1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass transforms simple global variables that never have their address 11 // taken. If obviously true, it marks read/write globals as constant, deletes 12 // variables only stored to, etc. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/IPO/GlobalOpt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/IR/CallSite.h" 27 #include "llvm/IR/CallingConv.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/IPO.h" 44 #include "llvm/Transforms/Utils/CtorUtils.h" 45 #include "llvm/Transforms/Utils/Evaluator.h" 46 #include "llvm/Transforms/Utils/GlobalStatus.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include <algorithm> 49 using namespace llvm; 50 51 #define DEBUG_TYPE "globalopt" 52 53 STATISTIC(NumMarked , "Number of globals marked constant"); 54 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 55 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 56 STATISTIC(NumHeapSRA , "Number of heap objects SRA'd"); 57 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 58 STATISTIC(NumDeleted , "Number of globals deleted"); 59 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 60 STATISTIC(NumLocalized , "Number of globals localized"); 61 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 62 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 63 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 64 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 65 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 66 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 67 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 68 69 /// Is this global variable possibly used by a leak checker as a root? If so, 70 /// we might not really want to eliminate the stores to it. 71 static bool isLeakCheckerRoot(GlobalVariable *GV) { 72 // A global variable is a root if it is a pointer, or could plausibly contain 73 // a pointer. There are two challenges; one is that we could have a struct 74 // the has an inner member which is a pointer. We recurse through the type to 75 // detect these (up to a point). The other is that we may actually be a union 76 // of a pointer and another type, and so our LLVM type is an integer which 77 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 78 // potentially contained here. 79 80 if (GV->hasPrivateLinkage()) 81 return false; 82 83 SmallVector<Type *, 4> Types; 84 Types.push_back(GV->getValueType()); 85 86 unsigned Limit = 20; 87 do { 88 Type *Ty = Types.pop_back_val(); 89 switch (Ty->getTypeID()) { 90 default: break; 91 case Type::PointerTyID: return true; 92 case Type::ArrayTyID: 93 case Type::VectorTyID: { 94 SequentialType *STy = cast<SequentialType>(Ty); 95 Types.push_back(STy->getElementType()); 96 break; 97 } 98 case Type::StructTyID: { 99 StructType *STy = cast<StructType>(Ty); 100 if (STy->isOpaque()) return true; 101 for (StructType::element_iterator I = STy->element_begin(), 102 E = STy->element_end(); I != E; ++I) { 103 Type *InnerTy = *I; 104 if (isa<PointerType>(InnerTy)) return true; 105 if (isa<CompositeType>(InnerTy)) 106 Types.push_back(InnerTy); 107 } 108 break; 109 } 110 } 111 if (--Limit == 0) return true; 112 } while (!Types.empty()); 113 return false; 114 } 115 116 /// Given a value that is stored to a global but never read, determine whether 117 /// it's safe to remove the store and the chain of computation that feeds the 118 /// store. 119 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) { 120 do { 121 if (isa<Constant>(V)) 122 return true; 123 if (!V->hasOneUse()) 124 return false; 125 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 126 isa<GlobalValue>(V)) 127 return false; 128 if (isAllocationFn(V, TLI)) 129 return true; 130 131 Instruction *I = cast<Instruction>(V); 132 if (I->mayHaveSideEffects()) 133 return false; 134 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 135 if (!GEP->hasAllConstantIndices()) 136 return false; 137 } else if (I->getNumOperands() != 1) { 138 return false; 139 } 140 141 V = I->getOperand(0); 142 } while (1); 143 } 144 145 /// This GV is a pointer root. Loop over all users of the global and clean up 146 /// any that obviously don't assign the global a value that isn't dynamically 147 /// allocated. 148 static bool CleanupPointerRootUsers(GlobalVariable *GV, 149 const TargetLibraryInfo *TLI) { 150 // A brief explanation of leak checkers. The goal is to find bugs where 151 // pointers are forgotten, causing an accumulating growth in memory 152 // usage over time. The common strategy for leak checkers is to whitelist the 153 // memory pointed to by globals at exit. This is popular because it also 154 // solves another problem where the main thread of a C++ program may shut down 155 // before other threads that are still expecting to use those globals. To 156 // handle that case, we expect the program may create a singleton and never 157 // destroy it. 158 159 bool Changed = false; 160 161 // If Dead[n].first is the only use of a malloc result, we can delete its 162 // chain of computation and the store to the global in Dead[n].second. 163 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 164 165 // Constants can't be pointers to dynamically allocated memory. 166 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 167 UI != E;) { 168 User *U = *UI++; 169 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 170 Value *V = SI->getValueOperand(); 171 if (isa<Constant>(V)) { 172 Changed = true; 173 SI->eraseFromParent(); 174 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 175 if (I->hasOneUse()) 176 Dead.push_back(std::make_pair(I, SI)); 177 } 178 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 179 if (isa<Constant>(MSI->getValue())) { 180 Changed = true; 181 MSI->eraseFromParent(); 182 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 183 if (I->hasOneUse()) 184 Dead.push_back(std::make_pair(I, MSI)); 185 } 186 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 187 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 188 if (MemSrc && MemSrc->isConstant()) { 189 Changed = true; 190 MTI->eraseFromParent(); 191 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 192 if (I->hasOneUse()) 193 Dead.push_back(std::make_pair(I, MTI)); 194 } 195 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 196 if (CE->use_empty()) { 197 CE->destroyConstant(); 198 Changed = true; 199 } 200 } else if (Constant *C = dyn_cast<Constant>(U)) { 201 if (isSafeToDestroyConstant(C)) { 202 C->destroyConstant(); 203 // This could have invalidated UI, start over from scratch. 204 Dead.clear(); 205 CleanupPointerRootUsers(GV, TLI); 206 return true; 207 } 208 } 209 } 210 211 for (int i = 0, e = Dead.size(); i != e; ++i) { 212 if (IsSafeComputationToRemove(Dead[i].first, TLI)) { 213 Dead[i].second->eraseFromParent(); 214 Instruction *I = Dead[i].first; 215 do { 216 if (isAllocationFn(I, TLI)) 217 break; 218 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 219 if (!J) 220 break; 221 I->eraseFromParent(); 222 I = J; 223 } while (1); 224 I->eraseFromParent(); 225 } 226 } 227 228 return Changed; 229 } 230 231 /// We just marked GV constant. Loop over all users of the global, cleaning up 232 /// the obvious ones. This is largely just a quick scan over the use list to 233 /// clean up the easy and obvious cruft. This returns true if it made a change. 234 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init, 235 const DataLayout &DL, 236 TargetLibraryInfo *TLI) { 237 bool Changed = false; 238 // Note that we need to use a weak value handle for the worklist items. When 239 // we delete a constant array, we may also be holding pointer to one of its 240 // elements (or an element of one of its elements if we're dealing with an 241 // array of arrays) in the worklist. 242 SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end()); 243 while (!WorkList.empty()) { 244 Value *UV = WorkList.pop_back_val(); 245 if (!UV) 246 continue; 247 248 User *U = cast<User>(UV); 249 250 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 251 if (Init) { 252 // Replace the load with the initializer. 253 LI->replaceAllUsesWith(Init); 254 LI->eraseFromParent(); 255 Changed = true; 256 } 257 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 258 // Store must be unreachable or storing Init into the global. 259 SI->eraseFromParent(); 260 Changed = true; 261 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 262 if (CE->getOpcode() == Instruction::GetElementPtr) { 263 Constant *SubInit = nullptr; 264 if (Init) 265 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 266 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI); 267 } else if ((CE->getOpcode() == Instruction::BitCast && 268 CE->getType()->isPointerTy()) || 269 CE->getOpcode() == Instruction::AddrSpaceCast) { 270 // Pointer cast, delete any stores and memsets to the global. 271 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI); 272 } 273 274 if (CE->use_empty()) { 275 CE->destroyConstant(); 276 Changed = true; 277 } 278 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 279 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 280 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 281 // and will invalidate our notion of what Init is. 282 Constant *SubInit = nullptr; 283 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 284 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 285 ConstantFoldInstruction(GEP, DL, TLI)); 286 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 287 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE); 288 289 // If the initializer is an all-null value and we have an inbounds GEP, 290 // we already know what the result of any load from that GEP is. 291 // TODO: Handle splats. 292 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 293 SubInit = Constant::getNullValue(GEP->getResultElementType()); 294 } 295 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI); 296 297 if (GEP->use_empty()) { 298 GEP->eraseFromParent(); 299 Changed = true; 300 } 301 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 302 if (MI->getRawDest() == V) { 303 MI->eraseFromParent(); 304 Changed = true; 305 } 306 307 } else if (Constant *C = dyn_cast<Constant>(U)) { 308 // If we have a chain of dead constantexprs or other things dangling from 309 // us, and if they are all dead, nuke them without remorse. 310 if (isSafeToDestroyConstant(C)) { 311 C->destroyConstant(); 312 CleanupConstantGlobalUsers(V, Init, DL, TLI); 313 return true; 314 } 315 } 316 } 317 return Changed; 318 } 319 320 /// Return true if the specified instruction is a safe user of a derived 321 /// expression from a global that we want to SROA. 322 static bool isSafeSROAElementUse(Value *V) { 323 // We might have a dead and dangling constant hanging off of here. 324 if (Constant *C = dyn_cast<Constant>(V)) 325 return isSafeToDestroyConstant(C); 326 327 Instruction *I = dyn_cast<Instruction>(V); 328 if (!I) return false; 329 330 // Loads are ok. 331 if (isa<LoadInst>(I)) return true; 332 333 // Stores *to* the pointer are ok. 334 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 335 return SI->getOperand(0) != V; 336 337 // Otherwise, it must be a GEP. 338 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I); 339 if (!GEPI) return false; 340 341 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) || 342 !cast<Constant>(GEPI->getOperand(1))->isNullValue()) 343 return false; 344 345 for (User *U : GEPI->users()) 346 if (!isSafeSROAElementUse(U)) 347 return false; 348 return true; 349 } 350 351 352 /// U is a direct user of the specified global value. Look at it and its uses 353 /// and decide whether it is safe to SROA this global. 