1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Use.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
82 STATISTIC(NumDeleted   , "Number of globals deleted");
83 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
84 STATISTIC(NumLocalized , "Number of globals localized");
85 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
86 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
88 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
92 STATISTIC(NumInternalFunc, "Number of internal functions");
93 STATISTIC(NumColdCC, "Number of functions marked coldcc");
94 
95 static cl::opt<bool>
96     EnableColdCCStressTest("enable-coldcc-stress-test",
97                            cl::desc("Enable stress test of coldcc by adding "
98                                     "calling conv to all internal functions."),
99                            cl::init(false), cl::Hidden);
100 
101 static cl::opt<int> ColdCCRelFreq(
102     "coldcc-rel-freq", cl::Hidden, cl::init(2),
103     cl::desc(
104         "Maximum block frequency, expressed as a percentage of caller's "
105         "entry frequency, for a call site to be considered cold for enabling"
106         "coldcc"));
107 
108 /// Is this global variable possibly used by a leak checker as a root?  If so,
109 /// we might not really want to eliminate the stores to it.
110 static bool isLeakCheckerRoot(GlobalVariable *GV) {
111   // A global variable is a root if it is a pointer, or could plausibly contain
112   // a pointer.  There are two challenges; one is that we could have a struct
113   // the has an inner member which is a pointer.  We recurse through the type to
114   // detect these (up to a point).  The other is that we may actually be a union
115   // of a pointer and another type, and so our LLVM type is an integer which
116   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
117   // potentially contained here.
118 
119   if (GV->hasPrivateLinkage())
120     return false;
121 
122   SmallVector<Type *, 4> Types;
123   Types.push_back(GV->getValueType());
124 
125   unsigned Limit = 20;
126   do {
127     Type *Ty = Types.pop_back_val();
128     switch (Ty->getTypeID()) {
129       default: break;
130       case Type::PointerTyID:
131         return true;
132       case Type::FixedVectorTyID:
133       case Type::ScalableVectorTyID:
134         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
135           return true;
136         break;
137       case Type::ArrayTyID:
138         Types.push_back(cast<ArrayType>(Ty)->getElementType());
139         break;
140       case Type::StructTyID: {
141         StructType *STy = cast<StructType>(Ty);
142         if (STy->isOpaque()) return true;
143         for (StructType::element_iterator I = STy->element_begin(),
144                  E = STy->element_end(); I != E; ++I) {
145           Type *InnerTy = *I;
146           if (isa<PointerType>(InnerTy)) return true;
147           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
148               isa<VectorType>(InnerTy))
149             Types.push_back(InnerTy);
150         }
151         break;
152       }
153     }
154     if (--Limit == 0) return true;
155   } while (!Types.empty());
156   return false;
157 }
158 
159 /// Given a value that is stored to a global but never read, determine whether
160 /// it's safe to remove the store and the chain of computation that feeds the
161 /// store.
162 static bool IsSafeComputationToRemove(
163     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
164   do {
165     if (isa<Constant>(V))
166       return true;
167     if (!V->hasOneUse())
168       return false;
169     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
170         isa<GlobalValue>(V))
171       return false;
172     if (isAllocationFn(V, GetTLI))
173       return true;
174 
175     Instruction *I = cast<Instruction>(V);
176     if (I->mayHaveSideEffects())
177       return false;
178     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
179       if (!GEP->hasAllConstantIndices())
180         return false;
181     } else if (I->getNumOperands() != 1) {
182       return false;
183     }
184 
185     V = I->getOperand(0);
186   } while (true);
187 }
188 
189 /// This GV is a pointer root.  Loop over all users of the global and clean up
190 /// any that obviously don't assign the global a value that isn't dynamically
191 /// allocated.
192 static bool
193 CleanupPointerRootUsers(GlobalVariable *GV,
194                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
195   // A brief explanation of leak checkers.  The goal is to find bugs where
196   // pointers are forgotten, causing an accumulating growth in memory
197   // usage over time.  The common strategy for leak checkers is to explicitly
198   // allow the memory pointed to by globals at exit.  This is popular because it
199   // also solves another problem where the main thread of a C++ program may shut
200   // down before other threads that are still expecting to use those globals. To
201   // handle that case, we expect the program may create a singleton and never
202   // destroy it.
203 
204   bool Changed = false;
205 
206   // If Dead[n].first is the only use of a malloc result, we can delete its
207   // chain of computation and the store to the global in Dead[n].second.
208   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
209 
210   // Constants can't be pointers to dynamically allocated memory.
211   for (User *U : llvm::make_early_inc_range(GV->users())) {
212     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
213       Value *V = SI->getValueOperand();
214       if (isa<Constant>(V)) {
215         Changed = true;
216         SI->eraseFromParent();
217       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
218         if (I->hasOneUse())
219           Dead.push_back(std::make_pair(I, SI));
220       }
221     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
222       if (isa<Constant>(MSI->getValue())) {
223         Changed = true;
224         MSI->eraseFromParent();
225       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
226         if (I->hasOneUse())
227           Dead.push_back(std::make_pair(I, MSI));
228       }
229     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
230       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
231       if (MemSrc && MemSrc->isConstant()) {
232         Changed = true;
233         MTI->eraseFromParent();
234       } else if (Instruction *I = dyn_cast<Instruction>(MTI->getSource())) {
235         if (I->hasOneUse())
236           Dead.push_back(std::make_pair(I, MTI));
237       }
238     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
239       if (CE->use_empty()) {
240         CE->destroyConstant();
241         Changed = true;
242       }
243     } else if (Constant *C = dyn_cast<Constant>(U)) {
244       if (isSafeToDestroyConstant(C)) {
245         C->destroyConstant();
246         // This could have invalidated UI, start over from scratch.
247         Dead.clear();
248         CleanupPointerRootUsers(GV, GetTLI);
249         return true;
250       }
251     }
252   }
253 
254   for (int i = 0, e = Dead.size(); i != e; ++i) {
255     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
256       Dead[i].second->eraseFromParent();
257       Instruction *I = Dead[i].first;
258       do {
259         if (isAllocationFn(I, GetTLI))
260           break;
261         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
262         if (!J)
263           break;
264         I->eraseFromParent();
265         I = J;
266       } while (true);
267       I->eraseFromParent();
268       Changed = true;
269     }
270   }
271 
272   return Changed;
273 }
274 
275 /// We just marked GV constant.  Loop over all users of the global, cleaning up
276 /// the obvious ones.  This is largely just a quick scan over the use list to
277 /// clean up the easy and obvious cruft.  This returns true if it made a change.
278 static bool CleanupConstantGlobalUsers(GlobalVariable *GV,
279                                        const DataLayout &DL) {
280   Constant *Init = GV->getInitializer();
281   SmallVector<User *, 8> WorkList(GV->users());
282   SmallPtrSet<User *, 8> Visited;
283   bool Changed = false;
284 
285   SmallVector<WeakTrackingVH> MaybeDeadInsts;
286   auto EraseFromParent = [&](Instruction *I) {
287     for (Value *Op : I->operands())
288       if (auto *OpI = dyn_cast<Instruction>(Op))
289         MaybeDeadInsts.push_back(OpI);
290     I->eraseFromParent();
291     Changed = true;
292   };
293   while (!WorkList.empty()) {
294     User *U = WorkList.pop_back_val();
295     if (!Visited.insert(U).second)
296       continue;
297 
298     if (auto *BO = dyn_cast<BitCastOperator>(U))
299       append_range(WorkList, BO->users());
300     if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(U))
301       append_range(WorkList, ASC->users());
302     else if (auto *GEP = dyn_cast<GEPOperator>(U))
303       append_range(WorkList, GEP->users());
304     else if (auto *LI = dyn_cast<LoadInst>(U)) {
305       // A load from a uniform value is always the same, regardless of any
306       // applied offset.
307       Type *Ty = LI->getType();
308       if (Constant *Res = ConstantFoldLoadFromUniformValue(Init, Ty)) {
309         LI->replaceAllUsesWith(Res);
310         EraseFromParent(LI);
311         continue;
312       }
313 
314       Value *PtrOp = LI->getPointerOperand();
315       APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
316       PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
317           DL, Offset, /* AllowNonInbounds */ true);
318       if (PtrOp == GV) {
319         if (auto *Value = ConstantFoldLoadFromConst(Init, Ty, Offset, DL)) {
320           LI->replaceAllUsesWith(Value);
321           EraseFromParent(LI);
322         }
323       }
324     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
325       // Store must be unreachable or storing Init into the global.
326       EraseFromParent(SI);
327     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
328       if (getUnderlyingObject(MI->getRawDest()) == GV)
329         EraseFromParent(MI);
330     }
331   }
332 
333   Changed |=
334       RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts);
335   GV->removeDeadConstantUsers();
336   return Changed;
337 }
338 
339 /// Look at all uses of the global and determine which (offset, type) pairs it
340 /// can be split into.
341 static bool collectSRATypes(DenseMap<uint64_t, Type *> &Types, GlobalValue *GV,
342                             const DataLayout &DL) {
343   SmallVector<Use *, 16> Worklist;
344   SmallPtrSet<Use *, 16> Visited;
345   auto AppendUses = [&](Value *V) {
346     for (Use &U : V->uses())
347       if (Visited.insert(&U).second)
348         Worklist.push_back(&U);
349   };
350   AppendUses(GV);
351   while (!Worklist.empty()) {
352     Use *U = Worklist.pop_back_val();
353     User *V = U->getUser();
354 
355     auto *GEP = dyn_cast<GEPOperator>(V);
356     if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) ||
357         (GEP && GEP->hasAllConstantIndices())) {
358       AppendUses(V);
359       continue;
360     }
361 
362     if (Value *Ptr = getLoadStorePointerOperand(V)) {
363       // This is storing the global address into somewhere, not storing into
364       // the global.
365       if (isa<StoreInst>(V) && U->getOperandNo() == 0)
366         return false;
367 
368       APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
369       Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
370                                                    /* AllowNonInbounds */ true);
371       if (Ptr != GV || Offset.getActiveBits() >= 64)
372         return false;
373 
374       // TODO: We currently require that all accesses at a given offset must
375       // use the same type. This could be relaxed.
376       Type *Ty = getLoadStoreType(V);
377       auto It = Types.try_emplace(Offset.getZExtValue(), Ty).first;
378       if (Ty != It->second)
379         return false;
380       continue;
381     }
382 
383     // Ignore dead constant users.
384     if (auto *C = dyn_cast<Constant>(V)) {
385       if (!isSafeToDestroyConstant(C))
386         return false;
387       continue;
388     }
389 
390     // Unknown user.
391     return false;
392   }
393 
394   return true;
395 }
396 
397 /// Copy over the debug info for a variable to its SRA replacements.
