1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms simple global variables that never have their address 10 // taken. If obviously true, it marks read/write globals as constant, deletes 11 // variables only stored to, etc. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/GlobalOpt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/BinaryFormat/Dwarf.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Use.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/AtomicOrdering.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/IPO.h" 65 #include "llvm/Transforms/Utils/CtorUtils.h" 66 #include "llvm/Transforms/Utils/Evaluator.h" 67 #include "llvm/Transforms/Utils/GlobalStatus.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include <cassert> 70 #include <cstdint> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "globalopt" 77 78 STATISTIC(NumMarked , "Number of globals marked constant"); 79 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 80 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 82 STATISTIC(NumDeleted , "Number of globals deleted"); 83 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 84 STATISTIC(NumLocalized , "Number of globals localized"); 85 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 86 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 88 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 92 STATISTIC(NumInternalFunc, "Number of internal functions"); 93 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 94 95 static cl::opt<bool> 96 EnableColdCCStressTest("enable-coldcc-stress-test", 97 cl::desc("Enable stress test of coldcc by adding " 98 "calling conv to all internal functions."), 99 cl::init(false), cl::Hidden); 100 101 static cl::opt<int> ColdCCRelFreq( 102 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 103 cl::desc( 104 "Maximum block frequency, expressed as a percentage of caller's " 105 "entry frequency, for a call site to be considered cold for enabling" 106 "coldcc")); 107 108 /// Is this global variable possibly used by a leak checker as a root? If so, 109 /// we might not really want to eliminate the stores to it. 110 static bool isLeakCheckerRoot(GlobalVariable *GV) { 111 // A global variable is a root if it is a pointer, or could plausibly contain 112 // a pointer. There are two challenges; one is that we could have a struct 113 // the has an inner member which is a pointer. We recurse through the type to 114 // detect these (up to a point). The other is that we may actually be a union 115 // of a pointer and another type, and so our LLVM type is an integer which 116 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 117 // potentially contained here. 118 119 if (GV->hasPrivateLinkage()) 120 return false; 121 122 SmallVector<Type *, 4> Types; 123 Types.push_back(GV->getValueType()); 124 125 unsigned Limit = 20; 126 do { 127 Type *Ty = Types.pop_back_val(); 128 switch (Ty->getTypeID()) { 129 default: break; 130 case Type::PointerTyID: 131 return true; 132 case Type::FixedVectorTyID: 133 case Type::ScalableVectorTyID: 134 if (cast<VectorType>(Ty)->getElementType()->isPointerTy()) 135 return true; 136 break; 137 case Type::ArrayTyID: 138 Types.push_back(cast<ArrayType>(Ty)->getElementType()); 139 break; 140 case Type::StructTyID: { 141 StructType *STy = cast<StructType>(Ty); 142 if (STy->isOpaque()) return true; 143 for (StructType::element_iterator I = STy->element_begin(), 144 E = STy->element_end(); I != E; ++I) { 145 Type *InnerTy = *I; 146 if (isa<PointerType>(InnerTy)) return true; 147 if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) || 148 isa<VectorType>(InnerTy)) 149 Types.push_back(InnerTy); 150 } 151 break; 152 } 153 } 154 if (--Limit == 0) return true; 155 } while (!Types.empty()); 156 return false; 157 } 158 159 /// Given a value that is stored to a global but never read, determine whether 160 /// it's safe to remove the store and the chain of computation that feeds the 161 /// store. 162 static bool IsSafeComputationToRemove( 163 Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 164 do { 165 if (isa<Constant>(V)) 166 return true; 167 if (!V->hasOneUse()) 168 return false; 169 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 170 isa<GlobalValue>(V)) 171 return false; 172 if (isAllocationFn(V, GetTLI)) 173 return true; 174 175 Instruction *I = cast<Instruction>(V); 176 if (I->mayHaveSideEffects()) 177 return false; 178 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 179 if (!GEP->hasAllConstantIndices()) 180 return false; 181 } else if (I->getNumOperands() != 1) { 182 return false; 183 } 184 185 V = I->getOperand(0); 186 } while (true); 187 } 188 189 /// This GV is a pointer root. Loop over all users of the global and clean up 190 /// any that obviously don't assign the global a value that isn't dynamically 191 /// allocated. 192 static bool 193 CleanupPointerRootUsers(GlobalVariable *GV, 194 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 195 // A brief explanation of leak checkers. The goal is to find bugs where 196 // pointers are forgotten, causing an accumulating growth in memory 197 // usage over time. The common strategy for leak checkers is to explicitly 198 // allow the memory pointed to by globals at exit. This is popular because it 199 // also solves another problem where the main thread of a C++ program may shut 200 // down before other threads that are still expecting to use those globals. To 201 // handle that case, we expect the program may create a singleton and never 202 // destroy it. 203 204 bool Changed = false; 205 206 // If Dead[n].first is the only use of a malloc result, we can delete its 207 // chain of computation and the store to the global in Dead[n].second. 208 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 209 210 // Constants can't be pointers to dynamically allocated memory. 211 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 212 UI != E;) { 213 User *U = *UI++; 214 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 215 Value *V = SI->getValueOperand(); 216 if (isa<Constant>(V)) { 217 Changed = true; 218 SI->eraseFromParent(); 219 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 220 if (I->hasOneUse()) 221 Dead.push_back(std::make_pair(I, SI)); 222 } 223 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 224 if (isa<Constant>(MSI->getValue())) { 225 Changed = true; 226 MSI->eraseFromParent(); 227 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 228 if (I->hasOneUse()) 229 Dead.push_back(std::make_pair(I, MSI)); 230 } 231 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 232 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 233 if (MemSrc && MemSrc->isConstant()) { 234 Changed = true; 235 MTI->eraseFromParent(); 236 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 237 if (I->hasOneUse()) 238 Dead.push_back(std::make_pair(I, MTI)); 239 } 240 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 241 if (CE->use_empty()) { 242 CE->destroyConstant(); 243 Changed = true; 244 } 245 } else if (Constant *C = dyn_cast<Constant>(U)) { 246 if (isSafeToDestroyConstant(C)) { 247 C->destroyConstant(); 248 // This could have invalidated UI, start over from scratch. 249 Dead.clear(); 250 CleanupPointerRootUsers(GV, GetTLI); 251 return true; 252 } 253 } 254 } 255 256 for (int i = 0, e = Dead.size(); i != e; ++i) { 257 if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) { 258 Dead[i].second->eraseFromParent(); 259 Instruction *I = Dead[i].first; 260 do { 261 if (isAllocationFn(I, GetTLI)) 262 break; 263 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 264 if (!J) 265 break; 266 I->eraseFromParent(); 267 I = J; 268 } while (true); 269 I->eraseFromParent(); 270 Changed = true; 271 } 272 } 273 274 return Changed; 275 } 276 277 /// We just marked GV constant. Loop over all users of the global, cleaning up 278 /// the obvious ones. This is largely just a quick scan over the use list to 279 /// clean up the easy and obvious cruft. This returns true if it made a change. 280 static bool CleanupConstantGlobalUsers( 281 Value *V, Constant *Init, const DataLayout &DL, 282 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 283 bool Changed = false; 284 // Note that we need to use a weak value handle for the worklist items. When 285 // we delete a constant array, we may also be holding pointer to one of its 286 // elements (or an element of one of its elements if we're dealing with an 287 // array of arrays) in the worklist. 288 SmallVector<WeakTrackingVH, 8> WorkList(V->users()); 289 while (!WorkList.empty()) { 290 Value *UV = WorkList.pop_back_val(); 291 if (!UV) 292 continue; 293 294 User *U = cast<User>(UV); 295 296 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 297 if (Init) { 298 if (auto *Casted = 299 ConstantFoldLoadThroughBitcast(Init, LI->getType(), DL)) { 300 // Replace the load with the initializer. 301 LI->replaceAllUsesWith(Casted); 302 LI->eraseFromParent(); 303 Changed = true; 304 } 305 } 306 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 307 // Store must be unreachable or storing Init into the global. 308 SI->eraseFromParent(); 309 Changed = true; 310 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 311 if (CE->getOpcode() == Instruction::GetElementPtr) { 312 Constant *SubInit = nullptr; 313 if (Init) 314 SubInit = ConstantFoldLoadThroughGEPConstantExpr( 315 Init, CE, V->getType()->getPointerElementType(), DL); 316 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI); 317 } else if ((CE->getOpcode() == Instruction::BitCast && 318 CE->getType()->isPointerTy()) || 319 CE->getOpcode() == Instruction::AddrSpaceCast) { 320 // Pointer cast, delete any stores and memsets to the global. 321 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI); 322 } 323 324 if (CE->use_empty()) { 325 CE->destroyConstant(); 326 Changed = true; 327 } 328 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 329 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 330 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 331 // and will invalidate our notion of what Init is. 332 Constant *SubInit = nullptr; 333 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 334 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 335 ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction()))); 336 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 337 SubInit = ConstantFoldLoadThroughGEPConstantExpr( 338 Init, CE, V->getType()->getPointerElementType(), DL); 339 340 // If the initializer is an all-null value and we have an inbounds GEP, 341 // we already know what the result of any load from that GEP is. 342 // TODO: Handle splats. 343 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 344 SubInit = Constant::getNullValue(GEP->getResultElementType()); 345 } 346 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI); 347 348 if (GEP->use_empty()) { 349 GEP->eraseFromParent(); 350 Changed = true; 351 } 352 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 353 if (MI->getRawDest() == V) { 354 MI->eraseFromParent(); 355 Changed = true; 356 } 357 358 } else if (Constant *C = dyn_cast<Constant>(U)) { 359 // If we have a chain of dead constantexprs or other things dangling from 360 // us, and if they are all dead, nuke them without remorse. 361 if (isSafeToDestroyConstant(C)) { 362 C->destroyConstant(); 363 CleanupConstantGlobalUsers(V, Init, DL, GetTLI); 364 return true; 365 } 366 } 367 } 368 return Changed; 369 } 370 371 static bool isSafeSROAElementUse(Value *V); 372 373 /// Return true if the specified GEP is a safe user of a derived 374 /// expression from a global that we want to SROA. 375 static bool isSafeSROAGEP(User *U) { 376 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 377 // don't like < 3 operand CE's, and we don't like non-constant integer 378 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 379 // value of C. 380 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 381 !cast<Constant>(U->getOperand(1))->isNullValue()) 382 return false; 383 384 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 385 ++GEPI; // Skip over the pointer index. 386 387 // For all other level we require that the indices are constant and inrange. 