354 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) { 355 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 356 if (!isa<GetElementPtrInst>(U) && 357 (!isa<ConstantExpr>(U) || 358 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 359 return false; 360 361 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 362 // don't like < 3 operand CE's, and we don't like non-constant integer 363 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 364 // value of C. 365 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 366 !cast<Constant>(U->getOperand(1))->isNullValue() || 367 !isa<ConstantInt>(U->getOperand(2))) 368 return false; 369 370 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 371 ++GEPI; // Skip over the pointer index. 372 373 // If this is a use of an array allocation, do a bit more checking for sanity. 374 if (GEPI.isSequential()) { 375 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2)); 376 377 // Check to make sure that index falls within the array. If not, 378 // something funny is going on, so we won't do the optimization. 379 // 380 if (GEPI.isBoundedSequential() && 381 Idx->getZExtValue() >= GEPI.getSequentialNumElements()) 382 return false; 383 384 // We cannot scalar repl this level of the array unless any array 385 // sub-indices are in-range constants. In particular, consider: 386 // A[0][i]. We cannot know that the user isn't doing invalid things like 387 // allowing i to index an out-of-range subscript that accesses A[1]. 388 // 389 // Scalar replacing *just* the outer index of the array is probably not 390 // going to be a win anyway, so just give up. 391 for (++GEPI; // Skip array index. 392 GEPI != E; 393 ++GEPI) { 394 if (GEPI.isStruct()) 395 continue; 396 397 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 398 if (!IdxVal || 399 (GEPI.isBoundedSequential() && 400 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 401 return false; 402 } 403 } 404 405 for (User *UU : U->users()) 406 if (!isSafeSROAElementUse(UU)) 407 return false; 408 409 return true; 410 } 411 412 /// Look at all uses of the global and decide whether it is safe for us to 413 /// perform this transformation. 414 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 415 for (User *U : GV->users()) 416 if (!IsUserOfGlobalSafeForSRA(U, GV)) 417 return false; 418 419 return true; 420 } 421 422 423 /// Perform scalar replacement of aggregates on the specified global variable. 424 /// This opens the door for other optimizations by exposing the behavior of the 425 /// program in a more fine-grained way. We have determined that this 426 /// transformation is safe already. We return the first global variable we 427 /// insert so that the caller can reprocess it. 428 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 429 // Make sure this global only has simple uses that we can SRA. 430 if (!GlobalUsersSafeToSRA(GV)) 431 return nullptr; 432 433 assert(GV->hasLocalLinkage()); 434 Constant *Init = GV->getInitializer(); 435 Type *Ty = Init->getType(); 436 437 std::vector<GlobalVariable*> NewGlobals; 438 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 439 440 // Get the alignment of the global, either explicit or target-specific. 441 unsigned StartAlignment = GV->getAlignment(); 442 if (StartAlignment == 0) 443 StartAlignment = DL.getABITypeAlignment(GV->getType()); 444 445 if (StructType *STy = dyn_cast<StructType>(Ty)) { 446 NewGlobals.reserve(STy->getNumElements()); 447 const StructLayout &Layout = *DL.getStructLayout(STy); 448 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 449 Constant *In = Init->getAggregateElement(i); 450 assert(In && "Couldn't get element of initializer?"); 451 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false, 452 GlobalVariable::InternalLinkage, 453 In, GV->getName()+"."+Twine(i), 454 GV->getThreadLocalMode(), 455 GV->getType()->getAddressSpace()); 456 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 457 NGV->copyAttributesFrom(GV); 458 Globals.push_back(NGV); 459 NewGlobals.push_back(NGV); 460 461 // Calculate the known alignment of the field. If the original aggregate 462 // had 256 byte alignment for example, something might depend on that: 463 // propagate info to each field. 464 uint64_t FieldOffset = Layout.getElementOffset(i); 465 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset); 466 if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i))) 467 NGV->setAlignment(NewAlign); 468 } 469 } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) { 470 unsigned NumElements = STy->getNumElements(); 471 if (NumElements > 16 && GV->hasNUsesOrMore(16)) 472 return nullptr; // It's not worth it. 473 NewGlobals.reserve(NumElements); 474 475 uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType()); 476 unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType()); 477 for (unsigned i = 0, e = NumElements; i != e; ++i) { 478 Constant *In = Init->getAggregateElement(i); 479 assert(In && "Couldn't get element of initializer?"); 480 481 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false, 482 GlobalVariable::InternalLinkage, 483 In, GV->getName()+"."+Twine(i), 484 GV->getThreadLocalMode(), 485 GV->getType()->getAddressSpace()); 486 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 487 NGV->copyAttributesFrom(GV); 488 Globals.push_back(NGV); 489 NewGlobals.push_back(NGV); 490 491 // Calculate the known alignment of the field. If the original aggregate 492 // had 256 byte alignment for example, something might depend on that: 493 // propagate info to each field. 494 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i); 495 if (NewAlign > EltAlign) 496 NGV->setAlignment(NewAlign); 497 } 498 } 499 500 if (NewGlobals.empty()) 501 return nullptr; 502 503 DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 504 505 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 506 507 // Loop over all of the uses of the global, replacing the constantexpr geps, 508 // with smaller constantexpr geps or direct references. 509 while (!GV->use_empty()) { 510 User *GEP = GV->user_back(); 511 assert(((isa<ConstantExpr>(GEP) && 512 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 513 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 514 515 // Ignore the 1th operand, which has to be zero or else the program is quite 516 // broken (undefined). Get the 2nd operand, which is the structure or array 517 // index. 518 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 519 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access. 520 521 Value *NewPtr = NewGlobals[Val]; 522 Type *NewTy = NewGlobals[Val]->getValueType(); 523 524 // Form a shorter GEP if needed. 525 if (GEP->getNumOperands() > 3) { 526 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 527 SmallVector<Constant*, 8> Idxs; 528 Idxs.push_back(NullInt); 529 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 530 Idxs.push_back(CE->getOperand(i)); 531 NewPtr = 532 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 533 } else { 534 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 535 SmallVector<Value*, 8> Idxs; 536 Idxs.push_back(NullInt); 537 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 538 Idxs.push_back(GEPI->getOperand(i)); 539 NewPtr = GetElementPtrInst::Create( 540 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI); 541 } 542 } 543 GEP->replaceAllUsesWith(NewPtr); 544 545 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 546 GEPI->eraseFromParent(); 547 else 548 cast<ConstantExpr>(GEP)->destroyConstant(); 549 } 550 551 // Delete the old global, now that it is dead. 552 Globals.erase(GV); 553 ++NumSRA; 554 555 // Loop over the new globals array deleting any globals that are obviously 556 // dead. This can arise due to scalarization of a structure or an array that 557 // has elements that are dead. 558 unsigned FirstGlobal = 0; 559 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i) 560 if (NewGlobals[i]->use_empty()) { 561 Globals.erase(NewGlobals[i]); 562 if (FirstGlobal == i) ++FirstGlobal; 563 } 564 565 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr; 566 } 567 568 /// Return true if all users of the specified value will trap if the value is 569 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 570 /// reprocessing them. 571 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 572 SmallPtrSetImpl<const PHINode*> &PHIs) { 573 for (const User *U : V->users()) 574 if (isa<LoadInst>(U)) { 575 // Will trap. 576 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 577 if (SI->getOperand(0) == V) { 578 //cerr << "NONTRAPPING USE: " << *U; 579 return false; // Storing the value. 580 } 581 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 582 if (CI->getCalledValue() != V) { 583 //cerr << "NONTRAPPING USE: " << *U; 584 return false; // Not calling the ptr 585 } 586 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 587 if (II->getCalledValue() != V) { 588 //cerr << "NONTRAPPING USE: " << *U; 589 return false; // Not calling the ptr 590 } 591 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 592 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 593 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 594 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 595 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 596 // If we've already seen this phi node, ignore it, it has already been 597 // checked. 598 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 599 return false; 600 } else if (isa<ICmpInst>(U) && 601 isa<ConstantPointerNull>(U->getOperand(1))) { 602 // Ignore icmp X, null 603 } else { 604 //cerr << "NONTRAPPING USE: " << *U; 605 return false; 606 } 607 608 return true; 609 } 610 611 /// Return true if all uses of any loads from GV will trap if the loaded value 612 /// is null. Note that this also permits comparisons of the loaded value 613 /// against null, as a special case. 614 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 615 for (const User *U : GV->users()) 616 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 617 SmallPtrSet<const PHINode*, 8> PHIs; 618 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 619 return false; 620 } else if (isa<StoreInst>(U)) { 621 // Ignore stores to the global. 622 } else { 623 // We don't know or understand this user, bail out. 624 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 625 return false; 626 } 627 return true; 628 } 629 630 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 631 bool Changed = false; 632 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 633 Instruction *I = cast<Instruction>(*UI++); 634 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 635 LI->setOperand(0, NewV); 636 Changed = true; 637 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 638 if (SI->getOperand(1) == V) { 639 SI->setOperand(1, NewV); 640 Changed = true; 641 } 642 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 643 CallSite CS(I); 644 if (CS.getCalledValue() == V) { 645 // Calling through the pointer! Turn into a direct call, but be careful 646 // that the pointer is not also being passed as an argument. 