1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/BinaryFormat/Dwarf.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Use.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include <cassert>
69 #include <cstdint>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "globalopt"
76 
77 STATISTIC(NumMarked    , "Number of globals marked constant");
78 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
79 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
80 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
82 STATISTIC(NumDeleted   , "Number of globals deleted");
83 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
84 STATISTIC(NumLocalized , "Number of globals localized");
85 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
86 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
88 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
92 STATISTIC(NumInternalFunc, "Number of internal functions");
93 STATISTIC(NumColdCC, "Number of functions marked coldcc");
94 
95 static cl::opt<bool>
96     EnableColdCCStressTest("enable-coldcc-stress-test",
97                            cl::desc("Enable stress test of coldcc by adding "
98                                     "calling conv to all internal functions."),
99                            cl::init(false), cl::Hidden);
100 
101 static cl::opt<int> ColdCCRelFreq(
102     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
103     cl::desc(
104         "Maximum block frequency, expressed as a percentage of caller's "
105         "entry frequency, for a call site to be considered cold for enabling"
106         "coldcc"));
107 
108 /// Is this global variable possibly used by a leak checker as a root?  If so,
109 /// we might not really want to eliminate the stores to it.
110 static bool isLeakCheckerRoot(GlobalVariable *GV) {
111   // A global variable is a root if it is a pointer, or could plausibly contain
112   // a pointer.  There are two challenges; one is that we could have a struct
113   // the has an inner member which is a pointer.  We recurse through the type to
114   // detect these (up to a point).  The other is that we may actually be a union
115   // of a pointer and another type, and so our LLVM type is an integer which
116   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
117   // potentially contained here.
118 
119   if (GV->hasPrivateLinkage())
120     return false;
121 
122   SmallVector<Type *, 4> Types;
123   Types.push_back(GV->getValueType());
124 
125   unsigned Limit = 20;
126   do {
127     Type *Ty = Types.pop_back_val();
128     switch (Ty->getTypeID()) {
129       default: break;
130       case Type::PointerTyID: return true;
131       case Type::ArrayTyID:
132       case Type::VectorTyID: {
133         SequentialType *STy = cast<SequentialType>(Ty);
134         Types.push_back(STy->getElementType());
135         break;
136       }
137       case Type::StructTyID: {
138         StructType *STy = cast<StructType>(Ty);
139         if (STy->isOpaque()) return true;
140         for (StructType::element_iterator I = STy->element_begin(),
141                  E = STy->element_end(); I != E; ++I) {
142           Type *InnerTy = *I;
143           if (isa<PointerType>(InnerTy)) return true;
144           if (isa<CompositeType>(InnerTy))
145             Types.push_back(InnerTy);
146         }
147         break;
148       }
149     }
150     if (--Limit == 0) return true;
151   } while (!Types.empty());
152   return false;
153 }
154 
155 /// Given a value that is stored to a global but never read, determine whether
156 /// it's safe to remove the store and the chain of computation that feeds the
157 /// store.
158 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
159   do {
160     if (isa<Constant>(V))
161       return true;
162     if (!V->hasOneUse())
163       return false;
164     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
165         isa<GlobalValue>(V))
166       return false;
167     if (isAllocationFn(V, TLI))
168       return true;
169 
170     Instruction *I = cast<Instruction>(V);
171     if (I->mayHaveSideEffects())
172       return false;
173     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
174       if (!GEP->hasAllConstantIndices())
175         return false;
176     } else if (I->getNumOperands() != 1) {
177       return false;
178     }
179 
180     V = I->getOperand(0);
181   } while (true);
182 }
183 
184 /// This GV is a pointer root.  Loop over all users of the global and clean up
185 /// any that obviously don't assign the global a value that isn't dynamically
186 /// allocated.
187 static bool CleanupPointerRootUsers(GlobalVariable *GV,
188                                     const TargetLibraryInfo *TLI) {
189   // A brief explanation of leak checkers.  The goal is to find bugs where
190   // pointers are forgotten, causing an accumulating growth in memory
191   // usage over time.  The common strategy for leak checkers is to whitelist the
192   // memory pointed to by globals at exit.  This is popular because it also
193   // solves another problem where the main thread of a C++ program may shut down
194   // before other threads that are still expecting to use those globals.  To
195   // handle that case, we expect the program may create a singleton and never
196   // destroy it.
197 
198   bool Changed = false;
199 
200   // If Dead[n].first is the only use of a malloc result, we can delete its
201   // chain of computation and the store to the global in Dead[n].second.
202   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
203 
204   // Constants can't be pointers to dynamically allocated memory.
205   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
206        UI != E;) {
207     User *U = *UI++;
208     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
209       Value *V = SI->getValueOperand();
210       if (isa<Constant>(V)) {
211         Changed = true;
212         SI->eraseFromParent();
213       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
214         if (I->hasOneUse())
215           Dead.push_back(std::make_pair(I, SI));
216       }
217     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
218       if (isa<Constant>(MSI->getValue())) {
219         Changed = true;
220         MSI->eraseFromParent();
221       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
222         if (I->hasOneUse())
223           Dead.push_back(std::make_pair(I, MSI));
224       }
225     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
226       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
227       if (MemSrc && MemSrc->isConstant()) {
228         Changed = true;
229         MTI->eraseFromParent();
230       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
231         if (I->hasOneUse())
232           Dead.push_back(std::make_pair(I, MTI));
233       }
234     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
235       if (CE->use_empty()) {
236         CE->destroyConstant();
237         Changed = true;
238       }
239     } else if (Constant *C = dyn_cast<Constant>(U)) {
240       if (isSafeToDestroyConstant(C)) {
241         C->destroyConstant();
242         // This could have invalidated UI, start over from scratch.
243         Dead.clear();
244         CleanupPointerRootUsers(GV, TLI);
245         return true;
246       }
247     }
248   }
249 
250   for (int i = 0, e = Dead.size(); i != e; ++i) {
251     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
252       Dead[i].second->eraseFromParent();
253       Instruction *I = Dead[i].first;
254       do {
255         if (isAllocationFn(I, TLI))
256           break;
257         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
258         if (!J)
259           break;
260         I->eraseFromParent();
261         I = J;
262       } while (true);
263       I->eraseFromParent();
264     }
265   }
266 
267   return Changed;
268 }
269 
270 /// We just marked GV constant.  Loop over all users of the global, cleaning up
271 /// the obvious ones.  This is largely just a quick scan over the use list to
272 /// clean up the easy and obvious cruft.  This returns true if it made a change.
273 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
274                                        const DataLayout &DL,
275                                        TargetLibraryInfo *TLI) {
276   bool Changed = false;
277   // Note that we need to use a weak value handle for the worklist items. When
278   // we delete a constant array, we may also be holding pointer to one of its
279   // elements (or an element of one of its elements if we're dealing with an
280   // array of arrays) in the worklist.
281   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
282   while (!WorkList.empty()) {
283     Value *UV = WorkList.pop_back_val();
284     if (!UV)
285       continue;
286 
287     User *U = cast<User>(UV);
288 
289     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
290       if (Init) {
291         // Replace the load with the initializer.
292         LI->replaceAllUsesWith(Init);
293         LI->eraseFromParent();
294         Changed = true;
295       }
296     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
297       // Store must be unreachable or storing Init into the global.
298       SI->eraseFromParent();
299       Changed = true;
300     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
301       if (CE->getOpcode() == Instruction::GetElementPtr) {
302         Constant *SubInit = nullptr;
303         if (Init)
304           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
305         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
306       } else if ((CE->getOpcode() == Instruction::BitCast &&
307                   CE->getType()->isPointerTy()) ||
308                  CE->getOpcode() == Instruction::AddrSpaceCast) {
309         // Pointer cast, delete any stores and memsets to the global.
310         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
311       }
312 
313       if (CE->use_empty()) {
314         CE->destroyConstant();
315         Changed = true;
316       }
317     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
318       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
319       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
320       // and will invalidate our notion of what Init is.
321       Constant *SubInit = nullptr;
322       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
323         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
324             ConstantFoldInstruction(GEP, DL, TLI));
325         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
326           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
327 
328         // If the initializer is an all-null value and we have an inbounds GEP,
329         // we already know what the result of any load from that GEP is.
330         // TODO: Handle splats.
331         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
332           SubInit = Constant::getNullValue(GEP->getResultElementType());
333       }
334       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
335 
336       if (GEP->use_empty()) {
337         GEP->eraseFromParent();
338         Changed = true;
339       }
340     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
341       if (MI->getRawDest() == V) {
342         MI->eraseFromParent();
343         Changed = true;
344       }
345 
346     } else if (Constant *C = dyn_cast<Constant>(U)) {
347       // If we have a chain of dead constantexprs or other things dangling from
348       // us, and if they are all dead, nuke them without remorse.
349       if (isSafeToDestroyConstant(C)) {
350         C->destroyConstant();
351         CleanupConstantGlobalUsers(V, Init, DL, TLI);
352         return true;
353       }
354     }
355   }
356   return Changed;
357 }
358 
359 static bool isSafeSROAElementUse(Value *V);
360 
361 /// Return true if the specified GEP is a safe user of a derived
362 /// expression from a global that we want to SROA.
363 static bool isSafeSROAGEP(User *U) {
364   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
365   // don't like < 3 operand CE's, and we don't like non-constant integer
366   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
367   // value of C.
368   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
369       !cast<Constant>(U->getOperand(1))->isNullValue())
370     return false;
371 
372   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
373   ++GEPI; // Skip over the pointer index.
374 
375   // For all other level we require that the indices are constant and inrange.
376   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
377   // invalid things like allowing i to index an out-of-range subscript that
378   // accesses A[1]. This can also happen between different members of a struct
379   // in llvm IR.
380   for (; GEPI != E; ++GEPI) {
381     if (GEPI.isStruct())
382       continue;
383 
384     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
385     if (!IdxVal || (GEPI.isBoundedSequential() &&
386                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
387       return false;
388   }
389 
390   return llvm::all_of(U->users(),
391                       [](User *UU) { return isSafeSROAElementUse(UU); });
392 }
393 
394 /// Return true if the specified instruction is a safe user of a derived
395 /// expression from a global that we want to SROA.
396 static bool isSafeSROAElementUse(Value *V) {
397   // We might have a dead and dangling constant hanging off of here.
398   if (Constant *C = dyn_cast<Constant>(V))
399     return isSafeToDestroyConstant(C);
400 
401   Instruction *I = dyn_cast<Instruction>(V);
402   if (!I) return false;
403 
404   // Loads are ok.
405   if (isa<LoadInst>(I)) return true;
406 
407   // Stores *to* the pointer are ok.
408   if (StoreInst *SI = dyn_cast<StoreInst>(I))
409     return SI->getOperand(0) != V;
410 
411   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
412   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
413 }
414 
415 /// Look at all uses of the global and decide whether it is safe for us to
416 /// perform this transformation.
417 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
418   for (User *U : GV->users()) {
419     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
420     if (!isa<GetElementPtrInst>(U) &&
421         (!isa<ConstantExpr>(U) ||
422         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
423       return false;
424 
425     // Check the gep and it's users are safe to SRA
426     if (!isSafeSROAGEP(U))
427       return false;
428   }
429 
430   return true;
431 }
432 
433 /// Copy over the debug info for a variable to its SRA replacements.
434 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
435                                  uint64_t FragmentOffsetInBits,
436                                  uint64_t FragmentSizeInBits,
437                                  unsigned NumElements) {
438   SmallVector<DIGlobalVariableExpression *, 1> GVs;
439   GV->getDebugInfo(GVs);
440   for (auto *GVE : GVs) {
441     DIVariable *Var = GVE->getVariable();
442     DIExpression *Expr = GVE->getExpression();
443     if (NumElements > 1) {
444       if (auto E = DIExpression::createFragmentExpression(
445               Expr, FragmentOffsetInBits, FragmentSizeInBits))
446         Expr = *E;
447       else
448         return;
449     }
450     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
451     NGV->addDebugInfo(NGVE);
452   }
453 }
454 
455 /// Perform scalar replacement of aggregates on the specified global variable.