388 // In particular, consider: A[0][i]. We cannot know that the user isn't doing 389 // invalid things like allowing i to index an out-of-range subscript that 390 // accesses A[1]. This can also happen between different members of a struct 391 // in llvm IR. 392 for (; GEPI != E; ++GEPI) { 393 if (GEPI.isStruct()) 394 continue; 395 396 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 397 if (!IdxVal || (GEPI.isBoundedSequential() && 398 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 399 return false; 400 } 401 402 return llvm::all_of(U->users(), 403 [](User *UU) { return isSafeSROAElementUse(UU); }); 404 } 405 406 /// Return true if the specified instruction is a safe user of a derived 407 /// expression from a global that we want to SROA. 408 static bool isSafeSROAElementUse(Value *V) { 409 // We might have a dead and dangling constant hanging off of here. 410 if (Constant *C = dyn_cast<Constant>(V)) 411 return isSafeToDestroyConstant(C); 412 413 Instruction *I = dyn_cast<Instruction>(V); 414 if (!I) return false; 415 416 // Loads are ok. 417 if (isa<LoadInst>(I)) return true; 418 419 // Stores *to* the pointer are ok. 420 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 421 return SI->getOperand(0) != V; 422 423 // Otherwise, it must be a GEP. Check it and its users are safe to SRA. 424 return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I); 425 } 426 427 /// Look at all uses of the global and decide whether it is safe for us to 428 /// perform this transformation. 429 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 430 for (User *U : GV->users()) { 431 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 432 if (!isa<GetElementPtrInst>(U) && 433 (!isa<ConstantExpr>(U) || 434 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 435 return false; 436 437 // Check the gep and it's users are safe to SRA 438 if (!isSafeSROAGEP(U)) 439 return false; 440 } 441 442 return true; 443 } 444 445 static bool IsSRASequential(Type *T) { 446 return isa<ArrayType>(T) || isa<VectorType>(T); 447 } 448 static uint64_t GetSRASequentialNumElements(Type *T) { 449 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 450 return AT->getNumElements(); 451 return cast<FixedVectorType>(T)->getNumElements(); 452 } 453 static Type *GetSRASequentialElementType(Type *T) { 454 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 455 return AT->getElementType(); 456 return cast<VectorType>(T)->getElementType(); 457 } 458 static bool CanDoGlobalSRA(GlobalVariable *GV) { 459 Constant *Init = GV->getInitializer(); 460 461 if (isa<StructType>(Init->getType())) { 462 // nothing to check 463 } else if (IsSRASequential(Init->getType())) { 464 if (GetSRASequentialNumElements(Init->getType()) > 16 && 465 GV->hasNUsesOrMore(16)) 466 return false; // It's not worth it. 467 } else 468 return false; 469 470 return GlobalUsersSafeToSRA(GV); 471 } 472 473 /// Copy over the debug info for a variable to its SRA replacements. 474 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 475 uint64_t FragmentOffsetInBits, 476 uint64_t FragmentSizeInBits, 477 uint64_t VarSize) { 478 SmallVector<DIGlobalVariableExpression *, 1> GVs; 479 GV->getDebugInfo(GVs); 480 for (auto *GVE : GVs) { 481 DIVariable *Var = GVE->getVariable(); 482 DIExpression *Expr = GVE->getExpression(); 483 // If the FragmentSize is smaller than the variable, 484 // emit a fragment expression. 485 if (FragmentSizeInBits < VarSize) { 486 if (auto E = DIExpression::createFragmentExpression( 487 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 488 Expr = *E; 489 else 490 return; 491 } 492 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 493 NGV->addDebugInfo(NGVE); 494 } 495 } 496 497 /// Perform scalar replacement of aggregates on the specified global variable. 498 /// This opens the door for other optimizations by exposing the behavior of the 499 /// program in a more fine-grained way. We have determined that this 500 /// transformation is safe already. We return the first global variable we 501 /// insert so that the caller can reprocess it. 502 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 503 // Make sure this global only has simple uses that we can SRA. 504 if (!CanDoGlobalSRA(GV)) 505 return nullptr; 506 507 assert(GV->hasLocalLinkage()); 508 Constant *Init = GV->getInitializer(); 509 Type *Ty = Init->getType(); 510 uint64_t VarSize = DL.getTypeSizeInBits(Ty); 511 512 std::map<unsigned, GlobalVariable *> NewGlobals; 513 514 // Get the alignment of the global, either explicit or target-specific. 515 Align StartAlignment = 516 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType()); 517 518 // Loop over all users and create replacement variables for used aggregate 519 // elements. 520 for (User *GEP : GV->users()) { 521 assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() == 522 Instruction::GetElementPtr) || 523 isa<GetElementPtrInst>(GEP)) && 524 "NonGEP CE's are not SRAable!"); 525 526 // Ignore the 1th operand, which has to be zero or else the program is quite 527 // broken (undefined). Get the 2nd operand, which is the structure or array 528 // index. 529 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 530 if (NewGlobals.count(ElementIdx) == 1) 531 continue; // we`ve already created replacement variable 532 assert(NewGlobals.count(ElementIdx) == 0); 533 534 Type *ElTy = nullptr; 535 if (StructType *STy = dyn_cast<StructType>(Ty)) 536 ElTy = STy->getElementType(ElementIdx); 537 else 538 ElTy = GetSRASequentialElementType(Ty); 539 assert(ElTy); 540 541 Constant *In = Init->getAggregateElement(ElementIdx); 542 assert(In && "Couldn't get element of initializer?"); 543 544 GlobalVariable *NGV = new GlobalVariable( 545 ElTy, false, GlobalVariable::InternalLinkage, In, 546 GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(), 547 GV->getType()->getAddressSpace()); 548 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 549 NGV->copyAttributesFrom(GV); 550 NewGlobals.insert(std::make_pair(ElementIdx, NGV)); 551 552 if (StructType *STy = dyn_cast<StructType>(Ty)) { 553 const StructLayout &Layout = *DL.getStructLayout(STy); 554 555 // Calculate the known alignment of the field. If the original aggregate 556 // had 256 byte alignment for example, something might depend on that: 557 // propagate info to each field. 558 uint64_t FieldOffset = Layout.getElementOffset(ElementIdx); 559 Align NewAlign = commonAlignment(StartAlignment, FieldOffset); 560 if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx))) 561 NGV->setAlignment(NewAlign); 562 563 // Copy over the debug info for the variable. 564 uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType()); 565 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx); 566 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize); 567 } else { 568 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 569 Align EltAlign = DL.getABITypeAlign(ElTy); 570 uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy); 571 572 // Calculate the known alignment of the field. If the original aggregate 573 // had 256 byte alignment for example, something might depend on that: 574 // propagate info to each field. 575 Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx); 576 if (NewAlign > EltAlign) 577 NGV->setAlignment(NewAlign); 578 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx, 579 FragmentSizeInBits, VarSize); 580 } 581 } 582 583 if (NewGlobals.empty()) 584 return nullptr; 585 586 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 587 for (auto NewGlobalVar : NewGlobals) 588 Globals.push_back(NewGlobalVar.second); 589 590 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 591 592 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 593 594 // Loop over all of the uses of the global, replacing the constantexpr geps, 595 // with smaller constantexpr geps or direct references. 596 while (!GV->use_empty()) { 597 User *GEP = GV->user_back(); 598 assert(((isa<ConstantExpr>(GEP) && 599 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 600 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 601 602 // Ignore the 1th operand, which has to be zero or else the program is quite 603 // broken (undefined). Get the 2nd operand, which is the structure or array 604 // index. 605 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 606 assert(NewGlobals.count(ElementIdx) == 1); 607 608 Value *NewPtr = NewGlobals[ElementIdx]; 609 Type *NewTy = NewGlobals[ElementIdx]->getValueType(); 610 611 // Form a shorter GEP if needed. 612 if (GEP->getNumOperands() > 3) { 613 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 614 SmallVector<Constant*, 8> Idxs; 615 Idxs.push_back(NullInt); 616 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 617 Idxs.push_back(CE->getOperand(i)); 618 NewPtr = 619 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 620 } else { 621 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 622 SmallVector<Value*, 8> Idxs; 623 Idxs.push_back(NullInt); 624 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 625 Idxs.push_back(GEPI->getOperand(i)); 626 NewPtr = GetElementPtrInst::Create( 627 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx), 628 GEPI); 629 } 630 } 631 GEP->replaceAllUsesWith(NewPtr); 632 633 // We changed the pointer of any memory access user. Recalculate alignments. 634 for (User *U : NewPtr->users()) { 635 if (auto *Load = dyn_cast<LoadInst>(U)) { 636 Align PrefAlign = DL.getPrefTypeAlign(Load->getType()); 637 Align NewAlign = getOrEnforceKnownAlignment(Load->getPointerOperand(), 638 PrefAlign, DL, Load); 639 Load->setAlignment(NewAlign); 640 } 641 if (auto *Store = dyn_cast<StoreInst>(U)) { 642 Align PrefAlign = 643 DL.getPrefTypeAlign(Store->getValueOperand()->getType()); 644 Align NewAlign = getOrEnforceKnownAlignment(Store->getPointerOperand(), 645 PrefAlign, DL, Store); 646 Store->setAlignment(NewAlign); 647 } 648 } 649 650 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 651 GEPI->eraseFromParent(); 652 else 653 cast<ConstantExpr>(GEP)->destroyConstant(); 654 } 655 656 // Delete the old global, now that it is dead. 657 Globals.erase(GV); 658 ++NumSRA; 659 660 assert(NewGlobals.size() > 0); 661 return NewGlobals.begin()->second; 662 } 663 664 /// Return true if all users of the specified value will trap if the value is 665 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 666 /// reprocessing them. 667 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 668 SmallPtrSetImpl<const PHINode*> &PHIs) { 669 for (const User *U : V->users()) { 670 if (const Instruction *I = dyn_cast<Instruction>(U)) { 671 // If null pointer is considered valid, then all uses are non-trapping. 672 // Non address-space 0 globals have already been pruned by the caller. 673 if (NullPointerIsDefined(I->getFunction())) 674 return false; 675 } 676 if (isa<LoadInst>(U)) { 677 // Will trap. 678 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 679 if (SI->getOperand(0) == V) { 680 //cerr << "NONTRAPPING USE: " << *U; 681 return false; // Storing the value. 682 } 683 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 684 if (CI->getCalledOperand() != V) { 685 //cerr << "NONTRAPPING USE: " << *U; 686 return false; // Not calling the ptr 687 } 688 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 689 if (II->getCalledOperand() != V) { 690 //cerr << "NONTRAPPING USE: " << *U; 691 return false; // Not calling the ptr 692 } 693 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 694 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 695 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 696 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 697 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 698 // If we've already seen this phi node, ignore it, it has already been 699 // checked. 700 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 701 return false; 702 } else if (isa<ICmpInst>(U) && 703 !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) && 704 isa<LoadInst>(U->getOperand(0)) && 705 isa<ConstantPointerNull>(U->getOperand(1))) { 706 assert(isa<GlobalValue>( 707 cast<LoadInst>(U->getOperand(0))->getPointerOperand()) && 708 "Should be GlobalVariable"); 709 // This and only this kind of non-signed ICmpInst is to be replaced with 710 // the comparing of the value of the created global init bool later in 711 // optimizeGlobalAddressOfMalloc for the global variable. 