647 CS.setCalledFunction(NewV); 648 Changed = true; 649 bool PassedAsArg = false; 650 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 651 if (CS.getArgument(i) == V) { 652 PassedAsArg = true; 653 CS.setArgument(i, NewV); 654 } 655 656 if (PassedAsArg) { 657 // Being passed as an argument also. Be careful to not invalidate UI! 658 UI = V->user_begin(); 659 } 660 } 661 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 662 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 663 ConstantExpr::getCast(CI->getOpcode(), 664 NewV, CI->getType())); 665 if (CI->use_empty()) { 666 Changed = true; 667 CI->eraseFromParent(); 668 } 669 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 670 // Should handle GEP here. 671 SmallVector<Constant*, 8> Idxs; 672 Idxs.reserve(GEPI->getNumOperands()-1); 673 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 674 i != e; ++i) 675 if (Constant *C = dyn_cast<Constant>(*i)) 676 Idxs.push_back(C); 677 else 678 break; 679 if (Idxs.size() == GEPI->getNumOperands()-1) 680 Changed |= OptimizeAwayTrappingUsesOfValue( 681 GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs)); 682 if (GEPI->use_empty()) { 683 Changed = true; 684 GEPI->eraseFromParent(); 685 } 686 } 687 } 688 689 return Changed; 690 } 691 692 693 /// The specified global has only one non-null value stored into it. If there 694 /// are uses of the loaded value that would trap if the loaded value is 695 /// dynamically null, then we know that they cannot be reachable with a null 696 /// optimize away the load. 697 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV, 698 const DataLayout &DL, 699 TargetLibraryInfo *TLI) { 700 bool Changed = false; 701 702 // Keep track of whether we are able to remove all the uses of the global 703 // other than the store that defines it. 704 bool AllNonStoreUsesGone = true; 705 706 // Replace all uses of loads with uses of uses of the stored value. 707 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 708 User *GlobalUser = *GUI++; 709 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 710 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 711 // If we were able to delete all uses of the loads 712 if (LI->use_empty()) { 713 LI->eraseFromParent(); 714 Changed = true; 715 } else { 716 AllNonStoreUsesGone = false; 717 } 718 } else if (isa<StoreInst>(GlobalUser)) { 719 // Ignore the store that stores "LV" to the global. 720 assert(GlobalUser->getOperand(1) == GV && 721 "Must be storing *to* the global"); 722 } else { 723 AllNonStoreUsesGone = false; 724 725 // If we get here we could have other crazy uses that are transitively 726 // loaded. 727 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 728 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 729 isa<BitCastInst>(GlobalUser) || 730 isa<GetElementPtrInst>(GlobalUser)) && 731 "Only expect load and stores!"); 732 } 733 } 734 735 if (Changed) { 736 DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV << "\n"); 737 ++NumGlobUses; 738 } 739 740 // If we nuked all of the loads, then none of the stores are needed either, 741 // nor is the global. 742 if (AllNonStoreUsesGone) { 743 if (isLeakCheckerRoot(GV)) { 744 Changed |= CleanupPointerRootUsers(GV, TLI); 745 } else { 746 Changed = true; 747 CleanupConstantGlobalUsers(GV, nullptr, DL, TLI); 748 } 749 if (GV->use_empty()) { 750 DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 751 Changed = true; 752 GV->eraseFromParent(); 753 ++NumDeleted; 754 } 755 } 756 return Changed; 757 } 758 759 /// Walk the use list of V, constant folding all of the instructions that are 760 /// foldable. 761 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 762 TargetLibraryInfo *TLI) { 763 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 764 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 765 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 766 I->replaceAllUsesWith(NewC); 767 768 // Advance UI to the next non-I use to avoid invalidating it! 769 // Instructions could multiply use V. 770 while (UI != E && *UI == I) 771 ++UI; 772 if (isInstructionTriviallyDead(I, TLI)) 773 I->eraseFromParent(); 774 } 775 } 776 777 /// This function takes the specified global variable, and transforms the 778 /// program as if it always contained the result of the specified malloc. 779 /// Because it is always the result of the specified malloc, there is no reason 780 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 781 /// loads of GV as uses of the new global. 782 static GlobalVariable * 783 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 784 ConstantInt *NElements, const DataLayout &DL, 785 TargetLibraryInfo *TLI) { 786 DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI << '\n'); 787 788 Type *GlobalType; 789 if (NElements->getZExtValue() == 1) 790 GlobalType = AllocTy; 791 else 792 // If we have an array allocation, the global variable is of an array. 793 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 794 795 // Create the new global variable. The contents of the malloc'd memory is 796 // undefined, so initialize with an undef value. 797 GlobalVariable *NewGV = new GlobalVariable( 798 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 799 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 800 GV->getThreadLocalMode()); 801 802 // If there are bitcast users of the malloc (which is typical, usually we have 803 // a malloc + bitcast) then replace them with uses of the new global. Update 804 // other users to use the global as well. 805 BitCastInst *TheBC = nullptr; 806 while (!CI->use_empty()) { 807 Instruction *User = cast<Instruction>(CI->user_back()); 808 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 809 if (BCI->getType() == NewGV->getType()) { 810 BCI->replaceAllUsesWith(NewGV); 811 BCI->eraseFromParent(); 812 } else { 813 BCI->setOperand(0, NewGV); 814 } 815 } else { 816 if (!TheBC) 817 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 818 User->replaceUsesOfWith(CI, TheBC); 819 } 820 } 821 822 Constant *RepValue = NewGV; 823 if (NewGV->getType() != GV->getValueType()) 824 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 825 826 // If there is a comparison against null, we will insert a global bool to 827 // keep track of whether the global was initialized yet or not. 828 GlobalVariable *InitBool = 829 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 830 GlobalValue::InternalLinkage, 831 ConstantInt::getFalse(GV->getContext()), 832 GV->getName()+".init", GV->getThreadLocalMode()); 833 bool InitBoolUsed = false; 834 835 // Loop over all uses of GV, processing them in turn. 836 while (!GV->use_empty()) { 837 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 838 // The global is initialized when the store to it occurs. 839 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0, 840 SI->getOrdering(), SI->getSynchScope(), SI); 841 SI->eraseFromParent(); 842 continue; 843 } 844 845 LoadInst *LI = cast<LoadInst>(GV->user_back()); 846 while (!LI->use_empty()) { 847 Use &LoadUse = *LI->use_begin(); 848 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 849 if (!ICI) { 850 LoadUse = RepValue; 851 continue; 852 } 853 854 // Replace the cmp X, 0 with a use of the bool value. 855 // Sink the load to where the compare was, if atomic rules allow us to. 856 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0, 857 LI->getOrdering(), LI->getSynchScope(), 858 LI->isUnordered() ? (Instruction*)ICI : LI); 859 InitBoolUsed = true; 860 switch (ICI->getPredicate()) { 861 default: llvm_unreachable("Unknown ICmp Predicate!"); 862 case ICmpInst::ICMP_ULT: 863 case ICmpInst::ICMP_SLT: // X < null -> always false 864 LV = ConstantInt::getFalse(GV->getContext()); 865 break; 866 case ICmpInst::ICMP_ULE: 867 case ICmpInst::ICMP_SLE: 868 case ICmpInst::ICMP_EQ: 869 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 870 break; 871 case ICmpInst::ICMP_NE: 872 case ICmpInst::ICMP_UGE: 873 case ICmpInst::ICMP_SGE: 874 case ICmpInst::ICMP_UGT: 875 case ICmpInst::ICMP_SGT: 876 break; // no change. 877 } 878 ICI->replaceAllUsesWith(LV); 879 ICI->eraseFromParent(); 880 } 881 LI->eraseFromParent(); 882 } 883 884 // If the initialization boolean was used, insert it, otherwise delete it. 885 if (!InitBoolUsed) { 886 while (!InitBool->use_empty()) // Delete initializations 887 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 888 delete InitBool; 889 } else 890 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 891 892 // Now the GV is dead, nuke it and the malloc.. 893 GV->eraseFromParent(); 894 CI->eraseFromParent(); 895 896 // To further other optimizations, loop over all users of NewGV and try to 897 // constant prop them. This will promote GEP instructions with constant 898 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 899 ConstantPropUsersOf(NewGV, DL, TLI); 900 if (RepValue != NewGV) 901 ConstantPropUsersOf(RepValue, DL, TLI); 902 903 return NewGV; 904 } 905 906 /// Scan the use-list of V checking to make sure that there are no complex uses 907 /// of V. We permit simple things like dereferencing the pointer, but not 908 /// storing through the address, unless it is to the specified global. 909 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 910 const GlobalVariable *GV, 911 SmallPtrSetImpl<const PHINode*> &PHIs) { 912 for (const User *U : V->users()) { 913 const Instruction *Inst = cast<Instruction>(U); 914 915 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 916 continue; // Fine, ignore. 917 } 918 919 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 920 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 921 return false; // Storing the pointer itself... bad. 922 continue; // Otherwise, storing through it, or storing into GV... fine. 923 } 924 925 // Must index into the array and into the struct. 926 if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) { 927 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs)) 928 return false; 929 continue; 930 } 931 932 if (const PHINode *PN = dyn_cast<PHINode>(Inst)) { 933 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI 934 // cycles. 935 if (PHIs.insert(PN).second) 936 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs)) 937 return false; 938 continue; 939 } 940 941 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 942 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs)) 943 return false; 944 continue; 945 } 946 947 return false; 948 } 949 return true; 950 } 951 952 /// The Alloc pointer is stored into GV somewhere. Transform all uses of the 953 /// allocation into loads from the global and uses of the resultant pointer. 954 /// Further, delete the store into GV. This assumes that these value pass the 955 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate. 956 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc, 957 GlobalVariable *GV) { 958 while (!Alloc->use_empty()) { 959 Instruction *U = cast<Instruction>(*Alloc->user_begin()); 960 Instruction *InsertPt = U; 961 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 962 // If this is the store of the allocation into the global, remove it. 963 if (SI->getOperand(1) == GV) { 964 SI->eraseFromParent(); 965 continue; 966 } 967 } else if (PHINode *PN = dyn_cast<PHINode>(U)) { 968 // Insert the load in the corresponding predecessor, not right before the 969 // PHI. 970 InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator(); 971 } else if (isa<BitCastInst>(U)) { 972 // Must be bitcast between the malloc and store to initialize the global. 973 ReplaceUsesOfMallocWithGlobal(U, GV); 974 U->eraseFromParent(); 975 continue; 976 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 977 // If this is a "GEP bitcast" and the user is a store to the global, then 978 // just process it as a bitcast. 979 if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse()) 980 if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back())) 981 if (SI->getOperand(1) == GV) { 982 // Must be bitcast GEP between the malloc and store to initialize 983 // the global. 984 ReplaceUsesOfMallocWithGlobal(GEPI, GV); 985 GEPI->eraseFromParent(); 986 continue; 987 } 988 } 989 990 // Insert a load from the global, and use it instead of the malloc. 