves another problem where the main thread of a C++ program may shut down 178 // before other threads that are still expecting to use those globals. To 179 // handle that case, we expect the program may create a singleton and never 180 // destroy it. 181 182 bool Changed = false; 183 184 // If Dead[n].first is the only use of a malloc result, we can delete its 185 // chain of computation and the store to the global in Dead[n].second. 186 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 187 188 // Constants can't be pointers to dynamically allocated memory. 189 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 190 UI != E;) { 191 User *U = *UI++; 192 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 193 Value *V = SI->getValueOperand(); 194 if (isa<Constant>(V)) { 195 Changed = true; 196 SI->eraseFromParent(); 197 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 198 if (I->hasOneUse()) 199 Dead.push_back(std::make_pair(I, SI)); 200 } 201 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 202 if (isa<Constant>(MSI->getValue())) { 203 Changed = true; 204 MSI->eraseFromParent(); 205 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 206 if (I->hasOneUse()) 207 Dead.push_back(std::make_pair(I, MSI)); 208 } 209 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 210 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 211 if (MemSrc && MemSrc->isConstant()) { 212 Changed = true; 213 MTI->eraseFromParent(); 214 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 215 if (I->hasOneUse()) 216 Dead.push_back(std::make_pair(I, MTI)); 217 } 218 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 219 if (CE->use_empty()) { 220 CE->destroyConstant(); 221 Changed = true; 222 } 223 } else if (Constant *C = dyn_cast<Constant>(U)) { 224 if (isSafeToDestroyConstant(C)) { 225 C->destroyConstant(); 226 // This could have invalidated UI, start over from scratch. 227 Dead.clear(); 228 CleanupPointerRootUsers(GV, TLI); 229 return true; 230 } 231 } 232 } 233 234 for (int i = 0, e = Dead.size(); i != e; ++i) { 235 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 236 Dead[i].second->eraseFromParent(); 237 Instruction *I = Dead[i].first; 238 do { 239 if (isAllocationFn(I, TLI)) 240 break; 241 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 242 if (!J) 243 break; 244 I->eraseFromParent(); 245 I = J; 246 } while (true); 247 I->eraseFromParent(); 248 } 249 } 250 251 return Changed; 252 } 253 254 /// We just marked GV constant. Loop over all users of the global, cleaning up 255 /// the obvious ones. This is largely just a quick scan over the use list to 256 /// clean up the easy and obvious cruft. This returns true if it made a change. 257 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 258 const DataLayout &DL, 259 TargetLibraryInfo *TLI) { 260 bool Changed = false; 261 // Note that we need to use a weak value handle for the worklist items. When 262 // we delete a constant array, we may also be holding pointer to one of its 263 // elements (or an element of one of its elements if we're dealing with an 264 // array of arrays) in the worklist. 265 SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end()); 266 while (!WorkList.empty()) { 267 Value *UV = WorkList.pop_back_val(); 268 if (!UV) 269 continue; 270 271 User *U = cast<User>(UV); 272 273 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 274 if (Init) { 275 // Replace the load with the initializer. 276 LI->replaceAllUsesWith(Init); 277 LI->eraseFromParent(); 278 Changed = true; 279 } 280 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 281 // Store must be unreachable or storing Init into the global. 282 SI->eraseFromParent(); 283 Changed = true; 284 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 285 if (CE->getOpcode() == Instruction::GetElementPtr) { 286 Constant *SubInit = nullptr; 287 if (Init) 288 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 289 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 290 } else if ((CE->getOpcode() == Instruction::BitCast && 291 CE->getType()->isPointerTy()) || 292 CE->getOpcode() == Instruction::AddrSpaceCast) { 293 // Pointer cast, delete any stores and memsets to the global. 294 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 295 } 296 297 if (CE->use_empty()) { 298 CE->destroyConstant(); 299 Changed = true; 300 } 301 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 302 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 303 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 304 // and will invalidate our notion of what Init is. 305 Constant *SubInit = nullptr; 306 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 307 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 308 ConstantFoldInstruction(GEP, DL, TLI)); 309 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 310 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 311 312 // If the initializer is an all-null value and we have an inbounds GEP, 313 // we already know what the result of any load from that GEP is. 314 // TODO: Handle splats. 315 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 316 SubInit = Constant::getNullValue(GEP->getResultElementType()); 317 } 318 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 319 320 if (GEP->use_empty()) { 321 GEP->eraseFromParent(); 322 Changed = true; 323 } 324 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 325 if (MI->getRawDest() == V) { 326 MI->eraseFromParent(); 327 Changed = true; 328 } 329 330 } else if (Constant *C = dyn_cast<Constant>(U)) { 331 // If we have a chain of dead constantexprs or other things dangling from 332 // us, and if they are all dead, nuke them without remorse. 333 if (isSafeToDestroyConstant(C)) { 334 C->destroyConstant(); 335 CleanupConstantGlobalUsers(V, Init, DL, TLI); 336 return true; 337 } 338 } 339 } 340 return Changed; 341 } 342 343 /// Return true if the specified instruction is a safe user of a derived 344 /// expression from a global that we want to SROA. 345 static bool isSafeSROAElementUse(Value *V) { 346 // We might have a dead and dangling constant hanging off of here. 347 if (Constant *C = dyn_cast<Constant>(V)) 348 return isSafeToDestroyConstant(C); 349 350 Instruction *I = dyn_cast<Instruction>(V); 351 if (!I) return false; 352 353 // Loads are ok. 354 if (isa<LoadInst>(I)) return true; 355 356 // Stores *to* the pointer are ok. 357 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 358 return SI->getOperand(0) != V; 359 360 // Otherwise, it must be a GEP. 361 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 362 if (!GEPI) return false; 363 364 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 365 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 366 return false; 367 368 for (User *U : GEPI->users()) 369 if (!isSafeSROAElementUse(U)) 370 return false; 371 return true; 372 } 373 374 /// U is a direct user of the specified global value. Look at it and its uses 375 /// and decide whether it is safe to SROA this global. 376 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 377 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 378 if (!isa<GetElementPtrInst>(U) && 379 (!isa<ConstantExpr>(U) || 380 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 381 return false; 382 383 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 384 // don't like < 3 operand CE's, and we don't like non-constant integer 385 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 386 // value of C. 387 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 388 !cast<Constant>(U->getOperand(1))->isNullValue() || 389 !isa<ConstantInt>(U->getOperand(2))) 390 return false; 391 392 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 393 ++GEPI; // Skip over the pointer index. 394 395 // If this is a use of an array allocation, do a bit more checking for sanity. 396 if (GEPI.isSequential()) { 397 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 398 399 // Check to make sure that index falls within the array. If not, 400 // something funny is going on, so we won't do the optimization. 401 // 402 if (GEPI.isBoundedSequential() && 403 Idx->getZExtValue() >= GEPI.getSequentialNumElements()) 404 return false; 405 406 // We cannot scalar repl this level of the array unless any array 407 // sub-indices are in-range constants. In particular, consider: 408 // A[0][i]. We cannot know that the user isn't doing invalid things like 409 // allowing i to index an out-of-range subscript that accesses A[1]. 410 // 411 // Scalar replacing *just* the outer index of the array is probably not 412 // going to be a win anyway, so just give up. 413 for (++GEPI; // Skip array index. 414 GEPI != E; 415 ++GEPI) { 416 if (GEPI.isStruct()) 417 continue; 418 419 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 420 if (!IdxVal || 421 (GEPI.isBoundedSequential() && 422 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 423 return false; 424 } 425 } 426 427 return llvm::all_of(U->users(), 428 [](User *UU) { return isSafeSROAElementUse(UU); }); 429 } 430 431 /// Look at all uses of the global and decide whether it is safe for us to 432 /// perform this transformation. 433 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 434 for (User *U : GV->users()) 435 if (!IsUserOfGlobalSafeForSRA(U, GV)) 436 return false; 437 438 return true; 439 } 440 441 /// Copy over the debug info for a variable to its SRA replacements. 442 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 443 uint64_t FragmentOffsetInBits, 444 uint64_t FragmentSizeInBits, 445 unsigned NumElements) { 446 SmallVector<DIGlobalVariableExpression *, 1> GVs; 447 GV->getDebugInfo(GVs); 448 for (auto *GVE : GVs) { 449 DIVariable *Var = GVE->getVariable(); 450 DIExpression *Expr = GVE->getExpression(); 451 if (NumElements > 1) 452 Expr = DIExpression::createFragmentExpression(Expr, FragmentOffsetInBits, 453 FragmentSizeInBits); 454 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 455 NGV->addDebugInfo(NGVE); 456 } 457 } 458 459 /// Perform scalar replacement of aggregates on the specified global variable. 460 /// This opens the door for other optimizations by exposing the behavior of the 461 /// program in a more fine-grained way. We have determined that this 462 /// transformation is safe already. We return the first global variable we 463 /// insert so that the caller can reprocess it. 464 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 465 // Make sure this global only has simple uses that we can SRA. 466 if (!GlobalUsersSafeToSRA(GV)) 467 return nullptr; 468 469 assert(GV->hasLocalLinkage()); 470 Constant *Init = GV->getInitializer(); 471 Type *Ty = Init->getType(); 472 473 std::vector<GlobalVariable *> NewGlobals; 474 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 475 476 // Get the alignment of the global, either explicit or target-specific. 477 unsigned StartAlignment = GV->getAlignment(); 478 if (StartAlignment == 0) 479 StartAlignment = DL.getABITypeAlignment(GV->getType()); 480 481 if (StructType *STy = dyn_cast<StructType>(Ty)) { 482 uint64_t FragmentOffset = 0; 483 unsigned NumElements = STy->getNumElements(); 484 NewGlobals.reserve(NumElements); 485 const StructLayout &Layout = *DL.getStructLayout(STy); 486 for (unsigned i = 0, e = NumElements; i != e; ++i) { 487 Constant *In = Init->getAggregateElement(i); 488 assert(In && "Couldn't get element of initializer?"); 489 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 490 GlobalVariable::InternalLinkage, 491 In, GV->getName()+"."