1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/BinaryFormat/Dwarf.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/CallingConv.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Use.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include <cassert>
69 #include <cstdint>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "globalopt"
76 
77 STATISTIC(NumMarked    , "Number of globals marked constant");
78 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
79 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
80 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
82 STATISTIC(NumDeleted   , "Number of globals deleted");
83 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
84 STATISTIC(NumLocalized , "Number of globals localized");
85 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
86 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
88 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
92 STATISTIC(NumInternalFunc, "Number of internal functions");
93 STATISTIC(NumColdCC, "Number of functions marked coldcc");
94 
95 static cl::opt<bool>
96     EnableColdCCStressTest("enable-coldcc-stress-test",
97                            cl::desc("Enable stress test of coldcc by adding "
98                                     "calling conv to all internal functions."),
99                            cl::init(false), cl::Hidden);
100 
101 static cl::opt<int> ColdCCRelFreq(
102     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
103     cl::desc(
104         "Maximum block frequency, expressed as a percentage of caller's "
105         "entry frequency, for a call site to be considered cold for enabling"
106         "coldcc"));
107 
108 /// Is this global variable possibly used by a leak checker as a root?  If so,
109 /// we might not really want to eliminate the stores to it.
110 static bool isLeakCheckerRoot(GlobalVariable *GV) {
111   // A global variable is a root if it is a pointer, or could plausibly contain
112   // a pointer.  There are two challenges; one is that we could have a struct
113   // the has an inner member which is a pointer.  We recurse through the type to
114   // detect these (up to a point).  The other is that we may actually be a union
115   // of a pointer and another type, and so our LLVM type is an integer which
116   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
117   // potentially contained here.
118 
119   if (GV->hasPrivateLinkage())
120     return false;
121 
122   SmallVector<Type *, 4> Types;
123   Types.push_back(GV->getValueType());
124 
125   unsigned Limit = 20;
126   do {
127     Type *Ty = Types.pop_back_val();
128     switch (Ty->getTypeID()) {
129       default: break;
130       case Type::PointerTyID: return true;
131       case Type::ArrayTyID:
132       case Type::VectorTyID: {
133         SequentialType *STy = cast<SequentialType>(Ty);
134         Types.push_back(STy->getElementType());
135         break;
136       }
137       case Type::StructTyID: {
138         StructType *STy = cast<StructType>(Ty);
139         if (STy->isOpaque()) return true;
140         for (StructType::element_iterator I = STy->element_begin(),
141                  E = STy->element_end(); I != E; ++I) {
142           Type *InnerTy = *I;
143           if (isa<PointerType>(InnerTy)) return true;
144           if (isa<CompositeType>(InnerTy))
145             Types.push_back(InnerTy);
146         }
147         break;
148       }
149     }
150     if (--Limit == 0) return true;
151   } while (!Types.empty());
152   return false;
153 }
154 
155 /// Given a value that is stored to a global but never read, determine whether
156 /// it's safe to remove the store and the chain of computation that feeds the
157 /// store.
158 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
159   do {
160     if (isa<Constant>(V))
161       return true;
162     if (!V->hasOneUse())
163       return false;
164     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
165         isa<GlobalValue>(V))
166       return false;
167     if (isAllocationFn(V, TLI))
168       return true;
169 
170     Instruction *I = cast<Instruction>(V);
171     if (I->mayHaveSideEffects())
172       return false;
173     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
174       if (!GEP->hasAllConstantIndices())
175         return false;
176     } else if (I->getNumOperands() != 1) {
177       return false;
178     }
179 
180     V = I->getOperand(0);
181   } while (true);
182 }
183 
184 /// This GV is a pointer root.  Loop over all users of the global and clean up
185 /// any that obviously don't assign the global a value that isn't dynamically
186 /// allocated.
187 static bool CleanupPointerRootUsers(GlobalVariable *GV,
188                                     const TargetLibraryInfo *TLI) {
189   // A brief explanation of leak checkers.  The goal is to find bugs where
190   // pointers are forgotten, causing an accumulating growth in memory
191   // usage over time.  The common strategy for leak checkers is to whitelist the
192   // memory pointed to by globals at exit.  This is popular because it also
193   // solves another problem where the main thread of a C++ program may shut down
194   // before other threads that are still expecting to use those globals.  To
195   // handle that case, we expect the program may create a singleton and never
196   // destroy it.
197 
198   bool Changed = false;
199 
200   // If Dead[n].first is the only use of a malloc result, we can delete its
201   // chain of computation and the store to the global in Dead[n].second.
202   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
203 
204   // Constants can't be pointers to dynamically allocated memory.
205   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
206        UI != E;) {
207     User *U = *UI++;
208     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
209       Value *V = SI->getValueOperand();
210       if (isa<Constant>(V)) {
211         Changed = true;
212         SI->eraseFromParent();
213       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
214         if (I->hasOneUse())
215           Dead.push_back(std::make_pair(I, SI));
216       }
217     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
218       if (isa<Constant>(MSI->getValue())) {
219         Changed = true;
220         MSI->eraseFromParent();
221       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
222         if (I->hasOneUse())
223           Dead.push_back(std::make_pair(I, MSI));
224       }
225     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
226       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
227       if (MemSrc && MemSrc->isConstant()) {
228         Changed = true;
229         MTI->eraseFromParent();
230       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
231         if (I->hasOneUse())
232           Dead.push_back(std::make_pair(I, MTI));
233       }
234     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
235       if (CE->use_empty()) {
236         CE->destroyConstant();
237         Changed = true;
238       }
239     } else if (Constant *C = dyn_cast<Constant>(U)) {
240       if (isSafeToDestroyConstant(C)) {
241         C->destroyConstant();
242         // This could have invalidated UI, start over from scratch.
243         Dead.clear();
244         CleanupPointerRootUsers(GV, TLI);
245         return true;
246       }
247     }
248   }
249 
250   for (int i = 0, e = Dead.size(); i != e; ++i) {
251     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
252       Dead[i].second->eraseFromParent();
253       Instruction *I = Dead[i].first;
254       do {
255         if (isAllocationFn(I, TLI))
256           break;
257         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
258         if (!J)
259           break;
260         I->eraseFromParent();
261         I = J;
262       } while (true);
263       I->eraseFromParent();
264     }
265   }
266 
267   return Changed;
268 }
269 
270 /// We just marked GV constant.  Loop over all users of the global, cleaning up
271 /// the obvious ones.  This is largely just a quick scan over the use list to
272 /// clean up the easy and obvious cruft.  This returns true if it made a change.
273 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
274                                        const DataLayout &DL,
275                                        TargetLibraryInfo *TLI) {
276   bool Changed = false;
277   // Note that we need to use a weak value handle for the worklist items. When
278   // we delete a constant array, we may also be holding pointer to one of its
279   // elements (or an element of one of its elements if we're dealing with an
280   // array of arrays) in the worklist.
281   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
282   while (!WorkList.empty()) {
283     Value *UV = WorkList.pop_back_val();
284     if (!UV)
285       continue;
286 
287     User *U = cast<User>(UV);
288 
289     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
290       if (Init) {
291         // Replace the load with the initializer.
292         LI->replaceAllUsesWith(Init);
293         LI->eraseFromParent();
294         Changed = true;
295       }
296     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
297       // Store must be unreachable or storing Init into the global.
298       SI->eraseFromParent();
299       Changed = true;
300     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
301       if (CE->getOpcode() == Instruction::GetElementPtr) {
302         Constant *SubInit = nullptr;
303         if (Init)
304           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
305         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
306       } else if ((CE->getOpcode() == Instruction::BitCast &&
307                   CE->getType()->isPointerTy()) ||
308                  CE->getOpcode() == Instruction::AddrSpaceCast) {
309         // Pointer cast, delete any stores and memsets to the global.
310         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
311       }
312 
313       if (CE->use_empty()) {
314         CE->destroyConstant();
315         Changed = true;
316       }
317     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
318       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
319       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
320       // and will invalidate our notion of what Init is.
321       Constant *SubInit = nullptr;
322       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
323         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
324             ConstantFoldInstruction(GEP, DL, TLI));
325         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
326           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
327 
328         // If the initializer is an all-null value and we have an inbounds GEP,
329         // we already know what the result of any load from that GEP is.
330         // TODO: Handle splats.
331         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
332           SubInit = Constant::getNullValue(GEP->getResultElementType());
333       }
334       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
335 
336       if (GEP->use_empty()) {
337         GEP->eraseFromParent();
338         Changed = true;
339       }
340     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
341       if (MI->getRawDest() == V) {
342         MI->eraseFromParent();
343         Changed = true;
344       }
345 
346     } else if (Constant *C = dyn_cast<Constant>(U)) {
347       // If we have a chain of dead constantexprs or other things dangling from
348       // us, and if they are all dead, nuke them without remorse.
349       if (isSafeToDestroyConstant(C)) {
350         C->destroyConstant();
351         CleanupConstantGlobalUsers(V, Init, DL, TLI);
352         return true;
353       }
354     }
355   }
356   return Changed;
357 }
358 
359 static bool isSafeSROAElementUse(Value *V);
360 
361 /// Return true if the specified GEP is a safe user of a derived
362 /// expression from a global that we want to SROA.
363 static bool isSafeSROAGEP(User *U) {
364   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
365   // don't like < 3 operand CE's, and we don't like non-constant integer
366   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
367   // value of C.
368   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
369       !cast<Constant>(U->getOperand(1))->isNullValue())
370     return false;
371 
372   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
373   ++GEPI; // Skip over the pointer index.
374 
375   // For all other level we require that the indices are constant and inrange.
376   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
377   // invalid things like allowing i to index an out-of-range subscript that
378   // accesses A[1]. This can also happen between different members of a struct
379   // in llvm IR.
380   for (; GEPI != E; ++GEPI) {
381     if (GEPI.isStruct())
382       continue;
383 
384     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
385     if (!IdxVal || (GEPI.isBoundedSequential() &&
386                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
387       return false;
388   }
389 
390   return llvm::all_of(U->users(),
391                       [](User *UU) { return isSafeSROAElementUse(UU); });
392 }
393 
394 /// Return true if the specified instruction is a safe user of a derived
395 /// expression from a global that we want to SROA.
396 static bool isSafeSROAElementUse(Value *V) {
397   // We might have a dead and dangling constant hanging off of here.
398   if (Constant *C = dyn_cast<Constant>(V))
399     return isSafeToDestroyConstant(C);
400 
401   Instruction *I = dyn_cast<Instruction>(V);
402   if (!I) return false;
403 
404   // Loads are ok.
405   if (isa<LoadInst>(I)) return true;
406 
407   // Stores *to* the pointer are ok.
408   if (StoreInst *SI = dyn_cast<StoreInst>(I))
409     return SI->getOperand(0) != V;
410 
411   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
412   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
413 }
414 
415 /// Look at all uses of the global and decide whether it is safe for us to
416 /// perform this transformation.