456 /// This opens the door for other optimizations by exposing the behavior of the
457 /// program in a more fine-grained way.  We have determined that this
458 /// transformation is safe already.  We return the first global variable we
459 /// insert so that the caller can reprocess it.
460 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
461   // Make sure this global only has simple uses that we can SRA.
462   if (!GlobalUsersSafeToSRA(GV))
463     return nullptr;
464 
465   assert(GV->hasLocalLinkage());
466   Constant *Init = GV->getInitializer();
467   Type *Ty = Init->getType();
468 
469   std::vector<GlobalVariable *> NewGlobals;
470   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
471 
472   // Get the alignment of the global, either explicit or target-specific.
473   unsigned StartAlignment = GV->getAlignment();
474   if (StartAlignment == 0)
475     StartAlignment = DL.getABITypeAlignment(GV->getType());
476 
477   if (StructType *STy = dyn_cast<StructType>(Ty)) {
478     unsigned NumElements = STy->getNumElements();
479     NewGlobals.reserve(NumElements);
480     const StructLayout &Layout = *DL.getStructLayout(STy);
481     for (unsigned i = 0, e = NumElements; i != e; ++i) {
482       Constant *In = Init->getAggregateElement(i);
483       assert(In && "Couldn't get element of initializer?");
484       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
485                                                GlobalVariable::InternalLinkage,
486                                                In, GV->getName()+"."+Twine(i),
487                                                GV->getThreadLocalMode(),
488                                               GV->getType()->getAddressSpace());
489       NGV->setExternallyInitialized(GV->isExternallyInitialized());
490       NGV->copyAttributesFrom(GV);
491       Globals.push_back(NGV);
492       NewGlobals.push_back(NGV);
493 
494       // Calculate the known alignment of the field.  If the original aggregate
495       // had 256 byte alignment for example, something might depend on that:
496       // propagate info to each field.
497       uint64_t FieldOffset = Layout.getElementOffset(i);
498       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
499       if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
500         NGV->setAlignment(NewAlign);
501 
502       // Copy over the debug info for the variable.
503       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
504       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i);
505       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements);
506     }
507   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
508     unsigned NumElements = STy->getNumElements();
509     if (NumElements > 16 && GV->hasNUsesOrMore(16))
510       return nullptr; // It's not worth it.
511     NewGlobals.reserve(NumElements);
512     auto ElTy = STy->getElementType();
513     uint64_t EltSize = DL.getTypeAllocSize(ElTy);
514     unsigned EltAlign = DL.getABITypeAlignment(ElTy);
515     uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
516     for (unsigned i = 0, e = NumElements; i != e; ++i) {
517       Constant *In = Init->getAggregateElement(i);
518       assert(In && "Couldn't get element of initializer?");
519 
520       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
521                                                GlobalVariable::InternalLinkage,
522                                                In, GV->getName()+"."+Twine(i),
523                                                GV->getThreadLocalMode(),
524                                               GV->getType()->getAddressSpace());
525       NGV->setExternallyInitialized(GV->isExternallyInitialized());
526       NGV->copyAttributesFrom(GV);
527       Globals.push_back(NGV);
528       NewGlobals.push_back(NGV);
529 
530       // Calculate the known alignment of the field.  If the original aggregate
531       // had 256 byte alignment for example, something might depend on that:
532       // propagate info to each field.
533       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
534       if (NewAlign > EltAlign)
535         NGV->setAlignment(NewAlign);
536       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits,
537                            NumElements);
538     }
539   }
540 
541   if (NewGlobals.empty())
542     return nullptr;
543 
544   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
545 
546   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
547 
548   // Loop over all of the uses of the global, replacing the constantexpr geps,
549   // with smaller constantexpr geps or direct references.
550   while (!GV->use_empty()) {
551     User *GEP = GV->user_back();
552     assert(((isa<ConstantExpr>(GEP) &&
553              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
554             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
555 
556     // Ignore the 1th operand, which has to be zero or else the program is quite
557     // broken (undefined).  Get the 2nd operand, which is the structure or array
558     // index.
559     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
560     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
561 
562     Value *NewPtr = NewGlobals[Val];
563     Type *NewTy = NewGlobals[Val]->getValueType();
564 
565     // Form a shorter GEP if needed.
566     if (GEP->getNumOperands() > 3) {
567       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
568         SmallVector<Constant*, 8> Idxs;
569         Idxs.push_back(NullInt);
570         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
571           Idxs.push_back(CE->getOperand(i));
572         NewPtr =
573             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
574       } else {
575         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
576         SmallVector<Value*, 8> Idxs;
577         Idxs.push_back(NullInt);
578         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
579           Idxs.push_back(GEPI->getOperand(i));
580         NewPtr = GetElementPtrInst::Create(
581             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
582       }
583     }
584     GEP->replaceAllUsesWith(NewPtr);
585 
586     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
587       GEPI->eraseFromParent();
588     else
589       cast<ConstantExpr>(GEP)->destroyConstant();
590   }
591 
592   // Delete the old global, now that it is dead.
593   Globals.erase(GV);
594   ++NumSRA;
595 
596   // Loop over the new globals array deleting any globals that are obviously
597   // dead.  This can arise due to scalarization of a structure or an array that
598   // has elements that are dead.
599   unsigned FirstGlobal = 0;
600   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
601     if (NewGlobals[i]->use_empty()) {
602       Globals.erase(NewGlobals[i]);
603       if (FirstGlobal == i) ++FirstGlobal;
604     }
605 
606   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
607 }
608 
609 /// Return true if all users of the specified value will trap if the value is
610 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
611 /// reprocessing them.
612 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
613                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
614   for (const User *U : V->users()) {
615     if (const Instruction *I = dyn_cast<Instruction>(U)) {
616       // If null pointer is considered valid, then all uses are non-trapping.
617       // Non address-space 0 globals have already been pruned by the caller.
618       if (NullPointerIsDefined(I->getFunction()))
619         return false;
620     }
621     if (isa<LoadInst>(U)) {
622       // Will trap.
623     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
624       if (SI->getOperand(0) == V) {
625         //cerr << "NONTRAPPING USE: " << *U;
626         return false;  // Storing the value.
627       }
628     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
629       if (CI->getCalledValue() != V) {
630         //cerr << "NONTRAPPING USE: " << *U;
631         return false;  // Not calling the ptr
632       }
633     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
634       if (II->getCalledValue() != V) {
635         //cerr << "NONTRAPPING USE: " << *U;
636         return false;  // Not calling the ptr
637       }
638     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
639       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
640     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
641       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
642     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
643       // If we've already seen this phi node, ignore it, it has already been
644       // checked.
645       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
646         return false;
647     } else if (isa<ICmpInst>(U) &&
648                isa<ConstantPointerNull>(U->getOperand(1))) {
649       // Ignore icmp X, null
650     } else {
651       //cerr << "NONTRAPPING USE: " << *U;
652       return false;
653     }
654   }
655   return true;
656 }
657 
658 /// Return true if all uses of any loads from GV will trap if the loaded value
659 /// is null.  Note that this also permits comparisons of the loaded value
660 /// against null, as a special case.
661 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
662   for (const User *U : GV->users())
663     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
664       SmallPtrSet<const PHINode*, 8> PHIs;
665       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
666         return false;
667     } else if (isa<StoreInst>(U)) {
668       // Ignore stores to the global.
669     } else {
670       // We don't know or understand this user, bail out.
671       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
672       return false;
673     }
674   return true;
675 }
676 
677 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
678   bool Changed = false;
679   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
680     Instruction *I = cast<Instruction>(*UI++);
681     // Uses are non-trapping if null pointer is considered valid.
682     // Non address-space 0 globals are already pruned by the caller.
683     if (NullPointerIsDefined(I->getFunction()))
684       return false;
685     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
686       LI->setOperand(0, NewV);
687       Changed = true;
688     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
689       if (SI->getOperand(1) == V) {
690         SI->setOperand(1, NewV);
691         Changed = true;
692       }
693     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
694       CallSite CS(I);
695       if (CS.getCalledValue() == V) {
696         // Calling through the pointer!  Turn into a direct call, but be careful
697         // that the pointer is not also being passed as an argument.
698         CS.setCalledFunction(NewV);
699         Changed = true;
700         bool PassedAsArg = false;
701         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
702           if (CS.getArgument(i) == V) {
703             PassedAsArg = true;
704             CS.setArgument(i, NewV);
705           }
706 
707         if (PassedAsArg) {
708           // Being passed as an argument also.  Be careful to not invalidate UI!
709           UI = V->user_begin();
710         }
711       }
712     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
713       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
714                                 ConstantExpr::getCast(CI->getOpcode(),
715                                                       NewV, CI->getType()));
716       if (CI->use_empty()) {
717         Changed = true;
718         CI->eraseFromParent();
719       }
720     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
721       // Should handle GEP here.
722       SmallVector<Constant*, 8> Idxs;
723       Idxs.reserve(GEPI->getNumOperands()-1);
724       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
725            i != e; ++i)
726         if (Constant *C = dyn_cast<Constant>(*i))
727           Idxs.push_back(C);
728         else
729           break;
730       if (Idxs.size() == GEPI->getNumOperands()-1)
731         Changed |= OptimizeAwayTrappingUsesOfValue(
732             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
733                                                  NewV, Idxs));
734       if (GEPI->use_empty()) {
735         Changed = true;
736         GEPI->eraseFromParent();
737       }
738     }
739   }
740 
741   return Changed;
742 }
743 
744 /// The specified global has only one non-null value stored into it.  If there
745 /// are uses of the loaded value that would trap if the loaded value is
746 /// dynamically null, then we know that they cannot be reachable with a null
747 /// optimize away the load.
748 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
749                                             const DataLayout &DL,
750                                             TargetLibraryInfo *TLI) {
751   bool Changed = false;
752 
753   // Keep track of whether we are able to remove all the uses of the global
754   // other than the store that defines it.
755   bool AllNonStoreUsesGone = true;
756 
757   // Replace all uses of loads with uses of uses of the stored value.
758   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
759     User *GlobalUser = *GUI++;
760     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
761       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
762       // If we were able to delete all uses of the loads
763       if (LI->use_empty()) {
764         LI->eraseFromParent();
765         Changed = true;
766       } else {
767         AllNonStoreUsesGone = false;
768       }
769     } else if (isa<StoreInst>(GlobalUser)) {
770       // Ignore the store that stores "LV" to the global.
771       assert(GlobalUser->getOperand(1) == GV &&
772              "Must be storing *to* the global");
773     } else {
774       AllNonStoreUsesGone = false;
775 
776       // If we get here we could have other crazy uses that are transitively
777       // loaded.
778       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
779               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
780               isa<BitCastInst>(GlobalUser) ||
781               isa<GetElementPtrInst>(GlobalUser)) &&
782              "Only expect load and stores!");
783     }
784   }
785 
786   if (Changed) {
787     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
788                       << "\n");
789     ++NumGlobUses;
790   }
791 
792   // If we nuked all of the loads, then none of the stores are needed either,
793   // nor is the global.
794   if (AllNonStoreUsesGone) {
795     if (isLeakCheckerRoot(GV)) {
796       Changed |= CleanupPointerRootUsers(GV, TLI);
797     } else {
798       Changed = true;
799       CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
800     }
801     if (GV->use_empty()) {
802       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
803       Changed = true;
804       GV->eraseFromParent();
805       ++NumDeleted;
806     }
807   }
808   return Changed;
809 }
810 
811 /// Walk the use list of V, constant folding all of the instructions that are
812 /// foldable.