+Twine(i), 492 GV->getThreadLocalMode(), 493 GV->getType()->getAddressSpace()); 494 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 495 NGV->copyAttributesFrom(GV); 496 Globals.push_back(NGV); 497 NewGlobals.push_back(NGV); 498 499 // Calculate the known alignment of the field. If the original aggregate 500 // had 256 byte alignment for example, something might depend on that: 501 // propagate info to each field. 502 uint64_t FieldOffset = Layout.getElementOffset(i); 503 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 504 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 505 NGV->setAlignment(NewAlign); 506 507 // Copy over the debug info for the variable. 508 FragmentOffset = alignTo(FragmentOffset, NewAlign); 509 uint64_t Size = DL.getTypeSizeInBits(NGV->getValueType()); 510 transferSRADebugInfo(GV, NGV, FragmentOffset, Size, NumElements); 511 FragmentOffset += Size; 512 } 513 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 514 unsigned NumElements = STy->getNumElements(); 515 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 516 return nullptr; // It's not worth it. 517 NewGlobals.reserve(NumElements); 518 auto ElTy = STy->getElementType(); 519 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 520 unsigned EltAlign = DL.getABITypeAlignment(ElTy); 521 uint64_t FragmentSizeInBits = DL.getTypeSizeInBits(ElTy); 522 for (unsigned i = 0, e = NumElements; i != e; ++i) { 523 Constant *In = Init->getAggregateElement(i); 524 assert(In && "Couldn't get element of initializer?"); 525 526 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 527 GlobalVariable::InternalLinkage, 528 In, GV->getName()+"."+Twine(i), 529 GV->getThreadLocalMode(), 530 GV->getType()->getAddressSpace()); 531 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 532 NGV->copyAttributesFrom(GV); 533 Globals.push_back(NGV); 534 NewGlobals.push_back(NGV); 535 536 // Calculate the known alignment of the field. If the original aggregate 537 // had 256 byte alignment for example, something might depend on that: 538 // propagate info to each field. 539 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 540 if (NewAlign > EltAlign) 541 NGV->setAlignment(NewAlign); 542 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits, 543 NumElements); 544 } 545 } 546 547 if (NewGlobals.empty()) 548 return nullptr; 549 550 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 551 552 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 553 554 // Loop over all of the uses of the global, replacing the constantexpr geps, 555 // with smaller constantexpr geps or direct references. 556 while (!GV->use_empty()) { 557 User *GEP = GV->user_back(); 558 assert(((isa<ConstantExpr>(GEP) && 559 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 560 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 561 562 // Ignore the 1th operand, which has to be zero or else the program is quite 563 // broken (undefined). Get the 2nd operand, which is the structure or array 564 // index. 565 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 566 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 567 568 Value *NewPtr = NewGlobals[Val]; 569 Type *NewTy = NewGlobals[Val]->getValueType(); 570 571 // Form a shorter GEP if needed. 572 if (GEP->getNumOperands() > 3) { 573 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 574 SmallVector<Constant*, 8> Idxs; 575 Idxs.push_back(NullInt); 576 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 577 Idxs.push_back(CE->getOperand(i)); 578 NewPtr = 579 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 580 } else { 581 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 582 SmallVector<Value*, 8> Idxs; 583 Idxs.push_back(NullInt); 584 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 585 Idxs.push_back(GEPI->getOperand(i)); 586 NewPtr = GetElementPtrInst::Create( 587 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 588 } 589 } 590 GEP->replaceAllUsesWith(NewPtr); 591 592 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 593 GEPI->eraseFromParent(); 594 else 595 cast<ConstantExpr>(GEP)->destroyConstant(); 596 } 597 598 // Delete the old global, now that it is dead. 599 Globals.erase(GV); 600 ++NumSRA; 601 602 // Loop over the new globals array deleting any globals that are obviously 603 // dead. This can arise due to scalarization of a structure or an array that 604 // has elements that are dead. 605 unsigned FirstGlobal = 0; 606 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 607 if (NewGlobals[i]->use_empty()) { 608 Globals.erase(NewGlobals[i]); 609 if (FirstGlobal == i) ++FirstGlobal; 610 } 611 612 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 613 } 614 615 /// Return true if all users of the specified value will trap if the value is 616 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 617 /// reprocessing them. 618 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 619 SmallPtrSetImpl<const PHINode*> &PHIs) { 620 for (const User *U : V->users()) 621 if (isa<LoadInst>(U)) { 622 // Will trap. 623 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 624 if (SI->getOperand(0) == V) { 625 //cerr << "NONTRAPPING USE: " << *U; 626 return false; // Storing the value. 627 } 628 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 629 if (CI->getCalledValue() != V) { 630 //cerr << "NONTRAPPING USE: " << *U; 631 return false; // Not calling the ptr 632 } 633 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 634 if (II->getCalledValue() != V) { 635 //cerr << "NONTRAPPING USE: " << *U; 636 return false; // Not calling the ptr 637 } 638 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 639 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 640 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 641 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 642 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 643 // If we've already seen this phi node, ignore it, it has already been 644 // checked. 645 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 646 return false; 647 } else if (isa<ICmpInst>(U) && 648 isa<ConstantPointerNull>(U->getOperand(1))) { 649 // Ignore icmp X, null 650 } else { 651 //cerr << "NONTRAPPING USE: " << *U; 652 return false; 653 } 654 655 return true; 656 } 657 658 /// Return true if all uses of any loads from GV will trap if the loaded value 659 /// is null. Note that this also permits comparisons of the loaded value 660 /// against null, as a special case. 661 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 662 for (const User *U : GV->users()) 663 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 664 SmallPtrSet<const PHINode*, 8> PHIs; 665 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 666 return false; 667 } else if (isa<StoreInst>(U)) { 668 // Ignore stores to the global. 669 } else { 670 // We don't know or understand this user, bail out. 671 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 672 return false; 673 } 674 return true; 675 } 676 677 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 678 bool Changed = false; 679 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 680 Instruction *I = cast<Instruction>(*UI++); 681 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 682 LI->setOperand(0, NewV); 683 Changed = true; 684 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 685 if (SI->getOperand(1) == V) { 686 SI->setOperand(1, NewV); 687 Changed = true; 688 } 689 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 690 CallSite CS(I); 691 if (CS.getCalledValue() == V) { 692 // Calling through the pointer! Turn into a direct call, but be careful 693 // that the pointer is not also being passed as an argument. 694 CS.setCalledFunction(NewV); 695 Changed = true; 696 bool PassedAsArg = false; 697 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 698 if (CS.getArgument(i) == V) { 699 PassedAsArg = true; 700 CS.setArgument(i, NewV); 701 } 702 703 if (PassedAsArg) { 704 // Being passed as an argument also. Be careful to not invalidate UI! 705 UI = V->user_begin(); 706 } 707 } 708 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 709 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 710 ConstantExpr::getCast(CI->getOpcode(), 711 NewV, CI->getType())); 712 if (CI->use_empty()) { 713 Changed = true; 714 CI->eraseFromParent(); 715 } 716 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 717 // Should handle GEP here. 718 SmallVector<Constant*, 8> Idxs; 719 Idxs.reserve(GEPI->getNumOperands()-1); 720 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 721 i != e; ++i) 722 if (Constant *C = dyn_cast<Constant>(*i)) 723 Idxs.push_back(C); 724 else 725 break; 726 if (Idxs.size() == GEPI->getNumOperands()-1) 727 Changed |= OptimizeAwayTrappingUsesOfValue( 728 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 729 if (GEPI->use_empty()) { 730 Changed = true; 731 GEPI->eraseFromParent(); 732 } 733 } 734 } 735 736 return Changed; 737 } 738 739 /// The specified global has only one non-null value stored into it. If there 740 /// are uses of the loaded value that would trap if the loaded value is 741 /// dynamically null, then we know that they cannot be reachable with a null 742 /// optimize away the load. 743 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 744 const DataLayout &DL, 745 TargetLibraryInfo *TLI) { 746 bool Changed = false; 747 748 // Keep track of whether we are able to remove all the uses of the global 749 // other than the store that defines it. 750 bool AllNonStoreUsesGone = true; 751 752 // Replace all uses of loads with uses of uses of the stored value. 753 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 754 User *GlobalUser = *GUI++; 755 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 756 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 757 // If we were able to delete all uses of the loads 758 if (LI->use_empty()) { 759 LI->eraseFromParent(); 760 Changed = true; 761 } else { 762 AllNonStoreUsesGone = false; 763 } 764 } else if (isa<StoreInst>(GlobalUser)) { 765 // Ignore the store that stores "LV" to the global. 766 assert(GlobalUser->getOperand(1) == GV && 767 "Must be storing *to* the global"); 768 } else { 769 AllNonStoreUsesGone = false; 770 771 // If we get here we could have other crazy uses that are transitively 772 // loaded. 773 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 774 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 775 isa<BitCastInst>(GlobalUser) || 776 isa<GetElementPtrInst>(GlobalUser)) && 777 "Only expect load and stores!"); 778 } 779 } 780 781 if (Changed) { 782 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n"); 783 ++NumGlobUses; 784 } 785 786 // If we nuked all of the loads, then none of the stores are needed either, 787 // nor is the global. 788 if (AllNonStoreUsesGone) { 789 if (isLeakCheckerRoot(GV)) { 790 Changed |= CleanupPointerRootUsers(GV, TLI); 791 } else { 792 Changed = true; 793 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 794 } 795 if (GV->use_empty()) { 796 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 797 Changed = true; 798 GV->eraseFromParent(); 799 ++NumDeleted; 800 } 801 } 802 return Changed; 803 } 804 805 /// Walk the use list of V, constant folding all of the instructions that are 806 /// foldable. 807 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 808 TargetLibraryInfo *TLI) { 809 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 810 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 811 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 812 I->replaceAllUsesWith(NewC); 813 814 // Advance UI to the next non-I use to avoid invalidating it! 815 // Instructions could multiply use V. 816 while (UI != E && *UI == I) 817 ++UI; 818 if (isInstructionTriviallyDead(I, TLI)) 819 I->eraseFromParent(); 820 } 821 } 822 823 /// This function takes the specified global variable, and transforms the 824 /// program as if it always contained the result of the specified malloc. 