1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/BinaryFormat/Dwarf.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
82 STATISTIC(NumDeleted   , "Number of globals deleted");
83 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
84 STATISTIC(NumLocalized , "Number of globals localized");
85 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
86 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
88 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
92 STATISTIC(NumInternalFunc, "Number of internal functions");
93 STATISTIC(NumColdCC, "Number of functions marked coldcc");
94 
95 static cl::opt<bool>
96     EnableColdCCStressTest("enable-coldcc-stress-test",
97                            cl::desc("Enable stress test of coldcc by adding "
98                                     "calling conv to all internal functions."),
99                            cl::init(false), cl::Hidden);
100 
101 static cl::opt<int> ColdCCRelFreq(
102     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
103     cl::desc(
104         "Maximum block frequency, expressed as a percentage of caller's "
105         "entry frequency, for a call site to be considered cold for enabling"
106         "coldcc"));
107 
108 /// Is this global variable possibly used by a leak checker as a root?  If so,
109 /// we might not really want to eliminate the stores to it.
110 static bool isLeakCheckerRoot(GlobalVariable *GV) {
111   // A global variable is a root if it is a pointer, or could plausibly contain
112   // a pointer.  There are two challenges; one is that we could have a struct
113   // the has an inner member which is a pointer.  We recurse through the type to
114   // detect these (up to a point).  The other is that we may actually be a union
115   // of a pointer and another type, and so our LLVM type is an integer which
116   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
117   // potentially contained here.
118 
119   if (GV->hasPrivateLinkage())
120     return false;
121 
122   SmallVector<Type *, 4> Types;
123   Types.push_back(GV->getValueType());
124 
125   unsigned Limit = 20;
126   do {
127     Type *Ty = Types.pop_back_val();
128     switch (Ty->getTypeID()) {
129       default: break;
130       case Type::PointerTyID:
131         return true;
132       case Type::FixedVectorTyID:
133       case Type::ScalableVectorTyID:
134         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
135           return true;
136         break;
137       case Type::ArrayTyID:
138         Types.push_back(cast<ArrayType>(Ty)->getElementType());
139         break;
140       case Type::StructTyID: {
141         StructType *STy = cast<StructType>(Ty);
142         if (STy->isOpaque()) return true;
143         for (StructType::element_iterator I = STy->element_begin(),
144                  E = STy->element_end(); I != E; ++I) {
145           Type *InnerTy = *I;
146           if (isa<PointerType>(InnerTy)) return true;
147           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
148               isa<VectorType>(InnerTy))
149             Types.push_back(InnerTy);
150         }
151         break;
152       }
153     }
154     if (--Limit == 0) return true;
155   } while (!Types.empty());
156   return false;
157 }
158 
159 /// Given a value that is stored to a global but never read, determine whether
160 /// it's safe to remove the store and the chain of computation that feeds the
161 /// store.
162 static bool IsSafeComputationToRemove(
163     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
164   do {
165     if (isa<Constant>(V))
166       return true;
167     if (!V->hasOneUse())
168       return false;
169     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
170         isa<GlobalValue>(V))
171       return false;
172     if (isAllocationFn(V, GetTLI))
173       return true;
174 
175     Instruction *I = cast<Instruction>(V);
176     if (I->mayHaveSideEffects())
177       return false;
178     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
179       if (!GEP->hasAllConstantIndices())
180         return false;
181     } else if (I->getNumOperands() != 1) {
182       return false;
183     }
184 
185     V = I->getOperand(0);
186   } while (true);
187 }
188 
189 /// This GV is a pointer root.  Loop over all users of the global and clean up
190 /// any that obviously don't assign the global a value that isn't dynamically
191 /// allocated.
192 static bool
193 CleanupPointerRootUsers(GlobalVariable *GV,
194                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
195   // A brief explanation of leak checkers.  The goal is to find bugs where
196   // pointers are forgotten, causing an accumulating growth in memory
197   // usage over time.  The common strategy for leak checkers is to explicitly
198   // allow the memory pointed to by globals at exit.  This is popular because it
199   // also solves another problem where the main thread of a C++ program may shut
200   // down before other threads that are still expecting to use those globals. To
201   // handle that case, we expect the program may create a singleton and never
202   // destroy it.
203 
204   bool Changed = false;
205 
206   // If Dead[n].first is the only use of a malloc result, we can delete its
207   // chain of computation and the store to the global in Dead[n].second.
208   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
209 
210   // Constants can't be pointers to dynamically allocated memory.
211   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
212        UI != E;) {
213     User *U = *UI++;
214     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
215       Value *V = SI->getValueOperand();
216       if (isa<Constant>(V)) {
217         Changed = true;
218         SI->eraseFromParent();
219       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
220         if (I->hasOneUse())
221           Dead.push_back(std::make_pair(I, SI));
222       }
223     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
224       if (isa<Constant>(MSI->getValue())) {
225         Changed = true;
226         MSI->eraseFromParent();
227       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
228         if (I->hasOneUse())
229           Dead.push_back(std::make_pair(I, MSI));
230       }
231     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
232       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
233       if (MemSrc && MemSrc->isConstant()) {
234         Changed = true;
235         MTI->eraseFromParent();
236       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
237         if (I->hasOneUse())
238           Dead.push_back(std::make_pair(I, MTI));
239       }
240     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
241       if (CE->use_empty()) {
242         CE->destroyConstant();
243         Changed = true;
244       }
245     } else if (Constant *C = dyn_cast<Constant>(U)) {
246       if (isSafeToDestroyConstant(C)) {
247         C->destroyConstant();
248         // This could have invalidated UI, start over from scratch.
249         Dead.clear();
250         CleanupPointerRootUsers(GV, GetTLI);
251         return true;
252       }
253     }
254   }
255 
256   for (int i = 0, e = Dead.size(); i != e; ++i) {
257     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
258       Dead[i].second->eraseFromParent();
259       Instruction *I = Dead[i].first;
260       do {
261         if (isAllocationFn(I, GetTLI))
262           break;
263         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
264         if (!J)
265           break;
266         I->eraseFromParent();
267         I = J;
268       } while (true);
269       I->eraseFromParent();
270       Changed = true;
271     }
272   }
273 
274   return Changed;
275 }
276 
277 /// We just marked GV constant.  Loop over all users of the global, cleaning up
278 /// the obvious ones.  This is largely just a quick scan over the use list to
279 /// clean up the easy and obvious cruft.  This returns true if it made a change.
280 static bool CleanupConstantGlobalUsers(
281     Value *V, Constant *Init, const DataLayout &DL,
282     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
283   bool Changed = false;
284   // Note that we need to use a weak value handle for the worklist items. When
285   // we delete a constant array, we may also be holding pointer to one of its
286   // elements (or an element of one of its elements if we're dealing with an
287   // array of arrays) in the worklist.
288   SmallVector<WeakTrackingVH, 8> WorkList(V->users());
289   while (!WorkList.empty()) {
290     Value *UV = WorkList.pop_back_val();
291     if (!UV)
292       continue;
293 
294     User *U = cast<User>(UV);
295 
296     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
297       if (Init) {
298         if (auto *Casted =
299                 ConstantFoldLoadThroughBitcast(Init, LI->getType(), DL)) {
300           // Replace the load with the initializer.
301           LI->replaceAllUsesWith(Casted);
302           LI->eraseFromParent();
303           Changed = true;
304         }
305       }
306     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
307       // Store must be unreachable or storing Init into the global.
308       SI->eraseFromParent();
309       Changed = true;
310     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
311       if (CE->getOpcode() == Instruction::GetElementPtr) {
312         Constant *SubInit = nullptr;
313         if (Init)
314           SubInit = ConstantFoldLoadThroughGEPConstantExpr(
315               Init, CE, V->getType()->getPointerElementType(), DL);
316         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
317       } else if ((CE->getOpcode() == Instruction::BitCast &&
318                   CE->getType()->isPointerTy()) ||
319                  CE->getOpcode() == Instruction::AddrSpaceCast) {
320         // Pointer cast, delete any stores and memsets to the global.
321         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
322       }
323 
324       if (CE->use_empty()) {
325         CE->destroyConstant();
326         Changed = true;
327       }
328     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
329       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
330       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
331       // and will invalidate our notion of what Init is.
332       Constant *SubInit = nullptr;
333       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
334         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
335             ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
336         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
337           SubInit = ConstantFoldLoadThroughGEPConstantExpr(
338               Init, CE, V->getType()->getPointerElementType(), DL);
339 
340         // If the initializer is an all-null value and we have an inbounds GEP,
341         // we already know what the result of any load from that GEP is.
342         // TODO: Handle splats.
343         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
344           SubInit = Constant::getNullValue(GEP->getResultElementType());
345       }
346       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
347 
348       if (GEP->use_empty()) {
349         GEP->eraseFromParent();
350         Changed = true;
351       }
352     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
353       if (MI->getRawDest() == V) {
354         MI->eraseFromParent();
355         Changed = true;
356       }
357 
358     } else if (Constant *C = dyn_cast<Constant>(U)) {
359       // If we have a chain of dead constantexprs or other things dangling from
360       // us, and if they are all dead, nuke them without remorse.
361       if (isSafeToDestroyConstant(C)) {
362         C->destroyConstant();
363         CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
364         return true;
365       }
366     }
367   }
368   return Changed;
369 }
370 
371 static bool isSafeSROAElementUse(Value *V);
372 
373 /// Return true if the specified GEP is a safe user of a derived
374 /// expression from a global that we want to SROA.
375 static bool isSafeSROAGEP(User *U) {
376   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
377   // don't like < 3 operand CE's, and we don't like non-constant integer
378   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
379   // value of C.
380   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
381       !cast<Constant>(U->getOperand(1))->isNullValue())
382     return false;
383 
384   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
385   ++GEPI; // Skip over the pointer index.
386 
387   // For all other level we require that the indices are constant and inrange.
388   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
389   // invalid things like allowing i to index an out-of-range subscript that
390   // accesses A[1]. This can also happen between different members of a struct
391   // in llvm IR.
392   for (; GEPI != E; ++GEPI) {
393     if (GEPI.isStruct())
394       continue;
395 
396     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
397     if (!IdxVal || (GEPI.isBoundedSequential() &&
398                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
399       return false;
400   }
401 
402   return llvm::all_of(U->users(),
403                       [](User *UU) { return isSafeSROAElementUse(UU); });
404 }
405 
406 /// Return true if the specified instruction is a safe user of a derived
407 /// expression from a global that we want to SROA.
408 static bool isSafeSROAElementUse(Value *V) {
409   // We might have a dead and dangling constant hanging off of here.
410   if (Constant *C = dyn_cast<Constant>(V))
411     return isSafeToDestroyConstant(C);
412 
413   Instruction *I = dyn_cast<Instruction>(V);
414   if (!I) return false;
415 
416   // Loads are ok.
417   if (isa<LoadInst>(I)) return true;
418 
419   // Stores *to* the pointer are ok.
420   if (StoreInst *SI = dyn_cast<StoreInst>(I))
421     return SI->getOperand(0) != V;
422 
423   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
424   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
425 }
426 
427 /// Look at all uses of the global and decide whether it is safe for us to
428 /// perform this transformation.