398 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
399                                  uint64_t FragmentOffsetInBits,
400                                  uint64_t FragmentSizeInBits,
401                                  uint64_t VarSize) {
402   SmallVector<DIGlobalVariableExpression *, 1> GVs;
403   GV->getDebugInfo(GVs);
404   for (auto *GVE : GVs) {
405     DIVariable *Var = GVE->getVariable();
406     DIExpression *Expr = GVE->getExpression();
407     int64_t CurVarOffsetInBytes = 0;
408     uint64_t CurVarOffsetInBits = 0;
409 
410     // Calculate the offset (Bytes), Continue if unknown.
411     if (!Expr->extractIfOffset(CurVarOffsetInBytes))
412       continue;
413 
414     // Ignore negative offset.
415     if (CurVarOffsetInBytes < 0)
416       continue;
417 
418     // Convert offset to bits.
419     CurVarOffsetInBits = CHAR_BIT * (uint64_t)CurVarOffsetInBytes;
420 
421     // Current var starts after the fragment, ignore.
422     if (CurVarOffsetInBits >= (FragmentOffsetInBits + FragmentSizeInBits))
423       continue;
424 
425     uint64_t CurVarSize = Var->getType()->getSizeInBits();
426     // Current variable ends before start of fragment, ignore.
427     if (CurVarSize != 0 &&
428         (CurVarOffsetInBits + CurVarSize) <= FragmentOffsetInBits)
429       continue;
430 
431     // Current variable fits in the fragment.
432     if (CurVarOffsetInBits == FragmentOffsetInBits &&
433         CurVarSize == FragmentSizeInBits)
434       Expr = DIExpression::get(Expr->getContext(), {});
435     // If the FragmentSize is smaller than the variable,
436     // emit a fragment expression.
437     else if (FragmentSizeInBits < VarSize) {
438       if (auto E = DIExpression::createFragmentExpression(
439               Expr, FragmentOffsetInBits, FragmentSizeInBits))
440         Expr = *E;
441       else
442         return;
443     }
444     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
445     NGV->addDebugInfo(NGVE);
446   }
447 }
448 
449 /// Perform scalar replacement of aggregates on the specified global variable.
450 /// This opens the door for other optimizations by exposing the behavior of the
451 /// program in a more fine-grained way.  We have determined that this
452 /// transformation is safe already.  We return the first global variable we
453 /// insert so that the caller can reprocess it.
454 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
455   assert(GV->hasLocalLinkage());
456 
457   // Collect types to split into.
458   DenseMap<uint64_t, Type *> Types;
459   if (!collectSRATypes(Types, GV, DL) || Types.empty())
460     return nullptr;
461 
462   // Make sure we don't SRA back to the same type.
463   if (Types.size() == 1 && Types.begin()->second == GV->getValueType())
464     return nullptr;
465 
466   // Don't perform SRA if we would have to split into many globals.
467   if (Types.size() > 16)
468     return nullptr;
469 
470   // Sort by offset.
471   SmallVector<std::pair<uint64_t, Type *>, 16> TypesVector;
472   append_range(TypesVector, Types);
473   sort(TypesVector,
474        [](const auto &A, const auto &B) { return A.first < B.first; });
475 
476   // Check that the types are non-overlapping.
477   uint64_t Offset = 0;
478   for (const auto &Pair : TypesVector) {
479     // Overlaps with previous type.
480     if (Pair.first < Offset)
481       return nullptr;
482 
483     Offset = Pair.first + DL.getTypeAllocSize(Pair.second);
484   }
485 
486   // Some accesses go beyond the end of the global, don't bother.
487   if (Offset > DL.getTypeAllocSize(GV->getValueType()))
488     return nullptr;
489 
490   // Collect initializers for new globals.
491   Constant *OrigInit = GV->getInitializer();
492   DenseMap<uint64_t, Constant *> Initializers;
493   for (const auto &Pair : Types) {
494     Constant *NewInit = ConstantFoldLoadFromConst(OrigInit, Pair.second,
495                                                   APInt(64, Pair.first), DL);
496     if (!NewInit) {
497       LLVM_DEBUG(dbgs() << "Global SRA: Failed to evaluate initializer of "
498                         << *GV << " with type " << *Pair.second << " at offset "
499                         << Pair.first << "\n");
500       return nullptr;
501     }
502     Initializers.insert({Pair.first, NewInit});
503   }
504 
505   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
506 
507   // Get the alignment of the global, either explicit or target-specific.
508   Align StartAlignment =
509       DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
510   uint64_t VarSize = DL.getTypeSizeInBits(GV->getValueType());
511 
512   // Create replacement globals.
513   DenseMap<uint64_t, GlobalVariable *> NewGlobals;
514   unsigned NameSuffix = 0;
515   for (auto &Pair : TypesVector) {
516     uint64_t Offset = Pair.first;
517     Type *Ty = Pair.second;
518     GlobalVariable *NGV = new GlobalVariable(
519         *GV->getParent(), Ty, false, GlobalVariable::InternalLinkage,
520         Initializers[Offset], GV->getName() + "." + Twine(NameSuffix++), GV,
521         GV->getThreadLocalMode(), GV->getAddressSpace());
522     NGV->copyAttributesFrom(GV);
523     NewGlobals.insert({Offset, NGV});
524 
525     // Calculate the known alignment of the field.  If the original aggregate
526     // had 256 byte alignment for example, something might depend on that:
527     // propagate info to each field.
528     Align NewAlign = commonAlignment(StartAlignment, Offset);
529     if (NewAlign > DL.getABITypeAlign(Ty))
530       NGV->setAlignment(NewAlign);
531 
532     // Copy over the debug info for the variable.
533     transferSRADebugInfo(GV, NGV, Offset * 8, DL.getTypeAllocSizeInBits(Ty),
534                          VarSize);
535   }
536 
537   // Replace uses of the original global with uses of the new global.
538   SmallVector<Value *, 16> Worklist;
539   SmallPtrSet<Value *, 16> Visited;
540   SmallVector<WeakTrackingVH, 16> DeadInsts;
541   auto AppendUsers = [&](Value *V) {
542     for (User *U : V->users())
543       if (Visited.insert(U).second)
544         Worklist.push_back(U);
545   };
546   AppendUsers(GV);
547   while (!Worklist.empty()) {
548     Value *V = Worklist.pop_back_val();
549     if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) ||
550         isa<GEPOperator>(V)) {
551       AppendUsers(V);
552       if (isa<Instruction>(V))
553         DeadInsts.push_back(V);
554       continue;
555     }
556 
557     if (Value *Ptr = getLoadStorePointerOperand(V)) {
558       APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
559       Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
560                                                    /* AllowNonInbounds */ true);
561       assert(Ptr == GV && "Load/store must be from/to global");
562       GlobalVariable *NGV = NewGlobals[Offset.getZExtValue()];
563       assert(NGV && "Must have replacement global for this offset");
564 
565       // Update the pointer operand and recalculate alignment.
566       Align PrefAlign = DL.getPrefTypeAlign(getLoadStoreType(V));
567       Align NewAlign =
568           getOrEnforceKnownAlignment(NGV, PrefAlign, DL, cast<Instruction>(V));
569 
570       if (auto *LI = dyn_cast<LoadInst>(V)) {
571         LI->setOperand(0, NGV);
572         LI->setAlignment(NewAlign);
573       } else {
574         auto *SI = cast<StoreInst>(V);
575         SI->setOperand(1, NGV);
576         SI->setAlignment(NewAlign);
577       }
578       continue;
579     }
580 
581     assert(isa<Constant>(V) && isSafeToDestroyConstant(cast<Constant>(V)) &&
582            "Other users can only be dead constants");
583   }
584 
585   // Delete old instructions and global.
586   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
587   GV->removeDeadConstantUsers();
588   GV->eraseFromParent();
589   ++NumSRA;
590 
591   assert(NewGlobals.size() > 0);
592   return NewGlobals.begin()->second;
593 }
594 
595 /// Return true if all users of the specified value will trap if the value is
596 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
597 /// reprocessing them.
598 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
599                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
600   for (const User *U : V->users()) {
601     if (const Instruction *I = dyn_cast<Instruction>(U)) {
602       // If null pointer is considered valid, then all uses are non-trapping.
603       // Non address-space 0 globals have already been pruned by the caller.
604       if (NullPointerIsDefined(I->getFunction()))
605         return false;
606     }
607     if (isa<LoadInst>(U)) {
608       // Will trap.
609     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
610       if (SI->getOperand(0) == V) {
611         return false;  // Storing the value.
612       }
613     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
614       if (CI->getCalledOperand() != V) {
615         return false;  // Not calling the ptr
616       }
617     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
618       if (II->getCalledOperand() != V) {
619         return false;  // Not calling the ptr
620       }
621     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
622       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
623     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
624       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
625     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
626       // If we've already seen this phi node, ignore it, it has already been
627       // checked.
628       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
629         return false;
630     } else if (isa<ICmpInst>(U) &&
631                !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) &&
632                isa<LoadInst>(U->getOperand(0)) &&
633                isa<ConstantPointerNull>(U->getOperand(1))) {
634       assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0))
635                                   ->getPointerOperand()
636                                   ->stripPointerCasts()) &&
637              "Should be GlobalVariable");
638       // This and only this kind of non-signed ICmpInst is to be replaced with
639       // the comparing of the value of the created global init bool later in
640       // optimizeGlobalAddressOfAllocation for the global variable.
641     } else {
642       return false;
643     }
644   }
645   return true;
646 }
647 
648 /// Return true if all uses of any loads from GV will trap if the loaded value
649 /// is null.  Note that this also permits comparisons of the loaded value
650 /// against null, as a special case.
651 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
652   SmallVector<const Value *, 4> Worklist;
653   Worklist.push_back(GV);
654   while (!Worklist.empty()) {
655     const Value *P = Worklist.pop_back_val();
656     for (auto *U : P->users()) {
657       if (auto *LI = dyn_cast<LoadInst>(U)) {
658         SmallPtrSet<const PHINode *, 8> PHIs;
659         if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
660           return false;
661       } else if (auto *SI = dyn_cast<StoreInst>(U)) {
662         // Ignore stores to the global.
663         if (SI->getPointerOperand() != P)
664           return false;
665       } else if (auto *CE = dyn_cast<ConstantExpr>(U)) {
666         if (CE->stripPointerCasts() != GV)
667           return false;
668         // Check further the ConstantExpr.
669         Worklist.push_back(CE);
670       } else {
671         // We don't know or understand this user, bail out.
672         return false;
673       }
674     }
675   }
676 
677   return true;
678 }
679 
680 /// Get all the loads/store uses for global variable \p GV.
681 static void allUsesOfLoadAndStores(GlobalVariable *GV,
682                                    SmallVector<Value *, 4> &Uses) {
683   SmallVector<Value *, 4> Worklist;
684   Worklist.push_back(GV);
685   while (!Worklist.empty()) {
686     auto *P = Worklist.pop_back_val();
687     for (auto *U : P->users()) {
688       if (auto *CE = dyn_cast<ConstantExpr>(U)) {
689         Worklist.push_back(CE);
690         continue;
691       }
692 
693       assert((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
694              "Expect only load or store instructions");
695       Uses.push_back(U);
696     }
697   }
698 }
699 
700 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
701   bool Changed = false;
702   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
703     Instruction *I = cast<Instruction>(*UI++);
704     // Uses are non-trapping if null pointer is considered valid.
