1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms simple global variables that never have their address 10 // taken. If obviously true, it marks read/write globals as constant, deletes 11 // variables only stored to, etc. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/GlobalOpt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/BinaryFormat/Dwarf.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalValue.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/IRBuilder.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Use.h" 53 #include "llvm/IR/User.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueHandle.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/AtomicOrdering.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MathExtras.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/IPO.h" 66 #include "llvm/Transforms/Utils/CtorUtils.h" 67 #include "llvm/Transforms/Utils/Evaluator.h" 68 #include "llvm/Transforms/Utils/GlobalStatus.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include <cassert> 71 #include <cstdint> 72 #include <utility> 73 #include <vector> 74 75 using namespace llvm; 76 77 #define DEBUG_TYPE "globalopt" 78 79 STATISTIC(NumMarked , "Number of globals marked constant"); 80 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 81 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 83 STATISTIC(NumDeleted , "Number of globals deleted"); 84 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 85 STATISTIC(NumLocalized , "Number of globals localized"); 86 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 87 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 89 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 93 STATISTIC(NumInternalFunc, "Number of internal functions"); 94 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 95 96 static cl::opt<bool> 97 EnableColdCCStressTest("enable-coldcc-stress-test", 98 cl::desc("Enable stress test of coldcc by adding " 99 "calling conv to all internal functions."), 100 cl::init(false), cl::Hidden); 101 102 static cl::opt<int> ColdCCRelFreq( 103 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 104 cl::desc( 105 "Maximum block frequency, expressed as a percentage of caller's " 106 "entry frequency, for a call site to be considered cold for enabling" 107 "coldcc")); 108 109 /// Is this global variable possibly used by a leak checker as a root? If so, 110 /// we might not really want to eliminate the stores to it. 111 static bool isLeakCheckerRoot(GlobalVariable *GV) { 112 // A global variable is a root if it is a pointer, or could plausibly contain 113 // a pointer. There are two challenges; one is that we could have a struct 114 // the has an inner member which is a pointer. We recurse through the type to 115 // detect these (up to a point). The other is that we may actually be a union 116 // of a pointer and another type, and so our LLVM type is an integer which 117 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 118 // potentially contained here. 119 120 if (GV->hasPrivateLinkage()) 121 return false; 122 123 SmallVector<Type *, 4> Types; 124 Types.push_back(GV->getValueType()); 125 126 unsigned Limit = 20; 127 do { 128 Type *Ty = Types.pop_back_val(); 129 switch (Ty->getTypeID()) { 130 default: break; 131 case Type::PointerTyID: 132 return true; 133 case Type::FixedVectorTyID: 134 case Type::ScalableVectorTyID: 135 if (cast<VectorType>(Ty)->getElementType()->isPointerTy()) 136 return true; 137 break; 138 case Type::ArrayTyID: 139 Types.push_back(cast<ArrayType>(Ty)->getElementType()); 140 break; 141 case Type::StructTyID: { 142 StructType *STy = cast<StructType>(Ty); 143 if (STy->isOpaque()) return true; 144 for (StructType::element_iterator I = STy->element_begin(), 145 E = STy->element_end(); I != E; ++I) { 146 Type *InnerTy = *I; 147 if (isa<PointerType>(InnerTy)) return true; 148 if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) || 149 isa<VectorType>(InnerTy)) 150 Types.push_back(InnerTy); 151 } 152 break; 153 } 154 } 155 if (--Limit == 0) return true; 156 } while (!Types.empty()); 157 return false; 158 } 159 160 /// Given a value that is stored to a global but never read, determine whether 161 /// it's safe to remove the store and the chain of computation that feeds the 162 /// store. 163 static bool IsSafeComputationToRemove( 164 Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 165 do { 166 if (isa<Constant>(V)) 167 return true; 168 if (!V->hasOneUse()) 169 return false; 170 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 171 isa<GlobalValue>(V)) 172 return false; 173 if (isAllocationFn(V, GetTLI)) 174 return true; 175 176 Instruction *I = cast<Instruction>(V); 177 if (I->mayHaveSideEffects()) 178 return false; 179 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 180 if (!GEP->hasAllConstantIndices()) 181 return false; 182 } else if (I->getNumOperands() != 1) { 183 return false; 184 } 185 186 V = I->getOperand(0); 187 } while (true); 188 } 189 190 /// This GV is a pointer root. Loop over all users of the global and clean up 191 /// any that obviously don't assign the global a value that isn't dynamically 192 /// allocated. 193 static bool 194 CleanupPointerRootUsers(GlobalVariable *GV, 195 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 196 // A brief explanation of leak checkers. The goal is to find bugs where 197 // pointers are forgotten, causing an accumulating growth in memory 198 // usage over time. The common strategy for leak checkers is to explicitly 199 // allow the memory pointed to by globals at exit. This is popular because it 200 // also solves another problem where the main thread of a C++ program may shut 201 // down before other threads that are still expecting to use those globals. To 202 // handle that case, we expect the program may create a singleton and never 203 // destroy it. 204 205 bool Changed = false; 206 207 // If Dead[n].first is the only use of a malloc result, we can delete its 208 // chain of computation and the store to the global in Dead[n].second. 209 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 210 211 // Constants can't be pointers to dynamically allocated memory. 212 for (User *U : llvm::make_early_inc_range(GV->users())) { 213 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 214 Value *V = SI->getValueOperand(); 215 if (isa<Constant>(V)) { 216 Changed = true; 217 SI->eraseFromParent(); 218 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 219 if (I->hasOneUse()) 220 Dead.push_back(std::make_pair(I, SI)); 221 } 222 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 223 if (isa<Constant>(MSI->getValue())) { 224 Changed = true; 225 MSI->eraseFromParent(); 226 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 227 if (I->hasOneUse()) 228 Dead.push_back(std::make_pair(I, MSI)); 229 } 230 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 231 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 232 if (MemSrc && MemSrc->isConstant()) { 233 Changed = true; 234 MTI->eraseFromParent(); 235 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 236 if (I->hasOneUse()) 237 Dead.push_back(std::make_pair(I, MTI)); 238 } 239 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 240 if (CE->use_empty()) { 241 CE->destroyConstant(); 242 Changed = true; 243 } 244 } else if (Constant *C = dyn_cast<Constant>(U)) { 245 if (isSafeToDestroyConstant(C)) { 246 C->destroyConstant(); 247 // This could have invalidated UI, start over from scratch. 248 Dead.clear(); 249 CleanupPointerRootUsers(GV, GetTLI); 250 return true; 251 } 252 } 253 } 254 255 for (int i = 0, e = Dead.size(); i != e; ++i) { 256 if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) { 257 Dead[i].second->eraseFromParent(); 258 Instruction *I = Dead[i].first; 259 do { 260 if (isAllocationFn(I, GetTLI)) 261 break; 262 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 263 if (!J) 264 break; 265 I->eraseFromParent(); 266 I = J; 267 } while (true); 268 I->eraseFromParent(); 269 Changed = true; 270 } 271 } 272 273 return Changed; 274 } 275 276 /// We just marked GV constant. Loop over all users of the global, cleaning up 277 /// the obvious ones. This is largely just a quick scan over the use list to 278 /// clean up the easy and obvious cruft. This returns true if it made a change. 279 static bool CleanupConstantGlobalUsers(GlobalVariable *GV, 280 const DataLayout &DL) { 281 Constant *Init = GV->getInitializer(); 282 SmallVector<User *, 8> WorkList(GV->users()); 283 SmallPtrSet<User *, 8> Visited; 284 bool Changed = false; 285 286 SmallVector<WeakTrackingVH> MaybeDeadInsts; 287 auto EraseFromParent = [&](Instruction *I) { 288 for (Value *Op : I->operands()) 289 if (auto *OpI = dyn_cast<Instruction>(Op)) 290 MaybeDeadInsts.push_back(OpI); 291 I->eraseFromParent(); 292 Changed = true; 293 }; 294 while (!WorkList.empty()) { 295 User *U = WorkList.pop_back_val(); 296 if (!Visited.insert(U).second) 297 continue; 298 299 if (auto *BO = dyn_cast<BitCastOperator>(U)) 300 append_range(WorkList, BO->users()); 301 if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(U)) 302 append_range(WorkList, ASC->users()); 303 else if (auto *GEP = dyn_cast<GEPOperator>(U)) 304 append_range(WorkList, GEP->users()); 305 else if (auto *LI = dyn_cast<LoadInst>(U)) { 306 // A load from a uniform value is always the same, regardless of any 307 // applied offset. 308 Type *Ty = LI->getType(); 309 if (Constant *Res = ConstantFoldLoadFromUniformValue(Init, Ty)) { 310 LI->replaceAllUsesWith(Res); 311 EraseFromParent(LI); 312 continue; 313 } 314 315 Value *PtrOp = LI->getPointerOperand(); 316 APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 317 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 318 DL, Offset, /* AllowNonInbounds */ true); 319 if (PtrOp == GV) { 320 if (auto *Value = ConstantFoldLoadFromConst(Init, Ty, Offset, DL)) { 321 LI->replaceAllUsesWith(Value); 322 EraseFromParent(LI); 323 } 324 } 325 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 326 // Store must be unreachable or storing Init into the global. 327 EraseFromParent(SI); 328 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 329 if (getUnderlyingObject(MI->getRawDest()) == GV) 330 EraseFromParent(MI); 331 } 332 } 333 334 Changed |= 335 RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts); 336 GV->removeDeadConstantUsers(); 337 return Changed; 338 } 339 340 static bool isSafeSROAElementUse(Value *V); 341 342 /// Return true if the specified GEP is a safe user of a derived 343 /// expression from a global that we want to SROA. 344 static bool isSafeSROAGEP(User *U) { 345 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 346 // don't like < 3 operand CE's, and we don't like non-constant integer 347 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 348 // value of C. 349 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 350 !cast<Constant>(U->getOperand(1))->isNullValue()) 351 return false; 352 353 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 354 ++GEPI; // Skip over the pointer index. 355 356 // For all other level we require that the indices are constant and inrange. 