429 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
430   for (User *U : GV->users()) {
431     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
432     if (!isa<GetElementPtrInst>(U) &&
433         (!isa<ConstantExpr>(U) ||
434         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
435       return false;
436 
437     // Check the gep and it's users are safe to SRA
438     if (!isSafeSROAGEP(U))
439       return false;
440   }
441 
442   return true;
443 }
444 
445 static bool IsSRASequential(Type *T) {
446   return isa<ArrayType>(T) || isa<VectorType>(T);
447 }
448 static uint64_t GetSRASequentialNumElements(Type *T) {
449   if (ArrayType *AT = dyn_cast<ArrayType>(T))
450     return AT->getNumElements();
451   return cast<FixedVectorType>(T)->getNumElements();
452 }
453 static Type *GetSRASequentialElementType(Type *T) {
454   if (ArrayType *AT = dyn_cast<ArrayType>(T))
455     return AT->getElementType();
456   return cast<VectorType>(T)->getElementType();
457 }
458 static bool CanDoGlobalSRA(GlobalVariable *GV) {
459   Constant *Init = GV->getInitializer();
460 
461   if (isa<StructType>(Init->getType())) {
462     // nothing to check
463   } else if (IsSRASequential(Init->getType())) {
464     if (GetSRASequentialNumElements(Init->getType()) > 16 &&
465         GV->hasNUsesOrMore(16))
466       return false; // It's not worth it.
467   } else
468     return false;
469 
470   return GlobalUsersSafeToSRA(GV);
471 }
472 
473 /// Copy over the debug info for a variable to its SRA replacements.
474 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
475                                  uint64_t FragmentOffsetInBits,
476                                  uint64_t FragmentSizeInBits,
477                                  uint64_t VarSize) {
478   SmallVector<DIGlobalVariableExpression *, 1> GVs;
479   GV->getDebugInfo(GVs);
480   for (auto *GVE : GVs) {
481     DIVariable *Var = GVE->getVariable();
482     DIExpression *Expr = GVE->getExpression();
483     // If the FragmentSize is smaller than the variable,
484     // emit a fragment expression.
485     if (FragmentSizeInBits < VarSize) {
486       if (auto E = DIExpression::createFragmentExpression(
487               Expr, FragmentOffsetInBits, FragmentSizeInBits))
488         Expr = *E;
489       else
490         return;
491     }
492     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
493     NGV->addDebugInfo(NGVE);
494   }
495 }
496 
497 /// Perform scalar replacement of aggregates on the specified global variable.
498 /// This opens the door for other optimizations by exposing the behavior of the
499 /// program in a more fine-grained way.  We have determined that this
500 /// transformation is safe already.  We return the first global variable we
501 /// insert so that the caller can reprocess it.
502 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
503   // Make sure this global only has simple uses that we can SRA.
504   if (!CanDoGlobalSRA(GV))
505     return nullptr;
506 
507   assert(GV->hasLocalLinkage());
508   Constant *Init = GV->getInitializer();
509   Type *Ty = Init->getType();
510   uint64_t VarSize = DL.getTypeSizeInBits(Ty);
511 
512   std::map<unsigned, GlobalVariable *> NewGlobals;
513 
514   // Get the alignment of the global, either explicit or target-specific.
515   Align StartAlignment =
516       DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType());
517 
518   // Loop over all users and create replacement variables for used aggregate
519   // elements.
520   for (User *GEP : GV->users()) {
521     assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
522                                            Instruction::GetElementPtr) ||
523             isa<GetElementPtrInst>(GEP)) &&
524            "NonGEP CE's are not SRAable!");
525 
526     // Ignore the 1th operand, which has to be zero or else the program is quite
527     // broken (undefined).  Get the 2nd operand, which is the structure or array
528     // index.
529     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
530     if (NewGlobals.count(ElementIdx) == 1)
531       continue; // we`ve already created replacement variable
532     assert(NewGlobals.count(ElementIdx) == 0);
533 
534     Type *ElTy = nullptr;
535     if (StructType *STy = dyn_cast<StructType>(Ty))
536       ElTy = STy->getElementType(ElementIdx);
537     else
538       ElTy = GetSRASequentialElementType(Ty);
539     assert(ElTy);
540 
541     Constant *In = Init->getAggregateElement(ElementIdx);
542     assert(In && "Couldn't get element of initializer?");
543 
544     GlobalVariable *NGV = new GlobalVariable(
545         ElTy, false, GlobalVariable::InternalLinkage, In,
546         GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
547         GV->getType()->getAddressSpace());
548     NGV->setExternallyInitialized(GV->isExternallyInitialized());
549     NGV->copyAttributesFrom(GV);
550     NewGlobals.insert(std::make_pair(ElementIdx, NGV));
551 
552     if (StructType *STy = dyn_cast<StructType>(Ty)) {
553       const StructLayout &Layout = *DL.getStructLayout(STy);
554 
555       // Calculate the known alignment of the field.  If the original aggregate
556       // had 256 byte alignment for example, something might depend on that:
557       // propagate info to each field.
558       uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
559       Align NewAlign = commonAlignment(StartAlignment, FieldOffset);
560       if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx)))
561         NGV->setAlignment(NewAlign);
562 
563       // Copy over the debug info for the variable.
564       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
565       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
566       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize);
567     } else {
568       uint64_t EltSize = DL.getTypeAllocSize(ElTy);
569       Align EltAlign = DL.getABITypeAlign(ElTy);
570       uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
571 
572       // Calculate the known alignment of the field.  If the original aggregate
573       // had 256 byte alignment for example, something might depend on that:
574       // propagate info to each field.
575       Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx);
576       if (NewAlign > EltAlign)
577         NGV->setAlignment(NewAlign);
578       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
579                            FragmentSizeInBits, VarSize);
580     }
581   }
582 
583   if (NewGlobals.empty())
584     return nullptr;
585 
586   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
587   for (auto NewGlobalVar : NewGlobals)
588     Globals.push_back(NewGlobalVar.second);
589 
590   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
591 
592   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
593 
594   // Loop over all of the uses of the global, replacing the constantexpr geps,
595   // with smaller constantexpr geps or direct references.
596   while (!GV->use_empty()) {
597     User *GEP = GV->user_back();
598     assert(((isa<ConstantExpr>(GEP) &&
599              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
600             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
601 
602     // Ignore the 1th operand, which has to be zero or else the program is quite
603     // broken (undefined).  Get the 2nd operand, which is the structure or array
604     // index.
605     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
606     assert(NewGlobals.count(ElementIdx) == 1);
607 
608     Value *NewPtr = NewGlobals[ElementIdx];
609     Type *NewTy = NewGlobals[ElementIdx]->getValueType();
610 
611     // Form a shorter GEP if needed.
612     if (GEP->getNumOperands() > 3) {
613       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
614         SmallVector<Constant*, 8> Idxs;
615         Idxs.push_back(NullInt);
616         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
617           Idxs.push_back(CE->getOperand(i));
618         NewPtr =
619             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
620       } else {
621         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
622         SmallVector<Value*, 8> Idxs;
623         Idxs.push_back(NullInt);
624         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
625           Idxs.push_back(GEPI->getOperand(i));
626         NewPtr = GetElementPtrInst::Create(
627             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
628             GEPI);
629       }
630     }
631     GEP->replaceAllUsesWith(NewPtr);
632 
633     // We changed the pointer of any memory access user. Recalculate alignments.
634     for (User *U : NewPtr->users()) {
635       if (auto *Load = dyn_cast<LoadInst>(U)) {
636         Align PrefAlign = DL.getPrefTypeAlign(Load->getType());
637         Align NewAlign = getOrEnforceKnownAlignment(Load->getPointerOperand(),
638                                                     PrefAlign, DL, Load);
639         Load->setAlignment(NewAlign);
640       }
641       if (auto *Store = dyn_cast<StoreInst>(U)) {
642         Align PrefAlign =
643             DL.getPrefTypeAlign(Store->getValueOperand()->getType());
644         Align NewAlign = getOrEnforceKnownAlignment(Store->getPointerOperand(),
645                                                     PrefAlign, DL, Store);
646         Store->setAlignment(NewAlign);
647       }
648     }
649 
650     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
651       GEPI->eraseFromParent();
652     else
653       cast<ConstantExpr>(GEP)->destroyConstant();
654   }
655 
656   // Delete the old global, now that it is dead.
657   Globals.erase(GV);
658   ++NumSRA;
659 
660   assert(NewGlobals.size() > 0);
661   return NewGlobals.begin()->second;
662 }
663 
664 /// Return true if all users of the specified value will trap if the value is
665 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
666 /// reprocessing them.
667 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
668                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
669   for (const User *U : V->users()) {
670     if (const Instruction *I = dyn_cast<Instruction>(U)) {
671       // If null pointer is considered valid, then all uses are non-trapping.
672       // Non address-space 0 globals have already been pruned by the caller.
673       if (NullPointerIsDefined(I->getFunction()))
674         return false;
675     }
676     if (isa<LoadInst>(U)) {
677       // Will trap.
678     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
679       if (SI->getOperand(0) == V) {
680         //cerr << "NONTRAPPING USE: " << *U;
681         return false;  // Storing the value.
682       }
683     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
684       if (CI->getCalledOperand() != V) {
685         //cerr << "NONTRAPPING USE: " << *U;
686         return false;  // Not calling the ptr
687       }
688     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
689       if (II->getCalledOperand() != V) {
690         //cerr << "NONTRAPPING USE: " << *U;
691         return false;  // Not calling the ptr
692       }
693     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
694       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
695     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
696       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
697     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
698       // If we've already seen this phi node, ignore it, it has already been
699       // checked.
700       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
701         return false;
702     } else if (isa<ICmpInst>(U) &&
703                !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) &&
704                isa<LoadInst>(U->getOperand(0)) &&
705                isa<ConstantPointerNull>(U->getOperand(1))) {
706       assert(isa<GlobalValue>(
707                  cast<LoadInst>(U->getOperand(0))->getPointerOperand()) &&
708              "Should be GlobalVariable");
709       // This and only this kind of non-signed ICmpInst is to be replaced with
710       // the comparing of the value of the created global init bool later in
711       // optimizeGlobalAddressOfMalloc for the global variable.
712     } else {
713       //cerr << "NONTRAPPING USE: " << *U;
714       return false;
715     }
716   }
717   return true;
718 }
719 
720 /// Return true if all uses of any loads from GV will trap if the loaded value
721 /// is null.  Note that this also permits comparisons of the loaded value
722 /// against null, as a special case.
723 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
724   SmallVector<const Value *, 4> Worklist;
725   Worklist.push_back(GV);
726   while (!Worklist.empty()) {
727     const Value *P = Worklist.pop_back_val();
728     for (auto *U : P->users()) {
729       if (auto *LI = dyn_cast<LoadInst>(U)) {
730         SmallPtrSet<const PHINode *, 8> PHIs;
731         if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
732           return false;
733       } else if (auto *SI = dyn_cast<StoreInst>(U)) {
734         // Ignore stores to the global.