705     // Non address-space 0 globals are already pruned by the caller.
706     if (NullPointerIsDefined(I->getFunction()))
707       return false;
708     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
709       LI->setOperand(0, NewV);
710       Changed = true;
711     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
712       if (SI->getOperand(1) == V) {
713         SI->setOperand(1, NewV);
714         Changed = true;
715       }
716     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
717       CallBase *CB = cast<CallBase>(I);
718       if (CB->getCalledOperand() == V) {
719         // Calling through the pointer!  Turn into a direct call, but be careful
720         // that the pointer is not also being passed as an argument.
721         CB->setCalledOperand(NewV);
722         Changed = true;
723         bool PassedAsArg = false;
724         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
725           if (CB->getArgOperand(i) == V) {
726             PassedAsArg = true;
727             CB->setArgOperand(i, NewV);
728           }
729 
730         if (PassedAsArg) {
731           // Being passed as an argument also.  Be careful to not invalidate UI!
732           UI = V->user_begin();
733         }
734       }
735     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
736       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
737                                 ConstantExpr::getCast(CI->getOpcode(),
738                                                       NewV, CI->getType()));
739       if (CI->use_empty()) {
740         Changed = true;
741         CI->eraseFromParent();
742       }
743     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
744       // Should handle GEP here.
745       SmallVector<Constant*, 8> Idxs;
746       Idxs.reserve(GEPI->getNumOperands()-1);
747       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
748            i != e; ++i)
749         if (Constant *C = dyn_cast<Constant>(*i))
750           Idxs.push_back(C);
751         else
752           break;
753       if (Idxs.size() == GEPI->getNumOperands()-1)
754         Changed |= OptimizeAwayTrappingUsesOfValue(
755             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
756                                                  NewV, Idxs));
757       if (GEPI->use_empty()) {
758         Changed = true;
759         GEPI->eraseFromParent();
760       }
761     }
762   }
763 
764   return Changed;
765 }
766 
767 /// The specified global has only one non-null value stored into it.  If there
768 /// are uses of the loaded value that would trap if the loaded value is
769 /// dynamically null, then we know that they cannot be reachable with a null
770 /// optimize away the load.
771 static bool OptimizeAwayTrappingUsesOfLoads(
772     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
773     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
774   bool Changed = false;
775 
776   // Keep track of whether we are able to remove all the uses of the global
777   // other than the store that defines it.
778   bool AllNonStoreUsesGone = true;
779 
780   // Replace all uses of loads with uses of uses of the stored value.
781   for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) {
782     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
783       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
784       // If we were able to delete all uses of the loads
785       if (LI->use_empty()) {
786         LI->eraseFromParent();
787         Changed = true;
788       } else {
789         AllNonStoreUsesGone = false;
790       }
791     } else if (isa<StoreInst>(GlobalUser)) {
792       // Ignore the store that stores "LV" to the global.
793       assert(GlobalUser->getOperand(1) == GV &&
794              "Must be storing *to* the global");
795     } else {
796       AllNonStoreUsesGone = false;
797 
798       // If we get here we could have other crazy uses that are transitively
799       // loaded.
800       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
801               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
802               isa<BitCastInst>(GlobalUser) ||
803               isa<GetElementPtrInst>(GlobalUser)) &&
804              "Only expect load and stores!");
805     }
806   }
807 
808   if (Changed) {
809     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
810                       << "\n");
811     ++NumGlobUses;
812   }
813 
814   // If we nuked all of the loads, then none of the stores are needed either,
815   // nor is the global.
816   if (AllNonStoreUsesGone) {
817     if (isLeakCheckerRoot(GV)) {
818       Changed |= CleanupPointerRootUsers(GV, GetTLI);
819     } else {
820       Changed = true;
821       CleanupConstantGlobalUsers(GV, DL);
822     }
823     if (GV->use_empty()) {
824       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
825       Changed = true;
826       GV->eraseFromParent();
827       ++NumDeleted;
828     }
829   }
830   return Changed;
831 }
832 
833 /// Walk the use list of V, constant folding all of the instructions that are
834 /// foldable.
835 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
836                                 TargetLibraryInfo *TLI) {
837   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
838     if (Instruction *I = dyn_cast<Instruction>(*UI++))
839       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
840         I->replaceAllUsesWith(NewC);
841 
842         // Advance UI to the next non-I use to avoid invalidating it!
843         // Instructions could multiply use V.
844         while (UI != E && *UI == I)
845           ++UI;
846         if (isInstructionTriviallyDead(I, TLI))
847           I->eraseFromParent();
848       }
849 }
850 
851 /// This function takes the specified global variable, and transforms the
852 /// program as if it always contained the result of the specified malloc.
853 /// Because it is always the result of the specified malloc, there is no reason
854 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
855 /// loads of GV as uses of the new global.
856 static GlobalVariable *
857 OptimizeGlobalAddressOfAllocation(GlobalVariable *GV, CallInst *CI,
858                                   uint64_t AllocSize, Constant *InitVal,
859                                   const DataLayout &DL,
860                                   TargetLibraryInfo *TLI) {
861   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
862                     << '\n');
863 
864   // Create global of type [AllocSize x i8].
865   Type *GlobalType = ArrayType::get(Type::getInt8Ty(GV->getContext()),
866                                     AllocSize);
867 
868   // Create the new global variable.  The contents of the allocated memory is
869   // undefined initially, so initialize with an undef value.
870   GlobalVariable *NewGV = new GlobalVariable(
871       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
872       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
873       GV->getThreadLocalMode());
874 
875   // Initialize the global at the point of the original call.  Note that this
876   // is a different point from the initialization referred to below for the
877   // nullability handling.  Sublety: We have not proven the original global was
878   // only initialized once.  As such, we can not fold this into the initializer
879   // of the new global as may need to re-init the storage multiple times.
880   if (!isa<UndefValue>(InitVal)) {
881     IRBuilder<> Builder(CI->getNextNode());
882     // TODO: Use alignment above if align!=1
883     Builder.CreateMemSet(NewGV, InitVal, AllocSize, None);
884   }
885 
886   // Update users of the allocation to use the new global instead.
887   BitCastInst *TheBC = nullptr;
888   while (!CI->use_empty()) {
889     Instruction *User = cast<Instruction>(CI->user_back());
890     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
891       if (BCI->getType() == NewGV->getType()) {
892         BCI->replaceAllUsesWith(NewGV);
893         BCI->eraseFromParent();
894       } else {
895         BCI->setOperand(0, NewGV);
896       }
897     } else {
898       if (!TheBC)
899         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
900       User->replaceUsesOfWith(CI, TheBC);
901     }
902   }
903 
904   SmallSetVector<Constant *, 1> RepValues;
905   RepValues.insert(NewGV);
906 
907   // If there is a comparison against null, we will insert a global bool to
908   // keep track of whether the global was initialized yet or not.
909   GlobalVariable *InitBool =
910     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
911                        GlobalValue::InternalLinkage,
912                        ConstantInt::getFalse(GV->getContext()),
913                        GV->getName()+".init", GV->getThreadLocalMode());
914   bool InitBoolUsed = false;
915 
916   // Loop over all instruction uses of GV, processing them in turn.
917   SmallVector<Value *, 4> Guses;
918   allUsesOfLoadAndStores(GV, Guses);
919   for (auto *U : Guses) {
920     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
921       // The global is initialized when the store to it occurs. If the stored
922       // value is null value, the global bool is set to false, otherwise true.
923       new StoreInst(ConstantInt::getBool(
924                         GV->getContext(),
925                         !isa<ConstantPointerNull>(SI->getValueOperand())),
926                     InitBool, false, Align(1), SI->getOrdering(),
927                     SI->getSyncScopeID(), SI);
928       SI->eraseFromParent();
929       continue;
930     }
931 
932     LoadInst *LI = cast<LoadInst>(U);
933     while (!LI->use_empty()) {
934       Use &LoadUse = *LI->use_begin();
935       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
936       if (!ICI) {
937         auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType());
938         RepValues.insert(CE);
939         LoadUse.set(CE);
940         continue;
941       }
942 
943       // Replace the cmp X, 0 with a use of the bool value.
944       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
945                                InitBool->getName() + ".val", false, Align(1),
946                                LI->getOrdering(), LI->getSyncScopeID(), LI);
947       InitBoolUsed = true;
948       switch (ICI->getPredicate()) {
949       default: llvm_unreachable("Unknown ICmp Predicate!");
950       case ICmpInst::ICMP_ULT: // X < null -> always false
951         LV = ConstantInt::getFalse(GV->getContext());
952         break;
953       case ICmpInst::ICMP_UGE: // X >= null -> always true
954         LV = ConstantInt::getTrue(GV->getContext());
955         break;
956       case ICmpInst::ICMP_ULE:
957       case ICmpInst::ICMP_EQ:
958         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
959         break;
960       case ICmpInst::ICMP_NE:
961       case ICmpInst::ICMP_UGT:
962         break;  // no change.
963       }
964       ICI->replaceAllUsesWith(LV);
965       ICI->eraseFromParent();
966     }
967     LI->eraseFromParent();
968   }
969 
970   // If the initialization boolean was used, insert it, otherwise delete it.
971   if (!InitBoolUsed) {
972     while (!InitBool->use_empty())  // Delete initializations
973       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
974     delete InitBool;
975   } else
976     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
977 
978   // Now the GV is dead, nuke it and the allocation..
979   GV->eraseFromParent();
980   CI->eraseFromParent();
981 
982   // To further other optimizations, loop over all users of NewGV and try to
983   // constant prop them.  This will promote GEP instructions with constant
984   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
985   for (auto *CE : RepValues)
986     ConstantPropUsersOf(CE, DL, TLI);
987 
988   return NewGV;
989 }
990 
991 /// Scan the use-list of GV checking to make sure that there are no complex uses
992 /// of GV.  We permit simple things like dereferencing the pointer, but not
993 /// storing through the address, unless it is to the specified global.
994 static bool
995 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI,
996                                           const GlobalVariable *GV) {
997   SmallPtrSet<const Value *, 4> Visited;
998   SmallVector<const Value *, 4> Worklist;
999   Worklist.push_back(CI);
1000 
1001   while (!Worklist.empty()) {
1002     const Value *V = Worklist.pop_back_val();
1003     if (!Visited.insert(V).second)
1004       continue;
1005 
1006     for (const Use &VUse : V->uses()) {
1007       const User *U = VUse.getUser();
1008       if (isa<LoadInst>(U) || isa<CmpInst>(U))
1009         continue; // Fine, ignore.
1010 
1011       if (auto *SI = dyn_cast<StoreInst>(U)) {
1012         if (SI->getValueOperand() == V &&
1013             SI->getPointerOperand()->stripPointerCasts() != GV)
1014           return false; // Storing the pointer not into GV... bad.
