1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/GlobalOpt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/CallingConv.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/IPO.h" 44 #include "llvm/Transforms/Utils/CtorUtils.h" 45 #include "llvm/Transforms/Utils/Evaluator.h" 46 #include "llvm/Transforms/Utils/GlobalStatus.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include <algorithm> 49 using namespace llvm; 50 51 #define DEBUG_TYPE "globalopt" 52 53 STATISTIC(NumMarked , "Number of globals marked constant"); 54 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 55 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 56 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 57 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 58 STATISTIC(NumDeleted , "Number of globals deleted"); 59 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 60 STATISTIC(NumLocalized , "Number of globals localized"); 61 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 62 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 63 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 64 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 65 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 66 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 67 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 68 69 /// Is this global variable possibly used by a leak checker as a root? If so, 70 /// we might not really want to eliminate the stores to it. 71 static bool isLeakCheckerRoot(GlobalVariable *GV) { 72 // A global variable is a root if it is a pointer, or could plausibly contain 73 // a pointer. There are two challenges; one is that we could have a struct 74 // the has an inner member which is a pointer. We recurse through the type to 75 // detect these (up to a point). The other is that we may actually be a union 76 // of a pointer and another type, and so our LLVM type is an integer which 77 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 78 // potentially contained here. 79 80 if (GV->hasPrivateLinkage()) 81 return false; 82 83 SmallVector<Type *, 4> Types; 84 Types.push_back(GV->getValueType()); 85 86 unsigned Limit = 20; 87 do { 88 Type *Ty = Types.pop_back_val(); 89 switch (Ty->getTypeID()) { 90 default: break; 91 case Type::PointerTyID: return true; 92 case Type::ArrayTyID: 93 case Type::VectorTyID: { 94 SequentialType *STy = cast<SequentialType>(Ty); 95 Types.push_back(STy->getElementType()); 96 break; 97 } 98 case Type::StructTyID: { 99 StructType *STy = cast<StructType>(Ty); 100 if (STy->isOpaque()) return true; 101 for (StructType::element_iterator I = STy->element_begin(), 102 E = STy->element_end(); I != E; ++I) { 103 Type *InnerTy = *I; 104 if (isa<PointerType>(InnerTy)) return true; 105 if (isa<CompositeType>(InnerTy)) 106 Types.push_back(InnerTy); 107 } 108 break; 109 } 110 } 111 if (--Limit == 0) return true; 112 } while (!Types.empty()); 113 return false; 114 } 115 116 /// Given a value that is stored to a global but never read, determine whether 117 /// it's safe to remove the store and the chain of computation that feeds the 118 /// store. 119 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 120 do { 121 if (isa<Constant>(V)) 122 return true; 123 if (!V->hasOneUse()) 124 return false; 125 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 126 isa<GlobalValue>(V)) 127 return false; 128 if (isAllocationFn(V, TLI)) 129 return true; 130 131 Instruction *I = cast<Instruction>(V); 132 if (I->mayHaveSideEffects()) 133 return false; 134 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 135 if (!GEP->hasAllConstantIndices()) 136 return false; 137 } else if (I->getNumOperands() != 1) { 138 return false; 139 } 140 141 V = I->getOperand(0); 142 } while (1); 143 } 144 145 /// This GV is a pointer root. Loop over all users of the global and clean up 146 /// any that obviously don't assign the global a value that isn't dynamically 147 /// allocated. 148 static bool CleanupPointerRootUsers(GlobalVariable *GV, 149 const TargetLibraryInfo *TLI) { 150 // A brief explanation of leak checkers. The goal is to find bugs where 151 // pointers are forgotten, causing an accumulating growth in memory 152 // usage over time. The common strategy for leak checkers is to whitelist the 153 // memory pointed to by globals at exit. This is popular because it also 154 // solves another problem where the main thread of a C++ program may shut down 155 // before other threads that are still expecting to use those globals. To 156 // handle that case, we expect the program may create a singleton and never 157 // destroy it. 158 159 bool Changed = false; 160 161 // If Dead[n].first is the only use of a malloc result, we can delete its 162 // chain of computation and the store to the global in Dead[n].second. 163 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 164 165 // Constants can't be pointers to dynamically allocated memory. 166 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 167 UI != E;) { 168 User *U = *UI++; 169 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 170 Value *V = SI->getValueOperand(); 171 if (isa<Constant>(V)) { 172 Changed = true; 173 SI->eraseFromParent(); 174 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 175 if (I->hasOneUse()) 176 Dead.push_back(std::make_pair(I, SI)); 177 } 178 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 179 if (isa<Constant>(MSI->getValue())) { 180 Changed = true; 181 MSI->eraseFromParent(); 182 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 183 if (I->hasOneUse()) 184 Dead.push_back(std::make_pair(I, MSI)); 185 } 186 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 187 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 188 if (MemSrc && MemSrc->isConstant()) { 189 Changed = true; 190 MTI->eraseFromParent(); 191 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 192 if (I->hasOneUse()) 193 Dead.push_back(std::make_pair(I, MTI)); 194 } 195 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 196 if (CE->use_empty()) { 197 CE->destroyConstant(); 198 Changed = true; 199 } 200 } else if (Constant *C = dyn_cast<Constant>(U)) { 201 if (isSafeToDestroyConstant(C)) { 202 C->destroyConstant(); 203 // This could have invalidated UI, start over from scratch. 204 Dead.clear(); 205 CleanupPointerRootUsers(GV, TLI); 206 return true; 207 } 208 } 209 } 210 211 for (int i = 0, e = Dead.size(); i != e; ++i) { 212 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 213 Dead[i].second->eraseFromParent(); 214 Instruction *I = Dead[i].first; 215 do { 216 if (isAllocationFn(I, TLI)) 217 break; 218 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 219 if (!J) 220 break; 221 I->eraseFromParent(); 222 I = J; 223 } while (1); 224 I->eraseFromParent(); 225 } 226 } 227 228 return Changed; 229 } 230 231 /// We just marked GV constant. Loop over all users of the global, cleaning up 232 /// the obvious ones. This is largely just a quick scan over the use list to 233 /// clean up the easy and obvious cruft. This returns true if it made a change. 234 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 235 const DataLayout &DL, 236 TargetLibraryInfo *TLI) { 237 bool Changed = false; 238 // Note that we need to use a weak value handle for the worklist items. When 239 // we delete a constant array, we may also be holding pointer to one of its 240 // elements (or an element of one of its elements if we're dealing with an 241 // array of arrays) in the worklist. 242 SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end()); 243 while (!WorkList.empty()) { 244 Value *UV = WorkList.pop_back_val(); 245 if (!UV) 246 continue; 247 248 User *U = cast<User>(UV); 249 250 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 251 if (Init) { 252 // Replace the load with the initializer. 253 LI->replaceAllUsesWith(Init); 254 LI->eraseFromParent(); 255 Changed = true; 256 } 257 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 258 // Store must be unreachable or storing Init into the global. 259 SI->eraseFromParent(); 260 Changed = true; 261 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 262 if (CE->getOpcode() == Instruction::GetElementPtr) { 263 Constant *SubInit = nullptr; 264 if (Init) 265 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 266 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 267 } else if ((CE->getOpcode() == Instruction::BitCast && 268 CE->getType()->isPointerTy()) || 269 CE->getOpcode() == Instruction::AddrSpaceCast) { 270 // Pointer cast, delete any stores and memsets to the global. 271 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 272 } 273 274 if (CE->use_empty()) { 275 CE->destroyConstant(); 276 Changed = true; 277 } 278 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 279 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 280 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 281 // and will invalidate our notion of what Init is. 282 Constant *SubInit = nullptr; 283 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 284 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 285 ConstantFoldInstruction(GEP, DL, TLI)); 286 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 287 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 288 289 // If the initializer is an all-null value and we have an inbounds GEP, 290 // we already know what the result of any load from that GEP is. 291 // TODO: Handle splats. 292 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 293 SubInit = Constant::getNullValue(GEP->getResultElementType()); 294 } 295 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 296 297 if (GEP->use_empty()) { 298 GEP->eraseFromParent(); 299 Changed = true; 300 } 301 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 302 if (MI->getRawDest() == V) { 303 MI->eraseFromParent(); 304 Changed = true; 305 } 306 307 } else if (Constant *C = dyn_cast<Constant>(U)) { 308 // If we have a chain of dead constantexprs or other things dangling from 309 // us, and if they are all dead, nuke them without remorse. 310 if (isSafeToDestroyConstant(C)) { 311 C->destroyConstant(); 312 CleanupConstantGlobalUsers(V, Init, DL, TLI); 313 return true; 314 } 315 } 316 } 317 return Changed; 318 } 319 320 /// Return true if the specified instruction is a safe user of a derived 321 /// expression from a global that we want to SROA. 322 static bool isSafeSROAElementUse(Value *V) { 323 // We might have a dead and dangling constant hanging off of here. 324 if (Constant *C = dyn_cast<Constant>(V)) 325 return isSafeToDestroyConstant(C); 326 327 Instruction *I = dyn_cast<Instruction>(V); 328 if (!I) return false; 329 330 // Loads are ok. 331 if (isa<LoadInst>(I)) return true; 332 333 // Stores *to* the pointer are ok. 334 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 335 return SI->getOperand(0) != V; 336 337 // Otherwise, it must be a GEP. 338 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 339 if (!GEPI) return false; 340 341 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 342 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 343 return false; 344 345 for (User *U : GEPI->users()) 346 if (!isSafeSROAElementUse(U)) 347 return false; 348 return true; 349 } 350 351 352 /// U is a direct user of the specified global value. Look at it and its uses 353 /// and decide whether it is safe to SROA this global. 