712 } else { 713 //cerr << "NONTRAPPING USE: " << *U; 714 return false; 715 } 716 } 717 return true; 718 } 719 720 /// Return true if all uses of any loads from GV will trap if the loaded value 721 /// is null. Note that this also permits comparisons of the loaded value 722 /// against null, as a special case. 723 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 724 SmallVector<const Value *, 4> Worklist; 725 Worklist.push_back(GV); 726 while (!Worklist.empty()) { 727 const Value *P = Worklist.pop_back_val(); 728 for (auto *U : P->users()) { 729 if (auto *LI = dyn_cast<LoadInst>(U)) { 730 SmallPtrSet<const PHINode *, 8> PHIs; 731 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 732 return false; 733 } else if (auto *SI = dyn_cast<StoreInst>(U)) { 734 // Ignore stores to the global. 735 if (SI->getPointerOperand() != P) 736 return false; 737 } else if (auto *CE = dyn_cast<ConstantExpr>(U)) { 738 if (CE->stripPointerCasts() != GV) 739 return false; 740 // Check further the ConstantExpr. 741 Worklist.push_back(CE); 742 } else { 743 // We don't know or understand this user, bail out. 744 return false; 745 } 746 } 747 } 748 749 return true; 750 } 751 752 /// Get all the loads/store uses for global variable \p GV. 753 static void allUsesOfLoadAndStores(GlobalVariable *GV, 754 SmallVector<Value *, 4> &Uses) { 755 SmallVector<Value *, 4> Worklist; 756 Worklist.push_back(GV); 757 while (!Worklist.empty()) { 758 auto *P = Worklist.pop_back_val(); 759 for (auto *U : P->users()) { 760 if (auto *CE = dyn_cast<ConstantExpr>(U)) { 761 Worklist.push_back(CE); 762 continue; 763 } 764 765 assert((isa<LoadInst>(U) || isa<StoreInst>(U)) && 766 "Expect only load or store instructions"); 767 Uses.push_back(U); 768 } 769 } 770 } 771 772 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 773 bool Changed = false; 774 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 775 Instruction *I = cast<Instruction>(*UI++); 776 // Uses are non-trapping if null pointer is considered valid. 777 // Non address-space 0 globals are already pruned by the caller. 778 if (NullPointerIsDefined(I->getFunction())) 779 return false; 780 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 781 LI->setOperand(0, NewV); 782 Changed = true; 783 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 784 if (SI->getOperand(1) == V) { 785 SI->setOperand(1, NewV); 786 Changed = true; 787 } 788 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 789 CallBase *CB = cast<CallBase>(I); 790 if (CB->getCalledOperand() == V) { 791 // Calling through the pointer! Turn into a direct call, but be careful 792 // that the pointer is not also being passed as an argument. 793 CB->setCalledOperand(NewV); 794 Changed = true; 795 bool PassedAsArg = false; 796 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 797 if (CB->getArgOperand(i) == V) { 798 PassedAsArg = true; 799 CB->setArgOperand(i, NewV); 800 } 801 802 if (PassedAsArg) { 803 // Being passed as an argument also. Be careful to not invalidate UI! 804 UI = V->user_begin(); 805 } 806 } 807 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 808 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 809 ConstantExpr::getCast(CI->getOpcode(), 810 NewV, CI->getType())); 811 if (CI->use_empty()) { 812 Changed = true; 813 CI->eraseFromParent(); 814 } 815 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 816 // Should handle GEP here. 817 SmallVector<Constant*, 8> Idxs; 818 Idxs.reserve(GEPI->getNumOperands()-1); 819 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 820 i != e; ++i) 821 if (Constant *C = dyn_cast<Constant>(*i)) 822 Idxs.push_back(C); 823 else 824 break; 825 if (Idxs.size() == GEPI->getNumOperands()-1) 826 Changed |= OptimizeAwayTrappingUsesOfValue( 827 GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(), 828 NewV, Idxs)); 829 if (GEPI->use_empty()) { 830 Changed = true; 831 GEPI->eraseFromParent(); 832 } 833 } 834 } 835 836 return Changed; 837 } 838 839 /// The specified global has only one non-null value stored into it. If there 840 /// are uses of the loaded value that would trap if the loaded value is 841 /// dynamically null, then we know that they cannot be reachable with a null 842 /// optimize away the load. 843 static bool OptimizeAwayTrappingUsesOfLoads( 844 GlobalVariable *GV, Constant *LV, const DataLayout &DL, 845 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 846 bool Changed = false; 847 848 // Keep track of whether we are able to remove all the uses of the global 849 // other than the store that defines it. 850 bool AllNonStoreUsesGone = true; 851 852 // Replace all uses of loads with uses of uses of the stored value. 853 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 854 User *GlobalUser = *GUI++; 855 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 856 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 857 // If we were able to delete all uses of the loads 858 if (LI->use_empty()) { 859 LI->eraseFromParent(); 860 Changed = true; 861 } else { 862 AllNonStoreUsesGone = false; 863 } 864 } else if (isa<StoreInst>(GlobalUser)) { 865 // Ignore the store that stores "LV" to the global. 866 assert(GlobalUser->getOperand(1) == GV && 867 "Must be storing *to* the global"); 868 } else { 869 AllNonStoreUsesGone = false; 870 871 // If we get here we could have other crazy uses that are transitively 872 // loaded. 873 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 874 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 875 isa<BitCastInst>(GlobalUser) || 876 isa<GetElementPtrInst>(GlobalUser)) && 877 "Only expect load and stores!"); 878 } 879 } 880 881 if (Changed) { 882 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV 883 << "\n"); 884 ++NumGlobUses; 885 } 886 887 // If we nuked all of the loads, then none of the stores are needed either, 888 // nor is the global. 889 if (AllNonStoreUsesGone) { 890 if (isLeakCheckerRoot(GV)) { 891 Changed |= CleanupPointerRootUsers(GV, GetTLI); 892 } else { 893 Changed = true; 894 CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI); 895 } 896 if (GV->use_empty()) { 897 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 898 Changed = true; 899 GV->eraseFromParent(); 900 ++NumDeleted; 901 } 902 } 903 return Changed; 904 } 905 906 /// Walk the use list of V, constant folding all of the instructions that are 907 /// foldable. 908 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 909 TargetLibraryInfo *TLI) { 910 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 911 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 912 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 913 I->replaceAllUsesWith(NewC); 914 915 // Advance UI to the next non-I use to avoid invalidating it! 916 // Instructions could multiply use V. 917 while (UI != E && *UI == I) 918 ++UI; 919 if (isInstructionTriviallyDead(I, TLI)) 920 I->eraseFromParent(); 921 } 922 } 923 924 /// This function takes the specified global variable, and transforms the 925 /// program as if it always contained the result of the specified malloc. 926 /// Because it is always the result of the specified malloc, there is no reason 927 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 928 /// loads of GV as uses of the new global. 929 static GlobalVariable * 930 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 931 ConstantInt *NElements, const DataLayout &DL, 932 TargetLibraryInfo *TLI) { 933 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI 934 << '\n'); 935 936 Type *GlobalType; 937 if (NElements->getZExtValue() == 1) 938 GlobalType = AllocTy; 939 else 940 // If we have an array allocation, the global variable is of an array. 941 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 942 943 // Create the new global variable. The contents of the malloc'd memory is 944 // undefined, so initialize with an undef value. 945 GlobalVariable *NewGV = new GlobalVariable( 946 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 947 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 948 GV->getThreadLocalMode()); 949 950 // If there are bitcast users of the malloc (which is typical, usually we have 951 // a malloc + bitcast) then replace them with uses of the new global. Update 952 // other users to use the global as well. 953 BitCastInst *TheBC = nullptr; 954 while (!CI->use_empty()) { 955 Instruction *User = cast<Instruction>(CI->user_back()); 956 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 957 if (BCI->getType() == NewGV->getType()) { 958 BCI->replaceAllUsesWith(NewGV); 959 BCI->eraseFromParent(); 960 } else { 961 BCI->setOperand(0, NewGV); 962 } 963 } else { 964 if (!TheBC) 965 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 966 User->replaceUsesOfWith(CI, TheBC); 967 } 968 } 969 970 Constant *RepValue = NewGV; 971 if (NewGV->getType() != GV->getValueType()) 972 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 973 974 // If there is a comparison against null, we will insert a global bool to 975 // keep track of whether the global was initialized yet or not. 976 GlobalVariable *InitBool = 977 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 978 GlobalValue::InternalLinkage, 979 ConstantInt::getFalse(GV->getContext()), 980 GV->getName()+".init", GV->getThreadLocalMode()); 981 bool InitBoolUsed = false; 982 983 // Loop over all instruction uses of GV, processing them in turn. 984 SmallVector<Value *, 4> Guses; 985 allUsesOfLoadAndStores(GV, Guses); 986 for (auto *U : Guses) { 987 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 988 // The global is initialized when the store to it occurs. If the stored 989 // value is null value, the global bool is set to false, otherwise true. 990 new StoreInst(ConstantInt::getBool( 991 GV->getContext(), 992 !isa<ConstantPointerNull>(SI->getValueOperand())), 993 InitBool, false, Align(1), SI->getOrdering(), 994 SI->getSyncScopeID(), SI); 995 SI->eraseFromParent(); 996 continue; 997 } 998 999 LoadInst *LI = cast<LoadInst>(U); 1000 while (!LI->use_empty()) { 1001 Use &LoadUse = *LI->use_begin(); 1002 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 1003 if (!ICI) { 1004 LoadUse = RepValue; 1005 continue; 1006 } 1007 1008 // Replace the cmp X, 0 with a use of the bool value. 1009 Value *LV = new LoadInst(InitBool->getValueType(), InitBool, 1010 InitBool->getName() + ".val", false, Align(1), 1011 LI->getOrdering(), LI->getSyncScopeID(), LI); 1012 InitBoolUsed = true; 1013 switch (ICI->getPredicate()) { 1014 default: llvm_unreachable("Unknown ICmp Predicate!"); 1015 case ICmpInst::ICMP_ULT: // X < null -> always false 1016 LV = ConstantInt::getFalse(GV->getContext()); 1017 break; 1018 case ICmpInst::ICMP_UGE: // X >= null -> always true 1019 LV = ConstantInt::getTrue(GV->getContext()); 1020 break; 1021 case ICmpInst::ICMP_ULE: 1022 case ICmpInst::ICMP_EQ: 1023 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 1024 break; 1025 case ICmpInst::ICMP_NE: 1026 case ICmpInst::ICMP_UGT: 1027 break; // no change. 1028 } 1029 ICI->replaceAllUsesWith(LV); 1030 ICI->eraseFromParent(); 1031 } 1032 LI->eraseFromParent(); 1033 } 1034 1035 // If the initialization boolean was used, insert it, otherwise delete it. 1036 if (!InitBoolUsed) { 1037 while (!InitBool->use_empty()) // Delete initializations 1038 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 1039 delete InitBool; 1040 } else 1041 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 1042 1043 // Now the GV is dead, nuke it and the malloc.. 1044 GV->eraseFromParent(); 1045 CI->eraseFromParent(); 1046 1047 // To further other optimizations, loop over all users of NewGV and try to 1048 // constant prop them. This will promote GEP instructions with constant 1049 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 1050 ConstantPropUsersOf(NewGV, DL, TLI); 1051 if (RepValue != NewGV) 1052 ConstantPropUsersOf(RepValue, DL, TLI); 1053 1054 return NewGV; 1055 } 1056 1057 /// Scan the use-list of GV checking to make sure that there are no complex uses 1058 /// of GV. We permit simple things like dereferencing the pointer, but not 1059 /// storing through the address, unless it is to the specified global. 