357 // In particular, consider: A[0][i]. We cannot know that the user isn't doing 358 // invalid things like allowing i to index an out-of-range subscript that 359 // accesses A[1]. This can also happen between different members of a struct 360 // in llvm IR. 361 for (; GEPI != E; ++GEPI) { 362 if (GEPI.isStruct()) 363 continue; 364 365 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 366 if (!IdxVal || (GEPI.isBoundedSequential() && 367 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 368 return false; 369 } 370 371 return llvm::all_of(U->users(), isSafeSROAElementUse); 372 } 373 374 /// Return true if the specified instruction is a safe user of a derived 375 /// expression from a global that we want to SROA. 376 static bool isSafeSROAElementUse(Value *V) { 377 // We might have a dead and dangling constant hanging off of here. 378 if (Constant *C = dyn_cast<Constant>(V)) 379 return isSafeToDestroyConstant(C); 380 381 Instruction *I = dyn_cast<Instruction>(V); 382 if (!I) return false; 383 384 // Loads are ok. 385 if (isa<LoadInst>(I)) return true; 386 387 // Stores *to* the pointer are ok. 388 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 389 return SI->getOperand(0) != V; 390 391 // Otherwise, it must be a GEP. Check it and its users are safe to SRA. 392 return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I); 393 } 394 395 /// Look at all uses of the global and decide whether it is safe for us to 396 /// perform this transformation. 397 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 398 for (User *U : GV->users()) { 399 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 400 if (!isa<GetElementPtrInst>(U) && 401 (!isa<ConstantExpr>(U) || 402 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 403 return false; 404 405 // Check the gep and it's users are safe to SRA 406 if (!isSafeSROAGEP(U)) 407 return false; 408 } 409 410 return true; 411 } 412 413 static bool IsSRASequential(Type *T) { 414 return isa<ArrayType>(T) || isa<VectorType>(T); 415 } 416 static uint64_t GetSRASequentialNumElements(Type *T) { 417 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 418 return AT->getNumElements(); 419 return cast<FixedVectorType>(T)->getNumElements(); 420 } 421 static Type *GetSRASequentialElementType(Type *T) { 422 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 423 return AT->getElementType(); 424 return cast<VectorType>(T)->getElementType(); 425 } 426 static bool CanDoGlobalSRA(GlobalVariable *GV) { 427 Constant *Init = GV->getInitializer(); 428 429 if (isa<StructType>(Init->getType())) { 430 // nothing to check 431 } else if (IsSRASequential(Init->getType())) { 432 if (GetSRASequentialNumElements(Init->getType()) > 16 && 433 GV->hasNUsesOrMore(16)) 434 return false; // It's not worth it. 435 } else 436 return false; 437 438 return GlobalUsersSafeToSRA(GV); 439 } 440 441 /// Copy over the debug info for a variable to its SRA replacements. 442 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 443 uint64_t FragmentOffsetInBits, 444 uint64_t FragmentSizeInBits, 445 uint64_t VarSize) { 446 SmallVector<DIGlobalVariableExpression *, 1> GVs; 447 GV->getDebugInfo(GVs); 448 for (auto *GVE : GVs) { 449 DIVariable *Var = GVE->getVariable(); 450 DIExpression *Expr = GVE->getExpression(); 451 // If the FragmentSize is smaller than the variable, 452 // emit a fragment expression. 453 if (FragmentSizeInBits < VarSize) { 454 if (auto E = DIExpression::createFragmentExpression( 455 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 456 Expr = *E; 457 else 458 return; 459 } 460 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 461 NGV->addDebugInfo(NGVE); 462 } 463 } 464 465 /// Perform scalar replacement of aggregates on the specified global variable. 466 /// This opens the door for other optimizations by exposing the behavior of the 467 /// program in a more fine-grained way. We have determined that this 468 /// transformation is safe already. We return the first global variable we 469 /// insert so that the caller can reprocess it. 470 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 471 // Make sure this global only has simple uses that we can SRA. 472 if (!CanDoGlobalSRA(GV)) 473 return nullptr; 474 475 assert(GV->hasLocalLinkage()); 476 Constant *Init = GV->getInitializer(); 477 Type *Ty = Init->getType(); 478 uint64_t VarSize = DL.getTypeSizeInBits(Ty); 479 480 std::map<unsigned, GlobalVariable *> NewGlobals; 481 482 // Get the alignment of the global, either explicit or target-specific. 483 Align StartAlignment = 484 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType()); 485 486 // Loop over all users and create replacement variables for used aggregate 487 // elements. 488 for (User *GEP : GV->users()) { 489 assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() == 490 Instruction::GetElementPtr) || 491 isa<GetElementPtrInst>(GEP)) && 492 "NonGEP CE's are not SRAable!"); 493 494 // Ignore the 1th operand, which has to be zero or else the program is quite 495 // broken (undefined). Get the 2nd operand, which is the structure or array 496 // index. 497 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 498 if (NewGlobals.count(ElementIdx) == 1) 499 continue; // we`ve already created replacement variable 500 assert(NewGlobals.count(ElementIdx) == 0); 501 502 Type *ElTy = nullptr; 503 if (StructType *STy = dyn_cast<StructType>(Ty)) 504 ElTy = STy->getElementType(ElementIdx); 505 else 506 ElTy = GetSRASequentialElementType(Ty); 507 assert(ElTy); 508 509 Constant *In = Init->getAggregateElement(ElementIdx); 510 assert(In && "Couldn't get element of initializer?"); 511 512 GlobalVariable *NGV = new GlobalVariable( 513 ElTy, false, GlobalVariable::InternalLinkage, In, 514 GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(), 515 GV->getType()->getAddressSpace()); 516 NGV->copyAttributesFrom(GV); 517 NewGlobals.insert(std::make_pair(ElementIdx, NGV)); 518 519 if (StructType *STy = dyn_cast<StructType>(Ty)) { 520 const StructLayout &Layout = *DL.getStructLayout(STy); 521 522 // Calculate the known alignment of the field. If the original aggregate 523 // had 256 byte alignment for example, something might depend on that: 524 // propagate info to each field. 525 uint64_t FieldOffset = Layout.getElementOffset(ElementIdx); 526 Align NewAlign = commonAlignment(StartAlignment, FieldOffset); 527 if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx))) 528 NGV->setAlignment(NewAlign); 529 530 // Copy over the debug info for the variable. 531 uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType()); 532 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx); 533 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize); 534 } else { 535 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 536 Align EltAlign = DL.getABITypeAlign(ElTy); 537 uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy); 538 539 // Calculate the known alignment of the field. If the original aggregate 540 // had 256 byte alignment for example, something might depend on that: 541 // propagate info to each field. 542 Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx); 543 if (NewAlign > EltAlign) 544 NGV->setAlignment(NewAlign); 545 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx, 546 FragmentSizeInBits, VarSize); 547 } 548 } 549 550 if (NewGlobals.empty()) 551 return nullptr; 552 553 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 554 for (auto NewGlobalVar : NewGlobals) 555 Globals.push_back(NewGlobalVar.second); 556 557 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 558 559 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 560 561 // Loop over all of the uses of the global, replacing the constantexpr geps, 562 // with smaller constantexpr geps or direct references. 563 while (!GV->use_empty()) { 564 User *GEP = GV->user_back(); 565 assert(((isa<ConstantExpr>(GEP) && 566 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 567 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 568 569 // Ignore the 1th operand, which has to be zero or else the program is quite 570 // broken (undefined). Get the 2nd operand, which is the structure or array 571 // index. 572 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 573 assert(NewGlobals.count(ElementIdx) == 1); 574 575 Value *NewPtr = NewGlobals[ElementIdx]; 576 Type *NewTy = NewGlobals[ElementIdx]->getValueType(); 577 578 // Form a shorter GEP if needed. 579 if (GEP->getNumOperands() > 3) { 580 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 581 SmallVector<Constant*, 8> Idxs; 582 Idxs.push_back(NullInt); 583 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 584 Idxs.push_back(CE->getOperand(i)); 585 NewPtr = 586 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 587 } else { 588 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 589 SmallVector<Value*, 8> Idxs; 590 Idxs.push_back(NullInt); 591 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 592 Idxs.push_back(GEPI->getOperand(i)); 593 NewPtr = GetElementPtrInst::Create( 594 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx), 595 GEPI); 596 } 597 } 598 GEP->replaceAllUsesWith(NewPtr); 599 600 // We changed the pointer of any memory access user. Recalculate alignments. 601 for (User *U : NewPtr->users()) { 602 if (auto *Load = dyn_cast<LoadInst>(U)) { 603 Align PrefAlign = DL.getPrefTypeAlign(Load->getType()); 604 Align NewAlign = getOrEnforceKnownAlignment(Load->getPointerOperand(), 605 PrefAlign, DL, Load); 606 Load->setAlignment(NewAlign); 607 } 608 if (auto *Store = dyn_cast<StoreInst>(U)) { 609 Align PrefAlign = 610 DL.getPrefTypeAlign(Store->getValueOperand()->getType()); 611 Align NewAlign = getOrEnforceKnownAlignment(Store->getPointerOperand(), 612 PrefAlign, DL, Store); 613 Store->setAlignment(NewAlign); 614 } 615 } 616 617 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 618 GEPI->eraseFromParent(); 619 else 620 cast<ConstantExpr>(GEP)->destroyConstant(); 621 } 622 623 // Delete the old global, now that it is dead. 624 Globals.erase(GV); 625 ++NumSRA; 626 627 assert(NewGlobals.size() > 0); 628 return NewGlobals.begin()->second; 629 } 630 631 /// Return true if all users of the specified value will trap if the value is 632 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 633 /// reprocessing them. 634 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 635 SmallPtrSetImpl<const PHINode*> &PHIs) { 636 for (const User *U : V->users()) { 637 if (const Instruction *I = dyn_cast<Instruction>(U)) { 638 // If null pointer is considered valid, then all uses are non-trapping. 639 // Non address-space 0 globals have already been pruned by the caller. 640 if (NullPointerIsDefined(I->getFunction())) 641 return false; 642 } 643 if (isa<LoadInst>(U)) { 644 // Will trap. 645 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 646 if (SI->getOperand(0) == V) { 647 //cerr << "NONTRAPPING USE: " << *U; 648 return false; // Storing the value. 649 } 650 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 651 if (CI->getCalledOperand() != V) { 652 //cerr << "NONTRAPPING USE: " << *U; 653 return false; // Not calling the ptr 654 } 655 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 656 if (II->getCalledOperand() != V) { 657 //cerr << "NONTRAPPING USE: " << *U; 658 return false; // Not calling the ptr 659 } 660 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 661 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 662 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 663 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 664 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 665 // If we've already seen this phi node, ignore it, it has already been 666 // checked. 667 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 668 return false; 669 } else if (isa<ICmpInst>(U) && 670 !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) && 671 isa<LoadInst>(U->getOperand(0)) && 672 isa<ConstantPointerNull>(U->getOperand(1))) { 673 assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0)) 674 ->getPointerOperand() 675 ->stripPointerCasts()) && 676 "Should be GlobalVariable"); 677 // This and only this kind of non-signed ICmpInst is to be replaced with 678 // the comparing of the value of the created global init bool later in 679 // optimizeGlobalAddressOfMalloc for the global variable. 