991 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt); 992 U->replaceUsesOfWith(Alloc, NL); 993 } 994 } 995 996 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to 997 /// perform heap SRA on. This permits GEP's that index through the array and 998 /// struct field, icmps of null, and PHIs. 999 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V, 1000 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs, 1001 SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) { 1002 // We permit two users of the load: setcc comparing against the null 1003 // pointer, and a getelementptr of a specific form. 1004 for (const User *U : V->users()) { 1005 const Instruction *UI = cast<Instruction>(U); 1006 1007 // Comparison against null is ok. 1008 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) { 1009 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 1010 return false; 1011 continue; 1012 } 1013 1014 // getelementptr is also ok, but only a simple form. 1015 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) { 1016 // Must index into the array and into the struct. 1017 if (GEPI->getNumOperands() < 3) 1018 return false; 1019 1020 // Otherwise the GEP is ok. 1021 continue; 1022 } 1023 1024 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1025 if (!LoadUsingPHIsPerLoad.insert(PN).second) 1026 // This means some phi nodes are dependent on each other. 1027 // Avoid infinite looping! 1028 return false; 1029 if (!LoadUsingPHIs.insert(PN).second) 1030 // If we have already analyzed this PHI, then it is safe. 1031 continue; 1032 1033 // Make sure all uses of the PHI are simple enough to transform. 1034 if (!LoadUsesSimpleEnoughForHeapSRA(PN, 1035 LoadUsingPHIs, LoadUsingPHIsPerLoad)) 1036 return false; 1037 1038 continue; 1039 } 1040 1041 // Otherwise we don't know what this is, not ok. 1042 return false; 1043 } 1044 1045 return true; 1046 } 1047 1048 1049 /// If all users of values loaded from GV are simple enough to perform HeapSRA, 1050 /// return true. 1051 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV, 1052 Instruction *StoredVal) { 1053 SmallPtrSet<const PHINode*, 32> LoadUsingPHIs; 1054 SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad; 1055 for (const User *U : GV->users()) 1056 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 1057 if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs, 1058 LoadUsingPHIsPerLoad)) 1059 return false; 1060 LoadUsingPHIsPerLoad.clear(); 1061 } 1062 1063 // If we reach here, we know that all uses of the loads and transitive uses 1064 // (through PHI nodes) are simple enough to transform. However, we don't know 1065 // that all inputs the to the PHI nodes are in the same equivalence sets. 1066 // Check to verify that all operands of the PHIs are either PHIS that can be 1067 // transformed, loads from GV, or MI itself. 1068 for (const PHINode *PN : LoadUsingPHIs) { 1069 for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) { 1070 Value *InVal = PN->getIncomingValue(op); 1071 1072 // PHI of the stored value itself is ok. 1073 if (InVal == StoredVal) continue; 1074 1075 if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) { 1076 // One of the PHIs in our set is (optimistically) ok. 1077 if (LoadUsingPHIs.count(InPN)) 1078 continue; 1079 return false; 1080 } 1081 1082 // Load from GV is ok. 1083 if (const LoadInst *LI = dyn_cast<LoadInst>(InVal)) 1084 if (LI->getOperand(0) == GV) 1085 continue; 1086 1087 // UNDEF? NULL? 1088 1089 // Anything else is rejected. 1090 return false; 1091 } 1092 } 1093 1094 return true; 1095 } 1096 1097 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo, 1098 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1099 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1100 std::vector<Value*> &FieldVals = InsertedScalarizedValues[V]; 1101 1102 if (FieldNo >= FieldVals.size()) 1103 FieldVals.resize(FieldNo+1); 1104 1105 // If we already have this value, just reuse the previously scalarized 1106 // version. 1107 if (Value *FieldVal = FieldVals[FieldNo]) 1108 return FieldVal; 1109 1110 // Depending on what instruction this is, we have several cases. 1111 Value *Result; 1112 if (LoadInst *LI = dyn_cast<LoadInst>(V)) { 1113 // This is a scalarized version of the load from the global. Just create 1114 // a new Load of the scalarized global. 1115 Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo, 1116 InsertedScalarizedValues, 1117 PHIsToRewrite), 1118 LI->getName()+".f"+Twine(FieldNo), LI); 1119 } else { 1120 PHINode *PN = cast<PHINode>(V); 1121 // PN's type is pointer to struct. Make a new PHI of pointer to struct 1122 // field. 1123 1124 PointerType *PTy = cast<PointerType>(PN->getType()); 1125 StructType *ST = cast<StructType>(PTy->getElementType()); 1126 1127 unsigned AS = PTy->getAddressSpace(); 1128 PHINode *NewPN = 1129 PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS), 1130 PN->getNumIncomingValues(), 1131 PN->getName()+".f"+Twine(FieldNo), PN); 1132 Result = NewPN; 1133 PHIsToRewrite.push_back(std::make_pair(PN, FieldNo)); 1134 } 1135 1136 return FieldVals[FieldNo] = Result; 1137 } 1138 1139 /// Given a load instruction and a value derived from the load, rewrite the 1140 /// derived value to use the HeapSRoA'd load. 1141 static void RewriteHeapSROALoadUser(Instruction *LoadUser, 1142 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1143 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1144 // If this is a comparison against null, handle it. 1145 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) { 1146 assert(isa<ConstantPointerNull>(SCI->getOperand(1))); 1147 // If we have a setcc of the loaded pointer, we can use a setcc of any 1148 // field. 1149 Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0, 1150 InsertedScalarizedValues, PHIsToRewrite); 1151 1152 Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr, 1153 Constant::getNullValue(NPtr->getType()), 1154 SCI->getName()); 1155 SCI->replaceAllUsesWith(New); 1156 SCI->eraseFromParent(); 1157 return; 1158 } 1159 1160 // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...' 1161 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) { 1162 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2)) 1163 && "Unexpected GEPI!"); 1164 1165 // Load the pointer for this field. 1166 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); 1167 Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo, 1168 InsertedScalarizedValues, PHIsToRewrite); 1169 1170 // Create the new GEP idx vector. 1171 SmallVector<Value*, 8> GEPIdx; 1172 GEPIdx.push_back(GEPI->getOperand(1)); 1173 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end()); 1174 1175 Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx, 1176 GEPI->getName(), GEPI); 1177 GEPI->replaceAllUsesWith(NGEPI); 1178 GEPI->eraseFromParent(); 1179 return; 1180 } 1181 1182 // Recursively transform the users of PHI nodes. This will lazily create the 1183 // PHIs that are needed for individual elements. Keep track of what PHIs we 1184 // see in InsertedScalarizedValues so that we don't get infinite loops (very 1185 // antisocial). If the PHI is already in InsertedScalarizedValues, it has 1186 // already been seen first by another load, so its uses have already been 1187 // processed. 1188 PHINode *PN = cast<PHINode>(LoadUser); 1189 if (!InsertedScalarizedValues.insert(std::make_pair(PN, 1190 std::vector<Value*>())).second) 1191 return; 1192 1193 // If this is the first time we've seen this PHI, recursively process all 1194 // users. 1195 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1196 Instruction *User = cast<Instruction>(*UI++); 1197 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1198 } 1199 } 1200 1201 /// We are performing Heap SRoA on a global. Ptr is a value loaded from the 1202 /// global. Eliminate all uses of Ptr, making them use FieldGlobals instead. 1203 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA. 1204 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load, 1205 DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues, 1206 std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) { 1207 for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) { 1208 Instruction *User = cast<Instruction>(*UI++); 1209 RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite); 1210 } 1211 1212 if (Load->use_empty()) { 1213 Load->eraseFromParent(); 1214 InsertedScalarizedValues.erase(Load); 1215 } 1216 } 1217 1218 /// CI is an allocation of an array of structures. Break it up into multiple 1219 /// allocations of arrays of the fields. 1220 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI, 1221 Value *NElems, const DataLayout &DL, 1222 const TargetLibraryInfo *TLI) { 1223 DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *CI << '\n'); 1224 Type *MAT = getMallocAllocatedType(CI, TLI); 1225 StructType *STy = cast<StructType>(MAT); 1226 1227 // There is guaranteed to be at least one use of the malloc (storing 1228 // it into GV). If there are other uses, change them to be uses of 1229 // the global to simplify later code. This also deletes the store 1230 // into GV. 1231 ReplaceUsesOfMallocWithGlobal(CI, GV); 1232 1233 // Okay, at this point, there are no users of the malloc. Insert N 1234 // new mallocs at the same place as CI, and N globals. 1235 std::vector<Value*> FieldGlobals; 1236 std::vector<Value*> FieldMallocs; 1237 1238 SmallVector<OperandBundleDef, 1> OpBundles; 1239 CI->getOperandBundlesAsDefs(OpBundles); 1240 1241 unsigned AS = GV->getType()->getPointerAddressSpace(); 1242 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){ 1243 Type *FieldTy = STy->getElementType(FieldNo); 1244 PointerType *PFieldTy = PointerType::get(FieldTy, AS); 1245 1246 GlobalVariable *NGV = new GlobalVariable( 1247 *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage, 1248 Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo), 1249 nullptr, GV->getThreadLocalMode()); 1250 NGV->copyAttributesFrom(GV); 1251 FieldGlobals.push_back(NGV); 1252 1253 unsigned TypeSize = DL.getTypeAllocSize(FieldTy); 1254 if (StructType *ST = dyn_cast<StructType>(FieldTy)) 1255 TypeSize = DL.getStructLayout(ST)->getSizeInBytes(); 1256 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1257 Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy, 1258 ConstantInt::get(IntPtrTy, TypeSize), 1259 NElems, OpBundles, nullptr, 1260 CI->getName() + ".f" + Twine(FieldNo)); 1261 FieldMallocs.push_back(NMI); 1262 new StoreInst(NMI, NGV, CI); 1263 } 1264 1265 // The tricky aspect of this transformation is handling the case when malloc 1266 // fails. In the original code, malloc failing would set the result pointer 1267 // of malloc to null. In this case, some mallocs could succeed and others 1268 // could fail. As such, we emit code that looks like this: 1269 // F0 = malloc(field0) 1270 // F1 = malloc(field1) 1271 // F2 = malloc(field2) 1272 // if (F0 == 0 || F1 == 0 || F2 == 0) { 1273 // if (F0) { free(F0); F0 = 0; } 1274 // if (F1) { free(F1); F1 = 0; } 1275 // if (F2) { free(F2); F2 = 0; } 1276 // } 1277 // The malloc can also fail if its argument is too large. 1278 Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0); 1279 Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0), 1280 ConstantZero, "isneg"); 1281 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) { 1282 Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i], 1283 Constant::getNullValue(FieldMallocs[i]->getType()), 1284 "isnull"); 1285 RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI); 1286 } 1287 1288 // Split the basic block at the old malloc. 1289 BasicBlock *OrigBB = CI->getParent(); 1290 BasicBlock *ContBB = 1291 OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont"); 1292 1293 // Create the block to check the first condition. Put all these blocks at the 1294 // end of the function as they are unlikely to be executed. 1295 BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(), 1296 "malloc_ret_null", 1297 OrigBB->getParent()); 1298 1299 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond 1300 // branch on RunningOr. 