735         if (SI->getPointerOperand() != P)
736           return false;
737       } else if (auto *CE = dyn_cast<ConstantExpr>(U)) {
738         if (CE->stripPointerCasts() != GV)
739           return false;
740         // Check further the ConstantExpr.
741         Worklist.push_back(CE);
742       } else {
743         // We don't know or understand this user, bail out.
744         return false;
745       }
746     }
747   }
748 
749   return true;
750 }
751 
752 /// Get all the loads/store uses for global variable \p GV.
753 static void allUsesOfLoadAndStores(GlobalVariable *GV,
754                                    SmallVector<Value *, 4> &Uses) {
755   SmallVector<Value *, 4> Worklist;
756   Worklist.push_back(GV);
757   while (!Worklist.empty()) {
758     auto *P = Worklist.pop_back_val();
759     for (auto *U : P->users()) {
760       if (auto *CE = dyn_cast<ConstantExpr>(U)) {
761         Worklist.push_back(CE);
762         continue;
763       }
764 
765       assert((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
766              "Expect only load or store instructions");
767       Uses.push_back(U);
768     }
769   }
770 }
771 
772 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
773   bool Changed = false;
774   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
775     Instruction *I = cast<Instruction>(*UI++);
776     // Uses are non-trapping if null pointer is considered valid.
777     // Non address-space 0 globals are already pruned by the caller.
778     if (NullPointerIsDefined(I->getFunction()))
779       return false;
780     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
781       LI->setOperand(0, NewV);
782       Changed = true;
783     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
784       if (SI->getOperand(1) == V) {
785         SI->setOperand(1, NewV);
786         Changed = true;
787       }
788     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
789       CallBase *CB = cast<CallBase>(I);
790       if (CB->getCalledOperand() == V) {
791         // Calling through the pointer!  Turn into a direct call, but be careful
792         // that the pointer is not also being passed as an argument.
793         CB->setCalledOperand(NewV);
794         Changed = true;
795         bool PassedAsArg = false;
796         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
797           if (CB->getArgOperand(i) == V) {
798             PassedAsArg = true;
799             CB->setArgOperand(i, NewV);
800           }
801 
802         if (PassedAsArg) {
803           // Being passed as an argument also.  Be careful to not invalidate UI!
804           UI = V->user_begin();
805         }
806       }
807     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
808       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
809                                 ConstantExpr::getCast(CI->getOpcode(),
810                                                       NewV, CI->getType()));
811       if (CI->use_empty()) {
812         Changed = true;
813         CI->eraseFromParent();
814       }
815     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
816       // Should handle GEP here.
817       SmallVector<Constant*, 8> Idxs;
818       Idxs.reserve(GEPI->getNumOperands()-1);
819       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
820            i != e; ++i)
821         if (Constant *C = dyn_cast<Constant>(*i))
822           Idxs.push_back(C);
823         else
824           break;
825       if (Idxs.size() == GEPI->getNumOperands()-1)
826         Changed |= OptimizeAwayTrappingUsesOfValue(
827             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
828                                                  NewV, Idxs));
829       if (GEPI->use_empty()) {
830         Changed = true;
831         GEPI->eraseFromParent();
832       }
833     }
834   }
835 
836   return Changed;
837 }
838 
839 /// The specified global has only one non-null value stored into it.  If there
840 /// are uses of the loaded value that would trap if the loaded value is
841 /// dynamically null, then we know that they cannot be reachable with a null
842 /// optimize away the load.
843 static bool OptimizeAwayTrappingUsesOfLoads(
844     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
845     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
846   bool Changed = false;
847 
848   // Keep track of whether we are able to remove all the uses of the global
849   // other than the store that defines it.
850   bool AllNonStoreUsesGone = true;
851 
852   // Replace all uses of loads with uses of uses of the stored value.
853   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
854     User *GlobalUser = *GUI++;
855     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
856       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
857       // If we were able to delete all uses of the loads
858       if (LI->use_empty()) {
859         LI->eraseFromParent();
860         Changed = true;
861       } else {
862         AllNonStoreUsesGone = false;
863       }
864     } else if (isa<StoreInst>(GlobalUser)) {
865       // Ignore the store that stores "LV" to the global.
866       assert(GlobalUser->getOperand(1) == GV &&
867              "Must be storing *to* the global");
868     } else {
869       AllNonStoreUsesGone = false;
870 
871       // If we get here we could have other crazy uses that are transitively
872       // loaded.
873       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
874               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
875               isa<BitCastInst>(GlobalUser) ||
876               isa<GetElementPtrInst>(GlobalUser)) &&
877              "Only expect load and stores!");
878     }
879   }
880 
881   if (Changed) {
882     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
883                       << "\n");
884     ++NumGlobUses;
885   }
886 
887   // If we nuked all of the loads, then none of the stores are needed either,
888   // nor is the global.
889   if (AllNonStoreUsesGone) {
890     if (isLeakCheckerRoot(GV)) {
891       Changed |= CleanupPointerRootUsers(GV, GetTLI);
892     } else {
893       Changed = true;
894       CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
895     }
896     if (GV->use_empty()) {
897       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
898       Changed = true;
899       GV->eraseFromParent();
900       ++NumDeleted;
901     }
902   }
903   return Changed;
904 }
905 
906 /// Walk the use list of V, constant folding all of the instructions that are
907 /// foldable.
908 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
909                                 TargetLibraryInfo *TLI) {
910   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
911     if (Instruction *I = dyn_cast<Instruction>(*UI++))
912       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
913         I->replaceAllUsesWith(NewC);
914 
915         // Advance UI to the next non-I use to avoid invalidating it!
916         // Instructions could multiply use V.
917         while (UI != E && *UI == I)
918           ++UI;
919         if (isInstructionTriviallyDead(I, TLI))
920           I->eraseFromParent();
921       }
922 }
923 
924 /// This function takes the specified global variable, and transforms the
925 /// program as if it always contained the result of the specified malloc.
926 /// Because it is always the result of the specified malloc, there is no reason
927 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
928 /// loads of GV as uses of the new global.
929 static GlobalVariable *
930 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
931                               ConstantInt *NElements, const DataLayout &DL,
932                               TargetLibraryInfo *TLI) {
933   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
934                     << '\n');
935 
936   Type *GlobalType;
937   if (NElements->getZExtValue() == 1)
938     GlobalType = AllocTy;
939   else
940     // If we have an array allocation, the global variable is of an array.
941     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
942 
943   // Create the new global variable.  The contents of the malloc'd memory is
944   // undefined, so initialize with an undef value.
945   GlobalVariable *NewGV = new GlobalVariable(
946       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
947       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
948       GV->getThreadLocalMode());
949 
950   // If there are bitcast users of the malloc (which is typical, usually we have
951   // a malloc + bitcast) then replace them with uses of the new global.  Update
952   // other users to use the global as well.
953   BitCastInst *TheBC = nullptr;
954   while (!CI->use_empty()) {
955     Instruction *User = cast<Instruction>(CI->user_back());
956     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
957       if (BCI->getType() == NewGV->getType()) {
958         BCI->replaceAllUsesWith(NewGV);
959         BCI->eraseFromParent();
960       } else {
961         BCI->setOperand(0, NewGV);
962       }
963     } else {
964       if (!TheBC)
965         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
966       User->replaceUsesOfWith(CI, TheBC);
967     }
968   }
969 
970   Constant *RepValue = NewGV;
971   if (NewGV->getType() != GV->getValueType())
972     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
973 
974   // If there is a comparison against null, we will insert a global bool to
975   // keep track of whether the global was initialized yet or not.
976   GlobalVariable *InitBool =
977     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
978                        GlobalValue::InternalLinkage,
979                        ConstantInt::getFalse(GV->getContext()),
980                        GV->getName()+".init", GV->getThreadLocalMode());
981   bool InitBoolUsed = false;
982 
983   // Loop over all instruction uses of GV, processing them in turn.
984   SmallVector<Value *, 4> Guses;
985   allUsesOfLoadAndStores(GV, Guses);
986   for (auto *U : Guses) {
987     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
988       // The global is initialized when the store to it occurs. If the stored
989       // value is null value, the global bool is set to false, otherwise true.
990       new StoreInst(ConstantInt::getBool(
991                         GV->getContext(),
992                         !isa<ConstantPointerNull>(SI->getValueOperand())),
993                     InitBool, false, Align(1), SI->getOrdering(),
994                     SI->getSyncScopeID(), SI);
995       SI->eraseFromParent();
996       continue;
997     }
998 
999     LoadInst *LI = cast<LoadInst>(U);
1000     while (!LI->use_empty()) {
1001       Use &LoadUse = *LI->use_begin();
1002       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
1003       if (!ICI) {
1004         LoadUse = RepValue;
1005         continue;
1006       }
1007 
1008       // Replace the cmp X, 0 with a use of the bool value.
1009       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
1010                                InitBool->getName() + ".val", false, Align(1),
1011                                LI->getOrdering(), LI->getSyncScopeID(), LI);
1012       InitBoolUsed = true;
1013       switch (ICI->getPredicate()) {
1014       default: llvm_unreachable("Unknown ICmp Predicate!");
1015       case ICmpInst::ICMP_ULT: // X < null -> always false
1016         LV = ConstantInt::getFalse(GV->getContext());
1017         break;
1018       case ICmpInst::ICMP_UGE: // X >= null -> always true
1019         LV = ConstantInt::getTrue(GV->getContext());
1020         break;
1021       case ICmpInst::ICMP_ULE:
1022       case ICmpInst::ICMP_EQ:
1023         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
1024         break;
1025       case ICmpInst::ICMP_NE:
1026       case ICmpInst::ICMP_UGT:
1027         break;  // no change.
1028       }
1029       ICI->replaceAllUsesWith(LV);
1030       ICI->eraseFromParent();
1031     }
1032     LI->eraseFromParent();
1033   }
1034 
1035   // If the initialization boolean was used, insert it, otherwise delete it.
1036   if (!InitBoolUsed) {
1037     while (!InitBool->use_empty())  // Delete initializations
1038       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
1039     delete InitBool;
1040   } else
1041     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
1042 
1043   // Now the GV is dead, nuke it and the malloc..
1044   GV->eraseFromParent();
1045   CI->eraseFromParent();
1046 
1047   // To further other optimizations, loop over all users of NewGV and try to
1048   // constant prop them.  This will promote GEP instructions with constant
1049   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
1050   ConstantPropUsersOf(NewGV, DL, TLI);
1051   if (RepValue != NewGV)
1052     ConstantPropUsersOf(RepValue, DL, TLI);
1053 
1054   return NewGV;
1055 }
1056 
1057 /// Scan the use-list of GV checking to make sure that there are no complex uses
1058 /// of GV.  We permit simple things like dereferencing the pointer, but not
1059 /// storing through the address, unless it is to the specified global.