813 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
814                                 TargetLibraryInfo *TLI) {
815   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
816     if (Instruction *I = dyn_cast<Instruction>(*UI++))
817       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
818         I->replaceAllUsesWith(NewC);
819 
820         // Advance UI to the next non-I use to avoid invalidating it!
821         // Instructions could multiply use V.
822         while (UI != E && *UI == I)
823           ++UI;
824         if (isInstructionTriviallyDead(I, TLI))
825           I->eraseFromParent();
826       }
827 }
828 
829 /// This function takes the specified global variable, and transforms the
830 /// program as if it always contained the result of the specified malloc.
831 /// Because it is always the result of the specified malloc, there is no reason
832 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
833 /// loads of GV as uses of the new global.
834 static GlobalVariable *
835 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
836                               ConstantInt *NElements, const DataLayout &DL,
837                               TargetLibraryInfo *TLI) {
838   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
839                     << '\n');
840 
841   Type *GlobalType;
842   if (NElements->getZExtValue() == 1)
843     GlobalType = AllocTy;
844   else
845     // If we have an array allocation, the global variable is of an array.
846     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
847 
848   // Create the new global variable.  The contents of the malloc'd memory is
849   // undefined, so initialize with an undef value.
850   GlobalVariable *NewGV = new GlobalVariable(
851       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
852       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
853       GV->getThreadLocalMode());
854 
855   // If there are bitcast users of the malloc (which is typical, usually we have
856   // a malloc + bitcast) then replace them with uses of the new global.  Update
857   // other users to use the global as well.
858   BitCastInst *TheBC = nullptr;
859   while (!CI->use_empty()) {
860     Instruction *User = cast<Instruction>(CI->user_back());
861     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
862       if (BCI->getType() == NewGV->getType()) {
863         BCI->replaceAllUsesWith(NewGV);
864         BCI->eraseFromParent();
865       } else {
866         BCI->setOperand(0, NewGV);
867       }
868     } else {
869       if (!TheBC)
870         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
871       User->replaceUsesOfWith(CI, TheBC);
872     }
873   }
874 
875   Constant *RepValue = NewGV;
876   if (NewGV->getType() != GV->getValueType())
877     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
878 
879   // If there is a comparison against null, we will insert a global bool to
880   // keep track of whether the global was initialized yet or not.
881   GlobalVariable *InitBool =
882     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
883                        GlobalValue::InternalLinkage,
884                        ConstantInt::getFalse(GV->getContext()),
885                        GV->getName()+".init", GV->getThreadLocalMode());
886   bool InitBoolUsed = false;
887 
888   // Loop over all uses of GV, processing them in turn.
889   while (!GV->use_empty()) {
890     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
891       // The global is initialized when the store to it occurs.
892       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
893                     SI->getOrdering(), SI->getSyncScopeID(), SI);
894       SI->eraseFromParent();
895       continue;
896     }
897 
898     LoadInst *LI = cast<LoadInst>(GV->user_back());
899     while (!LI->use_empty()) {
900       Use &LoadUse = *LI->use_begin();
901       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
902       if (!ICI) {
903         LoadUse = RepValue;
904         continue;
905       }
906 
907       // Replace the cmp X, 0 with a use of the bool value.
908       // Sink the load to where the compare was, if atomic rules allow us to.
909       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
910                                InitBool->getName() + ".val", false, 0,
911                                LI->getOrdering(), LI->getSyncScopeID(),
912                                LI->isUnordered() ? (Instruction *)ICI : LI);
913       InitBoolUsed = true;
914       switch (ICI->getPredicate()) {
915       default: llvm_unreachable("Unknown ICmp Predicate!");
916       case ICmpInst::ICMP_ULT:
917       case ICmpInst::ICMP_SLT:   // X < null -> always false
918         LV = ConstantInt::getFalse(GV->getContext());
919         break;
920       case ICmpInst::ICMP_ULE:
921       case ICmpInst::ICMP_SLE:
922       case ICmpInst::ICMP_EQ:
923         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
924         break;
925       case ICmpInst::ICMP_NE:
926       case ICmpInst::ICMP_UGE:
927       case ICmpInst::ICMP_SGE:
928       case ICmpInst::ICMP_UGT:
929       case ICmpInst::ICMP_SGT:
930         break;  // no change.
931       }
932       ICI->replaceAllUsesWith(LV);
933       ICI->eraseFromParent();
934     }
935     LI->eraseFromParent();
936   }
937 
938   // If the initialization boolean was used, insert it, otherwise delete it.
939   if (!InitBoolUsed) {
940     while (!InitBool->use_empty())  // Delete initializations
941       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
942     delete InitBool;
943   } else
944     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
945 
946   // Now the GV is dead, nuke it and the malloc..
947   GV->eraseFromParent();
948   CI->eraseFromParent();
949 
950   // To further other optimizations, loop over all users of NewGV and try to
951   // constant prop them.  This will promote GEP instructions with constant
952   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
953   ConstantPropUsersOf(NewGV, DL, TLI);
954   if (RepValue != NewGV)
955     ConstantPropUsersOf(RepValue, DL, TLI);
956 
957   return NewGV;
958 }
959 
960 /// Scan the use-list of V checking to make sure that there are no complex uses
961 /// of V.  We permit simple things like dereferencing the pointer, but not
962 /// storing through the address, unless it is to the specified global.
963 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
964                                                       const GlobalVariable *GV,
965                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
966   for (const User *U : V->users()) {
967     const Instruction *Inst = cast<Instruction>(U);
968 
969     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
970       continue; // Fine, ignore.
971     }
972 
973     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
974       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
975         return false;  // Storing the pointer itself... bad.
976       continue; // Otherwise, storing through it, or storing into GV... fine.
977     }
978 
979     // Must index into the array and into the struct.
980     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
981       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
982         return false;
983       continue;
984     }
985 
986     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
987       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
988       // cycles.
989       if (PHIs.insert(PN).second)
990         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
991           return false;
992       continue;
993     }
994 
995     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
996       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
997         return false;
998       continue;
999     }
1000 
1001     return false;
1002   }
1003   return true;
1004 }
1005 
1006 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1007 /// allocation into loads from the global and uses of the resultant pointer.
1008 /// Further, delete the store into GV.  This assumes that these value pass the
1009 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1010 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1011                                           GlobalVariable *GV) {
1012   while (!Alloc->use_empty()) {
1013     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1014     Instruction *InsertPt = U;
1015     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1016       // If this is the store of the allocation into the global, remove it.
1017       if (SI->getOperand(1) == GV) {
1018         SI->eraseFromParent();
1019         continue;
1020       }
1021     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1022       // Insert the load in the corresponding predecessor, not right before the
1023       // PHI.
1024       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1025     } else if (isa<BitCastInst>(U)) {
1026       // Must be bitcast between the malloc and store to initialize the global.
1027       ReplaceUsesOfMallocWithGlobal(U, GV);
1028       U->eraseFromParent();
1029       continue;
1030     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1031       // If this is a "GEP bitcast" and the user is a store to the global, then
1032       // just process it as a bitcast.
1033       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1034         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1035           if (SI->getOperand(1) == GV) {
1036             // Must be bitcast GEP between the malloc and store to initialize
1037             // the global.
1038             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1039             GEPI->eraseFromParent();
1040             continue;
1041           }
1042     }
1043 
1044     // Insert a load from the global, and use it instead of the malloc.
1045     Value *NL =
1046         new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt);
1047     U->replaceUsesOfWith(Alloc, NL);
1048   }
1049 }
1050 
1051 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1052 /// perform heap SRA on.  This permits GEP's that index through the array and
1053 /// struct field, icmps of null, and PHIs.
1054 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1055                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1056                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1057   // We permit two users of the load: setcc comparing against the null
1058   // pointer, and a getelementptr of a specific form.
1059   for (const User *U : V->users()) {
1060     const Instruction *UI = cast<Instruction>(U);
1061 
1062     // Comparison against null is ok.
1063     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1064       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1065         return false;
1066       continue;
1067     }
1068 
1069     // getelementptr is also ok, but only a simple form.
1070     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1071       // Must index into the array and into the struct.
1072       if (GEPI->getNumOperands() < 3)
1073         return false;
1074 
1075       // Otherwise the GEP is ok.
1076       continue;
1077     }
1078 
1079     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1080       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1081         // This means some phi nodes are dependent on each other.
1082         // Avoid infinite looping!
1083         return false;
1084       if (!LoadUsingPHIs.insert(PN).second)
1085         // If we have already analyzed this PHI, then it is safe.
1086         continue;
1087 
1088       // Make sure all uses of the PHI are simple enough to transform.
1089       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1090                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1091         return false;
1092 
1093       continue;
1094     }
1095 
1096     // Otherwise we don't know what this is, not ok.
1097     return false;
1098   }
1099 
1100   return true;
1101 }
1102 
1103 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1104 /// return true.
1105 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1106                                                     Instruction *StoredVal) {
1107   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1108   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1109   for (const User *U : GV->users())
1110     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1111       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1112                                           LoadUsingPHIsPerLoad))
1113         return false;
1114       LoadUsingPHIsPerLoad.clear();
1115     }
1116 
1117   // If we reach here, we know that all uses of the loads and transitive uses
1118   // (through PHI nodes) are simple enough to transform.  However, we don't know
1119   // that all inputs the to the PHI nodes are in the same equivalence sets.
1120   // Check to verify that all operands of the PHIs are either PHIS that can be
1121   // transformed, loads from GV, or MI itself.
1122   for (const PHINode *PN : LoadUsingPHIs) {
1123     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1124       Value *InVal = PN->getIncomingValue(op);
1125 
1126       // PHI of the stored value itself is ok.
1127       if (InVal == StoredVal) continue;
1128 
1129       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1130         // One of the PHIs in our set is (optimistically) ok.
1131         if (LoadUsingPHIs.count(InPN))
1132           continue;
1133         return false;
1134       }
1135 
1136       // Load from GV is ok.
1137       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1138         if (LI->getOperand(0) == GV)
1139           continue;
1140 
1141       // UNDEF? NULL?
1142 
1143       // Anything else is rejected.
1144       return false;
1145     }
1146   }
1147 
1148   return true;
1149 }
1150 
1151 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1152               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1153                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1154   std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1155 
1156   if (FieldNo >= FieldVals.size())
1157     FieldVals.resize(FieldNo+1);
1158 
1159   // If we already have this value, just reuse the previously scalarized
1160   // version.
1161   if (Value *FieldVal = FieldVals[FieldNo])
1162     return FieldVal;
1163 
1164   // Depending on what instruction this is, we have several cases.
1165   Value *Result;
1166   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1167     // This is a scalarized version of the load from the global.  Just create
1168     // a new Load of the scalarized global.
1169     Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo,
1170                                 InsertedScalarizedValues, PHIsToRewrite);
1171     Result = new LoadInst(V->getType()->getPointerElementType(), V,
1172                           LI->getName() + ".f" + Twine(FieldNo), LI);
1173   } else {
1174     PHINode *PN = cast<PHINode>(V);
1175     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1176     // field.
1177 
1178     PointerType *PTy = cast<PointerType>(PN->getType());
1179     StructType *ST = cast<StructType>(PTy->getElementType());
1180 
1181     unsigned AS = PTy->getAddressSpace();
1182     PHINode *NewPN =
1183       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1184                      PN->getNumIncomingValues(),
1185                      PN->getName()+".f"+Twine(FieldNo), PN);
1186     Result = NewPN;
1187     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1188   }
1189 
1190   return FieldVals[FieldNo] = Result;
1191 }
1192 
1193 /// Given a load instruction and a value derived from the load, rewrite the
1194 /// derived value to use the HeapSRoA'd load.