354 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 355 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 356 if (!isa<GetElementPtrInst>(U) && 357 (!isa<ConstantExpr>(U) || 358 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 359 return false; 360 361 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 362 // don't like < 3 operand CE's, and we don't like non-constant integer 363 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 364 // value of C. 365 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 366 !cast<Constant>(U->getOperand(1))->isNullValue() || 367 !isa<ConstantInt>(U->getOperand(2))) 368 return false; 369 370 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 371 ++GEPI; // Skip over the pointer index. 372 373 // If this is a use of an array allocation, do a bit more checking for sanity. 374 if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) { 375 uint64_t NumElements = AT->getNumElements(); 376 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 377 378 // Check to make sure that index falls within the array. If not, 379 // something funny is going on, so we won't do the optimization. 380 // 381 if (Idx->getZExtValue() >= NumElements) 382 return false; 383 384 // We cannot scalar repl this level of the array unless any array 385 // sub-indices are in-range constants. In particular, consider: 386 // A[0][i]. We cannot know that the user isn't doing invalid things like 387 // allowing i to index an out-of-range subscript that accesses A[1]. 388 // 389 // Scalar replacing *just* the outer index of the array is probably not 390 // going to be a win anyway, so just give up. 391 for (++GEPI; // Skip array index. 392 GEPI != E; 393 ++GEPI) { 394 uint64_t NumElements; 395 if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI)) 396 NumElements = SubArrayTy->getNumElements(); 397 else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI)) 398 NumElements = SubVectorTy->getNumElements(); 399 else { 400 assert((*GEPI)->isStructTy() && 401 "Indexed GEP type is not array, vector, or struct!"); 402 continue; 403 } 404 405 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 406 if (!IdxVal || IdxVal->getZExtValue() >= NumElements) 407 return false; 408 } 409 } 410 411 for (User *UU : U->users()) 412 if (!isSafeSROAElementUse(UU)) 413 return false; 414 415 return true; 416 } 417 418 /// Look at all uses of the global and decide whether it is safe for us to 419 /// perform this transformation. 420 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 421 for (User *U : GV->users()) 422 if (!IsUserOfGlobalSafeForSRA(U, GV)) 423 return false; 424 425 return true; 426 } 427 428 429 /// Perform scalar replacement of aggregates on the specified global variable. 430 /// This opens the door for other optimizations by exposing the behavior of the 431 /// program in a more fine-grained way. We have determined that this 432 /// transformation is safe already. We return the first global variable we 433 /// insert so that the caller can reprocess it. 434 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 435 // Make sure this global only has simple uses that we can SRA. 436 if (!GlobalUsersSafeToSRA(GV)) 437 return nullptr; 438 439 assert(GV->hasLocalLinkage()); 440 Constant *Init = GV->getInitializer(); 441 Type *Ty = Init->getType(); 442 443 std::vector<GlobalVariable*> NewGlobals; 444 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 445 446 // Get the alignment of the global, either explicit or target-specific. 447 unsigned StartAlignment = GV->getAlignment(); 448 if (StartAlignment == 0) 449 StartAlignment = DL.getABITypeAlignment(GV->getType()); 450 451 if (StructType *STy = dyn_cast<StructType>(Ty)) { 452 NewGlobals.reserve(STy->getNumElements()); 453 const StructLayout &Layout = *DL.getStructLayout(STy); 454 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 455 Constant *In = Init->getAggregateElement(i); 456 assert(In && "Couldn't get element of initializer?"); 457 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 458 GlobalVariable::InternalLinkage, 459 In, GV->getName()+"."+Twine(i), 460 GV->getThreadLocalMode(), 461 GV->getType()->getAddressSpace()); 462 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 463 NGV->copyAttributesFrom(GV); 464 Globals.push_back(NGV); 465 NewGlobals.push_back(NGV); 466 467 // Calculate the known alignment of the field. If the original aggregate 468 // had 256 byte alignment for example, something might depend on that: 469 // propagate info to each field. 470 uint64_t FieldOffset = Layout.getElementOffset(i); 471 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 472 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 473 NGV->setAlignment(NewAlign); 474 } 475 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 476 unsigned NumElements = 0; 477 if (ArrayType *ATy = dyn_cast<ArrayType>(STy)) 478 NumElements = ATy->getNumElements(); 479 else 480 NumElements = cast<VectorType>(STy)->getNumElements(); 481 482 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 483 return nullptr; // It's not worth it. 484 NewGlobals.reserve(NumElements); 485 486 uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType()); 487 unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType()); 488 for (unsigned i = 0, e = NumElements; i != e; ++i) { 489 Constant *In = Init->getAggregateElement(i); 490 assert(In && "Couldn't get element of initializer?"); 491 492 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 493 GlobalVariable::InternalLinkage, 494 In, GV->getName()+"."+Twine(i), 495 GV->getThreadLocalMode(), 496 GV->getType()->getAddressSpace()); 497 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 498 NGV->copyAttributesFrom(GV); 499 Globals.push_back(NGV); 500 NewGlobals.push_back(NGV); 501 502 // Calculate the known alignment of the field. If the original aggregate 503 // had 256 byte alignment for example, something might depend on that: 504 // propagate info to each field. 505 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 506 if (NewAlign > EltAlign) 507 NGV->setAlignment(NewAlign); 508 } 509 } 510 511 if (NewGlobals.empty()) 512 return nullptr; 513 514 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 515 516 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 517 518 // Loop over all of the uses of the global, replacing the constantexpr geps, 519 // with smaller constantexpr geps or direct references. 520 while (!GV->use_empty()) { 521 User *GEP = GV->user_back(); 522 assert(((isa<ConstantExpr>(GEP) && 523 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 524 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 525 526 // Ignore the 1th operand, which has to be zero or else the program is quite 527 // broken (undefined). Get the 2nd operand, which is the structure or array 528 // index. 529 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 530 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 531 532 Value *NewPtr = NewGlobals[Val]; 533 Type *NewTy = NewGlobals[Val]->getValueType(); 534 535 // Form a shorter GEP if needed. 536 if (GEP->getNumOperands() > 3) { 537 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 538 SmallVector<Constant*, 8> Idxs; 539 Idxs.push_back(NullInt); 540 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 541 Idxs.push_back(CE->getOperand(i)); 542 NewPtr = 543 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 544 } else { 545 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 546 SmallVector<Value*, 8> Idxs; 547 Idxs.push_back(NullInt); 548 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 549 Idxs.push_back(GEPI->getOperand(i)); 550 NewPtr = GetElementPtrInst::Create( 551 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 552 } 553 } 554 GEP->replaceAllUsesWith(NewPtr); 555 556 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 557 GEPI->eraseFromParent(); 558 else 559 cast<ConstantExpr>(GEP)->destroyConstant(); 560 } 561 562 // Delete the old global, now that it is dead. 563 Globals.erase(GV); 564 ++NumSRA; 565 566 // Loop over the new globals array deleting any globals that are obviously 567 // dead. This can arise due to scalarization of a structure or an array that 568 // has elements that are dead. 569 unsigned FirstGlobal = 0; 570 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 571 if (NewGlobals[i]->use_empty()) { 572 Globals.erase(NewGlobals[i]); 573 if (FirstGlobal == i) ++FirstGlobal; 574 } 575 576 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 577 } 578 579 /// Return true if all users of the specified value will trap if the value is 580 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 581 /// reprocessing them. 582 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 583 SmallPtrSetImpl<const PHINode*> &PHIs) { 584 for (const User *U : V->users()) 585 if (isa<LoadInst>(U)) { 586 // Will trap. 587 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 588 if (SI->getOperand(0) == V) { 589 //cerr << "NONTRAPPING USE: " << *U; 590 return false; // Storing the value. 591 } 592 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 593 if (CI->getCalledValue() != V) { 594 //cerr << "NONTRAPPING USE: " << *U; 595 return false; // Not calling the ptr 596 } 597 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 598 if (II->getCalledValue() != V) { 599 //cerr << "NONTRAPPING USE: " << *U; 600 return false; // Not calling the ptr 601 } 602 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 603 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 604 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 605 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 606 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 607 // If we've already seen this phi node, ignore it, it has already been 608 // checked. 609 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 610 return false; 611 } else if (isa<ICmpInst>(U) && 612 isa<ConstantPointerNull>(U->getOperand(1))) { 613 // Ignore icmp X, null 614 } else { 615 //cerr << "NONTRAPPING USE: " << *U; 616 return false; 617 } 618 619 return true; 620 } 621 622 /// Return true if all uses of any loads from GV will trap if the loaded value 623 /// is null. Note that this also permits comparisons of the loaded value 624 /// against null, as a special case. 625 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 626 for (const User *U : GV->users()) 627 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 628 SmallPtrSet<const PHINode*, 8> PHIs; 629 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 630 return false; 631 } else if (isa<StoreInst>(U)) { 632 // Ignore stores to the global. 633 } else { 634 // We don't know or understand this user, bail out. 635 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 636 return false; 637 } 638 return true; 639 } 640 641 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 642 bool Changed = false; 643 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 644 Instruction *I = cast<Instruction>(*UI++); 645 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 646 LI->setOperand(0, NewV); 647 Changed = true; 648 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 649 if (SI->getOperand(1) == V) { 650 SI->setOperand(1, NewV); 651 Changed = true; 652 } 653 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 654 CallSite CS(I); 655 if (CS.getCalledValue() == V) { 656 // Calling through the pointer! Turn into a direct call, but be careful 657 // that the pointer is not also being passed as an argument. 