1060 static bool
1061 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI,
1062                                           const GlobalVariable *GV) {
1063   SmallPtrSet<const Value *, 4> Visited;
1064   SmallVector<const Value *, 4> Worklist;
1065   Worklist.push_back(CI);
1066 
1067   while (!Worklist.empty()) {
1068     const Value *V = Worklist.pop_back_val();
1069     if (!Visited.insert(V).second)
1070       continue;
1071 
1072     for (const Use &VUse : V->uses()) {
1073       const User *U = VUse.getUser();
1074       if (isa<LoadInst>(U) || isa<CmpInst>(U))
1075         continue; // Fine, ignore.
1076 
1077       if (auto *SI = dyn_cast<StoreInst>(U)) {
1078         if (SI->getValueOperand() == V &&
1079             SI->getPointerOperand()->stripPointerCasts() != GV)
1080           return false; // Storing the pointer not into GV... bad.
1081         continue; // Otherwise, storing through it, or storing into GV... fine.
1082       }
1083 
1084       if (auto *BCI = dyn_cast<BitCastInst>(U)) {
1085         Worklist.push_back(BCI);
1086         continue;
1087       }
1088 
1089       if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1090         Worklist.push_back(GEPI);
1091         continue;
1092       }
1093 
1094       return false;
1095     }
1096   }
1097 
1098   return true;
1099 }
1100 
1101 /// This function is called when we see a pointer global variable with a single
1102 /// value stored it that is a malloc or cast of malloc.
1103 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1104                                                Type *AllocTy,
1105                                                AtomicOrdering Ordering,
1106                                                const DataLayout &DL,
1107                                                TargetLibraryInfo *TLI) {
1108   // If this is a malloc of an abstract type, don't touch it.
1109   if (!AllocTy->isSized())
1110     return false;
1111 
1112   // We can't optimize this global unless all uses of it are *known* to be
1113   // of the malloc value, not of the null initializer value (consider a use
1114   // that compares the global's value against zero to see if the malloc has
1115   // been reached).  To do this, we check to see if all uses of the global
1116   // would trap if the global were null: this proves that they must all
1117   // happen after the malloc.
1118   if (!allUsesOfLoadedValueWillTrapIfNull(GV))
1119     return false;
1120 
1121   // We can't optimize this if the malloc itself is used in a complex way,
1122   // for example, being stored into multiple globals.  This allows the
1123   // malloc to be stored into the specified global, loaded, gep, icmp'd.
1124   // These are all things we could transform to using the global for.
1125   if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV))
1126     return false;
1127 
1128   // If we have a global that is only initialized with a fixed size malloc,
1129   // transform the program to use global memory instead of malloc'd memory.
1130   // This eliminates dynamic allocation, avoids an indirection accessing the
1131   // data, and exposes the resultant global to further GlobalOpt.
1132   // We cannot optimize the malloc if we cannot determine malloc array size.
1133   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1134   if (!NElems)
1135     return false;
1136 
1137   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1138     // Restrict this transformation to only working on small allocations
1139     // (2048 bytes currently), as we don't want to introduce a 16M global or
1140     // something.
1141     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1142       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1143       return true;
1144     }
1145 
1146   return false;
1147 }
1148 
1149 // Try to optimize globals based on the knowledge that only one value (besides
1150 // its initializer) is ever stored to the global.
1151 static bool
1152 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1153                          AtomicOrdering Ordering, const DataLayout &DL,
1154                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1155   // Ignore no-op GEPs and bitcasts.
1156   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1157 
1158   // If we are dealing with a pointer global that is initialized to null and
1159   // only has one (non-null) value stored into it, then we can optimize any
1160   // users of the loaded value (often calls and loads) that would trap if the
1161   // value was null.
1162   if (GV->getInitializer()->getType()->isPointerTy() &&
1163       GV->getInitializer()->isNullValue() &&
1164       !NullPointerIsDefined(
1165           nullptr /* F */,
1166           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1167     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1168       if (GV->getInitializer()->getType() != SOVC->getType())
1169         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1170 
1171       // Optimize away any trapping uses of the loaded value.
1172       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1173         return true;
1174     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1175       auto *TLI = &GetTLI(*CI->getFunction());
1176       Type *MallocType = getMallocAllocatedType(CI, TLI);
1177       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1178                                                            Ordering, DL, TLI))
1179         return true;
1180     }
1181   }
1182 
1183   return false;
1184 }
1185 
1186 /// At this point, we have learned that the only two values ever stored into GV
1187 /// are its initializer and OtherVal.  See if we can shrink the global into a
1188 /// boolean and select between the two values whenever it is used.  This exposes
1189 /// the values to other scalar optimizations.
1190 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1191   Type *GVElType = GV->getValueType();
1192 
1193   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1194   // an FP value, pointer or vector, don't do this optimization because a select
1195   // between them is very expensive and unlikely to lead to later
1196   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1197   // where v1 and v2 both require constant pool loads, a big loss.
1198   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1199       GVElType->isFloatingPointTy() ||
1200       GVElType->isPointerTy() || GVElType->isVectorTy())
1201     return false;
1202 
1203   // Walk the use list of the global seeing if all the uses are load or store.
1204   // If there is anything else, bail out.
1205   for (User *U : GV->users())
1206     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1207       return false;
1208 
1209   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1210 
1211   // Create the new global, initializing it to false.
1212   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1213                                              false,
1214                                              GlobalValue::InternalLinkage,
1215                                         ConstantInt::getFalse(GV->getContext()),
1216                                              GV->getName()+".b",
1217                                              GV->getThreadLocalMode(),
1218                                              GV->getType()->getAddressSpace());
1219   NewGV->copyAttributesFrom(GV);
1220   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1221 
1222   Constant *InitVal = GV->getInitializer();
1223   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1224          "No reason to shrink to bool!");
1225 
1226   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1227   GV->getDebugInfo(GVs);
1228 
1229   // If initialized to zero and storing one into the global, we can use a cast
1230   // instead of a select to synthesize the desired value.
1231   bool IsOneZero = false;
1232   bool EmitOneOrZero = true;
1233   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1234   if (CI && CI->getValue().getActiveBits() <= 64) {
1235     IsOneZero = InitVal->isNullValue() && CI->isOne();
1236 
1237     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1238     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1239       uint64_t ValInit = CIInit->getZExtValue();
1240       uint64_t ValOther = CI->getZExtValue();
1241       uint64_t ValMinus = ValOther - ValInit;
1242 
1243       for(auto *GVe : GVs){
1244         DIGlobalVariable *DGV = GVe->getVariable();
1245         DIExpression *E = GVe->getExpression();
1246         const DataLayout &DL = GV->getParent()->getDataLayout();
1247         unsigned SizeInOctets =
1248             DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8;
1249 
1250         // It is expected that the address of global optimized variable is on
1251         // top of the stack. After optimization, value of that variable will
1252         // be ether 0 for initial value or 1 for other value. The following
1253         // expression should return constant integer value depending on the
1254         // value at global object address:
1255         // val * (ValOther - ValInit) + ValInit:
1256         // DW_OP_deref DW_OP_constu <ValMinus>
1257         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1258         SmallVector<uint64_t, 12> Ops = {
1259             dwarf::DW_OP_deref_size, SizeInOctets,
1260             dwarf::DW_OP_constu, ValMinus,
1261             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1262             dwarf::DW_OP_plus};
1263         bool WithStackValue = true;
1264         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1265         DIGlobalVariableExpression *DGVE =
1266           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1267         NewGV->addDebugInfo(DGVE);
1268      }
1269      EmitOneOrZero = false;
1270     }
1271   }
1272 
1273   if (EmitOneOrZero) {
1274      // FIXME: This will only emit address for debugger on which will
1275      // be written only 0 or 1.
1276      for(auto *GV : GVs)
1277        NewGV->addDebugInfo(GV);
1278    }
1279 
1280   while (!GV->use_empty()) {
1281     Instruction *UI = cast<Instruction>(GV->user_back());
1282     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1283       // Change the store into a boolean store.
1284       bool StoringOther = SI->getOperand(0) == OtherVal;
1285       // Only do this if we weren't storing a loaded value.
1286       Value *StoreVal;
1287       if (StoringOther || SI->getOperand(0) == InitVal) {
1288         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1289                                     StoringOther);
1290       } else {
1291         // Otherwise, we are storing a previously loaded copy.  To do this,
1292         // change the copy from copying the original value to just copying the
1293         // bool.
1294         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1295 
1296         // If we've already replaced the input, StoredVal will be a cast or
1297         // select instruction.  If not, it will be a load of the original
1298         // global.
1299         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1300           assert(LI->getOperand(0) == GV && "Not a copy!");
1301           // Insert a new load, to preserve the saved value.
1302           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1303                                   LI->getName() + ".b", false, Align(1),
1304                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1305         } else {
1306           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1307                  "This is not a form that we understand!");
1308           StoreVal = StoredVal->getOperand(0);
1309           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1310         }
1311       }
1312       StoreInst *NSI =
1313           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1314                         SI->getSyncScopeID(), SI);
1315       NSI->setDebugLoc(SI->getDebugLoc());
1316     } else {
1317       // Change the load into a load of bool then a select.
1318       LoadInst *LI = cast<LoadInst>(UI);
1319       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1320                                    LI->getName() + ".b", false, Align(1),
1321                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1322       Instruction *NSI;
1323       if (IsOneZero)
1324         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1325       else
1326         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1327       NSI->takeName(LI);
1328       // Since LI is split into two instructions, NLI and NSI both inherit the
1329       // same DebugLoc
1330       NLI->setDebugLoc(LI->getDebugLoc());
1331       NSI->setDebugLoc(LI->getDebugLoc());
1332       LI->replaceAllUsesWith(NSI);
1333     }
1334     UI->eraseFromParent();
1335   }
1336 
1337   // Retain the name of the old global variable. People who are debugging their
1338   // programs may expect these variables to be named the same.
1339   NewGV->takeName(GV);
1340   GV->eraseFromParent();
1341   return true;
1342 }
1343 
1344 static bool deleteIfDead(
1345     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1346   GV.removeDeadConstantUsers();
1347 
1348   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1349     return false;
1350 
1351   if (const Comdat *C = GV.getComdat())
1352     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1353       return false;
1354 
1355   bool Dead;
1356   if (auto *F = dyn_cast<Function>(&GV))
1357     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1358   else
1359     Dead = GV.use_empty();
1360   if (!Dead)
1361     return false;
1362 
1363   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1364   GV.eraseFromParent();
1365   ++NumDeleted;
1366   return true;
1367 }
1368 
1369 static bool isPointerValueDeadOnEntryToFunction(
1370     const Function *F, GlobalValue *GV,
1371     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1372   // Find all uses of GV. We expect them all to be in F, and if we can't
1373   // identify any of the uses we bail out.
1374   //
1375   // On each of these uses, identify if the memory that GV points to is
1376   // used/required/live at the start of the function. If it is not, for example
1377   // if the first thing the function does is store to the GV, the GV can
1378   // possibly be demoted.
1379   //
1380   // We don't do an exhaustive search for memory operations - simply look
1381   // through bitcasts as they're quite common and benign.