1301 OrigBB->getTerminator()->eraseFromParent(); 1302 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB); 1303 1304 // Within the NullPtrBlock, we need to emit a comparison and branch for each 1305 // pointer, because some may be null while others are not. 1306 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1307 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock); 1308 Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal, 1309 Constant::getNullValue(GVVal->getType())); 1310 BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it", 1311 OrigBB->getParent()); 1312 BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next", 1313 OrigBB->getParent()); 1314 Instruction *BI = BranchInst::Create(FreeBlock, NextBlock, 1315 Cmp, NullPtrBlock); 1316 1317 // Fill in FreeBlock. 1318 CallInst::CreateFree(GVVal, OpBundles, BI); 1319 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i], 1320 FreeBlock); 1321 BranchInst::Create(NextBlock, FreeBlock); 1322 1323 NullPtrBlock = NextBlock; 1324 } 1325 1326 BranchInst::Create(ContBB, NullPtrBlock); 1327 1328 // CI is no longer needed, remove it. 1329 CI->eraseFromParent(); 1330 1331 /// As we process loads, if we can't immediately update all uses of the load, 1332 /// keep track of what scalarized loads are inserted for a given load. 1333 DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues; 1334 InsertedScalarizedValues[GV] = FieldGlobals; 1335 1336 std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite; 1337 1338 // Okay, the malloc site is completely handled. All of the uses of GV are now 1339 // loads, and all uses of those loads are simple. Rewrite them to use loads 1340 // of the per-field globals instead. 1341 for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) { 1342 Instruction *User = cast<Instruction>(*UI++); 1343 1344 if (LoadInst *LI = dyn_cast<LoadInst>(User)) { 1345 RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite); 1346 continue; 1347 } 1348 1349 // Must be a store of null. 1350 StoreInst *SI = cast<StoreInst>(User); 1351 assert(isa<ConstantPointerNull>(SI->getOperand(0)) && 1352 "Unexpected heap-sra user!"); 1353 1354 // Insert a store of null into each global. 1355 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) { 1356 Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType(); 1357 Constant *Null = Constant::getNullValue(ValTy); 1358 new StoreInst(Null, FieldGlobals[i], SI); 1359 } 1360 // Erase the original store. 1361 SI->eraseFromParent(); 1362 } 1363 1364 // While we have PHIs that are interesting to rewrite, do it. 1365 while (!PHIsToRewrite.empty()) { 1366 PHINode *PN = PHIsToRewrite.back().first; 1367 unsigned FieldNo = PHIsToRewrite.back().second; 1368 PHIsToRewrite.pop_back(); 1369 PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]); 1370 assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi"); 1371 1372 // Add all the incoming values. This can materialize more phis. 1373 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1374 Value *InVal = PN->getIncomingValue(i); 1375 InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues, 1376 PHIsToRewrite); 1377 FieldPN->addIncoming(InVal, PN->getIncomingBlock(i)); 1378 } 1379 } 1380 1381 // Drop all inter-phi links and any loads that made it this far. 1382 for (DenseMap<Value*, std::vector<Value*> >::iterator 1383 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1384 I != E; ++I) { 1385 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1386 PN->dropAllReferences(); 1387 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1388 LI->dropAllReferences(); 1389 } 1390 1391 // Delete all the phis and loads now that inter-references are dead. 1392 for (DenseMap<Value*, std::vector<Value*> >::iterator 1393 I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end(); 1394 I != E; ++I) { 1395 if (PHINode *PN = dyn_cast<PHINode>(I->first)) 1396 PN->eraseFromParent(); 1397 else if (LoadInst *LI = dyn_cast<LoadInst>(I->first)) 1398 LI->eraseFromParent(); 1399 } 1400 1401 // The old global is now dead, remove it. 1402 GV->eraseFromParent(); 1403 1404 ++NumHeapSRA; 1405 return cast<GlobalVariable>(FieldGlobals[0]); 1406 } 1407 1408 /// This function is called when we see a pointer global variable with a single 1409 /// value stored it that is a malloc or cast of malloc. 1410 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1411 Type *AllocTy, 1412 AtomicOrdering Ordering, 1413 const DataLayout &DL, 1414 TargetLibraryInfo *TLI) { 1415 // If this is a malloc of an abstract type, don't touch it. 1416 if (!AllocTy->isSized()) 1417 return false; 1418 1419 // We can't optimize this global unless all uses of it are *known* to be 1420 // of the malloc value, not of the null initializer value (consider a use 1421 // that compares the global's value against zero to see if the malloc has 1422 // been reached). To do this, we check to see if all uses of the global 1423 // would trap if the global were null: this proves that they must all 1424 // happen after the malloc. 1425 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1426 return false; 1427 1428 // We can't optimize this if the malloc itself is used in a complex way, 1429 // for example, being stored into multiple globals. This allows the 1430 // malloc to be stored into the specified global, loaded icmp'd, and 1431 // GEP'd. These are all things we could transform to using the global 1432 // for. 1433 SmallPtrSet<const PHINode*, 8> PHIs; 1434 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs)) 1435 return false; 1436 1437 // If we have a global that is only initialized with a fixed size malloc, 1438 // transform the program to use global memory instead of malloc'd memory. 1439 // This eliminates dynamic allocation, avoids an indirection accessing the 1440 // data, and exposes the resultant global to further GlobalOpt. 1441 // We cannot optimize the malloc if we cannot determine malloc array size. 1442 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1443 if (!NElems) 1444 return false; 1445 1446 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1447 // Restrict this transformation to only working on small allocations 1448 // (2048 bytes currently), as we don't want to introduce a 16M global or 1449 // something. 1450 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1451 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1452 return true; 1453 } 1454 1455 // If the allocation is an array of structures, consider transforming this 1456 // into multiple malloc'd arrays, one for each field. This is basically 1457 // SRoA for malloc'd memory. 1458 1459 if (Ordering != AtomicOrdering::NotAtomic) 1460 return false; 1461 1462 // If this is an allocation of a fixed size array of structs, analyze as a 1463 // variable size array. malloc [100 x struct],1 -> malloc struct, 100 1464 if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1)) 1465 if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy)) 1466 AllocTy = AT->getElementType(); 1467 1468 StructType *AllocSTy = dyn_cast<StructType>(AllocTy); 1469 if (!AllocSTy) 1470 return false; 1471 1472 // This the structure has an unreasonable number of fields, leave it 1473 // alone. 1474 if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 && 1475 AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) { 1476 1477 // If this is a fixed size array, transform the Malloc to be an alloc of 1478 // structs. malloc [100 x struct],1 -> malloc struct, 100 1479 if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) { 1480 Type *IntPtrTy = DL.getIntPtrType(CI->getType()); 1481 unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes(); 1482 Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize); 1483 Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements()); 1484 SmallVector<OperandBundleDef, 1> OpBundles; 1485 CI->getOperandBundlesAsDefs(OpBundles); 1486 Instruction *Malloc = 1487 CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements, 1488 OpBundles, nullptr, CI->getName()); 1489 Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI); 1490 CI->replaceAllUsesWith(Cast); 1491 CI->eraseFromParent(); 1492 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc)) 1493 CI = cast<CallInst>(BCI->getOperand(0)); 1494 else 1495 CI = cast<CallInst>(Malloc); 1496 } 1497 1498 PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL, 1499 TLI); 1500 return true; 1501 } 1502 1503 return false; 1504 } 1505 1506 // Try to optimize globals based on the knowledge that only one value (besides 1507 // its initializer) is ever stored to the global. 1508 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1509 AtomicOrdering Ordering, 1510 const DataLayout &DL, 1511 TargetLibraryInfo *TLI) { 1512 // Ignore no-op GEPs and bitcasts. 1513 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1514 1515 // If we are dealing with a pointer global that is initialized to null and 1516 // only has one (non-null) value stored into it, then we can optimize any 1517 // users of the loaded value (often calls and loads) that would trap if the 1518 // value was null. 1519 if (GV->getInitializer()->getType()->isPointerTy() && 1520 GV->getInitializer()->isNullValue()) { 1521 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1522 if (GV->getInitializer()->getType() != SOVC->getType()) 1523 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1524 1525 // Optimize away any trapping uses of the loaded value. 1526 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI)) 1527 return true; 1528 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) { 1529 Type *MallocType = getMallocAllocatedType(CI, TLI); 1530 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1531 Ordering, DL, TLI)) 1532 return true; 1533 } 1534 } 1535 1536 return false; 1537 } 1538 1539 /// At this point, we have learned that the only two values ever stored into GV 1540 /// are its initializer and OtherVal. See if we can shrink the global into a 1541 /// boolean and select between the two values whenever it is used. This exposes 1542 /// the values to other scalar optimizations. 1543 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1544 Type *GVElType = GV->getValueType(); 1545 1546 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1547 // an FP value, pointer or vector, don't do this optimization because a select 1548 // between them is very expensive and unlikely to lead to later 1549 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1550 // where v1 and v2 both require constant pool loads, a big loss. 1551 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1552 GVElType->isFloatingPointTy() || 1553 GVElType->isPointerTy() || GVElType->isVectorTy()) 1554 return false; 1555 1556 // Walk the use list of the global seeing if all the uses are load or store. 1557 // If there is anything else, bail out. 1558 for (User *U : GV->users()) 1559 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1560 return false; 1561 1562 DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1563 1564 // Create the new global, initializing it to false. 1565 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1566 false, 1567 GlobalValue::InternalLinkage, 1568 ConstantInt::getFalse(GV->getContext()), 1569 GV->getName()+".b", 1570 GV->getThreadLocalMode(), 1571 GV->getType()->getAddressSpace()); 1572 NewGV->copyAttributesFrom(GV); 1573 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1574 1575 Constant *InitVal = GV->getInitializer(); 1576 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1577 "No reason to shrink to bool!"); 1578 1579 // If initialized to zero and storing one into the global, we can use a cast 1580 // instead of a select to synthesize the desired value. 1581 bool IsOneZero = false; 1582 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) 1583 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1584 1585 while (!GV->use_empty()) { 1586 Instruction *UI = cast<Instruction>(GV->user_back()); 1587 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1588 // Change the store into a boolean store. 