658 CS.setCalledFunction(NewV); 659 Changed = true; 660 bool PassedAsArg = false; 661 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 662 if (CS.getArgument(i) == V) { 663 PassedAsArg = true; 664 CS.setArgument(i, NewV); 665 } 666 667 if (PassedAsArg) { 668 // Being passed as an argument also. Be careful to not invalidate UI! 669 UI = V->user_begin(); 670 } 671 } 672 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 673 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 674 ConstantExpr::getCast(CI->getOpcode(), 675 NewV, CI->getType())); 676 if (CI->use_empty()) { 677 Changed = true; 678 CI->eraseFromParent(); 679 } 680 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 681 // Should handle GEP here. 682 SmallVector<Constant*, 8> Idxs; 683 Idxs.reserve(GEPI->getNumOperands()-1); 684 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 685 i != e; ++i) 686 if (Constant *C = dyn_cast<Constant>(*i)) 687 Idxs.push_back(C); 688 else 689 break; 690 if (Idxs.size() == GEPI->getNumOperands()-1) 691 Changed |= OptimizeAwayTrappingUsesOfValue( 692 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 693 if (GEPI->use_empty()) { 694 Changed = true; 695 GEPI->eraseFromParent(); 696 } 697 } 698 } 699 700 return Changed; 701 } 702 703 704 /// The specified global has only one non-null value stored into it. If there 705 /// are uses of the loaded value that would trap if the loaded value is 706 /// dynamically null, then we know that they cannot be reachable with a null 707 /// optimize away the load. 708 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 709 const DataLayout &DL, 710 TargetLibraryInfo *TLI) { 711 bool Changed = false; 712 713 // Keep track of whether we are able to remove all the uses of the global 714 // other than the store that defines it. 715 bool AllNonStoreUsesGone = true; 716 717 // Replace all uses of loads with uses of uses of the stored value. 718 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 719 User *GlobalUser = *GUI++; 720 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 721 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 722 // If we were able to delete all uses of the loads 723 if (LI->use_empty()) { 724 LI->eraseFromParent(); 725 Changed = true; 726 } else { 727 AllNonStoreUsesGone = false; 728 } 729 } else if (isa<StoreInst>(GlobalUser)) { 730 // Ignore the store that stores "LV" to the global. 731 assert(GlobalUser->getOperand(1) == GV && 732 "Must be storing *to* the global"); 733 } else { 734 AllNonStoreUsesGone = false; 735 736 // If we get here we could have other crazy uses that are transitively 737 // loaded. 738 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 739 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 740 isa<BitCastInst>(GlobalUser) || 741 isa<GetElementPtrInst>(GlobalUser)) && 742 "Only expect load and stores!"); 743 } 744 } 745 746 if (Changed) { 747 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n"); 748 ++NumGlobUses; 749 } 750 751 // If we nuked all of the loads, then none of the stores are needed either, 752 // nor is the global. 753 if (AllNonStoreUsesGone) { 754 if (isLeakCheckerRoot(GV)) { 755 Changed |= CleanupPointerRootUsers(GV, TLI); 756 } else { 757 Changed = true; 758 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 759 } 760 if (GV->use_empty()) { 761 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 762 Changed = true; 763 GV->eraseFromParent(); 764 ++NumDeleted; 765 } 766 } 767 return Changed; 768 } 769 770 /// Walk the use list of V, constant folding all of the instructions that are 771 /// foldable. 772 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 773 TargetLibraryInfo *TLI) { 774 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 775 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 776 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 777 I->replaceAllUsesWith(NewC); 778 779 // Advance UI to the next non-I use to avoid invalidating it! 780 // Instructions could multiply use V. 781 while (UI != E && *UI == I) 782 ++UI; 783 if (isInstructionTriviallyDead(I, TLI)) 784 I->eraseFromParent(); 785 } 786 } 787 788 /// This function takes the specified global variable, and transforms the 789 /// program as if it always contained the result of the specified malloc. 790 /// Because it is always the result of the specified malloc, there is no reason 791 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 792 /// loads of GV as uses of the new global. 793 static GlobalVariable * 794 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 795 ConstantInt *NElements, const DataLayout &DL, 796 TargetLibraryInfo *TLI) { 797 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 798 799 Type *GlobalType; 800 if (NElements->getZExtValue() == 1) 801 GlobalType = AllocTy; 802 else 803 // If we have an array allocation, the global variable is of an array. 804 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 805 806 // Create the new global variable. The contents of the malloc'd memory is 807 // undefined, so initialize with an undef value. 808 GlobalVariable *NewGV = new GlobalVariable( 809 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 810 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 811 GV->getThreadLocalMode()); 812 813 // If there are bitcast users of the malloc (which is typical, usually we have 814 // a malloc + bitcast) then replace them with uses of the new global. Update 815 // other users to use the global as well. 816 BitCastInst *TheBC = nullptr; 817 while (!CI->use_empty()) { 818 Instruction *User = cast<Instruction>(CI->user_back()); 819 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 820 if (BCI->getType() == NewGV->getType()) { 821 BCI->replaceAllUsesWith(NewGV); 822 BCI->eraseFromParent(); 823 } else { 824 BCI->setOperand(0, NewGV); 825 } 826 } else { 827 if (!TheBC) 828 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 829 User->replaceUsesOfWith(CI, TheBC); 830 } 831 } 832 833 Constant *RepValue = NewGV; 834 if (NewGV->getType() != GV->getValueType()) 835 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 836 837 // If there is a comparison against null, we will insert a global bool to 838 // keep track of whether the global was initialized yet or not. 839 GlobalVariable *InitBool = 840 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 841 GlobalValue::InternalLinkage, 842 ConstantInt::getFalse(GV->getContext()), 843 GV->getName()+".init", GV->getThreadLocalMode()); 844 bool InitBoolUsed = false; 845 846 // Loop over all uses of GV, processing them in turn. 847 while (!GV->use_empty()) { 848 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 849 // The global is initialized when the store to it occurs. 850 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 851 SI->getOrdering(), SI->getSynchScope(), SI); 852 SI->eraseFromParent(); 853 continue; 854 } 855 856 LoadInst *LI = cast<LoadInst>(GV->user_back()); 857 while (!LI->use_empty()) { 858 Use &LoadUse = *LI->use_begin(); 859 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 860 if (!ICI) { 861 LoadUse = RepValue; 862 continue; 863 } 864 865 // Replace the cmp X, 0 with a use of the bool value. 866 // Sink the load to where the compare was, if atomic rules allow us to. 867 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 868 LI->getOrdering(), LI->getSynchScope(), 869 LI->isUnordered() ? (Instruction*)ICI : LI); 870 InitBoolUsed = true; 871 switch (ICI->getPredicate()) { 872 default: llvm_unreachable("Unknown ICmp Predicate!"); 873 case ICmpInst::ICMP_ULT: 874 case ICmpInst::ICMP_SLT: // X < null -> always false 875 LV = ConstantInt::getFalse(GV->getContext()); 876 break; 877 case ICmpInst::ICMP_ULE: 878 case ICmpInst::ICMP_SLE: 879 case ICmpInst::ICMP_EQ: 880 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 881 break; 882 case ICmpInst::ICMP_NE: 883 case ICmpInst::ICMP_UGE: 884 case ICmpInst::ICMP_SGE: 885 case ICmpInst::ICMP_UGT: 886 case ICmpInst::ICMP_SGT: 887 break; // no change. 888 } 889 ICI->replaceAllUsesWith(LV); 890 ICI->eraseFromParent(); 891 } 892 LI->eraseFromParent(); 893 } 894 895 // If the initialization boolean was used, insert it, otherwise delete it. 896 if (!InitBoolUsed) { 897 while (!InitBool->use_empty()) // Delete initializations 898 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 899 delete InitBool; 900 } else 901 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 902 903 // Now the GV is dead, nuke it and the malloc.. 904 GV->eraseFromParent(); 905 CI->eraseFromParent(); 906 907 // To further other optimizations, loop over all users of NewGV and try to 908 // constant prop them. This will promote GEP instructions with constant 909 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 910 ConstantPropUsersOf(NewGV, DL, TLI); 911 if (RepValue != NewGV) 912 ConstantPropUsersOf(RepValue, DL, TLI); 913 914 return NewGV; 915 } 916 917 /// Scan the use-list of V checking to make sure that there are no complex uses 918 /// of V. We permit simple things like dereferencing the pointer, but not 919 /// storing through the address, unless it is to the specified global. 920 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 921 const GlobalVariable *GV, 922 SmallPtrSetImpl<const PHINode*> &PHIs) { 923 for (const User *U : V->users()) { 924 const Instruction *Inst = cast<Instruction>(U); 925 926 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 927 continue; // Fine, ignore. 928 } 929 930 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 931 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 932 return false; // Storing the pointer itself... bad. 933 continue; // Otherwise, storing through it, or storing into GV... fine. 934 } 935 936 // Must index into the array and into the struct. 937 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 938 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 939 return false; 940 continue; 941 } 942 943 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 944 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 945 // cycles. 946 if (PHIs.insert(PN).second) 947 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 948 return false; 949 continue; 950 } 951 952 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 953 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 954 return false; 955 continue; 956 } 957 958 return false; 959 } 960 return true; 961 } 962 963 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the 964 /// allocation into loads from the global and uses of the resultant pointer. 965 /// Further, delete the store into GV. This assumes that these value pass the 966 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 967 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 968 GlobalVariable *GV) { 969 while (!Alloc->use_empty()) { 970 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 971 Instruction *InsertPt = U; 972 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 973 // If this is the store of the allocation into the global, remove it. 974 if (SI->getOperand(1) == GV) { 975 SI->eraseFromParent(); 976 continue; 977 } 978 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 979 // Insert the load in the corresponding predecessor, not right before the 980 // PHI. 981 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 982 } else if (isa<BitCastInst>(U)) { 983 // Must be bitcast between the malloc and store to initialize the global. 984 ReplaceUsesOfMallocWithGlobal(U, GV); 985 U->eraseFromParent(); 986 continue; 987 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 988 // If this is a "GEP bitcast" and the user is a store to the global, then 989 // just process it as a bitcast. 990 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 991 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 992 if (SI->getOperand(1) == GV) { 993 // Must be bitcast GEP between the malloc and store to initialize 994 // the global. 995 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 996 GEPI->eraseFromParent(); 997 continue; 998 } 999 } 1000 1001 // Insert a load from the global, and use it instead of the malloc. 