680 } else { 681 //cerr << "NONTRAPPING USE: " << *U; 682 return false; 683 } 684 } 685 return true; 686 } 687 688 /// Return true if all uses of any loads from GV will trap if the loaded value 689 /// is null. Note that this also permits comparisons of the loaded value 690 /// against null, as a special case. 691 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 692 SmallVector<const Value *, 4> Worklist; 693 Worklist.push_back(GV); 694 while (!Worklist.empty()) { 695 const Value *P = Worklist.pop_back_val(); 696 for (auto *U : P->users()) { 697 if (auto *LI = dyn_cast<LoadInst>(U)) { 698 SmallPtrSet<const PHINode *, 8> PHIs; 699 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 700 return false; 701 } else if (auto *SI = dyn_cast<StoreInst>(U)) { 702 // Ignore stores to the global. 703 if (SI->getPointerOperand() != P) 704 return false; 705 } else if (auto *CE = dyn_cast<ConstantExpr>(U)) { 706 if (CE->stripPointerCasts() != GV) 707 return false; 708 // Check further the ConstantExpr. 709 Worklist.push_back(CE); 710 } else { 711 // We don't know or understand this user, bail out. 712 return false; 713 } 714 } 715 } 716 717 return true; 718 } 719 720 /// Get all the loads/store uses for global variable \p GV. 721 static void allUsesOfLoadAndStores(GlobalVariable *GV, 722 SmallVector<Value *, 4> &Uses) { 723 SmallVector<Value *, 4> Worklist; 724 Worklist.push_back(GV); 725 while (!Worklist.empty()) { 726 auto *P = Worklist.pop_back_val(); 727 for (auto *U : P->users()) { 728 if (auto *CE = dyn_cast<ConstantExpr>(U)) { 729 Worklist.push_back(CE); 730 continue; 731 } 732 733 assert((isa<LoadInst>(U) || isa<StoreInst>(U)) && 734 "Expect only load or store instructions"); 735 Uses.push_back(U); 736 } 737 } 738 } 739 740 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 741 bool Changed = false; 742 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 743 Instruction *I = cast<Instruction>(*UI++); 744 // Uses are non-trapping if null pointer is considered valid. 745 // Non address-space 0 globals are already pruned by the caller. 746 if (NullPointerIsDefined(I->getFunction())) 747 return false; 748 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 749 LI->setOperand(0, NewV); 750 Changed = true; 751 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 752 if (SI->getOperand(1) == V) { 753 SI->setOperand(1, NewV); 754 Changed = true; 755 } 756 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 757 CallBase *CB = cast<CallBase>(I); 758 if (CB->getCalledOperand() == V) { 759 // Calling through the pointer! Turn into a direct call, but be careful 760 // that the pointer is not also being passed as an argument. 761 CB->setCalledOperand(NewV); 762 Changed = true; 763 bool PassedAsArg = false; 764 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 765 if (CB->getArgOperand(i) == V) { 766 PassedAsArg = true; 767 CB->setArgOperand(i, NewV); 768 } 769 770 if (PassedAsArg) { 771 // Being passed as an argument also. Be careful to not invalidate UI! 772 UI = V->user_begin(); 773 } 774 } 775 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 776 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 777 ConstantExpr::getCast(CI->getOpcode(), 778 NewV, CI->getType())); 779 if (CI->use_empty()) { 780 Changed = true; 781 CI->eraseFromParent(); 782 } 783 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 784 // Should handle GEP here. 785 SmallVector<Constant*, 8> Idxs; 786 Idxs.reserve(GEPI->getNumOperands()-1); 787 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 788 i != e; ++i) 789 if (Constant *C = dyn_cast<Constant>(*i)) 790 Idxs.push_back(C); 791 else 792 break; 793 if (Idxs.size() == GEPI->getNumOperands()-1) 794 Changed |= OptimizeAwayTrappingUsesOfValue( 795 GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(), 796 NewV, Idxs)); 797 if (GEPI->use_empty()) { 798 Changed = true; 799 GEPI->eraseFromParent(); 800 } 801 } 802 } 803 804 return Changed; 805 } 806 807 /// The specified global has only one non-null value stored into it. If there 808 /// are uses of the loaded value that would trap if the loaded value is 809 /// dynamically null, then we know that they cannot be reachable with a null 810 /// optimize away the load. 811 static bool OptimizeAwayTrappingUsesOfLoads( 812 GlobalVariable *GV, Constant *LV, const DataLayout &DL, 813 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 814 bool Changed = false; 815 816 // Keep track of whether we are able to remove all the uses of the global 817 // other than the store that defines it. 818 bool AllNonStoreUsesGone = true; 819 820 // Replace all uses of loads with uses of uses of the stored value. 821 for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) { 822 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 823 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 824 // If we were able to delete all uses of the loads 825 if (LI->use_empty()) { 826 LI->eraseFromParent(); 827 Changed = true; 828 } else { 829 AllNonStoreUsesGone = false; 830 } 831 } else if (isa<StoreInst>(GlobalUser)) { 832 // Ignore the store that stores "LV" to the global. 833 assert(GlobalUser->getOperand(1) == GV && 834 "Must be storing *to* the global"); 835 } else { 836 AllNonStoreUsesGone = false; 837 838 // If we get here we could have other crazy uses that are transitively 839 // loaded. 840 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 841 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 842 isa<BitCastInst>(GlobalUser) || 843 isa<GetElementPtrInst>(GlobalUser)) && 844 "Only expect load and stores!"); 845 } 846 } 847 848 if (Changed) { 849 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV 850 << "\n"); 851 ++NumGlobUses; 852 } 853 854 // If we nuked all of the loads, then none of the stores are needed either, 855 // nor is the global. 856 if (AllNonStoreUsesGone) { 857 if (isLeakCheckerRoot(GV)) { 858 Changed |= CleanupPointerRootUsers(GV, GetTLI); 859 } else { 860 Changed = true; 861 CleanupConstantGlobalUsers(GV, DL); 862 } 863 if (GV->use_empty()) { 864 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 865 Changed = true; 866 GV->eraseFromParent(); 867 ++NumDeleted; 868 } 869 } 870 return Changed; 871 } 872 873 /// Walk the use list of V, constant folding all of the instructions that are 874 /// foldable. 875 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 876 TargetLibraryInfo *TLI) { 877 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 878 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 879 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 880 I->replaceAllUsesWith(NewC); 881 882 // Advance UI to the next non-I use to avoid invalidating it! 883 // Instructions could multiply use V. 884 while (UI != E && *UI == I) 885 ++UI; 886 if (isInstructionTriviallyDead(I, TLI)) 887 I->eraseFromParent(); 888 } 889 } 890 891 /// This function takes the specified global variable, and transforms the 892 /// program as if it always contained the result of the specified malloc. 893 /// Because it is always the result of the specified malloc, there is no reason 894 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 895 /// loads of GV as uses of the new global. 896 static GlobalVariable * 897 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 898 ConstantInt *NElements, const DataLayout &DL, 899 TargetLibraryInfo *TLI) { 900 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI 901 << '\n'); 902 903 Type *GlobalType; 904 if (NElements->getZExtValue() == 1) 905 GlobalType = AllocTy; 906 else 907 // If we have an array allocation, the global variable is of an array. 908 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 909 910 // Create the new global variable. The contents of the malloc'd memory is 911 // undefined, so initialize with an undef value. 912 GlobalVariable *NewGV = new GlobalVariable( 913 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 914 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 915 GV->getThreadLocalMode()); 916 917 // If there are bitcast users of the malloc (which is typical, usually we have 918 // a malloc + bitcast) then replace them with uses of the new global. Update 919 // other users to use the global as well. 920 BitCastInst *TheBC = nullptr; 921 while (!CI->use_empty()) { 922 Instruction *User = cast<Instruction>(CI->user_back()); 923 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 924 if (BCI->getType() == NewGV->getType()) { 925 BCI->replaceAllUsesWith(NewGV); 926 BCI->eraseFromParent(); 927 } else { 928 BCI->setOperand(0, NewGV); 929 } 930 } else { 931 if (!TheBC) 932 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 933 User->replaceUsesOfWith(CI, TheBC); 934 } 935 } 936 937 SmallPtrSet<Constant *, 1> RepValues; 938 RepValues.insert(NewGV); 939 940 // If there is a comparison against null, we will insert a global bool to 941 // keep track of whether the global was initialized yet or not. 942 GlobalVariable *InitBool = 943 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 944 GlobalValue::InternalLinkage, 945 ConstantInt::getFalse(GV->getContext()), 946 GV->getName()+".init", GV->getThreadLocalMode()); 947 bool InitBoolUsed = false; 948 949 // Loop over all instruction uses of GV, processing them in turn. 950 SmallVector<Value *, 4> Guses; 951 allUsesOfLoadAndStores(GV, Guses); 952 for (auto *U : Guses) { 953 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 954 // The global is initialized when the store to it occurs. If the stored 955 // value is null value, the global bool is set to false, otherwise true. 956 new StoreInst(ConstantInt::getBool( 957 GV->getContext(), 958 !isa<ConstantPointerNull>(SI->getValueOperand())), 959 InitBool, false, Align(1), SI->getOrdering(), 960 SI->getSyncScopeID(), SI); 961 SI->eraseFromParent(); 962 continue; 963 } 964 965 LoadInst *LI = cast<LoadInst>(U); 966 while (!LI->use_empty()) { 967 Use &LoadUse = *LI->use_begin(); 968 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 969 if (!ICI) { 970 auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType()); 971 RepValues.insert(CE); 972 LoadUse.set(CE); 973 continue; 974 } 975 976 // Replace the cmp X, 0 with a use of the bool value. 977 Value *LV = new LoadInst(InitBool->getValueType(), InitBool, 978 InitBool->getName() + ".val", false, Align(1), 979 LI->getOrdering(), LI->getSyncScopeID(), LI); 980 InitBoolUsed = true; 981 switch (ICI->getPredicate()) { 982 default: llvm_unreachable("Unknown ICmp Predicate!"); 983 case ICmpInst::ICMP_ULT: // X < null -> always false 984 LV = ConstantInt::getFalse(GV->getContext()); 985 break; 986 case ICmpInst::ICMP_UGE: // X >= null -> always true 987 LV = ConstantInt::getTrue(GV->getContext()); 988 break; 989 case ICmpInst::ICMP_ULE: 990 case ICmpInst::ICMP_EQ: 991 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 992 break; 993 case ICmpInst::ICMP_NE: 994 case ICmpInst::ICMP_UGT: 995 break; // no change. 996 } 997 ICI->replaceAllUsesWith(LV); 998 ICI->eraseFromParent(); 999 } 1000 LI->eraseFromParent(); 1001 } 1002 1003 // If the initialization boolean was used, insert it, otherwise delete it. 1004 if (!InitBoolUsed) { 1005 while (!InitBool->use_empty()) // Delete initializations 1006 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 1007 delete InitBool; 1008 } else 1009 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 1010 1011 // Now the GV is dead, nuke it and the malloc.. 1012 GV->eraseFromParent(); 1013 CI->eraseFromParent(); 1014 1015 // To further other optimizations, loop over all users of NewGV and try to 1016 // constant prop them. This will promote GEP instructions with constant 1017 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 1018 for (auto *CE : RepValues) 1019 ConstantPropUsersOf(CE, DL, TLI); 1020 1021 return NewGV; 1022 } 1023 1024 /// Scan the use-list of GV checking to make sure that there are no complex uses 1025 /// of GV. We permit simple things like dereferencing the pointer, but not 1026 /// storing through the address, unless it is to the specified global. 