825 /// Because it is always the result of the specified malloc, there is no reason 826 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 827 /// loads of GV as uses of the new global. 828 static GlobalVariable * 829 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 830 ConstantInt *NElements, const DataLayout &DL, 831 TargetLibraryInfo *TLI) { 832 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 833 834 Type *GlobalType; 835 if (NElements->getZExtValue() == 1) 836 GlobalType = AllocTy; 837 else 838 // If we have an array allocation, the global variable is of an array. 839 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 840 841 // Create the new global variable. The contents of the malloc'd memory is 842 // undefined, so initialize with an undef value. 843 GlobalVariable *NewGV = new GlobalVariable( 844 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 845 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 846 GV->getThreadLocalMode()); 847 848 // If there are bitcast users of the malloc (which is typical, usually we have 849 // a malloc + bitcast) then replace them with uses of the new global. Update 850 // other users to use the global as well. 851 BitCastInst *TheBC = nullptr; 852 while (!CI->use_empty()) { 853 Instruction *User = cast<Instruction>(CI->user_back()); 854 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 855 if (BCI->getType() == NewGV->getType()) { 856 BCI->replaceAllUsesWith(NewGV); 857 BCI->eraseFromParent(); 858 } else { 859 BCI->setOperand(0, NewGV); 860 } 861 } else { 862 if (!TheBC) 863 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 864 User->replaceUsesOfWith(CI, TheBC); 865 } 866 } 867 868 Constant *RepValue = NewGV; 869 if (NewGV->getType() != GV->getValueType()) 870 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 871 872 // If there is a comparison against null, we will insert a global bool to 873 // keep track of whether the global was initialized yet or not. 874 GlobalVariable *InitBool = 875 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 876 GlobalValue::InternalLinkage, 877 ConstantInt::getFalse(GV->getContext()), 878 GV->getName()+".init", GV->getThreadLocalMode()); 879 bool InitBoolUsed = false; 880 881 // Loop over all uses of GV, processing them in turn. 882 while (!GV->use_empty()) { 883 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 884 // The global is initialized when the store to it occurs. 885 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 886 SI->getOrdering(), SI->getSyncScopeID(), SI); 887 SI->eraseFromParent(); 888 continue; 889 } 890 891 LoadInst *LI = cast<LoadInst>(GV->user_back()); 892 while (!LI->use_empty()) { 893 Use &LoadUse = *LI->use_begin(); 894 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 895 if (!ICI) { 896 LoadUse = RepValue; 897 continue; 898 } 899 900 // Replace the cmp X, 0 with a use of the bool value. 901 // Sink the load to where the compare was, if atomic rules allow us to. 902 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 903 LI->getOrdering(), LI->getSyncScopeID(), 904 LI->isUnordered() ? (Instruction*)ICI : LI); 905 InitBoolUsed = true; 906 switch (ICI->getPredicate()) { 907 default: llvm_unreachable("Unknown ICmp Predicate!"); 908 case ICmpInst::ICMP_ULT: 909 case ICmpInst::ICMP_SLT: // X < null -> always false 910 LV = ConstantInt::getFalse(GV->getContext()); 911 break; 912 case ICmpInst::ICMP_ULE: 913 case ICmpInst::ICMP_SLE: 914 case ICmpInst::ICMP_EQ: 915 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 916 break; 917 case ICmpInst::ICMP_NE: 918 case ICmpInst::ICMP_UGE: 919 case ICmpInst::ICMP_SGE: 920 case ICmpInst::ICMP_UGT: 921 case ICmpInst::ICMP_SGT: 922 break; // no change. 923 } 924 ICI->replaceAllUsesWith(LV); 925 ICI->eraseFromParent(); 926 } 927 LI->eraseFromParent(); 928 } 929 930 // If the initialization boolean was used, insert it, otherwise delete it. 931 if (!InitBoolUsed) { 932 while (!InitBool->use_empty()) // Delete initializations 933 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 934 delete InitBool; 935 } else 936 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 937 938 // Now the GV is dead, nuke it and the malloc.. 939 GV->eraseFromParent(); 940 CI->eraseFromParent(); 941 942 // To further other optimizations, loop over all users of NewGV and try to 943 // constant prop them. This will promote GEP instructions with constant 944 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 945 ConstantPropUsersOf(NewGV, DL, TLI); 946 if (RepValue != NewGV) 947 ConstantPropUsersOf(RepValue, DL, TLI); 948 949 return NewGV; 950 } 951 952 /// Scan the use-list of V checking to make sure that there are no complex uses 953 /// of V. We permit simple things like dereferencing the pointer, but not 954 /// storing through the address, unless it is to the specified global. 955 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 956 const GlobalVariable *GV, 957 SmallPtrSetImpl<const PHINode*> &PHIs) { 958 for (const User *U : V->users()) { 959 const Instruction *Inst = cast<Instruction>(U); 960 961 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 962 continue; // Fine, ignore. 963 } 964 965 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 966 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 967 return false; // Storing the pointer itself... bad. 968 continue; // Otherwise, storing through it, or storing into GV... fine. 969 } 970 971 // Must index into the array and into the struct. 972 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 973 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 974 return false; 975 continue; 976 } 977 978 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 979 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 980 // cycles. 981 if (PHIs.insert(PN).second) 982 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 983 return false; 984 continue; 985 } 986 987 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 988 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 989 return false; 990 continue; 991 } 992 993 return false; 994 } 995 return true; 996 } 997 998 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the 999 /// allocation into loads from the global and uses of the resultant pointer. 1000 /// Further, delete the store into GV. This assumes that these value pass the 1001 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 1002 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 1003 GlobalVariable *GV) { 1004 while (!Alloc->use_empty()) { 1005 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 1006 Instruction *InsertPt = U; 1007 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1008 // If this is the store of the allocation into the global, remove it. 1009 if (SI->getOperand(1) == GV) { 1010 SI->eraseFromParent(); 1011 continue; 1012 } 1013 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 1014 // Insert the load in the corresponding predecessor, not right before the 1015 // PHI. 1016 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 1017 } else if (isa<BitCastInst>(U)) { 1018 // Must be bitcast between the malloc and store to initialize the global. 1019 ReplaceUsesOfMallocWithGlobal(U, GV); 1020 U->eraseFromParent(); 1021 continue; 1022 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1023 // If this is a "GEP bitcast" and the user is a store to the global, then 1024 // just process it as a bitcast. 1025 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 1026 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 1027 if (SI->getOperand(1) == GV) { 1028 // Must be bitcast GEP between the malloc and store to initialize 1029 // the global. 1030 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 1031 GEPI->eraseFromParent(); 1032 continue; 1033 } 1034 } 1035 1036 // Insert a load from the global, and use it instead of the malloc. 1037 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1038 U->replaceUsesOfWith(Alloc, NL); 1039 } 1040 } 1041 1042 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to 1043 /// perform heap SRA on. This permits GEP's that index through the array and 1044 /// struct field, icmps of null, and PHIs. 1045 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1046 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1047 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1048 // We permit two users of the load: setcc comparing against the null 1049 // pointer, and a getelementptr of a specific form. 1050 for (const User *U : V->users()) { 1051 const Instruction *UI = cast<Instruction>(U); 1052 1053 // Comparison against null is ok. 1054 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1055 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1056 return false; 1057 continue; 1058 } 1059 1060 // getelementptr is also ok, but only a simple form. 1061 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1062 // Must index into the array and into the struct. 1063 if (GEPI->getNumOperands() < 3) 1064 return false; 1065 1066 // Otherwise the GEP is ok. 1067 continue; 1068 } 1069 1070 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1071 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1072 // This means some phi nodes are dependent on each other. 1073 // Avoid infinite looping! 1074 return false; 1075 if (!LoadUsingPHIs.insert(PN).second) 1076 // If we have already analyzed this PHI, then it is safe. 1077 continue; 1078 1079 // Make sure all uses of the PHI are simple enough to transform. 1080 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1081 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1082 return false; 1083 1084 continue; 1085 } 1086 1087 // Otherwise we don't know what this is, not ok. 1088 return false; 1089 } 1090 1091 return true; 1092 } 1093 1094 /// If all users of values loaded from GV are simple enough to perform HeapSRA, 1095 /// return true. 1096 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1097 Instruction *StoredVal) { 1098 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1099 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1100 for (const User *U : GV->users()) 1101 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1102 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1103 LoadUsingPHIsPerLoad)) 1104 return false; 1105 LoadUsingPHIsPerLoad.clear(); 1106 } 1107 1108 // If we reach here, we know that all uses of the loads and transitive uses 1109 // (through PHI nodes) are simple enough to transform. However, we don't know 1110 // that all inputs the to the PHI nodes are in the same equivalence sets. 1111 // Check to verify that all operands of the PHIs are either PHIS that can be 1112 // transformed, loads from GV, or MI itself. 1113 for (const PHINode *PN : LoadUsingPHIs) { 1114 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1115 Value *InVal = PN->getIncomingValue(op); 1116 1117 // PHI of the stored value itself is ok. 1118 if (InVal == StoredVal) continue; 1119 1120 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1121 // One of the PHIs in our set is (optimistically) ok. 1122 if (LoadUsingPHIs.count(InPN)) 1123 continue; 1124 return false; 1125 } 1126 1127 // Load from GV is ok. 1128 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1129 if (LI->getOperand(0) == GV) 1130 continue; 1131 1132 // UNDEF? NULL? 1133 1134 // Anything else is rejected. 