1002 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 1003 U->replaceUsesOfWith(Alloc, NL); 1004 } 1005 } 1006 1007 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to 1008 /// perform heap SRA on. This permits GEP's that index through the array and 1009 /// struct field, icmps of null, and PHIs. 1010 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1011 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1012 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1013 // We permit two users of the load: setcc comparing against the null 1014 // pointer, and a getelementptr of a specific form. 1015 for (const User *U : V->users()) { 1016 const Instruction *UI = cast<Instruction>(U); 1017 1018 // Comparison against null is ok. 1019 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1020 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1021 return false; 1022 continue; 1023 } 1024 1025 // getelementptr is also ok, but only a simple form. 1026 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1027 // Must index into the array and into the struct. 1028 if (GEPI->getNumOperands() < 3) 1029 return false; 1030 1031 // Otherwise the GEP is ok. 1032 continue; 1033 } 1034 1035 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1036 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1037 // This means some phi nodes are dependent on each other. 1038 // Avoid infinite looping! 1039 return false; 1040 if (!LoadUsingPHIs.insert(PN).second) 1041 // If we have already analyzed this PHI, then it is safe. 1042 continue; 1043 1044 // Make sure all uses of the PHI are simple enough to transform. 1045 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1046 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1047 return false; 1048 1049 continue; 1050 } 1051 1052 // Otherwise we don't know what this is, not ok. 1053 return false; 1054 } 1055 1056 return true; 1057 } 1058 1059 1060 /// If all users of values loaded from GV are simple enough to perform HeapSRA, 1061 /// return true. 1062 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1063 Instruction *StoredVal) { 1064 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1065 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1066 for (const User *U : GV->users()) 1067 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1068 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1069 LoadUsingPHIsPerLoad)) 1070 return false; 1071 LoadUsingPHIsPerLoad.clear(); 1072 } 1073 1074 // If we reach here, we know that all uses of the loads and transitive uses 1075 // (through PHI nodes) are simple enough to transform. However, we don't know 1076 // that all inputs the to the PHI nodes are in the same equivalence sets. 1077 // Check to verify that all operands of the PHIs are either PHIS that can be 1078 // transformed, loads from GV, or MI itself. 1079 for (const PHINode *PN : LoadUsingPHIs) { 1080 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1081 Value *InVal = PN->getIncomingValue(op); 1082 1083 // PHI of the stored value itself is ok. 1084 if (InVal == StoredVal) continue; 1085 1086 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1087 // One of the PHIs in our set is (optimistically) ok. 1088 if (LoadUsingPHIs.count(InPN)) 1089 continue; 1090 return false; 1091 } 1092 1093 // Load from GV is ok. 1094 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1095 if (LI->getOperand(0) == GV) 1096 continue; 1097 1098 // UNDEF? NULL? 1099 1100 // Anything else is rejected. 1101 return false; 1102 } 1103 } 1104 1105 return true; 1106 } 1107 1108 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1109 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1110 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1111 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1112 1113 if (FieldNo >= FieldVals.size()) 1114 FieldVals.resize(FieldNo+1); 1115 1116 // If we already have this value, just reuse the previously scalarized 1117 // version. 1118 if (Value *FieldVal = FieldVals[FieldNo]) 1119 return FieldVal; 1120 1121 // Depending on what instruction this is, we have several cases. 1122 Value *Result; 1123 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1124 // This is a scalarized version of the load from the global. Just create 1125 // a new Load of the scalarized global. 1126 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1127 InsertedScalarizedValues, 1128 PHIsToRewrite), 1129 LI->getName()+".f"+Twine(FieldNo), LI); 1130 } else { 1131 PHINode *PN = cast<PHINode>(V); 1132 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1133 // field. 1134 1135 PointerType *PTy = cast<PointerType>(PN->getType()); 1136 StructType *ST = cast<StructType>(PTy->getElementType()); 1137 1138 unsigned AS = PTy->getAddressSpace(); 1139 PHINode *NewPN = 1140 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1141 PN->getNumIncomingValues(), 1142 PN->getName()+".f"+Twine(FieldNo), PN); 1143 Result = NewPN; 1144 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1145 } 1146 1147 return FieldVals[FieldNo] = Result; 1148 } 1149 1150 /// Given a load instruction and a value derived from the load, rewrite the 1151 /// derived value to use the HeapSRoA'd load. 1152 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1153 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1154 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1155 // If this is a comparison against null, handle it. 1156 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1157 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1158 // If we have a setcc of the loaded pointer, we can use a setcc of any 1159 // field. 1160 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1161 InsertedScalarizedValues, PHIsToRewrite); 1162 1163 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1164 Constant::getNullValue(NPtr->getType()), 1165 SCI->getName()); 1166 SCI->replaceAllUsesWith(New); 1167 SCI->eraseFromParent(); 1168 return; 1169 } 1170 1171 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1172 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1173 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1174 && "Unexpected GEPI!"); 1175 1176 // Load the pointer for this field. 1177 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1178 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1179 InsertedScalarizedValues, PHIsToRewrite); 1180 1181 // Create the new GEP idx vector. 1182 SmallVector<Value*, 8> GEPIdx; 1183 GEPIdx.push_back(GEPI->getOperand(1)); 1184 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1185 1186 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1187 GEPI->getName(), GEPI); 1188 GEPI->replaceAllUsesWith(NGEPI); 1189 GEPI->eraseFromParent(); 1190 return; 1191 } 1192 1193 // Recursively transform the users of PHI nodes. This will lazily create the 1194 // PHIs that are needed for individual elements. Keep track of what PHIs we 1195 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1196 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1197 // already been seen first by another load, so its uses have already been 1198 // processed. 1199 PHINode *PN = cast<PHINode>(LoadUser); 1200 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1201 std::vector<Value*>())).second) 1202 return; 1203 1204 // If this is the first time we've seen this PHI, recursively process all 1205 // users. 1206 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1207 Instruction *User = cast<Instruction>(*UI++); 1208 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1209 } 1210 } 1211 1212 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1213 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1214 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1215 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1216 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1217 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1218 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1219 Instruction *User = cast<Instruction>(*UI++); 1220 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1221 } 1222 1223 if (Load->use_empty()) { 1224 Load->eraseFromParent(); 1225 InsertedScalarizedValues.erase(Load); 1226 } 1227 } 1228 1229 /// CI is an allocation of an array of structures. Break it up into multiple 1230 /// allocations of arrays of the fields. 1231 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1232 Value *NElems, const DataLayout &DL, 1233 const TargetLibraryInfo *TLI) { 1234 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1235 Type *MAT = getMallocAllocatedType(CI, TLI); 1236 StructType *STy = cast<StructType>(MAT); 1237 1238 // There is guaranteed to be at least one use of the malloc (storing 1239 // it into GV). If there are other uses, change them to be uses of 1240 // the global to simplify later code. This also deletes the store 1241 // into GV. 1242 ReplaceUsesOfMallocWithGlobal(CI, GV); 1243 1244 // Okay, at this point, there are no users of the malloc. Insert N 1245 // new mallocs at the same place as CI, and N globals. 1246 std::vector<Value*> FieldGlobals; 1247 std::vector<Value*> FieldMallocs; 1248 1249 SmallVector<OperandBundleDef, 1> OpBundles; 1250 CI->getOperandBundlesAsDefs(OpBundles); 1251 1252 unsigned AS = GV->getType()->getPointerAddressSpace(); 1253 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1254 Type *FieldTy = STy->getElementType(FieldNo); 1255 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1256 1257 GlobalVariable *NGV = new GlobalVariable( 1258 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1259 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1260 nullptr, GV->getThreadLocalMode()); 1261 NGV->copyAttributesFrom(GV); 1262 FieldGlobals.push_back(NGV); 1263 1264 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1265 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1266 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1267 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1268 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1269 ConstantInt::get(IntPtrTy, TypeSize), 1270 NElems, OpBundles, nullptr, 1271 CI->getName() + ".f" + Twine(FieldNo)); 1272 FieldMallocs.push_back(NMI); 1273 new StoreInst(NMI, NGV, CI); 1274 } 1275 1276 // The tricky aspect of this transformation is handling the case when malloc 1277 // fails. In the original code, malloc failing would set the result pointer 1278 // of malloc to null. In this case, some mallocs could succeed and others 1279 // could fail. As such, we emit code that looks like this: 1280 // F0 = malloc(field0) 1281 // F1 = malloc(field1) 1282 // F2 = malloc(field2) 1283 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1284 // if (F0) { free(F0); F0 = 0; } 1285 // if (F1) { free(F1); F1 = 0; } 1286 // if (F2) { free(F2); F2 = 0; } 1287 // } 1288 // The malloc can also fail if its argument is too large. 1289 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1290 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1291 ConstantZero, "isneg"); 1292 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1293 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1294 Constant::getNullValue(FieldMallocs[i]->getType()), 1295 "isnull"); 1296 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1297 } 1298 1299 // Split the basic block at the old malloc. 1300 BasicBlock *OrigBB = CI->getParent(); 1301 BasicBlock *ContBB = 1302 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1303 1304 // Create the block to check the first condition. Put all these blocks at the 1305 // end of the function as they are unlikely to be executed. 1306 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1307 "malloc_ret_null", 1308 OrigBB->getParent()); 1309 1310 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1311 // branch on RunningOr. 