1060 static bool 1061 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI, 1062 const GlobalVariable *GV) { 1063 SmallPtrSet<const Value *, 4> Visited; 1064 SmallVector<const Value *, 4> Worklist; 1065 Worklist.push_back(CI); 1066 1067 while (!Worklist.empty()) { 1068 const Value *V = Worklist.pop_back_val(); 1069 if (!Visited.insert(V).second) 1070 continue; 1071 1072 for (const Use &VUse : V->uses()) { 1073 const User *U = VUse.getUser(); 1074 if (isa<LoadInst>(U) || isa<CmpInst>(U)) 1075 continue; // Fine, ignore. 1076 1077 if (auto *SI = dyn_cast<StoreInst>(U)) { 1078 if (SI->getValueOperand() == V && 1079 SI->getPointerOperand()->stripPointerCasts() != GV) 1080 return false; // Storing the pointer not into GV... bad. 1081 continue; // Otherwise, storing through it, or storing into GV... fine. 1082 } 1083 1084 if (auto *BCI = dyn_cast<BitCastInst>(U)) { 1085 Worklist.push_back(BCI); 1086 continue; 1087 } 1088 1089 if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1090 Worklist.push_back(GEPI); 1091 continue; 1092 } 1093 1094 return false; 1095 } 1096 } 1097 1098 return true; 1099 } 1100 1101 /// This function is called when we see a pointer global variable with a single 1102 /// value stored it that is a malloc or cast of malloc. 1103 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1104 Type *AllocTy, 1105 AtomicOrdering Ordering, 1106 const DataLayout &DL, 1107 TargetLibraryInfo *TLI) { 1108 // If this is a malloc of an abstract type, don't touch it. 1109 if (!AllocTy->isSized()) 1110 return false; 1111 1112 // We can't optimize this global unless all uses of it are *known* to be 1113 // of the malloc value, not of the null initializer value (consider a use 1114 // that compares the global's value against zero to see if the malloc has 1115 // been reached). To do this, we check to see if all uses of the global 1116 // would trap if the global were null: this proves that they must all 1117 // happen after the malloc. 1118 if (!allUsesOfLoadedValueWillTrapIfNull(GV)) 1119 return false; 1120 1121 // We can't optimize this if the malloc itself is used in a complex way, 1122 // for example, being stored into multiple globals. This allows the 1123 // malloc to be stored into the specified global, loaded, gep, icmp'd. 1124 // These are all things we could transform to using the global for. 1125 if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV)) 1126 return false; 1127 1128 // If we have a global that is only initialized with a fixed size malloc, 1129 // transform the program to use global memory instead of malloc'd memory. 1130 // This eliminates dynamic allocation, avoids an indirection accessing the 1131 // data, and exposes the resultant global to further GlobalOpt. 1132 // We cannot optimize the malloc if we cannot determine malloc array size. 1133 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1134 if (!NElems) 1135 return false; 1136 1137 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1138 // Restrict this transformation to only working on small allocations 1139 // (2048 bytes currently), as we don't want to introduce a 16M global or 1140 // something. 1141 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1142 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1143 return true; 1144 } 1145 1146 return false; 1147 } 1148 1149 // Try to optimize globals based on the knowledge that only one value (besides 1150 // its initializer) is ever stored to the global. 1151 static bool 1152 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1153 AtomicOrdering Ordering, const DataLayout &DL, 1154 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1155 // Ignore no-op GEPs and bitcasts. 1156 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1157 1158 // If we are dealing with a pointer global that is initialized to null and 1159 // only has one (non-null) value stored into it, then we can optimize any 1160 // users of the loaded value (often calls and loads) that would trap if the 1161 // value was null. 1162 if (GV->getInitializer()->getType()->isPointerTy() && 1163 GV->getInitializer()->isNullValue() && 1164 !NullPointerIsDefined( 1165 nullptr /* F */, 1166 GV->getInitializer()->getType()->getPointerAddressSpace())) { 1167 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1168 if (GV->getInitializer()->getType() != SOVC->getType()) 1169 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1170 1171 // Optimize away any trapping uses of the loaded value. 1172 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI)) 1173 return true; 1174 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) { 1175 auto *TLI = &GetTLI(*CI->getFunction()); 1176 Type *MallocType = getMallocAllocatedType(CI, TLI); 1177 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1178 Ordering, DL, TLI)) 1179 return true; 1180 } 1181 } 1182 1183 return false; 1184 } 1185 1186 /// At this point, we have learned that the only two values ever stored into GV 1187 /// are its initializer and OtherVal. See if we can shrink the global into a 1188 /// boolean and select between the two values whenever it is used. This exposes 1189 /// the values to other scalar optimizations. 1190 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1191 Type *GVElType = GV->getValueType(); 1192 1193 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1194 // an FP value, pointer or vector, don't do this optimization because a select 1195 // between them is very expensive and unlikely to lead to later 1196 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1197 // where v1 and v2 both require constant pool loads, a big loss. 1198 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1199 GVElType->isFloatingPointTy() || 1200 GVElType->isPointerTy() || GVElType->isVectorTy()) 1201 return false; 1202 1203 // Walk the use list of the global seeing if all the uses are load or store. 1204 // If there is anything else, bail out. 1205 for (User *U : GV->users()) 1206 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1207 return false; 1208 1209 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1210 1211 // Create the new global, initializing it to false. 1212 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1213 false, 1214 GlobalValue::InternalLinkage, 1215 ConstantInt::getFalse(GV->getContext()), 1216 GV->getName()+".b", 1217 GV->getThreadLocalMode(), 1218 GV->getType()->getAddressSpace()); 1219 NewGV->copyAttributesFrom(GV); 1220 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1221 1222 Constant *InitVal = GV->getInitializer(); 1223 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1224 "No reason to shrink to bool!"); 1225 1226 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1227 GV->getDebugInfo(GVs); 1228 1229 // If initialized to zero and storing one into the global, we can use a cast 1230 // instead of a select to synthesize the desired value. 1231 bool IsOneZero = false; 1232 bool EmitOneOrZero = true; 1233 auto *CI = dyn_cast<ConstantInt>(OtherVal); 1234 if (CI && CI->getValue().getActiveBits() <= 64) { 1235 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1236 1237 auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer()); 1238 if (CIInit && CIInit->getValue().getActiveBits() <= 64) { 1239 uint64_t ValInit = CIInit->getZExtValue(); 1240 uint64_t ValOther = CI->getZExtValue(); 1241 uint64_t ValMinus = ValOther - ValInit; 1242 1243 for(auto *GVe : GVs){ 1244 DIGlobalVariable *DGV = GVe->getVariable(); 1245 DIExpression *E = GVe->getExpression(); 1246 const DataLayout &DL = GV->getParent()->getDataLayout(); 1247 unsigned SizeInOctets = 1248 DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8; 1249 1250 // It is expected that the address of global optimized variable is on 1251 // top of the stack. After optimization, value of that variable will 1252 // be ether 0 for initial value or 1 for other value. The following 1253 // expression should return constant integer value depending on the 1254 // value at global object address: 1255 // val * (ValOther - ValInit) + ValInit: 1256 // DW_OP_deref DW_OP_constu <ValMinus> 1257 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1258 SmallVector<uint64_t, 12> Ops = { 1259 dwarf::DW_OP_deref_size, SizeInOctets, 1260 dwarf::DW_OP_constu, ValMinus, 1261 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1262 dwarf::DW_OP_plus}; 1263 bool WithStackValue = true; 1264 E = DIExpression::prependOpcodes(E, Ops, WithStackValue); 1265 DIGlobalVariableExpression *DGVE = 1266 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1267 NewGV->addDebugInfo(DGVE); 1268 } 1269 EmitOneOrZero = false; 1270 } 1271 } 1272 1273 if (EmitOneOrZero) { 1274 // FIXME: This will only emit address for debugger on which will 1275 // be written only 0 or 1. 1276 for(auto *GV : GVs) 1277 NewGV->addDebugInfo(GV); 1278 } 1279 1280 while (!GV->use_empty()) { 1281 Instruction *UI = cast<Instruction>(GV->user_back()); 1282 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1283 // Change the store into a boolean store. 1284 bool StoringOther = SI->getOperand(0) == OtherVal; 1285 // Only do this if we weren't storing a loaded value. 1286 Value *StoreVal; 1287 if (StoringOther || SI->getOperand(0) == InitVal) { 1288 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1289 StoringOther); 1290 } else { 1291 // Otherwise, we are storing a previously loaded copy. To do this, 1292 // change the copy from copying the original value to just copying the 1293 // bool. 1294 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1295 1296 // If we've already replaced the input, StoredVal will be a cast or 1297 // select instruction. If not, it will be a load of the original 1298 // global. 1299 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1300 assert(LI->getOperand(0) == GV && "Not a copy!"); 1301 // Insert a new load, to preserve the saved value. 1302 StoreVal = new LoadInst(NewGV->getValueType(), NewGV, 1303 LI->getName() + ".b", false, Align(1), 1304 LI->getOrdering(), LI->getSyncScopeID(), LI); 1305 } else { 1306 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1307 "This is not a form that we understand!"); 1308 StoreVal = StoredVal->getOperand(0); 1309 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1310 } 1311 } 1312 StoreInst *NSI = 1313 new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(), 1314 SI->getSyncScopeID(), SI); 1315 NSI->setDebugLoc(SI->getDebugLoc()); 1316 } else { 1317 // Change the load into a load of bool then a select. 1318 LoadInst *LI = cast<LoadInst>(UI); 1319 LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV, 1320 LI->getName() + ".b", false, Align(1), 1321 LI->getOrdering(), LI->getSyncScopeID(), LI); 1322 Instruction *NSI; 1323 if (IsOneZero) 1324 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1325 else 1326 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1327 NSI->takeName(LI); 1328 // Since LI is split into two instructions, NLI and NSI both inherit the 1329 // same DebugLoc 1330 NLI->setDebugLoc(LI->getDebugLoc()); 1331 NSI->setDebugLoc(LI->getDebugLoc()); 1332 LI->replaceAllUsesWith(NSI); 1333 } 1334 UI->eraseFromParent(); 1335 } 1336 1337 // Retain the name of the old global variable. People who are debugging their 1338 // programs may expect these variables to be named the same. 1339 NewGV->takeName(GV); 1340 GV->eraseFromParent(); 1341 return true; 1342 } 1343 1344 static bool deleteIfDead( 1345 GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1346 GV.removeDeadConstantUsers(); 1347 1348 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1349 return false; 1350 1351 if (const Comdat *C = GV.getComdat()) 1352 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1353 return false; 1354 1355 bool Dead; 1356 if (auto *F = dyn_cast<Function>(&GV)) 1357 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1358 else 1359 Dead = GV.use_empty(); 1360 if (!Dead) 1361 return false; 1362 1363 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1364 GV.eraseFromParent(); 1365 ++NumDeleted; 1366 return true; 1367 } 1368 1369 static bool isPointerValueDeadOnEntryToFunction( 1370 const Function *F, GlobalValue *GV, 1371 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1372 // Find all uses of GV. We expect them all to be in F, and if we can't 1373 // identify any of the uses we bail out. 1374 // 1375 // On each of these uses, identify if the memory that GV points to is 1376 // used/required/live at the start of the function. If it is not, for example 1377 // if the first thing the function does is store to the GV, the GV can 1378 // possibly be demoted. 