1382   const DataLayout &DL = GV->getParent()->getDataLayout();
1383   SmallVector<LoadInst *, 4> Loads;
1384   SmallVector<StoreInst *, 4> Stores;
1385   for (auto *U : GV->users()) {
1386     if (Operator::getOpcode(U) == Instruction::BitCast) {
1387       for (auto *UU : U->users()) {
1388         if (auto *LI = dyn_cast<LoadInst>(UU))
1389           Loads.push_back(LI);
1390         else if (auto *SI = dyn_cast<StoreInst>(UU))
1391           Stores.push_back(SI);
1392         else
1393           return false;
1394       }
1395       continue;
1396     }
1397 
1398     Instruction *I = dyn_cast<Instruction>(U);
1399     if (!I)
1400       return false;
1401     assert(I->getParent()->getParent() == F);
1402 
1403     if (auto *LI = dyn_cast<LoadInst>(I))
1404       Loads.push_back(LI);
1405     else if (auto *SI = dyn_cast<StoreInst>(I))
1406       Stores.push_back(SI);
1407     else
1408       return false;
1409   }
1410 
1411   // We have identified all uses of GV into loads and stores. Now check if all
1412   // of them are known not to depend on the value of the global at the function
1413   // entry point. We do this by ensuring that every load is dominated by at
1414   // least one store.
1415   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1416 
1417   // The below check is quadratic. Check we're not going to do too many tests.
1418   // FIXME: Even though this will always have worst-case quadratic time, we
1419   // could put effort into minimizing the average time by putting stores that
1420   // have been shown to dominate at least one load at the beginning of the
1421   // Stores array, making subsequent dominance checks more likely to succeed
1422   // early.
1423   //
1424   // The threshold here is fairly large because global->local demotion is a
1425   // very powerful optimization should it fire.
1426   const unsigned Threshold = 100;
1427   if (Loads.size() * Stores.size() > Threshold)
1428     return false;
1429 
1430   for (auto *L : Loads) {
1431     auto *LTy = L->getType();
1432     if (none_of(Stores, [&](const StoreInst *S) {
1433           auto *STy = S->getValueOperand()->getType();
1434           // The load is only dominated by the store if DomTree says so
1435           // and the number of bits loaded in L is less than or equal to
1436           // the number of bits stored in S.
1437           return DT.dominates(S, L) &&
1438                  DL.getTypeStoreSize(LTy).getFixedSize() <=
1439                      DL.getTypeStoreSize(STy).getFixedSize();
1440         }))
1441       return false;
1442   }
1443   // All loads have known dependences inside F, so the global can be localized.
1444   return true;
1445 }
1446 
1447 /// C may have non-instruction users. Can all of those users be turned into
1448 /// instructions?
1449 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1450   // We don't do this exhaustively. The most common pattern that we really need
1451   // to care about is a constant GEP or constant bitcast - so just looking
1452   // through one single ConstantExpr.
1453   //
1454   // The set of constants that this function returns true for must be able to be
1455   // handled by makeAllConstantUsesInstructions.
1456   for (auto *U : C->users()) {
1457     if (isa<Instruction>(U))
1458       continue;
1459     if (!isa<ConstantExpr>(U))
1460       // Non instruction, non-constantexpr user; cannot convert this.
1461       return false;
1462     for (auto *UU : U->users())
1463       if (!isa<Instruction>(UU))
1464         // A constantexpr used by another constant. We don't try and recurse any
1465         // further but just bail out at this point.
1466         return false;
1467   }
1468 
1469   return true;
1470 }
1471 
1472 /// C may have non-instruction users, and
1473 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1474 /// non-instruction users to instructions.
1475 static void makeAllConstantUsesInstructions(Constant *C) {
1476   SmallVector<ConstantExpr*,4> Users;
1477   for (auto *U : C->users()) {
1478     if (isa<ConstantExpr>(U))
1479       Users.push_back(cast<ConstantExpr>(U));
1480     else
1481       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1482       // should not have returned true for C.
1483       assert(
1484           isa<Instruction>(U) &&
1485           "Can't transform non-constantexpr non-instruction to instruction!");
1486   }
1487 
1488   SmallVector<Value*,4> UUsers;
1489   for (auto *U : Users) {
1490     UUsers.clear();
1491     append_range(UUsers, U->users());
1492     for (auto *UU : UUsers) {
1493       Instruction *UI = cast<Instruction>(UU);
1494       Instruction *NewU = U->getAsInstruction();
1495       NewU->insertBefore(UI);
1496       UI->replaceUsesOfWith(U, NewU);
1497     }
1498     // We've replaced all the uses, so destroy the constant. (destroyConstant
1499     // will update value handles and metadata.)
1500     U->destroyConstant();
1501   }
1502 }
1503 
1504 /// Analyze the specified global variable and optimize
1505 /// it if possible.  If we make a change, return true.
1506 static bool
1507 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1508                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1509                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1510   auto &DL = GV->getParent()->getDataLayout();
1511   // If this is a first class global and has only one accessing function and
1512   // this function is non-recursive, we replace the global with a local alloca
1513   // in this function.
1514   //
1515   // NOTE: It doesn't make sense to promote non-single-value types since we
1516   // are just replacing static memory to stack memory.
1517   //
1518   // If the global is in different address space, don't bring it to stack.
1519   if (!GS.HasMultipleAccessingFunctions &&
1520       GS.AccessingFunction &&
1521       GV->getValueType()->isSingleValueType() &&
1522       GV->getType()->getAddressSpace() == 0 &&
1523       !GV->isExternallyInitialized() &&
1524       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1525       GS.AccessingFunction->doesNotRecurse() &&
1526       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1527                                           LookupDomTree)) {
1528     const DataLayout &DL = GV->getParent()->getDataLayout();
1529 
1530     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1531     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1532                                                    ->getEntryBlock().begin());
1533     Type *ElemTy = GV->getValueType();
1534     // FIXME: Pass Global's alignment when globals have alignment
1535     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1536                                         GV->getName(), &FirstI);
1537     if (!isa<UndefValue>(GV->getInitializer()))
1538       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1539 
1540     makeAllConstantUsesInstructions(GV);
1541 
1542     GV->replaceAllUsesWith(Alloca);
1543     GV->eraseFromParent();
1544     ++NumLocalized;
1545     return true;
1546   }
1547 
1548   bool Changed = false;
1549 
1550   // If the global is never loaded (but may be stored to), it is dead.
1551   // Delete it now.
1552   if (!GS.IsLoaded) {
1553     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1554 
1555     if (isLeakCheckerRoot(GV)) {
1556       // Delete any constant stores to the global.
1557       Changed = CleanupPointerRootUsers(GV, GetTLI);
1558     } else {
1559       // Delete any stores we can find to the global.  We may not be able to
1560       // make it completely dead though.
1561       Changed =
1562           CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1563     }
1564 
1565     // If the global is dead now, delete it.
1566     if (GV->use_empty()) {
1567       GV->eraseFromParent();
1568       ++NumDeleted;
1569       Changed = true;
1570     }
1571     return Changed;
1572 
1573   }
1574   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1575     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1576 
1577     // Don't actually mark a global constant if it's atomic because atomic loads
1578     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1579     // requires write access to the variable even if it's not actually changed.
1580     if (GS.Ordering == AtomicOrdering::NotAtomic) {
1581       assert(!GV->isConstant() && "Expected a non-constant global");
1582       GV->setConstant(true);
1583       Changed = true;
1584     }
1585 
1586     // Clean up any obviously simplifiable users now.
1587     Changed |= CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1588 
1589     // If the global is dead now, just nuke it.
1590     if (GV->use_empty()) {
1591       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1592                         << "all users and delete global!\n");
1593       GV->eraseFromParent();
1594       ++NumDeleted;
1595       return true;
1596     }
1597 
1598     // Fall through to the next check; see if we can optimize further.
1599     ++NumMarked;
1600   }
1601   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1602     const DataLayout &DL = GV->getParent()->getDataLayout();
1603     if (SRAGlobal(GV, DL))
1604       return true;
1605   }
1606   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1607     // If the initial value for the global was an undef value, and if only
1608     // one other value was stored into it, we can just change the
1609     // initializer to be the stored value, then delete all stores to the
1610     // global.  This allows us to mark it constant.
1611     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1612       if (isa<UndefValue>(GV->getInitializer())) {
1613         // Change the initial value here.
1614         GV->setInitializer(SOVConstant);
1615 
1616         // Clean up any obviously simplifiable users now.
1617         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1618 
1619         if (GV->use_empty()) {
1620           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1621                             << "simplify all users and delete global!\n");
1622           GV->eraseFromParent();
1623           ++NumDeleted;
1624         }
1625         ++NumSubstitute;
1626         return true;
1627       }
1628 
1629     // Try to optimize globals based on the knowledge that only one value
1630     // (besides its initializer) is ever stored to the global.
1631     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
1632                                  GetTLI))
1633       return true;
1634 
1635     // Otherwise, if the global was not a boolean, we can shrink it to be a
1636     // boolean.
1637     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1638       if (GS.Ordering == AtomicOrdering::NotAtomic) {
1639         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1640           ++NumShrunkToBool;
1641           return true;
1642         }
1643       }
1644     }
1645   }
1646 
1647   return Changed;
1648 }
1649 
1650 /// Analyze the specified global variable and optimize it if possible.  If we
1651 /// make a change, return true.
1652 static bool
1653 processGlobal(GlobalValue &GV,
1654               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1655               function_ref<DominatorTree &(Function &)> LookupDomTree) {
1656   if (GV.getName().startswith("llvm."))
1657     return false;
1658 
1659   GlobalStatus GS;
1660 
1661   if (GlobalStatus::analyzeGlobal(&GV, GS))
1662     return false;
1663 
1664   bool Changed = false;
1665   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1666     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1667                                                : GlobalValue::UnnamedAddr::Local;
1668     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1669       GV.setUnnamedAddr(NewUnnamedAddr);
1670       NumUnnamed++;
1671       Changed = true;
1672     }
1673   }
1674 
1675   // Do more involved optimizations if the global is internal.
1676   if (!GV.hasLocalLinkage())
1677     return Changed;
1678 
1679   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1680   if (!GVar)
1681     return Changed;
1682 
1683   if (GVar->isConstant() || !GVar->hasInitializer())
1684     return Changed;
1685 
1686   return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
1687 }
1688 
1689 /// Walk all of the direct calls of the specified function, changing them to
1690 /// FastCC.
1691 static void ChangeCalleesToFastCall(Function *F) {
1692   for (User *U : F->users()) {
1693     if (isa<BlockAddress>(U))
1694       continue;
1695     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
1696   }
1697 }
1698 
1699 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
1700                                Attribute::AttrKind A) {
1701   unsigned AttrIndex;
1702   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
1703     return Attrs.removeAttribute(C, AttrIndex, A);
1704   return Attrs;
1705 }
1706 
1707 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
1708   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
1709   for (User *U : F->users()) {
1710     if (isa<BlockAddress>(U))
1711       continue;
1712     CallBase *CB = cast<CallBase>(U);
1713     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
1714   }
1715 }
1716 
1717 /// Return true if this is a calling convention that we'd like to change.  The
1718 /// idea here is that we don't want to mess with the convention if the user
1719 /// explicitly requested something with performance implications like coldcc,
1720 /// GHC, or anyregcc.