1135 return false; 1136 } 1137 } 1138 1139 return true; 1140 } 1141 1142 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1143 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1144 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1145 std::vector<Value *> &FieldVals = InsertedScalarizedValues[V]; 1146 1147 if (FieldNo >= FieldVals.size()) 1148 FieldVals.resize(FieldNo+1); 1149 1150 // If we already have this value, just reuse the previously scalarized 1151 // version. 1152 if (Value *FieldVal = FieldVals[FieldNo]) 1153 return FieldVal; 1154 1155 // Depending on what instruction this is, we have several cases. 1156 Value *Result; 1157 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1158 // This is a scalarized version of the load from the global. Just create 1159 // a new Load of the scalarized global. 1160 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1161 InsertedScalarizedValues, 1162 PHIsToRewrite), 1163 LI->getName()+".f"+Twine(FieldNo), LI); 1164 } else { 1165 PHINode *PN = cast<PHINode>(V); 1166 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1167 // field. 1168 1169 PointerType *PTy = cast<PointerType>(PN->getType()); 1170 StructType *ST = cast<StructType>(PTy->getElementType()); 1171 1172 unsigned AS = PTy->getAddressSpace(); 1173 PHINode *NewPN = 1174 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1175 PN->getNumIncomingValues(), 1176 PN->getName()+".f"+Twine(FieldNo), PN); 1177 Result = NewPN; 1178 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1179 } 1180 1181 return FieldVals[FieldNo] = Result; 1182 } 1183 1184 /// Given a load instruction and a value derived from the load, rewrite the 1185 /// derived value to use the HeapSRoA'd load. 1186 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1187 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1188 std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) { 1189 // If this is a comparison against null, handle it. 1190 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1191 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1192 // If we have a setcc of the loaded pointer, we can use a setcc of any 1193 // field. 1194 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1195 InsertedScalarizedValues, PHIsToRewrite); 1196 1197 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1198 Constant::getNullValue(NPtr->getType()), 1199 SCI->getName()); 1200 SCI->replaceAllUsesWith(New); 1201 SCI->eraseFromParent(); 1202 return; 1203 } 1204 1205 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1206 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1207 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1208 && "Unexpected GEPI!"); 1209 1210 // Load the pointer for this field. 1211 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1212 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1213 InsertedScalarizedValues, PHIsToRewrite); 1214 1215 // Create the new GEP idx vector. 1216 SmallVector<Value*, 8> GEPIdx; 1217 GEPIdx.push_back(GEPI->getOperand(1)); 1218 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1219 1220 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1221 GEPI->getName(), GEPI); 1222 GEPI->replaceAllUsesWith(NGEPI); 1223 GEPI->eraseFromParent(); 1224 return; 1225 } 1226 1227 // Recursively transform the users of PHI nodes. This will lazily create the 1228 // PHIs that are needed for individual elements. Keep track of what PHIs we 1229 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1230 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1231 // already been seen first by another load, so its uses have already been 1232 // processed. 1233 PHINode *PN = cast<PHINode>(LoadUser); 1234 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1235 std::vector<Value *>())).second) 1236 return; 1237 1238 // If this is the first time we've seen this PHI, recursively process all 1239 // users. 1240 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1241 Instruction *User = cast<Instruction>(*UI++); 1242 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1243 } 1244 } 1245 1246 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1247 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1248 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1249 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1250 DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues, 1251 std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) { 1252 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1253 Instruction *User = cast<Instruction>(*UI++); 1254 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1255 } 1256 1257 if (Load->use_empty()) { 1258 Load->eraseFromParent(); 1259 InsertedScalarizedValues.erase(Load); 1260 } 1261 } 1262 1263 /// CI is an allocation of an array of structures. Break it up into multiple 1264 /// allocations of arrays of the fields. 1265 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1266 Value *NElems, const DataLayout &DL, 1267 const TargetLibraryInfo *TLI) { 1268 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1269 Type *MAT = getMallocAllocatedType(CI, TLI); 1270 StructType *STy = cast<StructType>(MAT); 1271 1272 // There is guaranteed to be at least one use of the malloc (storing 1273 // it into GV). If there are other uses, change them to be uses of 1274 // the global to simplify later code. This also deletes the store 1275 // into GV. 1276 ReplaceUsesOfMallocWithGlobal(CI, GV); 1277 1278 // Okay, at this point, there are no users of the malloc. Insert N 1279 // new mallocs at the same place as CI, and N globals. 1280 std::vector<Value *> FieldGlobals; 1281 std::vector<Value *> FieldMallocs; 1282 1283 SmallVector<OperandBundleDef, 1> OpBundles; 1284 CI->getOperandBundlesAsDefs(OpBundles); 1285 1286 unsigned AS = GV->getType()->getPointerAddressSpace(); 1287 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1288 Type *FieldTy = STy->getElementType(FieldNo); 1289 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1290 1291 GlobalVariable *NGV = new GlobalVariable( 1292 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1293 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1294 nullptr, GV->getThreadLocalMode()); 1295 NGV->copyAttributesFrom(GV); 1296 FieldGlobals.push_back(NGV); 1297 1298 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1299 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1300 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1301 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1302 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1303 ConstantInt::get(IntPtrTy, TypeSize), 1304 NElems, OpBundles, nullptr, 1305 CI->getName() + ".f" + Twine(FieldNo)); 1306 FieldMallocs.push_back(NMI); 1307 new StoreInst(NMI, NGV, CI); 1308 } 1309 1310 // The tricky aspect of this transformation is handling the case when malloc 1311 // fails. In the original code, malloc failing would set the result pointer 1312 // of malloc to null. In this case, some mallocs could succeed and others 1313 // could fail. As such, we emit code that looks like this: 1314 // F0 = malloc(field0) 1315 // F1 = malloc(field1) 1316 // F2 = malloc(field2) 1317 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1318 // if (F0) { free(F0); F0 = 0; } 1319 // if (F1) { free(F1); F1 = 0; } 1320 // if (F2) { free(F2); F2 = 0; } 1321 // } 1322 // The malloc can also fail if its argument is too large. 1323 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1324 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1325 ConstantZero, "isneg"); 1326 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1327 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1328 Constant::getNullValue(FieldMallocs[i]->getType()), 1329 "isnull"); 1330 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1331 } 1332 1333 // Split the basic block at the old malloc. 1334 BasicBlock *OrigBB = CI->getParent(); 1335 BasicBlock *ContBB = 1336 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1337 1338 // Create the block to check the first condition. Put all these blocks at the 1339 // end of the function as they are unlikely to be executed. 1340 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1341 "malloc_ret_null", 1342 OrigBB->getParent()); 1343 1344 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1345 // branch on RunningOr. 1346 OrigBB->getTerminator()->eraseFromParent(); 1347 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1348 1349 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1350 // pointer, because some may be null while others are not. 1351 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1352 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1353 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1354 Constant::getNullValue(GVVal->getType())); 1355 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1356 OrigBB->getParent()); 1357 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1358 OrigBB->getParent()); 1359 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1360 Cmp, NullPtrBlock); 1361 1362 // Fill in FreeBlock. 1363 CallInst::CreateFree(GVVal, OpBundles, BI); 1364 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1365 FreeBlock); 1366 BranchInst::Create(NextBlock, FreeBlock); 1367 1368 NullPtrBlock = NextBlock; 1369 } 1370 1371 BranchInst::Create(ContBB, NullPtrBlock); 1372 1373 // CI is no longer needed, remove it. 1374 CI->eraseFromParent(); 1375 1376 /// As we process loads, if we can't immediately update all uses of the load, 1377 /// keep track of what scalarized loads are inserted for a given load. 1378 DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues; 1379 InsertedScalarizedValues[GV] = FieldGlobals; 1380 1381 std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite; 1382 1383 // Okay, the malloc site is completely handled. All of the uses of GV are now 1384 // loads, and all uses of those loads are simple. Rewrite them to use loads 1385 // of the per-field globals instead. 1386 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1387 Instruction *User = cast<Instruction>(*UI++); 1388 1389 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1390 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1391 continue; 1392 } 1393 1394 // Must be a store of null. 1395 StoreInst *SI = cast<StoreInst>(User); 1396 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1397 "Unexpected heap-sra user!"); 1398 1399 // Insert a store of null into each global. 1400 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1401 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1402 Constant *Null = Constant::getNullValue(ValTy); 1403 new StoreInst(Null, FieldGlobals[i], SI); 1404 } 1405 // Erase the original store. 