1015         continue; // Otherwise, storing through it, or storing into GV... fine.
1016       }
1017 
1018       if (auto *BCI = dyn_cast<BitCastInst>(U)) {
1019         Worklist.push_back(BCI);
1020         continue;
1021       }
1022 
1023       if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1024         Worklist.push_back(GEPI);
1025         continue;
1026       }
1027 
1028       return false;
1029     }
1030   }
1031 
1032   return true;
1033 }
1034 
1035 /// If we have a global that is only initialized with a fixed size allocation
1036 /// try to transform the program to use global memory instead of heap
1037 /// allocated memory. This eliminates dynamic allocation, avoids an indirection
1038 /// accessing the data, and exposes the resultant global to further GlobalOpt.
1039 static bool tryToOptimizeStoreOfAllocationToGlobal(GlobalVariable *GV,
1040                                                    CallInst *CI,
1041                                                    const DataLayout &DL,
1042                                                    TargetLibraryInfo *TLI) {
1043   if (!isAllocRemovable(CI, TLI))
1044     // Must be able to remove the call when we get done..
1045     return false;
1046 
1047   Type *Int8Ty = Type::getInt8Ty(CI->getFunction()->getContext());
1048   Constant *InitVal = getInitialValueOfAllocation(CI, TLI, Int8Ty);
1049   if (!InitVal)
1050     // Must be able to emit a memset for initialization
1051     return false;
1052 
1053   uint64_t AllocSize;
1054   if (!getObjectSize(CI, AllocSize, DL, TLI, ObjectSizeOpts()))
1055     return false;
1056 
1057   // Restrict this transformation to only working on small allocations
1058   // (2048 bytes currently), as we don't want to introduce a 16M global or
1059   // something.
1060   if (AllocSize >= 2048)
1061     return false;
1062 
1063   // We can't optimize this global unless all uses of it are *known* to be
1064   // of the malloc value, not of the null initializer value (consider a use
1065   // that compares the global's value against zero to see if the malloc has
1066   // been reached).  To do this, we check to see if all uses of the global
1067   // would trap if the global were null: this proves that they must all
1068   // happen after the malloc.
1069   if (!allUsesOfLoadedValueWillTrapIfNull(GV))
1070     return false;
1071 
1072   // We can't optimize this if the malloc itself is used in a complex way,
1073   // for example, being stored into multiple globals.  This allows the
1074   // malloc to be stored into the specified global, loaded, gep, icmp'd.
1075   // These are all things we could transform to using the global for.
1076   if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV))
1077     return false;
1078 
1079   OptimizeGlobalAddressOfAllocation(GV, CI, AllocSize, InitVal, DL, TLI);
1080   return true;
1081 }
1082 
1083 // Try to optimize globals based on the knowledge that only one value (besides
1084 // its initializer) is ever stored to the global.
1085 static bool
1086 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1087                          const DataLayout &DL,
1088                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1089   // Ignore no-op GEPs and bitcasts.
1090   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1091 
1092   // If we are dealing with a pointer global that is initialized to null and
1093   // only has one (non-null) value stored into it, then we can optimize any
1094   // users of the loaded value (often calls and loads) that would trap if the
1095   // value was null.
1096   if (GV->getInitializer()->getType()->isPointerTy() &&
1097       GV->getInitializer()->isNullValue() &&
1098       StoredOnceVal->getType()->isPointerTy() &&
1099       !NullPointerIsDefined(
1100           nullptr /* F */,
1101           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1102     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1103       if (GV->getInitializer()->getType() != SOVC->getType())
1104         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1105 
1106       // Optimize away any trapping uses of the loaded value.
1107       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1108         return true;
1109     } else if (isAllocationFn(StoredOnceVal, GetTLI)) {
1110       if (auto *CI = dyn_cast<CallInst>(StoredOnceVal)) {
1111         auto *TLI = &GetTLI(*CI->getFunction());
1112         if (tryToOptimizeStoreOfAllocationToGlobal(GV, CI, DL, TLI))
1113           return true;
1114       }
1115     }
1116   }
1117 
1118   return false;
1119 }
1120 
1121 /// At this point, we have learned that the only two values ever stored into GV
1122 /// are its initializer and OtherVal.  See if we can shrink the global into a
1123 /// boolean and select between the two values whenever it is used.  This exposes
1124 /// the values to other scalar optimizations.
1125 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1126   Type *GVElType = GV->getValueType();
1127 
1128   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1129   // an FP value, pointer or vector, don't do this optimization because a select
1130   // between them is very expensive and unlikely to lead to later
1131   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1132   // where v1 and v2 both require constant pool loads, a big loss.
1133   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1134       GVElType->isFloatingPointTy() ||
1135       GVElType->isPointerTy() || GVElType->isVectorTy())
1136     return false;
1137 
1138   // Walk the use list of the global seeing if all the uses are load or store.
1139   // If there is anything else, bail out.
1140   for (User *U : GV->users()) {
1141     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1142       return false;
1143     if (getLoadStoreType(U) != GVElType)
1144       return false;
1145   }
1146 
1147   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1148 
1149   // Create the new global, initializing it to false.
1150   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1151                                              false,
1152                                              GlobalValue::InternalLinkage,
1153                                         ConstantInt::getFalse(GV->getContext()),
1154                                              GV->getName()+".b",
1155                                              GV->getThreadLocalMode(),
1156                                              GV->getType()->getAddressSpace());
1157   NewGV->copyAttributesFrom(GV);
1158   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1159 
1160   Constant *InitVal = GV->getInitializer();
1161   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1162          "No reason to shrink to bool!");
1163 
1164   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1165   GV->getDebugInfo(GVs);
1166 
1167   // If initialized to zero and storing one into the global, we can use a cast
1168   // instead of a select to synthesize the desired value.
1169   bool IsOneZero = false;
1170   bool EmitOneOrZero = true;
1171   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1172   if (CI && CI->getValue().getActiveBits() <= 64) {
1173     IsOneZero = InitVal->isNullValue() && CI->isOne();
1174 
1175     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1176     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1177       uint64_t ValInit = CIInit->getZExtValue();
1178       uint64_t ValOther = CI->getZExtValue();
1179       uint64_t ValMinus = ValOther - ValInit;
1180 
1181       for(auto *GVe : GVs){
1182         DIGlobalVariable *DGV = GVe->getVariable();
1183         DIExpression *E = GVe->getExpression();
1184         const DataLayout &DL = GV->getParent()->getDataLayout();
1185         unsigned SizeInOctets =
1186             DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8;
1187 
1188         // It is expected that the address of global optimized variable is on
1189         // top of the stack. After optimization, value of that variable will
1190         // be ether 0 for initial value or 1 for other value. The following
1191         // expression should return constant integer value depending on the
1192         // value at global object address:
1193         // val * (ValOther - ValInit) + ValInit:
1194         // DW_OP_deref DW_OP_constu <ValMinus>
1195         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1196         SmallVector<uint64_t, 12> Ops = {
1197             dwarf::DW_OP_deref_size, SizeInOctets,
1198             dwarf::DW_OP_constu, ValMinus,
1199             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1200             dwarf::DW_OP_plus};
1201         bool WithStackValue = true;
1202         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1203         DIGlobalVariableExpression *DGVE =
1204           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1205         NewGV->addDebugInfo(DGVE);
1206      }
1207      EmitOneOrZero = false;
1208     }
1209   }
1210 
1211   if (EmitOneOrZero) {
1212      // FIXME: This will only emit address for debugger on which will
1213      // be written only 0 or 1.
1214      for(auto *GV : GVs)
1215        NewGV->addDebugInfo(GV);
1216    }
1217 
1218   while (!GV->use_empty()) {
1219     Instruction *UI = cast<Instruction>(GV->user_back());
1220     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1221       // Change the store into a boolean store.
1222       bool StoringOther = SI->getOperand(0) == OtherVal;
1223       // Only do this if we weren't storing a loaded value.
1224       Value *StoreVal;
1225       if (StoringOther || SI->getOperand(0) == InitVal) {
1226         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1227                                     StoringOther);
1228       } else {
1229         // Otherwise, we are storing a previously loaded copy.  To do this,
1230         // change the copy from copying the original value to just copying the
1231         // bool.
1232         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1233 
1234         // If we've already replaced the input, StoredVal will be a cast or
1235         // select instruction.  If not, it will be a load of the original
1236         // global.
1237         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1238           assert(LI->getOperand(0) == GV && "Not a copy!");
1239           // Insert a new load, to preserve the saved value.
1240           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1241                                   LI->getName() + ".b", false, Align(1),
1242                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1243         } else {
1244           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1245                  "This is not a form that we understand!");
1246           StoreVal = StoredVal->getOperand(0);
1247           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1248         }
1249       }
1250       StoreInst *NSI =
1251           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1252                         SI->getSyncScopeID(), SI);
1253       NSI->setDebugLoc(SI->getDebugLoc());
1254     } else {
1255       // Change the load into a load of bool then a select.
1256       LoadInst *LI = cast<LoadInst>(UI);
1257       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1258                                    LI->getName() + ".b", false, Align(1),
1259                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1260       Instruction *NSI;
1261       if (IsOneZero)
1262         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1263       else
1264         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1265       NSI->takeName(LI);
1266       // Since LI is split into two instructions, NLI and NSI both inherit the
1267       // same DebugLoc
1268       NLI->setDebugLoc(LI->getDebugLoc());
1269       NSI->setDebugLoc(LI->getDebugLoc());
1270       LI->replaceAllUsesWith(NSI);
1271     }
1272     UI->eraseFromParent();
1273   }
1274 
1275   // Retain the name of the old global variable. People who are debugging their
1276   // programs may expect these variables to be named the same.
1277   NewGV->takeName(GV);
1278   GV->eraseFromParent();
1279   return true;
1280 }
1281 
1282 static bool deleteIfDead(
1283     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1284   GV.removeDeadConstantUsers();
1285 
1286   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1287     return false;
1288 
1289   if (const Comdat *C = GV.getComdat())
1290     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1291       return false;
1292 
1293   bool Dead;
1294   if (auto *F = dyn_cast<Function>(&GV))
1295     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1296   else
1297     Dead = GV.use_empty();
1298   if (!Dead)
1299     return false;
1300 
1301   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1302   GV.eraseFromParent();
1303   ++NumDeleted;
1304   return true;
1305 }
1306 
1307 static bool isPointerValueDeadOnEntryToFunction(
1308     const Function *F, GlobalValue *GV,
1309     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1310   // Find all uses of GV. We expect them all to be in F, and if we can't
1311   // identify any of the uses we bail out.
1312   //
1313   // On each of these uses, identify if the memory that GV points to is
1314   // used/required/live at the start of the function. If it is not, for example
1315   // if the first thing the function does is store to the GV, the GV can
1316   // possibly be demoted.
1317   //
1318   // We don't do an exhaustive search for memory operations - simply look
1319   // through bitcasts as they're quite common and benign.