417 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
418   for (User *U : GV->users()) {
419     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
420     if (!isa<GetElementPtrInst>(U) &&
421         (!isa<ConstantExpr>(U) ||
422         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
423       return false;
424 
425     // Check the gep and it's users are safe to SRA
426     if (!isSafeSROAGEP(U))
427       return false;
428   }
429 
430   return true;
431 }
432 
433 /// Copy over the debug info for a variable to its SRA replacements.
434 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
435                                  uint64_t FragmentOffsetInBits,
436                                  uint64_t FragmentSizeInBits,
437                                  unsigned NumElements) {
438   SmallVector<DIGlobalVariableExpression *, 1> GVs;
439   GV->getDebugInfo(GVs);
440   for (auto *GVE : GVs) {
441     DIVariable *Var = GVE->getVariable();
442     DIExpression *Expr = GVE->getExpression();
443     if (NumElements > 1) {
444       if (auto E = DIExpression::createFragmentExpression(
445               Expr, FragmentOffsetInBits, FragmentSizeInBits))
446         Expr = *E;
447       else
448         return;
449     }
450     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
451     NGV->addDebugInfo(NGVE);
452   }
453 }
454 
455 /// Perform scalar replacement of aggregates on the specified global variable.
456 /// This opens the door for other optimizations by exposing the behavior of the
457 /// program in a more fine-grained way.  We have determined that this
458 /// transformation is safe already.  We return the first global variable we
459 /// insert so that the caller can reprocess it.
460 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
461   // Make sure this global only has simple uses that we can SRA.
462   if (!GlobalUsersSafeToSRA(GV))
463     return nullptr;
464 
465   assert(GV->hasLocalLinkage());
466   Constant *Init = GV->getInitializer();
467   Type *Ty = Init->getType();
468 
469   std::vector<GlobalVariable *> NewGlobals;
470   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
471 
472   // Get the alignment of the global, either explicit or target-specific.
473   unsigned StartAlignment = GV->getAlignment();
474   if (StartAlignment == 0)
475     StartAlignment = DL.getABITypeAlignment(GV->getType());
476 
477   if (StructType *STy = dyn_cast<StructType>(Ty)) {
478     unsigned NumElements = STy->getNumElements();
479     NewGlobals.reserve(NumElements);
480     const StructLayout &Layout = *DL.getStructLayout(STy);
481     for (unsigned i = 0, e = NumElements; i != e; ++i) {
482       Constant *In = Init->getAggregateElement(i);
483       assert(In && "Couldn't get element of initializer?");
484       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
485                                                GlobalVariable::InternalLinkage,
486                                                In, GV->getName()+"."+Twine(i),
487                                                GV->getThreadLocalMode(),
488                                               GV->getType()->getAddressSpace());
489       NGV->setExternallyInitialized(GV->isExternallyInitialized());
490       NGV->copyAttributesFrom(GV);
491       Globals.push_back(NGV);
492       NewGlobals.push_back(NGV);
493 
494       // Calculate the known alignment of the field.  If the original aggregate
495       // had 256 byte alignment for example, something might depend on that:
496       // propagate info to each field.
497       uint64_t FieldOffset = Layout.getElementOffset(i);
498       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
499       if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
500         NGV->setAlignment(NewAlign);
501 
502       // Copy over the debug info for the variable.
503       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
504       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(i);
505       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, NumElements);
506     }
507   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
508     unsigned NumElements = STy->getNumElements();
509     if (NumElements > 16 && GV->hasNUsesOrMore(16))
510       return nullptr; // It's not worth it.
511     NewGlobals.reserve(NumElements);
512     auto ElTy = STy->getElementType();
513     uint64_t EltSize = DL.getTypeAllocSize(ElTy);
514     unsigned EltAlign = DL.getABITypeAlignment(ElTy);
515     uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
516     for (unsigned i = 0, e = NumElements; i != e; ++i) {
517       Constant *In = Init->getAggregateElement(i);
518       assert(In && "Couldn't get element of initializer?");
519 
520       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
521                                                GlobalVariable::InternalLinkage,
522                                                In, GV->getName()+"."+Twine(i),
523                                                GV->getThreadLocalMode(),
524                                               GV->getType()->getAddressSpace());
525       NGV->setExternallyInitialized(GV->isExternallyInitialized());
526       NGV->copyAttributesFrom(GV);
527       Globals.push_back(NGV);
528       NewGlobals.push_back(NGV);
529 
530       // Calculate the known alignment of the field.  If the original aggregate
531       // had 256 byte alignment for example, something might depend on that:
532       // propagate info to each field.
533       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
534       if (NewAlign > EltAlign)
535         NGV->setAlignment(NewAlign);
536       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * i, FragmentSizeInBits,
537                            NumElements);
538     }
539   }
540 
541   if (NewGlobals.empty())
542     return nullptr;
543 
544   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
545 
546   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
547 
548   // Loop over all of the uses of the global, replacing the constantexpr geps,
549   // with smaller constantexpr geps or direct references.
550   while (!GV->use_empty()) {
551     User *GEP = GV->user_back();
552     assert(((isa<ConstantExpr>(GEP) &&
553              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
554             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
555 
556     // Ignore the 1th operand, which has to be zero or else the program is quite
557     // broken (undefined).  Get the 2nd operand, which is the structure or array
558     // index.
559     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
560     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
561 
562     Value *NewPtr = NewGlobals[Val];
563     Type *NewTy = NewGlobals[Val]->getValueType();
564 
565     // Form a shorter GEP if needed.
566     if (GEP->getNumOperands() > 3) {
567       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
568         SmallVector<Constant*, 8> Idxs;
569         Idxs.push_back(NullInt);
570         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
571           Idxs.push_back(CE->getOperand(i));
572         NewPtr =
573             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
574       } else {
575         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
576         SmallVector<Value*, 8> Idxs;
577         Idxs.push_back(NullInt);
578         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
579           Idxs.push_back(GEPI->getOperand(i));
580         NewPtr = GetElementPtrInst::Create(
581             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(Val), GEPI);
582       }
583     }
584     GEP->replaceAllUsesWith(NewPtr);
585 
586     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
587       GEPI->eraseFromParent();
588     else
589       cast<ConstantExpr>(GEP)->destroyConstant();
590   }
591 
592   // Delete the old global, now that it is dead.
593   Globals.erase(GV);
594   ++NumSRA;
595 
596   // Loop over the new globals array deleting any globals that are obviously
597   // dead.  This can arise due to scalarization of a structure or an array that
598   // has elements that are dead.
599   unsigned FirstGlobal = 0;
600   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
601     if (NewGlobals[i]->use_empty()) {
602       Globals.erase(NewGlobals[i]);
603       if (FirstGlobal == i) ++FirstGlobal;
604     }
605 
606   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
607 }
608 
609 /// Return true if all users of the specified value will trap if the value is
610 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
611 /// reprocessing them.
612 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
613                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
614   for (const User *U : V->users()) {
615     if (const Instruction *I = dyn_cast<Instruction>(U)) {
616       // If null pointer is considered valid, then all uses are non-trapping.
617       // Non address-space 0 globals have already been pruned by the caller.
618       if (NullPointerIsDefined(I->getFunction()))
619         return false;
620     }
621     if (isa<LoadInst>(U)) {
622       // Will trap.
623     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
624       if (SI->getOperand(0) == V) {
625         //cerr << "NONTRAPPING USE: " << *U;
626         return false;  // Storing the value.
627       }
628     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
629       if (CI->getCalledValue() != V) {
630         //cerr << "NONTRAPPING USE: " << *U;
631         return false;  // Not calling the ptr
632       }
633     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
634       if (II->getCalledValue() != V) {
635         //cerr << "NONTRAPPING USE: " << *U;
636         return false;  // Not calling the ptr
637       }
638     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
639       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
640     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
641       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
642     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
643       // If we've already seen this phi node, ignore it, it has already been
644       // checked.
645       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
646         return false;
647     } else if (isa<ICmpInst>(U) &&
648                isa<ConstantPointerNull>(U->getOperand(1))) {
649       // Ignore icmp X, null
650     } else {
651       //cerr << "NONTRAPPING USE: " << *U;
652       return false;
653     }
654   }
655   return true;
656 }
657 
658 /// Return true if all uses of any loads from GV will trap if the loaded value
659 /// is null.  Note that this also permits comparisons of the loaded value
660 /// against null, as a special case.
661 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
662   for (const User *U : GV->users())
663     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
664       SmallPtrSet<const PHINode*, 8> PHIs;
665       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
666         return false;
667     } else if (isa<StoreInst>(U)) {
668       // Ignore stores to the global.
669     } else {
670       // We don't know or understand this user, bail out.
671       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
672       return false;
673     }
674   return true;
675 }
676 
677 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
678   bool Changed = false;
679   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
680     Instruction *I = cast<Instruction>(*UI++);
681     // Uses are non-trapping if null pointer is considered valid.
682     // Non address-space 0 globals are already pruned by the caller.
683     if (NullPointerIsDefined(I->getFunction()))
684       return false;
685     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
686       LI->setOperand(0, NewV);
687       Changed = true;
688     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
689       if (SI->getOperand(1) == V) {
690         SI->setOperand(1, NewV);
691         Changed = true;
692       }
693     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
694       CallSite CS(I);
695       if (CS.getCalledValue() == V) {
696         // Calling through the pointer!  Turn into a direct call, but be careful
697         // that the pointer is not also being passed as an argument.
698         CS.setCalledFunction(NewV);
699         Changed = true;
700         bool PassedAsArg = false;
701         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
702           if (CS.getArgument(i) == V) {
703             PassedAsArg = true;
704             CS.setArgument(i, NewV);
705           }
706 
707         if (PassedAsArg) {
708           // Being passed as an argument also.  Be careful to not invalidate UI!
709           UI = V->user_begin();
710         }
711       }
712     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
713       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
714                                 ConstantExpr::getCast(CI->getOpcode(),
715                                                       NewV, CI->getType()));
716       if (CI->use_empty()) {
717         Changed = true;
718         CI->eraseFromParent();
719       }
720     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
721       // Should handle GEP here.
722       SmallVector<Constant*, 8> Idxs;
723       Idxs.reserve(GEPI->getNumOperands()-1);
724       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
725            i != e; ++i)
726         if (Constant *C = dyn_cast<Constant>(*i))
727           Idxs.push_back(C);
728         else
729           break;
730       if (Idxs.size() == GEPI->getNumOperands()-1)
731         Changed |= OptimizeAwayTrappingUsesOfValue(
732             GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
733       if (GEPI->use_empty()) {
734         Changed = true;
735         GEPI->eraseFromParent();
736       }
737     }
738   }
739 
740   return Changed;
741 }
742 
743 /// The specified global has only one non-null value stored into it.  If there
744 /// are uses of the loaded value that would trap if the loaded value is
745 /// dynamically null, then we know that they cannot be reachable with a null
746 /// optimize away the load.
747 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
748                                             const DataLayout &DL,
749                                             TargetLibraryInfo *TLI) {
750   bool Changed = false;
751 
752   // Keep track of whether we are able to remove all the uses of the global
753   // other than the store that defines it.