1406 SI->eraseFromParent(); 1407 } 1408 1409 // While we have PHIs that are interesting to rewrite, do it. 1410 while (!PHIsToRewrite.empty()) { 1411 PHINode *PN = PHIsToRewrite.back().first; 1412 unsigned FieldNo = PHIsToRewrite.back().second; 1413 PHIsToRewrite.pop_back(); 1414 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1415 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1416 1417 // Add all the incoming values. This can materialize more phis. 1418 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1419 Value *InVal = PN->getIncomingValue(i); 1420 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1421 PHIsToRewrite); 1422 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1423 } 1424 } 1425 1426 // Drop all inter-phi links and any loads that made it this far. 1427 for (DenseMap<Value *, std::vector<Value *>>::iterator 1428 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1429 I != E; ++I) { 1430 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1431 PN->dropAllReferences(); 1432 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1433 LI->dropAllReferences(); 1434 } 1435 1436 // Delete all the phis and loads now that inter-references are dead. 1437 for (DenseMap<Value *, std::vector<Value *>>::iterator 1438 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1439 I != E; ++I) { 1440 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1441 PN->eraseFromParent(); 1442 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1443 LI->eraseFromParent(); 1444 } 1445 1446 // The old global is now dead, remove it. 1447 GV->eraseFromParent(); 1448 1449 ++NumHeapSRA; 1450 return cast<GlobalVariable>(FieldGlobals[0]); 1451 } 1452 1453 /// This function is called when we see a pointer global variable with a single 1454 /// value stored it that is a malloc or cast of malloc. 1455 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1456 Type *AllocTy, 1457 AtomicOrdering Ordering, 1458 const DataLayout &DL, 1459 TargetLibraryInfo *TLI) { 1460 // If this is a malloc of an abstract type, don't touch it. 1461 if (!AllocTy->isSized()) 1462 return false; 1463 1464 // We can't optimize this global unless all uses of it are *known* to be 1465 // of the malloc value, not of the null initializer value (consider a use 1466 // that compares the global's value against zero to see if the malloc has 1467 // been reached). To do this, we check to see if all uses of the global 1468 // would trap if the global were null: this proves that they must all 1469 // happen after the malloc. 1470 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1471 return false; 1472 1473 // We can't optimize this if the malloc itself is used in a complex way, 1474 // for example, being stored into multiple globals. This allows the 1475 // malloc to be stored into the specified global, loaded icmp'd, and 1476 // GEP'd. These are all things we could transform to using the global 1477 // for. 1478 SmallPtrSet<const PHINode*, 8> PHIs; 1479 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1480 return false; 1481 1482 // If we have a global that is only initialized with a fixed size malloc, 1483 // transform the program to use global memory instead of malloc'd memory. 1484 // This eliminates dynamic allocation, avoids an indirection accessing the 1485 // data, and exposes the resultant global to further GlobalOpt. 1486 // We cannot optimize the malloc if we cannot determine malloc array size. 1487 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1488 if (!NElems) 1489 return false; 1490 1491 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1492 // Restrict this transformation to only working on small allocations 1493 // (2048 bytes currently), as we don't want to introduce a 16M global or 1494 // something. 1495 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1496 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1497 return true; 1498 } 1499 1500 // If the allocation is an array of structures, consider transforming this 1501 // into multiple malloc'd arrays, one for each field. This is basically 1502 // SRoA for malloc'd memory. 1503 1504 if (Ordering != AtomicOrdering::NotAtomic) 1505 return false; 1506 1507 // If this is an allocation of a fixed size array of structs, analyze as a 1508 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1509 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1510 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1511 AllocTy = AT->getElementType(); 1512 1513 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1514 if (!AllocSTy) 1515 return false; 1516 1517 // This the structure has an unreasonable number of fields, leave it 1518 // alone. 1519 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1520 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1521 1522 // If this is a fixed size array, transform the Malloc to be an alloc of 1523 // structs. malloc [100 x struct],1 -> malloc struct, 100 1524 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1525 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1526 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1527 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1528 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1529 SmallVector<OperandBundleDef, 1> OpBundles; 1530 CI->getOperandBundlesAsDefs(OpBundles); 1531 Instruction *Malloc = 1532 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements, 1533 OpBundles, nullptr, CI->getName()); 1534 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1535 CI->replaceAllUsesWith(Cast); 1536 CI->eraseFromParent(); 1537 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1538 CI = cast<CallInst>(BCI->getOperand(0)); 1539 else 1540 CI = cast<CallInst>(Malloc); 1541 } 1542 1543 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1544 TLI); 1545 return true; 1546 } 1547 1548 return false; 1549 } 1550 1551 // Try to optimize globals based on the knowledge that only one value (besides 1552 // its initializer) is ever stored to the global. 1553 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1554 AtomicOrdering Ordering, 1555 const DataLayout &DL, 1556 TargetLibraryInfo *TLI) { 1557 // Ignore no-op GEPs and bitcasts. 1558 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1559 1560 // If we are dealing with a pointer global that is initialized to null and 1561 // only has one (non-null) value stored into it, then we can optimize any 1562 // users of the loaded value (often calls and loads) that would trap if the 1563 // value was null. 1564 if (GV->getInitializer()->getType()->isPointerTy() && 1565 GV->getInitializer()->isNullValue()) { 1566 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1567 if (GV->getInitializer()->getType() != SOVC->getType()) 1568 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1569 1570 // Optimize away any trapping uses of the loaded value. 1571 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1572 return true; 1573 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1574 Type *MallocType = getMallocAllocatedType(CI, TLI); 1575 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1576 Ordering, DL, TLI)) 1577 return true; 1578 } 1579 } 1580 1581 return false; 1582 } 1583 1584 /// At this point, we have learned that the only two values ever stored into GV 1585 /// are its initializer and OtherVal. See if we can shrink the global into a 1586 /// boolean and select between the two values whenever it is used. This exposes 1587 /// the values to other scalar optimizations. 1588 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1589 Type *GVElType = GV->getValueType(); 1590 1591 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1592 // an FP value, pointer or vector, don't do this optimization because a select 1593 // between them is very expensive and unlikely to lead to later 1594 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1595 // where v1 and v2 both require constant pool loads, a big loss. 1596 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1597 GVElType->isFloatingPointTy() || 1598 GVElType->isPointerTy() || GVElType->isVectorTy()) 1599 return false; 1600 1601 // Walk the use list of the global seeing if all the uses are load or store. 1602 // If there is anything else, bail out. 1603 for (User *U : GV->users()) 1604 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1605 return false; 1606 1607 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1608 1609 // Create the new global, initializing it to false. 1610 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1611 false, 1612 GlobalValue::InternalLinkage, 1613 ConstantInt::getFalse(GV->getContext()), 1614 GV->getName()+".b", 1615 GV->getThreadLocalMode(), 1616 GV->getType()->getAddressSpace()); 1617 NewGV->copyAttributesFrom(GV); 1618 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1619 1620 Constant *InitVal = GV->getInitializer(); 1621 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1622 "No reason to shrink to bool!"); 1623 1624 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1625 GV->getDebugInfo(GVs); 1626 1627 // If initialized to zero and storing one into the global, we can use a cast 1628 // instead of a select to synthesize the desired value. 1629 bool IsOneZero = false; 1630 bool EmitOneOrZero = true; 1631 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)){ 1632 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1633 1634 if (ConstantInt *CIInit = dyn_cast<ConstantInt>(GV->getInitializer())){ 1635 uint64_t ValInit = CIInit->getZExtValue(); 1636 uint64_t ValOther = CI->getZExtValue(); 1637 uint64_t ValMinus = ValOther - ValInit; 1638 1639 for(auto *GVe : GVs){ 1640 DIGlobalVariable *DGV = GVe->getVariable(); 1641 DIExpression *E = GVe->getExpression(); 1642 1643 // It is expected that the address of global optimized variable is on 1644 // top of the stack. After optimization, value of that variable will 1645 // be ether 0 for initial value or 1 for other value. The following 1646 // expression should return constant integer value depending on the 1647 // value at global object address: 1648 // val * (ValOther - ValInit) + ValInit: 1649 // DW_OP_deref DW_OP_constu <ValMinus> 1650 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1651 E = DIExpression::get(NewGV->getContext(), 1652 {dwarf::DW_OP_deref, 1653 dwarf::DW_OP_constu, 1654 ValMinus, 1655 dwarf::DW_OP_mul, 1656 dwarf::DW_OP_constu, 1657 ValInit, 1658 dwarf::DW_OP_plus, 1659 dwarf::DW_OP_stack_value}); 1660 DIGlobalVariableExpression *DGVE = 1661 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1662 NewGV->addDebugInfo(DGVE); 1663 } 1664 EmitOneOrZero = false; 1665 } 1666 } 1667 1668 if (EmitOneOrZero) { 1669 // FIXME: This will only emit address for debugger on which will 1670 // be written only 0 or 1. 1671 for(auto *GV : GVs) 1672 NewGV->addDebugInfo(GV); 1673 } 1674 1675 while (!GV->use_empty()) { 1676 Instruction *UI = cast<Instruction>(GV->user_back()); 1677 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1678 // Change the store into a boolean store. 1679 bool StoringOther = SI->getOperand(0) == OtherVal; 1680 // Only do this if we weren't storing a loaded value. 1681 Value *StoreVal; 1682 if (StoringOther || SI->getOperand(0) == InitVal) { 1683 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1684 StoringOther); 1685 } else { 1686 // Otherwise, we are storing a previously loaded copy. To do this, 1687 // change the copy from copying the original value to just copying the 1688 // bool. 1689 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1690 1691 // If we've already replaced the input, StoredVal will be a cast or 1692 // select instruction. If not, it will be a load of the original 1693 // global. 1694 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1695 assert(LI->getOperand(0) == GV && "Not a copy!"); 1696 // Insert a new load, to preserve the saved value. 1697 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1698 LI->getOrdering(), LI->getSyncScopeID(), LI); 1699 } else { 1700 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1701 "This is not a form that we understand!"); 1702 StoreVal = StoredVal->getOperand(0); 1703 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1704 } 1705 } 1706 new StoreInst(StoreVal, NewGV, false, 0, 1707 SI->getOrdering(), SI->getSyncScopeID(), SI); 1708 } else { 1709 // Change the load into a load of bool then a select. 