1721 static bool hasChangeableCC(Function *F) {
1722   CallingConv::ID CC = F->getCallingConv();
1723 
1724   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1725   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
1726     return false;
1727 
1728   // FIXME: Change CC for the whole chain of musttail calls when possible.
1729   //
1730   // Can't change CC of the function that either has musttail calls, or is a
1731   // musttail callee itself
1732   for (User *U : F->users()) {
1733     if (isa<BlockAddress>(U))
1734       continue;
1735     CallInst* CI = dyn_cast<CallInst>(U);
1736     if (!CI)
1737       continue;
1738 
1739     if (CI->isMustTailCall())
1740       return false;
1741   }
1742 
1743   for (BasicBlock &BB : *F)
1744     if (BB.getTerminatingMustTailCall())
1745       return false;
1746 
1747   return true;
1748 }
1749 
1750 /// Return true if the block containing the call site has a BlockFrequency of
1751 /// less than ColdCCRelFreq% of the entry block.
1752 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
1753   const BranchProbability ColdProb(ColdCCRelFreq, 100);
1754   auto *CallSiteBB = CB.getParent();
1755   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
1756   auto CallerEntryFreq =
1757       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
1758   return CallSiteFreq < CallerEntryFreq * ColdProb;
1759 }
1760 
1761 // This function checks if the input function F is cold at all call sites. It
1762 // also looks each call site's containing function, returning false if the
1763 // caller function contains other non cold calls. The input vector AllCallsCold
1764 // contains a list of functions that only have call sites in cold blocks.
1765 static bool
1766 isValidCandidateForColdCC(Function &F,
1767                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1768                           const std::vector<Function *> &AllCallsCold) {
1769 
1770   if (F.user_empty())
1771     return false;
1772 
1773   for (User *U : F.users()) {
1774     if (isa<BlockAddress>(U))
1775       continue;
1776 
1777     CallBase &CB = cast<CallBase>(*U);
1778     Function *CallerFunc = CB.getParent()->getParent();
1779     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
1780     if (!isColdCallSite(CB, CallerBFI))
1781       return false;
1782     if (!llvm::is_contained(AllCallsCold, CallerFunc))
1783       return false;
1784   }
1785   return true;
1786 }
1787 
1788 static void changeCallSitesToColdCC(Function *F) {
1789   for (User *U : F->users()) {
1790     if (isa<BlockAddress>(U))
1791       continue;
1792     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
1793   }
1794 }
1795 
1796 // This function iterates over all the call instructions in the input Function
1797 // and checks that all call sites are in cold blocks and are allowed to use the
1798 // coldcc calling convention.
1799 static bool
1800 hasOnlyColdCalls(Function &F,
1801                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
1802   for (BasicBlock &BB : F) {
1803     for (Instruction &I : BB) {
1804       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1805         // Skip over isline asm instructions since they aren't function calls.
1806         if (CI->isInlineAsm())
1807           continue;
1808         Function *CalledFn = CI->getCalledFunction();
1809         if (!CalledFn)
1810           return false;
1811         if (!CalledFn->hasLocalLinkage())
1812           return false;
1813         // Skip over instrinsics since they won't remain as function calls.
1814         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
1815           continue;
1816         // Check if it's valid to use coldcc calling convention.
1817         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
1818             CalledFn->hasAddressTaken())
1819           return false;
1820         BlockFrequencyInfo &CallerBFI = GetBFI(F);
1821         if (!isColdCallSite(*CI, CallerBFI))
1822           return false;
1823       }
1824     }
1825   }
1826   return true;
1827 }
1828 
1829 static bool hasMustTailCallers(Function *F) {
1830   for (User *U : F->users()) {
1831     CallBase *CB = dyn_cast<CallBase>(U);
1832     if (!CB) {
1833       assert(isa<BlockAddress>(U) &&
1834              "Expected either CallBase or BlockAddress");
1835       continue;
1836     }
1837     if (CB->isMustTailCall())
1838       return true;
1839   }
1840   return false;
1841 }
1842 
1843 static bool hasInvokeCallers(Function *F) {
1844   for (User *U : F->users())
1845     if (isa<InvokeInst>(U))
1846       return true;
1847   return false;
1848 }
1849 
1850 static void RemovePreallocated(Function *F) {
1851   RemoveAttribute(F, Attribute::Preallocated);
1852 
1853   auto *M = F->getParent();
1854 
1855   IRBuilder<> Builder(M->getContext());
1856 
1857   // Cannot modify users() while iterating over it, so make a copy.
1858   SmallVector<User *, 4> PreallocatedCalls(F->users());
1859   for (User *U : PreallocatedCalls) {
1860     CallBase *CB = dyn_cast<CallBase>(U);
1861     if (!CB)
1862       continue;
1863 
1864     assert(
1865         !CB->isMustTailCall() &&
1866         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
1867     // Create copy of call without "preallocated" operand bundle.
1868     SmallVector<OperandBundleDef, 1> OpBundles;
1869     CB->getOperandBundlesAsDefs(OpBundles);
1870     CallBase *PreallocatedSetup = nullptr;
1871     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
1872       if (It->getTag() == "preallocated") {
1873         PreallocatedSetup = cast<CallBase>(*It->input_begin());
1874         OpBundles.erase(It);
1875         break;
1876       }
1877     }
1878     assert(PreallocatedSetup && "Did not find preallocated bundle");
1879     uint64_t ArgCount =
1880         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
1881 
1882     assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
1883            "Unknown indirect call type");
1884     CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
1885     CB->replaceAllUsesWith(NewCB);
1886     NewCB->takeName(CB);
1887     CB->eraseFromParent();
1888 
1889     Builder.SetInsertPoint(PreallocatedSetup);
1890     auto *StackSave =
1891         Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
1892 
1893     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
1894     Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
1895                        StackSave);
1896 
1897     // Replace @llvm.call.preallocated.arg() with alloca.
1898     // Cannot modify users() while iterating over it, so make a copy.
1899     // @llvm.call.preallocated.arg() can be called with the same index multiple
1900     // times. So for each @llvm.call.preallocated.arg(), we see if we have
1901     // already created a Value* for the index, and if not, create an alloca and
1902     // bitcast right after the @llvm.call.preallocated.setup() so that it
1903     // dominates all uses.
1904     SmallVector<Value *, 2> ArgAllocas(ArgCount);
1905     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
1906     for (auto *User : PreallocatedArgs) {
1907       auto *UseCall = cast<CallBase>(User);
1908       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
1909                  Intrinsic::call_preallocated_arg &&
1910              "preallocated token use was not a llvm.call.preallocated.arg");
1911       uint64_t AllocArgIndex =
1912           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
1913       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
1914       if (!AllocaReplacement) {
1915         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
1916         auto *ArgType = UseCall
1917                             ->getAttribute(AttributeList::FunctionIndex,
1918                                            Attribute::Preallocated)
1919                             .getValueAsType();
1920         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
1921         Builder.SetInsertPoint(InsertBefore);
1922         auto *Alloca =
1923             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
1924         auto *BitCast = Builder.CreateBitCast(
1925             Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
1926         ArgAllocas[AllocArgIndex] = BitCast;
1927         AllocaReplacement = BitCast;
1928       }
1929 
1930       UseCall->replaceAllUsesWith(AllocaReplacement);
1931       UseCall->eraseFromParent();
1932     }
1933     // Remove @llvm.call.preallocated.setup().
1934     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
1935   }
1936 }
1937 
1938 static bool
1939 OptimizeFunctions(Module &M,
1940                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1941                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
1942                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1943                   function_ref<DominatorTree &(Function &)> LookupDomTree,
1944                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1945 
1946   bool Changed = false;
1947 
1948   std::vector<Function *> AllCallsCold;
1949   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
1950     Function *F = &*FI++;
1951     if (hasOnlyColdCalls(*F, GetBFI))
1952       AllCallsCold.push_back(F);
1953   }
1954 
1955   // Optimize functions.
1956   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1957     Function *F = &*FI++;
1958 
1959     // Don't perform global opt pass on naked functions; we don't want fast
1960     // calling conventions for naked functions.
1961     if (F->hasFnAttribute(Attribute::Naked))
1962       continue;
1963 
1964     // Functions without names cannot be referenced outside this module.
1965     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
1966       F->setLinkage(GlobalValue::InternalLinkage);
1967 
1968     if (deleteIfDead(*F, NotDiscardableComdats)) {
1969       Changed = true;
1970       continue;
1971     }
1972 
1973     // LLVM's definition of dominance allows instructions that are cyclic
1974     // in unreachable blocks, e.g.:
1975     // %pat = select i1 %condition, @global, i16* %pat
1976     // because any instruction dominates an instruction in a block that's
1977     // not reachable from entry.
1978     // So, remove unreachable blocks from the function, because a) there's
1979     // no point in analyzing them and b) GlobalOpt should otherwise grow
1980     // some more complicated logic to break these cycles.
1981     // Removing unreachable blocks might invalidate the dominator so we
1982     // recalculate it.
1983     if (!F->isDeclaration()) {
1984       if (removeUnreachableBlocks(*F)) {
1985         auto &DT = LookupDomTree(*F);
1986         DT.recalculate(*F);
1987         Changed = true;
1988       }
1989     }
1990 
1991     Changed |= processGlobal(*F, GetTLI, LookupDomTree);
1992 
1993     if (!F->hasLocalLinkage())
1994       continue;
1995 
1996     // If we have an inalloca parameter that we can safely remove the
1997     // inalloca attribute from, do so. This unlocks optimizations that
1998     // wouldn't be safe in the presence of inalloca.
1999     // FIXME: We should also hoist alloca affected by this to the entry
2000     // block if possible.
2001     if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2002         !F->hasAddressTaken() && !hasMustTailCallers(F)) {
2003       RemoveAttribute(F, Attribute::InAlloca);
2004       Changed = true;
2005     }
2006 
2007     // FIXME: handle invokes
2008     // FIXME: handle musttail
2009     if (F->getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
2010       if (!F->hasAddressTaken() && !hasMustTailCallers(F) &&
2011           !hasInvokeCallers(F)) {
2012         RemovePreallocated(F);
2013         Changed = true;
2014       }
2015       continue;
2016     }
2017 
2018     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2019       NumInternalFunc++;
2020       TargetTransformInfo &TTI = GetTTI(*F);
2021       // Change the calling convention to coldcc if either stress testing is
2022       // enabled or the target would like to use coldcc on functions which are
2023       // cold at all call sites and the callers contain no other non coldcc
2024       // calls.
2025       if (EnableColdCCStressTest ||
2026           (TTI.useColdCCForColdCall(*F) &&
2027            isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
2028         F->setCallingConv(CallingConv::Cold);
2029         changeCallSitesToColdCC(F);
2030         Changed = true;
2031         NumColdCC++;
2032       }
2033     }
2034 
2035     if (hasChangeableCC(F) && !F->isVarArg() &&
2036         !F->hasAddressTaken()) {
2037       // If this function has a calling convention worth changing, is not a
2038       // varargs function, and is only called directly, promote it to use the
2039       // Fast calling convention.