1195 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1196               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1197                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1198   // If this is a comparison against null, handle it.
1199   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1200     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1201     // If we have a setcc of the loaded pointer, we can use a setcc of any
1202     // field.
1203     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1204                                    InsertedScalarizedValues, PHIsToRewrite);
1205 
1206     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1207                               Constant::getNullValue(NPtr->getType()),
1208                               SCI->getName());
1209     SCI->replaceAllUsesWith(New);
1210     SCI->eraseFromParent();
1211     return;
1212   }
1213 
1214   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1215   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1216     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1217            && "Unexpected GEPI!");
1218 
1219     // Load the pointer for this field.
1220     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1221     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1222                                      InsertedScalarizedValues, PHIsToRewrite);
1223 
1224     // Create the new GEP idx vector.
1225     SmallVector<Value*, 8> GEPIdx;
1226     GEPIdx.push_back(GEPI->getOperand(1));
1227     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1228 
1229     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1230                                              GEPI->getName(), GEPI);
1231     GEPI->replaceAllUsesWith(NGEPI);
1232     GEPI->eraseFromParent();
1233     return;
1234   }
1235 
1236   // Recursively transform the users of PHI nodes.  This will lazily create the
1237   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1238   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1239   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1240   // already been seen first by another load, so its uses have already been
1241   // processed.
1242   PHINode *PN = cast<PHINode>(LoadUser);
1243   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1244                                               std::vector<Value *>())).second)
1245     return;
1246 
1247   // If this is the first time we've seen this PHI, recursively process all
1248   // users.
1249   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1250     Instruction *User = cast<Instruction>(*UI++);
1251     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1252   }
1253 }
1254 
1255 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1256 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1257 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1258 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1259               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1260                   std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1261   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1262     Instruction *User = cast<Instruction>(*UI++);
1263     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1264   }
1265 
1266   if (Load->use_empty()) {
1267     Load->eraseFromParent();
1268     InsertedScalarizedValues.erase(Load);
1269   }
1270 }
1271 
1272 /// CI is an allocation of an array of structures.  Break it up into multiple
1273 /// allocations of arrays of the fields.
1274 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1275                                             Value *NElems, const DataLayout &DL,
1276                                             const TargetLibraryInfo *TLI) {
1277   LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
1278                     << '\n');
1279   Type *MAT = getMallocAllocatedType(CI, TLI);
1280   StructType *STy = cast<StructType>(MAT);
1281 
1282   // There is guaranteed to be at least one use of the malloc (storing
1283   // it into GV).  If there are other uses, change them to be uses of
1284   // the global to simplify later code.  This also deletes the store
1285   // into GV.
1286   ReplaceUsesOfMallocWithGlobal(CI, GV);
1287 
1288   // Okay, at this point, there are no users of the malloc.  Insert N
1289   // new mallocs at the same place as CI, and N globals.
1290   std::vector<Value *> FieldGlobals;
1291   std::vector<Value *> FieldMallocs;
1292 
1293   SmallVector<OperandBundleDef, 1> OpBundles;
1294   CI->getOperandBundlesAsDefs(OpBundles);
1295 
1296   unsigned AS = GV->getType()->getPointerAddressSpace();
1297   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1298     Type *FieldTy = STy->getElementType(FieldNo);
1299     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1300 
1301     GlobalVariable *NGV = new GlobalVariable(
1302         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1303         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1304         nullptr, GV->getThreadLocalMode());
1305     NGV->copyAttributesFrom(GV);
1306     FieldGlobals.push_back(NGV);
1307 
1308     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1309     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1310       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1311     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1312     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1313                                         ConstantInt::get(IntPtrTy, TypeSize),
1314                                         NElems, OpBundles, nullptr,
1315                                         CI->getName() + ".f" + Twine(FieldNo));
1316     FieldMallocs.push_back(NMI);
1317     new StoreInst(NMI, NGV, CI);
1318   }
1319 
1320   // The tricky aspect of this transformation is handling the case when malloc
1321   // fails.  In the original code, malloc failing would set the result pointer
1322   // of malloc to null.  In this case, some mallocs could succeed and others
1323   // could fail.  As such, we emit code that looks like this:
1324   //    F0 = malloc(field0)
1325   //    F1 = malloc(field1)
1326   //    F2 = malloc(field2)
1327   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1328   //      if (F0) { free(F0); F0 = 0; }
1329   //      if (F1) { free(F1); F1 = 0; }
1330   //      if (F2) { free(F2); F2 = 0; }
1331   //    }
1332   // The malloc can also fail if its argument is too large.
1333   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1334   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1335                                   ConstantZero, "isneg");
1336   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1337     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1338                              Constant::getNullValue(FieldMallocs[i]->getType()),
1339                                "isnull");
1340     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1341   }
1342 
1343   // Split the basic block at the old malloc.
1344   BasicBlock *OrigBB = CI->getParent();
1345   BasicBlock *ContBB =
1346       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1347 
1348   // Create the block to check the first condition.  Put all these blocks at the
1349   // end of the function as they are unlikely to be executed.
1350   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1351                                                 "malloc_ret_null",
1352                                                 OrigBB->getParent());
1353 
1354   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1355   // branch on RunningOr.
1356   OrigBB->getTerminator()->eraseFromParent();
1357   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1358 
1359   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1360   // pointer, because some may be null while others are not.
1361   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1362     Value *GVVal =
1363         new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(),
1364                      FieldGlobals[i], "tmp", NullPtrBlock);
1365     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1366                               Constant::getNullValue(GVVal->getType()));
1367     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1368                                                OrigBB->getParent());
1369     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1370                                                OrigBB->getParent());
1371     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1372                                          Cmp, NullPtrBlock);
1373 
1374     // Fill in FreeBlock.
1375     CallInst::CreateFree(GVVal, OpBundles, BI);
1376     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1377                   FreeBlock);
1378     BranchInst::Create(NextBlock, FreeBlock);
1379 
1380     NullPtrBlock = NextBlock;
1381   }
1382 
1383   BranchInst::Create(ContBB, NullPtrBlock);
1384 
1385   // CI is no longer needed, remove it.
1386   CI->eraseFromParent();
1387 
1388   /// As we process loads, if we can't immediately update all uses of the load,
1389   /// keep track of what scalarized loads are inserted for a given load.
1390   DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1391   InsertedScalarizedValues[GV] = FieldGlobals;
1392 
1393   std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1394 
1395   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1396   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1397   // of the per-field globals instead.
1398   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1399     Instruction *User = cast<Instruction>(*UI++);
1400 
1401     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1402       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1403       continue;
1404     }
1405 
1406     // Must be a store of null.
1407     StoreInst *SI = cast<StoreInst>(User);
1408     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1409            "Unexpected heap-sra user!");
1410 
1411     // Insert a store of null into each global.
1412     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1413       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1414       Constant *Null = Constant::getNullValue(ValTy);
1415       new StoreInst(Null, FieldGlobals[i], SI);
1416     }
1417     // Erase the original store.
1418     SI->eraseFromParent();
1419   }
1420 
1421   // While we have PHIs that are interesting to rewrite, do it.
1422   while (!PHIsToRewrite.empty()) {
1423     PHINode *PN = PHIsToRewrite.back().first;
1424     unsigned FieldNo = PHIsToRewrite.back().second;
1425     PHIsToRewrite.pop_back();
1426     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1427     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1428 
1429     // Add all the incoming values.  This can materialize more phis.
1430     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1431       Value *InVal = PN->getIncomingValue(i);
1432       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1433                                PHIsToRewrite);
1434       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1435     }
1436   }
1437 
1438   // Drop all inter-phi links and any loads that made it this far.
1439   for (DenseMap<Value *, std::vector<Value *>>::iterator
1440        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1441        I != E; ++I) {
1442     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1443       PN->dropAllReferences();
1444     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1445       LI->dropAllReferences();
1446   }
1447 
1448   // Delete all the phis and loads now that inter-references are dead.
1449   for (DenseMap<Value *, std::vector<Value *>>::iterator
1450        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1451        I != E; ++I) {
1452     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1453       PN->eraseFromParent();
1454     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1455       LI->eraseFromParent();
1456   }
1457 
1458   // The old global is now dead, remove it.
1459   GV->eraseFromParent();
1460 
1461   ++NumHeapSRA;
1462   return cast<GlobalVariable>(FieldGlobals[0]);
1463 }
1464 
1465 /// This function is called when we see a pointer global variable with a single
1466 /// value stored it that is a malloc or cast of malloc.
1467 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1468                                                Type *AllocTy,
1469                                                AtomicOrdering Ordering,
1470                                                const DataLayout &DL,
1471                                                TargetLibraryInfo *TLI) {
1472   // If this is a malloc of an abstract type, don't touch it.
1473   if (!AllocTy->isSized())
1474     return false;
1475 
1476   // We can't optimize this global unless all uses of it are *known* to be
1477   // of the malloc value, not of the null initializer value (consider a use
1478   // that compares the global's value against zero to see if the malloc has
1479   // been reached).  To do this, we check to see if all uses of the global
1480   // would trap if the global were null: this proves that they must all
1481   // happen after the malloc.
1482   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1483     return false;
1484 
1485   // We can't optimize this if the malloc itself is used in a complex way,
1486   // for example, being stored into multiple globals.  This allows the
1487   // malloc to be stored into the specified global, loaded icmp'd, and
1488   // GEP'd.  These are all things we could transform to using the global
1489   // for.
1490   SmallPtrSet<const PHINode*, 8> PHIs;
1491   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1492     return false;
1493 
1494   // If we have a global that is only initialized with a fixed size malloc,
1495   // transform the program to use global memory instead of malloc'd memory.
1496   // This eliminates dynamic allocation, avoids an indirection accessing the
1497   // data, and exposes the resultant global to further GlobalOpt.
1498   // We cannot optimize the malloc if we cannot determine malloc array size.
1499   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1500   if (!NElems)
1501     return false;
1502 
1503   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1504     // Restrict this transformation to only working on small allocations
1505     // (2048 bytes currently), as we don't want to introduce a 16M global or
1506     // something.
1507     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1508       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1509       return true;
1510     }
1511 
1512   // If the allocation is an array of structures, consider transforming this
1513   // into multiple malloc'd arrays, one for each field.  This is basically
1514   // SRoA for malloc'd memory.
1515 
1516   if (Ordering != AtomicOrdering::NotAtomic)
1517     return false;
1518 
1519   // If this is an allocation of a fixed size array of structs, analyze as a
1520   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1521   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1522     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1523       AllocTy = AT->getElementType();
1524 
1525   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1526   if (!AllocSTy)
1527     return false;
1528 
1529   // This the structure has an unreasonable number of fields, leave it
1530   // alone.
1531   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1532       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1533 
1534     // If this is a fixed size array, transform the Malloc to be an alloc of
1535     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1536     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1537       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1538       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1539       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1540       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1541       SmallVector<OperandBundleDef, 1> OpBundles;
1542       CI->getOperandBundlesAsDefs(OpBundles);
1543       Instruction *Malloc =
1544           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1545                                  OpBundles, nullptr, CI->getName());
1546       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1547       CI->replaceAllUsesWith(Cast);
1548       CI->eraseFromParent();
1549       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1550         CI = cast<CallInst>(BCI->getOperand(0));
1551       else
1552         CI = cast<CallInst>(Malloc);
1553     }
1554 
1555     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1556                          TLI);
1557     return true;
1558   }
1559 
1560   return false;
1561 }
1562 
1563 // Try to optimize globals based on the knowledge that only one value (besides
1564 // its initializer) is ever stored to the global.