1027 static bool 1028 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI, 1029 const GlobalVariable *GV) { 1030 SmallPtrSet<const Value *, 4> Visited; 1031 SmallVector<const Value *, 4> Worklist; 1032 Worklist.push_back(CI); 1033 1034 while (!Worklist.empty()) { 1035 const Value *V = Worklist.pop_back_val(); 1036 if (!Visited.insert(V).second) 1037 continue; 1038 1039 for (const Use &VUse : V->uses()) { 1040 const User *U = VUse.getUser(); 1041 if (isa<LoadInst>(U) || isa<CmpInst>(U)) 1042 continue; // Fine, ignore. 1043 1044 if (auto *SI = dyn_cast<StoreInst>(U)) { 1045 if (SI->getValueOperand() == V && 1046 SI->getPointerOperand()->stripPointerCasts() != GV) 1047 return false; // Storing the pointer not into GV... bad. 1048 continue; // Otherwise, storing through it, or storing into GV... fine. 1049 } 1050 1051 if (auto *BCI = dyn_cast<BitCastInst>(U)) { 1052 Worklist.push_back(BCI); 1053 continue; 1054 } 1055 1056 if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1057 Worklist.push_back(GEPI); 1058 continue; 1059 } 1060 1061 return false; 1062 } 1063 } 1064 1065 return true; 1066 } 1067 1068 /// getMallocType - Returns the PointerType resulting from the malloc call. 1069 /// The PointerType depends on the number of bitcast uses of the malloc call: 1070 /// 0: PointerType is the calls' return type. 1071 /// 1: PointerType is the bitcast's result type. 1072 /// >1: Unique PointerType cannot be determined, return NULL. 1073 static PointerType *getMallocType(const CallInst *CI, 1074 const TargetLibraryInfo *TLI) { 1075 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 1076 1077 PointerType *MallocType = nullptr; 1078 unsigned NumOfBitCastUses = 0; 1079 1080 // Determine if CallInst has a bitcast use. 1081 for (const User *U : CI->users()) 1082 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 1083 MallocType = cast<PointerType>(BCI->getDestTy()); 1084 NumOfBitCastUses++; 1085 } 1086 1087 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 1088 if (NumOfBitCastUses == 1) 1089 return MallocType; 1090 1091 // Malloc call was not bitcast, so type is the malloc function's return type. 1092 if (NumOfBitCastUses == 0) 1093 return cast<PointerType>(CI->getType()); 1094 1095 // Type could not be determined. 1096 return nullptr; 1097 } 1098 1099 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 1100 /// The Type depends on the number of bitcast uses of the malloc call: 1101 /// 0: PointerType is the malloc calls' return type. 1102 /// 1: PointerType is the bitcast's result type. 1103 /// >1: Unique PointerType cannot be determined, return NULL. 1104 static Type *getMallocAllocatedType(const CallInst *CI, 1105 const TargetLibraryInfo *TLI) { 1106 PointerType *PT = getMallocType(CI, TLI); 1107 return PT ? PT->getElementType() : nullptr; 1108 } 1109 1110 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL, 1111 const TargetLibraryInfo *TLI, 1112 bool LookThroughSExt = false) { 1113 if (!CI) 1114 return nullptr; 1115 1116 // The size of the malloc's result type must be known to determine array size. 1117 Type *T = getMallocAllocatedType(CI, TLI); 1118 if (!T || !T->isSized()) 1119 return nullptr; 1120 1121 unsigned ElementSize = DL.getTypeAllocSize(T); 1122 if (StructType *ST = dyn_cast<StructType>(T)) 1123 ElementSize = DL.getStructLayout(ST)->getSizeInBytes(); 1124 1125 // If malloc call's arg can be determined to be a multiple of ElementSize, 1126 // return the multiple. Otherwise, return NULL. 1127 Value *MallocArg = CI->getArgOperand(0); 1128 Value *Multiple = nullptr; 1129 if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt)) 1130 return Multiple; 1131 1132 return nullptr; 1133 } 1134 1135 /// getMallocArraySize - Returns the array size of a malloc call. If the 1136 /// argument passed to malloc is a multiple of the size of the malloced type, 1137 /// then return that multiple. For non-array mallocs, the multiple is 1138 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 1139 /// determined. 1140 static Value *getMallocArraySize(CallInst *CI, const DataLayout &DL, 1141 const TargetLibraryInfo *TLI, 1142 bool LookThroughSExt) { 1143 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 1144 return computeArraySize(CI, DL, TLI, LookThroughSExt); 1145 } 1146 1147 1148 /// This function is called when we see a pointer global variable with a single 1149 /// value stored it that is a malloc or cast of malloc. 1150 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1151 Type *AllocTy, 1152 AtomicOrdering Ordering, 1153 const DataLayout &DL, 1154 TargetLibraryInfo *TLI) { 1155 // If this is a malloc of an abstract type, don't touch it. 1156 if (!AllocTy->isSized()) 1157 return false; 1158 1159 // We can't optimize this global unless all uses of it are *known* to be 1160 // of the malloc value, not of the null initializer value (consider a use 1161 // that compares the global's value against zero to see if the malloc has 1162 // been reached). To do this, we check to see if all uses of the global 1163 // would trap if the global were null: this proves that they must all 1164 // happen after the malloc. 1165 if (!allUsesOfLoadedValueWillTrapIfNull(GV)) 1166 return false; 1167 1168 // We can't optimize this if the malloc itself is used in a complex way, 1169 // for example, being stored into multiple globals. This allows the 1170 // malloc to be stored into the specified global, loaded, gep, icmp'd. 1171 // These are all things we could transform to using the global for. 1172 if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV)) 1173 return false; 1174 1175 // If we have a global that is only initialized with a fixed size malloc, 1176 // transform the program to use global memory instead of malloc'd memory. 1177 // This eliminates dynamic allocation, avoids an indirection accessing the 1178 // data, and exposes the resultant global to further GlobalOpt. 1179 // We cannot optimize the malloc if we cannot determine malloc array size. 1180 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1181 if (!NElems) 1182 return false; 1183 1184 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1185 // Restrict this transformation to only working on small allocations 1186 // (2048 bytes currently), as we don't want to introduce a 16M global or 1187 // something. 1188 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1189 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1190 return true; 1191 } 1192 1193 return false; 1194 } 1195 1196 // Try to optimize globals based on the knowledge that only one value (besides 1197 // its initializer) is ever stored to the global. 1198 static bool 1199 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1200 AtomicOrdering Ordering, const DataLayout &DL, 1201 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1202 // Ignore no-op GEPs and bitcasts. 1203 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1204 1205 // If we are dealing with a pointer global that is initialized to null and 1206 // only has one (non-null) value stored into it, then we can optimize any 1207 // users of the loaded value (often calls and loads) that would trap if the 1208 // value was null. 1209 if (GV->getInitializer()->getType()->isPointerTy() && 1210 GV->getInitializer()->isNullValue() && 1211 StoredOnceVal->getType()->isPointerTy() && 1212 !NullPointerIsDefined( 1213 nullptr /* F */, 1214 GV->getInitializer()->getType()->getPointerAddressSpace())) { 1215 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1216 if (GV->getInitializer()->getType() != SOVC->getType()) 1217 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1218 1219 // Optimize away any trapping uses of the loaded value. 1220 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI)) 1221 return true; 1222 } else if (isMallocLikeFn(StoredOnceVal, GetTLI)) { 1223 if (auto *CI = dyn_cast<CallInst>(StoredOnceVal)) { 1224 auto *TLI = &GetTLI(*CI->getFunction()); 1225 Type *MallocType = getMallocAllocatedType(CI, TLI); 1226 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1227 Ordering, DL, TLI)) 1228 return true; 1229 } 1230 } 1231 } 1232 1233 return false; 1234 } 1235 1236 /// At this point, we have learned that the only two values ever stored into GV 1237 /// are its initializer and OtherVal. See if we can shrink the global into a 1238 /// boolean and select between the two values whenever it is used. This exposes 1239 /// the values to other scalar optimizations. 1240 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1241 Type *GVElType = GV->getValueType(); 1242 1243 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1244 // an FP value, pointer or vector, don't do this optimization because a select 1245 // between them is very expensive and unlikely to lead to later 1246 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1247 // where v1 and v2 both require constant pool loads, a big loss. 1248 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1249 GVElType->isFloatingPointTy() || 1250 GVElType->isPointerTy() || GVElType->isVectorTy()) 1251 return false; 1252 1253 // Walk the use list of the global seeing if all the uses are load or store. 1254 // If there is anything else, bail out. 1255 for (User *U : GV->users()) { 1256 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1257 return false; 1258 if (getLoadStoreType(U) != GVElType) 1259 return false; 1260 } 1261 1262 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1263 1264 // Create the new global, initializing it to false. 1265 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1266 false, 1267 GlobalValue::InternalLinkage, 1268 ConstantInt::getFalse(GV->getContext()), 1269 GV->getName()+".b", 1270 GV->getThreadLocalMode(), 1271 GV->getType()->getAddressSpace()); 1272 NewGV->copyAttributesFrom(GV); 1273 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1274 1275 Constant *InitVal = GV->getInitializer(); 1276 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1277 "No reason to shrink to bool!"); 1278 1279 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1280 GV->getDebugInfo(GVs); 1281 1282 // If initialized to zero and storing one into the global, we can use a cast 1283 // instead of a select to synthesize the desired value. 1284 bool IsOneZero = false; 1285 bool EmitOneOrZero = true; 1286 auto *CI = dyn_cast<ConstantInt>(OtherVal); 1287 if (CI && CI->getValue().getActiveBits() <= 64) { 1288 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1289 1290 auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer()); 1291 if (CIInit && CIInit->getValue().getActiveBits() <= 64) { 1292 uint64_t ValInit = CIInit->getZExtValue(); 1293 uint64_t ValOther = CI->getZExtValue(); 1294 uint64_t ValMinus = ValOther - ValInit; 1295 1296 for(auto *GVe : GVs){ 1297 DIGlobalVariable *DGV = GVe->getVariable(); 1298 DIExpression *E = GVe->getExpression(); 1299 const DataLayout &DL = GV->getParent()->getDataLayout(); 1300 unsigned SizeInOctets = 1301 DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8; 1302 1303 // It is expected that the address of global optimized variable is on 1304 // top of the stack. After optimization, value of that variable will 1305 // be ether 0 for initial value or 1 for other value. The following 1306 // expression should return constant integer value depending on the 1307 // value at global object address: 1308 // val * (ValOther - ValInit) + ValInit: 1309 // DW_OP_deref DW_OP_constu <ValMinus> 1310 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1311 SmallVector<uint64_t, 12> Ops = { 1312 dwarf::DW_OP_deref_size, SizeInOctets, 1313 dwarf::DW_OP_constu, ValMinus, 1314 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1315 dwarf::DW_OP_plus}; 1316 bool WithStackValue = true; 1317 E = DIExpression::prependOpcodes(E, Ops, WithStackValue); 1318 DIGlobalVariableExpression *DGVE = 1319 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1320 NewGV->addDebugInfo(DGVE); 1321 } 1322 EmitOneOrZero = false; 1323 } 1324 } 1325 1326 if (EmitOneOrZero) { 1327 // FIXME: This will only emit address for debugger on which will 1328 // be written only 0 or 1. 