754   bool AllNonStoreUsesGone = true;
755 
756   // Replace all uses of loads with uses of uses of the stored value.
757   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
758     User *GlobalUser = *GUI++;
759     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
760       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
761       // If we were able to delete all uses of the loads
762       if (LI->use_empty()) {
763         LI->eraseFromParent();
764         Changed = true;
765       } else {
766         AllNonStoreUsesGone = false;
767       }
768     } else if (isa<StoreInst>(GlobalUser)) {
769       // Ignore the store that stores "LV" to the global.
770       assert(GlobalUser->getOperand(1) == GV &&
771              "Must be storing *to* the global");
772     } else {
773       AllNonStoreUsesGone = false;
774 
775       // If we get here we could have other crazy uses that are transitively
776       // loaded.
777       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
778               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
779               isa<BitCastInst>(GlobalUser) ||
780               isa<GetElementPtrInst>(GlobalUser)) &&
781              "Only expect load and stores!");
782     }
783   }
784 
785   if (Changed) {
786     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
787                       << "\n");
788     ++NumGlobUses;
789   }
790 
791   // If we nuked all of the loads, then none of the stores are needed either,
792   // nor is the global.
793   if (AllNonStoreUsesGone) {
794     if (isLeakCheckerRoot(GV)) {
795       Changed |= CleanupPointerRootUsers(GV, TLI);
796     } else {
797       Changed = true;
798       CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
799     }
800     if (GV->use_empty()) {
801       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
802       Changed = true;
803       GV->eraseFromParent();
804       ++NumDeleted;
805     }
806   }
807   return Changed;
808 }
809 
810 /// Walk the use list of V, constant folding all of the instructions that are
811 /// foldable.
812 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
813                                 TargetLibraryInfo *TLI) {
814   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
815     if (Instruction *I = dyn_cast<Instruction>(*UI++))
816       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
817         I->replaceAllUsesWith(NewC);
818 
819         // Advance UI to the next non-I use to avoid invalidating it!
820         // Instructions could multiply use V.
821         while (UI != E && *UI == I)
822           ++UI;
823         if (isInstructionTriviallyDead(I, TLI))
824           I->eraseFromParent();
825       }
826 }
827 
828 /// This function takes the specified global variable, and transforms the
829 /// program as if it always contained the result of the specified malloc.
830 /// Because it is always the result of the specified malloc, there is no reason
831 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
832 /// loads of GV as uses of the new global.
833 static GlobalVariable *
834 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
835                               ConstantInt *NElements, const DataLayout &DL,
836                               TargetLibraryInfo *TLI) {
837   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
838                     << '\n');
839 
840   Type *GlobalType;
841   if (NElements->getZExtValue() == 1)
842     GlobalType = AllocTy;
843   else
844     // If we have an array allocation, the global variable is of an array.
845     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
846 
847   // Create the new global variable.  The contents of the malloc'd memory is
848   // undefined, so initialize with an undef value.
849   GlobalVariable *NewGV = new GlobalVariable(
850       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
851       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
852       GV->getThreadLocalMode());
853 
854   // If there are bitcast users of the malloc (which is typical, usually we have
855   // a malloc + bitcast) then replace them with uses of the new global.  Update
856   // other users to use the global as well.
857   BitCastInst *TheBC = nullptr;
858   while (!CI->use_empty()) {
859     Instruction *User = cast<Instruction>(CI->user_back());
860     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
861       if (BCI->getType() == NewGV->getType()) {
862         BCI->replaceAllUsesWith(NewGV);
863         BCI->eraseFromParent();
864       } else {
865         BCI->setOperand(0, NewGV);
866       }
867     } else {
868       if (!TheBC)
869         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
870       User->replaceUsesOfWith(CI, TheBC);
871     }
872   }
873 
874   Constant *RepValue = NewGV;
875   if (NewGV->getType() != GV->getValueType())
876     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
877 
878   // If there is a comparison against null, we will insert a global bool to
879   // keep track of whether the global was initialized yet or not.
880   GlobalVariable *InitBool =
881     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
882                        GlobalValue::InternalLinkage,
883                        ConstantInt::getFalse(GV->getContext()),
884                        GV->getName()+".init", GV->getThreadLocalMode());
885   bool InitBoolUsed = false;
886 
887   // Loop over all uses of GV, processing them in turn.
888   while (!GV->use_empty()) {
889     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
890       // The global is initialized when the store to it occurs.
891       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
892                     SI->getOrdering(), SI->getSyncScopeID(), SI);
893       SI->eraseFromParent();
894       continue;
895     }
896 
897     LoadInst *LI = cast<LoadInst>(GV->user_back());
898     while (!LI->use_empty()) {
899       Use &LoadUse = *LI->use_begin();
900       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
901       if (!ICI) {
902         LoadUse = RepValue;
903         continue;
904       }
905 
906       // Replace the cmp X, 0 with a use of the bool value.
907       // Sink the load to where the compare was, if atomic rules allow us to.
908       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
909                                LI->getOrdering(), LI->getSyncScopeID(),
910                                LI->isUnordered() ? (Instruction*)ICI : LI);
911       InitBoolUsed = true;
912       switch (ICI->getPredicate()) {
913       default: llvm_unreachable("Unknown ICmp Predicate!");
914       case ICmpInst::ICMP_ULT:
915       case ICmpInst::ICMP_SLT:   // X < null -> always false
916         LV = ConstantInt::getFalse(GV->getContext());
917         break;
918       case ICmpInst::ICMP_ULE:
919       case ICmpInst::ICMP_SLE:
920       case ICmpInst::ICMP_EQ:
921         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
922         break;
923       case ICmpInst::ICMP_NE:
924       case ICmpInst::ICMP_UGE:
925       case ICmpInst::ICMP_SGE:
926       case ICmpInst::ICMP_UGT:
927       case ICmpInst::ICMP_SGT:
928         break;  // no change.
929       }
930       ICI->replaceAllUsesWith(LV);
931       ICI->eraseFromParent();
932     }
933     LI->eraseFromParent();
934   }
935 
936   // If the initialization boolean was used, insert it, otherwise delete it.
937   if (!InitBoolUsed) {
938     while (!InitBool->use_empty())  // Delete initializations
939       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
940     delete InitBool;
941   } else
942     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
943 
944   // Now the GV is dead, nuke it and the malloc..
945   GV->eraseFromParent();
946   CI->eraseFromParent();
947 
948   // To further other optimizations, loop over all users of NewGV and try to
949   // constant prop them.  This will promote GEP instructions with constant
950   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
951   ConstantPropUsersOf(NewGV, DL, TLI);
952   if (RepValue != NewGV)
953     ConstantPropUsersOf(RepValue, DL, TLI);
954 
955   return NewGV;
956 }
957 
958 /// Scan the use-list of V checking to make sure that there are no complex uses
959 /// of V.  We permit simple things like dereferencing the pointer, but not
960 /// storing through the address, unless it is to the specified global.
961 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
962                                                       const GlobalVariable *GV,
963                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
964   for (const User *U : V->users()) {
965     const Instruction *Inst = cast<Instruction>(U);
966 
967     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
968       continue; // Fine, ignore.
969     }
970 
971     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
972       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
973         return false;  // Storing the pointer itself... bad.
974       continue; // Otherwise, storing through it, or storing into GV... fine.
975     }
976 
977     // Must index into the array and into the struct.
978     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
979       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
980         return false;
981       continue;
982     }
983 
984     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
985       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
986       // cycles.
987       if (PHIs.insert(PN).second)
988         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
989           return false;
990       continue;
991     }
992 
993     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
994       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
995         return false;
996       continue;
997     }
998 
999     return false;
1000   }
1001   return true;
1002 }
1003 
1004 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1005 /// allocation into loads from the global and uses of the resultant pointer.
1006 /// Further, delete the store into GV.  This assumes that these value pass the
1007 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1008 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1009                                           GlobalVariable *GV) {
1010   while (!Alloc->use_empty()) {
1011     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1012     Instruction *InsertPt = U;
1013     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1014       // If this is the store of the allocation into the global, remove it.
1015       if (SI->getOperand(1) == GV) {
1016         SI->eraseFromParent();
1017         continue;
1018       }
1019     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1020       // Insert the load in the corresponding predecessor, not right before the
1021       // PHI.
1022       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1023     } else if (isa<BitCastInst>(U)) {
1024       // Must be bitcast between the malloc and store to initialize the global.
1025       ReplaceUsesOfMallocWithGlobal(U, GV);
1026       U->eraseFromParent();
1027       continue;
1028     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1029       // If this is a "GEP bitcast" and the user is a store to the global, then
1030       // just process it as a bitcast.
1031       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1032         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1033           if (SI->getOperand(1) == GV) {
1034             // Must be bitcast GEP between the malloc and store to initialize
1035             // the global.
1036             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1037             GEPI->eraseFromParent();
1038             continue;
1039           }
1040     }
1041 
1042     // Insert a load from the global, and use it instead of the malloc.
1043     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1044     U->replaceUsesOfWith(Alloc, NL);
1045   }
1046 }
1047 
1048 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1049 /// perform heap SRA on.  This permits GEP's that index through the array and
1050 /// struct field, icmps of null, and PHIs.
1051 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1052                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1053                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1054   // We permit two users of the load: setcc comparing against the null
1055   // pointer, and a getelementptr of a specific form.
1056   for (const User *U : V->users()) {
1057     const Instruction *UI = cast<Instruction>(U);
1058 
1059     // Comparison against null is ok.
1060     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1061       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1062         return false;
1063       continue;
1064     }
1065 
1066     // getelementptr is also ok, but only a simple form.
1067     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1068       // Must index into the array and into the struct.
1069       if (GEPI->getNumOperands() < 3)
1070         return false;
1071 
1072       // Otherwise the GEP is ok.
1073       continue;
1074     }
1075 
1076     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1077       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1078         // This means some phi nodes are dependent on each other.
1079         // Avoid infinite looping!
1080         return false;
1081       if (!LoadUsingPHIs.insert(PN).second)
1082         // If we have already analyzed this PHI, then it is safe.
1083         continue;
1084 
1085       // Make sure all uses of the PHI are simple enough to transform.
1086       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1087                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1088         return false;
1089 
1090       continue;
1091     }
1092 
1093     // Otherwise we don't know what this is, not ok.
1094     return false;
1095   }
1096 
1097   return true;
1098 }
1099 
1100 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1101 /// return true.
1102 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1103                                                     Instruction *StoredVal) {
1104   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1105   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1106   for (const User *U : GV->users())
1107     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1108       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1109                                           LoadUsingPHIsPerLoad))
1110         return false;
1111       LoadUsingPHIsPerLoad.clear();
1112     }
1113 
1114   // If we reach here, we know that all uses of the loads and transitive uses
1115   // (through PHI nodes) are simple enough to transform.  However, we don't know
1116   // that all inputs the to the PHI nodes are in the same equivalence sets.
1117   // Check to verify that all operands of the PHIs are either PHIS that can be
1118   // transformed, loads from GV, or MI itself.