1710 LoadInst *LI = cast<LoadInst>(UI); 1711 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1712 LI->getOrdering(), LI->getSyncScopeID(), LI); 1713 Value *NSI; 1714 if (IsOneZero) 1715 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1716 else 1717 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1718 NSI->takeName(LI); 1719 LI->replaceAllUsesWith(NSI); 1720 } 1721 UI->eraseFromParent(); 1722 } 1723 1724 // Retain the name of the old global variable. People who are debugging their 1725 // programs may expect these variables to be named the same. 1726 NewGV->takeName(GV); 1727 GV->eraseFromParent(); 1728 return true; 1729 } 1730 1731 static bool deleteIfDead(GlobalValue &GV, 1732 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 1733 GV.removeDeadConstantUsers(); 1734 1735 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1736 return false; 1737 1738 if (const Comdat *C = GV.getComdat()) 1739 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1740 return false; 1741 1742 bool Dead; 1743 if (auto *F = dyn_cast<Function>(&GV)) 1744 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1745 else 1746 Dead = GV.use_empty(); 1747 if (!Dead) 1748 return false; 1749 1750 DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1751 GV.eraseFromParent(); 1752 ++NumDeleted; 1753 return true; 1754 } 1755 1756 static bool isPointerValueDeadOnEntryToFunction( 1757 const Function *F, GlobalValue *GV, 1758 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1759 // Find all uses of GV. We expect them all to be in F, and if we can't 1760 // identify any of the uses we bail out. 1761 // 1762 // On each of these uses, identify if the memory that GV points to is 1763 // used/required/live at the start of the function. If it is not, for example 1764 // if the first thing the function does is store to the GV, the GV can 1765 // possibly be demoted. 1766 // 1767 // We don't do an exhaustive search for memory operations - simply look 1768 // through bitcasts as they're quite common and benign. 1769 const DataLayout &DL = GV->getParent()->getDataLayout(); 1770 SmallVector<LoadInst *, 4> Loads; 1771 SmallVector<StoreInst *, 4> Stores; 1772 for (auto *U : GV->users()) { 1773 if (Operator::getOpcode(U) == Instruction::BitCast) { 1774 for (auto *UU : U->users()) { 1775 if (auto *LI = dyn_cast<LoadInst>(UU)) 1776 Loads.push_back(LI); 1777 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1778 Stores.push_back(SI); 1779 else 1780 return false; 1781 } 1782 continue; 1783 } 1784 1785 Instruction *I = dyn_cast<Instruction>(U); 1786 if (!I) 1787 return false; 1788 assert(I->getParent()->getParent() == F); 1789 1790 if (auto *LI = dyn_cast<LoadInst>(I)) 1791 Loads.push_back(LI); 1792 else if (auto *SI = dyn_cast<StoreInst>(I)) 1793 Stores.push_back(SI); 1794 else 1795 return false; 1796 } 1797 1798 // We have identified all uses of GV into loads and stores. Now check if all 1799 // of them are known not to depend on the value of the global at the function 1800 // entry point. We do this by ensuring that every load is dominated by at 1801 // least one store. 1802 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1803 1804 // The below check is quadratic. Check we're not going to do too many tests. 1805 // FIXME: Even though this will always have worst-case quadratic time, we 1806 // could put effort into minimizing the average time by putting stores that 1807 // have been shown to dominate at least one load at the beginning of the 1808 // Stores array, making subsequent dominance checks more likely to succeed 1809 // early. 1810 // 1811 // The threshold here is fairly large because global->local demotion is a 1812 // very powerful optimization should it fire. 1813 const unsigned Threshold = 100; 1814 if (Loads.size() * Stores.size() > Threshold) 1815 return false; 1816 1817 for (auto *L : Loads) { 1818 auto *LTy = L->getType(); 1819 if (none_of(Stores, [&](const StoreInst *S) { 1820 auto *STy = S->getValueOperand()->getType(); 1821 // The load is only dominated by the store if DomTree says so 1822 // and the number of bits loaded in L is less than or equal to 1823 // the number of bits stored in S. 1824 return DT.dominates(S, L) && 1825 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1826 })) 1827 return false; 1828 } 1829 // All loads have known dependences inside F, so the global can be localized. 1830 return true; 1831 } 1832 1833 /// C may have non-instruction users. Can all of those users be turned into 1834 /// instructions? 1835 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1836 // We don't do this exhaustively. The most common pattern that we really need 1837 // to care about is a constant GEP or constant bitcast - so just looking 1838 // through one single ConstantExpr. 1839 // 1840 // The set of constants that this function returns true for must be able to be 1841 // handled by makeAllConstantUsesInstructions. 1842 for (auto *U : C->users()) { 1843 if (isa<Instruction>(U)) 1844 continue; 1845 if (!isa<ConstantExpr>(U)) 1846 // Non instruction, non-constantexpr user; cannot convert this. 1847 return false; 1848 for (auto *UU : U->users()) 1849 if (!isa<Instruction>(UU)) 1850 // A constantexpr used by another constant. We don't try and recurse any 1851 // further but just bail out at this point. 1852 return false; 1853 } 1854 1855 return true; 1856 } 1857 1858 /// C may have non-instruction users, and 1859 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1860 /// non-instruction users to instructions. 1861 static void makeAllConstantUsesInstructions(Constant *C) { 1862 SmallVector<ConstantExpr*,4> Users; 1863 for (auto *U : C->users()) { 1864 if (isa<ConstantExpr>(U)) 1865 Users.push_back(cast<ConstantExpr>(U)); 1866 else 1867 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1868 // should not have returned true for C. 1869 assert( 1870 isa<Instruction>(U) && 1871 "Can't transform non-constantexpr non-instruction to instruction!"); 1872 } 1873 1874 SmallVector<Value*,4> UUsers; 1875 for (auto *U : Users) { 1876 UUsers.clear(); 1877 for (auto *UU : U->users()) 1878 UUsers.push_back(UU); 1879 for (auto *UU : UUsers) { 1880 Instruction *UI = cast<Instruction>(UU); 1881 Instruction *NewU = U->getAsInstruction(); 1882 NewU->insertBefore(UI); 1883 UI->replaceUsesOfWith(U, NewU); 1884 } 1885 // We've replaced all the uses, so destroy the constant. (destroyConstant 1886 // will update value handles and metadata.) 1887 U->destroyConstant(); 1888 } 1889 } 1890 1891 /// Analyze the specified global variable and optimize 1892 /// it if possible. If we make a change, return true. 1893 static bool processInternalGlobal( 1894 GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI, 1895 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1896 auto &DL = GV->getParent()->getDataLayout(); 1897 // If this is a first class global and has only one accessing function and 1898 // this function is non-recursive, we replace the global with a local alloca 1899 // in this function. 1900 // 1901 // NOTE: It doesn't make sense to promote non-single-value types since we 1902 // are just replacing static memory to stack memory. 1903 // 1904 // If the global is in different address space, don't bring it to stack. 1905 if (!GS.HasMultipleAccessingFunctions && 1906 GS.AccessingFunction && 1907 GV->getValueType()->isSingleValueType() && 1908 GV->getType()->getAddressSpace() == 0 && 1909 !GV->isExternallyInitialized() && 1910 allNonInstructionUsersCanBeMadeInstructions(GV) && 1911 GS.AccessingFunction->doesNotRecurse() && 1912 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1913 LookupDomTree)) { 1914 const DataLayout &DL = GV->getParent()->getDataLayout(); 1915 1916 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1917 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1918 ->getEntryBlock().begin()); 1919 Type *ElemTy = GV->getValueType(); 1920 // FIXME: Pass Global's alignment when globals have alignment 1921 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1922 GV->getName(), &FirstI); 1923 if (!isa<UndefValue>(GV->getInitializer())) 1924 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1925 1926 makeAllConstantUsesInstructions(GV); 1927 1928 GV->replaceAllUsesWith(Alloca); 1929 GV->eraseFromParent(); 1930 ++NumLocalized; 1931 return true; 1932 } 1933 1934 // If the global is never loaded (but may be stored to), it is dead. 1935 // Delete it now. 1936 if (!GS.IsLoaded) { 1937 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1938 1939 bool Changed; 1940 if (isLeakCheckerRoot(GV)) { 1941 // Delete any constant stores to the global. 1942 Changed = CleanupPointerRootUsers(GV, TLI); 1943 } else { 1944 // Delete any stores we can find to the global. We may not be able to 1945 // make it completely dead though. 1946 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1947 } 1948 1949 // If the global is dead now, delete it. 1950 if (GV->use_empty()) { 1951 GV->eraseFromParent(); 1952 ++NumDeleted; 1953 Changed = true; 1954 } 1955 return Changed; 1956 1957 } 1958 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1959 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1960 GV->setConstant(true); 1961 1962 // Clean up any obviously simplifiable users now. 1963 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1964 1965 // If the global is dead now, just nuke it. 1966 if (GV->use_empty()) { 1967 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1968 << "all users and delete global!\n"); 1969 GV->eraseFromParent(); 1970 ++NumDeleted; 1971 return true; 1972 } 1973 1974 // Fall through to the next check; see if we can optimize further. 1975 ++NumMarked; 1976 } 1977 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1978 const DataLayout &DL = GV->getParent()->getDataLayout(); 1979 if (SRAGlobal(GV, DL)) 1980 return true; 1981 } 1982 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1983 // If the initial value for the global was an undef value, and if only 1984 // one other value was stored into it, we can just change the 1985 // initializer to be the stored value, then delete all stores to the 1986 // global. This allows us to mark it constant. 1987 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1988 if (isa<UndefValue>(GV->getInitializer())) { 1989 // Change the initial value here. 1990 GV->setInitializer(SOVConstant); 1991 1992 // Clean up any obviously simplifiable users now. 1993 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1994 1995 if (GV->use_empty()) { 1996 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1997 << "simplify all users and delete global!\n"); 1998 GV->eraseFromParent(); 1999 ++NumDeleted; 2000 } 2001 ++NumSubstitute; 2002 return true; 2003 } 2004 2005 // Try to optimize globals based on the knowledge that only one value 2006 // (besides its initializer) is ever stored to the global. 2007 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI)) 2008 return true; 2009 2010 // Otherwise, if the global was not a boolean, we can shrink it to be a 2011 // boolean. 