1320   const DataLayout &DL = GV->getParent()->getDataLayout();
1321   SmallVector<LoadInst *, 4> Loads;
1322   SmallVector<StoreInst *, 4> Stores;
1323   for (auto *U : GV->users()) {
1324     if (Operator::getOpcode(U) == Instruction::BitCast) {
1325       for (auto *UU : U->users()) {
1326         if (auto *LI = dyn_cast<LoadInst>(UU))
1327           Loads.push_back(LI);
1328         else if (auto *SI = dyn_cast<StoreInst>(UU))
1329           Stores.push_back(SI);
1330         else
1331           return false;
1332       }
1333       continue;
1334     }
1335 
1336     Instruction *I = dyn_cast<Instruction>(U);
1337     if (!I)
1338       return false;
1339     assert(I->getParent()->getParent() == F);
1340 
1341     if (auto *LI = dyn_cast<LoadInst>(I))
1342       Loads.push_back(LI);
1343     else if (auto *SI = dyn_cast<StoreInst>(I))
1344       Stores.push_back(SI);
1345     else
1346       return false;
1347   }
1348 
1349   // We have identified all uses of GV into loads and stores. Now check if all
1350   // of them are known not to depend on the value of the global at the function
1351   // entry point. We do this by ensuring that every load is dominated by at
1352   // least one store.
1353   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1354 
1355   // The below check is quadratic. Check we're not going to do too many tests.
1356   // FIXME: Even though this will always have worst-case quadratic time, we
1357   // could put effort into minimizing the average time by putting stores that
1358   // have been shown to dominate at least one load at the beginning of the
1359   // Stores array, making subsequent dominance checks more likely to succeed
1360   // early.
1361   //
1362   // The threshold here is fairly large because global->local demotion is a
1363   // very powerful optimization should it fire.
1364   const unsigned Threshold = 100;
1365   if (Loads.size() * Stores.size() > Threshold)
1366     return false;
1367 
1368   for (auto *L : Loads) {
1369     auto *LTy = L->getType();
1370     if (none_of(Stores, [&](const StoreInst *S) {
1371           auto *STy = S->getValueOperand()->getType();
1372           // The load is only dominated by the store if DomTree says so
1373           // and the number of bits loaded in L is less than or equal to
1374           // the number of bits stored in S.
1375           return DT.dominates(S, L) &&
1376                  DL.getTypeStoreSize(LTy).getFixedSize() <=
1377                      DL.getTypeStoreSize(STy).getFixedSize();
1378         }))
1379       return false;
1380   }
1381   // All loads have known dependences inside F, so the global can be localized.
1382   return true;
1383 }
1384 
1385 /// C may have non-instruction users. Can all of those users be turned into
1386 /// instructions?
1387 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1388   // We don't do this exhaustively. The most common pattern that we really need
1389   // to care about is a constant GEP or constant bitcast - so just looking
1390   // through one single ConstantExpr.
1391   //
1392   // The set of constants that this function returns true for must be able to be
1393   // handled by makeAllConstantUsesInstructions.
1394   for (auto *U : C->users()) {
1395     if (isa<Instruction>(U))
1396       continue;
1397     if (!isa<ConstantExpr>(U))
1398       // Non instruction, non-constantexpr user; cannot convert this.
1399       return false;
1400     for (auto *UU : U->users())
1401       if (!isa<Instruction>(UU))
1402         // A constantexpr used by another constant. We don't try and recurse any
1403         // further but just bail out at this point.
1404         return false;
1405   }
1406 
1407   return true;
1408 }
1409 
1410 /// C may have non-instruction users, and
1411 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1412 /// non-instruction users to instructions.
1413 static void makeAllConstantUsesInstructions(Constant *C) {
1414   SmallVector<ConstantExpr*,4> Users;
1415   for (auto *U : C->users()) {
1416     if (isa<ConstantExpr>(U))
1417       Users.push_back(cast<ConstantExpr>(U));
1418     else
1419       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1420       // should not have returned true for C.
1421       assert(
1422           isa<Instruction>(U) &&
1423           "Can't transform non-constantexpr non-instruction to instruction!");
1424   }
1425 
1426   SmallVector<Value*,4> UUsers;
1427   for (auto *U : Users) {
1428     UUsers.clear();
1429     append_range(UUsers, U->users());
1430     for (auto *UU : UUsers) {
1431       Instruction *UI = cast<Instruction>(UU);
1432       Instruction *NewU = U->getAsInstruction(UI);
1433       UI->replaceUsesOfWith(U, NewU);
1434     }
1435     // We've replaced all the uses, so destroy the constant. (destroyConstant
1436     // will update value handles and metadata.)
1437     U->destroyConstant();
1438   }
1439 }
1440 
1441 // For a global variable with one store, if the store dominates any loads,
1442 // those loads will always load the stored value (as opposed to the
1443 // initializer), even in the presence of recursion.
1444 static bool forwardStoredOnceStore(
1445     GlobalVariable *GV, const StoreInst *StoredOnceStore,
1446     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1447   const Value *StoredOnceValue = StoredOnceStore->getValueOperand();
1448   SmallVector<LoadInst *> Loads;
1449   const Function *F = StoredOnceStore->getFunction();
1450   for (User *U : GV->users()) {
1451     if (auto *LI = dyn_cast<LoadInst>(U)) {
1452       if (LI->getFunction() == F &&
1453           LI->getType() == StoredOnceValue->getType() && LI->isSimple())
1454         Loads.push_back(LI);
1455     }
1456   }
1457   // Only compute DT if we have any loads to examine.
1458   bool MadeChange = false;
1459   if (!Loads.empty()) {
1460     auto &DT = LookupDomTree(*const_cast<Function *>(F));
1461     for (auto *LI : Loads) {
1462       if (DT.dominates(StoredOnceStore, LI)) {
1463         LI->replaceAllUsesWith(const_cast<Value *>(StoredOnceValue));
1464         LI->eraseFromParent();
1465         MadeChange = true;
1466       }
1467     }
1468   }
1469   return MadeChange;
1470 }
1471 
1472 /// Analyze the specified global variable and optimize
1473 /// it if possible.  If we make a change, return true.
1474 static bool
1475 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1476                       function_ref<TargetTransformInfo &(Function &)> GetTTI,
1477                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1478                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1479   auto &DL = GV->getParent()->getDataLayout();
1480   // If this is a first class global and has only one accessing function and
1481   // this function is non-recursive, we replace the global with a local alloca
1482   // in this function.
1483   //
1484   // NOTE: It doesn't make sense to promote non-single-value types since we
1485   // are just replacing static memory to stack memory.
1486   //
1487   // If the global is in different address space, don't bring it to stack.
1488   if (!GS.HasMultipleAccessingFunctions &&
1489       GS.AccessingFunction &&
1490       GV->getValueType()->isSingleValueType() &&
1491       GV->getType()->getAddressSpace() == 0 &&
1492       !GV->isExternallyInitialized() &&
1493       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1494       GS.AccessingFunction->doesNotRecurse() &&
1495       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1496                                           LookupDomTree)) {
1497     const DataLayout &DL = GV->getParent()->getDataLayout();
1498 
1499     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1500     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1501                                                    ->getEntryBlock().begin());
1502     Type *ElemTy = GV->getValueType();
1503     // FIXME: Pass Global's alignment when globals have alignment
1504     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1505                                         GV->getName(), &FirstI);
1506     if (!isa<UndefValue>(GV->getInitializer()))
1507       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1508 
1509     makeAllConstantUsesInstructions(GV);
1510 
1511     GV->replaceAllUsesWith(Alloca);
1512     GV->eraseFromParent();
1513     ++NumLocalized;
1514     return true;
1515   }
1516 
1517   bool Changed = false;
1518 
1519   // If the global is never loaded (but may be stored to), it is dead.
1520   // Delete it now.
1521   if (!GS.IsLoaded) {
1522     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1523 
1524     if (isLeakCheckerRoot(GV)) {
1525       // Delete any constant stores to the global.
1526       Changed = CleanupPointerRootUsers(GV, GetTLI);
1527     } else {
1528       // Delete any stores we can find to the global.  We may not be able to
1529       // make it completely dead though.
1530       Changed = CleanupConstantGlobalUsers(GV, DL);
1531     }
1532 
1533     // If the global is dead now, delete it.
1534     if (GV->use_empty()) {
1535       GV->eraseFromParent();
1536       ++NumDeleted;
1537       Changed = true;
1538     }
1539     return Changed;
1540 
1541   }
1542   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1543     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1544 
1545     // Don't actually mark a global constant if it's atomic because atomic loads
1546     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1547     // requires write access to the variable even if it's not actually changed.
1548     if (GS.Ordering == AtomicOrdering::NotAtomic) {
1549       assert(!GV->isConstant() && "Expected a non-constant global");
1550       GV->setConstant(true);
1551       Changed = true;
1552     }
1553 
1554     // Clean up any obviously simplifiable users now.
1555     Changed |= CleanupConstantGlobalUsers(GV, DL);
1556 
1557     // If the global is dead now, just nuke it.
1558     if (GV->use_empty()) {
1559       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1560                         << "all users and delete global!\n");
1561       GV->eraseFromParent();
1562       ++NumDeleted;
1563       return true;
1564     }
1565 
1566     // Fall through to the next check; see if we can optimize further.
1567     ++NumMarked;
1568   }
1569   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1570     const DataLayout &DL = GV->getParent()->getDataLayout();
1571     if (SRAGlobal(GV, DL))
1572       return true;
1573   }
1574   Value *StoredOnceValue = GS.getStoredOnceValue();
1575   if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) {
1576     // Avoid speculating constant expressions that might trap (div/rem).
1577     auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue);
1578     if (SOVConstant && SOVConstant->canTrap())
1579       return Changed;
1580 
1581     Function &StoreFn =
1582         const_cast<Function &>(*GS.StoredOnceStore->getFunction());
1583     bool CanHaveNonUndefGlobalInitializer =
1584         GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace(
1585             GV->getType()->getAddressSpace());
1586     // If the initial value for the global was an undef value, and if only
1587     // one other value was stored into it, we can just change the
1588     // initializer to be the stored value, then delete all stores to the
1589     // global.  This allows us to mark it constant.
1590     // This is restricted to address spaces that allow globals to have
1591     // initializers. NVPTX, for example, does not support initializers for
1592     // shared memory (AS 3).
1593     if (SOVConstant && isa<UndefValue>(GV->getInitializer()) &&
1594         DL.getTypeAllocSize(SOVConstant->getType()) ==
1595             DL.getTypeAllocSize(GV->getValueType()) &&
1596         CanHaveNonUndefGlobalInitializer) {
1597       if (SOVConstant->getType() == GV->getValueType()) {
1598         // Change the initializer in place.
1599         GV->setInitializer(SOVConstant);
1600       } else {
1601         // Create a new global with adjusted type.