1119   for (const PHINode *PN : LoadUsingPHIs) {
1120     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1121       Value *InVal = PN->getIncomingValue(op);
1122 
1123       // PHI of the stored value itself is ok.
1124       if (InVal == StoredVal) continue;
1125 
1126       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1127         // One of the PHIs in our set is (optimistically) ok.
1128         if (LoadUsingPHIs.count(InPN))
1129           continue;
1130         return false;
1131       }
1132 
1133       // Load from GV is ok.
1134       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1135         if (LI->getOperand(0) == GV)
1136           continue;
1137 
1138       // UNDEF? NULL?
1139 
1140       // Anything else is rejected.
1141       return false;
1142     }
1143   }
1144 
1145   return true;
1146 }
1147 
1148 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1149               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1150                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1151   std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1152 
1153   if (FieldNo >= FieldVals.size())
1154     FieldVals.resize(FieldNo+1);
1155 
1156   // If we already have this value, just reuse the previously scalarized
1157   // version.
1158   if (Value *FieldVal = FieldVals[FieldNo])
1159     return FieldVal;
1160 
1161   // Depending on what instruction this is, we have several cases.
1162   Value *Result;
1163   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1164     // This is a scalarized version of the load from the global.  Just create
1165     // a new Load of the scalarized global.
1166     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1167                                            InsertedScalarizedValues,
1168                                            PHIsToRewrite),
1169                           LI->getName()+".f"+Twine(FieldNo), LI);
1170   } else {
1171     PHINode *PN = cast<PHINode>(V);
1172     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1173     // field.
1174 
1175     PointerType *PTy = cast<PointerType>(PN->getType());
1176     StructType *ST = cast<StructType>(PTy->getElementType());
1177 
1178     unsigned AS = PTy->getAddressSpace();
1179     PHINode *NewPN =
1180       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1181                      PN->getNumIncomingValues(),
1182                      PN->getName()+".f"+Twine(FieldNo), PN);
1183     Result = NewPN;
1184     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1185   }
1186 
1187   return FieldVals[FieldNo] = Result;
1188 }
1189 
1190 /// Given a load instruction and a value derived from the load, rewrite the
1191 /// derived value to use the HeapSRoA'd load.
1192 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1193               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1194                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1195   // If this is a comparison against null, handle it.
1196   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1197     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1198     // If we have a setcc of the loaded pointer, we can use a setcc of any
1199     // field.
1200     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1201                                    InsertedScalarizedValues, PHIsToRewrite);
1202 
1203     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1204                               Constant::getNullValue(NPtr->getType()),
1205                               SCI->getName());
1206     SCI->replaceAllUsesWith(New);
1207     SCI->eraseFromParent();
1208     return;
1209   }
1210 
1211   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1212   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1213     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1214            && "Unexpected GEPI!");
1215 
1216     // Load the pointer for this field.
1217     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1218     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1219                                      InsertedScalarizedValues, PHIsToRewrite);
1220 
1221     // Create the new GEP idx vector.
1222     SmallVector<Value*, 8> GEPIdx;
1223     GEPIdx.push_back(GEPI->getOperand(1));
1224     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1225 
1226     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1227                                              GEPI->getName(), GEPI);
1228     GEPI->replaceAllUsesWith(NGEPI);
1229     GEPI->eraseFromParent();
1230     return;
1231   }
1232 
1233   // Recursively transform the users of PHI nodes.  This will lazily create the
1234   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1235   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1236   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1237   // already been seen first by another load, so its uses have already been
1238   // processed.
1239   PHINode *PN = cast<PHINode>(LoadUser);
1240   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1241                                               std::vector<Value *>())).second)
1242     return;
1243 
1244   // If this is the first time we've seen this PHI, recursively process all
1245   // users.
1246   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1247     Instruction *User = cast<Instruction>(*UI++);
1248     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1249   }
1250 }
1251 
1252 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1253 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1254 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1255 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1256               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1257                   std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1258   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1259     Instruction *User = cast<Instruction>(*UI++);
1260     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1261   }
1262 
1263   if (Load->use_empty()) {
1264     Load->eraseFromParent();
1265     InsertedScalarizedValues.erase(Load);
1266   }
1267 }
1268 
1269 /// CI is an allocation of an array of structures.  Break it up into multiple
1270 /// allocations of arrays of the fields.
1271 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1272                                             Value *NElems, const DataLayout &DL,
1273                                             const TargetLibraryInfo *TLI) {
1274   LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
1275                     << '\n');
1276   Type *MAT = getMallocAllocatedType(CI, TLI);
1277   StructType *STy = cast<StructType>(MAT);
1278 
1279   // There is guaranteed to be at least one use of the malloc (storing
1280   // it into GV).  If there are other uses, change them to be uses of
1281   // the global to simplify later code.  This also deletes the store
1282   // into GV.
1283   ReplaceUsesOfMallocWithGlobal(CI, GV);
1284 
1285   // Okay, at this point, there are no users of the malloc.  Insert N
1286   // new mallocs at the same place as CI, and N globals.
1287   std::vector<Value *> FieldGlobals;
1288   std::vector<Value *> FieldMallocs;
1289 
1290   SmallVector<OperandBundleDef, 1> OpBundles;
1291   CI->getOperandBundlesAsDefs(OpBundles);
1292 
1293   unsigned AS = GV->getType()->getPointerAddressSpace();
1294   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1295     Type *FieldTy = STy->getElementType(FieldNo);
1296     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1297 
1298     GlobalVariable *NGV = new GlobalVariable(
1299         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1300         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1301         nullptr, GV->getThreadLocalMode());
1302     NGV->copyAttributesFrom(GV);
1303     FieldGlobals.push_back(NGV);
1304 
1305     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1306     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1307       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1308     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1309     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1310                                         ConstantInt::get(IntPtrTy, TypeSize),
1311                                         NElems, OpBundles, nullptr,
1312                                         CI->getName() + ".f" + Twine(FieldNo));
1313     FieldMallocs.push_back(NMI);
1314     new StoreInst(NMI, NGV, CI);
1315   }
1316 
1317   // The tricky aspect of this transformation is handling the case when malloc
1318   // fails.  In the original code, malloc failing would set the result pointer
1319   // of malloc to null.  In this case, some mallocs could succeed and others
1320   // could fail.  As such, we emit code that looks like this:
1321   //    F0 = malloc(field0)
1322   //    F1 = malloc(field1)
1323   //    F2 = malloc(field2)
1324   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1325   //      if (F0) { free(F0); F0 = 0; }
1326   //      if (F1) { free(F1); F1 = 0; }
1327   //      if (F2) { free(F2); F2 = 0; }
1328   //    }
1329   // The malloc can also fail if its argument is too large.
1330   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1331   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1332                                   ConstantZero, "isneg");
1333   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1334     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1335                              Constant::getNullValue(FieldMallocs[i]->getType()),
1336                                "isnull");
1337     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1338   }
1339 
1340   // Split the basic block at the old malloc.
1341   BasicBlock *OrigBB = CI->getParent();
1342   BasicBlock *ContBB =
1343       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1344 
1345   // Create the block to check the first condition.  Put all these blocks at the
1346   // end of the function as they are unlikely to be executed.
1347   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1348                                                 "malloc_ret_null",
1349                                                 OrigBB->getParent());
1350 
1351   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1352   // branch on RunningOr.
1353   OrigBB->getTerminator()->eraseFromParent();
1354   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1355 
1356   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1357   // pointer, because some may be null while others are not.
1358   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1359     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1360     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1361                               Constant::getNullValue(GVVal->getType()));
1362     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1363                                                OrigBB->getParent());
1364     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1365                                                OrigBB->getParent());
1366     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1367                                          Cmp, NullPtrBlock);
1368 
1369     // Fill in FreeBlock.
1370     CallInst::CreateFree(GVVal, OpBundles, BI);
1371     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1372                   FreeBlock);
1373     BranchInst::Create(NextBlock, FreeBlock);
1374 
1375     NullPtrBlock = NextBlock;
1376   }
1377 
1378   BranchInst::Create(ContBB, NullPtrBlock);
1379 
1380   // CI is no longer needed, remove it.
1381   CI->eraseFromParent();
1382 
1383   /// As we process loads, if we can't immediately update all uses of the load,
1384   /// keep track of what scalarized loads are inserted for a given load.
1385   DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1386   InsertedScalarizedValues[GV] = FieldGlobals;
1387 
1388   std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1389 
1390   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1391   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1392   // of the per-field globals instead.
1393   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1394     Instruction *User = cast<Instruction>(*UI++);
1395 
1396     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1397       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1398       continue;
1399     }
1400 
1401     // Must be a store of null.
1402     StoreInst *SI = cast<StoreInst>(User);
1403     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1404            "Unexpected heap-sra user!");
1405 
1406     // Insert a store of null into each global.
1407     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1408       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1409       Constant *Null = Constant::getNullValue(ValTy);
1410       new StoreInst(Null, FieldGlobals[i], SI);
1411     }
1412     // Erase the original store.
1413     SI->eraseFromParent();
1414   }
1415 
1416   // While we have PHIs that are interesting to rewrite, do it.
1417   while (!PHIsToRewrite.empty()) {
1418     PHINode *PN = PHIsToRewrite.back().first;
1419     unsigned FieldNo = PHIsToRewrite.back().second;
1420     PHIsToRewrite.pop_back();
1421     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1422     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1423 
1424     // Add all the incoming values.  This can materialize more phis.
1425     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1426       Value *InVal = PN->getIncomingValue(i);
1427       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1428                                PHIsToRewrite);
1429       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1430     }
1431   }
1432 
1433   // Drop all inter-phi links and any loads that made it this far.
1434   for (DenseMap<Value *, std::vector<Value *>>::iterator
1435        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1436        I != E; ++I) {
1437     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1438       PN->dropAllReferences();
1439     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1440       LI->dropAllReferences();
1441   }
1442 
1443   // Delete all the phis and loads now that inter-references are dead.
1444   for (DenseMap<Value *, std::vector<Value *>>::iterator
1445        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1446        I != E; ++I) {
1447     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1448       PN->eraseFromParent();
1449     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1450       LI->eraseFromParent();
1451   }
1452 
1453   // The old global is now dead, remove it.
1454   GV->eraseFromParent();
1455 
1456   ++NumHeapSRA;
1457   return cast<GlobalVariable>(FieldGlobals[0]);
1458 }
1459 
1460 /// This function is called when we see a pointer global variable with a single
1461 /// value stored it that is a malloc or cast of malloc.
1462 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1463                                                Type *AllocTy,
1464                                                AtomicOrdering Ordering,
1465                                                const DataLayout &DL,
1466                                                TargetLibraryInfo *TLI) {
1467   // If this is a malloc of an abstract type, don't touch it.
1468   if (!AllocTy->isSized())
1469     return false;
1470 
1471   // We can't optimize this global unless all uses of it are *known* to be
1472   // of the malloc value, not of the null initializer value (consider a use
1473   // that compares the global's value against zero to see if the malloc has
1474   // been reached).  To do this, we check to see if all uses of the global
1475   // would trap if the global were null: this proves that they must all
1476   // happen after the malloc.