1565 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1566                                      AtomicOrdering Ordering,
1567                                      const DataLayout &DL,
1568                                      TargetLibraryInfo *TLI) {
1569   // Ignore no-op GEPs and bitcasts.
1570   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1571 
1572   // If we are dealing with a pointer global that is initialized to null and
1573   // only has one (non-null) value stored into it, then we can optimize any
1574   // users of the loaded value (often calls and loads) that would trap if the
1575   // value was null.
1576   if (GV->getInitializer()->getType()->isPointerTy() &&
1577       GV->getInitializer()->isNullValue() &&
1578       !NullPointerIsDefined(
1579           nullptr /* F */,
1580           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1581     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1582       if (GV->getInitializer()->getType() != SOVC->getType())
1583         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1584 
1585       // Optimize away any trapping uses of the loaded value.
1586       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1587         return true;
1588     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1589       Type *MallocType = getMallocAllocatedType(CI, TLI);
1590       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1591                                                            Ordering, DL, TLI))
1592         return true;
1593     }
1594   }
1595 
1596   return false;
1597 }
1598 
1599 /// At this point, we have learned that the only two values ever stored into GV
1600 /// are its initializer and OtherVal.  See if we can shrink the global into a
1601 /// boolean and select between the two values whenever it is used.  This exposes
1602 /// the values to other scalar optimizations.
1603 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1604   Type *GVElType = GV->getValueType();
1605 
1606   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1607   // an FP value, pointer or vector, don't do this optimization because a select
1608   // between them is very expensive and unlikely to lead to later
1609   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1610   // where v1 and v2 both require constant pool loads, a big loss.
1611   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1612       GVElType->isFloatingPointTy() ||
1613       GVElType->isPointerTy() || GVElType->isVectorTy())
1614     return false;
1615 
1616   // Walk the use list of the global seeing if all the uses are load or store.
1617   // If there is anything else, bail out.
1618   for (User *U : GV->users())
1619     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1620       return false;
1621 
1622   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1623 
1624   // Create the new global, initializing it to false.
1625   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1626                                              false,
1627                                              GlobalValue::InternalLinkage,
1628                                         ConstantInt::getFalse(GV->getContext()),
1629                                              GV->getName()+".b",
1630                                              GV->getThreadLocalMode(),
1631                                              GV->getType()->getAddressSpace());
1632   NewGV->copyAttributesFrom(GV);
1633   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1634 
1635   Constant *InitVal = GV->getInitializer();
1636   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1637          "No reason to shrink to bool!");
1638 
1639   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1640   GV->getDebugInfo(GVs);
1641 
1642   // If initialized to zero and storing one into the global, we can use a cast
1643   // instead of a select to synthesize the desired value.
1644   bool IsOneZero = false;
1645   bool EmitOneOrZero = true;
1646   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1647   if (CI && CI->getValue().getActiveBits() <= 64) {
1648     IsOneZero = InitVal->isNullValue() && CI->isOne();
1649 
1650     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1651     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1652       uint64_t ValInit = CIInit->getZExtValue();
1653       uint64_t ValOther = CI->getZExtValue();
1654       uint64_t ValMinus = ValOther - ValInit;
1655 
1656       for(auto *GVe : GVs){
1657         DIGlobalVariable *DGV = GVe->getVariable();
1658         DIExpression *E = GVe->getExpression();
1659         const DataLayout &DL = GV->getParent()->getDataLayout();
1660         unsigned SizeInOctets =
1661           DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8;
1662 
1663         // It is expected that the address of global optimized variable is on
1664         // top of the stack. After optimization, value of that variable will
1665         // be ether 0 for initial value or 1 for other value. The following
1666         // expression should return constant integer value depending on the
1667         // value at global object address:
1668         // val * (ValOther - ValInit) + ValInit:
1669         // DW_OP_deref DW_OP_constu <ValMinus>
1670         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1671         SmallVector<uint64_t, 12> Ops = {
1672             dwarf::DW_OP_deref_size, SizeInOctets,
1673             dwarf::DW_OP_constu, ValMinus,
1674             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1675             dwarf::DW_OP_plus};
1676         bool WithStackValue = true;
1677         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1678         DIGlobalVariableExpression *DGVE =
1679           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1680         NewGV->addDebugInfo(DGVE);
1681      }
1682      EmitOneOrZero = false;
1683     }
1684   }
1685 
1686   if (EmitOneOrZero) {
1687      // FIXME: This will only emit address for debugger on which will
1688      // be written only 0 or 1.
1689      for(auto *GV : GVs)
1690        NewGV->addDebugInfo(GV);
1691    }
1692 
1693   while (!GV->use_empty()) {
1694     Instruction *UI = cast<Instruction>(GV->user_back());
1695     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1696       // Change the store into a boolean store.
1697       bool StoringOther = SI->getOperand(0) == OtherVal;
1698       // Only do this if we weren't storing a loaded value.
1699       Value *StoreVal;
1700       if (StoringOther || SI->getOperand(0) == InitVal) {
1701         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1702                                     StoringOther);
1703       } else {
1704         // Otherwise, we are storing a previously loaded copy.  To do this,
1705         // change the copy from copying the original value to just copying the
1706         // bool.
1707         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1708 
1709         // If we've already replaced the input, StoredVal will be a cast or
1710         // select instruction.  If not, it will be a load of the original
1711         // global.
1712         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1713           assert(LI->getOperand(0) == GV && "Not a copy!");
1714           // Insert a new load, to preserve the saved value.
1715           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1716                                   LI->getName() + ".b", false, 0,
1717                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1718         } else {
1719           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1720                  "This is not a form that we understand!");
1721           StoreVal = StoredVal->getOperand(0);
1722           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1723         }
1724       }
1725       StoreInst *NSI =
1726           new StoreInst(StoreVal, NewGV, false, 0, SI->getOrdering(),
1727                         SI->getSyncScopeID(), SI);
1728       NSI->setDebugLoc(SI->getDebugLoc());
1729     } else {
1730       // Change the load into a load of bool then a select.
1731       LoadInst *LI = cast<LoadInst>(UI);
1732       LoadInst *NLI =
1733           new LoadInst(NewGV->getValueType(), NewGV, LI->getName() + ".b",
1734                        false, 0, LI->getOrdering(), LI->getSyncScopeID(), LI);
1735       Instruction *NSI;
1736       if (IsOneZero)
1737         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1738       else
1739         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1740       NSI->takeName(LI);
1741       // Since LI is split into two instructions, NLI and NSI both inherit the
1742       // same DebugLoc
1743       NLI->setDebugLoc(LI->getDebugLoc());
1744       NSI->setDebugLoc(LI->getDebugLoc());
1745       LI->replaceAllUsesWith(NSI);
1746     }
1747     UI->eraseFromParent();
1748   }
1749 
1750   // Retain the name of the old global variable. People who are debugging their
1751   // programs may expect these variables to be named the same.
1752   NewGV->takeName(GV);
1753   GV->eraseFromParent();
1754   return true;
1755 }
1756 
1757 static bool deleteIfDead(
1758     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1759   GV.removeDeadConstantUsers();
1760 
1761   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1762     return false;
1763 
1764   if (const Comdat *C = GV.getComdat())
1765     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1766       return false;
1767 
1768   bool Dead;
1769   if (auto *F = dyn_cast<Function>(&GV))
1770     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1771   else
1772     Dead = GV.use_empty();
1773   if (!Dead)
1774     return false;
1775 
1776   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1777   GV.eraseFromParent();
1778   ++NumDeleted;
1779   return true;
1780 }
1781 
1782 static bool isPointerValueDeadOnEntryToFunction(
1783     const Function *F, GlobalValue *GV,
1784     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1785   // Find all uses of GV. We expect them all to be in F, and if we can't
1786   // identify any of the uses we bail out.
1787   //
1788   // On each of these uses, identify if the memory that GV points to is
1789   // used/required/live at the start of the function. If it is not, for example
1790   // if the first thing the function does is store to the GV, the GV can
1791   // possibly be demoted.
1792   //
1793   // We don't do an exhaustive search for memory operations - simply look
1794   // through bitcasts as they're quite common and benign.
1795   const DataLayout &DL = GV->getParent()->getDataLayout();
1796   SmallVector<LoadInst *, 4> Loads;
1797   SmallVector<StoreInst *, 4> Stores;
1798   for (auto *U : GV->users()) {
1799     if (Operator::getOpcode(U) == Instruction::BitCast) {
1800       for (auto *UU : U->users()) {
1801         if (auto *LI = dyn_cast<LoadInst>(UU))
1802           Loads.push_back(LI);
1803         else if (auto *SI = dyn_cast<StoreInst>(UU))
1804           Stores.push_back(SI);
1805         else
1806           return false;
1807       }
1808       continue;
1809     }
1810 
1811     Instruction *I = dyn_cast<Instruction>(U);
1812     if (!I)
1813       return false;
1814     assert(I->getParent()->getParent() == F);
1815 
1816     if (auto *LI = dyn_cast<LoadInst>(I))
1817       Loads.push_back(LI);
1818     else if (auto *SI = dyn_cast<StoreInst>(I))
1819       Stores.push_back(SI);
1820     else
1821       return false;
1822   }
1823 
1824   // We have identified all uses of GV into loads and stores. Now check if all
1825   // of them are known not to depend on the value of the global at the function
1826   // entry point. We do this by ensuring that every load is dominated by at
1827   // least one store.
1828   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1829 
1830   // The below check is quadratic. Check we're not going to do too many tests.
1831   // FIXME: Even though this will always have worst-case quadratic time, we
1832   // could put effort into minimizing the average time by putting stores that
1833   // have been shown to dominate at least one load at the beginning of the
1834   // Stores array, making subsequent dominance checks more likely to succeed
1835   // early.
1836   //
1837   // The threshold here is fairly large because global->local demotion is a
1838   // very powerful optimization should it fire.
1839   const unsigned Threshold = 100;
1840   if (Loads.size() * Stores.size() > Threshold)
1841     return false;
1842 
1843   for (auto *L : Loads) {
1844     auto *LTy = L->getType();
1845     if (none_of(Stores, [&](const StoreInst *S) {
1846           auto *STy = S->getValueOperand()->getType();
1847           // The load is only dominated by the store if DomTree says so
1848           // and the number of bits loaded in L is less than or equal to
1849           // the number of bits stored in S.
1850           return DT.dominates(S, L) &&
1851                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1852         }))
1853       return false;
1854   }
1855   // All loads have known dependences inside F, so the global can be localized.
1856   return true;
1857 }
1858 
1859 /// C may have non-instruction users. Can all of those users be turned into
1860 /// instructions?
1861 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1862   // We don't do this exhaustively. The most common pattern that we really need
1863   // to care about is a constant GEP or constant bitcast - so just looking
1864   // through one single ConstantExpr.
1865   //
1866   // The set of constants that this function returns true for must be able to be
1867   // handled by makeAllConstantUsesInstructions.
1868   for (auto *U : C->users()) {
1869     if (isa<Instruction>(U))
1870       continue;
1871     if (!isa<ConstantExpr>(U))
1872       // Non instruction, non-constantexpr user; cannot convert this.
1873       return false;
1874     for (auto *UU : U->users())
1875       if (!isa<Instruction>(UU))
1876         // A constantexpr used by another constant. We don't try and recurse any
1877         // further but just bail out at this point.
1878         return false;
1879   }
1880 
1881   return true;
1882 }
1883 
1884 /// C may have non-instruction users, and
1885 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1886 /// non-instruction users to instructions.
1887 static void makeAllConstantUsesInstructions(Constant *C) {
1888   SmallVector<ConstantExpr*,4> Users;
1889   for (auto *U : C->users()) {
1890     if (isa<ConstantExpr>(U))
1891       Users.push_back(cast<ConstantExpr>(U));
1892     else
1893       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1894       // should not have returned true for C.