1312 OrigBB->getTerminator()->eraseFromParent(); 1313 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1314 1315 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1316 // pointer, because some may be null while others are not. 1317 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1318 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1319 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1320 Constant::getNullValue(GVVal->getType())); 1321 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1322 OrigBB->getParent()); 1323 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1324 OrigBB->getParent()); 1325 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1326 Cmp, NullPtrBlock); 1327 1328 // Fill in FreeBlock. 1329 CallInst::CreateFree(GVVal, OpBundles, BI); 1330 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1331 FreeBlock); 1332 BranchInst::Create(NextBlock, FreeBlock); 1333 1334 NullPtrBlock = NextBlock; 1335 } 1336 1337 BranchInst::Create(ContBB, NullPtrBlock); 1338 1339 // CI is no longer needed, remove it. 1340 CI->eraseFromParent(); 1341 1342 /// As we process loads, if we can't immediately update all uses of the load, 1343 /// keep track of what scalarized loads are inserted for a given load. 1344 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1345 InsertedScalarizedValues[GV] = FieldGlobals; 1346 1347 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1348 1349 // Okay, the malloc site is completely handled. All of the uses of GV are now 1350 // loads, and all uses of those loads are simple. Rewrite them to use loads 1351 // of the per-field globals instead. 1352 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1353 Instruction *User = cast<Instruction>(*UI++); 1354 1355 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1356 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1357 continue; 1358 } 1359 1360 // Must be a store of null. 1361 StoreInst *SI = cast<StoreInst>(User); 1362 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1363 "Unexpected heap-sra user!"); 1364 1365 // Insert a store of null into each global. 1366 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1367 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1368 Constant *Null = Constant::getNullValue(ValTy); 1369 new StoreInst(Null, FieldGlobals[i], SI); 1370 } 1371 // Erase the original store. 1372 SI->eraseFromParent(); 1373 } 1374 1375 // While we have PHIs that are interesting to rewrite, do it. 1376 while (!PHIsToRewrite.empty()) { 1377 PHINode *PN = PHIsToRewrite.back().first; 1378 unsigned FieldNo = PHIsToRewrite.back().second; 1379 PHIsToRewrite.pop_back(); 1380 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1381 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1382 1383 // Add all the incoming values. This can materialize more phis. 1384 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1385 Value *InVal = PN->getIncomingValue(i); 1386 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1387 PHIsToRewrite); 1388 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1389 } 1390 } 1391 1392 // Drop all inter-phi links and any loads that made it this far. 1393 for (DenseMap<Value*, std::vector<Value*> >::iterator 1394 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1395 I != E; ++I) { 1396 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1397 PN->dropAllReferences(); 1398 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1399 LI->dropAllReferences(); 1400 } 1401 1402 // Delete all the phis and loads now that inter-references are dead. 1403 for (DenseMap<Value*, std::vector<Value*> >::iterator 1404 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1405 I != E; ++I) { 1406 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1407 PN->eraseFromParent(); 1408 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1409 LI->eraseFromParent(); 1410 } 1411 1412 // The old global is now dead, remove it. 1413 GV->eraseFromParent(); 1414 1415 ++NumHeapSRA; 1416 return cast<GlobalVariable>(FieldGlobals[0]); 1417 } 1418 1419 /// This function is called when we see a pointer global variable with a single 1420 /// value stored it that is a malloc or cast of malloc. 1421 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1422 Type *AllocTy, 1423 AtomicOrdering Ordering, 1424 const DataLayout &DL, 1425 TargetLibraryInfo *TLI) { 1426 // If this is a malloc of an abstract type, don't touch it. 1427 if (!AllocTy->isSized()) 1428 return false; 1429 1430 // We can't optimize this global unless all uses of it are *known* to be 1431 // of the malloc value, not of the null initializer value (consider a use 1432 // that compares the global's value against zero to see if the malloc has 1433 // been reached). To do this, we check to see if all uses of the global 1434 // would trap if the global were null: this proves that they must all 1435 // happen after the malloc. 1436 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1437 return false; 1438 1439 // We can't optimize this if the malloc itself is used in a complex way, 1440 // for example, being stored into multiple globals. This allows the 1441 // malloc to be stored into the specified global, loaded icmp'd, and 1442 // GEP'd. These are all things we could transform to using the global 1443 // for. 1444 SmallPtrSet<const PHINode*, 8> PHIs; 1445 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1446 return false; 1447 1448 // If we have a global that is only initialized with a fixed size malloc, 1449 // transform the program to use global memory instead of malloc'd memory. 1450 // This eliminates dynamic allocation, avoids an indirection accessing the 1451 // data, and exposes the resultant global to further GlobalOpt. 1452 // We cannot optimize the malloc if we cannot determine malloc array size. 1453 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1454 if (!NElems) 1455 return false; 1456 1457 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1458 // Restrict this transformation to only working on small allocations 1459 // (2048 bytes currently), as we don't want to introduce a 16M global or 1460 // something. 1461 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1462 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1463 return true; 1464 } 1465 1466 // If the allocation is an array of structures, consider transforming this 1467 // into multiple malloc'd arrays, one for each field. This is basically 1468 // SRoA for malloc'd memory. 1469 1470 if (Ordering != AtomicOrdering::NotAtomic) 1471 return false; 1472 1473 // If this is an allocation of a fixed size array of structs, analyze as a 1474 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1475 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1476 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1477 AllocTy = AT->getElementType(); 1478 1479 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1480 if (!AllocSTy) 1481 return false; 1482 1483 // This the structure has an unreasonable number of fields, leave it 1484 // alone. 1485 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1486 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1487 1488 // If this is a fixed size array, transform the Malloc to be an alloc of 1489 // structs. malloc [100 x struct],1 -> malloc struct, 100 1490 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1491 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1492 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1493 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1494 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1495 SmallVector<OperandBundleDef, 1> OpBundles; 1496 CI->getOperandBundlesAsDefs(OpBundles); 1497 Instruction *Malloc = 1498 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements, 1499 OpBundles, nullptr, CI->getName()); 1500 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1501 CI->replaceAllUsesWith(Cast); 1502 CI->eraseFromParent(); 1503 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1504 CI = cast<CallInst>(BCI->getOperand(0)); 1505 else 1506 CI = cast<CallInst>(Malloc); 1507 } 1508 1509 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1510 TLI); 1511 return true; 1512 } 1513 1514 return false; 1515 } 1516 1517 // Try to optimize globals based on the knowledge that only one value (besides 1518 // its initializer) is ever stored to the global. 1519 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1520 AtomicOrdering Ordering, 1521 const DataLayout &DL, 1522 TargetLibraryInfo *TLI) { 1523 // Ignore no-op GEPs and bitcasts. 1524 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1525 1526 // If we are dealing with a pointer global that is initialized to null and 1527 // only has one (non-null) value stored into it, then we can optimize any 1528 // users of the loaded value (often calls and loads) that would trap if the 1529 // value was null. 1530 if (GV->getInitializer()->getType()->isPointerTy() && 1531 GV->getInitializer()->isNullValue()) { 1532 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1533 if (GV->getInitializer()->getType() != SOVC->getType()) 1534 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1535 1536 // Optimize away any trapping uses of the loaded value. 1537 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1538 return true; 1539 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1540 Type *MallocType = getMallocAllocatedType(CI, TLI); 1541 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1542 Ordering, DL, TLI)) 1543 return true; 1544 } 1545 } 1546 1547 return false; 1548 } 1549 1550 /// At this point, we have learned that the only two values ever stored into GV 1551 /// are its initializer and OtherVal. See if we can shrink the global into a 1552 /// boolean and select between the two values whenever it is used. This exposes 1553 /// the values to other scalar optimizations. 1554 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1555 Type *GVElType = GV->getValueType(); 1556 1557 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1558 // an FP value, pointer or vector, don't do this optimization because a select 1559 // between them is very expensive and unlikely to lead to later 1560 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1561 // where v1 and v2 both require constant pool loads, a big loss. 1562 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1563 GVElType->isFloatingPointTy() || 1564 GVElType->isPointerTy() || GVElType->isVectorTy()) 1565 return false; 1566 1567 // Walk the use list of the global seeing if all the uses are load or store. 1568 // If there is anything else, bail out. 1569 for (User *U : GV->users()) 1570 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1571 return false; 1572 1573 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1574 1575 // Create the new global, initializing it to false. 1576 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1577 false, 1578 GlobalValue::InternalLinkage, 1579 ConstantInt::getFalse(GV->getContext()), 1580 GV->getName()+".b", 1581 GV->getThreadLocalMode(), 1582 GV->getType()->getAddressSpace()); 1583 NewGV->copyAttributesFrom(GV); 1584 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1585 1586 Constant *InitVal = GV->getInitializer(); 1587 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1588 "No reason to shrink to bool!"); 1589 1590 // If initialized to zero and storing one into the global, we can use a cast 1591 // instead of a select to synthesize the desired value. 1592 bool IsOneZero = false; 1593 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1594 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1595 1596 while (!GV->use_empty()) { 1597 Instruction *UI = cast<Instruction>(GV->user_back()); 1598 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1599 // Change the store into a boolean store. 