1379 // 1380 // We don't do an exhaustive search for memory operations - simply look 1381 // through bitcasts as they're quite common and benign. 1382 const DataLayout &DL = GV->getParent()->getDataLayout(); 1383 SmallVector<LoadInst *, 4> Loads; 1384 SmallVector<StoreInst *, 4> Stores; 1385 for (auto *U : GV->users()) { 1386 if (Operator::getOpcode(U) == Instruction::BitCast) { 1387 for (auto *UU : U->users()) { 1388 if (auto *LI = dyn_cast<LoadInst>(UU)) 1389 Loads.push_back(LI); 1390 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1391 Stores.push_back(SI); 1392 else 1393 return false; 1394 } 1395 continue; 1396 } 1397 1398 Instruction *I = dyn_cast<Instruction>(U); 1399 if (!I) 1400 return false; 1401 assert(I->getParent()->getParent() == F); 1402 1403 if (auto *LI = dyn_cast<LoadInst>(I)) 1404 Loads.push_back(LI); 1405 else if (auto *SI = dyn_cast<StoreInst>(I)) 1406 Stores.push_back(SI); 1407 else 1408 return false; 1409 } 1410 1411 // We have identified all uses of GV into loads and stores. Now check if all 1412 // of them are known not to depend on the value of the global at the function 1413 // entry point. We do this by ensuring that every load is dominated by at 1414 // least one store. 1415 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1416 1417 // The below check is quadratic. Check we're not going to do too many tests. 1418 // FIXME: Even though this will always have worst-case quadratic time, we 1419 // could put effort into minimizing the average time by putting stores that 1420 // have been shown to dominate at least one load at the beginning of the 1421 // Stores array, making subsequent dominance checks more likely to succeed 1422 // early. 1423 // 1424 // The threshold here is fairly large because global->local demotion is a 1425 // very powerful optimization should it fire. 1426 const unsigned Threshold = 100; 1427 if (Loads.size() * Stores.size() > Threshold) 1428 return false; 1429 1430 for (auto *L : Loads) { 1431 auto *LTy = L->getType(); 1432 if (none_of(Stores, [&](const StoreInst *S) { 1433 auto *STy = S->getValueOperand()->getType(); 1434 // The load is only dominated by the store if DomTree says so 1435 // and the number of bits loaded in L is less than or equal to 1436 // the number of bits stored in S. 1437 return DT.dominates(S, L) && 1438 DL.getTypeStoreSize(LTy).getFixedSize() <= 1439 DL.getTypeStoreSize(STy).getFixedSize(); 1440 })) 1441 return false; 1442 } 1443 // All loads have known dependences inside F, so the global can be localized. 1444 return true; 1445 } 1446 1447 /// C may have non-instruction users. Can all of those users be turned into 1448 /// instructions? 1449 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1450 // We don't do this exhaustively. The most common pattern that we really need 1451 // to care about is a constant GEP or constant bitcast - so just looking 1452 // through one single ConstantExpr. 1453 // 1454 // The set of constants that this function returns true for must be able to be 1455 // handled by makeAllConstantUsesInstructions. 1456 for (auto *U : C->users()) { 1457 if (isa<Instruction>(U)) 1458 continue; 1459 if (!isa<ConstantExpr>(U)) 1460 // Non instruction, non-constantexpr user; cannot convert this. 1461 return false; 1462 for (auto *UU : U->users()) 1463 if (!isa<Instruction>(UU)) 1464 // A constantexpr used by another constant. We don't try and recurse any 1465 // further but just bail out at this point. 1466 return false; 1467 } 1468 1469 return true; 1470 } 1471 1472 /// C may have non-instruction users, and 1473 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1474 /// non-instruction users to instructions. 1475 static void makeAllConstantUsesInstructions(Constant *C) { 1476 SmallVector<ConstantExpr*,4> Users; 1477 for (auto *U : C->users()) { 1478 if (isa<ConstantExpr>(U)) 1479 Users.push_back(cast<ConstantExpr>(U)); 1480 else 1481 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1482 // should not have returned true for C. 1483 assert( 1484 isa<Instruction>(U) && 1485 "Can't transform non-constantexpr non-instruction to instruction!"); 1486 } 1487 1488 SmallVector<Value*,4> UUsers; 1489 for (auto *U : Users) { 1490 UUsers.clear(); 1491 append_range(UUsers, U->users()); 1492 for (auto *UU : UUsers) { 1493 Instruction *UI = cast<Instruction>(UU); 1494 Instruction *NewU = U->getAsInstruction(); 1495 NewU->insertBefore(UI); 1496 UI->replaceUsesOfWith(U, NewU); 1497 } 1498 // We've replaced all the uses, so destroy the constant. (destroyConstant 1499 // will update value handles and metadata.) 1500 U->destroyConstant(); 1501 } 1502 } 1503 1504 /// Analyze the specified global variable and optimize 1505 /// it if possible. If we make a change, return true. 1506 static bool 1507 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, 1508 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1509 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1510 auto &DL = GV->getParent()->getDataLayout(); 1511 // If this is a first class global and has only one accessing function and 1512 // this function is non-recursive, we replace the global with a local alloca 1513 // in this function. 1514 // 1515 // NOTE: It doesn't make sense to promote non-single-value types since we 1516 // are just replacing static memory to stack memory. 1517 // 1518 // If the global is in different address space, don't bring it to stack. 1519 if (!GS.HasMultipleAccessingFunctions && 1520 GS.AccessingFunction && 1521 GV->getValueType()->isSingleValueType() && 1522 GV->getType()->getAddressSpace() == 0 && 1523 !GV->isExternallyInitialized() && 1524 allNonInstructionUsersCanBeMadeInstructions(GV) && 1525 GS.AccessingFunction->doesNotRecurse() && 1526 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1527 LookupDomTree)) { 1528 const DataLayout &DL = GV->getParent()->getDataLayout(); 1529 1530 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1531 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1532 ->getEntryBlock().begin()); 1533 Type *ElemTy = GV->getValueType(); 1534 // FIXME: Pass Global's alignment when globals have alignment 1535 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1536 GV->getName(), &FirstI); 1537 if (!isa<UndefValue>(GV->getInitializer())) 1538 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1539 1540 makeAllConstantUsesInstructions(GV); 1541 1542 GV->replaceAllUsesWith(Alloca); 1543 GV->eraseFromParent(); 1544 ++NumLocalized; 1545 return true; 1546 } 1547 1548 bool Changed = false; 1549 1550 // If the global is never loaded (but may be stored to), it is dead. 1551 // Delete it now. 1552 if (!GS.IsLoaded) { 1553 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1554 1555 if (isLeakCheckerRoot(GV)) { 1556 // Delete any constant stores to the global. 1557 Changed = CleanupPointerRootUsers(GV, GetTLI); 1558 } else { 1559 // Delete any stores we can find to the global. We may not be able to 1560 // make it completely dead though. 1561 Changed = 1562 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 1563 } 1564 1565 // If the global is dead now, delete it. 1566 if (GV->use_empty()) { 1567 GV->eraseFromParent(); 1568 ++NumDeleted; 1569 Changed = true; 1570 } 1571 return Changed; 1572 1573 } 1574 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1575 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1576 1577 // Don't actually mark a global constant if it's atomic because atomic loads 1578 // are implemented by a trivial cmpxchg in some edge-cases and that usually 1579 // requires write access to the variable even if it's not actually changed. 1580 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1581 assert(!GV->isConstant() && "Expected a non-constant global"); 1582 GV->setConstant(true); 1583 Changed = true; 1584 } 1585 1586 // Clean up any obviously simplifiable users now. 1587 Changed |= CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 1588 1589 // If the global is dead now, just nuke it. 1590 if (GV->use_empty()) { 1591 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1592 << "all users and delete global!\n"); 1593 GV->eraseFromParent(); 1594 ++NumDeleted; 1595 return true; 1596 } 1597 1598 // Fall through to the next check; see if we can optimize further. 1599 ++NumMarked; 1600 } 1601 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1602 const DataLayout &DL = GV->getParent()->getDataLayout(); 1603 if (SRAGlobal(GV, DL)) 1604 return true; 1605 } 1606 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1607 // If the initial value for the global was an undef value, and if only 1608 // one other value was stored into it, we can just change the 1609 // initializer to be the stored value, then delete all stores to the 1610 // global. This allows us to mark it constant. 1611 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1612 if (isa<UndefValue>(GV->getInitializer())) { 1613 // Change the initial value here. 1614 GV->setInitializer(SOVConstant); 1615 1616 // Clean up any obviously simplifiable users now. 1617 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 1618 1619 if (GV->use_empty()) { 1620 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1621 << "simplify all users and delete global!\n"); 1622 GV->eraseFromParent(); 1623 ++NumDeleted; 1624 } 1625 ++NumSubstitute; 1626 return true; 1627 } 1628 1629 // Try to optimize globals based on the knowledge that only one value 1630 // (besides its initializer) is ever stored to the global. 1631 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, 1632 GetTLI)) 1633 return true; 1634 1635 // Otherwise, if the global was not a boolean, we can shrink it to be a 1636 // boolean. 1637 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 1638 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1639 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1640 ++NumShrunkToBool; 1641 return true; 1642 } 1643 } 1644 } 1645 } 1646 1647 return Changed; 1648 } 1649 1650 /// Analyze the specified global variable and optimize it if possible. If we 1651 /// make a change, return true. 1652 static bool 1653 processGlobal(GlobalValue &GV, 1654 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1655 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1656 if (GV.getName().startswith("llvm.")) 1657 return false; 1658 1659 GlobalStatus GS; 1660 1661 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1662 return false; 1663 1664 bool Changed = false; 1665 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 1666 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 1667 : GlobalValue::UnnamedAddr::Local; 1668 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 1669 GV.setUnnamedAddr(NewUnnamedAddr); 1670 NumUnnamed++; 1671 Changed = true; 1672 } 1673 } 1674 1675 // Do more involved optimizations if the global is internal. 1676 if (!GV.hasLocalLinkage()) 1677 return Changed; 1678 1679 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1680 if (!GVar) 1681 return Changed; 1682 1683 if (GVar->isConstant() || !GVar->hasInitializer()) 1684 return Changed; 1685 1686 return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed; 1687 } 1688 1689 /// Walk all of the direct calls of the specified function, changing them to 1690 /// FastCC. 1691 static void ChangeCalleesToFastCall(Function *F) { 1692 for (User *U : F->users()) { 1693 if (isa<BlockAddress>(U)) 1694 continue; 1695 cast<CallBase>(U)->setCallingConv(CallingConv::Fast); 1696 } 1697 } 1698 1699 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, 1700 Attribute::AttrKind A) { 1701 unsigned AttrIndex; 1702 if (Attrs.hasAttrSomewhere(A, &AttrIndex)) 1703 return Attrs.removeAttribute(C, AttrIndex, A); 1704 return Attrs; 1705 } 1706 1707 static void RemoveAttribute(Function *F, Attribute::AttrKind A) { 1708 F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A)); 1709 for (User *U : F->users()) { 1710 if (isa<BlockAddress>(U)) 1711 continue; 1712 CallBase *CB = cast<CallBase>(U); 1713 CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A)); 1714 } 1715 } 1716 1717 /// Return true if this is a calling convention that we'd like to change. The 1718 /// idea here is that we don't want to mess with the convention if the user 1719 /// explicitly requested something with performance implications like coldcc, 1720 /// GHC, or anyregcc. 