1895       assert(
1896           isa<Instruction>(U) &&
1897           "Can't transform non-constantexpr non-instruction to instruction!");
1898   }
1899 
1900   SmallVector<Value*,4> UUsers;
1901   for (auto *U : Users) {
1902     UUsers.clear();
1903     for (auto *UU : U->users())
1904       UUsers.push_back(UU);
1905     for (auto *UU : UUsers) {
1906       Instruction *UI = cast<Instruction>(UU);
1907       Instruction *NewU = U->getAsInstruction();
1908       NewU->insertBefore(UI);
1909       UI->replaceUsesOfWith(U, NewU);
1910     }
1911     // We've replaced all the uses, so destroy the constant. (destroyConstant
1912     // will update value handles and metadata.)
1913     U->destroyConstant();
1914   }
1915 }
1916 
1917 /// Analyze the specified global variable and optimize
1918 /// it if possible.  If we make a change, return true.
1919 static bool processInternalGlobal(
1920     GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI,
1921     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1922   auto &DL = GV->getParent()->getDataLayout();
1923   // If this is a first class global and has only one accessing function and
1924   // this function is non-recursive, we replace the global with a local alloca
1925   // in this function.
1926   //
1927   // NOTE: It doesn't make sense to promote non-single-value types since we
1928   // are just replacing static memory to stack memory.
1929   //
1930   // If the global is in different address space, don't bring it to stack.
1931   if (!GS.HasMultipleAccessingFunctions &&
1932       GS.AccessingFunction &&
1933       GV->getValueType()->isSingleValueType() &&
1934       GV->getType()->getAddressSpace() == 0 &&
1935       !GV->isExternallyInitialized() &&
1936       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1937       GS.AccessingFunction->doesNotRecurse() &&
1938       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1939                                           LookupDomTree)) {
1940     const DataLayout &DL = GV->getParent()->getDataLayout();
1941 
1942     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1943     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1944                                                    ->getEntryBlock().begin());
1945     Type *ElemTy = GV->getValueType();
1946     // FIXME: Pass Global's alignment when globals have alignment
1947     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1948                                         GV->getName(), &FirstI);
1949     if (!isa<UndefValue>(GV->getInitializer()))
1950       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1951 
1952     makeAllConstantUsesInstructions(GV);
1953 
1954     GV->replaceAllUsesWith(Alloca);
1955     GV->eraseFromParent();
1956     ++NumLocalized;
1957     return true;
1958   }
1959 
1960   // If the global is never loaded (but may be stored to), it is dead.
1961   // Delete it now.
1962   if (!GS.IsLoaded) {
1963     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1964 
1965     bool Changed;
1966     if (isLeakCheckerRoot(GV)) {
1967       // Delete any constant stores to the global.
1968       Changed = CleanupPointerRootUsers(GV, TLI);
1969     } else {
1970       // Delete any stores we can find to the global.  We may not be able to
1971       // make it completely dead though.
1972       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1973     }
1974 
1975     // If the global is dead now, delete it.
1976     if (GV->use_empty()) {
1977       GV->eraseFromParent();
1978       ++NumDeleted;
1979       Changed = true;
1980     }
1981     return Changed;
1982 
1983   }
1984   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1985     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1986 
1987     // Don't actually mark a global constant if it's atomic because atomic loads
1988     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1989     // requires write access to the variable even if it's not actually changed.
1990     if (GS.Ordering == AtomicOrdering::NotAtomic)
1991       GV->setConstant(true);
1992 
1993     // Clean up any obviously simplifiable users now.
1994     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1995 
1996     // If the global is dead now, just nuke it.
1997     if (GV->use_empty()) {
1998       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1999                         << "all users and delete global!\n");
2000       GV->eraseFromParent();
2001       ++NumDeleted;
2002       return true;
2003     }
2004 
2005     // Fall through to the next check; see if we can optimize further.
2006     ++NumMarked;
2007   }
2008   if (!GV->getInitializer()->getType()->isSingleValueType()) {
2009     const DataLayout &DL = GV->getParent()->getDataLayout();
2010     if (SRAGlobal(GV, DL))
2011       return true;
2012   }
2013   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
2014     // If the initial value for the global was an undef value, and if only
2015     // one other value was stored into it, we can just change the
2016     // initializer to be the stored value, then delete all stores to the
2017     // global.  This allows us to mark it constant.
2018     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2019       if (isa<UndefValue>(GV->getInitializer())) {
2020         // Change the initial value here.
2021         GV->setInitializer(SOVConstant);
2022 
2023         // Clean up any obviously simplifiable users now.
2024         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
2025 
2026         if (GV->use_empty()) {
2027           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2028                             << "simplify all users and delete global!\n");
2029           GV->eraseFromParent();
2030           ++NumDeleted;
2031         }
2032         ++NumSubstitute;
2033         return true;
2034       }
2035 
2036     // Try to optimize globals based on the knowledge that only one value
2037     // (besides its initializer) is ever stored to the global.
2038     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
2039       return true;
2040 
2041     // Otherwise, if the global was not a boolean, we can shrink it to be a
2042     // boolean.
2043     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2044       if (GS.Ordering == AtomicOrdering::NotAtomic) {
2045         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2046           ++NumShrunkToBool;
2047           return true;
2048         }
2049       }
2050     }
2051   }
2052 
2053   return false;
2054 }
2055 
2056 /// Analyze the specified global variable and optimize it if possible.  If we
2057 /// make a change, return true.
2058 static bool
2059 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI,
2060               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2061   if (GV.getName().startswith("llvm."))
2062     return false;
2063 
2064   GlobalStatus GS;
2065 
2066   if (GlobalStatus::analyzeGlobal(&GV, GS))
2067     return false;
2068 
2069   bool Changed = false;
2070   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2071     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2072                                                : GlobalValue::UnnamedAddr::Local;
2073     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2074       GV.setUnnamedAddr(NewUnnamedAddr);
2075       NumUnnamed++;
2076       Changed = true;
2077     }
2078   }
2079 
2080   // Do more involved optimizations if the global is internal.
2081   if (!GV.hasLocalLinkage())
2082     return Changed;
2083 
2084   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2085   if (!GVar)
2086     return Changed;
2087 
2088   if (GVar->isConstant() || !GVar->hasInitializer())
2089     return Changed;
2090 
2091   return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed;
2092 }
2093 
2094 /// Walk all of the direct calls of the specified function, changing them to
2095 /// FastCC.
2096 static void ChangeCalleesToFastCall(Function *F) {
2097   for (User *U : F->users()) {
2098     if (isa<BlockAddress>(U))
2099       continue;
2100     CallSite CS(cast<Instruction>(U));
2101     CS.setCallingConv(CallingConv::Fast);
2102   }
2103 }
2104 
2105 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
2106                                Attribute::AttrKind A) {
2107   unsigned AttrIndex;
2108   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
2109     return Attrs.removeAttribute(C, AttrIndex, A);
2110   return Attrs;
2111 }
2112 
2113 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
2114   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
2115   for (User *U : F->users()) {
2116     if (isa<BlockAddress>(U))
2117       continue;
2118     CallSite CS(cast<Instruction>(U));
2119     CS.setAttributes(StripAttr(F->getContext(), CS.getAttributes(), A));
2120   }
2121 }
2122 
2123 /// Return true if this is a calling convention that we'd like to change.  The
2124 /// idea here is that we don't want to mess with the convention if the user
2125 /// explicitly requested something with performance implications like coldcc,
2126 /// GHC, or anyregcc.
2127 static bool hasChangeableCC(Function *F) {
2128   CallingConv::ID CC = F->getCallingConv();
2129 
2130   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2131   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2132     return false;
2133 
2134   // FIXME: Change CC for the whole chain of musttail calls when possible.
2135   //
2136   // Can't change CC of the function that either has musttail calls, or is a
2137   // musttail callee itself
2138   for (User *U : F->users()) {
2139     if (isa<BlockAddress>(U))
2140       continue;
2141     CallInst* CI = dyn_cast<CallInst>(U);
2142     if (!CI)
2143       continue;
2144 
2145     if (CI->isMustTailCall())
2146       return false;
2147   }
2148 
2149   for (BasicBlock &BB : *F)
2150     if (BB.getTerminatingMustTailCall())
2151       return false;
2152 
2153   return true;
2154 }
2155 
2156 /// Return true if the block containing the call site has a BlockFrequency of
2157 /// less than ColdCCRelFreq% of the entry block.
2158 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
2159   const BranchProbability ColdProb(ColdCCRelFreq, 100);
2160   auto CallSiteBB = CS.getInstruction()->getParent();
2161   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2162   auto CallerEntryFreq =
2163       CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
2164   return CallSiteFreq < CallerEntryFreq * ColdProb;
2165 }
2166 
2167 // This function checks if the input function F is cold at all call sites. It
2168 // also looks each call site's containing function, returning false if the
2169 // caller function contains other non cold calls. The input vector AllCallsCold
2170 // contains a list of functions that only have call sites in cold blocks.
2171 static bool
2172 isValidCandidateForColdCC(Function &F,
2173                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2174                           const std::vector<Function *> &AllCallsCold) {
2175 
2176   if (F.user_empty())
2177     return false;
2178 
2179   for (User *U : F.users()) {
2180     if (isa<BlockAddress>(U))
2181       continue;
2182 
2183     CallSite CS(cast<Instruction>(U));
2184     Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
2185     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2186     if (!isColdCallSite(CS, CallerBFI))
2187       return false;
2188     auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2189     if (It == AllCallsCold.end())
2190       return false;
2191   }
2192   return true;
2193 }
2194 
2195 static void changeCallSitesToColdCC(Function *F) {
2196   for (User *U : F->users()) {
2197     if (isa<BlockAddress>(U))
2198       continue;
2199     CallSite CS(cast<Instruction>(U));
2200     CS.setCallingConv(CallingConv::Cold);
2201   }
2202 }
2203 
2204 // This function iterates over all the call instructions in the input Function
2205 // and checks that all call sites are in cold blocks and are allowed to use the
2206 // coldcc calling convention.
2207 static bool
2208 hasOnlyColdCalls(Function &F,
2209                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2210   for (BasicBlock &BB : F) {
2211     for (Instruction &I : BB) {
2212       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2213         CallSite CS(cast<Instruction>(CI));
2214         // Skip over isline asm instructions since they aren't function calls.
2215         if (CI->isInlineAsm())
2216           continue;
2217         Function *CalledFn = CI->getCalledFunction();
2218         if (!CalledFn)
2219           return false;
2220         if (!CalledFn->hasLocalLinkage())
2221           return false;
2222         // Skip over instrinsics since they won't remain as function calls.
2223         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2224           continue;
2225         // Check if it's valid to use coldcc calling convention.
2226         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2227             CalledFn->hasAddressTaken())
2228           return false;
2229         BlockFrequencyInfo &CallerBFI = GetBFI(F);
2230         if (!isColdCallSite(CS, CallerBFI))
2231           return false;
2232       }
2233     }
2234   }
2235   return true;
2236 }
2237 
2238 static bool
2239 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI,
2240                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
2241                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2242                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2243                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2244 
2245   bool Changed = false;
2246 
2247   std::vector<Function *> AllCallsCold;
2248   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2249     Function *F = &*FI++;
2250     if (hasOnlyColdCalls(*F, GetBFI))
2251       AllCallsCold.push_back(F);
2252   }
2253 
2254   // Optimize functions.
2255   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2256     Function *F = &*FI++;
2257 
2258     // Don't perform global opt pass on naked functions; we don't want fast
2259     // calling conventions for naked functions.
2260     if (F->hasFnAttribute(Attribute::Naked))
2261       continue;
2262 
2263     // Functions without names cannot be referenced outside this module.