1600 bool StoringOther = SI->getOperand(0) == OtherVal; 1601 // Only do this if we weren't storing a loaded value. 1602 Value *StoreVal; 1603 if (StoringOther || SI->getOperand(0) == InitVal) { 1604 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1605 StoringOther); 1606 } else { 1607 // Otherwise, we are storing a previously loaded copy. To do this, 1608 // change the copy from copying the original value to just copying the 1609 // bool. 1610 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1611 1612 // If we've already replaced the input, StoredVal will be a cast or 1613 // select instruction. If not, it will be a load of the original 1614 // global. 1615 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1616 assert(LI->getOperand(0) == GV && "Not a copy!"); 1617 // Insert a new load, to preserve the saved value. 1618 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1619 LI->getOrdering(), LI->getSynchScope(), LI); 1620 } else { 1621 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1622 "This is not a form that we understand!"); 1623 StoreVal = StoredVal->getOperand(0); 1624 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1625 } 1626 } 1627 new StoreInst(StoreVal, NewGV, false, 0, 1628 SI->getOrdering(), SI->getSynchScope(), SI); 1629 } else { 1630 // Change the load into a load of bool then a select. 1631 LoadInst *LI = cast<LoadInst>(UI); 1632 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1633 LI->getOrdering(), LI->getSynchScope(), LI); 1634 Value *NSI; 1635 if (IsOneZero) 1636 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1637 else 1638 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1639 NSI->takeName(LI); 1640 LI->replaceAllUsesWith(NSI); 1641 } 1642 UI->eraseFromParent(); 1643 } 1644 1645 // Retain the name of the old global variable. People who are debugging their 1646 // programs may expect these variables to be named the same. 1647 NewGV->takeName(GV); 1648 GV->eraseFromParent(); 1649 return true; 1650 } 1651 1652 static bool deleteIfDead(GlobalValue &GV, 1653 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 1654 GV.removeDeadConstantUsers(); 1655 1656 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1657 return false; 1658 1659 if (const Comdat *C = GV.getComdat()) 1660 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1661 return false; 1662 1663 bool Dead; 1664 if (auto *F = dyn_cast<Function>(&GV)) 1665 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1666 else 1667 Dead = GV.use_empty(); 1668 if (!Dead) 1669 return false; 1670 1671 DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1672 GV.eraseFromParent(); 1673 ++NumDeleted; 1674 return true; 1675 } 1676 1677 static bool isPointerValueDeadOnEntryToFunction( 1678 const Function *F, GlobalValue *GV, 1679 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1680 // Find all uses of GV. We expect them all to be in F, and if we can't 1681 // identify any of the uses we bail out. 1682 // 1683 // On each of these uses, identify if the memory that GV points to is 1684 // used/required/live at the start of the function. If it is not, for example 1685 // if the first thing the function does is store to the GV, the GV can 1686 // possibly be demoted. 1687 // 1688 // We don't do an exhaustive search for memory operations - simply look 1689 // through bitcasts as they're quite common and benign. 1690 const DataLayout &DL = GV->getParent()->getDataLayout(); 1691 SmallVector<LoadInst *, 4> Loads; 1692 SmallVector<StoreInst *, 4> Stores; 1693 for (auto *U : GV->users()) { 1694 if (Operator::getOpcode(U) == Instruction::BitCast) { 1695 for (auto *UU : U->users()) { 1696 if (auto *LI = dyn_cast<LoadInst>(UU)) 1697 Loads.push_back(LI); 1698 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1699 Stores.push_back(SI); 1700 else 1701 return false; 1702 } 1703 continue; 1704 } 1705 1706 Instruction *I = dyn_cast<Instruction>(U); 1707 if (!I) 1708 return false; 1709 assert(I->getParent()->getParent() == F); 1710 1711 if (auto *LI = dyn_cast<LoadInst>(I)) 1712 Loads.push_back(LI); 1713 else if (auto *SI = dyn_cast<StoreInst>(I)) 1714 Stores.push_back(SI); 1715 else 1716 return false; 1717 } 1718 1719 // We have identified all uses of GV into loads and stores. Now check if all 1720 // of them are known not to depend on the value of the global at the function 1721 // entry point. We do this by ensuring that every load is dominated by at 1722 // least one store. 1723 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1724 1725 // The below check is quadratic. Check we're not going to do too many tests. 1726 // FIXME: Even though this will always have worst-case quadratic time, we 1727 // could put effort into minimizing the average time by putting stores that 1728 // have been shown to dominate at least one load at the beginning of the 1729 // Stores array, making subsequent dominance checks more likely to succeed 1730 // early. 1731 // 1732 // The threshold here is fairly large because global->local demotion is a 1733 // very powerful optimization should it fire. 1734 const unsigned Threshold = 100; 1735 if (Loads.size() * Stores.size() > Threshold) 1736 return false; 1737 1738 for (auto *L : Loads) { 1739 auto *LTy = L->getType(); 1740 if (none_of(Stores, [&](const StoreInst *S) { 1741 auto *STy = S->getValueOperand()->getType(); 1742 // The load is only dominated by the store if DomTree says so 1743 // and the number of bits loaded in L is less than or equal to 1744 // the number of bits stored in S. 1745 return DT.dominates(S, L) && 1746 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1747 })) 1748 return false; 1749 } 1750 // All loads have known dependences inside F, so the global can be localized. 1751 return true; 1752 } 1753 1754 /// C may have non-instruction users. Can all of those users be turned into 1755 /// instructions? 1756 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1757 // We don't do this exhaustively. The most common pattern that we really need 1758 // to care about is a constant GEP or constant bitcast - so just looking 1759 // through one single ConstantExpr. 1760 // 1761 // The set of constants that this function returns true for must be able to be 1762 // handled by makeAllConstantUsesInstructions. 1763 for (auto *U : C->users()) { 1764 if (isa<Instruction>(U)) 1765 continue; 1766 if (!isa<ConstantExpr>(U)) 1767 // Non instruction, non-constantexpr user; cannot convert this. 1768 return false; 1769 for (auto *UU : U->users()) 1770 if (!isa<Instruction>(UU)) 1771 // A constantexpr used by another constant. We don't try and recurse any 1772 // further but just bail out at this point. 1773 return false; 1774 } 1775 1776 return true; 1777 } 1778 1779 /// C may have non-instruction users, and 1780 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1781 /// non-instruction users to instructions. 1782 static void makeAllConstantUsesInstructions(Constant *C) { 1783 SmallVector<ConstantExpr*,4> Users; 1784 for (auto *U : C->users()) { 1785 if (isa<ConstantExpr>(U)) 1786 Users.push_back(cast<ConstantExpr>(U)); 1787 else 1788 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1789 // should not have returned true for C. 1790 assert( 1791 isa<Instruction>(U) && 1792 "Can't transform non-constantexpr non-instruction to instruction!"); 1793 } 1794 1795 SmallVector<Value*,4> UUsers; 1796 for (auto *U : Users) { 1797 UUsers.clear(); 1798 for (auto *UU : U->users()) 1799 UUsers.push_back(UU); 1800 for (auto *UU : UUsers) { 1801 Instruction *UI = cast<Instruction>(UU); 1802 Instruction *NewU = U->getAsInstruction(); 1803 NewU->insertBefore(UI); 1804 UI->replaceUsesOfWith(U, NewU); 1805 } 1806 U->dropAllReferences(); 1807 } 1808 } 1809 1810 /// Analyze the specified global variable and optimize 1811 /// it if possible. If we make a change, return true. 1812 static bool processInternalGlobal( 1813 GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI, 1814 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1815 auto &DL = GV->getParent()->getDataLayout(); 1816 // If this is a first class global and has only one accessing function and 1817 // this function is non-recursive, we replace the global with a local alloca 1818 // in this function. 1819 // 1820 // NOTE: It doesn't make sense to promote non-single-value types since we 1821 // are just replacing static memory to stack memory. 1822 // 1823 // If the global is in different address space, don't bring it to stack. 1824 if (!GS.HasMultipleAccessingFunctions && 1825 GS.AccessingFunction && 1826 GV->getValueType()->isSingleValueType() && 1827 GV->getType()->getAddressSpace() == 0 && 1828 !GV->isExternallyInitialized() && 1829 allNonInstructionUsersCanBeMadeInstructions(GV) && 1830 GS.AccessingFunction->doesNotRecurse() && 1831 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1832 LookupDomTree)) { 1833 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1834 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1835 ->getEntryBlock().begin()); 1836 Type *ElemTy = GV->getValueType(); 1837 // FIXME: Pass Global's alignment when globals have alignment 1838 AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr, 1839 GV->getName(), &FirstI); 1840 if (!isa<UndefValue>(GV->getInitializer())) 1841 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1842 1843 makeAllConstantUsesInstructions(GV); 1844 1845 GV->replaceAllUsesWith(Alloca); 1846 GV->eraseFromParent(); 1847 ++NumLocalized; 1848 return true; 1849 } 1850 1851 // If the global is never loaded (but may be stored to), it is dead. 1852 // Delete it now. 1853 if (!GS.IsLoaded) { 1854 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1855 1856 bool Changed; 1857 if (isLeakCheckerRoot(GV)) { 1858 // Delete any constant stores to the global. 1859 Changed = CleanupPointerRootUsers(GV, TLI); 1860 } else { 1861 // Delete any stores we can find to the global. We may not be able to 1862 // make it completely dead though. 1863 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1864 } 1865 1866 // If the global is dead now, delete it. 1867 if (GV->use_empty()) { 1868 GV->eraseFromParent(); 1869 ++NumDeleted; 1870 Changed = true; 1871 } 1872 return Changed; 1873 1874 } 1875 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1876 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1877 GV->setConstant(true); 1878 1879 // Clean up any obviously simplifiable users now. 1880 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1881 1882 // If the global is dead now, just nuke it. 1883 if (GV->use_empty()) { 1884 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1885 << "all users and delete global!\n"); 1886 GV->eraseFromParent(); 1887 ++NumDeleted; 1888 return true; 1889 } 1890 1891 // Fall through to the next check; see if we can optimize further. 1892 ++NumMarked; 1893 } 1894 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1895 const DataLayout &DL = GV->getParent()->getDataLayout(); 1896 if (SRAGlobal(GV, DL)) 1897 return true; 1898 } 1899 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1900 // If the initial value for the global was an undef value, and if only 1901 // one other value was stored into it, we can just change the 1902 // initializer to be the stored value, then delete all stores to the 1903 // global. This allows us to mark it constant. 1904 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1905 if (isa<UndefValue>(GV->getInitializer())) { 1906 // Change the initial value here. 1907 GV->setInitializer(SOVConstant); 1908 1909 // Clean up any obviously simplifiable users now. 1910 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1911 1912 if (GV->use_empty()) { 1913 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1914 << "simplify all users and delete global!