1602         auto *NGV = new GlobalVariable(
1603             *GV->getParent(), SOVConstant->getType(), GV->isConstant(),
1604             GV->getLinkage(), SOVConstant, "", GV, GV->getThreadLocalMode(),
1605             GV->getAddressSpace());
1606         NGV->takeName(GV);
1607         NGV->copyAttributesFrom(GV);
1608         GV->replaceAllUsesWith(ConstantExpr::getBitCast(NGV, GV->getType()));
1609         GV->eraseFromParent();
1610         GV = NGV;
1611       }
1612 
1613       // Clean up any obviously simplifiable users now.
1614       CleanupConstantGlobalUsers(GV, DL);
1615 
1616       if (GV->use_empty()) {
1617         LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1618                           << "simplify all users and delete global!\n");
1619         GV->eraseFromParent();
1620         ++NumDeleted;
1621       }
1622       ++NumSubstitute;
1623       return true;
1624     }
1625 
1626     // Try to optimize globals based on the knowledge that only one value
1627     // (besides its initializer) is ever stored to the global.
1628     if (optimizeOnceStoredGlobal(GV, StoredOnceValue, DL, GetTLI))
1629       return true;
1630 
1631     // Try to forward the store to any loads.
1632     if (forwardStoredOnceStore(GV, GS.StoredOnceStore, LookupDomTree))
1633       return true;
1634 
1635     // Otherwise, if the global was not a boolean, we can shrink it to be a
1636     // boolean. Skip this optimization for AS that doesn't allow an initializer.
1637     if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic &&
1638         (!isa<UndefValue>(GV->getInitializer()) ||
1639          CanHaveNonUndefGlobalInitializer)) {
1640       if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1641         ++NumShrunkToBool;
1642         return true;
1643       }
1644     }
1645   }
1646 
1647   return Changed;
1648 }
1649 
1650 /// Analyze the specified global variable and optimize it if possible.  If we
1651 /// make a change, return true.
1652 static bool
1653 processGlobal(GlobalValue &GV,
1654               function_ref<TargetTransformInfo &(Function &)> GetTTI,
1655               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1656               function_ref<DominatorTree &(Function &)> LookupDomTree) {
1657   if (GV.getName().startswith("llvm."))
1658     return false;
1659 
1660   GlobalStatus GS;
1661 
1662   if (GlobalStatus::analyzeGlobal(&GV, GS))
1663     return false;
1664 
1665   bool Changed = false;
1666   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1667     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1668                                                : GlobalValue::UnnamedAddr::Local;
1669     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1670       GV.setUnnamedAddr(NewUnnamedAddr);
1671       NumUnnamed++;
1672       Changed = true;
1673     }
1674   }
1675 
1676   // Do more involved optimizations if the global is internal.
1677   if (!GV.hasLocalLinkage())
1678     return Changed;
1679 
1680   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1681   if (!GVar)
1682     return Changed;
1683 
1684   if (GVar->isConstant() || !GVar->hasInitializer())
1685     return Changed;
1686 
1687   return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) ||
1688          Changed;
1689 }
1690 
1691 /// Walk all of the direct calls of the specified function, changing them to
1692 /// FastCC.
1693 static void ChangeCalleesToFastCall(Function *F) {
1694   for (User *U : F->users()) {
1695     if (isa<BlockAddress>(U))
1696       continue;
1697     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
1698   }
1699 }
1700 
1701 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
1702                                Attribute::AttrKind A) {
1703   unsigned AttrIndex;
1704   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
1705     return Attrs.removeAttributeAtIndex(C, AttrIndex, A);
1706   return Attrs;
1707 }
1708 
1709 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
1710   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
1711   for (User *U : F->users()) {
1712     if (isa<BlockAddress>(U))
1713       continue;
1714     CallBase *CB = cast<CallBase>(U);
1715     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
1716   }
1717 }
1718 
1719 /// Return true if this is a calling convention that we'd like to change.  The
1720 /// idea here is that we don't want to mess with the convention if the user
1721 /// explicitly requested something with performance implications like coldcc,
1722 /// GHC, or anyregcc.
1723 static bool hasChangeableCC(Function *F) {
1724   CallingConv::ID CC = F->getCallingConv();
1725 
1726   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1727   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
1728     return false;
1729 
1730   // FIXME: Change CC for the whole chain of musttail calls when possible.
1731   //
1732   // Can't change CC of the function that either has musttail calls, or is a
1733   // musttail callee itself
1734   for (User *U : F->users()) {
1735     if (isa<BlockAddress>(U))
1736       continue;
1737     CallInst* CI = dyn_cast<CallInst>(U);
1738     if (!CI)
1739       continue;
1740 
1741     if (CI->isMustTailCall())
1742       return false;
1743   }
1744 
1745   for (BasicBlock &BB : *F)
1746     if (BB.getTerminatingMustTailCall())
1747       return false;
1748 
1749   return true;
1750 }
1751 
1752 /// Return true if the block containing the call site has a BlockFrequency of
1753 /// less than ColdCCRelFreq% of the entry block.
1754 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
1755   const BranchProbability ColdProb(ColdCCRelFreq, 100);
1756   auto *CallSiteBB = CB.getParent();
1757   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
1758   auto CallerEntryFreq =
1759       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
1760   return CallSiteFreq < CallerEntryFreq * ColdProb;
1761 }
1762 
1763 // This function checks if the input function F is cold at all call sites. It
1764 // also looks each call site's containing function, returning false if the
1765 // caller function contains other non cold calls. The input vector AllCallsCold
1766 // contains a list of functions that only have call sites in cold blocks.
1767 static bool
1768 isValidCandidateForColdCC(Function &F,
1769                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1770                           const std::vector<Function *> &AllCallsCold) {
1771 
1772   if (F.user_empty())
1773     return false;
1774 
1775   for (User *U : F.users()) {
1776     if (isa<BlockAddress>(U))
1777       continue;
1778 
1779     CallBase &CB = cast<CallBase>(*U);
1780     Function *CallerFunc = CB.getParent()->getParent();
1781     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
1782     if (!isColdCallSite(CB, CallerBFI))
1783       return false;
1784     if (!llvm::is_contained(AllCallsCold, CallerFunc))
1785       return false;
1786   }
1787   return true;
1788 }
1789 
1790 static void changeCallSitesToColdCC(Function *F) {
1791   for (User *U : F->users()) {
1792     if (isa<BlockAddress>(U))
1793       continue;
1794     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
1795   }
1796 }
1797 
1798 // This function iterates over all the call instructions in the input Function
1799 // and checks that all call sites are in cold blocks and are allowed to use the
1800 // coldcc calling convention.
1801 static bool
1802 hasOnlyColdCalls(Function &F,
1803                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
1804   for (BasicBlock &BB : F) {
1805     for (Instruction &I : BB) {
1806       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1807         // Skip over isline asm instructions since they aren't function calls.
1808         if (CI->isInlineAsm())
1809           continue;
1810         Function *CalledFn = CI->getCalledFunction();
1811         if (!CalledFn)
1812           return false;
1813         if (!CalledFn->hasLocalLinkage())
1814           return false;
1815         // Skip over intrinsics since they won't remain as function calls.
1816         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
1817           continue;
1818         // Check if it's valid to use coldcc calling convention.
1819         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
1820             CalledFn->hasAddressTaken())
1821           return false;
1822         BlockFrequencyInfo &CallerBFI = GetBFI(F);
1823         if (!isColdCallSite(*CI, CallerBFI))
1824           return false;
1825       }
1826     }
1827   }
1828   return true;
1829 }
1830 
1831 static bool hasMustTailCallers(Function *F) {
1832   for (User *U : F->users()) {
1833     CallBase *CB = dyn_cast<CallBase>(U);
1834     if (!CB) {
1835       assert(isa<BlockAddress>(U) &&
1836              "Expected either CallBase or BlockAddress");
1837       continue;
1838     }
1839     if (CB->isMustTailCall())
1840       return true;
1841   }
1842   return false;
1843 }
1844 
1845 static bool hasInvokeCallers(Function *F) {
1846   for (User *U : F->users())
1847     if (isa<InvokeInst>(U))
1848       return true;
1849   return false;
1850 }
1851 
1852 static void RemovePreallocated(Function *F) {
1853   RemoveAttribute(F, Attribute::Preallocated);
1854 
1855   auto *M = F->getParent();
1856 
1857   IRBuilder<> Builder(M->getContext());
1858 
1859   // Cannot modify users() while iterating over it, so make a copy.
1860   SmallVector<User *, 4> PreallocatedCalls(F->users());
1861   for (User *U : PreallocatedCalls) {
1862     CallBase *CB = dyn_cast<CallBase>(U);
1863     if (!CB)
1864       continue;
1865 
1866     assert(
1867         !CB->isMustTailCall() &&
1868         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
1869     // Create copy of call without "preallocated" operand bundle.
1870     SmallVector<OperandBundleDef, 1> OpBundles;
1871     CB->getOperandBundlesAsDefs(OpBundles);
1872     CallBase *PreallocatedSetup = nullptr;
1873     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
1874       if (It->getTag() == "preallocated") {
1875         PreallocatedSetup = cast<CallBase>(*It->input_begin());
1876         OpBundles.erase(It);
1877         break;
1878       }
1879     }
1880     assert(PreallocatedSetup && "Did not find preallocated bundle");
1881     uint64_t ArgCount =
1882         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
1883 
1884     assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
1885            "Unknown indirect call type");
1886     CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
1887     CB->replaceAllUsesWith(NewCB);
1888     NewCB->takeName(CB);
1889     CB->eraseFromParent();
1890 
1891     Builder.SetInsertPoint(PreallocatedSetup);
1892     auto *StackSave =
1893         Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
1894 
1895     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
1896     Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
1897                        StackSave);
1898 
1899     // Replace @llvm.call.preallocated.arg() with alloca.
1900     // Cannot modify users() while iterating over it, so make a copy.
1901     // @llvm.call.preallocated.arg() can be called with the same index multiple
1902     // times. So for each @llvm.call.preallocated.arg(), we see if we have
1903     // already created a Value* for the index, and if not, create an alloca and
1904     // bitcast right after the @llvm.call.preallocated.setup() so that it
1905     // dominates all uses.
1906     SmallVector<Value *, 2> ArgAllocas(ArgCount);
1907     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
1908     for (auto *User : PreallocatedArgs) {
1909       auto *UseCall = cast<CallBase>(User);
1910       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
1911                  Intrinsic::call_preallocated_arg &&
1912              "preallocated token use was not a llvm.call.preallocated.arg");
1913       uint64_t AllocArgIndex =
1914           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
1915       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
1916       if (!AllocaReplacement) {
1917         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
1918         auto *ArgType =
1919             UseCall->getFnAttr(Attribute::Preallocated).getValueAsType();
1920         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
1921         Builder.SetInsertPoint(InsertBefore);
1922         auto *Alloca =
1923             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
1924         auto *BitCast = Builder.CreateBitCast(
1925             Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
1926         ArgAllocas[AllocArgIndex] = BitCast;
1927         AllocaReplacement = BitCast;
1928       }
1929 
1930       UseCall->replaceAllUsesWith(AllocaReplacement);
1931       UseCall->eraseFromParent();
1932     }
1933     // Remove @llvm.call.preallocated.setup().