2264     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2265       F->setLinkage(GlobalValue::InternalLinkage);
2266 
2267     if (deleteIfDead(*F, NotDiscardableComdats)) {
2268       Changed = true;
2269       continue;
2270     }
2271 
2272     // LLVM's definition of dominance allows instructions that are cyclic
2273     // in unreachable blocks, e.g.:
2274     // %pat = select i1 %condition, @global, i16* %pat
2275     // because any instruction dominates an instruction in a block that's
2276     // not reachable from entry.
2277     // So, remove unreachable blocks from the function, because a) there's
2278     // no point in analyzing them and b) GlobalOpt should otherwise grow
2279     // some more complicated logic to break these cycles.
2280     // Removing unreachable blocks might invalidate the dominator so we
2281     // recalculate it.
2282     if (!F->isDeclaration()) {
2283       if (removeUnreachableBlocks(*F)) {
2284         auto &DT = LookupDomTree(*F);
2285         DT.recalculate(*F);
2286         Changed = true;
2287       }
2288     }
2289 
2290     Changed |= processGlobal(*F, TLI, LookupDomTree);
2291 
2292     if (!F->hasLocalLinkage())
2293       continue;
2294 
2295     // If we have an inalloca parameter that we can safely remove the
2296     // inalloca attribute from, do so. This unlocks optimizations that
2297     // wouldn't be safe in the presence of inalloca.
2298     // FIXME: We should also hoist alloca affected by this to the entry
2299     // block if possible.
2300     if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2301         !F->hasAddressTaken()) {
2302       RemoveAttribute(F, Attribute::InAlloca);
2303       Changed = true;
2304     }
2305 
2306     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2307       NumInternalFunc++;
2308       TargetTransformInfo &TTI = GetTTI(*F);
2309       // Change the calling convention to coldcc if either stress testing is
2310       // enabled or the target would like to use coldcc on functions which are
2311       // cold at all call sites and the callers contain no other non coldcc
2312       // calls.
2313       if (EnableColdCCStressTest ||
2314           (TTI.useColdCCForColdCall(*F) &&
2315            isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
2316         F->setCallingConv(CallingConv::Cold);
2317         changeCallSitesToColdCC(F);
2318         Changed = true;
2319         NumColdCC++;
2320       }
2321     }
2322 
2323     if (hasChangeableCC(F) && !F->isVarArg() &&
2324         !F->hasAddressTaken()) {
2325       // If this function has a calling convention worth changing, is not a
2326       // varargs function, and is only called directly, promote it to use the
2327       // Fast calling convention.
2328       F->setCallingConv(CallingConv::Fast);
2329       ChangeCalleesToFastCall(F);
2330       ++NumFastCallFns;
2331       Changed = true;
2332     }
2333 
2334     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2335         !F->hasAddressTaken()) {
2336       // The function is not used by a trampoline intrinsic, so it is safe
2337       // to remove the 'nest' attribute.
2338       RemoveAttribute(F, Attribute::Nest);
2339       ++NumNestRemoved;
2340       Changed = true;
2341     }
2342   }
2343   return Changed;
2344 }
2345 
2346 static bool
2347 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI,
2348                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2349                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2350   bool Changed = false;
2351 
2352   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2353        GVI != E; ) {
2354     GlobalVariable *GV = &*GVI++;
2355     // Global variables without names cannot be referenced outside this module.
2356     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2357       GV->setLinkage(GlobalValue::InternalLinkage);
2358     // Simplify the initializer.
2359     if (GV->hasInitializer())
2360       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2361         auto &DL = M.getDataLayout();
2362         Constant *New = ConstantFoldConstant(C, DL, TLI);
2363         if (New && New != C)
2364           GV->setInitializer(New);
2365       }
2366 
2367     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2368       Changed = true;
2369       continue;
2370     }
2371 
2372     Changed |= processGlobal(*GV, TLI, LookupDomTree);
2373   }
2374   return Changed;
2375 }
2376 
2377 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2378 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2379 /// GEP operands of Addr [0, OpNo) have been stepped into.
2380 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2381                                    ConstantExpr *Addr, unsigned OpNo) {
2382   // Base case of the recursion.
2383   if (OpNo == Addr->getNumOperands()) {
2384     assert(Val->getType() == Init->getType() && "Type mismatch!");
2385     return Val;
2386   }
2387 
2388   SmallVector<Constant*, 32> Elts;
2389   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2390     // Break up the constant into its elements.
2391     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2392       Elts.push_back(Init->getAggregateElement(i));
2393 
2394     // Replace the element that we are supposed to.
2395     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2396     unsigned Idx = CU->getZExtValue();
2397     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2398     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2399 
2400     // Return the modified struct.
2401     return ConstantStruct::get(STy, Elts);
2402   }
2403 
2404   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2405   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2406   uint64_t NumElts = InitTy->getNumElements();
2407 
2408   // Break up the array into elements.
2409   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2410     Elts.push_back(Init->getAggregateElement(i));
2411 
2412   assert(CI->getZExtValue() < NumElts);
2413   Elts[CI->getZExtValue()] =
2414     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2415 
2416   if (Init->getType()->isArrayTy())
2417     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2418   return ConstantVector::get(Elts);
2419 }
2420 
2421 /// We have decided that Addr (which satisfies the predicate
2422 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2423 static void CommitValueTo(Constant *Val, Constant *Addr) {
2424   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2425     assert(GV->hasInitializer());
2426     GV->setInitializer(Val);
2427     return;
2428   }
2429 
2430   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2431   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2432   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2433 }
2434 
2435 /// Given a map of address -> value, where addresses are expected to be some form
2436 /// of either a global or a constant GEP, set the initializer for the address to
2437 /// be the value. This performs mostly the same function as CommitValueTo()
2438 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2439 /// case where the set of addresses are GEPs sharing the same underlying global,
2440 /// processing the GEPs in batches rather than individually.
2441 ///
2442 /// To give an example, consider the following C++ code adapted from the clang
2443 /// regression tests:
2444 /// struct S {
2445 ///  int n = 10;
2446 ///  int m = 2 * n;
2447 ///  S(int a) : n(a) {}
2448 /// };
2449 ///
2450 /// template<typename T>
2451 /// struct U {
2452 ///  T *r = &q;
2453 ///  T q = 42;
2454 ///  U *p = this;
2455 /// };
2456 ///
2457 /// U<S> e;
2458 ///
2459 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2460 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2461 /// members. This batch algorithm will simply use general CommitValueTo() method
2462 /// to handle the complex nested S struct initialization of 'q', before
2463 /// processing the outermost members in a single batch. Using CommitValueTo() to
2464 /// handle member in the outer struct is inefficient when the struct/array is
2465 /// very large as we end up creating and destroy constant arrays for each
2466 /// initialization.
2467 /// For the above case, we expect the following IR to be generated:
2468 ///
2469 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2470 /// %struct.S = type { i32, i32 }
2471 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2472 ///                                                  i64 0, i32 1),
2473 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2474 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2475 /// constant expression, while the other two elements of @e are "simple".
2476 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2477   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2478   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2479   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2480   SimpleCEs.reserve(Mem.size());
2481 
2482   for (const auto &I : Mem) {
2483     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2484       GVs.push_back(std::make_pair(GV, I.second));
2485     } else {
2486       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2487       // We don't handle the deeply recursive case using the batch method.
2488       if (GEP->getNumOperands() > 3)
2489         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2490       else
2491         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2492     }
2493   }
2494 
2495   // The algorithm below doesn't handle cases like nested structs, so use the
2496   // slower fully general method if we have to.
2497   for (auto ComplexCE : ComplexCEs)
2498     CommitValueTo(ComplexCE.second, ComplexCE.first);
2499 
2500   for (auto GVPair : GVs) {
2501     assert(GVPair.first->hasInitializer());
2502     GVPair.first->setInitializer(GVPair.second);
2503   }
2504 
2505   if (SimpleCEs.empty())
2506     return;
2507 
2508   // We cache a single global's initializer elements in the case where the
2509   // subsequent address/val pair uses the same one. This avoids throwing away and
2510   // rebuilding the constant struct/vector/array just because one element is
2511   // modified at a time.
2512   SmallVector<Constant *, 32> Elts;
2513   Elts.reserve(SimpleCEs.size());
2514   GlobalVariable *CurrentGV = nullptr;
2515 
2516   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2517     Constant *Init = GV->getInitializer();
2518     Type *Ty = Init->getType();
2519     if (Update) {
2520       if (CurrentGV) {
2521         assert(CurrentGV && "Expected a GV to commit to!");
2522         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2523         // We have a valid cache that needs to be committed.
2524         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2525           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2526         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2527           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2528         else
2529           CurrentGV->setInitializer(ConstantVector::get(Elts));
2530       }
2531       if (CurrentGV == GV)
2532         return;
2533       // Need to clear and set up cache for new initializer.
2534       CurrentGV = GV;
2535       Elts.clear();
2536       unsigned NumElts;
2537       if (auto *STy = dyn_cast<StructType>(Ty))
2538         NumElts = STy->getNumElements();
2539       else
2540         NumElts = cast<SequentialType>(Ty)->getNumElements();
2541       for (unsigned i = 0, e = NumElts; i != e; ++i)
2542         Elts.push_back(Init->getAggregateElement(i));
2543     }
2544   };
2545 
2546   for (auto CEPair : SimpleCEs) {
2547     ConstantExpr *GEP = CEPair.first;
2548     Constant *Val = CEPair.second;
2549 
2550     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2551     commitAndSetupCache(GV, GV != CurrentGV);
2552     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2553     Elts[CI->getZExtValue()] = Val;
2554   }
2555   // The last initializer in the list needs to be committed, others
2556   // will be committed on a new initializer being processed.
2557   commitAndSetupCache(CurrentGV, true);
2558 }
2559 
2560 /// Evaluate static constructors in the function, if we can.  Return true if we
2561 /// can, false otherwise.
2562 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2563                                       TargetLibraryInfo *TLI) {
2564   // Call the function.
2565   Evaluator Eval(DL, TLI);
2566   Constant *RetValDummy;
2567   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2568                                            SmallVector<Constant*, 0>());
2569 
2570   if (EvalSuccess) {
2571     ++NumCtorsEvaluated;
2572 
2573     // We succeeded at evaluation: commit the result.
2574     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2575                       << F->getName() << "' to "
2576                       << Eval.getMutatedMemory().size() << " stores.\n");
2577     BatchCommitValueTo(Eval.getMutatedMemory());
2578     for (GlobalVariable *GV : Eval.getInvariants())
2579       GV->setConstant(true);
2580   }
2581 
2582   return EvalSuccess;
2583 }
2584 
2585 static int compareNames(Constant *const *A, Constant *const *B) {
2586   Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
2587   Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
2588   return AStripped->getName().compare(BStripped->getName());
2589 }
2590 
2591 static void setUsedInitializer(GlobalVariable &V,
2592                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2593   if (Init.empty()) {
2594     V.eraseFromParent();
2595     return;
2596   }
2597 
2598   // Type of pointer to the array of pointers.
2599   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2600 
2601   SmallVector<Constant *, 8> UsedArray;
2602   for (GlobalValue *GV : Init) {
2603     Constant *Cast
2604       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2605     UsedArray.push_back(Cast);
2606   }
2607   // Sort to get deterministic order.
2608   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2609   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2610 
2611   Module *M = V.getParent();
2612   V.removeFromParent();
2613   GlobalVariable *NV =
2614       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2615                          ConstantArray::get(ATy, UsedArray), "");
2616   NV->takeName(&V);
2617   NV->setSection("llvm.metadata");
2618   delete &V;
2619 }
2620 
2621 namespace {
2622 
2623 /// An easy to access representation of llvm.used and llvm.compiler.used.