2040       F->setCallingConv(CallingConv::Fast);
2041       ChangeCalleesToFastCall(F);
2042       ++NumFastCallFns;
2043       Changed = true;
2044     }
2045 
2046     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2047         !F->hasAddressTaken()) {
2048       // The function is not used by a trampoline intrinsic, so it is safe
2049       // to remove the 'nest' attribute.
2050       RemoveAttribute(F, Attribute::Nest);
2051       ++NumNestRemoved;
2052       Changed = true;
2053     }
2054   }
2055   return Changed;
2056 }
2057 
2058 static bool
2059 OptimizeGlobalVars(Module &M,
2060                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2061                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2062                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2063   bool Changed = false;
2064 
2065   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2066        GVI != E; ) {
2067     GlobalVariable *GV = &*GVI++;
2068     // Global variables without names cannot be referenced outside this module.
2069     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2070       GV->setLinkage(GlobalValue::InternalLinkage);
2071     // Simplify the initializer.
2072     if (GV->hasInitializer())
2073       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2074         auto &DL = M.getDataLayout();
2075         // TLI is not used in the case of a Constant, so use default nullptr
2076         // for that optional parameter, since we don't have a Function to
2077         // provide GetTLI anyway.
2078         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2079         if (New != C)
2080           GV->setInitializer(New);
2081       }
2082 
2083     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2084       Changed = true;
2085       continue;
2086     }
2087 
2088     Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
2089   }
2090   return Changed;
2091 }
2092 
2093 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2094 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2095 /// GEP operands of Addr [0, OpNo) have been stepped into.
2096 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2097                                    ConstantExpr *Addr, unsigned OpNo) {
2098   // Base case of the recursion.
2099   if (OpNo == Addr->getNumOperands()) {
2100     assert(Val->getType() == Init->getType() && "Type mismatch!");
2101     return Val;
2102   }
2103 
2104   SmallVector<Constant*, 32> Elts;
2105   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2106     // Break up the constant into its elements.
2107     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2108       Elts.push_back(Init->getAggregateElement(i));
2109 
2110     // Replace the element that we are supposed to.
2111     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2112     unsigned Idx = CU->getZExtValue();
2113     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2114     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2115 
2116     // Return the modified struct.
2117     return ConstantStruct::get(STy, Elts);
2118   }
2119 
2120   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2121   uint64_t NumElts;
2122   if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType()))
2123     NumElts = ATy->getNumElements();
2124   else
2125     NumElts = cast<FixedVectorType>(Init->getType())->getNumElements();
2126 
2127   // Break up the array into elements.
2128   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2129     Elts.push_back(Init->getAggregateElement(i));
2130 
2131   assert(CI->getZExtValue() < NumElts);
2132   Elts[CI->getZExtValue()] =
2133     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2134 
2135   if (Init->getType()->isArrayTy())
2136     return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts);
2137   return ConstantVector::get(Elts);
2138 }
2139 
2140 /// We have decided that Addr (which satisfies the predicate
2141 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2142 static void CommitValueTo(Constant *Val, Constant *Addr) {
2143   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2144     assert(GV->hasInitializer());
2145     GV->setInitializer(Val);
2146     return;
2147   }
2148 
2149   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2150   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2151   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2152 }
2153 
2154 /// Given a map of address -> value, where addresses are expected to be some form
2155 /// of either a global or a constant GEP, set the initializer for the address to
2156 /// be the value. This performs mostly the same function as CommitValueTo()
2157 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2158 /// case where the set of addresses are GEPs sharing the same underlying global,
2159 /// processing the GEPs in batches rather than individually.
2160 ///
2161 /// To give an example, consider the following C++ code adapted from the clang
2162 /// regression tests:
2163 /// struct S {
2164 ///  int n = 10;
2165 ///  int m = 2 * n;
2166 ///  S(int a) : n(a) {}
2167 /// };
2168 ///
2169 /// template<typename T>
2170 /// struct U {
2171 ///  T *r = &q;
2172 ///  T q = 42;
2173 ///  U *p = this;
2174 /// };
2175 ///
2176 /// U<S> e;
2177 ///
2178 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2179 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2180 /// members. This batch algorithm will simply use general CommitValueTo() method
2181 /// to handle the complex nested S struct initialization of 'q', before
2182 /// processing the outermost members in a single batch. Using CommitValueTo() to
2183 /// handle member in the outer struct is inefficient when the struct/array is
2184 /// very large as we end up creating and destroy constant arrays for each
2185 /// initialization.
2186 /// For the above case, we expect the following IR to be generated:
2187 ///
2188 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2189 /// %struct.S = type { i32, i32 }
2190 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2191 ///                                                  i64 0, i32 1),
2192 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2193 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2194 /// constant expression, while the other two elements of @e are "simple".
2195 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2196   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2197   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2198   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2199   SimpleCEs.reserve(Mem.size());
2200 
2201   for (const auto &I : Mem) {
2202     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2203       GVs.push_back(std::make_pair(GV, I.second));
2204     } else {
2205       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2206       // We don't handle the deeply recursive case using the batch method.
2207       if (GEP->getNumOperands() > 3)
2208         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2209       else
2210         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2211     }
2212   }
2213 
2214   // The algorithm below doesn't handle cases like nested structs, so use the
2215   // slower fully general method if we have to.
2216   for (auto ComplexCE : ComplexCEs)
2217     CommitValueTo(ComplexCE.second, ComplexCE.first);
2218 
2219   for (auto GVPair : GVs) {
2220     assert(GVPair.first->hasInitializer());
2221     GVPair.first->setInitializer(GVPair.second);
2222   }
2223 
2224   if (SimpleCEs.empty())
2225     return;
2226 
2227   // We cache a single global's initializer elements in the case where the
2228   // subsequent address/val pair uses the same one. This avoids throwing away and
2229   // rebuilding the constant struct/vector/array just because one element is
2230   // modified at a time.
2231   SmallVector<Constant *, 32> Elts;
2232   Elts.reserve(SimpleCEs.size());
2233   GlobalVariable *CurrentGV = nullptr;
2234 
2235   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2236     Constant *Init = GV->getInitializer();
2237     Type *Ty = Init->getType();
2238     if (Update) {
2239       if (CurrentGV) {
2240         assert(CurrentGV && "Expected a GV to commit to!");
2241         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2242         // We have a valid cache that needs to be committed.
2243         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2244           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2245         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2246           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2247         else
2248           CurrentGV->setInitializer(ConstantVector::get(Elts));
2249       }
2250       if (CurrentGV == GV)
2251         return;
2252       // Need to clear and set up cache for new initializer.
2253       CurrentGV = GV;
2254       Elts.clear();
2255       unsigned NumElts;
2256       if (auto *STy = dyn_cast<StructType>(Ty))
2257         NumElts = STy->getNumElements();
2258       else if (auto *ATy = dyn_cast<ArrayType>(Ty))
2259         NumElts = ATy->getNumElements();
2260       else
2261         NumElts = cast<FixedVectorType>(Ty)->getNumElements();
2262       for (unsigned i = 0, e = NumElts; i != e; ++i)
2263         Elts.push_back(Init->getAggregateElement(i));
2264     }
2265   };
2266 
2267   for (auto CEPair : SimpleCEs) {
2268     ConstantExpr *GEP = CEPair.first;
2269     Constant *Val = CEPair.second;
2270 
2271     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2272     commitAndSetupCache(GV, GV != CurrentGV);
2273     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2274     Elts[CI->getZExtValue()] = Val;
2275   }
2276   // The last initializer in the list needs to be committed, others
2277   // will be committed on a new initializer being processed.
2278   commitAndSetupCache(CurrentGV, true);
2279 }
2280 
2281 /// Evaluate static constructors in the function, if we can.  Return true if we
2282 /// can, false otherwise.
2283 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2284                                       TargetLibraryInfo *TLI) {
2285   // Call the function.
2286   Evaluator Eval(DL, TLI);
2287   Constant *RetValDummy;
2288   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2289                                            SmallVector<Constant*, 0>());
2290 
2291   if (EvalSuccess) {
2292     ++NumCtorsEvaluated;
2293 
2294     // We succeeded at evaluation: commit the result.
2295     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2296                       << F->getName() << "' to "
2297                       << Eval.getMutatedMemory().size() << " stores.\n");
2298     BatchCommitValueTo(Eval.getMutatedMemory());
2299     for (GlobalVariable *GV : Eval.getInvariants())
2300       GV->setConstant(true);
2301   }
2302 
2303   return EvalSuccess;
2304 }
2305 
2306 static int compareNames(Constant *const *A, Constant *const *B) {
2307   Value *AStripped = (*A)->stripPointerCasts();
2308   Value *BStripped = (*B)->stripPointerCasts();
2309   return AStripped->getName().compare(BStripped->getName());
2310 }
2311 
2312 static void setUsedInitializer(GlobalVariable &V,
2313                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2314   if (Init.empty()) {
2315     V.eraseFromParent();
2316     return;
2317   }
2318 
2319   // Type of pointer to the array of pointers.
2320   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2321 
2322   SmallVector<Constant *, 8> UsedArray;
2323   for (GlobalValue *GV : Init) {
2324     Constant *Cast
2325       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2326     UsedArray.push_back(Cast);
2327   }
2328   // Sort to get deterministic order.
2329   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2330   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2331 
2332   Module *M = V.getParent();
2333   V.removeFromParent();
2334   GlobalVariable *NV =
2335       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2336                          ConstantArray::get(ATy, UsedArray), "");
2337   NV->takeName(&V);
2338   NV->setSection("llvm.metadata");
2339   delete &V;
2340 }
2341 
2342 namespace {
2343 
2344 /// An easy to access representation of llvm.used and llvm.compiler.used.
2345 class LLVMUsed {
2346   SmallPtrSet<GlobalValue *, 4> Used;
2347   SmallPtrSet<GlobalValue *, 4> CompilerUsed;
2348   GlobalVariable *UsedV;
2349   GlobalVariable *CompilerUsedV;
2350 
2351 public:
2352   LLVMUsed(Module &M) {
2353     SmallVector<GlobalValue *, 4> Vec;
2354     UsedV = collectUsedGlobalVariables(M, Vec, false);
2355     Used = {Vec.begin(), Vec.end()};
2356     Vec.clear();
2357     CompilerUsedV = collectUsedGlobalVariables(M, Vec, true);
2358     CompilerUsed = {Vec.begin(), Vec.end()};
2359   }
2360 
2361   using iterator = SmallPtrSet<GlobalValue *, 4>::iterator;
2362   using used_iterator_range = iterator_range<iterator>;
2363 
2364   iterator usedBegin() { return Used.begin(); }
2365   iterator usedEnd() { return Used.end(); }
2366 
2367   used_iterator_range used() {
2368     return used_iterator_range(usedBegin(), usedEnd());
2369   }
2370 
2371   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2372   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2373 
2374   used_iterator_range compilerUsed() {
2375     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2376   }
2377 
2378   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2379 
2380   bool compilerUsedCount(GlobalValue *GV) const {
2381     return CompilerUsed.count(GV);
2382   }
2383 
2384   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2385   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2386   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2387 
2388   bool compilerUsedInsert(GlobalValue *GV) {
2389     return CompilerUsed.insert(GV).second;
2390   }
2391 
2392   void syncVariablesAndSets() {
2393     if (UsedV)
2394       setUsedInitializer(*UsedV, Used);
2395     if (CompilerUsedV)
2396       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2397   }
2398 };
2399 
2400 } // end anonymous namespace
2401 
2402 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2403   if (GA.use_empty()) // No use at all.