1329 for(auto *GV : GVs) 1330 NewGV->addDebugInfo(GV); 1331 } 1332 1333 while (!GV->use_empty()) { 1334 Instruction *UI = cast<Instruction>(GV->user_back()); 1335 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1336 // Change the store into a boolean store. 1337 bool StoringOther = SI->getOperand(0) == OtherVal; 1338 // Only do this if we weren't storing a loaded value. 1339 Value *StoreVal; 1340 if (StoringOther || SI->getOperand(0) == InitVal) { 1341 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1342 StoringOther); 1343 } else { 1344 // Otherwise, we are storing a previously loaded copy. To do this, 1345 // change the copy from copying the original value to just copying the 1346 // bool. 1347 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1348 1349 // If we've already replaced the input, StoredVal will be a cast or 1350 // select instruction. If not, it will be a load of the original 1351 // global. 1352 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1353 assert(LI->getOperand(0) == GV && "Not a copy!"); 1354 // Insert a new load, to preserve the saved value. 1355 StoreVal = new LoadInst(NewGV->getValueType(), NewGV, 1356 LI->getName() + ".b", false, Align(1), 1357 LI->getOrdering(), LI->getSyncScopeID(), LI); 1358 } else { 1359 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1360 "This is not a form that we understand!"); 1361 StoreVal = StoredVal->getOperand(0); 1362 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1363 } 1364 } 1365 StoreInst *NSI = 1366 new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(), 1367 SI->getSyncScopeID(), SI); 1368 NSI->setDebugLoc(SI->getDebugLoc()); 1369 } else { 1370 // Change the load into a load of bool then a select. 1371 LoadInst *LI = cast<LoadInst>(UI); 1372 LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV, 1373 LI->getName() + ".b", false, Align(1), 1374 LI->getOrdering(), LI->getSyncScopeID(), LI); 1375 Instruction *NSI; 1376 if (IsOneZero) 1377 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1378 else 1379 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1380 NSI->takeName(LI); 1381 // Since LI is split into two instructions, NLI and NSI both inherit the 1382 // same DebugLoc 1383 NLI->setDebugLoc(LI->getDebugLoc()); 1384 NSI->setDebugLoc(LI->getDebugLoc()); 1385 LI->replaceAllUsesWith(NSI); 1386 } 1387 UI->eraseFromParent(); 1388 } 1389 1390 // Retain the name of the old global variable. People who are debugging their 1391 // programs may expect these variables to be named the same. 1392 NewGV->takeName(GV); 1393 GV->eraseFromParent(); 1394 return true; 1395 } 1396 1397 static bool deleteIfDead( 1398 GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1399 GV.removeDeadConstantUsers(); 1400 1401 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1402 return false; 1403 1404 if (const Comdat *C = GV.getComdat()) 1405 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1406 return false; 1407 1408 bool Dead; 1409 if (auto *F = dyn_cast<Function>(&GV)) 1410 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1411 else 1412 Dead = GV.use_empty(); 1413 if (!Dead) 1414 return false; 1415 1416 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1417 GV.eraseFromParent(); 1418 ++NumDeleted; 1419 return true; 1420 } 1421 1422 static bool isPointerValueDeadOnEntryToFunction( 1423 const Function *F, GlobalValue *GV, 1424 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1425 // Find all uses of GV. We expect them all to be in F, and if we can't 1426 // identify any of the uses we bail out. 1427 // 1428 // On each of these uses, identify if the memory that GV points to is 1429 // used/required/live at the start of the function. If it is not, for example 1430 // if the first thing the function does is store to the GV, the GV can 1431 // possibly be demoted. 1432 // 1433 // We don't do an exhaustive search for memory operations - simply look 1434 // through bitcasts as they're quite common and benign. 1435 const DataLayout &DL = GV->getParent()->getDataLayout(); 1436 SmallVector<LoadInst *, 4> Loads; 1437 SmallVector<StoreInst *, 4> Stores; 1438 for (auto *U : GV->users()) { 1439 if (Operator::getOpcode(U) == Instruction::BitCast) { 1440 for (auto *UU : U->users()) { 1441 if (auto *LI = dyn_cast<LoadInst>(UU)) 1442 Loads.push_back(LI); 1443 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1444 Stores.push_back(SI); 1445 else 1446 return false; 1447 } 1448 continue; 1449 } 1450 1451 Instruction *I = dyn_cast<Instruction>(U); 1452 if (!I) 1453 return false; 1454 assert(I->getParent()->getParent() == F); 1455 1456 if (auto *LI = dyn_cast<LoadInst>(I)) 1457 Loads.push_back(LI); 1458 else if (auto *SI = dyn_cast<StoreInst>(I)) 1459 Stores.push_back(SI); 1460 else 1461 return false; 1462 } 1463 1464 // We have identified all uses of GV into loads and stores. Now check if all 1465 // of them are known not to depend on the value of the global at the function 1466 // entry point. We do this by ensuring that every load is dominated by at 1467 // least one store. 1468 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1469 1470 // The below check is quadratic. Check we're not going to do too many tests. 1471 // FIXME: Even though this will always have worst-case quadratic time, we 1472 // could put effort into minimizing the average time by putting stores that 1473 // have been shown to dominate at least one load at the beginning of the 1474 // Stores array, making subsequent dominance checks more likely to succeed 1475 // early. 1476 // 1477 // The threshold here is fairly large because global->local demotion is a 1478 // very powerful optimization should it fire. 1479 const unsigned Threshold = 100; 1480 if (Loads.size() * Stores.size() > Threshold) 1481 return false; 1482 1483 for (auto *L : Loads) { 1484 auto *LTy = L->getType(); 1485 if (none_of(Stores, [&](const StoreInst *S) { 1486 auto *STy = S->getValueOperand()->getType(); 1487 // The load is only dominated by the store if DomTree says so 1488 // and the number of bits loaded in L is less than or equal to 1489 // the number of bits stored in S. 1490 return DT.dominates(S, L) && 1491 DL.getTypeStoreSize(LTy).getFixedSize() <= 1492 DL.getTypeStoreSize(STy).getFixedSize(); 1493 })) 1494 return false; 1495 } 1496 // All loads have known dependences inside F, so the global can be localized. 1497 return true; 1498 } 1499 1500 /// C may have non-instruction users. Can all of those users be turned into 1501 /// instructions? 1502 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1503 // We don't do this exhaustively. The most common pattern that we really need 1504 // to care about is a constant GEP or constant bitcast - so just looking 1505 // through one single ConstantExpr. 1506 // 1507 // The set of constants that this function returns true for must be able to be 1508 // handled by makeAllConstantUsesInstructions. 1509 for (auto *U : C->users()) { 1510 if (isa<Instruction>(U)) 1511 continue; 1512 if (!isa<ConstantExpr>(U)) 1513 // Non instruction, non-constantexpr user; cannot convert this. 1514 return false; 1515 for (auto *UU : U->users()) 1516 if (!isa<Instruction>(UU)) 1517 // A constantexpr used by another constant. We don't try and recurse any 1518 // further but just bail out at this point. 1519 return false; 1520 } 1521 1522 return true; 1523 } 1524 1525 /// C may have non-instruction users, and 1526 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1527 /// non-instruction users to instructions. 1528 static void makeAllConstantUsesInstructions(Constant *C) { 1529 SmallVector<ConstantExpr*,4> Users; 1530 for (auto *U : C->users()) { 1531 if (isa<ConstantExpr>(U)) 1532 Users.push_back(cast<ConstantExpr>(U)); 1533 else 1534 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1535 // should not have returned true for C. 1536 assert( 1537 isa<Instruction>(U) && 1538 "Can't transform non-constantexpr non-instruction to instruction!"); 1539 } 1540 1541 SmallVector<Value*,4> UUsers; 1542 for (auto *U : Users) { 1543 UUsers.clear(); 1544 append_range(UUsers, U->users()); 1545 for (auto *UU : UUsers) { 1546 Instruction *UI = cast<Instruction>(UU); 1547 Instruction *NewU = U->getAsInstruction(UI); 1548 UI->replaceUsesOfWith(U, NewU); 1549 } 1550 // We've replaced all the uses, so destroy the constant. (destroyConstant 1551 // will update value handles and metadata.) 1552 U->destroyConstant(); 1553 } 1554 } 1555 1556 /// Analyze the specified global variable and optimize 1557 /// it if possible. If we make a change, return true. 1558 static bool 1559 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, 1560 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1561 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1562 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1563 auto &DL = GV->getParent()->getDataLayout(); 1564 // If this is a first class global and has only one accessing function and 1565 // this function is non-recursive, we replace the global with a local alloca 1566 // in this function. 1567 // 1568 // NOTE: It doesn't make sense to promote non-single-value types since we 1569 // are just replacing static memory to stack memory. 1570 // 1571 // If the global is in different address space, don't bring it to stack. 1572 if (!GS.HasMultipleAccessingFunctions && 1573 GS.AccessingFunction && 1574 GV->getValueType()->isSingleValueType() && 1575 GV->getType()->getAddressSpace() == 0 && 1576 !GV->isExternallyInitialized() && 1577 allNonInstructionUsersCanBeMadeInstructions(GV) && 1578 GS.AccessingFunction->doesNotRecurse() && 1579 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1580 LookupDomTree)) { 1581 const DataLayout &DL = GV->getParent()->getDataLayout(); 1582 1583 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1584 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1585 ->getEntryBlock().begin()); 1586 Type *ElemTy = GV->getValueType(); 1587 // FIXME: Pass Global's alignment when globals have alignment 1588 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1589 GV->getName(), &FirstI); 1590 if (!isa<UndefValue>(GV->getInitializer())) 1591 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1592 1593 makeAllConstantUsesInstructions(GV); 1594 1595 GV->replaceAllUsesWith(Alloca); 1596 GV->eraseFromParent(); 1597 ++NumLocalized; 1598 return true; 1599 } 1600 1601 bool Changed = false; 1602 1603 // If the global is never loaded (but may be stored to), it is dead. 1604 // Delete it now. 1605 if (!GS.IsLoaded) { 1606 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1607 1608 if (isLeakCheckerRoot(GV)) { 1609 // Delete any constant stores to the global. 1610 Changed = CleanupPointerRootUsers(GV, GetTLI); 1611 } else { 1612 // Delete any stores we can find to the global. We may not be able to 1613 // make it completely dead though. 1614 Changed = CleanupConstantGlobalUsers(GV, DL); 1615 } 1616 1617 // If the global is dead now, delete it. 1618 if (GV->use_empty()) { 1619 GV->eraseFromParent(); 1620 ++NumDeleted; 1621 Changed = true; 1622 } 1623 return Changed; 1624 1625 } 1626 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1627 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1628 1629 // Don't actually mark a global constant if it's atomic because atomic loads 1630 // are implemented by a trivial cmpxchg in some edge-cases and that usually 1631 // requires write access to the variable even if it's not actually changed. 