1721 static bool hasChangeableCC(Function *F) { 1722 CallingConv::ID CC = F->getCallingConv(); 1723 1724 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 1725 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 1726 return false; 1727 1728 // FIXME: Change CC for the whole chain of musttail calls when possible. 1729 // 1730 // Can't change CC of the function that either has musttail calls, or is a 1731 // musttail callee itself 1732 for (User *U : F->users()) { 1733 if (isa<BlockAddress>(U)) 1734 continue; 1735 CallInst* CI = dyn_cast<CallInst>(U); 1736 if (!CI) 1737 continue; 1738 1739 if (CI->isMustTailCall()) 1740 return false; 1741 } 1742 1743 for (BasicBlock &BB : *F) 1744 if (BB.getTerminatingMustTailCall()) 1745 return false; 1746 1747 return true; 1748 } 1749 1750 /// Return true if the block containing the call site has a BlockFrequency of 1751 /// less than ColdCCRelFreq% of the entry block. 1752 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) { 1753 const BranchProbability ColdProb(ColdCCRelFreq, 100); 1754 auto *CallSiteBB = CB.getParent(); 1755 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 1756 auto CallerEntryFreq = 1757 CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock())); 1758 return CallSiteFreq < CallerEntryFreq * ColdProb; 1759 } 1760 1761 // This function checks if the input function F is cold at all call sites. It 1762 // also looks each call site's containing function, returning false if the 1763 // caller function contains other non cold calls. The input vector AllCallsCold 1764 // contains a list of functions that only have call sites in cold blocks. 1765 static bool 1766 isValidCandidateForColdCC(Function &F, 1767 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1768 const std::vector<Function *> &AllCallsCold) { 1769 1770 if (F.user_empty()) 1771 return false; 1772 1773 for (User *U : F.users()) { 1774 if (isa<BlockAddress>(U)) 1775 continue; 1776 1777 CallBase &CB = cast<CallBase>(*U); 1778 Function *CallerFunc = CB.getParent()->getParent(); 1779 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 1780 if (!isColdCallSite(CB, CallerBFI)) 1781 return false; 1782 if (!llvm::is_contained(AllCallsCold, CallerFunc)) 1783 return false; 1784 } 1785 return true; 1786 } 1787 1788 static void changeCallSitesToColdCC(Function *F) { 1789 for (User *U : F->users()) { 1790 if (isa<BlockAddress>(U)) 1791 continue; 1792 cast<CallBase>(U)->setCallingConv(CallingConv::Cold); 1793 } 1794 } 1795 1796 // This function iterates over all the call instructions in the input Function 1797 // and checks that all call sites are in cold blocks and are allowed to use the 1798 // coldcc calling convention. 1799 static bool 1800 hasOnlyColdCalls(Function &F, 1801 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { 1802 for (BasicBlock &BB : F) { 1803 for (Instruction &I : BB) { 1804 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1805 // Skip over isline asm instructions since they aren't function calls. 1806 if (CI->isInlineAsm()) 1807 continue; 1808 Function *CalledFn = CI->getCalledFunction(); 1809 if (!CalledFn) 1810 return false; 1811 if (!CalledFn->hasLocalLinkage()) 1812 return false; 1813 // Skip over instrinsics since they won't remain as function calls. 1814 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 1815 continue; 1816 // Check if it's valid to use coldcc calling convention. 1817 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || 1818 CalledFn->hasAddressTaken()) 1819 return false; 1820 BlockFrequencyInfo &CallerBFI = GetBFI(F); 1821 if (!isColdCallSite(*CI, CallerBFI)) 1822 return false; 1823 } 1824 } 1825 } 1826 return true; 1827 } 1828 1829 static bool hasMustTailCallers(Function *F) { 1830 for (User *U : F->users()) { 1831 CallBase *CB = dyn_cast<CallBase>(U); 1832 if (!CB) { 1833 assert(isa<BlockAddress>(U) && 1834 "Expected either CallBase or BlockAddress"); 1835 continue; 1836 } 1837 if (CB->isMustTailCall()) 1838 return true; 1839 } 1840 return false; 1841 } 1842 1843 static bool hasInvokeCallers(Function *F) { 1844 for (User *U : F->users()) 1845 if (isa<InvokeInst>(U)) 1846 return true; 1847 return false; 1848 } 1849 1850 static void RemovePreallocated(Function *F) { 1851 RemoveAttribute(F, Attribute::Preallocated); 1852 1853 auto *M = F->getParent(); 1854 1855 IRBuilder<> Builder(M->getContext()); 1856 1857 // Cannot modify users() while iterating over it, so make a copy. 1858 SmallVector<User *, 4> PreallocatedCalls(F->users()); 1859 for (User *U : PreallocatedCalls) { 1860 CallBase *CB = dyn_cast<CallBase>(U); 1861 if (!CB) 1862 continue; 1863 1864 assert( 1865 !CB->isMustTailCall() && 1866 "Shouldn't call RemotePreallocated() on a musttail preallocated call"); 1867 // Create copy of call without "preallocated" operand bundle. 1868 SmallVector<OperandBundleDef, 1> OpBundles; 1869 CB->getOperandBundlesAsDefs(OpBundles); 1870 CallBase *PreallocatedSetup = nullptr; 1871 for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) { 1872 if (It->getTag() == "preallocated") { 1873 PreallocatedSetup = cast<CallBase>(*It->input_begin()); 1874 OpBundles.erase(It); 1875 break; 1876 } 1877 } 1878 assert(PreallocatedSetup && "Did not find preallocated bundle"); 1879 uint64_t ArgCount = 1880 cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue(); 1881 1882 assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) && 1883 "Unknown indirect call type"); 1884 CallBase *NewCB = CallBase::Create(CB, OpBundles, CB); 1885 CB->replaceAllUsesWith(NewCB); 1886 NewCB->takeName(CB); 1887 CB->eraseFromParent(); 1888 1889 Builder.SetInsertPoint(PreallocatedSetup); 1890 auto *StackSave = 1891 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave)); 1892 1893 Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction()); 1894 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore), 1895 StackSave); 1896 1897 // Replace @llvm.call.preallocated.arg() with alloca. 1898 // Cannot modify users() while iterating over it, so make a copy. 1899 // @llvm.call.preallocated.arg() can be called with the same index multiple 1900 // times. So for each @llvm.call.preallocated.arg(), we see if we have 1901 // already created a Value* for the index, and if not, create an alloca and 1902 // bitcast right after the @llvm.call.preallocated.setup() so that it 1903 // dominates all uses. 1904 SmallVector<Value *, 2> ArgAllocas(ArgCount); 1905 SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users()); 1906 for (auto *User : PreallocatedArgs) { 1907 auto *UseCall = cast<CallBase>(User); 1908 assert(UseCall->getCalledFunction()->getIntrinsicID() == 1909 Intrinsic::call_preallocated_arg && 1910 "preallocated token use was not a llvm.call.preallocated.arg"); 1911 uint64_t AllocArgIndex = 1912 cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue(); 1913 Value *AllocaReplacement = ArgAllocas[AllocArgIndex]; 1914 if (!AllocaReplacement) { 1915 auto AddressSpace = UseCall->getType()->getPointerAddressSpace(); 1916 auto *ArgType = UseCall 1917 ->getAttribute(AttributeList::FunctionIndex, 1918 Attribute::Preallocated) 1919 .getValueAsType(); 1920 auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction(); 1921 Builder.SetInsertPoint(InsertBefore); 1922 auto *Alloca = 1923 Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg"); 1924 auto *BitCast = Builder.CreateBitCast( 1925 Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName()); 1926 ArgAllocas[AllocArgIndex] = BitCast; 1927 AllocaReplacement = BitCast; 1928 } 1929 1930 UseCall->replaceAllUsesWith(AllocaReplacement); 1931 UseCall->eraseFromParent(); 1932 } 1933 // Remove @llvm.call.preallocated.setup(). 1934 cast<Instruction>(PreallocatedSetup)->eraseFromParent(); 1935 } 1936 } 1937 1938 static bool 1939 OptimizeFunctions(Module &M, 1940 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1941 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1942 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1943 function_ref<DominatorTree &(Function &)> LookupDomTree, 1944 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1945 1946 bool Changed = false; 1947 1948 std::vector<Function *> AllCallsCold; 1949 for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) { 1950 Function *F = &*FI++; 1951 if (hasOnlyColdCalls(*F, GetBFI)) 1952 AllCallsCold.push_back(F); 1953 } 1954 1955 // Optimize functions. 1956 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 1957 Function *F = &*FI++; 1958 1959 // Don't perform global opt pass on naked functions; we don't want fast 1960 // calling conventions for naked functions. 1961 if (F->hasFnAttribute(Attribute::Naked)) 1962 continue; 1963 1964 // Functions without names cannot be referenced outside this module. 1965 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 1966 F->setLinkage(GlobalValue::InternalLinkage); 1967 1968 if (deleteIfDead(*F, NotDiscardableComdats)) { 1969 Changed = true; 1970 continue; 1971 } 1972 1973 // LLVM's definition of dominance allows instructions that are cyclic 1974 // in unreachable blocks, e.g.: 1975 // %pat = select i1 %condition, @global, i16* %pat 1976 // because any instruction dominates an instruction in a block that's 1977 // not reachable from entry. 1978 // So, remove unreachable blocks from the function, because a) there's 1979 // no point in analyzing them and b) GlobalOpt should otherwise grow 1980 // some more complicated logic to break these cycles. 1981 // Removing unreachable blocks might invalidate the dominator so we 1982 // recalculate it. 1983 if (!F->isDeclaration()) { 1984 if (removeUnreachableBlocks(*F)) { 1985 auto &DT = LookupDomTree(*F); 1986 DT.recalculate(*F); 1987 Changed = true; 1988 } 1989 } 1990 1991 Changed |= processGlobal(*F, GetTLI, LookupDomTree); 1992 1993 if (!F->hasLocalLinkage()) 1994 continue; 1995 1996 // If we have an inalloca parameter that we can safely remove the 1997 // inalloca attribute from, do so. This unlocks optimizations that 1998 // wouldn't be safe in the presence of inalloca. 1999 // FIXME: We should also hoist alloca affected by this to the entry 2000 // block if possible. 2001 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) && 2002 !F->hasAddressTaken() && !hasMustTailCallers(F)) { 2003 RemoveAttribute(F, Attribute::InAlloca); 2004 Changed = true; 2005 } 2006 2007 // FIXME: handle invokes 2008 // FIXME: handle musttail 2009 if (F->getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { 2010 if (!F->hasAddressTaken() && !hasMustTailCallers(F) && 2011 !hasInvokeCallers(F)) { 2012 RemovePreallocated(F); 2013 Changed = true; 2014 } 2015 continue; 2016 } 2017 2018 if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) { 2019 NumInternalFunc++; 2020 TargetTransformInfo &TTI = GetTTI(*F); 2021 // Change the calling convention to coldcc if either stress testing is 2022 // enabled or the target would like to use coldcc on functions which are 2023 // cold at all call sites and the callers contain no other non coldcc 2024 // calls. 2025 if (EnableColdCCStressTest || 2026 (TTI.useColdCCForColdCall(*F) && 2027 isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) { 2028 F->setCallingConv(CallingConv::Cold); 2029 changeCallSitesToColdCC(F); 2030 Changed = true; 2031 NumColdCC++; 2032 } 2033 } 2034 2035 if (hasChangeableCC(F) && !F->isVarArg() && 2036 !F->hasAddressTaken()) { 2037 // If this function has a calling convention worth changing, is not a 2038 // varargs function, and is only called directly, promote it to use the 2039 // Fast calling convention. 2040 F->setCallingConv(CallingConv::Fast); 2041 ChangeCalleesToFastCall(F); 2042 ++NumFastCallFns; 2043 Changed = true; 2044 } 2045 2046 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2047 !F->hasAddressTaken()) { 2048 // The function is not used by a trampoline intrinsic, so it is safe 2049 // to remove the 'nest' attribute. 