1477   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1478     return false;
1479 
1480   // We can't optimize this if the malloc itself is used in a complex way,
1481   // for example, being stored into multiple globals.  This allows the
1482   // malloc to be stored into the specified global, loaded icmp'd, and
1483   // GEP'd.  These are all things we could transform to using the global
1484   // for.
1485   SmallPtrSet<const PHINode*, 8> PHIs;
1486   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1487     return false;
1488 
1489   // If we have a global that is only initialized with a fixed size malloc,
1490   // transform the program to use global memory instead of malloc'd memory.
1491   // This eliminates dynamic allocation, avoids an indirection accessing the
1492   // data, and exposes the resultant global to further GlobalOpt.
1493   // We cannot optimize the malloc if we cannot determine malloc array size.
1494   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1495   if (!NElems)
1496     return false;
1497 
1498   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1499     // Restrict this transformation to only working on small allocations
1500     // (2048 bytes currently), as we don't want to introduce a 16M global or
1501     // something.
1502     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1503       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1504       return true;
1505     }
1506 
1507   // If the allocation is an array of structures, consider transforming this
1508   // into multiple malloc'd arrays, one for each field.  This is basically
1509   // SRoA for malloc'd memory.
1510 
1511   if (Ordering != AtomicOrdering::NotAtomic)
1512     return false;
1513 
1514   // If this is an allocation of a fixed size array of structs, analyze as a
1515   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1516   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1517     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1518       AllocTy = AT->getElementType();
1519 
1520   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1521   if (!AllocSTy)
1522     return false;
1523 
1524   // This the structure has an unreasonable number of fields, leave it
1525   // alone.
1526   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1527       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1528 
1529     // If this is a fixed size array, transform the Malloc to be an alloc of
1530     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1531     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1532       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1533       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1534       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1535       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1536       SmallVector<OperandBundleDef, 1> OpBundles;
1537       CI->getOperandBundlesAsDefs(OpBundles);
1538       Instruction *Malloc =
1539           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1540                                  OpBundles, nullptr, CI->getName());
1541       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1542       CI->replaceAllUsesWith(Cast);
1543       CI->eraseFromParent();
1544       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1545         CI = cast<CallInst>(BCI->getOperand(0));
1546       else
1547         CI = cast<CallInst>(Malloc);
1548     }
1549 
1550     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1551                          TLI);
1552     return true;
1553   }
1554 
1555   return false;
1556 }
1557 
1558 // Try to optimize globals based on the knowledge that only one value (besides
1559 // its initializer) is ever stored to the global.
1560 static bool optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1561                                      AtomicOrdering Ordering,
1562                                      const DataLayout &DL,
1563                                      TargetLibraryInfo *TLI) {
1564   // Ignore no-op GEPs and bitcasts.
1565   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1566 
1567   // If we are dealing with a pointer global that is initialized to null and
1568   // only has one (non-null) value stored into it, then we can optimize any
1569   // users of the loaded value (often calls and loads) that would trap if the
1570   // value was null.
1571   if (GV->getInitializer()->getType()->isPointerTy() &&
1572       GV->getInitializer()->isNullValue() &&
1573       !NullPointerIsDefined(
1574           nullptr /* F */,
1575           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1576     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1577       if (GV->getInitializer()->getType() != SOVC->getType())
1578         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1579 
1580       // Optimize away any trapping uses of the loaded value.
1581       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1582         return true;
1583     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1584       Type *MallocType = getMallocAllocatedType(CI, TLI);
1585       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1586                                                            Ordering, DL, TLI))
1587         return true;
1588     }
1589   }
1590 
1591   return false;
1592 }
1593 
1594 /// At this point, we have learned that the only two values ever stored into GV
1595 /// are its initializer and OtherVal.  See if we can shrink the global into a
1596 /// boolean and select between the two values whenever it is used.  This exposes
1597 /// the values to other scalar optimizations.
1598 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1599   Type *GVElType = GV->getValueType();
1600 
1601   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1602   // an FP value, pointer or vector, don't do this optimization because a select
1603   // between them is very expensive and unlikely to lead to later
1604   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1605   // where v1 and v2 both require constant pool loads, a big loss.
1606   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1607       GVElType->isFloatingPointTy() ||
1608       GVElType->isPointerTy() || GVElType->isVectorTy())
1609     return false;
1610 
1611   // Walk the use list of the global seeing if all the uses are load or store.
1612   // If there is anything else, bail out.
1613   for (User *U : GV->users())
1614     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1615       return false;
1616 
1617   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1618 
1619   // Create the new global, initializing it to false.
1620   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1621                                              false,
1622                                              GlobalValue::InternalLinkage,
1623                                         ConstantInt::getFalse(GV->getContext()),
1624                                              GV->getName()+".b",
1625                                              GV->getThreadLocalMode(),
1626                                              GV->getType()->getAddressSpace());
1627   NewGV->copyAttributesFrom(GV);
1628   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1629 
1630   Constant *InitVal = GV->getInitializer();
1631   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1632          "No reason to shrink to bool!");
1633 
1634   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1635   GV->getDebugInfo(GVs);
1636 
1637   // If initialized to zero and storing one into the global, we can use a cast
1638   // instead of a select to synthesize the desired value.
1639   bool IsOneZero = false;
1640   bool EmitOneOrZero = true;
1641   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)){
1642     IsOneZero = InitVal->isNullValue() && CI->isOne();
1643 
1644     if (ConstantInt *CIInit = dyn_cast<ConstantInt>(GV->getInitializer())){
1645       uint64_t ValInit = CIInit->getZExtValue();
1646       uint64_t ValOther = CI->getZExtValue();
1647       uint64_t ValMinus = ValOther - ValInit;
1648 
1649       for(auto *GVe : GVs){
1650         DIGlobalVariable *DGV = GVe->getVariable();
1651         DIExpression *E = GVe->getExpression();
1652 
1653         // It is expected that the address of global optimized variable is on
1654         // top of the stack. After optimization, value of that variable will
1655         // be ether 0 for initial value or 1 for other value. The following
1656         // expression should return constant integer value depending on the
1657         // value at global object address:
1658         // val * (ValOther - ValInit) + ValInit:
1659         // DW_OP_deref DW_OP_constu <ValMinus>
1660         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1661         SmallVector<uint64_t, 12> Ops = {
1662             dwarf::DW_OP_deref, dwarf::DW_OP_constu, ValMinus,
1663             dwarf::DW_OP_mul,   dwarf::DW_OP_constu, ValInit,
1664             dwarf::DW_OP_plus};
1665         E = DIExpression::prependOpcodes(E, Ops, DIExpression::WithStackValue);
1666         DIGlobalVariableExpression *DGVE =
1667           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1668         NewGV->addDebugInfo(DGVE);
1669      }
1670      EmitOneOrZero = false;
1671     }
1672   }
1673 
1674   if (EmitOneOrZero) {
1675      // FIXME: This will only emit address for debugger on which will
1676      // be written only 0 or 1.
1677      for(auto *GV : GVs)
1678        NewGV->addDebugInfo(GV);
1679    }
1680 
1681   while (!GV->use_empty()) {
1682     Instruction *UI = cast<Instruction>(GV->user_back());
1683     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1684       // Change the store into a boolean store.
1685       bool StoringOther = SI->getOperand(0) == OtherVal;
1686       // Only do this if we weren't storing a loaded value.
1687       Value *StoreVal;
1688       if (StoringOther || SI->getOperand(0) == InitVal) {
1689         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1690                                     StoringOther);
1691       } else {
1692         // Otherwise, we are storing a previously loaded copy.  To do this,
1693         // change the copy from copying the original value to just copying the
1694         // bool.
1695         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1696 
1697         // If we've already replaced the input, StoredVal will be a cast or
1698         // select instruction.  If not, it will be a load of the original
1699         // global.
1700         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1701           assert(LI->getOperand(0) == GV && "Not a copy!");
1702           // Insert a new load, to preserve the saved value.
1703           StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1704                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1705         } else {
1706           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1707                  "This is not a form that we understand!");
1708           StoreVal = StoredVal->getOperand(0);
1709           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1710         }
1711       }
1712       StoreInst *NSI =
1713           new StoreInst(StoreVal, NewGV, false, 0, SI->getOrdering(),
1714                         SI->getSyncScopeID(), SI);
1715       NSI->setDebugLoc(SI->getDebugLoc());
1716     } else {
1717       // Change the load into a load of bool then a select.
1718       LoadInst *LI = cast<LoadInst>(UI);
1719       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1720                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1721       Instruction *NSI;
1722       if (IsOneZero)
1723         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1724       else
1725         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1726       NSI->takeName(LI);
1727       // Since LI is split into two instructions, NLI and NSI both inherit the
1728       // same DebugLoc
1729       NLI->setDebugLoc(LI->getDebugLoc());
1730       NSI->setDebugLoc(LI->getDebugLoc());
1731       LI->replaceAllUsesWith(NSI);
1732     }
1733     UI->eraseFromParent();
1734   }
1735 
1736   // Retain the name of the old global variable. People who are debugging their
1737   // programs may expect these variables to be named the same.
1738   NewGV->takeName(GV);
1739   GV->eraseFromParent();
1740   return true;
1741 }
1742 
1743 static bool deleteIfDead(
1744     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1745   GV.removeDeadConstantUsers();
1746 
1747   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1748     return false;
1749 
1750   if (const Comdat *C = GV.getComdat())
1751     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1752       return false;
1753 
1754   bool Dead;
1755   if (auto *F = dyn_cast<Function>(&GV))
1756     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1757   else
1758     Dead = GV.use_empty();
1759   if (!Dead)
1760     return false;
1761 
1762   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1763   GV.eraseFromParent();
1764   ++NumDeleted;
1765   return true;
1766 }
1767 
1768 static bool isPointerValueDeadOnEntryToFunction(
1769     const Function *F, GlobalValue *GV,
1770     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1771   // Find all uses of GV. We expect them all to be in F, and if we can't
1772   // identify any of the uses we bail out.
1773   //
1774   // On each of these uses, identify if the memory that GV points to is
1775   // used/required/live at the start of the function. If it is not, for example
1776   // if the first thing the function does is store to the GV, the GV can
1777   // possibly be demoted.
1778   //
1779   // We don't do an exhaustive search for memory operations - simply look
1780   // through bitcasts as they're quite common and benign.