1632 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1633 assert(!GV->isConstant() && "Expected a non-constant global"); 1634 GV->setConstant(true); 1635 Changed = true; 1636 } 1637 1638 // Clean up any obviously simplifiable users now. 1639 Changed |= CleanupConstantGlobalUsers(GV, DL); 1640 1641 // If the global is dead now, just nuke it. 1642 if (GV->use_empty()) { 1643 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1644 << "all users and delete global!\n"); 1645 GV->eraseFromParent(); 1646 ++NumDeleted; 1647 return true; 1648 } 1649 1650 // Fall through to the next check; see if we can optimize further. 1651 ++NumMarked; 1652 } 1653 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1654 const DataLayout &DL = GV->getParent()->getDataLayout(); 1655 if (SRAGlobal(GV, DL)) 1656 return true; 1657 } 1658 Value *StoredOnceValue = GS.getStoredOnceValue(); 1659 if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) { 1660 // Avoid speculating constant expressions that might trap (div/rem). 1661 auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue); 1662 if (SOVConstant && SOVConstant->canTrap()) 1663 return Changed; 1664 1665 Function &StoreFn = 1666 const_cast<Function &>(*GS.StoredOnceStore->getFunction()); 1667 bool CanHaveNonUndefGlobalInitializer = 1668 GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace( 1669 GV->getType()->getAddressSpace()); 1670 // If the initial value for the global was an undef value, and if only 1671 // one other value was stored into it, we can just change the 1672 // initializer to be the stored value, then delete all stores to the 1673 // global. This allows us to mark it constant. 1674 // This is restricted to address spaces that allow globals to have 1675 // initializers. NVPTX, for example, does not support initializers for 1676 // shared memory (AS 3). 1677 if (SOVConstant && isa<UndefValue>(GV->getInitializer()) && 1678 DL.getTypeAllocSize(SOVConstant->getType()) == 1679 DL.getTypeAllocSize(GV->getValueType()) && 1680 CanHaveNonUndefGlobalInitializer) { 1681 if (SOVConstant->getType() == GV->getValueType()) { 1682 // Change the initializer in place. 1683 GV->setInitializer(SOVConstant); 1684 } else { 1685 // Create a new global with adjusted type. 1686 auto *NGV = new GlobalVariable( 1687 *GV->getParent(), SOVConstant->getType(), GV->isConstant(), 1688 GV->getLinkage(), SOVConstant, "", GV, GV->getThreadLocalMode(), 1689 GV->getAddressSpace()); 1690 NGV->takeName(GV); 1691 NGV->copyAttributesFrom(GV); 1692 GV->replaceAllUsesWith(ConstantExpr::getBitCast(NGV, GV->getType())); 1693 GV->eraseFromParent(); 1694 GV = NGV; 1695 } 1696 1697 // Clean up any obviously simplifiable users now. 1698 CleanupConstantGlobalUsers(GV, DL); 1699 1700 if (GV->use_empty()) { 1701 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1702 << "simplify all users and delete global!\n"); 1703 GV->eraseFromParent(); 1704 ++NumDeleted; 1705 } 1706 ++NumSubstitute; 1707 return true; 1708 } 1709 1710 // Try to optimize globals based on the knowledge that only one value 1711 // (besides its initializer) is ever stored to the global. 1712 if (optimizeOnceStoredGlobal(GV, StoredOnceValue, GS.Ordering, DL, GetTLI)) 1713 return true; 1714 1715 // Otherwise, if the global was not a boolean, we can shrink it to be a 1716 // boolean. Skip this optimization for AS that doesn't allow an initializer. 1717 if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic && 1718 (!isa<UndefValue>(GV->getInitializer()) || 1719 CanHaveNonUndefGlobalInitializer)) { 1720 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1721 ++NumShrunkToBool; 1722 return true; 1723 } 1724 } 1725 } 1726 1727 return Changed; 1728 } 1729 1730 /// Analyze the specified global variable and optimize it if possible. If we 1731 /// make a change, return true. 1732 static bool 1733 processGlobal(GlobalValue &GV, 1734 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1735 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1736 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1737 if (GV.getName().startswith("llvm.")) 1738 return false; 1739 1740 GlobalStatus GS; 1741 1742 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1743 return false; 1744 1745 bool Changed = false; 1746 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 1747 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 1748 : GlobalValue::UnnamedAddr::Local; 1749 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 1750 GV.setUnnamedAddr(NewUnnamedAddr); 1751 NumUnnamed++; 1752 Changed = true; 1753 } 1754 } 1755 1756 // Do more involved optimizations if the global is internal. 1757 if (!GV.hasLocalLinkage()) 1758 return Changed; 1759 1760 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1761 if (!GVar) 1762 return Changed; 1763 1764 if (GVar->isConstant() || !GVar->hasInitializer()) 1765 return Changed; 1766 1767 return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) || 1768 Changed; 1769 } 1770 1771 /// Walk all of the direct calls of the specified function, changing them to 1772 /// FastCC. 1773 static void ChangeCalleesToFastCall(Function *F) { 1774 for (User *U : F->users()) { 1775 if (isa<BlockAddress>(U)) 1776 continue; 1777 cast<CallBase>(U)->setCallingConv(CallingConv::Fast); 1778 } 1779 } 1780 1781 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, 1782 Attribute::AttrKind A) { 1783 unsigned AttrIndex; 1784 if (Attrs.hasAttrSomewhere(A, &AttrIndex)) 1785 return Attrs.removeAttributeAtIndex(C, AttrIndex, A); 1786 return Attrs; 1787 } 1788 1789 static void RemoveAttribute(Function *F, Attribute::AttrKind A) { 1790 F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A)); 1791 for (User *U : F->users()) { 1792 if (isa<BlockAddress>(U)) 1793 continue; 1794 CallBase *CB = cast<CallBase>(U); 1795 CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A)); 1796 } 1797 } 1798 1799 /// Return true if this is a calling convention that we'd like to change. The 1800 /// idea here is that we don't want to mess with the convention if the user 1801 /// explicitly requested something with performance implications like coldcc, 1802 /// GHC, or anyregcc. 1803 static bool hasChangeableCC(Function *F) { 1804 CallingConv::ID CC = F->getCallingConv(); 1805 1806 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 1807 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 1808 return false; 1809 1810 // FIXME: Change CC for the whole chain of musttail calls when possible. 1811 // 1812 // Can't change CC of the function that either has musttail calls, or is a 1813 // musttail callee itself 1814 for (User *U : F->users()) { 1815 if (isa<BlockAddress>(U)) 1816 continue; 1817 CallInst* CI = dyn_cast<CallInst>(U); 1818 if (!CI) 1819 continue; 1820 1821 if (CI->isMustTailCall()) 1822 return false; 1823 } 1824 1825 for (BasicBlock &BB : *F) 1826 if (BB.getTerminatingMustTailCall()) 1827 return false; 1828 1829 return true; 1830 } 1831 1832 /// Return true if the block containing the call site has a BlockFrequency of 1833 /// less than ColdCCRelFreq% of the entry block. 1834 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) { 1835 const BranchProbability ColdProb(ColdCCRelFreq, 100); 1836 auto *CallSiteBB = CB.getParent(); 1837 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 1838 auto CallerEntryFreq = 1839 CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock())); 1840 return CallSiteFreq < CallerEntryFreq * ColdProb; 1841 } 1842 1843 // This function checks if the input function F is cold at all call sites. It 1844 // also looks each call site's containing function, returning false if the 1845 // caller function contains other non cold calls. The input vector AllCallsCold 1846 // contains a list of functions that only have call sites in cold blocks. 1847 static bool 1848 isValidCandidateForColdCC(Function &F, 1849 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1850 const std::vector<Function *> &AllCallsCold) { 1851 1852 if (F.user_empty()) 1853 return false; 1854 1855 for (User *U : F.users()) { 1856 if (isa<BlockAddress>(U)) 1857 continue; 1858 1859 CallBase &CB = cast<CallBase>(*U); 1860 Function *CallerFunc = CB.getParent()->getParent(); 1861 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 1862 if (!isColdCallSite(CB, CallerBFI)) 1863 return false; 1864 if (!llvm::is_contained(AllCallsCold, CallerFunc)) 1865 return false; 1866 } 1867 return true; 1868 } 1869 1870 static void changeCallSitesToColdCC(Function *F) { 1871 for (User *U : F->users()) { 1872 if (isa<BlockAddress>(U)) 1873 continue; 1874 cast<CallBase>(U)->setCallingConv(CallingConv::Cold); 1875 } 1876 } 1877 1878 // This function iterates over all the call instructions in the input Function 1879 // and checks that all call sites are in cold blocks and are allowed to use the 1880 // coldcc calling convention. 1881 static bool 1882 hasOnlyColdCalls(Function &F, 1883 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { 1884 for (BasicBlock &BB : F) { 1885 for (Instruction &I : BB) { 1886 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1887 // Skip over isline asm instructions since they aren't function calls. 1888 if (CI->isInlineAsm()) 1889 continue; 1890 Function *CalledFn = CI->getCalledFunction(); 1891 if (!CalledFn) 1892 return false; 1893 if (!CalledFn->hasLocalLinkage()) 1894 return false; 1895 // Skip over instrinsics since they won't remain as function calls. 1896 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 1897 continue; 1898 // Check if it's valid to use coldcc calling convention. 1899 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || 1900 CalledFn->hasAddressTaken()) 1901 return false; 1902 BlockFrequencyInfo &CallerBFI = GetBFI(F); 1903 if (!isColdCallSite(*CI, CallerBFI)) 1904 return false; 1905 } 1906 } 1907 } 1908 return true; 1909 } 1910 1911 static bool hasMustTailCallers(Function *F) { 1912 for (User *U : F->users()) { 1913 CallBase *CB = dyn_cast<CallBase>(U); 1914 if (!CB) { 1915 assert(isa<BlockAddress>(U) && 1916 "Expected either CallBase or BlockAddress"); 1917 continue; 1918 } 1919 if (CB->isMustTailCall()) 1920 return true; 1921 } 1922 return false; 1923 } 1924 1925 static bool hasInvokeCallers(Function *F) { 1926 for (User *U : F->users()) 1927 if (isa<InvokeInst>(U)) 1928 return true; 1929 return false; 1930 } 1931 1932 static void RemovePreallocated(Function *F) { 1933 RemoveAttribute(F, Attribute::Preallocated); 1934 1935 auto *M = F->getParent(); 1936 1937 IRBuilder<> Builder(M->getContext()); 1938 1939 // Cannot modify users() while iterating over it, so make a copy. 1940 SmallVector<User *, 4> PreallocatedCalls(F->users()); 1941 for (User *U : PreallocatedCalls) { 1942 CallBase *CB = dyn_cast<CallBase>(U); 1943 if (!CB) 1944 continue; 1945 1946 assert( 1947 !CB->isMustTailCall() && 1948 "Shouldn't call RemotePreallocated() on a musttail preallocated call"); 1949 // Create copy of call without "preallocated" operand bundle. 1950 SmallVector<OperandBundleDef, 1> OpBundles; 1951 CB->getOperandBundlesAsDefs(OpBundles); 1952 CallBase *PreallocatedSetup = nullptr; 1953 for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) { 1954 if (It->getTag() == "preallocated") { 1955 PreallocatedSetup = cast<CallBase>(*It->input_begin()); 1956 OpBundles.erase(It); 1957 break; 1958 } 1959 } 1960 assert(PreallocatedSetup && "Did not find preallocated bundle"); 1961 uint64_t ArgCount = 1962 cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue(); 1963 1964 assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) && 1965 "Unknown indirect call type"); 1966 CallBase *NewCB = CallBase::Create(CB, OpBundles, CB); 1967 CB->replaceAllUsesWith(NewCB); 1968 NewCB->takeName(CB); 1969 CB->eraseFromParent(); 1970 1971 Builder.SetInsertPoint(PreallocatedSetup); 1972 auto *StackSave = 1973 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave)); 1974 1975 Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction()); 1976 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore), 1977 StackSave); 1978 1979 // Replace @llvm.call.preallocated.arg() with alloca. 