\n"); 1915 GV->eraseFromParent(); 1916 ++NumDeleted; 1917 } 1918 ++NumSubstitute; 1919 return true; 1920 } 1921 1922 // Try to optimize globals based on the knowledge that only one value 1923 // (besides its initializer) is ever stored to the global. 1924 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI)) 1925 return true; 1926 1927 // Otherwise, if the global was not a boolean, we can shrink it to be a 1928 // boolean. 1929 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 1930 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1931 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1932 ++NumShrunkToBool; 1933 return true; 1934 } 1935 } 1936 } 1937 } 1938 1939 return false; 1940 } 1941 1942 /// Analyze the specified global variable and optimize it if possible. If we 1943 /// make a change, return true. 1944 static bool 1945 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI, 1946 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1947 if (GV.getName().startswith("llvm.")) 1948 return false; 1949 1950 GlobalStatus GS; 1951 1952 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1953 return false; 1954 1955 bool Changed = false; 1956 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 1957 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 1958 : GlobalValue::UnnamedAddr::Local; 1959 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 1960 GV.setUnnamedAddr(NewUnnamedAddr); 1961 NumUnnamed++; 1962 Changed = true; 1963 } 1964 } 1965 1966 // Do more involved optimizations if the global is internal. 1967 if (!GV.hasLocalLinkage()) 1968 return Changed; 1969 1970 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1971 if (!GVar) 1972 return Changed; 1973 1974 if (GVar->isConstant() || !GVar->hasInitializer()) 1975 return Changed; 1976 1977 return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed; 1978 } 1979 1980 /// Walk all of the direct calls of the specified function, changing them to 1981 /// FastCC. 1982 static void ChangeCalleesToFastCall(Function *F) { 1983 for (User *U : F->users()) { 1984 if (isa<BlockAddress>(U)) 1985 continue; 1986 CallSite CS(cast<Instruction>(U)); 1987 CS.setCallingConv(CallingConv::Fast); 1988 } 1989 } 1990 1991 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) { 1992 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { 1993 unsigned Index = Attrs.getSlotIndex(i); 1994 if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest)) 1995 continue; 1996 1997 // There can be only one. 1998 return Attrs.removeAttribute(C, Index, Attribute::Nest); 1999 } 2000 2001 return Attrs; 2002 } 2003 2004 static void RemoveNestAttribute(Function *F) { 2005 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 2006 for (User *U : F->users()) { 2007 if (isa<BlockAddress>(U)) 2008 continue; 2009 CallSite CS(cast<Instruction>(U)); 2010 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 2011 } 2012 } 2013 2014 /// Return true if this is a calling convention that we'd like to change. The 2015 /// idea here is that we don't want to mess with the convention if the user 2016 /// explicitly requested something with performance implications like coldcc, 2017 /// GHC, or anyregcc. 2018 static bool isProfitableToMakeFastCC(Function *F) { 2019 CallingConv::ID CC = F->getCallingConv(); 2020 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2021 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall; 2022 } 2023 2024 static bool 2025 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI, 2026 function_ref<DominatorTree &(Function &)> LookupDomTree, 2027 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2028 bool Changed = false; 2029 // Optimize functions. 2030 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2031 Function *F = &*FI++; 2032 // Functions without names cannot be referenced outside this module. 2033 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2034 F->setLinkage(GlobalValue::InternalLinkage); 2035 2036 if (deleteIfDead(*F, NotDiscardableComdats)) { 2037 Changed = true; 2038 continue; 2039 } 2040 2041 Changed |= processGlobal(*F, TLI, LookupDomTree); 2042 2043 if (!F->hasLocalLinkage()) 2044 continue; 2045 if (isProfitableToMakeFastCC(F) && !F->isVarArg() && 2046 !F->hasAddressTaken()) { 2047 // If this function has a calling convention worth changing, is not a 2048 // varargs function, and is only called directly, promote it to use the 2049 // Fast calling convention. 2050 F->setCallingConv(CallingConv::Fast); 2051 ChangeCalleesToFastCall(F); 2052 ++NumFastCallFns; 2053 Changed = true; 2054 } 2055 2056 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2057 !F->hasAddressTaken()) { 2058 // The function is not used by a trampoline intrinsic, so it is safe 2059 // to remove the 'nest' attribute. 2060 RemoveNestAttribute(F); 2061 ++NumNestRemoved; 2062 Changed = true; 2063 } 2064 } 2065 return Changed; 2066 } 2067 2068 static bool 2069 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI, 2070 function_ref<DominatorTree &(Function &)> LookupDomTree, 2071 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2072 bool Changed = false; 2073 2074 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2075 GVI != E; ) { 2076 GlobalVariable *GV = &*GVI++; 2077 // Global variables without names cannot be referenced outside this module. 2078 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2079 GV->setLinkage(GlobalValue::InternalLinkage); 2080 // Simplify the initializer. 2081 if (GV->hasInitializer()) 2082 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 2083 auto &DL = M.getDataLayout(); 2084 Constant *New = ConstantFoldConstant(C, DL, TLI); 2085 if (New && New != C) 2086 GV->setInitializer(New); 2087 } 2088 2089 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2090 Changed = true; 2091 continue; 2092 } 2093 2094 Changed |= processGlobal(*GV, TLI, LookupDomTree); 2095 } 2096 return Changed; 2097 } 2098 2099 /// Evaluate a piece of a constantexpr store into a global initializer. This 2100 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2101 /// GEP operands of Addr [0, OpNo) have been stepped into. 2102 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2103 ConstantExpr *Addr, unsigned OpNo) { 2104 // Base case of the recursion. 2105 if (OpNo == Addr->getNumOperands()) { 2106 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2107 return Val; 2108 } 2109 2110 SmallVector<Constant*, 32> Elts; 2111 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2112 // Break up the constant into its elements. 2113 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2114 Elts.push_back(Init->getAggregateElement(i)); 2115 2116 // Replace the element that we are supposed to. 2117 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2118 unsigned Idx = CU->getZExtValue(); 2119 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2120 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2121 2122 // Return the modified struct. 2123 return ConstantStruct::get(STy, Elts); 2124 } 2125 2126 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2127 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2128 2129 uint64_t NumElts; 2130 if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy)) 2131 NumElts = ATy->getNumElements(); 2132 else 2133 NumElts = InitTy->getVectorNumElements(); 2134 2135 // Break up the array into elements. 2136 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2137 Elts.push_back(Init->getAggregateElement(i)); 2138 2139 assert(CI->getZExtValue() < NumElts); 2140 Elts[CI->getZExtValue()] = 2141 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2142 2143 if (Init->getType()->isArrayTy()) 2144 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2145 return ConstantVector::get(Elts); 2146 } 2147 2148 /// We have decided that Addr (which satisfies the predicate 2149 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2150 static void CommitValueTo(Constant *Val, Constant *Addr) { 2151 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2152 assert(GV->hasInitializer()); 2153 GV->setInitializer(Val); 2154 return; 2155 } 2156 2157 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2158 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2159 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2160 } 2161 2162 /// Evaluate static constructors in the function, if we can. Return true if we 2163 /// can, false otherwise. 2164 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2165 TargetLibraryInfo *TLI) { 2166 // Call the function. 2167 Evaluator Eval(DL, TLI); 2168 Constant *RetValDummy; 2169 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2170 SmallVector<Constant*, 0>()); 2171 2172 if (EvalSuccess) { 2173 ++NumCtorsEvaluated; 2174 2175 // We succeeded at evaluation: commit the result. 2176 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2177 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2178 << " stores.\n"); 2179 for (const auto &I : Eval.getMutatedMemory()) 2180 CommitValueTo(I.second, I.first); 2181 for (GlobalVariable *GV : Eval.getInvariants()) 2182 GV->setConstant(true); 2183 } 2184 2185 return EvalSuccess; 2186 } 2187 2188 static int compareNames(Constant *const *A, Constant *const *B) { 2189 Value *AStripped = (*A)->stripPointerCastsNoFollowAliases(); 2190 Value *BStripped = (*B)->stripPointerCastsNoFollowAliases(); 2191 return AStripped->getName().compare(BStripped->getName()); 2192 } 2193 2194 static void setUsedInitializer(GlobalVariable &V, 2195 const SmallPtrSet<GlobalValue *, 8> &Init) { 2196 if (Init.empty()) { 2197 V.eraseFromParent(); 2198 return; 2199 } 2200 2201 // Type of pointer to the array of pointers. 2202 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2203 2204 SmallVector<llvm::Constant *, 8> UsedArray; 2205 for (GlobalValue *GV : Init) { 2206 Constant *Cast 2207 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2208 UsedArray.push_back(Cast); 2209 } 2210 // Sort to get deterministic order. 2211 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2212 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2213 2214 Module *M = V.getParent(); 2215 V.removeFromParent(); 2216 GlobalVariable *NV = 2217 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage, 2218 llvm::ConstantArray::get(ATy, UsedArray), ""); 2219 NV->takeName(&V); 2220 NV->setSection("llvm.metadata"); 2221 delete &V; 2222 } 2223 2224 namespace { 2225 /// An easy to access representation of llvm.used and llvm.compiler.used. 2226 class LLVMUsed { 2227 SmallPtrSet<GlobalValue *, 8> Used; 2228 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2229 GlobalVariable *UsedV; 2230 GlobalVariable *CompilerUsedV; 2231 2232 public: 2233 LLVMUsed(Module &M) { 2234 UsedV = collectUsedGlobalVariables(M, Used, false); 2235 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2236 } 2237 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator; 2238 typedef iterator_range<iterator> used_iterator_range; 2239 iterator usedBegin() { return Used.begin(); } 2240 iterator usedEnd() { return Used.end(); } 2241 used_iterator_range used() { 2242 return used_iterator_range(usedBegin(), usedEnd()); 2243 } 2244 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2245 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2246 used_iterator_range compilerUsed() { 2247 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2248 } 2249 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2250 bool compilerUsedCount(GlobalValue *GV) const { 2251 return CompilerUsed.count(GV); 2252 } 2253 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2254 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2255 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2256 bool compilerUsedInsert(GlobalValue *GV) { 2257 return