2624 class LLVMUsed {
2625   SmallPtrSet<GlobalValue *, 8> Used;
2626   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2627   GlobalVariable *UsedV;
2628   GlobalVariable *CompilerUsedV;
2629 
2630 public:
2631   LLVMUsed(Module &M) {
2632     UsedV = collectUsedGlobalVariables(M, Used, false);
2633     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2634   }
2635 
2636   using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2637   using used_iterator_range = iterator_range<iterator>;
2638 
2639   iterator usedBegin() { return Used.begin(); }
2640   iterator usedEnd() { return Used.end(); }
2641 
2642   used_iterator_range used() {
2643     return used_iterator_range(usedBegin(), usedEnd());
2644   }
2645 
2646   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2647   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2648 
2649   used_iterator_range compilerUsed() {
2650     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2651   }
2652 
2653   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2654 
2655   bool compilerUsedCount(GlobalValue *GV) const {
2656     return CompilerUsed.count(GV);
2657   }
2658 
2659   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2660   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2661   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2662 
2663   bool compilerUsedInsert(GlobalValue *GV) {
2664     return CompilerUsed.insert(GV).second;
2665   }
2666 
2667   void syncVariablesAndSets() {
2668     if (UsedV)
2669       setUsedInitializer(*UsedV, Used);
2670     if (CompilerUsedV)
2671       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2672   }
2673 };
2674 
2675 } // end anonymous namespace
2676 
2677 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2678   if (GA.use_empty()) // No use at all.
2679     return false;
2680 
2681   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2682          "We should have removed the duplicated "
2683          "element from llvm.compiler.used");
2684   if (!GA.hasOneUse())
2685     // Strictly more than one use. So at least one is not in llvm.used and
2686     // llvm.compiler.used.
2687     return true;
2688 
2689   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2690   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2691 }
2692 
2693 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2694                                                const LLVMUsed &U) {
2695   unsigned N = 2;
2696   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2697          "We should have removed the duplicated "
2698          "element from llvm.compiler.used");
2699   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2700     ++N;
2701   return V.hasNUsesOrMore(N);
2702 }
2703 
2704 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2705   if (!GA.hasLocalLinkage())
2706     return true;
2707 
2708   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2709 }
2710 
2711 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2712                              bool &RenameTarget) {
2713   RenameTarget = false;
2714   bool Ret = false;
2715   if (hasUseOtherThanLLVMUsed(GA, U))
2716     Ret = true;
2717 
2718   // If the alias is externally visible, we may still be able to simplify it.
2719   if (!mayHaveOtherReferences(GA, U))
2720     return Ret;
2721 
2722   // If the aliasee has internal linkage, give it the name and linkage
2723   // of the alias, and delete the alias.  This turns:
2724   //   define internal ... @f(...)
2725   //   @a = alias ... @f
2726   // into:
2727   //   define ... @a(...)
2728   Constant *Aliasee = GA.getAliasee();
2729   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2730   if (!Target->hasLocalLinkage())
2731     return Ret;
2732 
2733   // Do not perform the transform if multiple aliases potentially target the
2734   // aliasee. This check also ensures that it is safe to replace the section
2735   // and other attributes of the aliasee with those of the alias.
2736   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2737     return Ret;
2738 
2739   RenameTarget = true;
2740   return true;
2741 }
2742 
2743 static bool
2744 OptimizeGlobalAliases(Module &M,
2745                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2746   bool Changed = false;
2747   LLVMUsed Used(M);
2748 
2749   for (GlobalValue *GV : Used.used())
2750     Used.compilerUsedErase(GV);
2751 
2752   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2753        I != E;) {
2754     GlobalAlias *J = &*I++;
2755 
2756     // Aliases without names cannot be referenced outside this module.
2757     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2758       J->setLinkage(GlobalValue::InternalLinkage);
2759 
2760     if (deleteIfDead(*J, NotDiscardableComdats)) {
2761       Changed = true;
2762       continue;
2763     }
2764 
2765     // If the alias can change at link time, nothing can be done - bail out.
2766     if (J->isInterposable())
2767       continue;
2768 
2769     Constant *Aliasee = J->getAliasee();
2770     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2771     // We can't trivially replace the alias with the aliasee if the aliasee is
2772     // non-trivial in some way.
2773     // TODO: Try to handle non-zero GEPs of local aliasees.
2774     if (!Target)
2775       continue;
2776     Target->removeDeadConstantUsers();
2777 
2778     // Make all users of the alias use the aliasee instead.
2779     bool RenameTarget;
2780     if (!hasUsesToReplace(*J, Used, RenameTarget))
2781       continue;
2782 
2783     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2784     ++NumAliasesResolved;
2785     Changed = true;
2786 
2787     if (RenameTarget) {
2788       // Give the aliasee the name, linkage and other attributes of the alias.
2789       Target->takeName(&*J);
2790       Target->setLinkage(J->getLinkage());
2791       Target->setDSOLocal(J->isDSOLocal());
2792       Target->setVisibility(J->getVisibility());
2793       Target->setDLLStorageClass(J->getDLLStorageClass());
2794 
2795       if (Used.usedErase(&*J))
2796         Used.usedInsert(Target);
2797 
2798       if (Used.compilerUsedErase(&*J))
2799         Used.compilerUsedInsert(Target);
2800     } else if (mayHaveOtherReferences(*J, Used))
2801       continue;
2802 
2803     // Delete the alias.
2804     M.getAliasList().erase(J);
2805     ++NumAliasesRemoved;
2806     Changed = true;
2807   }
2808 
2809   Used.syncVariablesAndSets();
2810 
2811   return Changed;
2812 }
2813 
2814 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2815   LibFunc F = LibFunc_cxa_atexit;
2816   if (!TLI->has(F))
2817     return nullptr;
2818 
2819   Function *Fn = M.getFunction(TLI->getName(F));
2820   if (!Fn)
2821     return nullptr;
2822 
2823   // Make sure that the function has the correct prototype.
2824   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2825     return nullptr;
2826 
2827   return Fn;
2828 }
2829 
2830 /// Returns whether the given function is an empty C++ destructor and can
2831 /// therefore be eliminated.
2832 /// Note that we assume that other optimization passes have already simplified
2833 /// the code so we simply check for 'ret'.
2834 static bool cxxDtorIsEmpty(const Function &Fn) {
2835   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2836   // nounwind, but that doesn't seem worth doing.
2837   if (Fn.isDeclaration())
2838     return false;
2839 
2840   for (auto &I : Fn.getEntryBlock()) {
2841     if (isa<DbgInfoIntrinsic>(I))
2842       continue;
2843     if (isa<ReturnInst>(I))
2844       return true;
2845     break;
2846   }
2847   return false;
2848 }
2849 
2850 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2851   /// Itanium C++ ABI p3.3.5:
2852   ///
2853   ///   After constructing a global (or local static) object, that will require
2854   ///   destruction on exit, a termination function is registered as follows:
2855   ///
2856   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2857   ///
2858   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2859   ///   call f(p) when DSO d is unloaded, before all such termination calls
2860   ///   registered before this one. It returns zero if registration is
2861   ///   successful, nonzero on failure.
2862 
2863   // This pass will look for calls to __cxa_atexit where the function is trivial
2864   // and remove them.
2865   bool Changed = false;
2866 
2867   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2868        I != E;) {
2869     // We're only interested in calls. Theoretically, we could handle invoke
2870     // instructions as well, but neither llvm-gcc nor clang generate invokes
2871     // to __cxa_atexit.
2872     CallInst *CI = dyn_cast<CallInst>(*I++);
2873     if (!CI)
2874       continue;
2875 
2876     Function *DtorFn =
2877       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2878     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2879       continue;
2880 
2881     // Just remove the call.
2882     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2883     CI->eraseFromParent();
2884 
2885     ++NumCXXDtorsRemoved;
2886 
2887     Changed |= true;
2888   }
2889 
2890   return Changed;
2891 }
2892 
2893 static bool optimizeGlobalsInModule(
2894     Module &M, const DataLayout &DL, TargetLibraryInfo *TLI,
2895     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2896     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2897     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2898   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2899   bool Changed = false;
2900   bool LocalChange = true;
2901   while (LocalChange) {
2902     LocalChange = false;
2903 
2904     NotDiscardableComdats.clear();
2905     for (const GlobalVariable &GV : M.globals())
2906       if (const Comdat *C = GV.getComdat())
2907         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2908           NotDiscardableComdats.insert(C);
2909     for (Function &F : M)
2910       if (const Comdat *C = F.getComdat())
2911         if (!F.isDefTriviallyDead())
2912           NotDiscardableComdats.insert(C);
2913     for (GlobalAlias &GA : M.aliases())
2914       if (const Comdat *C = GA.getComdat())
2915         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2916           NotDiscardableComdats.insert(C);
2917 
2918     // Delete functions that are trivially dead, ccc -> fastcc
2919     LocalChange |= OptimizeFunctions(M, TLI, GetTTI, GetBFI, LookupDomTree,
2920                                      NotDiscardableComdats);
2921 
2922     // Optimize global_ctors list.
2923     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2924       return EvaluateStaticConstructor(F, DL, TLI);
2925     });
2926 
2927     // Optimize non-address-taken globals.
2928     LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree,
2929                                       NotDiscardableComdats);
2930 
2931     // Resolve aliases, when possible.
2932     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2933 
2934     // Try to remove trivial global destructors if they are not removed
2935     // already.
2936     Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
2937     if (CXAAtExitFn)
2938       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2939 
2940     Changed |= LocalChange;
2941   }
2942 
2943   // TODO: Move all global ctors functions to the end of the module for code
2944   // layout.
2945 
2946   return Changed;
2947 }
2948 
2949 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2950     auto &DL = M.getDataLayout();
2951     auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
2952     auto &FAM =
2953         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2954     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2955       return FAM.getResult<DominatorTreeAnalysis>(F);
2956     };
2957     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2958       return FAM.getResult<TargetIRAnalysis>(F);
2959     };
2960 
2961     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2962       return FAM.getResult<BlockFrequencyAnalysis>(F);
2963     };
2964 
2965     if (!optimizeGlobalsInModule(M, DL, &TLI, GetTTI, GetBFI, LookupDomTree))
2966       return PreservedAnalyses::all();
2967     return PreservedAnalyses::none();
2968 }
2969 
2970 namespace {
2971 
2972 struct GlobalOptLegacyPass : public ModulePass {
2973   static char ID; // Pass identification, replacement for typeid
2974 
2975   GlobalOptLegacyPass() : ModulePass(ID) {
2976     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2977   }
2978 
2979   bool runOnModule(Module &M) override {
2980     if (skipModule(M))
2981       return false;
2982 
2983     auto &DL = M.getDataLayout();
2984     auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2985     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2986       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2987     };
2988     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2989       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2990     };
2991 
2992     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
2993       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
2994     };
2995 
2996     return optimizeGlobalsInModule(M, DL, TLI, GetTTI, GetBFI, LookupDomTree);
2997   }
2998 
2999   void getAnalysisUsage(AnalysisUsage &AU) const override {
3000     AU.addRequired<TargetLibraryInfoWrapperPass>();
3001     AU.addRequired<TargetTransformInfoWrapperPass>();
3002     AU.addRequired<DominatorTreeWrapperPass>();
3003     AU.addRequired<BlockFrequencyInfoWrapperPass>();
3004   }
3005 };
3006 
3007 } // end anonymous namespace
3008 
3009 char GlobalOptLegacyPass::ID = 0;
3010 
3011 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3012                       "Global Variable Optimizer", false, false)
3013 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3014 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3015 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3016 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3017 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3018                     "Global Variable Optimizer", false, false)
3019 
3020 ModulePass *llvm::createGlobalOptimizerPass() {
3021   return new GlobalOptLegacyPass();
3022 }
3023