1589 bool StoringOther = SI->getOperand(0) == OtherVal; 1590 // Only do this if we weren't storing a loaded value. 1591 Value *StoreVal; 1592 if (StoringOther || SI->getOperand(0) == InitVal) { 1593 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1594 StoringOther); 1595 } else { 1596 // Otherwise, we are storing a previously loaded copy. To do this, 1597 // change the copy from copying the original value to just copying the 1598 // bool. 1599 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1600 1601 // If we've already replaced the input, StoredVal will be a cast or 1602 // select instruction. If not, it will be a load of the original 1603 // global. 1604 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1605 assert(LI->getOperand(0) == GV && "Not a copy!"); 1606 // Insert a new load, to preserve the saved value. 1607 StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1608 LI->getOrdering(), LI->getSynchScope(), LI); 1609 } else { 1610 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1611 "This is not a form that we understand!"); 1612 StoreVal = StoredVal->getOperand(0); 1613 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1614 } 1615 } 1616 new StoreInst(StoreVal, NewGV, false, 0, 1617 SI->getOrdering(), SI->getSynchScope(), SI); 1618 } else { 1619 // Change the load into a load of bool then a select. 1620 LoadInst *LI = cast<LoadInst>(UI); 1621 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0, 1622 LI->getOrdering(), LI->getSynchScope(), LI); 1623 Value *NSI; 1624 if (IsOneZero) 1625 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1626 else 1627 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1628 NSI->takeName(LI); 1629 LI->replaceAllUsesWith(NSI); 1630 } 1631 UI->eraseFromParent(); 1632 } 1633 1634 // Retain the name of the old global variable. People who are debugging their 1635 // programs may expect these variables to be named the same. 1636 NewGV->takeName(GV); 1637 GV->eraseFromParent(); 1638 return true; 1639 } 1640 1641 static bool deleteIfDead(GlobalValue &GV, 1642 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 1643 GV.removeDeadConstantUsers(); 1644 1645 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1646 return false; 1647 1648 if (const Comdat *C = GV.getComdat()) 1649 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1650 return false; 1651 1652 bool Dead; 1653 if (auto *F = dyn_cast<Function>(&GV)) 1654 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1655 else 1656 Dead = GV.use_empty(); 1657 if (!Dead) 1658 return false; 1659 1660 DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1661 GV.eraseFromParent(); 1662 ++NumDeleted; 1663 return true; 1664 } 1665 1666 static bool isPointerValueDeadOnEntryToFunction( 1667 const Function *F, GlobalValue *GV, 1668 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1669 // Find all uses of GV. We expect them all to be in F, and if we can't 1670 // identify any of the uses we bail out. 1671 // 1672 // On each of these uses, identify if the memory that GV points to is 1673 // used/required/live at the start of the function. If it is not, for example 1674 // if the first thing the function does is store to the GV, the GV can 1675 // possibly be demoted. 1676 // 1677 // We don't do an exhaustive search for memory operations - simply look 1678 // through bitcasts as they're quite common and benign. 1679 const DataLayout &DL = GV->getParent()->getDataLayout(); 1680 SmallVector<LoadInst *, 4> Loads; 1681 SmallVector<StoreInst *, 4> Stores; 1682 for (auto *U : GV->users()) { 1683 if (Operator::getOpcode(U) == Instruction::BitCast) { 1684 for (auto *UU : U->users()) { 1685 if (auto *LI = dyn_cast<LoadInst>(UU)) 1686 Loads.push_back(LI); 1687 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1688 Stores.push_back(SI); 1689 else 1690 return false; 1691 } 1692 continue; 1693 } 1694 1695 Instruction *I = dyn_cast<Instruction>(U); 1696 if (!I) 1697 return false; 1698 assert(I->getParent()->getParent() == F); 1699 1700 if (auto *LI = dyn_cast<LoadInst>(I)) 1701 Loads.push_back(LI); 1702 else if (auto *SI = dyn_cast<StoreInst>(I)) 1703 Stores.push_back(SI); 1704 else 1705 return false; 1706 } 1707 1708 // We have identified all uses of GV into loads and stores. Now check if all 1709 // of them are known not to depend on the value of the global at the function 1710 // entry point. We do this by ensuring that every load is dominated by at 1711 // least one store. 1712 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1713 1714 // The below check is quadratic. Check we're not going to do too many tests. 1715 // FIXME: Even though this will always have worst-case quadratic time, we 1716 // could put effort into minimizing the average time by putting stores that 1717 // have been shown to dominate at least one load at the beginning of the 1718 // Stores array, making subsequent dominance checks more likely to succeed 1719 // early. 1720 // 1721 // The threshold here is fairly large because global->local demotion is a 1722 // very powerful optimization should it fire. 1723 const unsigned Threshold = 100; 1724 if (Loads.size() * Stores.size() > Threshold) 1725 return false; 1726 1727 for (auto *L : Loads) { 1728 auto *LTy = L->getType(); 1729 if (none_of(Stores, [&](const StoreInst *S) { 1730 auto *STy = S->getValueOperand()->getType(); 1731 // The load is only dominated by the store if DomTree says so 1732 // and the number of bits loaded in L is less than or equal to 1733 // the number of bits stored in S. 1734 return DT.dominates(S, L) && 1735 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy); 1736 })) 1737 return false; 1738 } 1739 // All loads have known dependences inside F, so the global can be localized. 1740 return true; 1741 } 1742 1743 /// C may have non-instruction users. Can all of those users be turned into 1744 /// instructions? 1745 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1746 // We don't do this exhaustively. The most common pattern that we really need 1747 // to care about is a constant GEP or constant bitcast - so just looking 1748 // through one single ConstantExpr. 1749 // 1750 // The set of constants that this function returns true for must be able to be 1751 // handled by makeAllConstantUsesInstructions. 1752 for (auto *U : C->users()) { 1753 if (isa<Instruction>(U)) 1754 continue; 1755 if (!isa<ConstantExpr>(U)) 1756 // Non instruction, non-constantexpr user; cannot convert this. 1757 return false; 1758 for (auto *UU : U->users()) 1759 if (!isa<Instruction>(UU)) 1760 // A constantexpr used by another constant. We don't try and recurse any 1761 // further but just bail out at this point. 1762 return false; 1763 } 1764 1765 return true; 1766 } 1767 1768 /// C may have non-instruction users, and 1769 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1770 /// non-instruction users to instructions. 1771 static void makeAllConstantUsesInstructions(Constant *C) { 1772 SmallVector<ConstantExpr*,4> Users; 1773 for (auto *U : C->users()) { 1774 if (isa<ConstantExpr>(U)) 1775 Users.push_back(cast<ConstantExpr>(U)); 1776 else 1777 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1778 // should not have returned true for C. 1779 assert( 1780 isa<Instruction>(U) && 1781 "Can't transform non-constantexpr non-instruction to instruction!"); 1782 } 1783 1784 SmallVector<Value*,4> UUsers; 1785 for (auto *U : Users) { 1786 UUsers.clear(); 1787 for (auto *UU : U->users()) 1788 UUsers.push_back(UU); 1789 for (auto *UU : UUsers) { 1790 Instruction *UI = cast<Instruction>(UU); 1791 Instruction *NewU = U->getAsInstruction(); 1792 NewU->insertBefore(UI); 1793 UI->replaceUsesOfWith(U, NewU); 1794 } 1795 // We've replaced all the uses, so destroy the constant. (destroyConstant 1796 // will update value handles and metadata.) 1797 U->destroyConstant(); 1798 } 1799 } 1800 1801 /// Analyze the specified global variable and optimize 1802 /// it if possible. If we make a change, return true. 1803 static bool processInternalGlobal( 1804 GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI, 1805 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1806 auto &DL = GV->getParent()->getDataLayout(); 1807 // If this is a first class global and has only one accessing function and 1808 // this function is non-recursive, we replace the global with a local alloca 1809 // in this function. 1810 // 1811 // NOTE: It doesn't make sense to promote non-single-value types since we 1812 // are just replacing static memory to stack memory. 1813 // 1814 // If the global is in different address space, don't bring it to stack. 1815 if (!GS.HasMultipleAccessingFunctions && 1816 GS.AccessingFunction && 1817 GV->getValueType()->isSingleValueType() && 1818 GV->getType()->getAddressSpace() == 0 && 1819 !GV->isExternallyInitialized() && 1820 allNonInstructionUsersCanBeMadeInstructions(GV) && 1821 GS.AccessingFunction->doesNotRecurse() && 1822 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1823 LookupDomTree)) { 1824 const DataLayout &DL = GV->getParent()->getDataLayout(); 1825 1826 DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1827 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1828 ->getEntryBlock().begin()); 1829 Type *ElemTy = GV->getValueType(); 1830 // FIXME: Pass Global's alignment when globals have alignment 1831 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1832 GV->getName(), &FirstI); 1833 if (!isa<UndefValue>(GV->getInitializer())) 1834 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1835 1836 makeAllConstantUsesInstructions(GV); 1837 1838 GV->replaceAllUsesWith(Alloca); 1839 GV->eraseFromParent(); 1840 ++NumLocalized; 1841 return true; 1842 } 1843 1844 // If the global is never loaded (but may be stored to), it is dead. 1845 // Delete it now. 1846 if (!GS.IsLoaded) { 1847 DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1848 1849 bool Changed; 1850 if (isLeakCheckerRoot(GV)) { 1851 // Delete any constant stores to the global. 1852 Changed = CleanupPointerRootUsers(GV, TLI); 1853 } else { 1854 // Delete any stores we can find to the global. We may not be able to 1855 // make it completely dead though. 1856 Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1857 } 1858 1859 // If the global is dead now, delete it. 1860 if (GV->use_empty()) { 1861 GV->eraseFromParent(); 1862 ++NumDeleted; 1863 Changed = true; 1864 } 1865 return Changed; 1866 1867 } 1868 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1869 DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1870 GV->setConstant(true); 1871 1872 // Clean up any obviously simplifiable users now. 1873 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1874 1875 // If the global is dead now, just nuke it. 1876 if (GV->use_empty()) { 1877 DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1878 << "all users and delete global!\n"); 1879 GV->eraseFromParent(); 1880 ++NumDeleted; 1881 return true; 1882 } 1883 1884 // Fall through to the next check; see if we can optimize further. 1885 ++NumMarked; 1886 } 1887 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1888 const DataLayout &DL = GV->getParent()->getDataLayout(); 1889 if (SRAGlobal(GV, DL)) 1890 return true; 1891 } 1892 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1893 // If the initial value for the global was an undef value, and if only 1894 // one other value was stored into it, we can just change the 1895 // initializer to be the stored value, then delete all stores to the 1896 // global. This allows us to mark it constant. 