2012 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 2013 if (GS.Ordering == AtomicOrdering::NotAtomic) { 2014 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 2015 ++NumShrunkToBool; 2016 return true; 2017 } 2018 } 2019 } 2020 } 2021 2022 return false; 2023 } 2024 2025 /// Analyze the specified global variable and optimize it if possible. If we 2026 /// make a change, return true. 2027 static bool 2028 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI, 2029 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2030 if (GV.getName().startswith("llvm.")) 2031 return false; 2032 2033 GlobalStatus GS; 2034 2035 if (GlobalStatus::analyzeGlobal(&GV, GS)) 2036 return false; 2037 2038 bool Changed = false; 2039 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 2040 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 2041 : GlobalValue::UnnamedAddr::Local; 2042 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 2043 GV.setUnnamedAddr(NewUnnamedAddr); 2044 NumUnnamed++; 2045 Changed = true; 2046 } 2047 } 2048 2049 // Do more involved optimizations if the global is internal. 2050 if (!GV.hasLocalLinkage()) 2051 return Changed; 2052 2053 auto *GVar = dyn_cast<GlobalVariable>(&GV); 2054 if (!GVar) 2055 return Changed; 2056 2057 if (GVar->isConstant() || !GVar->hasInitializer()) 2058 return Changed; 2059 2060 return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed; 2061 } 2062 2063 /// Walk all of the direct calls of the specified function, changing them to 2064 /// FastCC. 2065 static void ChangeCalleesToFastCall(Function *F) { 2066 for (User *U : F->users()) { 2067 if (isa<BlockAddress>(U)) 2068 continue; 2069 CallSite CS(cast<Instruction>(U)); 2070 CS.setCallingConv(CallingConv::Fast); 2071 } 2072 } 2073 2074 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) { 2075 // There can be at most one attribute set with a nest attribute. 2076 unsigned NestIndex; 2077 if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex)) 2078 return Attrs.removeAttribute(C, NestIndex, Attribute::Nest); 2079 return Attrs; 2080 } 2081 2082 static void RemoveNestAttribute(Function *F) { 2083 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 2084 for (User *U : F->users()) { 2085 if (isa<BlockAddress>(U)) 2086 continue; 2087 CallSite CS(cast<Instruction>(U)); 2088 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 2089 } 2090 } 2091 2092 /// Return true if this is a calling convention that we'd like to change. The 2093 /// idea here is that we don't want to mess with the convention if the user 2094 /// explicitly requested something with performance implications like coldcc, 2095 /// GHC, or anyregcc. 2096 static bool isProfitableToMakeFastCC(Function *F) { 2097 CallingConv::ID CC = F->getCallingConv(); 2098 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2099 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall; 2100 } 2101 2102 static bool 2103 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI, 2104 function_ref<DominatorTree &(Function &)> LookupDomTree, 2105 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2106 bool Changed = false; 2107 // Optimize functions. 2108 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2109 Function *F = &*FI++; 2110 // Functions without names cannot be referenced outside this module. 2111 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2112 F->setLinkage(GlobalValue::InternalLinkage); 2113 2114 if (deleteIfDead(*F, NotDiscardableComdats)) { 2115 Changed = true; 2116 continue; 2117 } 2118 2119 // LLVM's definition of dominance allows instructions that are cyclic 2120 // in unreachable blocks, e.g.: 2121 // %pat = select i1 %condition, @global, i16* %pat 2122 // because any instruction dominates an instruction in a block that's 2123 // not reachable from entry. 2124 // So, remove unreachable blocks from the function, because a) there's 2125 // no point in analyzing them and b) GlobalOpt should otherwise grow 2126 // some more complicated logic to break these cycles. 2127 // Removing unreachable blocks might invalidate the dominator so we 2128 // recalculate it. 2129 if (!F->isDeclaration()) { 2130 if (removeUnreachableBlocks(*F)) { 2131 auto &DT = LookupDomTree(*F); 2132 DT.recalculate(*F); 2133 Changed = true; 2134 } 2135 } 2136 2137 Changed |= processGlobal(*F, TLI, LookupDomTree); 2138 2139 if (!F->hasLocalLinkage()) 2140 continue; 2141 if (isProfitableToMakeFastCC(F) && !F->isVarArg() && 2142 !F->hasAddressTaken()) { 2143 // If this function has a calling convention worth changing, is not a 2144 // varargs function, and is only called directly, promote it to use the 2145 // Fast calling convention. 2146 F->setCallingConv(CallingConv::Fast); 2147 ChangeCalleesToFastCall(F); 2148 ++NumFastCallFns; 2149 Changed = true; 2150 } 2151 2152 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2153 !F->hasAddressTaken()) { 2154 // The function is not used by a trampoline intrinsic, so it is safe 2155 // to remove the 'nest' attribute. 2156 RemoveNestAttribute(F); 2157 ++NumNestRemoved; 2158 Changed = true; 2159 } 2160 } 2161 return Changed; 2162 } 2163 2164 static bool 2165 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI, 2166 function_ref<DominatorTree &(Function &)> LookupDomTree, 2167 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2168 bool Changed = false; 2169 2170 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2171 GVI != E; ) { 2172 GlobalVariable *GV = &*GVI++; 2173 // Global variables without names cannot be referenced outside this module. 2174 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2175 GV->setLinkage(GlobalValue::InternalLinkage); 2176 // Simplify the initializer. 2177 if (GV->hasInitializer()) 2178 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 2179 auto &DL = M.getDataLayout(); 2180 Constant *New = ConstantFoldConstant(C, DL, TLI); 2181 if (New && New != C) 2182 GV->setInitializer(New); 2183 } 2184 2185 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2186 Changed = true; 2187 continue; 2188 } 2189 2190 Changed |= processGlobal(*GV, TLI, LookupDomTree); 2191 } 2192 return Changed; 2193 } 2194 2195 /// Evaluate a piece of a constantexpr store into a global initializer. This 2196 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2197 /// GEP operands of Addr [0, OpNo) have been stepped into. 2198 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2199 ConstantExpr *Addr, unsigned OpNo) { 2200 // Base case of the recursion. 2201 if (OpNo == Addr->getNumOperands()) { 2202 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2203 return Val; 2204 } 2205 2206 SmallVector<Constant*, 32> Elts; 2207 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2208 // Break up the constant into its elements. 2209 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2210 Elts.push_back(Init->getAggregateElement(i)); 2211 2212 // Replace the element that we are supposed to. 2213 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2214 unsigned Idx = CU->getZExtValue(); 2215 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2216 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2217 2218 // Return the modified struct. 2219 return ConstantStruct::get(STy, Elts); 2220 } 2221 2222 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2223 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2224 uint64_t NumElts = InitTy->getNumElements(); 2225 2226 // Break up the array into elements. 2227 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2228 Elts.push_back(Init->getAggregateElement(i)); 2229 2230 assert(CI->getZExtValue() < NumElts); 2231 Elts[CI->getZExtValue()] = 2232 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2233 2234 if (Init->getType()->isArrayTy()) 2235 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2236 return ConstantVector::get(Elts); 2237 } 2238 2239 /// We have decided that Addr (which satisfies the predicate 2240 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2241 static void CommitValueTo(Constant *Val, Constant *Addr) { 2242 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2243 assert(GV->hasInitializer()); 2244 GV->setInitializer(Val); 2245 return; 2246 } 2247 2248 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2249 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2250 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2251 } 2252 2253 /// Evaluate static constructors in the function, if we can. Return true if we 2254 /// can, false otherwise. 2255 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2256 TargetLibraryInfo *TLI) { 2257 // Call the function. 2258 Evaluator Eval(DL, TLI); 2259 Constant *RetValDummy; 2260 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2261 SmallVector<Constant*, 0>()); 2262 2263 if (EvalSuccess) { 2264 ++NumCtorsEvaluated; 2265 2266 // We succeeded at evaluation: commit the result. 2267 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2268 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2269 << " stores.\n"); 2270 for (const auto &I : Eval.getMutatedMemory()) 2271 CommitValueTo(I.second, I.first); 2272 for (GlobalVariable *GV : Eval.getInvariants()) 2273 GV->setConstant(true); 2274 } 2275 2276 return EvalSuccess; 2277 } 2278 2279 static int compareNames(Constant *const *A, Constant *const *B) { 2280 Value *AStripped = (*A)->stripPointerCastsNoFollowAliases(); 2281 Value *BStripped = (*B)->stripPointerCastsNoFollowAliases(); 2282 return AStripped->getName().compare(BStripped->getName()); 2283 } 2284 2285 static void setUsedInitializer(GlobalVariable &V, 2286 const SmallPtrSet<GlobalValue *, 8> &Init) { 2287 if (Init.empty()) { 2288 V.eraseFromParent(); 2289 return; 2290 } 2291 2292 // Type of pointer to the array of pointers. 2293 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2294 2295 SmallVector<Constant *, 8> UsedArray; 2296 for (GlobalValue *GV : Init) { 2297 Constant *Cast 2298 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2299 UsedArray.push_back(Cast); 2300 } 2301 // Sort to get deterministic order. 2302 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2303 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2304 2305 Module *M = V.getParent(); 2306 V.removeFromParent(); 2307 GlobalVariable *NV = 2308 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2309 ConstantArray::get(ATy, UsedArray), ""); 2310 NV->takeName(&V); 2311 NV->setSection("llvm.metadata"); 2312 delete &V; 2313 } 2314 2315 namespace { 2316 2317 /// An easy to access representation of llvm.used and llvm.compiler.used. 2318 class LLVMUsed { 2319 SmallPtrSet<GlobalValue *, 8> Used; 2320 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2321 GlobalVariable *UsedV; 2322 GlobalVariable *CompilerUsedV; 2323 2324 public: 2325 LLVMUsed(Module &M) { 2326 UsedV = collectUsedGlobalVariables(M, Used, false); 2327 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2328 } 2329 2330 using iterator = SmallPtrSet<GlobalValue *, 8>::iterator; 2331 using used_iterator_range = iterator_range<iterator>; 2332 2333 iterator usedBegin() { return Used.begin(); } 2334 iterator usedEnd() { return Used.end(); } 2335 2336 used_iterator_range used() { 2337 return used_iterator_range(usedBegin(), usedEnd()); 2338 } 2339 2340 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2341 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2342 2343 used_iterator_range compilerUsed() { 2344 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2345 } 2346 2347 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2348 2349 bool compilerUsedCount(GlobalValue *GV) const { 2350 return CompilerUsed.count(GV); 2351 } 2352 2353 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2354 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2355 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2356 2357 bool compilerUsedInsert(GlobalValue *GV) { 2358 return CompilerUsed.insert(GV).second; 2359 } 2360 2361 void syncVariablesAndSets() { 2362 if (UsedV) 2363 setUsedInitializer(*UsedV, Used); 2364 if (CompilerUsedV) 2365 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2366 } 2367 }; 2368 2369 } // end anonymous namespace 2370 2371 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2372 if (GA.use_empty()) // No use at all. 2373 return false; 2374 2375 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2376 "We should have removed the duplicated " 2377 "element from llvm.compiler.used"); 2378 if (!GA.hasOneUse()) 2379 // Strictly more than one use. So at least one is not in llvm.used and 2380 // llvm.compiler.used. 2381 return true; 2382 2383 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2384 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2385 } 2386 2387 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2388 const LLVMUsed &U) { 2389 unsigned N = 2; 2390 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2391 "We should have removed the duplicated " 2392 "element from llvm.compiler.used"); 2393 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2394 ++N; 2395 return V.hasNUsesOrMore(N); 2396 } 2397 2398 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2399 if (!GA.hasLocalLinkage()) 2400 return true; 2401 2402 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2403 } 2404 2405 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2406 bool &RenameTarget) { 2407 RenameTarget = false; 2408 bool Ret = false; 2409 if (hasUseOtherThanLLVMUsed(GA, U)) 2410 Ret = true; 2411 2412 // If the alias is externally visible, we may still be able to simplify it. 2413 if (!mayHaveOtherReferences(GA, U)) 2414 return Ret; 2415 2416 // If the aliasee has internal linkage, give it the name and linkage 2417 // of the alias, and delete the alias. This turns: 2418 // define internal ... @f(...) 