1781   const DataLayout &DL = GV->getParent()->getDataLayout();
1782   SmallVector<LoadInst *, 4> Loads;
1783   SmallVector<StoreInst *, 4> Stores;
1784   for (auto *U : GV->users()) {
1785     if (Operator::getOpcode(U) == Instruction::BitCast) {
1786       for (auto *UU : U->users()) {
1787         if (auto *LI = dyn_cast<LoadInst>(UU))
1788           Loads.push_back(LI);
1789         else if (auto *SI = dyn_cast<StoreInst>(UU))
1790           Stores.push_back(SI);
1791         else
1792           return false;
1793       }
1794       continue;
1795     }
1796 
1797     Instruction *I = dyn_cast<Instruction>(U);
1798     if (!I)
1799       return false;
1800     assert(I->getParent()->getParent() == F);
1801 
1802     if (auto *LI = dyn_cast<LoadInst>(I))
1803       Loads.push_back(LI);
1804     else if (auto *SI = dyn_cast<StoreInst>(I))
1805       Stores.push_back(SI);
1806     else
1807       return false;
1808   }
1809 
1810   // We have identified all uses of GV into loads and stores. Now check if all
1811   // of them are known not to depend on the value of the global at the function
1812   // entry point. We do this by ensuring that every load is dominated by at
1813   // least one store.
1814   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1815 
1816   // The below check is quadratic. Check we're not going to do too many tests.
1817   // FIXME: Even though this will always have worst-case quadratic time, we
1818   // could put effort into minimizing the average time by putting stores that
1819   // have been shown to dominate at least one load at the beginning of the
1820   // Stores array, making subsequent dominance checks more likely to succeed
1821   // early.
1822   //
1823   // The threshold here is fairly large because global->local demotion is a
1824   // very powerful optimization should it fire.
1825   const unsigned Threshold = 100;
1826   if (Loads.size() * Stores.size() > Threshold)
1827     return false;
1828 
1829   for (auto *L : Loads) {
1830     auto *LTy = L->getType();
1831     if (none_of(Stores, [&](const StoreInst *S) {
1832           auto *STy = S->getValueOperand()->getType();
1833           // The load is only dominated by the store if DomTree says so
1834           // and the number of bits loaded in L is less than or equal to
1835           // the number of bits stored in S.
1836           return DT.dominates(S, L) &&
1837                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1838         }))
1839       return false;
1840   }
1841   // All loads have known dependences inside F, so the global can be localized.
1842   return true;
1843 }
1844 
1845 /// C may have non-instruction users. Can all of those users be turned into
1846 /// instructions?
1847 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1848   // We don't do this exhaustively. The most common pattern that we really need
1849   // to care about is a constant GEP or constant bitcast - so just looking
1850   // through one single ConstantExpr.
1851   //
1852   // The set of constants that this function returns true for must be able to be
1853   // handled by makeAllConstantUsesInstructions.
1854   for (auto *U : C->users()) {
1855     if (isa<Instruction>(U))
1856       continue;
1857     if (!isa<ConstantExpr>(U))
1858       // Non instruction, non-constantexpr user; cannot convert this.
1859       return false;
1860     for (auto *UU : U->users())
1861       if (!isa<Instruction>(UU))
1862         // A constantexpr used by another constant. We don't try and recurse any
1863         // further but just bail out at this point.
1864         return false;
1865   }
1866 
1867   return true;
1868 }
1869 
1870 /// C may have non-instruction users, and
1871 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1872 /// non-instruction users to instructions.
1873 static void makeAllConstantUsesInstructions(Constant *C) {
1874   SmallVector<ConstantExpr*,4> Users;
1875   for (auto *U : C->users()) {
1876     if (isa<ConstantExpr>(U))
1877       Users.push_back(cast<ConstantExpr>(U));
1878     else
1879       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1880       // should not have returned true for C.
1881       assert(
1882           isa<Instruction>(U) &&
1883           "Can't transform non-constantexpr non-instruction to instruction!");
1884   }
1885 
1886   SmallVector<Value*,4> UUsers;
1887   for (auto *U : Users) {
1888     UUsers.clear();
1889     for (auto *UU : U->users())
1890       UUsers.push_back(UU);
1891     for (auto *UU : UUsers) {
1892       Instruction *UI = cast<Instruction>(UU);
1893       Instruction *NewU = U->getAsInstruction();
1894       NewU->insertBefore(UI);
1895       UI->replaceUsesOfWith(U, NewU);
1896     }
1897     // We've replaced all the uses, so destroy the constant. (destroyConstant
1898     // will update value handles and metadata.)
1899     U->destroyConstant();
1900   }
1901 }
1902 
1903 /// Analyze the specified global variable and optimize
1904 /// it if possible.  If we make a change, return true.
1905 static bool processInternalGlobal(
1906     GlobalVariable *GV, const GlobalStatus &GS, TargetLibraryInfo *TLI,
1907     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1908   auto &DL = GV->getParent()->getDataLayout();
1909   // If this is a first class global and has only one accessing function and
1910   // this function is non-recursive, we replace the global with a local alloca
1911   // in this function.
1912   //
1913   // NOTE: It doesn't make sense to promote non-single-value types since we
1914   // are just replacing static memory to stack memory.
1915   //
1916   // If the global is in different address space, don't bring it to stack.
1917   if (!GS.HasMultipleAccessingFunctions &&
1918       GS.AccessingFunction &&
1919       GV->getValueType()->isSingleValueType() &&
1920       GV->getType()->getAddressSpace() == 0 &&
1921       !GV->isExternallyInitialized() &&
1922       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1923       GS.AccessingFunction->doesNotRecurse() &&
1924       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1925                                           LookupDomTree)) {
1926     const DataLayout &DL = GV->getParent()->getDataLayout();
1927 
1928     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1929     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1930                                                    ->getEntryBlock().begin());
1931     Type *ElemTy = GV->getValueType();
1932     // FIXME: Pass Global's alignment when globals have alignment
1933     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1934                                         GV->getName(), &FirstI);
1935     if (!isa<UndefValue>(GV->getInitializer()))
1936       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1937 
1938     makeAllConstantUsesInstructions(GV);
1939 
1940     GV->replaceAllUsesWith(Alloca);
1941     GV->eraseFromParent();
1942     ++NumLocalized;
1943     return true;
1944   }
1945 
1946   // If the global is never loaded (but may be stored to), it is dead.
1947   // Delete it now.
1948   if (!GS.IsLoaded) {
1949     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1950 
1951     bool Changed;
1952     if (isLeakCheckerRoot(GV)) {
1953       // Delete any constant stores to the global.
1954       Changed = CleanupPointerRootUsers(GV, TLI);
1955     } else {
1956       // Delete any stores we can find to the global.  We may not be able to
1957       // make it completely dead though.
1958       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1959     }
1960 
1961     // If the global is dead now, delete it.
1962     if (GV->use_empty()) {
1963       GV->eraseFromParent();
1964       ++NumDeleted;
1965       Changed = true;
1966     }
1967     return Changed;
1968 
1969   }
1970   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1971     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1972     GV->setConstant(true);
1973 
1974     // Clean up any obviously simplifiable users now.
1975     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1976 
1977     // If the global is dead now, just nuke it.
1978     if (GV->use_empty()) {
1979       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1980                         << "all users and delete global!\n");
1981       GV->eraseFromParent();
1982       ++NumDeleted;
1983       return true;
1984     }
1985 
1986     // Fall through to the next check; see if we can optimize further.
1987     ++NumMarked;
1988   }
1989   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1990     const DataLayout &DL = GV->getParent()->getDataLayout();
1991     if (SRAGlobal(GV, DL))
1992       return true;
1993   }
1994   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1995     // If the initial value for the global was an undef value, and if only
1996     // one other value was stored into it, we can just change the
1997     // initializer to be the stored value, then delete all stores to the
1998     // global.  This allows us to mark it constant.
1999     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2000       if (isa<UndefValue>(GV->getInitializer())) {
2001         // Change the initial value here.
2002         GV->setInitializer(SOVConstant);
2003 
2004         // Clean up any obviously simplifiable users now.
2005         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
2006 
2007         if (GV->use_empty()) {
2008           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2009                             << "simplify all users and delete global!\n");
2010           GV->eraseFromParent();
2011           ++NumDeleted;
2012         }
2013         ++NumSubstitute;
2014         return true;
2015       }
2016 
2017     // Try to optimize globals based on the knowledge that only one value
2018     // (besides its initializer) is ever stored to the global.
2019     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, TLI))
2020       return true;
2021 
2022     // Otherwise, if the global was not a boolean, we can shrink it to be a
2023     // boolean.
2024     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2025       if (GS.Ordering == AtomicOrdering::NotAtomic) {
2026         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2027           ++NumShrunkToBool;
2028           return true;
2029         }
2030       }
2031     }
2032   }
2033 
2034   return false;
2035 }
2036 
2037 /// Analyze the specified global variable and optimize it if possible.  If we
2038 /// make a change, return true.
2039 static bool
2040 processGlobal(GlobalValue &GV, TargetLibraryInfo *TLI,
2041               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2042   if (GV.getName().startswith("llvm."))
2043     return false;
2044 
2045   GlobalStatus GS;
2046 
2047   if (GlobalStatus::analyzeGlobal(&GV, GS))
2048     return false;
2049 
2050   bool Changed = false;
2051   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2052     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2053                                                : GlobalValue::UnnamedAddr::Local;
2054     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2055       GV.setUnnamedAddr(NewUnnamedAddr);
2056       NumUnnamed++;
2057       Changed = true;
2058     }
2059   }
2060 
2061   // Do more involved optimizations if the global is internal.
2062   if (!GV.hasLocalLinkage())
2063     return Changed;
2064 
2065   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2066   if (!GVar)
2067     return Changed;
2068 
2069   if (GVar->isConstant() || !GVar->hasInitializer())
2070     return Changed;
2071 
2072   return processInternalGlobal(GVar, GS, TLI, LookupDomTree) || Changed;
2073 }
2074 
2075 /// Walk all of the direct calls of the specified function, changing them to
2076 /// FastCC.
2077 static void ChangeCalleesToFastCall(Function *F) {
2078   for (User *U : F->users()) {
2079     if (isa<BlockAddress>(U))
2080       continue;
2081     CallSite CS(cast<Instruction>(U));
2082     CS.setCallingConv(CallingConv::Fast);
2083   }
2084 }
2085 
2086 static AttributeList StripNest(LLVMContext &C, AttributeList Attrs) {
2087   // There can be at most one attribute set with a nest attribute.
2088   unsigned NestIndex;
2089   if (Attrs.hasAttrSomewhere(Attribute::Nest, &NestIndex))
2090     return Attrs.removeAttribute(C, NestIndex, Attribute::Nest);
2091   return Attrs;
2092 }
2093 
2094 static void RemoveNestAttribute(Function *F) {
2095   F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
2096   for (User *U : F->users()) {
2097     if (isa<BlockAddress>(U))
2098       continue;
2099     CallSite CS(cast<Instruction>(U));
2100     CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
2101   }
2102 }
2103 
2104 /// Return true if this is a calling convention that we'd like to change.  The
2105 /// idea here is that we don't want to mess with the convention if the user
2106 /// explicitly requested something with performance implications like coldcc,
2107 /// GHC, or anyregcc.
2108 static bool hasChangeableCC(Function *F) {
2109   CallingConv::ID CC = F->getCallingConv();
2110 
2111   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2112   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2113     return false;
2114 
2115   // Don't break the invariant that the inalloca parameter is the only parameter
2116   // passed in memory.
2117   // FIXME: GlobalOpt should remove inalloca when possible and hoist the dynamic
2118   // alloca it uses to the entry block if possible.