1934     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
1935   }
1936 }
1937 
1938 static bool
1939 OptimizeFunctions(Module &M,
1940                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1941                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
1942                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1943                   function_ref<DominatorTree &(Function &)> LookupDomTree,
1944                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats,
1945                   function_ref<void(Function &F)> ChangedCFGCallback) {
1946 
1947   bool Changed = false;
1948 
1949   std::vector<Function *> AllCallsCold;
1950   for (Function &F : llvm::make_early_inc_range(M))
1951     if (hasOnlyColdCalls(F, GetBFI))
1952       AllCallsCold.push_back(&F);
1953 
1954   // Optimize functions.
1955   for (Function &F : llvm::make_early_inc_range(M)) {
1956     // Don't perform global opt pass on naked functions; we don't want fast
1957     // calling conventions for naked functions.
1958     if (F.hasFnAttribute(Attribute::Naked))
1959       continue;
1960 
1961     // Functions without names cannot be referenced outside this module.
1962     if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage())
1963       F.setLinkage(GlobalValue::InternalLinkage);
1964 
1965     if (deleteIfDead(F, NotDiscardableComdats)) {
1966       Changed = true;
1967       continue;
1968     }
1969 
1970     // LLVM's definition of dominance allows instructions that are cyclic
1971     // in unreachable blocks, e.g.:
1972     // %pat = select i1 %condition, @global, i16* %pat
1973     // because any instruction dominates an instruction in a block that's
1974     // not reachable from entry.
1975     // So, remove unreachable blocks from the function, because a) there's
1976     // no point in analyzing them and b) GlobalOpt should otherwise grow
1977     // some more complicated logic to break these cycles.
1978     // Notify the analysis manager that we've modified the function's CFG.
1979     if (!F.isDeclaration()) {
1980       if (removeUnreachableBlocks(F)) {
1981         Changed = true;
1982         ChangedCFGCallback(F);
1983       }
1984     }
1985 
1986     Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree);
1987 
1988     if (!F.hasLocalLinkage())
1989       continue;
1990 
1991     // If we have an inalloca parameter that we can safely remove the
1992     // inalloca attribute from, do so. This unlocks optimizations that
1993     // wouldn't be safe in the presence of inalloca.
1994     // FIXME: We should also hoist alloca affected by this to the entry
1995     // block if possible.
1996     if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
1997         !F.hasAddressTaken() && !hasMustTailCallers(&F)) {
1998       RemoveAttribute(&F, Attribute::InAlloca);
1999       Changed = true;
2000     }
2001 
2002     // FIXME: handle invokes
2003     // FIXME: handle musttail
2004     if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
2005       if (!F.hasAddressTaken() && !hasMustTailCallers(&F) &&
2006           !hasInvokeCallers(&F)) {
2007         RemovePreallocated(&F);
2008         Changed = true;
2009       }
2010       continue;
2011     }
2012 
2013     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
2014       NumInternalFunc++;
2015       TargetTransformInfo &TTI = GetTTI(F);
2016       // Change the calling convention to coldcc if either stress testing is
2017       // enabled or the target would like to use coldcc on functions which are
2018       // cold at all call sites and the callers contain no other non coldcc
2019       // calls.
2020       if (EnableColdCCStressTest ||
2021           (TTI.useColdCCForColdCall(F) &&
2022            isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) {
2023         F.setCallingConv(CallingConv::Cold);
2024         changeCallSitesToColdCC(&F);
2025         Changed = true;
2026         NumColdCC++;
2027       }
2028     }
2029 
2030     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
2031       // If this function has a calling convention worth changing, is not a
2032       // varargs function, and is only called directly, promote it to use the
2033       // Fast calling convention.
2034       F.setCallingConv(CallingConv::Fast);
2035       ChangeCalleesToFastCall(&F);
2036       ++NumFastCallFns;
2037       Changed = true;
2038     }
2039 
2040     if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2041         !F.hasAddressTaken()) {
2042       // The function is not used by a trampoline intrinsic, so it is safe
2043       // to remove the 'nest' attribute.
2044       RemoveAttribute(&F, Attribute::Nest);
2045       ++NumNestRemoved;
2046       Changed = true;
2047     }
2048   }
2049   return Changed;
2050 }
2051 
2052 static bool
2053 OptimizeGlobalVars(Module &M,
2054                    function_ref<TargetTransformInfo &(Function &)> GetTTI,
2055                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2056                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2057                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2058   bool Changed = false;
2059 
2060   for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) {
2061     // Global variables without names cannot be referenced outside this module.
2062     if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage())
2063       GV.setLinkage(GlobalValue::InternalLinkage);
2064     // Simplify the initializer.
2065     if (GV.hasInitializer())
2066       if (auto *C = dyn_cast<Constant>(GV.getInitializer())) {
2067         auto &DL = M.getDataLayout();
2068         // TLI is not used in the case of a Constant, so use default nullptr
2069         // for that optional parameter, since we don't have a Function to
2070         // provide GetTLI anyway.
2071         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2072         if (New != C)
2073           GV.setInitializer(New);
2074       }
2075 
2076     if (deleteIfDead(GV, NotDiscardableComdats)) {
2077       Changed = true;
2078       continue;
2079     }
2080 
2081     Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree);
2082   }
2083   return Changed;
2084 }
2085 
2086 /// Evaluate static constructors in the function, if we can.  Return true if we
2087 /// can, false otherwise.
2088 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2089                                       TargetLibraryInfo *TLI) {
2090   // Skip external functions.
2091   if (F->isDeclaration())
2092     return false;
2093   // Call the function.
2094   Evaluator Eval(DL, TLI);
2095   Constant *RetValDummy;
2096   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2097                                            SmallVector<Constant*, 0>());
2098 
2099   if (EvalSuccess) {
2100     ++NumCtorsEvaluated;
2101 
2102     // We succeeded at evaluation: commit the result.
2103     auto NewInitializers = Eval.getMutatedInitializers();
2104     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2105                       << F->getName() << "' to " << NewInitializers.size()
2106                       << " stores.\n");
2107     for (const auto &Pair : NewInitializers)
2108       Pair.first->setInitializer(Pair.second);
2109     for (GlobalVariable *GV : Eval.getInvariants())
2110       GV->setConstant(true);
2111   }
2112 
2113   return EvalSuccess;
2114 }
2115 
2116 static int compareNames(Constant *const *A, Constant *const *B) {
2117   Value *AStripped = (*A)->stripPointerCasts();
2118   Value *BStripped = (*B)->stripPointerCasts();
2119   return AStripped->getName().compare(BStripped->getName());
2120 }
2121 
2122 static void setUsedInitializer(GlobalVariable &V,
2123                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2124   if (Init.empty()) {
2125     V.eraseFromParent();
2126     return;
2127   }
2128 
2129   // Type of pointer to the array of pointers.
2130   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2131 
2132   SmallVector<Constant *, 8> UsedArray;
2133   for (GlobalValue *GV : Init) {
2134     Constant *Cast
2135       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2136     UsedArray.push_back(Cast);
2137   }
2138   // Sort to get deterministic order.
2139   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2140   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2141 
2142   Module *M = V.getParent();
2143   V.removeFromParent();
2144   GlobalVariable *NV =
2145       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2146                          ConstantArray::get(ATy, UsedArray), "");
2147   NV->takeName(&V);
2148   NV->setSection("llvm.metadata");
2149   delete &V;
2150 }
2151 
2152 namespace {
2153 
2154 /// An easy to access representation of llvm.used and llvm.compiler.used.
2155 class LLVMUsed {
2156   SmallPtrSet<GlobalValue *, 4> Used;
2157   SmallPtrSet<GlobalValue *, 4> CompilerUsed;
2158   GlobalVariable *UsedV;
2159   GlobalVariable *CompilerUsedV;
2160 
2161 public:
2162   LLVMUsed(Module &M) {
2163     SmallVector<GlobalValue *, 4> Vec;
2164     UsedV = collectUsedGlobalVariables(M, Vec, false);
2165     Used = {Vec.begin(), Vec.end()};
2166     Vec.clear();
2167     CompilerUsedV = collectUsedGlobalVariables(M, Vec, true);
2168     CompilerUsed = {Vec.begin(), Vec.end()};
2169   }
2170 
2171   using iterator = SmallPtrSet<GlobalValue *, 4>::iterator;
2172   using used_iterator_range = iterator_range<iterator>;
2173 
2174   iterator usedBegin() { return Used.begin(); }
2175   iterator usedEnd() { return Used.end(); }
2176 
2177   used_iterator_range used() {
2178     return used_iterator_range(usedBegin(), usedEnd());
2179   }
2180 
2181   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2182   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2183 
2184   used_iterator_range compilerUsed() {
2185     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2186   }
2187 
2188   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2189 
2190   bool compilerUsedCount(GlobalValue *GV) const {
2191     return CompilerUsed.count(GV);
2192   }
2193 
2194   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2195   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2196   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2197 
2198   bool compilerUsedInsert(GlobalValue *GV) {
2199     return CompilerUsed.insert(GV).second;
2200   }
2201 
2202   void syncVariablesAndSets() {
2203     if (UsedV)
2204       setUsedInitializer(*UsedV, Used);
2205     if (CompilerUsedV)
2206       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2207   }
2208 };
2209 
2210 } // end anonymous namespace
2211 
2212 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2213   if (GA.use_empty()) // No use at all.
2214     return false;
2215 
2216   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2217          "We should have removed the duplicated "
2218          "element from llvm.compiler.used");
2219   if (!GA.hasOneUse())
2220     // Strictly more than one use. So at least one is not in llvm.used and
2221     // llvm.compiler.used.
2222     return true;
2223 
2224   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2225   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2226 }
2227 
2228 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2229                                                const LLVMUsed &U) {
2230   unsigned N = 2;
2231   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2232          "We should have removed the duplicated "
2233          "element from llvm.compiler.used");
2234   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2235     ++N;
2236   return V.hasNUsesOrMore(N);
2237 }
2238 
2239 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2240   if (!GA.hasLocalLinkage())
2241     return true;
2242 
2243   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2244 }
2245 
2246 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2247                              bool &RenameTarget) {
2248   RenameTarget = false;
2249   bool Ret = false;
2250   if (hasUseOtherThanLLVMUsed(GA, U))
2251     Ret = true;
2252 
2253   // If the alias is externally visible, we may still be able to simplify it.
2254   if (!mayHaveOtherReferences(GA, U))
2255     return Ret;
2256 
2257   // If the aliasee has internal linkage, give it the name and linkage
2258   // of the alias, and delete the alias.  This turns:
2259   //   define internal ... @f(...)
2260   //   @a = alias ... @f
2261   // into:
2262   //   define ... @a(...)