1897 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1898 if (isa<UndefValue>(GV->getInitializer())) { 1899 // Change the initial value here. 1900 GV->setInitializer(SOVConstant); 1901 1902 // Clean up any obviously simplifiable users now. 1903 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI); 1904 1905 if (GV->use_empty()) { 1906 DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1907 << "simplify all users and delete global!\n"); 1908 GV->eraseFromParent(); 1909 ++NumDeleted; 1910 } 1911 ++NumSubstitute; 1912 return true; 1913 } 1914 1915 // Try to optimize globals based on the knowledge that only one value 1916 // (besides its initializer) is ever stored to the global. 1917 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI)) 1918 return true; 1919 1920 // Otherwise, if the global was not a boolean, we can shrink it to be a 1921 // boolean. 1922 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 1923 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1924 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1925 ++NumShrunkToBool; 1926 return true; 1927 } 1928 } 1929 } 1930 } 1931 1932 return false; 1933 } 1934 1935 /// Analyze the specified global variable and optimize it if possible. If we 1936 /// make a change, return true. 1937 static bool 1938 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI, 1939 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1940 if (GV.getName().startswith("llvm.")) 1941 return false; 1942 1943 GlobalStatus GS; 1944 1945 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1946 return false; 1947 1948 bool Changed = false; 1949 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 1950 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 1951 : GlobalValue::UnnamedAddr::Local; 1952 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 1953 GV.setUnnamedAddr(NewUnnamedAddr); 1954 NumUnnamed++; 1955 Changed = true; 1956 } 1957 } 1958 1959 // Do more involved optimizations if the global is internal. 1960 if (!GV.hasLocalLinkage()) 1961 return Changed; 1962 1963 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1964 if (!GVar) 1965 return Changed; 1966 1967 if (GVar->isConstant() || !GVar->hasInitializer()) 1968 return Changed; 1969 1970 return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed; 1971 } 1972 1973 /// Walk all of the direct calls of the specified function, changing them to 1974 /// FastCC. 1975 static void ChangeCalleesToFastCall(Function *F) { 1976 for (User *U : F->users()) { 1977 if (isa<BlockAddress>(U)) 1978 continue; 1979 CallSite CS(cast<Instruction>(U)); 1980 CS.setCallingConv(CallingConv::Fast); 1981 } 1982 } 1983 1984 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) { 1985 // There can be at most one attribute set with a nest attribute. 1986 unsigned NestIndex; 1987 if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex)) 1988 return Attrs.removeAttribute(C, NestIndex, Attribute::Nest); 1989 return Attrs; 1990 } 1991 1992 static void RemoveNestAttribute(Function *F) { 1993 F->setAttributes(StripNest(F->getContext(), F->getAttributes())); 1994 for (User *U : F->users()) { 1995 if (isa<BlockAddress>(U)) 1996 continue; 1997 CallSite CS(cast<Instruction>(U)); 1998 CS.setAttributes(StripNest(F->getContext(), CS.getAttributes())); 1999 } 2000 } 2001 2002 /// Return true if this is a calling convention that we'd like to change. The 2003 /// idea here is that we don't want to mess with the convention if the user 2004 /// explicitly requested something with performance implications like coldcc, 2005 /// GHC, or anyregcc. 2006 static bool isProfitableToMakeFastCC(Function *F) { 2007 CallingConv::ID CC = F->getCallingConv(); 2008 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 2009 return CC == CallingConv::C || CC == CallingConv::X86_ThisCall; 2010 } 2011 2012 static bool 2013 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI, 2014 function_ref<DominatorTree &(Function &)> LookupDomTree, 2015 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2016 bool Changed = false; 2017 // Optimize functions. 2018 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 2019 Function *F = &*FI++; 2020 // Functions without names cannot be referenced outside this module. 2021 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 2022 F->setLinkage(GlobalValue::InternalLinkage); 2023 2024 if (deleteIfDead(*F, NotDiscardableComdats)) { 2025 Changed = true; 2026 continue; 2027 } 2028 2029 Changed |= processGlobal(*F, TLI, LookupDomTree); 2030 2031 if (!F->hasLocalLinkage()) 2032 continue; 2033 if (isProfitableToMakeFastCC(F) && !F->isVarArg() && 2034 !F->hasAddressTaken()) { 2035 // If this function has a calling convention worth changing, is not a 2036 // varargs function, and is only called directly, promote it to use the 2037 // Fast calling convention. 2038 F->setCallingConv(CallingConv::Fast); 2039 ChangeCalleesToFastCall(F); 2040 ++NumFastCallFns; 2041 Changed = true; 2042 } 2043 2044 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 2045 !F->hasAddressTaken()) { 2046 // The function is not used by a trampoline intrinsic, so it is safe 2047 // to remove the 'nest' attribute. 2048 RemoveNestAttribute(F); 2049 ++NumNestRemoved; 2050 Changed = true; 2051 } 2052 } 2053 return Changed; 2054 } 2055 2056 static bool 2057 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI, 2058 function_ref<DominatorTree &(Function &)> LookupDomTree, 2059 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2060 bool Changed = false; 2061 2062 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 2063 GVI != E; ) { 2064 GlobalVariable *GV = &*GVI++; 2065 // Global variables without names cannot be referenced outside this module. 2066 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 2067 GV->setLinkage(GlobalValue::InternalLinkage); 2068 // Simplify the initializer. 2069 if (GV->hasInitializer()) 2070 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 2071 auto &DL = M.getDataLayout(); 2072 Constant *New = ConstantFoldConstant(C, DL, TLI); 2073 if (New && New != C) 2074 GV->setInitializer(New); 2075 } 2076 2077 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2078 Changed = true; 2079 continue; 2080 } 2081 2082 Changed |= processGlobal(*GV, TLI, LookupDomTree); 2083 } 2084 return Changed; 2085 } 2086 2087 /// Evaluate a piece of a constantexpr store into a global initializer. This 2088 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2089 /// GEP operands of Addr [0, OpNo) have been stepped into. 2090 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2091 ConstantExpr *Addr, unsigned OpNo) { 2092 // Base case of the recursion. 2093 if (OpNo == Addr->getNumOperands()) { 2094 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2095 return Val; 2096 } 2097 2098 SmallVector<Constant*, 32> Elts; 2099 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2100 // Break up the constant into its elements. 2101 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2102 Elts.push_back(Init->getAggregateElement(i)); 2103 2104 // Replace the element that we are supposed to. 2105 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2106 unsigned Idx = CU->getZExtValue(); 2107 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2108 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2109 2110 // Return the modified struct. 2111 return ConstantStruct::get(STy, Elts); 2112 } 2113 2114 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2115 SequentialType *InitTy = cast<SequentialType>(Init->getType()); 2116 uint64_t NumElts = InitTy->getNumElements(); 2117 2118 // Break up the array into elements. 2119 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2120 Elts.push_back(Init->getAggregateElement(i)); 2121 2122 assert(CI->getZExtValue() < NumElts); 2123 Elts[CI->getZExtValue()] = 2124 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2125 2126 if (Init->getType()->isArrayTy()) 2127 return ConstantArray::get(cast<ArrayType>(InitTy), Elts); 2128 return ConstantVector::get(Elts); 2129 } 2130 2131 /// We have decided that Addr (which satisfies the predicate 2132 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2133 static void CommitValueTo(Constant *Val, Constant *Addr) { 2134 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2135 assert(GV->hasInitializer()); 2136 GV->setInitializer(Val); 2137 return; 2138 } 2139 2140 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2141 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2142 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2143 } 2144 2145 /// Evaluate static constructors in the function, if we can. Return true if we 2146 /// can, false otherwise. 2147 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2148 TargetLibraryInfo *TLI) { 2149 // Call the function. 2150 Evaluator Eval(DL, TLI); 2151 Constant *RetValDummy; 2152 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2153 SmallVector<Constant*, 0>()); 2154 2155 if (EvalSuccess) { 2156 ++NumCtorsEvaluated; 2157 2158 // We succeeded at evaluation: commit the result. 2159 DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2160 << F->getName() << "' to " << Eval.getMutatedMemory().size() 2161 << " stores.\n"); 2162 for (const auto &I : Eval.getMutatedMemory()) 2163 CommitValueTo(I.second, I.first); 2164 for (GlobalVariable *GV : Eval.getInvariants()) 2165 GV->setConstant(true); 2166 } 2167 2168 return EvalSuccess; 2169 } 2170 2171 static int compareNames(Constant *const *A, Constant *const *B) { 2172 Value *AStripped = (*A)->stripPointerCastsNoFollowAliases(); 2173 Value *BStripped = (*B)->stripPointerCastsNoFollowAliases(); 2174 return AStripped->getName().compare(BStripped->getName()); 2175 } 2176 2177 static void setUsedInitializer(GlobalVariable &V, 2178 const SmallPtrSet<GlobalValue *, 8> &Init) { 2179 if (Init.empty()) { 2180 V.eraseFromParent(); 2181 return; 2182 } 2183 2184 // Type of pointer to the array of pointers. 2185 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2186 2187 SmallVector<llvm::Constant *, 8> UsedArray; 2188 for (GlobalValue *GV : Init) { 2189 Constant *Cast 2190 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2191 UsedArray.push_back(Cast); 2192 } 2193 // Sort to get deterministic order. 