CompilerUsed.insert(GV).second; 2258 } 2259 2260 void syncVariablesAndSets() { 2261 if (UsedV) 2262 setUsedInitializer(*UsedV, Used); 2263 if (CompilerUsedV) 2264 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2265 } 2266 }; 2267 } 2268 2269 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2270 if (GA.use_empty()) // No use at all. 2271 return false; 2272 2273 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2274 "We should have removed the duplicated " 2275 "element from llvm.compiler.used"); 2276 if (!GA.hasOneUse()) 2277 // Strictly more than one use. So at least one is not in llvm.used and 2278 // llvm.compiler.used. 2279 return true; 2280 2281 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2282 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2283 } 2284 2285 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2286 const LLVMUsed &U) { 2287 unsigned N = 2; 2288 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2289 "We should have removed the duplicated " 2290 "element from llvm.compiler.used"); 2291 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2292 ++N; 2293 return V.hasNUsesOrMore(N); 2294 } 2295 2296 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2297 if (!GA.hasLocalLinkage()) 2298 return true; 2299 2300 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2301 } 2302 2303 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2304 bool &RenameTarget) { 2305 RenameTarget = false; 2306 bool Ret = false; 2307 if (hasUseOtherThanLLVMUsed(GA, U)) 2308 Ret = true; 2309 2310 // If the alias is externally visible, we may still be able to simplify it. 2311 if (!mayHaveOtherReferences(GA, U)) 2312 return Ret; 2313 2314 // If the aliasee has internal linkage, give it the name and linkage 2315 // of the alias, and delete the alias. This turns: 2316 // define internal ... @f(...) 2317 // @a = alias ... @f 2318 // into: 2319 // define ... @a(...) 2320 Constant *Aliasee = GA.getAliasee(); 2321 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2322 if (!Target->hasLocalLinkage()) 2323 return Ret; 2324 2325 // Do not perform the transform if multiple aliases potentially target the 2326 // aliasee. This check also ensures that it is safe to replace the section 2327 // and other attributes of the aliasee with those of the alias. 2328 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2329 return Ret; 2330 2331 RenameTarget = true; 2332 return true; 2333 } 2334 2335 static bool 2336 OptimizeGlobalAliases(Module &M, 2337 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2338 bool Changed = false; 2339 LLVMUsed Used(M); 2340 2341 for (GlobalValue *GV : Used.used()) 2342 Used.compilerUsedErase(GV); 2343 2344 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2345 I != E;) { 2346 GlobalAlias *J = &*I++; 2347 2348 // Aliases without names cannot be referenced outside this module. 2349 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2350 J->setLinkage(GlobalValue::InternalLinkage); 2351 2352 if (deleteIfDead(*J, NotDiscardableComdats)) { 2353 Changed = true; 2354 continue; 2355 } 2356 2357 // If the aliasee may change at link time, nothing can be done - bail out. 2358 if (J->isInterposable()) 2359 continue; 2360 2361 Constant *Aliasee = J->getAliasee(); 2362 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2363 // We can't trivially replace the alias with the aliasee if the aliasee is 2364 // non-trivial in some way. 2365 // TODO: Try to handle non-zero GEPs of local aliasees. 2366 if (!Target) 2367 continue; 2368 Target->removeDeadConstantUsers(); 2369 2370 // Make all users of the alias use the aliasee instead. 2371 bool RenameTarget; 2372 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2373 continue; 2374 2375 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2376 ++NumAliasesResolved; 2377 Changed = true; 2378 2379 if (RenameTarget) { 2380 // Give the aliasee the name, linkage and other attributes of the alias. 2381 Target->takeName(&*J); 2382 Target->setLinkage(J->getLinkage()); 2383 Target->setVisibility(J->getVisibility()); 2384 Target->setDLLStorageClass(J->getDLLStorageClass()); 2385 2386 if (Used.usedErase(&*J)) 2387 Used.usedInsert(Target); 2388 2389 if (Used.compilerUsedErase(&*J)) 2390 Used.compilerUsedInsert(Target); 2391 } else if (mayHaveOtherReferences(*J, Used)) 2392 continue; 2393 2394 // Delete the alias. 2395 M.getAliasList().erase(J); 2396 ++NumAliasesRemoved; 2397 Changed = true; 2398 } 2399 2400 Used.syncVariablesAndSets(); 2401 2402 return Changed; 2403 } 2404 2405 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2406 LibFunc::Func F = LibFunc::cxa_atexit; 2407 if (!TLI->has(F)) 2408 return nullptr; 2409 2410 Function *Fn = M.getFunction(TLI->getName(F)); 2411 if (!Fn) 2412 return nullptr; 2413 2414 // Make sure that the function has the correct prototype. 2415 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc::cxa_atexit) 2416 return nullptr; 2417 2418 return Fn; 2419 } 2420 2421 /// Returns whether the given function is an empty C++ destructor and can 2422 /// therefore be eliminated. 2423 /// Note that we assume that other optimization passes have already simplified 2424 /// the code so we only look for a function with a single basic block, where 2425 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2426 /// other side-effect free instructions. 2427 static bool cxxDtorIsEmpty(const Function &Fn, 2428 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2429 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2430 // nounwind, but that doesn't seem worth doing. 2431 if (Fn.isDeclaration()) 2432 return false; 2433 2434 if (++Fn.begin() != Fn.end()) 2435 return false; 2436 2437 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2438 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2439 I != E; ++I) { 2440 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2441 // Ignore debug intrinsics. 2442 if (isa<DbgInfoIntrinsic>(CI)) 2443 continue; 2444 2445 const Function *CalledFn = CI->getCalledFunction(); 2446 2447 if (!CalledFn) 2448 return false; 2449 2450 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2451 2452 // Don't treat recursive functions as empty. 2453 if (!NewCalledFunctions.insert(CalledFn).second) 2454 return false; 2455 2456 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2457 return false; 2458 } else if (isa<ReturnInst>(*I)) 2459 return true; // We're done. 2460 else if (I->mayHaveSideEffects()) 2461 return false; // Destructor with side effects, bail. 2462 } 2463 2464 return false; 2465 } 2466 2467 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2468 /// Itanium C++ ABI p3.3.5: 2469 /// 2470 /// After constructing a global (or local static) object, that will require 2471 /// destruction on exit, a termination function is registered as follows: 2472 /// 2473 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2474 /// 2475 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2476 /// call f(p) when DSO d is unloaded, before all such termination calls 2477 /// registered before this one. It returns zero if registration is 2478 /// successful, nonzero on failure. 2479 2480 // This pass will look for calls to __cxa_atexit where the function is trivial 2481 // and remove them. 2482 bool Changed = false; 2483 2484 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2485 I != E;) { 2486 // We're only interested in calls. Theoretically, we could handle invoke 2487 // instructions as well, but neither llvm-gcc nor clang generate invokes 2488 // to __cxa_atexit. 2489 CallInst *CI = dyn_cast<CallInst>(*I++); 2490 if (!CI) 2491 continue; 2492 2493 Function *DtorFn = 2494 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2495 if (!DtorFn) 2496 continue; 2497 2498 SmallPtrSet<const Function *, 8> CalledFunctions; 2499 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 2500 continue; 2501 2502 // Just remove the call. 2503 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2504 CI->eraseFromParent(); 2505 2506 ++NumCXXDtorsRemoved; 2507 2508 Changed |= true; 2509 } 2510 2511 return Changed; 2512 } 2513 2514 static bool optimizeGlobalsInModule( 2515 Module &M, const DataLayout &DL, TargetLibraryInfo *TLI, 2516 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2517 SmallSet<const Comdat *, 8> NotDiscardableComdats; 2518 bool Changed = false; 2519 bool LocalChange = true; 2520 while (LocalChange) { 2521 LocalChange = false; 2522 2523 NotDiscardableComdats.clear(); 2524 for (const GlobalVariable &GV : M.globals()) 2525 if (const Comdat *C = GV.getComdat()) 2526 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2527 NotDiscardableComdats.insert(C); 2528 for (Function &F : M) 2529 if (const Comdat *C = F.getComdat()) 2530 if (!F.isDefTriviallyDead()) 2531 NotDiscardableComdats.insert(C); 2532 for (GlobalAlias &GA : M.aliases()) 2533 if (const Comdat *C = GA.getComdat()) 2534 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2535 NotDiscardableComdats.insert(C); 2536 2537 // Delete functions that are trivially dead, ccc -> fastcc 2538 LocalChange |= 2539 OptimizeFunctions(M, TLI, LookupDomTree, NotDiscardableComdats); 2540 2541 // Optimize global_ctors list. 2542 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2543 return EvaluateStaticConstructor(F, DL, TLI); 2544 }); 2545 2546 // Optimize non-address-taken globals. 2547 LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree, 2548 NotDiscardableComdats); 2549 2550 // Resolve aliases, when possible. 2551 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2552 2553 // Try to remove trivial global destructors if they are not removed 2554 // already. 2555 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 2556 if (CXAAtExitFn) 2557 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2558 2559 Changed |= LocalChange; 2560 } 2561 2562 // TODO: Move all global ctors functions to the end of the module for code 2563 // layout. 2564 2565 return Changed; 2566 } 2567 2568 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2569 auto &DL = M.getDataLayout(); 2570 auto &TLI = AM.getResult<TargetLibraryAnalysis>(M); 2571 auto &FAM = 2572 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2573 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2574 return FAM.getResult<DominatorTreeAnalysis>(F); 2575 }; 2576 if (!optimizeGlobalsInModule(M, DL, &TLI, LookupDomTree)) 2577 return PreservedAnalyses::all(); 2578 return PreservedAnalyses::none(); 2579 } 2580 2581 namespace { 2582 struct GlobalOptLegacyPass : public ModulePass { 2583 static char ID; // Pass identification, replacement for typeid 2584 GlobalOptLegacyPass() : ModulePass(ID) { 2585 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2586 } 2587 2588 bool runOnModule(Module &M) override { 2589 if (skipModule(M)) 2590 return false; 2591 2592 auto &DL = M.getDataLayout(); 2593 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2594 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2595 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2596 }; 2597 return optimizeGlobalsInModule(M, DL, TLI, LookupDomTree); 2598 } 2599 2600 void getAnalysisUsage(AnalysisUsage &AU) const override { 2601 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2602 AU.addRequired<DominatorTreeWrapperPass>(); 2603 } 2604 }; 2605 } 2606 2607 char GlobalOptLegacyPass::ID = 0; 2608 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2609 "Global Variable Optimizer", false, false) 2610 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2611 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2612 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2613 "Global Variable Optimizer", false, false) 2614 2615 ModulePass *llvm::createGlobalOptimizerPass() { 2616 return new GlobalOptLegacyPass(); 2617 } 2618