2050 RemoveAttribute(F, Attribute::Nest); 2051 ++NumNestRemoved; 2052 Changed = true; 2053 } 2054 } 2055 return Changed; 2056 } 2057 2058 static bool 2059 OptimizeGlobalVars(Module &M, 2060 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2061 function_ref<DominatorTree &(Function &)> LookupDomTree, 2062 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2063 bool Changed = false; 2064 2065 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2066 GVI != E; ) { 2067 GlobalVariable *GV = &*GVI++; 2068 // Global variables without names cannot be referenced outside this module. 2069 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2070 GV->setLinkage(GlobalValue::InternalLinkage); 2071 // Simplify the initializer. 2072 if (GV->hasInitializer()) 2073 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 2074 auto &DL = M.getDataLayout(); 2075 // TLI is not used in the case of a Constant, so use default nullptr 2076 // for that optional parameter, since we don't have a Function to 2077 // provide GetTLI anyway. 2078 Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); 2079 if (New != C) 2080 GV->setInitializer(New); 2081 } 2082 2083 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2084 Changed = true; 2085 continue; 2086 } 2087 2088 Changed |= processGlobal(*GV, GetTLI, LookupDomTree); 2089 } 2090 return Changed; 2091 } 2092 2093 /// Evaluate a piece of a constantexpr store into a global initializer. This 2094 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2095 /// GEP operands of Addr [0, OpNo) have been stepped into. 2096 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2097 ConstantExpr *Addr, unsigned OpNo) { 2098 // Base case of the recursion. 2099 if (OpNo == Addr->getNumOperands()) { 2100 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2101 return Val; 2102 } 2103 2104 SmallVector<Constant*, 32> Elts; 2105 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2106 // Break up the constant into its elements. 2107 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2108 Elts.push_back(Init->getAggregateElement(i)); 2109 2110 // Replace the element that we are supposed to. 2111 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2112 unsigned Idx = CU->getZExtValue(); 2113 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2114 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2115 2116 // Return the modified struct. 2117 return ConstantStruct::get(STy, Elts); 2118 } 2119 2120 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2121 uint64_t NumElts; 2122 if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) 2123 NumElts = ATy->getNumElements(); 2124 else 2125 NumElts = cast<FixedVectorType>(Init->getType())->getNumElements(); 2126 2127 // Break up the array into elements. 2128 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2129 Elts.push_back(Init->getAggregateElement(i)); 2130 2131 assert(CI->getZExtValue() < NumElts); 2132 Elts[CI->getZExtValue()] = 2133 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2134 2135 if (Init->getType()->isArrayTy()) 2136 return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts); 2137 return ConstantVector::get(Elts); 2138 } 2139 2140 /// We have decided that Addr (which satisfies the predicate 2141 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2142 static void CommitValueTo(Constant *Val, Constant *Addr) { 2143 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2144 assert(GV->hasInitializer()); 2145 GV->setInitializer(Val); 2146 return; 2147 } 2148 2149 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2150 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2151 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2152 } 2153 2154 /// Given a map of address -> value, where addresses are expected to be some form 2155 /// of either a global or a constant GEP, set the initializer for the address to 2156 /// be the value. This performs mostly the same function as CommitValueTo() 2157 /// and EvaluateStoreInto() but is optimized to be more efficient for the common 2158 /// case where the set of addresses are GEPs sharing the same underlying global, 2159 /// processing the GEPs in batches rather than individually. 2160 /// 2161 /// To give an example, consider the following C++ code adapted from the clang 2162 /// regression tests: 2163 /// struct S { 2164 /// int n = 10; 2165 /// int m = 2 * n; 2166 /// S(int a) : n(a) {} 2167 /// }; 2168 /// 2169 /// template<typename T> 2170 /// struct U { 2171 /// T *r = &q; 2172 /// T q = 42; 2173 /// U *p = this; 2174 /// }; 2175 /// 2176 /// U<S> e; 2177 /// 2178 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of 2179 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm' 2180 /// members. This batch algorithm will simply use general CommitValueTo() method 2181 /// to handle the complex nested S struct initialization of 'q', before 2182 /// processing the outermost members in a single batch. Using CommitValueTo() to 2183 /// handle member in the outer struct is inefficient when the struct/array is 2184 /// very large as we end up creating and destroy constant arrays for each 2185 /// initialization. 2186 /// For the above case, we expect the following IR to be generated: 2187 /// 2188 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* } 2189 /// %struct.S = type { i32, i32 } 2190 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e, 2191 /// i64 0, i32 1), 2192 /// %struct.S { i32 42, i32 84 }, %struct.U* @e } 2193 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex 2194 /// constant expression, while the other two elements of @e are "simple". 2195 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) { 2196 SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs; 2197 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs; 2198 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs; 2199 SimpleCEs.reserve(Mem.size()); 2200 2201 for (const auto &I : Mem) { 2202 if (auto *GV = dyn_cast<GlobalVariable>(I.first)) { 2203 GVs.push_back(std::make_pair(GV, I.second)); 2204 } else { 2205 ConstantExpr *GEP = cast<ConstantExpr>(I.first); 2206 // We don't handle the deeply recursive case using the batch method. 2207 if (GEP->getNumOperands() > 3) 2208 ComplexCEs.push_back(std::make_pair(GEP, I.second)); 2209 else 2210 SimpleCEs.push_back(std::make_pair(GEP, I.second)); 2211 } 2212 } 2213 2214 // The algorithm below doesn't handle cases like nested structs, so use the 2215 // slower fully general method if we have to. 2216 for (auto ComplexCE : ComplexCEs) 2217 CommitValueTo(ComplexCE.second, ComplexCE.first); 2218 2219 for (auto GVPair : GVs) { 2220 assert(GVPair.first->hasInitializer()); 2221 GVPair.first->setInitializer(GVPair.second); 2222 } 2223 2224 if (SimpleCEs.empty()) 2225 return; 2226 2227 // We cache a single global's initializer elements in the case where the 2228 // subsequent address/val pair uses the same one. This avoids throwing away and 2229 // rebuilding the constant struct/vector/array just because one element is 2230 // modified at a time. 2231 SmallVector<Constant *, 32> Elts; 2232 Elts.reserve(SimpleCEs.size()); 2233 GlobalVariable *CurrentGV = nullptr; 2234 2235 auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) { 2236 Constant *Init = GV->getInitializer(); 2237 Type *Ty = Init->getType(); 2238 if (Update) { 2239 if (CurrentGV) { 2240 assert(CurrentGV && "Expected a GV to commit to!"); 2241 Type *CurrentInitTy = CurrentGV->getInitializer()->getType(); 2242 // We have a valid cache that needs to be committed. 2243 if (StructType *STy = dyn_cast<StructType>(CurrentInitTy)) 2244 CurrentGV->setInitializer(ConstantStruct::get(STy, Elts)); 2245 else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy)) 2246 CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts)); 2247 else 2248 CurrentGV->setInitializer(ConstantVector::get(Elts)); 2249 } 2250 if (CurrentGV == GV) 2251 return; 2252 // Need to clear and set up cache for new initializer. 2253 CurrentGV = GV; 2254 Elts.clear(); 2255 unsigned NumElts; 2256 if (auto *STy = dyn_cast<StructType>(Ty)) 2257 NumElts = STy->getNumElements(); 2258 else if (auto *ATy = dyn_cast<ArrayType>(Ty)) 2259 NumElts = ATy->getNumElements(); 2260 else 2261 NumElts = cast<FixedVectorType>(Ty)->getNumElements(); 2262 for (unsigned i = 0, e = NumElts; i != e; ++i) 2263 Elts.push_back(Init->getAggregateElement(i)); 2264 } 2265 }; 2266 2267 for (auto CEPair : SimpleCEs) { 2268 ConstantExpr *GEP = CEPair.first; 2269 Constant *Val = CEPair.second; 2270 2271 GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0)); 2272 commitAndSetupCache(GV, GV != CurrentGV); 2273 ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2)); 2274 Elts[CI->getZExtValue()] = Val; 2275 } 2276 // The last initializer in the list needs to be committed, others 2277 // will be committed on a new initializer being processed. 2278 commitAndSetupCache(CurrentGV, true); 2279 } 2280 2281 /// Evaluate static constructors in the function, if we can. Return true if we 2282 /// can, false otherwise. 2283 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2284 TargetLibraryInfo *TLI) { 2285 // Call the function. 2286 Evaluator Eval(DL, TLI); 2287 Constant *RetValDummy; 2288 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2289 SmallVector<Constant*, 0>()); 2290 2291 if (EvalSuccess) { 2292 ++NumCtorsEvaluated; 2293 2294 // We succeeded at evaluation: commit the result. 2295 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2296 << F->getName() << "' to " 2297 << Eval.getMutatedMemory().size() << " stores.\n"); 2298 BatchCommitValueTo(Eval.getMutatedMemory()); 2299 for (GlobalVariable *GV : Eval.getInvariants()) 2300 GV->setConstant(true); 2301 } 2302 2303 return EvalSuccess; 2304 } 2305 2306 static int compareNames(Constant *const *A, Constant *const *B) { 2307 Value *AStripped = (*A)->stripPointerCasts(); 2308 Value *BStripped = (*B)->stripPointerCasts(); 2309 return AStripped->getName().compare(BStripped->getName()); 2310 } 2311 2312 static void setUsedInitializer(GlobalVariable &V, 2313 const SmallPtrSetImpl<GlobalValue *> &Init) { 2314 if (Init.empty()) { 2315 V.eraseFromParent(); 2316 return; 2317 } 2318 2319 // Type of pointer to the array of pointers. 2320 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2321 2322 SmallVector<Constant *, 8> UsedArray; 2323 for (GlobalValue *GV : Init) { 2324 Constant *Cast 2325 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2326 UsedArray.push_back(Cast); 2327 } 2328 // Sort to get deterministic order. 2329 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2330 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2331 2332 Module *M = V.getParent(); 2333 V.removeFromParent(); 2334 GlobalVariable *NV = 2335 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2336 ConstantArray::get(ATy, UsedArray), ""); 2337 NV->takeName(&V); 2338 NV->setSection("llvm.metadata"); 2339 delete &V; 2340 } 2341 2342 namespace { 2343 2344 /// An easy to access representation of llvm.used and llvm.compiler.used. 2345 class LLVMUsed { 2346 SmallPtrSet<GlobalValue *, 4> Used; 2347 SmallPtrSet<GlobalValue *, 4> CompilerUsed; 2348 GlobalVariable *UsedV; 2349 GlobalVariable *CompilerUsedV; 2350 2351 public: 2352 LLVMUsed(Module &M) { 2353 SmallVector<GlobalValue *, 4> Vec; 2354 UsedV = collectUsedGlobalVariables(M, Vec, false); 2355 Used = {Vec.begin(), Vec.end()}; 2356 Vec.clear(); 2357 CompilerUsedV = collectUsedGlobalVariables(M, Vec, true); 2358 CompilerUsed = {Vec.begin(), Vec.end()}; 2359 } 2360 2361 using iterator = SmallPtrSet<GlobalValue *, 4>::iterator; 2362 using used_iterator_range = iterator_range<iterator>; 2363 2364 iterator usedBegin() { return Used.begin(); } 2365 iterator usedEnd() { return Used.end(); } 2366 2367 used_iterator_range used() { 2368 return used_iterator_range(usedBegin(), usedEnd()); 2369 } 2370 2371 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2372 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2373 2374 used_iterator_range compilerUsed() { 2375 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2376 } 2377 2378 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2379 2380 bool compilerUsedCount(GlobalValue *GV) const { 2381 return CompilerUsed.count(GV); 2382 } 2383 2384 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2385 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2386 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2387 2388 bool compilerUsedInsert(GlobalValue *GV) { 2389 return CompilerUsed.insert(GV).second; 