2404     return false;
2405 
2406   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2407          "We should have removed the duplicated "
2408          "element from llvm.compiler.used");
2409   if (!GA.hasOneUse())
2410     // Strictly more than one use. So at least one is not in llvm.used and
2411     // llvm.compiler.used.
2412     return true;
2413 
2414   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2415   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2416 }
2417 
2418 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2419                                                const LLVMUsed &U) {
2420   unsigned N = 2;
2421   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2422          "We should have removed the duplicated "
2423          "element from llvm.compiler.used");
2424   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2425     ++N;
2426   return V.hasNUsesOrMore(N);
2427 }
2428 
2429 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2430   if (!GA.hasLocalLinkage())
2431     return true;
2432 
2433   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2434 }
2435 
2436 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2437                              bool &RenameTarget) {
2438   RenameTarget = false;
2439   bool Ret = false;
2440   if (hasUseOtherThanLLVMUsed(GA, U))
2441     Ret = true;
2442 
2443   // If the alias is externally visible, we may still be able to simplify it.
2444   if (!mayHaveOtherReferences(GA, U))
2445     return Ret;
2446 
2447   // If the aliasee has internal linkage, give it the name and linkage
2448   // of the alias, and delete the alias.  This turns:
2449   //   define internal ... @f(...)
2450   //   @a = alias ... @f
2451   // into:
2452   //   define ... @a(...)
2453   Constant *Aliasee = GA.getAliasee();
2454   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2455   if (!Target->hasLocalLinkage())
2456     return Ret;
2457 
2458   // Do not perform the transform if multiple aliases potentially target the
2459   // aliasee. This check also ensures that it is safe to replace the section
2460   // and other attributes of the aliasee with those of the alias.
2461   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2462     return Ret;
2463 
2464   RenameTarget = true;
2465   return true;
2466 }
2467 
2468 static bool
2469 OptimizeGlobalAliases(Module &M,
2470                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2471   bool Changed = false;
2472   LLVMUsed Used(M);
2473 
2474   for (GlobalValue *GV : Used.used())
2475     Used.compilerUsedErase(GV);
2476 
2477   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2478        I != E;) {
2479     GlobalAlias *J = &*I++;
2480 
2481     // Aliases without names cannot be referenced outside this module.
2482     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2483       J->setLinkage(GlobalValue::InternalLinkage);
2484 
2485     if (deleteIfDead(*J, NotDiscardableComdats)) {
2486       Changed = true;
2487       continue;
2488     }
2489 
2490     // If the alias can change at link time, nothing can be done - bail out.
2491     if (J->isInterposable())
2492       continue;
2493 
2494     Constant *Aliasee = J->getAliasee();
2495     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2496     // We can't trivially replace the alias with the aliasee if the aliasee is
2497     // non-trivial in some way. We also can't replace the alias with the aliasee
2498     // if the aliasee is interposable because aliases point to the local
2499     // definition.
2500     // TODO: Try to handle non-zero GEPs of local aliasees.
2501     if (!Target || Target->isInterposable())
2502       continue;
2503     Target->removeDeadConstantUsers();
2504 
2505     // Make all users of the alias use the aliasee instead.
2506     bool RenameTarget;
2507     if (!hasUsesToReplace(*J, Used, RenameTarget))
2508       continue;
2509 
2510     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2511     ++NumAliasesResolved;
2512     Changed = true;
2513 
2514     if (RenameTarget) {
2515       // Give the aliasee the name, linkage and other attributes of the alias.
2516       Target->takeName(&*J);
2517       Target->setLinkage(J->getLinkage());
2518       Target->setDSOLocal(J->isDSOLocal());
2519       Target->setVisibility(J->getVisibility());
2520       Target->setDLLStorageClass(J->getDLLStorageClass());
2521 
2522       if (Used.usedErase(&*J))
2523         Used.usedInsert(Target);
2524 
2525       if (Used.compilerUsedErase(&*J))
2526         Used.compilerUsedInsert(Target);
2527     } else if (mayHaveOtherReferences(*J, Used))
2528       continue;
2529 
2530     // Delete the alias.
2531     M.getAliasList().erase(J);
2532     ++NumAliasesRemoved;
2533     Changed = true;
2534   }
2535 
2536   Used.syncVariablesAndSets();
2537 
2538   return Changed;
2539 }
2540 
2541 static Function *
2542 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2543   // Hack to get a default TLI before we have actual Function.
2544   auto FuncIter = M.begin();
2545   if (FuncIter == M.end())
2546     return nullptr;
2547   auto *TLI = &GetTLI(*FuncIter);
2548 
2549   LibFunc F = LibFunc_cxa_atexit;
2550   if (!TLI->has(F))
2551     return nullptr;
2552 
2553   Function *Fn = M.getFunction(TLI->getName(F));
2554   if (!Fn)
2555     return nullptr;
2556 
2557   // Now get the actual TLI for Fn.
2558   TLI = &GetTLI(*Fn);
2559 
2560   // Make sure that the function has the correct prototype.
2561   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2562     return nullptr;
2563 
2564   return Fn;
2565 }
2566 
2567 /// Returns whether the given function is an empty C++ destructor and can
2568 /// therefore be eliminated.
2569 /// Note that we assume that other optimization passes have already simplified
2570 /// the code so we simply check for 'ret'.
2571 static bool cxxDtorIsEmpty(const Function &Fn) {
2572   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2573   // nounwind, but that doesn't seem worth doing.
2574   if (Fn.isDeclaration())
2575     return false;
2576 
2577   for (auto &I : Fn.getEntryBlock()) {
2578     if (isa<DbgInfoIntrinsic>(I))
2579       continue;
2580     if (isa<ReturnInst>(I))
2581       return true;
2582     break;
2583   }
2584   return false;
2585 }
2586 
2587 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2588   /// Itanium C++ ABI p3.3.5:
2589   ///
2590   ///   After constructing a global (or local static) object, that will require
2591   ///   destruction on exit, a termination function is registered as follows:
2592   ///
2593   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2594   ///
2595   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2596   ///   call f(p) when DSO d is unloaded, before all such termination calls
2597   ///   registered before this one. It returns zero if registration is
2598   ///   successful, nonzero on failure.
2599 
2600   // This pass will look for calls to __cxa_atexit where the function is trivial
2601   // and remove them.
2602   bool Changed = false;
2603 
2604   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2605        I != E;) {
2606     // We're only interested in calls. Theoretically, we could handle invoke
2607     // instructions as well, but neither llvm-gcc nor clang generate invokes
2608     // to __cxa_atexit.
2609     CallInst *CI = dyn_cast<CallInst>(*I++);
2610     if (!CI)
2611       continue;
2612 
2613     Function *DtorFn =
2614       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2615     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2616       continue;
2617 
2618     // Just remove the call.
2619     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2620     CI->eraseFromParent();
2621 
2622     ++NumCXXDtorsRemoved;
2623 
2624     Changed |= true;
2625   }
2626 
2627   return Changed;
2628 }
2629 
2630 static bool optimizeGlobalsInModule(
2631     Module &M, const DataLayout &DL,
2632     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2633     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2634     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2635     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2636   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2637   bool Changed = false;
2638   bool LocalChange = true;
2639   while (LocalChange) {
2640     LocalChange = false;
2641 
2642     NotDiscardableComdats.clear();
2643     for (const GlobalVariable &GV : M.globals())
2644       if (const Comdat *C = GV.getComdat())
2645         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2646           NotDiscardableComdats.insert(C);
2647     for (Function &F : M)
2648       if (const Comdat *C = F.getComdat())
2649         if (!F.isDefTriviallyDead())
2650           NotDiscardableComdats.insert(C);
2651     for (GlobalAlias &GA : M.aliases())
2652       if (const Comdat *C = GA.getComdat())
2653         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2654           NotDiscardableComdats.insert(C);
2655 
2656     // Delete functions that are trivially dead, ccc -> fastcc
2657     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2658                                      NotDiscardableComdats);
2659 
2660     // Optimize global_ctors list.
2661     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2662       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2663     });
2664 
2665     // Optimize non-address-taken globals.
2666     LocalChange |=
2667         OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);
2668 
2669     // Resolve aliases, when possible.
2670     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2671 
2672     // Try to remove trivial global destructors if they are not removed
2673     // already.
2674     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2675     if (CXAAtExitFn)
2676       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2677 
2678     Changed |= LocalChange;
2679   }
2680 
2681   // TODO: Move all global ctors functions to the end of the module for code
2682   // layout.
2683 
2684   return Changed;
2685 }
2686 
2687 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2688     auto &DL = M.getDataLayout();
2689     auto &FAM =
2690         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2691     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2692       return FAM.getResult<DominatorTreeAnalysis>(F);
2693     };
2694     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2695       return FAM.getResult<TargetLibraryAnalysis>(F);
2696     };
2697     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2698       return FAM.getResult<TargetIRAnalysis>(F);
2699     };
2700 
2701     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2702       return FAM.getResult<BlockFrequencyAnalysis>(F);
2703     };
2704 
2705     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
2706       return PreservedAnalyses::all();
2707     return PreservedAnalyses::none();
2708 }
2709 
2710 namespace {
2711 
2712 struct GlobalOptLegacyPass : public ModulePass {
2713   static char ID; // Pass identification, replacement for typeid
2714 
2715   GlobalOptLegacyPass() : ModulePass(ID) {
2716     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2717   }
2718 
2719   bool runOnModule(Module &M) override {
2720     if (skipModule(M))
2721       return false;
2722 
2723     auto &DL = M.getDataLayout();
2724     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2725       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2726     };
2727     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
2728       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2729     };
2730     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2731       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2732     };
2733 
2734     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
2735       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
2736     };
2737 
2738     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
2739                                    LookupDomTree);
2740   }
2741 
2742   void getAnalysisUsage(AnalysisUsage &AU) const override {
2743     AU.addRequired<TargetLibraryInfoWrapperPass>();
2744     AU.addRequired<TargetTransformInfoWrapperPass>();
2745     AU.addRequired<DominatorTreeWrapperPass>();
2746     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2747   }
2748 };
2749 
2750 } // end anonymous namespace
2751 
2752 char GlobalOptLegacyPass::ID = 0;
2753 
2754 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2755                       "Global Variable Optimizer", false, false)
2756 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2757 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2758 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
2759 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2760 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2761                     "Global Variable Optimizer", false, false)
2762 
2763 ModulePass *llvm::createGlobalOptimizerPass() {
2764   return new GlobalOptLegacyPass();
2765 }
2766