2194 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2195 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2196 2197 Module *M = V.getParent(); 2198 V.removeFromParent(); 2199 GlobalVariable *NV = 2200 new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage, 2201 llvm::ConstantArray::get(ATy, UsedArray), ""); 2202 NV->takeName(&V); 2203 NV->setSection("llvm.metadata"); 2204 delete &V; 2205 } 2206 2207 namespace { 2208 /// An easy to access representation of llvm.used and llvm.compiler.used. 2209 class LLVMUsed { 2210 SmallPtrSet<GlobalValue *, 8> Used; 2211 SmallPtrSet<GlobalValue *, 8> CompilerUsed; 2212 GlobalVariable *UsedV; 2213 GlobalVariable *CompilerUsedV; 2214 2215 public: 2216 LLVMUsed(Module &M) { 2217 UsedV = collectUsedGlobalVariables(M, Used, false); 2218 CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true); 2219 } 2220 typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator; 2221 typedef iterator_range<iterator> used_iterator_range; 2222 iterator usedBegin() { return Used.begin(); } 2223 iterator usedEnd() { return Used.end(); } 2224 used_iterator_range used() { 2225 return used_iterator_range(usedBegin(), usedEnd()); 2226 } 2227 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2228 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2229 used_iterator_range compilerUsed() { 2230 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2231 } 2232 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2233 bool compilerUsedCount(GlobalValue *GV) const { 2234 return CompilerUsed.count(GV); 2235 } 2236 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2237 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2238 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2239 bool compilerUsedInsert(GlobalValue *GV) { 2240 return CompilerUsed.insert(GV).second; 2241 } 2242 2243 void syncVariablesAndSets() { 2244 if (UsedV) 2245 setUsedInitializer(*UsedV, Used); 2246 if (CompilerUsedV) 2247 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2248 } 2249 }; 2250 } 2251 2252 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2253 if (GA.use_empty()) // No use at all. 2254 return false; 2255 2256 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2257 "We should have removed the duplicated " 2258 "element from llvm.compiler.used"); 2259 if (!GA.hasOneUse()) 2260 // Strictly more than one use. So at least one is not in llvm.used and 2261 // llvm.compiler.used. 2262 return true; 2263 2264 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2265 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2266 } 2267 2268 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2269 const LLVMUsed &U) { 2270 unsigned N = 2; 2271 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2272 "We should have removed the duplicated " 2273 "element from llvm.compiler.used"); 2274 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2275 ++N; 2276 return V.hasNUsesOrMore(N); 2277 } 2278 2279 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2280 if (!GA.hasLocalLinkage()) 2281 return true; 2282 2283 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2284 } 2285 2286 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2287 bool &RenameTarget) { 2288 RenameTarget = false; 2289 bool Ret = false; 2290 if (hasUseOtherThanLLVMUsed(GA, U)) 2291 Ret = true; 2292 2293 // If the alias is externally visible, we may still be able to simplify it. 2294 if (!mayHaveOtherReferences(GA, U)) 2295 return Ret; 2296 2297 // If the aliasee has internal linkage, give it the name and linkage 2298 // of the alias, and delete the alias. This turns: 2299 // define internal ... @f(...) 2300 // @a = alias ... @f 2301 // into: 2302 // define ... @a(...) 2303 Constant *Aliasee = GA.getAliasee(); 2304 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2305 if (!Target->hasLocalLinkage()) 2306 return Ret; 2307 2308 // Do not perform the transform if multiple aliases potentially target the 2309 // aliasee. This check also ensures that it is safe to replace the section 2310 // and other attributes of the aliasee with those of the alias. 2311 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2312 return Ret; 2313 2314 RenameTarget = true; 2315 return true; 2316 } 2317 2318 static bool 2319 OptimizeGlobalAliases(Module &M, 2320 SmallSet<const Comdat *, 8> &NotDiscardableComdats) { 2321 bool Changed = false; 2322 LLVMUsed Used(M); 2323 2324 for (GlobalValue *GV : Used.used()) 2325 Used.compilerUsedErase(GV); 2326 2327 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2328 I != E;) { 2329 GlobalAlias *J = &*I++; 2330 2331 // Aliases without names cannot be referenced outside this module. 2332 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2333 J->setLinkage(GlobalValue::InternalLinkage); 2334 2335 if (deleteIfDead(*J, NotDiscardableComdats)) { 2336 Changed = true; 2337 continue; 2338 } 2339 2340 // If the aliasee may change at link time, nothing can be done - bail out. 2341 if (J->isInterposable()) 2342 continue; 2343 2344 Constant *Aliasee = J->getAliasee(); 2345 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2346 // We can't trivially replace the alias with the aliasee if the aliasee is 2347 // non-trivial in some way. 2348 // TODO: Try to handle non-zero GEPs of local aliasees. 2349 if (!Target) 2350 continue; 2351 Target->removeDeadConstantUsers(); 2352 2353 // Make all users of the alias use the aliasee instead. 2354 bool RenameTarget; 2355 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2356 continue; 2357 2358 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2359 ++NumAliasesResolved; 2360 Changed = true; 2361 2362 if (RenameTarget) { 2363 // Give the aliasee the name, linkage and other attributes of the alias. 2364 Target->takeName(&*J); 2365 Target->setLinkage(J->getLinkage()); 2366 Target->setVisibility(J->getVisibility()); 2367 Target->setDLLStorageClass(J->getDLLStorageClass()); 2368 2369 if (Used.usedErase(&*J)) 2370 Used.usedInsert(Target); 2371 2372 if (Used.compilerUsedErase(&*J)) 2373 Used.compilerUsedInsert(Target); 2374 } else if (mayHaveOtherReferences(*J, Used)) 2375 continue; 2376 2377 // Delete the alias. 2378 M.getAliasList().erase(J); 2379 ++NumAliasesRemoved; 2380 Changed = true; 2381 } 2382 2383 Used.syncVariablesAndSets(); 2384 2385 return Changed; 2386 } 2387 2388 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) { 2389 LibFunc F = LibFunc_cxa_atexit; 2390 if (!TLI->has(F)) 2391 return nullptr; 2392 2393 Function *Fn = M.getFunction(TLI->getName(F)); 2394 if (!Fn) 2395 return nullptr; 2396 2397 // Make sure that the function has the correct prototype. 2398 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2399 return nullptr; 2400 2401 return Fn; 2402 } 2403 2404 /// Returns whether the given function is an empty C++ destructor and can 2405 /// therefore be eliminated. 2406 /// Note that we assume that other optimization passes have already simplified 2407 /// the code so we only look for a function with a single basic block, where 2408 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and 2409 /// other side-effect free instructions. 2410 static bool cxxDtorIsEmpty(const Function &Fn, 2411 SmallPtrSet<const Function *, 8> &CalledFunctions) { 2412 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2413 // nounwind, but that doesn't seem worth doing. 2414 if (Fn.isDeclaration()) 2415 return false; 2416 2417 if (++Fn.begin() != Fn.end()) 2418 return false; 2419 2420 const BasicBlock &EntryBlock = Fn.getEntryBlock(); 2421 for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end(); 2422 I != E; ++I) { 2423 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2424 // Ignore debug intrinsics. 2425 if (isa<DbgInfoIntrinsic>(CI)) 2426 continue; 2427 2428 const Function *CalledFn = CI->getCalledFunction(); 2429 2430 if (!CalledFn) 2431 return false; 2432 2433 SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions); 2434 2435 // Don't treat recursive functions as empty. 2436 if (!NewCalledFunctions.insert(CalledFn).second) 2437 return false; 2438 2439 if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions)) 2440 return false; 2441 } else if (isa<ReturnInst>(*I)) 2442 return true; // We're done. 2443 else if (I->mayHaveSideEffects()) 2444 return false; // Destructor with side effects, bail. 2445 } 2446 2447 return false; 2448 } 2449 2450 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2451 /// Itanium C++ ABI p3.3.5: 2452 /// 2453 /// After constructing a global (or local static) object, that will require 2454 /// destruction on exit, a termination function is registered as follows: 2455 /// 2456 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2457 /// 2458 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2459 /// call f(p) when DSO d is unloaded, before all such termination calls 2460 /// registered before this one. It returns zero if registration is 2461 /// successful, nonzero on failure. 2462 2463 // This pass will look for calls to __cxa_atexit where the function is trivial 2464 // and remove them. 2465 bool Changed = false; 2466 2467 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2468 I != E;) { 2469 // We're only interested in calls. Theoretically, we could handle invoke 2470 // instructions as well, but neither llvm-gcc nor clang generate invokes 2471 // to __cxa_atexit. 2472 CallInst *CI = dyn_cast<CallInst>(*I++); 2473 if (!CI) 2474 continue; 2475 2476 Function *DtorFn = 2477 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2478 if (!DtorFn) 2479 continue; 2480 2481 SmallPtrSet<const Function *, 8> CalledFunctions; 2482 if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions)) 2483 continue; 2484 2485 // Just remove the call. 2486 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2487 CI->eraseFromParent(); 2488 2489 ++NumCXXDtorsRemoved; 2490 2491 Changed |= true; 2492 } 2493 2494 return Changed; 2495 } 2496 2497 static bool optimizeGlobalsInModule( 2498 Module &M, const DataLayout &DL, TargetLibraryInfo *TLI, 2499 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2500 SmallSet<const Comdat *, 8> NotDiscardableComdats; 2501 bool Changed = false; 2502 bool LocalChange = true; 2503 while (LocalChange) { 2504 LocalChange = false; 2505 2506 NotDiscardableComdats.clear(); 2507 for (const GlobalVariable &GV : M.globals()) 2508 if (const Comdat *C = GV.getComdat()) 2509 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2510 NotDiscardableComdats.insert(C); 2511 for (Function &F : M) 2512 if (const Comdat *C = F.getComdat()) 2513 if (!F.isDefTriviallyDead()) 2514 NotDiscardableComdats.insert(C); 2515 for (GlobalAlias &GA : M.aliases()) 2516 if (const Comdat *C = GA.getComdat()) 2517 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2518 NotDiscardableComdats.insert(C); 2519 2520 // Delete functions that are trivially dead, ccc -> fastcc 2521 LocalChange |= 2522 OptimizeFunctions(M, TLI, LookupDomTree, NotDiscardableComdats); 2523 2524 // Optimize global_ctors list. 2525 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2526 return EvaluateStaticConstructor(F, DL, TLI); 2527 }); 2528 2529 // Optimize non-address-taken globals. 2530 LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree, 2531 NotDiscardableComdats); 2532 2533 // Resolve aliases, when possible. 2534 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2535 2536 // Try to remove trivial global destructors if they are not removed 2537 // already. 2538 Function *CXAAtExitFn = FindCXAAtExit(M, TLI); 2539 if (CXAAtExitFn) 2540 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2541 2542 Changed |= LocalChange; 2543 } 2544 2545 // TODO: Move all global ctors functions to the end of the module for code 2546 // layout. 2547 2548 return Changed; 2549 } 2550 2551 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2552 auto &DL = M.getDataLayout(); 2553 auto &TLI = AM.getResult<TargetLibraryAnalysis>(M); 2554 auto &FAM = 2555 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2556 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2557 return FAM.getResult<DominatorTreeAnalysis>(F); 2558 }; 2559 if (!optimizeGlobalsInModule(M, DL, &TLI, LookupDomTree)) 2560 return PreservedAnalyses::all(); 2561 return PreservedAnalyses::none(); 2562 } 2563 2564 namespace { 2565 struct GlobalOptLegacyPass : public ModulePass { 2566 static char ID; // Pass identification, replacement for typeid 2567 GlobalOptLegacyPass() : ModulePass(ID) { 2568 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2569 } 2570 2571 bool runOnModule(Module &M) override { 2572 if (skipModule(M)) 2573 return false; 2574 2575 auto &DL = M.getDataLayout(); 2576 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 2577 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2578 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2579 }; 2580 return optimizeGlobalsInModule(M, DL, TLI, LookupDomTree); 2581 } 2582 2583 void getAnalysisUsage(AnalysisUsage &AU) const override { 2584 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2585 AU.addRequired<DominatorTreeWrapperPass>(); 2586 } 2587 }; 2588 } 2589 2590 char GlobalOptLegacyPass::ID = 0; 2591 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2592 "Global Variable Optimizer", false, false) 2593 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2594 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2595 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2596 "Global Variable Optimizer", false, false) 2597 2598 ModulePass *llvm::createGlobalOptimizerPass() { 2599 return new GlobalOptLegacyPass(); 2600 } 2601