2390 } 2391 2392 void syncVariablesAndSets() { 2393 if (UsedV) 2394 setUsedInitializer(*UsedV, Used); 2395 if (CompilerUsedV) 2396 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2397 } 2398 }; 2399 2400 } // end anonymous namespace 2401 2402 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2403 if (GA.use_empty()) // No use at all. 2404 return false; 2405 2406 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2407 "We should have removed the duplicated " 2408 "element from llvm.compiler.used"); 2409 if (!GA.hasOneUse()) 2410 // Strictly more than one use. So at least one is not in llvm.used and 2411 // llvm.compiler.used. 2412 return true; 2413 2414 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2415 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2416 } 2417 2418 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2419 const LLVMUsed &U) { 2420 unsigned N = 2; 2421 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2422 "We should have removed the duplicated " 2423 "element from llvm.compiler.used"); 2424 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2425 ++N; 2426 return V.hasNUsesOrMore(N); 2427 } 2428 2429 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2430 if (!GA.hasLocalLinkage()) 2431 return true; 2432 2433 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2434 } 2435 2436 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2437 bool &RenameTarget) { 2438 RenameTarget = false; 2439 bool Ret = false; 2440 if (hasUseOtherThanLLVMUsed(GA, U)) 2441 Ret = true; 2442 2443 // If the alias is externally visible, we may still be able to simplify it. 2444 if (!mayHaveOtherReferences(GA, U)) 2445 return Ret; 2446 2447 // If the aliasee has internal linkage, give it the name and linkage 2448 // of the alias, and delete the alias. This turns: 2449 // define internal ... @f(...) 2450 // @a = alias ... @f 2451 // into: 2452 // define ... @a(...) 2453 Constant *Aliasee = GA.getAliasee(); 2454 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2455 if (!Target->hasLocalLinkage()) 2456 return Ret; 2457 2458 // Do not perform the transform if multiple aliases potentially target the 2459 // aliasee. This check also ensures that it is safe to replace the section 2460 // and other attributes of the aliasee with those of the alias. 2461 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2462 return Ret; 2463 2464 RenameTarget = true; 2465 return true; 2466 } 2467 2468 static bool 2469 OptimizeGlobalAliases(Module &M, 2470 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2471 bool Changed = false; 2472 LLVMUsed Used(M); 2473 2474 for (GlobalValue *GV : Used.used()) 2475 Used.compilerUsedErase(GV); 2476 2477 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2478 I != E;) { 2479 GlobalAlias *J = &*I++; 2480 2481 // Aliases without names cannot be referenced outside this module. 2482 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2483 J->setLinkage(GlobalValue::InternalLinkage); 2484 2485 if (deleteIfDead(*J, NotDiscardableComdats)) { 2486 Changed = true; 2487 continue; 2488 } 2489 2490 // If the alias can change at link time, nothing can be done - bail out. 2491 if (J->isInterposable()) 2492 continue; 2493 2494 Constant *Aliasee = J->getAliasee(); 2495 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2496 // We can't trivially replace the alias with the aliasee if the aliasee is 2497 // non-trivial in some way. We also can't replace the alias with the aliasee 2498 // if the aliasee is interposable because aliases point to the local 2499 // definition. 2500 // TODO: Try to handle non-zero GEPs of local aliasees. 2501 if (!Target || Target->isInterposable()) 2502 continue; 2503 Target->removeDeadConstantUsers(); 2504 2505 // Make all users of the alias use the aliasee instead. 2506 bool RenameTarget; 2507 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2508 continue; 2509 2510 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2511 ++NumAliasesResolved; 2512 Changed = true; 2513 2514 if (RenameTarget) { 2515 // Give the aliasee the name, linkage and other attributes of the alias. 2516 Target->takeName(&*J); 2517 Target->setLinkage(J->getLinkage()); 2518 Target->setDSOLocal(J->isDSOLocal()); 2519 Target->setVisibility(J->getVisibility()); 2520 Target->setDLLStorageClass(J->getDLLStorageClass()); 2521 2522 if (Used.usedErase(&*J)) 2523 Used.usedInsert(Target); 2524 2525 if (Used.compilerUsedErase(&*J)) 2526 Used.compilerUsedInsert(Target); 2527 } else if (mayHaveOtherReferences(*J, Used)) 2528 continue; 2529 2530 // Delete the alias. 2531 M.getAliasList().erase(J); 2532 ++NumAliasesRemoved; 2533 Changed = true; 2534 } 2535 2536 Used.syncVariablesAndSets(); 2537 2538 return Changed; 2539 } 2540 2541 static Function * 2542 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 2543 // Hack to get a default TLI before we have actual Function. 2544 auto FuncIter = M.begin(); 2545 if (FuncIter == M.end()) 2546 return nullptr; 2547 auto *TLI = &GetTLI(*FuncIter); 2548 2549 LibFunc F = LibFunc_cxa_atexit; 2550 if (!TLI->has(F)) 2551 return nullptr; 2552 2553 Function *Fn = M.getFunction(TLI->getName(F)); 2554 if (!Fn) 2555 return nullptr; 2556 2557 // Now get the actual TLI for Fn. 2558 TLI = &GetTLI(*Fn); 2559 2560 // Make sure that the function has the correct prototype. 2561 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2562 return nullptr; 2563 2564 return Fn; 2565 } 2566 2567 /// Returns whether the given function is an empty C++ destructor and can 2568 /// therefore be eliminated. 2569 /// Note that we assume that other optimization passes have already simplified 2570 /// the code so we simply check for 'ret'. 2571 static bool cxxDtorIsEmpty(const Function &Fn) { 2572 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2573 // nounwind, but that doesn't seem worth doing. 2574 if (Fn.isDeclaration()) 2575 return false; 2576 2577 for (auto &I : Fn.getEntryBlock()) { 2578 if (isa<DbgInfoIntrinsic>(I)) 2579 continue; 2580 if (isa<ReturnInst>(I)) 2581 return true; 2582 break; 2583 } 2584 return false; 2585 } 2586 2587 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2588 /// Itanium C++ ABI p3.3.5: 2589 /// 2590 /// After constructing a global (or local static) object, that will require 2591 /// destruction on exit, a termination function is registered as follows: 2592 /// 2593 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2594 /// 2595 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2596 /// call f(p) when DSO d is unloaded, before all such termination calls 2597 /// registered before this one. It returns zero if registration is 2598 /// successful, nonzero on failure. 2599 2600 // This pass will look for calls to __cxa_atexit where the function is trivial 2601 // and remove them. 2602 bool Changed = false; 2603 2604 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2605 I != E;) { 2606 // We're only interested in calls. Theoretically, we could handle invoke 2607 // instructions as well, but neither llvm-gcc nor clang generate invokes 2608 // to __cxa_atexit. 2609 CallInst *CI = dyn_cast<CallInst>(*I++); 2610 if (!CI) 2611 continue; 2612 2613 Function *DtorFn = 2614 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2615 if (!DtorFn || !cxxDtorIsEmpty(*DtorFn)) 2616 continue; 2617 2618 // Just remove the call. 2619 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2620 CI->eraseFromParent(); 2621 2622 ++NumCXXDtorsRemoved; 2623 2624 Changed |= true; 2625 } 2626 2627 return Changed; 2628 } 2629 2630 static bool optimizeGlobalsInModule( 2631 Module &M, const DataLayout &DL, 2632 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2633 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2634 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2635 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2636 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; 2637 bool Changed = false; 2638 bool LocalChange = true; 2639 while (LocalChange) { 2640 LocalChange = false; 2641 2642 NotDiscardableComdats.clear(); 2643 for (const GlobalVariable &GV : M.globals()) 2644 if (const Comdat *C = GV.getComdat()) 2645 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2646 NotDiscardableComdats.insert(C); 2647 for (Function &F : M) 2648 if (const Comdat *C = F.getComdat()) 2649 if (!F.isDefTriviallyDead()) 2650 NotDiscardableComdats.insert(C); 2651 for (GlobalAlias &GA : M.aliases()) 2652 if (const Comdat *C = GA.getComdat()) 2653 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2654 NotDiscardableComdats.insert(C); 2655 2656 // Delete functions that are trivially dead, ccc -> fastcc 2657 LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, 2658 NotDiscardableComdats); 2659 2660 // Optimize global_ctors list. 2661 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2662 return EvaluateStaticConstructor(F, DL, &GetTLI(*F)); 2663 }); 2664 2665 // Optimize non-address-taken globals. 2666 LocalChange |= 2667 OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats); 2668 2669 // Resolve aliases, when possible. 2670 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2671 2672 // Try to remove trivial global destructors if they are not removed 2673 // already. 2674 Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI); 2675 if (CXAAtExitFn) 2676 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2677 2678 Changed |= LocalChange; 2679 } 2680 2681 // TODO: Move all global ctors functions to the end of the module for code 2682 // layout. 2683 2684 return Changed; 2685 } 2686 2687 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2688 auto &DL = M.getDataLayout(); 2689 auto &FAM = 2690 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2691 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2692 return FAM.getResult<DominatorTreeAnalysis>(F); 2693 }; 2694 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 2695 return FAM.getResult<TargetLibraryAnalysis>(F); 2696 }; 2697 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 2698 return FAM.getResult<TargetIRAnalysis>(F); 2699 }; 2700 2701 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 2702 return FAM.getResult<BlockFrequencyAnalysis>(F); 2703 }; 2704 2705 if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree)) 2706 return PreservedAnalyses::all(); 2707 return PreservedAnalyses::none(); 2708 } 2709 2710 namespace { 2711 2712 struct GlobalOptLegacyPass : public ModulePass { 2713 static char ID; // Pass identification, replacement for typeid 2714 2715 GlobalOptLegacyPass() : ModulePass(ID) { 2716 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2717 } 2718 2719 bool runOnModule(Module &M) override { 2720 if (skipModule(M)) 2721 return false; 2722 2723 auto &DL = M.getDataLayout(); 2724 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2725 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2726 }; 2727 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 2728 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2729 }; 2730 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 2731 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2732 }; 2733 2734 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { 2735 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 2736 }; 2737 2738 return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, 2739 LookupDomTree); 2740 } 2741 2742 void getAnalysisUsage(AnalysisUsage &AU) const override { 2743 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2744 AU.addRequired<TargetTransformInfoWrapperPass>(); 2745 AU.addRequired<DominatorTreeWrapperPass>(); 2746 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2747 } 2748 }; 2749 2750 } // end anonymous namespace 2751 2752 char GlobalOptLegacyPass::ID = 0; 2753 2754 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2755 "Global Variable Optimizer", false, false) 2756 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2757 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2758 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 2759 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2760 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2761 "Global Variable Optimizer", false, false) 2762 2763 ModulePass *llvm::createGlobalOptimizerPass() { 2764 return new GlobalOptLegacyPass(); 2765 } 2766