2263   Constant *Aliasee = GA.getAliasee();
2264   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2265   if (!Target->hasLocalLinkage())
2266     return Ret;
2267 
2268   // Do not perform the transform if multiple aliases potentially target the
2269   // aliasee. This check also ensures that it is safe to replace the section
2270   // and other attributes of the aliasee with those of the alias.
2271   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2272     return Ret;
2273 
2274   RenameTarget = true;
2275   return true;
2276 }
2277 
2278 static bool
2279 OptimizeGlobalAliases(Module &M,
2280                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2281   bool Changed = false;
2282   LLVMUsed Used(M);
2283 
2284   for (GlobalValue *GV : Used.used())
2285     Used.compilerUsedErase(GV);
2286 
2287   // Return whether GV is explicitly or implicitly dso_local and not replaceable
2288   // by another definition in the current linkage unit.
2289   auto IsModuleLocal = [](GlobalValue &GV) {
2290     return !GlobalValue::isInterposableLinkage(GV.getLinkage()) &&
2291            (GV.isDSOLocal() || GV.isImplicitDSOLocal());
2292   };
2293 
2294   for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) {
2295     // Aliases without names cannot be referenced outside this module.
2296     if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage())
2297       J.setLinkage(GlobalValue::InternalLinkage);
2298 
2299     if (deleteIfDead(J, NotDiscardableComdats)) {
2300       Changed = true;
2301       continue;
2302     }
2303 
2304     // If the alias can change at link time, nothing can be done - bail out.
2305     if (!IsModuleLocal(J))
2306       continue;
2307 
2308     Constant *Aliasee = J.getAliasee();
2309     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2310     // We can't trivially replace the alias with the aliasee if the aliasee is
2311     // non-trivial in some way. We also can't replace the alias with the aliasee
2312     // if the aliasee may be preemptible at runtime. On ELF, a non-preemptible
2313     // alias can be used to access the definition as if preemption did not
2314     // happen.
2315     // TODO: Try to handle non-zero GEPs of local aliasees.
2316     if (!Target || !IsModuleLocal(*Target))
2317       continue;
2318 
2319     Target->removeDeadConstantUsers();
2320 
2321     // Make all users of the alias use the aliasee instead.
2322     bool RenameTarget;
2323     if (!hasUsesToReplace(J, Used, RenameTarget))
2324       continue;
2325 
2326     J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType()));
2327     ++NumAliasesResolved;
2328     Changed = true;
2329 
2330     if (RenameTarget) {
2331       // Give the aliasee the name, linkage and other attributes of the alias.
2332       Target->takeName(&J);
2333       Target->setLinkage(J.getLinkage());
2334       Target->setDSOLocal(J.isDSOLocal());
2335       Target->setVisibility(J.getVisibility());
2336       Target->setDLLStorageClass(J.getDLLStorageClass());
2337 
2338       if (Used.usedErase(&J))
2339         Used.usedInsert(Target);
2340 
2341       if (Used.compilerUsedErase(&J))
2342         Used.compilerUsedInsert(Target);
2343     } else if (mayHaveOtherReferences(J, Used))
2344       continue;
2345 
2346     // Delete the alias.
2347     M.getAliasList().erase(&J);
2348     ++NumAliasesRemoved;
2349     Changed = true;
2350   }
2351 
2352   Used.syncVariablesAndSets();
2353 
2354   return Changed;
2355 }
2356 
2357 static Function *
2358 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2359   // Hack to get a default TLI before we have actual Function.
2360   auto FuncIter = M.begin();
2361   if (FuncIter == M.end())
2362     return nullptr;
2363   auto *TLI = &GetTLI(*FuncIter);
2364 
2365   LibFunc F = LibFunc_cxa_atexit;
2366   if (!TLI->has(F))
2367     return nullptr;
2368 
2369   Function *Fn = M.getFunction(TLI->getName(F));
2370   if (!Fn)
2371     return nullptr;
2372 
2373   // Now get the actual TLI for Fn.
2374   TLI = &GetTLI(*Fn);
2375 
2376   // Make sure that the function has the correct prototype.
2377   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2378     return nullptr;
2379 
2380   return Fn;
2381 }
2382 
2383 /// Returns whether the given function is an empty C++ destructor and can
2384 /// therefore be eliminated.
2385 /// Note that we assume that other optimization passes have already simplified
2386 /// the code so we simply check for 'ret'.
2387 static bool cxxDtorIsEmpty(const Function &Fn) {
2388   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2389   // nounwind, but that doesn't seem worth doing.
2390   if (Fn.isDeclaration())
2391     return false;
2392 
2393   for (auto &I : Fn.getEntryBlock()) {
2394     if (I.isDebugOrPseudoInst())
2395       continue;
2396     if (isa<ReturnInst>(I))
2397       return true;
2398     break;
2399   }
2400   return false;
2401 }
2402 
2403 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2404   /// Itanium C++ ABI p3.3.5:
2405   ///
2406   ///   After constructing a global (or local static) object, that will require
2407   ///   destruction on exit, a termination function is registered as follows:
2408   ///
2409   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2410   ///
2411   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2412   ///   call f(p) when DSO d is unloaded, before all such termination calls
2413   ///   registered before this one. It returns zero if registration is
2414   ///   successful, nonzero on failure.
2415 
2416   // This pass will look for calls to __cxa_atexit where the function is trivial
2417   // and remove them.
2418   bool Changed = false;
2419 
2420   for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) {
2421     // We're only interested in calls. Theoretically, we could handle invoke
2422     // instructions as well, but neither llvm-gcc nor clang generate invokes
2423     // to __cxa_atexit.
2424     CallInst *CI = dyn_cast<CallInst>(U);
2425     if (!CI)
2426       continue;
2427 
2428     Function *DtorFn =
2429       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2430     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2431       continue;
2432 
2433     // Just remove the call.
2434     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2435     CI->eraseFromParent();
2436 
2437     ++NumCXXDtorsRemoved;
2438 
2439     Changed |= true;
2440   }
2441 
2442   return Changed;
2443 }
2444 
2445 static bool
2446 optimizeGlobalsInModule(Module &M, const DataLayout &DL,
2447                         function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2448                         function_ref<TargetTransformInfo &(Function &)> GetTTI,
2449                         function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2450                         function_ref<DominatorTree &(Function &)> LookupDomTree,
2451                         function_ref<void(Function &F)> ChangedCFGCallback) {
2452   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2453   bool Changed = false;
2454   bool LocalChange = true;
2455   Optional<uint32_t> FirstNotFullyEvaluatedPriority;
2456 
2457   while (LocalChange) {
2458     LocalChange = false;
2459 
2460     NotDiscardableComdats.clear();
2461     for (const GlobalVariable &GV : M.globals())
2462       if (const Comdat *C = GV.getComdat())
2463         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2464           NotDiscardableComdats.insert(C);
2465     for (Function &F : M)
2466       if (const Comdat *C = F.getComdat())
2467         if (!F.isDefTriviallyDead())
2468           NotDiscardableComdats.insert(C);
2469     for (GlobalAlias &GA : M.aliases())
2470       if (const Comdat *C = GA.getComdat())
2471         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2472           NotDiscardableComdats.insert(C);
2473 
2474     // Delete functions that are trivially dead, ccc -> fastcc
2475     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2476                                      NotDiscardableComdats, ChangedCFGCallback);
2477 
2478     // Optimize global_ctors list.
2479     LocalChange |=
2480         optimizeGlobalCtorsList(M, [&](uint32_t Priority, Function *F) {
2481           if (FirstNotFullyEvaluatedPriority &&
2482               *FirstNotFullyEvaluatedPriority != Priority)
2483             return false;
2484           bool Evaluated = EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2485           if (!Evaluated)
2486             FirstNotFullyEvaluatedPriority = Priority;
2487           return Evaluated;
2488         });
2489 
2490     // Optimize non-address-taken globals.
2491     LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree,
2492                                       NotDiscardableComdats);
2493 
2494     // Resolve aliases, when possible.
2495     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2496 
2497     // Try to remove trivial global destructors if they are not removed
2498     // already.
2499     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2500     if (CXAAtExitFn)
2501       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2502 
2503     Changed |= LocalChange;
2504   }
2505 
2506   // TODO: Move all global ctors functions to the end of the module for code
2507   // layout.
2508 
2509   return Changed;
2510 }
2511 
2512 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2513     auto &DL = M.getDataLayout();
2514     auto &FAM =
2515         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2516     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2517       return FAM.getResult<DominatorTreeAnalysis>(F);
2518     };
2519     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2520       return FAM.getResult<TargetLibraryAnalysis>(F);
2521     };
2522     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2523       return FAM.getResult<TargetIRAnalysis>(F);
2524     };
2525 
2526     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2527       return FAM.getResult<BlockFrequencyAnalysis>(F);
2528     };
2529     auto ChangedCFGCallback = [&FAM](Function &F) {
2530       FAM.invalidate(F, PreservedAnalyses::none());
2531     };
2532 
2533     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree,
2534                                  ChangedCFGCallback))
2535       return PreservedAnalyses::all();
2536 
2537     PreservedAnalyses PA = PreservedAnalyses::none();
2538     // We have not removed or replaced any functions.
2539     PA.preserve<FunctionAnalysisManagerModuleProxy>();
2540     // The only place we modify the CFG is when calling
2541     // removeUnreachableBlocks(), but there we make sure to invalidate analyses
2542     // for modified functions.
2543     PA.preserveSet<CFGAnalyses>();
2544     return PA;
2545 }
2546 
2547 namespace {
2548 
2549 struct GlobalOptLegacyPass : public ModulePass {
2550   static char ID; // Pass identification, replacement for typeid
2551 
2552   GlobalOptLegacyPass() : ModulePass(ID) {
2553     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2554   }
2555 
2556   bool runOnModule(Module &M) override {
2557     if (skipModule(M))
2558       return false;
2559 
2560     auto &DL = M.getDataLayout();
2561     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2562       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2563     };
2564     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
2565       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2566     };
2567     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2568       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2569     };
2570 
2571     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
2572       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
2573     };
2574 
2575     auto ChangedCFGCallback = [&LookupDomTree](Function &F) {
2576       auto &DT = LookupDomTree(F);
2577       DT.recalculate(F);
2578     };
2579 
2580     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree,
2581                                    ChangedCFGCallback);
2582   }
2583 
2584   void getAnalysisUsage(AnalysisUsage &AU) const override {
2585     AU.addRequired<TargetLibraryInfoWrapperPass>();
2586     AU.addRequired<TargetTransformInfoWrapperPass>();
2587     AU.addRequired<DominatorTreeWrapperPass>();
2588     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2589   }
2590 };
2591 
2592 } // end anonymous namespace
2593 
2594 char GlobalOptLegacyPass::ID = 0;
2595 
2596 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2597                       "Global Variable Optimizer", false, false)
2598 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2599 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2600 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
2601 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2602 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2603                     "Global Variable Optimizer", false, false)
2604 
2605 ModulePass *llvm::createGlobalOptimizerPass() {
2606   return new GlobalOptLegacyPass();
2607 }
2608