1980 // Cannot modify users() while iterating over it, so make a copy. 1981 // @llvm.call.preallocated.arg() can be called with the same index multiple 1982 // times. So for each @llvm.call.preallocated.arg(), we see if we have 1983 // already created a Value* for the index, and if not, create an alloca and 1984 // bitcast right after the @llvm.call.preallocated.setup() so that it 1985 // dominates all uses. 1986 SmallVector<Value *, 2> ArgAllocas(ArgCount); 1987 SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users()); 1988 for (auto *User : PreallocatedArgs) { 1989 auto *UseCall = cast<CallBase>(User); 1990 assert(UseCall->getCalledFunction()->getIntrinsicID() == 1991 Intrinsic::call_preallocated_arg && 1992 "preallocated token use was not a llvm.call.preallocated.arg"); 1993 uint64_t AllocArgIndex = 1994 cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue(); 1995 Value *AllocaReplacement = ArgAllocas[AllocArgIndex]; 1996 if (!AllocaReplacement) { 1997 auto AddressSpace = UseCall->getType()->getPointerAddressSpace(); 1998 auto *ArgType = 1999 UseCall->getFnAttr(Attribute::Preallocated).getValueAsType(); 2000 auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction(); 2001 Builder.SetInsertPoint(InsertBefore); 2002 auto *Alloca = 2003 Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg"); 2004 auto *BitCast = Builder.CreateBitCast( 2005 Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName()); 2006 ArgAllocas[AllocArgIndex] = BitCast; 2007 AllocaReplacement = BitCast; 2008 } 2009 2010 UseCall->replaceAllUsesWith(AllocaReplacement); 2011 UseCall->eraseFromParent(); 2012 } 2013 // Remove @llvm.call.preallocated.setup(). 2014 cast<Instruction>(PreallocatedSetup)->eraseFromParent(); 2015 } 2016 } 2017 2018 static bool 2019 OptimizeFunctions(Module &M, 2020 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2021 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2022 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2023 function_ref<DominatorTree &(Function &)> LookupDomTree, 2024 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2025 2026 bool Changed = false; 2027 2028 std::vector<Function *> AllCallsCold; 2029 for (Function &F : llvm::make_early_inc_range(M)) 2030 if (hasOnlyColdCalls(F, GetBFI)) 2031 AllCallsCold.push_back(&F); 2032 2033 // Optimize functions. 2034 for (Function &F : llvm::make_early_inc_range(M)) { 2035 // Don't perform global opt pass on naked functions; we don't want fast 2036 // calling conventions for naked functions. 2037 if (F.hasFnAttribute(Attribute::Naked)) 2038 continue; 2039 2040 // Functions without names cannot be referenced outside this module. 2041 if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage()) 2042 F.setLinkage(GlobalValue::InternalLinkage); 2043 2044 if (deleteIfDead(F, NotDiscardableComdats)) { 2045 Changed = true; 2046 continue; 2047 } 2048 2049 // LLVM's definition of dominance allows instructions that are cyclic 2050 // in unreachable blocks, e.g.: 2051 // %pat = select i1 %condition, @global, i16* %pat 2052 // because any instruction dominates an instruction in a block that's 2053 // not reachable from entry. 2054 // So, remove unreachable blocks from the function, because a) there's 2055 // no point in analyzing them and b) GlobalOpt should otherwise grow 2056 // some more complicated logic to break these cycles. 2057 // Removing unreachable blocks might invalidate the dominator so we 2058 // recalculate it. 2059 if (!F.isDeclaration()) { 2060 if (removeUnreachableBlocks(F)) { 2061 auto &DT = LookupDomTree(F); 2062 DT.recalculate(F); 2063 Changed = true; 2064 } 2065 } 2066 2067 Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree); 2068 2069 if (!F.hasLocalLinkage()) 2070 continue; 2071 2072 // If we have an inalloca parameter that we can safely remove the 2073 // inalloca attribute from, do so. This unlocks optimizations that 2074 // wouldn't be safe in the presence of inalloca. 2075 // FIXME: We should also hoist alloca affected by this to the entry 2076 // block if possible. 2077 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) && 2078 !F.hasAddressTaken() && !hasMustTailCallers(&F)) { 2079 RemoveAttribute(&F, Attribute::InAlloca); 2080 Changed = true; 2081 } 2082 2083 // FIXME: handle invokes 2084 // FIXME: handle musttail 2085 if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { 2086 if (!F.hasAddressTaken() && !hasMustTailCallers(&F) && 2087 !hasInvokeCallers(&F)) { 2088 RemovePreallocated(&F); 2089 Changed = true; 2090 } 2091 continue; 2092 } 2093 2094 if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) { 2095 NumInternalFunc++; 2096 TargetTransformInfo &TTI = GetTTI(F); 2097 // Change the calling convention to coldcc if either stress testing is 2098 // enabled or the target would like to use coldcc on functions which are 2099 // cold at all call sites and the callers contain no other non coldcc 2100 // calls. 2101 if (EnableColdCCStressTest || 2102 (TTI.useColdCCForColdCall(F) && 2103 isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) { 2104 F.setCallingConv(CallingConv::Cold); 2105 changeCallSitesToColdCC(&F); 2106 Changed = true; 2107 NumColdCC++; 2108 } 2109 } 2110 2111 if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) { 2112 // If this function has a calling convention worth changing, is not a 2113 // varargs function, and is only called directly, promote it to use the 2114 // Fast calling convention. 2115 F.setCallingConv(CallingConv::Fast); 2116 ChangeCalleesToFastCall(&F); 2117 ++NumFastCallFns; 2118 Changed = true; 2119 } 2120 2121 if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) && 2122 !F.hasAddressTaken()) { 2123 // The function is not used by a trampoline intrinsic, so it is safe 2124 // to remove the 'nest' attribute. 2125 RemoveAttribute(&F, Attribute::Nest); 2126 ++NumNestRemoved; 2127 Changed = true; 2128 } 2129 } 2130 return Changed; 2131 } 2132 2133 static bool 2134 OptimizeGlobalVars(Module &M, 2135 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2136 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2137 function_ref<DominatorTree &(Function &)> LookupDomTree, 2138 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2139 bool Changed = false; 2140 2141 for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) { 2142 // Global variables without names cannot be referenced outside this module. 2143 if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage()) 2144 GV.setLinkage(GlobalValue::InternalLinkage); 2145 // Simplify the initializer. 2146 if (GV.hasInitializer()) 2147 if (auto *C = dyn_cast<Constant>(GV.getInitializer())) { 2148 auto &DL = M.getDataLayout(); 2149 // TLI is not used in the case of a Constant, so use default nullptr 2150 // for that optional parameter, since we don't have a Function to 2151 // provide GetTLI anyway. 2152 Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); 2153 if (New != C) 2154 GV.setInitializer(New); 2155 } 2156 2157 if (deleteIfDead(GV, NotDiscardableComdats)) { 2158 Changed = true; 2159 continue; 2160 } 2161 2162 Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree); 2163 } 2164 return Changed; 2165 } 2166 2167 /// Evaluate static constructors in the function, if we can. Return true if we 2168 /// can, false otherwise. 2169 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2170 TargetLibraryInfo *TLI) { 2171 // Call the function. 2172 Evaluator Eval(DL, TLI); 2173 Constant *RetValDummy; 2174 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2175 SmallVector<Constant*, 0>()); 2176 2177 if (EvalSuccess) { 2178 ++NumCtorsEvaluated; 2179 2180 // We succeeded at evaluation: commit the result. 2181 auto NewInitializers = Eval.getMutatedInitializers(); 2182 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2183 << F->getName() << "' to " << NewInitializers.size() 2184 << " stores.\n"); 2185 for (const auto &Pair : NewInitializers) 2186 Pair.first->setInitializer(Pair.second); 2187 for (GlobalVariable *GV : Eval.getInvariants()) 2188 GV->setConstant(true); 2189 } 2190 2191 return EvalSuccess; 2192 } 2193 2194 static int compareNames(Constant *const *A, Constant *const *B) { 2195 Value *AStripped = (*A)->stripPointerCasts(); 2196 Value *BStripped = (*B)->stripPointerCasts(); 2197 return AStripped->getName().compare(BStripped->getName()); 2198 } 2199 2200 static void setUsedInitializer(GlobalVariable &V, 2201 const SmallPtrSetImpl<GlobalValue *> &Init) { 2202 if (Init.empty()) { 2203 V.eraseFromParent(); 2204 return; 2205 } 2206 2207 // Type of pointer to the array of pointers. 2208 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2209 2210 SmallVector<Constant *, 8> UsedArray; 2211 for (GlobalValue *GV : Init) { 2212 Constant *Cast 2213 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2214 UsedArray.push_back(Cast); 2215 } 2216 // Sort to get deterministic order. 2217 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2218 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2219 2220 Module *M = V.getParent(); 2221 V.removeFromParent(); 2222 GlobalVariable *NV = 2223 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2224 ConstantArray::get(ATy, UsedArray), ""); 2225 NV->takeName(&V); 2226 NV->setSection("llvm.metadata"); 2227 delete &V; 2228 } 2229 2230 namespace { 2231 2232 /// An easy to access representation of llvm.used and llvm.compiler.used. 2233 class LLVMUsed { 2234 SmallPtrSet<GlobalValue *, 4> Used; 2235 SmallPtrSet<GlobalValue *, 4> CompilerUsed; 2236 GlobalVariable *UsedV; 2237 GlobalVariable *CompilerUsedV; 2238 2239 public: 2240 LLVMUsed(Module &M) { 2241 SmallVector<GlobalValue *, 4> Vec; 2242 UsedV = collectUsedGlobalVariables(M, Vec, false); 2243 Used = {Vec.begin(), Vec.end()}; 2244 Vec.clear(); 2245 CompilerUsedV = collectUsedGlobalVariables(M, Vec, true); 2246 CompilerUsed = {Vec.begin(), Vec.end()}; 2247 } 2248 2249 using iterator = SmallPtrSet<GlobalValue *, 4>::iterator; 2250 using used_iterator_range = iterator_range<iterator>; 2251 2252 iterator usedBegin() { return Used.begin(); } 2253 iterator usedEnd() { return Used.end(); } 2254 2255 used_iterator_range used() { 2256 return used_iterator_range(usedBegin(), usedEnd()); 2257 } 2258 2259 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2260 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2261 2262 used_iterator_range compilerUsed() { 2263 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2264 } 2265 2266 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2267 2268 bool compilerUsedCount(GlobalValue *GV) const { 2269 return CompilerUsed.count(GV); 2270 } 2271 2272 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2273 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2274 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2275 2276 bool compilerUsedInsert(GlobalValue *GV) { 2277 return CompilerUsed.insert(GV).second; 2278 } 2279 2280 void syncVariablesAndSets() { 2281 if (UsedV) 2282 setUsedInitializer(*UsedV, Used); 2283 if (CompilerUsedV) 2284 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2285 } 2286 }; 2287 2288 } // end anonymous namespace 2289 2290 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2291 if (GA.use_empty()) // No use at all. 2292 return false; 2293 2294 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2295 "We should have removed the duplicated " 2296 "element from llvm.compiler.used"); 2297 if (!GA.hasOneUse()) 2298 // Strictly more than one use. So at least one is not in llvm.used and 2299 // llvm.compiler.used. 2300 return true; 2301 2302 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2303 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2304 } 2305 2306 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2307 const LLVMUsed &U) { 2308 unsigned N = 2; 2309 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2310 "We should have removed the duplicated " 2311 "element from llvm.compiler.used"); 2312 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2313 ++N; 2314 return V.hasNUsesOrMore(N); 2315 } 2316 2317 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2318 if (!GA.hasLocalLinkage()) 2319 return true; 2320 2321 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2322 } 2323 2324 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2325 bool &RenameTarget) { 2326 RenameTarget = false; 2327 bool Ret = false; 2328 if (hasUseOtherThanLLVMUsed(GA, U)) 2329 Ret = true; 2330 2331 // If the alias is externally visible, we may still be able to simplify it. 2332 if (!mayHaveOtherReferences(GA, U)) 2333 return Ret; 2334 2335 // If the aliasee has internal linkage, give it the name and linkage 2336 // of the alias, and delete the alias. This turns: 2337 // define internal ... @f(...) 