2119   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
2120     return false;
2121 
2122   // FIXME: Change CC for the whole chain of musttail calls when possible.
2123   //
2124   // Can't change CC of the function that either has musttail calls, or is a
2125   // musttail callee itself
2126   for (User *U : F->users()) {
2127     if (isa<BlockAddress>(U))
2128       continue;
2129     CallInst* CI = dyn_cast<CallInst>(U);
2130     if (!CI)
2131       continue;
2132 
2133     if (CI->isMustTailCall())
2134       return false;
2135   }
2136 
2137   for (BasicBlock &BB : *F)
2138     if (BB.getTerminatingMustTailCall())
2139       return false;
2140 
2141   return true;
2142 }
2143 
2144 /// Return true if the block containing the call site has a BlockFrequency of
2145 /// less than ColdCCRelFreq% of the entry block.
2146 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
2147   const BranchProbability ColdProb(ColdCCRelFreq, 100);
2148   auto CallSiteBB = CS.getInstruction()->getParent();
2149   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2150   auto CallerEntryFreq =
2151       CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
2152   return CallSiteFreq < CallerEntryFreq * ColdProb;
2153 }
2154 
2155 // This function checks if the input function F is cold at all call sites. It
2156 // also looks each call site's containing function, returning false if the
2157 // caller function contains other non cold calls. The input vector AllCallsCold
2158 // contains a list of functions that only have call sites in cold blocks.
2159 static bool
2160 isValidCandidateForColdCC(Function &F,
2161                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2162                           const std::vector<Function *> &AllCallsCold) {
2163 
2164   if (F.user_empty())
2165     return false;
2166 
2167   for (User *U : F.users()) {
2168     if (isa<BlockAddress>(U))
2169       continue;
2170 
2171     CallSite CS(cast<Instruction>(U));
2172     Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
2173     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2174     if (!isColdCallSite(CS, CallerBFI))
2175       return false;
2176     auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2177     if (It == AllCallsCold.end())
2178       return false;
2179   }
2180   return true;
2181 }
2182 
2183 static void changeCallSitesToColdCC(Function *F) {
2184   for (User *U : F->users()) {
2185     if (isa<BlockAddress>(U))
2186       continue;
2187     CallSite CS(cast<Instruction>(U));
2188     CS.setCallingConv(CallingConv::Cold);
2189   }
2190 }
2191 
2192 // This function iterates over all the call instructions in the input Function
2193 // and checks that all call sites are in cold blocks and are allowed to use the
2194 // coldcc calling convention.
2195 static bool
2196 hasOnlyColdCalls(Function &F,
2197                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2198   for (BasicBlock &BB : F) {
2199     for (Instruction &I : BB) {
2200       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2201         CallSite CS(cast<Instruction>(CI));
2202         // Skip over isline asm instructions since they aren't function calls.
2203         if (CI->isInlineAsm())
2204           continue;
2205         Function *CalledFn = CI->getCalledFunction();
2206         if (!CalledFn)
2207           return false;
2208         if (!CalledFn->hasLocalLinkage())
2209           return false;
2210         // Skip over instrinsics since they won't remain as function calls.
2211         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2212           continue;
2213         // Check if it's valid to use coldcc calling convention.
2214         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2215             CalledFn->hasAddressTaken())
2216           return false;
2217         BlockFrequencyInfo &CallerBFI = GetBFI(F);
2218         if (!isColdCallSite(CS, CallerBFI))
2219           return false;
2220       }
2221     }
2222   }
2223   return true;
2224 }
2225 
2226 static bool
2227 OptimizeFunctions(Module &M, TargetLibraryInfo *TLI,
2228                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
2229                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2230                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2231                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2232 
2233   bool Changed = false;
2234 
2235   std::vector<Function *> AllCallsCold;
2236   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2237     Function *F = &*FI++;
2238     if (hasOnlyColdCalls(*F, GetBFI))
2239       AllCallsCold.push_back(F);
2240   }
2241 
2242   // Optimize functions.
2243   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2244     Function *F = &*FI++;
2245 
2246     // Don't perform global opt pass on naked functions; we don't want fast
2247     // calling conventions for naked functions.
2248     if (F->hasFnAttribute(Attribute::Naked))
2249       continue;
2250 
2251     // Functions without names cannot be referenced outside this module.
2252     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2253       F->setLinkage(GlobalValue::InternalLinkage);
2254 
2255     if (deleteIfDead(*F, NotDiscardableComdats)) {
2256       Changed = true;
2257       continue;
2258     }
2259 
2260     // LLVM's definition of dominance allows instructions that are cyclic
2261     // in unreachable blocks, e.g.:
2262     // %pat = select i1 %condition, @global, i16* %pat
2263     // because any instruction dominates an instruction in a block that's
2264     // not reachable from entry.
2265     // So, remove unreachable blocks from the function, because a) there's
2266     // no point in analyzing them and b) GlobalOpt should otherwise grow
2267     // some more complicated logic to break these cycles.
2268     // Removing unreachable blocks might invalidate the dominator so we
2269     // recalculate it.
2270     if (!F->isDeclaration()) {
2271       if (removeUnreachableBlocks(*F)) {
2272         auto &DT = LookupDomTree(*F);
2273         DT.recalculate(*F);
2274         Changed = true;
2275       }
2276     }
2277 
2278     Changed |= processGlobal(*F, TLI, LookupDomTree);
2279 
2280     if (!F->hasLocalLinkage())
2281       continue;
2282 
2283     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2284       NumInternalFunc++;
2285       TargetTransformInfo &TTI = GetTTI(*F);
2286       // Change the calling convention to coldcc if either stress testing is
2287       // enabled or the target would like to use coldcc on functions which are
2288       // cold at all call sites and the callers contain no other non coldcc
2289       // calls.
2290       if (EnableColdCCStressTest ||
2291           (isValidCandidateForColdCC(*F, GetBFI, AllCallsCold) &&
2292            TTI.useColdCCForColdCall(*F))) {
2293         F->setCallingConv(CallingConv::Cold);
2294         changeCallSitesToColdCC(F);
2295         Changed = true;
2296         NumColdCC++;
2297       }
2298     }
2299 
2300     if (hasChangeableCC(F) && !F->isVarArg() &&
2301         !F->hasAddressTaken()) {
2302       // If this function has a calling convention worth changing, is not a
2303       // varargs function, and is only called directly, promote it to use the
2304       // Fast calling convention.
2305       F->setCallingConv(CallingConv::Fast);
2306       ChangeCalleesToFastCall(F);
2307       ++NumFastCallFns;
2308       Changed = true;
2309     }
2310 
2311     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2312         !F->hasAddressTaken()) {
2313       // The function is not used by a trampoline intrinsic, so it is safe
2314       // to remove the 'nest' attribute.
2315       RemoveNestAttribute(F);
2316       ++NumNestRemoved;
2317       Changed = true;
2318     }
2319   }
2320   return Changed;
2321 }
2322 
2323 static bool
2324 OptimizeGlobalVars(Module &M, TargetLibraryInfo *TLI,
2325                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2326                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2327   bool Changed = false;
2328 
2329   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2330        GVI != E; ) {
2331     GlobalVariable *GV = &*GVI++;
2332     // Global variables without names cannot be referenced outside this module.
2333     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2334       GV->setLinkage(GlobalValue::InternalLinkage);
2335     // Simplify the initializer.
2336     if (GV->hasInitializer())
2337       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2338         auto &DL = M.getDataLayout();
2339         Constant *New = ConstantFoldConstant(C, DL, TLI);
2340         if (New && New != C)
2341           GV->setInitializer(New);
2342       }
2343 
2344     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2345       Changed = true;
2346       continue;
2347     }
2348 
2349     Changed |= processGlobal(*GV, TLI, LookupDomTree);
2350   }
2351   return Changed;
2352 }
2353 
2354 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2355 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2356 /// GEP operands of Addr [0, OpNo) have been stepped into.
2357 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2358                                    ConstantExpr *Addr, unsigned OpNo) {
2359   // Base case of the recursion.
2360   if (OpNo == Addr->getNumOperands()) {
2361     assert(Val->getType() == Init->getType() && "Type mismatch!");
2362     return Val;
2363   }
2364 
2365   SmallVector<Constant*, 32> Elts;
2366   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2367     // Break up the constant into its elements.
2368     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2369       Elts.push_back(Init->getAggregateElement(i));
2370 
2371     // Replace the element that we are supposed to.
2372     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2373     unsigned Idx = CU->getZExtValue();
2374     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2375     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2376 
2377     // Return the modified struct.
2378     return ConstantStruct::get(STy, Elts);
2379   }
2380 
2381   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2382   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2383   uint64_t NumElts = InitTy->getNumElements();
2384 
2385   // Break up the array into elements.
2386   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2387     Elts.push_back(Init->getAggregateElement(i));
2388 
2389   assert(CI->getZExtValue() < NumElts);
2390   Elts[CI->getZExtValue()] =
2391     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2392 
2393   if (Init->getType()->isArrayTy())
2394     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2395   return ConstantVector::get(Elts);
2396 }
2397 
2398 /// We have decided that Addr (which satisfies the predicate
2399 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2400 static void CommitValueTo(Constant *Val, Constant *Addr) {
2401   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2402     assert(GV->hasInitializer());
2403     GV->setInitializer(Val);
2404     return;
2405   }
2406 
2407   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2408   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2409   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2410 }
2411 
2412 /// Given a map of address -> value, where addresses are expected to be some form
2413 /// of either a global or a constant GEP, set the initializer for the address to
2414 /// be the value. This performs mostly the same function as CommitValueTo()
2415 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2416 /// case where the set of addresses are GEPs sharing the same underlying global,
2417 /// processing the GEPs in batches rather than individually.
2418 ///
2419 /// To give an example, consider the following C++ code adapted from the clang
2420 /// regression tests:
2421 /// struct S {
2422 ///  int n = 10;
2423 ///  int m = 2 * n;
2424 ///  S(int a) : n(a) {}
2425 /// };
2426 ///
2427 /// template<typename T>
2428 /// struct U {
2429 ///  T *r = &q;
2430 ///  T q = 42;
2431 ///  U *p = this;
2432 /// };
2433 ///
2434 /// U<S> e;
2435 ///
2436 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2437 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2438 /// members. This batch algorithm will simply use general CommitValueTo() method
2439 /// to handle the complex nested S struct initialization of 'q', before
2440 /// processing the outermost members in a single batch. Using CommitValueTo() to
2441 /// handle member in the outer struct is inefficient when the struct/array is
2442 /// very large as we end up creating and destroy constant arrays for each
2443 /// initialization.
2444 /// For the above case, we expect the following IR to be generated:
2445 ///
2446 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2447 /// %struct.S = type { i32, i32 }
2448 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2449 ///                                                  i64 0, i32 1),
2450 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2451 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2452 /// constant expression, while the other two elements of @e are "simple".