2419 // @a = alias ... @f 2420 // into: 2421 // define ... @a(...) 2422 Constant *Aliasee = GA.getAliasee(); 2423 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2424 if (!Target->hasLocalLinkage()) 2425 return Ret; 2426 2427 // Do not perform the transform if multiple aliases potentially target the 2428 // aliasee. This check also ensures that it is safe to replace the section 2429 // and other attributes of the aliasee with those of the alias. 2430 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2431 return Ret; 2432 2433 RenameTarget = true; 2434 return true; 2435 } 2436 2437 static bool 2438 OptimizeGlobalAliases(Module &M, 2439 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2440 bool Changed = false; 2441 LLVMUsed Used(M); 2442 2443 for (GlobalValue *GV : Used.used()) 2444 Used.compilerUsedErase(GV); 2445 2446 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2447 I != E;) { 2448 GlobalAlias *J = &*I++; 2449 2450 // Aliases without names cannot be referenced outside this module. 2451 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2452 J->setLinkage(GlobalValue::InternalLinkage); 2453 2454 if (deleteIfDead(*J, NotDiscardableComdats)) { 2455 Changed = true; 2456 continue; 2457 } 2458 2459 // If the aliasee may change at link time, nothing can be done - bail out. 2460 if (J->isInterposable()) 2461 continue; 2462 2463 Constant *Aliasee = J->getAliasee(); 2464 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2465 // We can't trivially replace the alias with the aliasee if the aliasee is 2466 // non-trivial in some way. 2467 // TODO: Try to handle non-zero GEPs of local aliasees. 2468 if (!Target) 2469 continue; 2470 Target->removeDeadConstantUsers(); 2471 2472 // Make all users of the alias use the aliasee instead. 2473 bool RenameTarget; 2474 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2475 continue; 2476 2477 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2478 ++NumAliasesResolved; 2479 Changed = true; 2480 2481 if (RenameTarget) { 2482 // Give the aliasee the name, linkage and other attributes of the alias. 2483 Target->takeName(&*J); 2484 Target->setLinkage(J->getLinkage()); 2485 Target->setVisibility(J->getVisibility()); 2486 Target->setDLLStorageClass(J->getDLLStorageClass()); 2487 2488 if (Used.usedErase(&*J)) 2489 Used.usedInsert(Target); 2490 2491 if (Used.compilerUsedErase(&*J)) 2492 Used.compilerUsedInsert(Target); 2493 } else if (mayHaveOtherReferences(*J, Used)) 2494 continue; 2495 2496 // Delete the alias. 2497 M.getAliasList().erase(J); 2498 ++NumAliasesRemoved; 2499 Changed = true; 2500 } 2501 2502 Used.syncVariablesAndSets(); 2503 2504 return Changed; 2505 } 2506 2507 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2508 LibFunc F = LibFunc_cxa_atexit; 2509 if (!TLI->has(F)) 2510 return nullptr; 2511 2512 Function *Fn = M.getFunction(TLI->getName(F)); 2513 if (!Fn) 2514 return nullptr; 2515 2516 // Make sure that the function has the correct prototype. 2517 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2518 return nullptr; 2519 2520 return Fn; 2521 } 2522 2523 /// Returns whether the given function is an empty C++ destructor and can 2524 /// therefore be eliminated. 2525 /// Note that we assume that other optimization passes have already simplified 2526 /// the code so we only look for a function with a single basic block, where 2527 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2528 /// other side-effect free instructions. 2529 static bool cxxDtorIsEmpty(const Function &Fn, 2530 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2531 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2532 // nounwind, but that doesn't seem worth doing. 2533 if (Fn.isDeclaration()) 2534 return false; 2535 2536 if (++Fn.begin() != Fn.end()) 2537 return false; 2538 2539 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2540 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2541 I != E; ++I) { 2542 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2543 // Ignore debug intrinsics. 2544 if (isa<DbgInfoIntrinsic>(CI)) 2545 continue; 2546 2547 const Function *CalledFn = CI->getCalledFunction(); 2548 2549 if (!CalledFn) 2550 return false; 2551 2552 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2553 2554 // Don't treat recursive functions as empty. 2555 if (!NewCalledFunctions.insert(CalledFn).second) 2556 return false; 2557 2558 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2559 return false; 2560 } else if (isa<ReturnInst>(*I)) 2561 return true; // We're done. 2562 else if (I->mayHaveSideEffects()) 2563 return false; // Destructor with side effects, bail. 2564 } 2565 2566 return false; 2567 } 2568 2569 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2570 /// Itanium C++ ABI p3.3.5: 2571 /// 2572 /// After constructing a global (or local static) object, that will require 2573 /// destruction on exit, a termination function is registered as follows: 2574 /// 2575 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2576 /// 2577 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2578 /// call f(p) when DSO d is unloaded, before all such termination calls 2579 /// registered before this one. It returns zero if registration is 2580 /// successful, nonzero on failure. 2581 2582 // This pass will look for calls to __cxa_atexit where the function is trivial 2583 // and remove them. 2584 bool Changed = false; 2585 2586 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2587 I != E;) { 2588 // We're only interested in calls. Theoretically, we could handle invoke 2589 // instructions as well, but neither llvm-gcc nor clang generate invokes 2590 // to __cxa_atexit. 2591 CallInst *CI = dyn_cast<CallInst>(*I++); 2592 if (!CI) 2593 continue; 2594 2595 Function *DtorFn = 2596 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2597 if (!DtorFn) 2598 continue; 2599 2600 SmallPtrSet<const Function *, 8> CalledFunctions; 2601 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 2602 continue; 2603 2604 // Just remove the call. 2605 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2606 CI->eraseFromParent(); 2607 2608 ++NumCXXDtorsRemoved; 2609 2610 Changed |= true; 2611 } 2612 2613 return Changed; 2614 } 2615 2616 static bool optimizeGlobalsInModule( 2617 Module &M, const DataLayout &DL, TargetLibraryInfo *TLI, 2618 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2619 SmallSet<const Comdat *, 8> NotDiscardableComdats; 2620 bool Changed = false; 2621 bool LocalChange = true; 2622 while (LocalChange) { 2623 LocalChange = false; 2624 2625 NotDiscardableComdats.clear(); 2626 for (const GlobalVariable &GV : M.globals()) 2627 if (const Comdat *C = GV.getComdat()) 2628 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2629 NotDiscardableComdats.insert(C); 2630 for (Function &F : M) 2631 if (const Comdat *C = F.getComdat()) 2632 if (!F.isDefTriviallyDead()) 2633 NotDiscardableComdats.insert(C); 2634 for (GlobalAlias &GA : M.aliases()) 2635 if (const Comdat *C = GA.getComdat()) 2636 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2637 NotDiscardableComdats.insert(C); 2638 2639 // Delete functions that are trivially dead, ccc -> fastcc 2640 LocalChange |= 2641 OptimizeFunctions(M, TLI, LookupDomTree, NotDiscardableComdats); 2642 2643 // Optimize global_ctors list. 2644 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2645 return EvaluateStaticConstructor(F, DL, TLI); 2646 }); 2647 2648 // Optimize non-address-taken globals. 2649 LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree, 2650 NotDiscardableComdats); 2651 2652 // Resolve aliases, when possible. 2653 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2654 2655 // Try to remove trivial global destructors if they are not removed 2656 // already. 2657 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 2658 if (CXAAtExitFn) 2659 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2660 2661 Changed |= LocalChange; 2662 } 2663 2664 // TODO: Move all global ctors functions to the end of the module for code 2665 // layout. 2666 2667 return Changed; 2668 } 2669 2670 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2671 auto &DL = M.getDataLayout(); 2672 auto &TLI = AM.getResult<TargetLibraryAnalysis>(M); 2673 auto &FAM = 2674 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2675 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2676 return FAM.getResult<DominatorTreeAnalysis>(F); 2677 }; 2678 if (!optimizeGlobalsInModule(M, DL, &TLI, LookupDomTree)) 2679 return PreservedAnalyses::all(); 2680 return PreservedAnalyses::none(); 2681 } 2682 2683 namespace { 2684 2685 struct GlobalOptLegacyPass : public ModulePass { 2686 static char ID; // Pass identification, replacement for typeid 2687 2688 GlobalOptLegacyPass() : ModulePass(ID) { 2689 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2690 } 2691 2692 bool runOnModule(Module &M) override { 2693 if (skipModule(M)) 2694 return false; 2695 2696 auto &DL = M.getDataLayout(); 2697 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2698 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2699 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2700 }; 2701 return optimizeGlobalsInModule(M, DL, TLI, LookupDomTree); 2702 } 2703 2704 void getAnalysisUsage(AnalysisUsage &AU) const override { 2705 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2706 AU.addRequired<DominatorTreeWrapperPass>(); 2707 } 2708 }; 2709 2710 } // end anonymous namespace 2711 2712 char GlobalOptLegacyPass::ID = 0; 2713 2714 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2715 "Global Variable Optimizer", false, false) 2716 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2717 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2718 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2719 "Global Variable Optimizer", false, false) 2720 2721 ModulePass *llvm::createGlobalOptimizerPass() { 2722 return new GlobalOptLegacyPass(); 2723 } 2724