2338 // @a = alias ... @f 2339 // into: 2340 // define ... @a(...) 2341 Constant *Aliasee = GA.getAliasee(); 2342 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2343 if (!Target->hasLocalLinkage()) 2344 return Ret; 2345 2346 // Do not perform the transform if multiple aliases potentially target the 2347 // aliasee. This check also ensures that it is safe to replace the section 2348 // and other attributes of the aliasee with those of the alias. 2349 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2350 return Ret; 2351 2352 RenameTarget = true; 2353 return true; 2354 } 2355 2356 static bool 2357 OptimizeGlobalAliases(Module &M, 2358 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2359 bool Changed = false; 2360 LLVMUsed Used(M); 2361 2362 for (GlobalValue *GV : Used.used()) 2363 Used.compilerUsedErase(GV); 2364 2365 for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) { 2366 // Aliases without names cannot be referenced outside this module. 2367 if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage()) 2368 J.setLinkage(GlobalValue::InternalLinkage); 2369 2370 if (deleteIfDead(J, NotDiscardableComdats)) { 2371 Changed = true; 2372 continue; 2373 } 2374 2375 // If the alias can change at link time, nothing can be done - bail out. 2376 if (J.isInterposable()) 2377 continue; 2378 2379 Constant *Aliasee = J.getAliasee(); 2380 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2381 // We can't trivially replace the alias with the aliasee if the aliasee is 2382 // non-trivial in some way. We also can't replace the alias with the aliasee 2383 // if the aliasee is interposable because aliases point to the local 2384 // definition. 2385 // TODO: Try to handle non-zero GEPs of local aliasees. 2386 if (!Target || Target->isInterposable()) 2387 continue; 2388 Target->removeDeadConstantUsers(); 2389 2390 // Make all users of the alias use the aliasee instead. 2391 bool RenameTarget; 2392 if (!hasUsesToReplace(J, Used, RenameTarget)) 2393 continue; 2394 2395 J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType())); 2396 ++NumAliasesResolved; 2397 Changed = true; 2398 2399 if (RenameTarget) { 2400 // Give the aliasee the name, linkage and other attributes of the alias. 2401 Target->takeName(&J); 2402 Target->setLinkage(J.getLinkage()); 2403 Target->setDSOLocal(J.isDSOLocal()); 2404 Target->setVisibility(J.getVisibility()); 2405 Target->setDLLStorageClass(J.getDLLStorageClass()); 2406 2407 if (Used.usedErase(&J)) 2408 Used.usedInsert(Target); 2409 2410 if (Used.compilerUsedErase(&J)) 2411 Used.compilerUsedInsert(Target); 2412 } else if (mayHaveOtherReferences(J, Used)) 2413 continue; 2414 2415 // Delete the alias. 2416 M.getAliasList().erase(&J); 2417 ++NumAliasesRemoved; 2418 Changed = true; 2419 } 2420 2421 Used.syncVariablesAndSets(); 2422 2423 return Changed; 2424 } 2425 2426 static Function * 2427 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 2428 // Hack to get a default TLI before we have actual Function. 2429 auto FuncIter = M.begin(); 2430 if (FuncIter == M.end()) 2431 return nullptr; 2432 auto *TLI = &GetTLI(*FuncIter); 2433 2434 LibFunc F = LibFunc_cxa_atexit; 2435 if (!TLI->has(F)) 2436 return nullptr; 2437 2438 Function *Fn = M.getFunction(TLI->getName(F)); 2439 if (!Fn) 2440 return nullptr; 2441 2442 // Now get the actual TLI for Fn. 2443 TLI = &GetTLI(*Fn); 2444 2445 // Make sure that the function has the correct prototype. 2446 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2447 return nullptr; 2448 2449 return Fn; 2450 } 2451 2452 /// Returns whether the given function is an empty C++ destructor and can 2453 /// therefore be eliminated. 2454 /// Note that we assume that other optimization passes have already simplified 2455 /// the code so we simply check for 'ret'. 2456 static bool cxxDtorIsEmpty(const Function &Fn) { 2457 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2458 // nounwind, but that doesn't seem worth doing. 2459 if (Fn.isDeclaration()) 2460 return false; 2461 2462 for (auto &I : Fn.getEntryBlock()) { 2463 if (I.isDebugOrPseudoInst()) 2464 continue; 2465 if (isa<ReturnInst>(I)) 2466 return true; 2467 break; 2468 } 2469 return false; 2470 } 2471 2472 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2473 /// Itanium C++ ABI p3.3.5: 2474 /// 2475 /// After constructing a global (or local static) object, that will require 2476 /// destruction on exit, a termination function is registered as follows: 2477 /// 2478 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2479 /// 2480 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2481 /// call f(p) when DSO d is unloaded, before all such termination calls 2482 /// registered before this one. It returns zero if registration is 2483 /// successful, nonzero on failure. 2484 2485 // This pass will look for calls to __cxa_atexit where the function is trivial 2486 // and remove them. 2487 bool Changed = false; 2488 2489 for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) { 2490 // We're only interested in calls. Theoretically, we could handle invoke 2491 // instructions as well, but neither llvm-gcc nor clang generate invokes 2492 // to __cxa_atexit. 2493 CallInst *CI = dyn_cast<CallInst>(U); 2494 if (!CI) 2495 continue; 2496 2497 Function *DtorFn = 2498 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2499 if (!DtorFn || !cxxDtorIsEmpty(*DtorFn)) 2500 continue; 2501 2502 // Just remove the call. 2503 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2504 CI->eraseFromParent(); 2505 2506 ++NumCXXDtorsRemoved; 2507 2508 Changed |= true; 2509 } 2510 2511 return Changed; 2512 } 2513 2514 static bool optimizeGlobalsInModule( 2515 Module &M, const DataLayout &DL, 2516 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2517 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2518 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2519 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2520 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; 2521 bool Changed = false; 2522 bool LocalChange = true; 2523 while (LocalChange) { 2524 LocalChange = false; 2525 2526 NotDiscardableComdats.clear(); 2527 for (const GlobalVariable &GV : M.globals()) 2528 if (const Comdat *C = GV.getComdat()) 2529 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2530 NotDiscardableComdats.insert(C); 2531 for (Function &F : M) 2532 if (const Comdat *C = F.getComdat()) 2533 if (!F.isDefTriviallyDead()) 2534 NotDiscardableComdats.insert(C); 2535 for (GlobalAlias &GA : M.aliases()) 2536 if (const Comdat *C = GA.getComdat()) 2537 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2538 NotDiscardableComdats.insert(C); 2539 2540 // Delete functions that are trivially dead, ccc -> fastcc 2541 LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, 2542 NotDiscardableComdats); 2543 2544 // Optimize global_ctors list. 2545 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2546 return EvaluateStaticConstructor(F, DL, &GetTLI(*F)); 2547 }); 2548 2549 // Optimize non-address-taken globals. 2550 LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree, 2551 NotDiscardableComdats); 2552 2553 // Resolve aliases, when possible. 2554 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2555 2556 // Try to remove trivial global destructors if they are not removed 2557 // already. 2558 Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI); 2559 if (CXAAtExitFn) 2560 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2561 2562 Changed |= LocalChange; 2563 } 2564 2565 // TODO: Move all global ctors functions to the end of the module for code 2566 // layout. 2567 2568 return Changed; 2569 } 2570 2571 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2572 auto &DL = M.getDataLayout(); 2573 auto &FAM = 2574 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2575 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2576 return FAM.getResult<DominatorTreeAnalysis>(F); 2577 }; 2578 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 2579 return FAM.getResult<TargetLibraryAnalysis>(F); 2580 }; 2581 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 2582 return FAM.getResult<TargetIRAnalysis>(F); 2583 }; 2584 2585 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 2586 return FAM.getResult<BlockFrequencyAnalysis>(F); 2587 }; 2588 2589 if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree)) 2590 return PreservedAnalyses::all(); 2591 return PreservedAnalyses::none(); 2592 } 2593 2594 namespace { 2595 2596 struct GlobalOptLegacyPass : public ModulePass { 2597 static char ID; // Pass identification, replacement for typeid 2598 2599 GlobalOptLegacyPass() : ModulePass(ID) { 2600 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2601 } 2602 2603 bool runOnModule(Module &M) override { 2604 if (skipModule(M)) 2605 return false; 2606 2607 auto &DL = M.getDataLayout(); 2608 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2609 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2610 }; 2611 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 2612 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2613 }; 2614 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 2615 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2616 }; 2617 2618 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { 2619 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 2620 }; 2621 2622 return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, 2623 LookupDomTree); 2624 } 2625 2626 void getAnalysisUsage(AnalysisUsage &AU) const override { 2627 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2628 AU.addRequired<TargetTransformInfoWrapperPass>(); 2629 AU.addRequired<DominatorTreeWrapperPass>(); 2630 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2631 } 2632 }; 2633 2634 } // end anonymous namespace 2635 2636 char GlobalOptLegacyPass::ID = 0; 2637 2638 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2639 "Global Variable Optimizer", false, false) 2640 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2641 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2642 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 2643 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2644 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2645 "Global Variable Optimizer", false, false) 2646 2647 ModulePass *llvm::createGlobalOptimizerPass() { 2648 return new GlobalOptLegacyPass(); 2649 } 2650