2453 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2454   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2455   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2456   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2457   SimpleCEs.reserve(Mem.size());
2458 
2459   for (const auto &I : Mem) {
2460     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2461       GVs.push_back(std::make_pair(GV, I.second));
2462     } else {
2463       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2464       // We don't handle the deeply recursive case using the batch method.
2465       if (GEP->getNumOperands() > 3)
2466         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2467       else
2468         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2469     }
2470   }
2471 
2472   // The algorithm below doesn't handle cases like nested structs, so use the
2473   // slower fully general method if we have to.
2474   for (auto ComplexCE : ComplexCEs)
2475     CommitValueTo(ComplexCE.second, ComplexCE.first);
2476 
2477   for (auto GVPair : GVs) {
2478     assert(GVPair.first->hasInitializer());
2479     GVPair.first->setInitializer(GVPair.second);
2480   }
2481 
2482   if (SimpleCEs.empty())
2483     return;
2484 
2485   // We cache a single global's initializer elements in the case where the
2486   // subsequent address/val pair uses the same one. This avoids throwing away and
2487   // rebuilding the constant struct/vector/array just because one element is
2488   // modified at a time.
2489   SmallVector<Constant *, 32> Elts;
2490   Elts.reserve(SimpleCEs.size());
2491   GlobalVariable *CurrentGV = nullptr;
2492 
2493   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2494     Constant *Init = GV->getInitializer();
2495     Type *Ty = Init->getType();
2496     if (Update) {
2497       if (CurrentGV) {
2498         assert(CurrentGV && "Expected a GV to commit to!");
2499         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2500         // We have a valid cache that needs to be committed.
2501         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2502           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2503         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2504           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2505         else
2506           CurrentGV->setInitializer(ConstantVector::get(Elts));
2507       }
2508       if (CurrentGV == GV)
2509         return;
2510       // Need to clear and set up cache for new initializer.
2511       CurrentGV = GV;
2512       Elts.clear();
2513       unsigned NumElts;
2514       if (auto *STy = dyn_cast<StructType>(Ty))
2515         NumElts = STy->getNumElements();
2516       else
2517         NumElts = cast<SequentialType>(Ty)->getNumElements();
2518       for (unsigned i = 0, e = NumElts; i != e; ++i)
2519         Elts.push_back(Init->getAggregateElement(i));
2520     }
2521   };
2522 
2523   for (auto CEPair : SimpleCEs) {
2524     ConstantExpr *GEP = CEPair.first;
2525     Constant *Val = CEPair.second;
2526 
2527     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2528     commitAndSetupCache(GV, GV != CurrentGV);
2529     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2530     Elts[CI->getZExtValue()] = Val;
2531   }
2532   // The last initializer in the list needs to be committed, others
2533   // will be committed on a new initializer being processed.
2534   commitAndSetupCache(CurrentGV, true);
2535 }
2536 
2537 /// Evaluate static constructors in the function, if we can.  Return true if we
2538 /// can, false otherwise.
2539 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2540                                       TargetLibraryInfo *TLI) {
2541   // Call the function.
2542   Evaluator Eval(DL, TLI);
2543   Constant *RetValDummy;
2544   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2545                                            SmallVector<Constant*, 0>());
2546 
2547   if (EvalSuccess) {
2548     ++NumCtorsEvaluated;
2549 
2550     // We succeeded at evaluation: commit the result.
2551     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2552                       << F->getName() << "' to "
2553                       << Eval.getMutatedMemory().size() << " stores.\n");
2554     BatchCommitValueTo(Eval.getMutatedMemory());
2555     for (GlobalVariable *GV : Eval.getInvariants())
2556       GV->setConstant(true);
2557   }
2558 
2559   return EvalSuccess;
2560 }
2561 
2562 static int compareNames(Constant *const *A, Constant *const *B) {
2563   Value *AStripped = (*A)->stripPointerCastsNoFollowAliases();
2564   Value *BStripped = (*B)->stripPointerCastsNoFollowAliases();
2565   return AStripped->getName().compare(BStripped->getName());
2566 }
2567 
2568 static void setUsedInitializer(GlobalVariable &V,
2569                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2570   if (Init.empty()) {
2571     V.eraseFromParent();
2572     return;
2573   }
2574 
2575   // Type of pointer to the array of pointers.
2576   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2577 
2578   SmallVector<Constant *, 8> UsedArray;
2579   for (GlobalValue *GV : Init) {
2580     Constant *Cast
2581       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2582     UsedArray.push_back(Cast);
2583   }
2584   // Sort to get deterministic order.
2585   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2586   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2587 
2588   Module *M = V.getParent();
2589   V.removeFromParent();
2590   GlobalVariable *NV =
2591       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2592                          ConstantArray::get(ATy, UsedArray), "");
2593   NV->takeName(&V);
2594   NV->setSection("llvm.metadata");
2595   delete &V;
2596 }
2597 
2598 namespace {
2599 
2600 /// An easy to access representation of llvm.used and llvm.compiler.used.
2601 class LLVMUsed {
2602   SmallPtrSet<GlobalValue *, 8> Used;
2603   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2604   GlobalVariable *UsedV;
2605   GlobalVariable *CompilerUsedV;
2606 
2607 public:
2608   LLVMUsed(Module &M) {
2609     UsedV = collectUsedGlobalVariables(M, Used, false);
2610     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2611   }
2612 
2613   using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2614   using used_iterator_range = iterator_range<iterator>;
2615 
2616   iterator usedBegin() { return Used.begin(); }
2617   iterator usedEnd() { return Used.end(); }
2618 
2619   used_iterator_range used() {
2620     return used_iterator_range(usedBegin(), usedEnd());
2621   }
2622 
2623   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2624   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2625 
2626   used_iterator_range compilerUsed() {
2627     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2628   }
2629 
2630   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2631 
2632   bool compilerUsedCount(GlobalValue *GV) const {
2633     return CompilerUsed.count(GV);
2634   }
2635 
2636   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2637   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2638   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2639 
2640   bool compilerUsedInsert(GlobalValue *GV) {
2641     return CompilerUsed.insert(GV).second;
2642   }
2643 
2644   void syncVariablesAndSets() {
2645     if (UsedV)
2646       setUsedInitializer(*UsedV, Used);
2647     if (CompilerUsedV)
2648       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2649   }
2650 };
2651 
2652 } // end anonymous namespace
2653 
2654 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2655   if (GA.use_empty()) // No use at all.
2656     return false;
2657 
2658   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2659          "We should have removed the duplicated "
2660          "element from llvm.compiler.used");
2661   if (!GA.hasOneUse())
2662     // Strictly more than one use. So at least one is not in llvm.used and
2663     // llvm.compiler.used.
2664     return true;
2665 
2666   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2667   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2668 }
2669 
2670 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2671                                                const LLVMUsed &U) {
2672   unsigned N = 2;
2673   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2674          "We should have removed the duplicated "
2675          "element from llvm.compiler.used");
2676   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2677     ++N;
2678   return V.hasNUsesOrMore(N);
2679 }
2680 
2681 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2682   if (!GA.hasLocalLinkage())
2683     return true;
2684 
2685   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2686 }
2687 
2688 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2689                              bool &RenameTarget) {
2690   RenameTarget = false;
2691   bool Ret = false;
2692   if (hasUseOtherThanLLVMUsed(GA, U))
2693     Ret = true;
2694 
2695   // If the alias is externally visible, we may still be able to simplify it.
2696   if (!mayHaveOtherReferences(GA, U))
2697     return Ret;
2698 
2699   // If the aliasee has internal linkage, give it the name and linkage
2700   // of the alias, and delete the alias.  This turns:
2701   //   define internal ... @f(...)
2702   //   @a = alias ... @f
2703   // into:
2704   //   define ... @a(...)
2705   Constant *Aliasee = GA.getAliasee();
2706   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2707   if (!Target->hasLocalLinkage())
2708     return Ret;
2709 
2710   // Do not perform the transform if multiple aliases potentially target the
2711   // aliasee. This check also ensures that it is safe to replace the section
2712   // and other attributes of the aliasee with those of the alias.
2713   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2714     return Ret;
2715 
2716   RenameTarget = true;
2717   return true;
2718 }
2719 
2720 static bool
2721 OptimizeGlobalAliases(Module &M,
2722                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2723   bool Changed = false;
2724   LLVMUsed Used(M);
2725 
2726   for (GlobalValue *GV : Used.used())
2727     Used.compilerUsedErase(GV);
2728 
2729   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2730        I != E;) {
2731     GlobalAlias *J = &*I++;
2732 
2733     // Aliases without names cannot be referenced outside this module.
2734     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2735       J->setLinkage(GlobalValue::InternalLinkage);
2736 
2737     if (deleteIfDead(*J, NotDiscardableComdats)) {
2738       Changed = true;
2739       continue;
2740     }
2741 
2742     // If the alias can change at link time, nothing can be done - bail out.
2743     if (J->isInterposable())
2744       continue;
2745 
2746     Constant *Aliasee = J->getAliasee();
2747     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2748     // We can't trivially replace the alias with the aliasee if the aliasee is
2749     // non-trivial in some way.
2750     // TODO: Try to handle non-zero GEPs of local aliasees.
2751     if (!Target)
2752       continue;
2753     Target->removeDeadConstantUsers();
2754 
2755     // Make all users of the alias use the aliasee instead.
2756     bool RenameTarget;
2757     if (!hasUsesToReplace(*J, Used, RenameTarget))
2758       continue;
2759 
2760     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2761     ++NumAliasesResolved;
2762     Changed = true;
2763 
2764     if (RenameTarget) {
2765       // Give the aliasee the name, linkage and other attributes of the alias.
2766       Target->takeName(&*J);
2767       Target->setLinkage(J->getLinkage());
2768       Target->setDSOLocal(J->isDSOLocal());
2769       Target->setVisibility(J->getVisibility());
2770       Target->setDLLStorageClass(J->getDLLStorageClass());
2771 
2772       if (Used.usedErase(&*J))
2773         Used.usedInsert(Target);
2774 
2775       if (Used.compilerUsedErase(&*J))
2776         Used.compilerUsedInsert(Target);
2777     } else if (mayHaveOtherReferences(*J, Used))
2778       continue;
2779 
2780     // Delete the alias.
2781     M.getAliasList().erase(J);
2782     ++NumAliasesRemoved;
2783     Changed = true;
2784   }
2785 
2786   Used.syncVariablesAndSets();
2787 
2788   return Changed;
2789 }
2790 
2791 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
2792   LibFunc F = LibFunc_cxa_atexit;
2793   if (!TLI->has(F))
2794     return nullptr;
2795 
2796   Function *Fn = M.getFunction(TLI->getName(F));
2797   if (!Fn)
2798     return nullptr;
2799 
2800   // Make sure that the function has the correct prototype.
2801   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2802     return nullptr;
2803 
2804   return Fn;
2805 }
2806 
2807 /// Returns whether the given function is an empty C++ destructor and can
2808 /// therefore be eliminated.
2809 /// Note that we assume that other optimization passes have already simplified
2810 /// the code so we only look for a function with a single basic block, where
2811 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
2812 /// other side-effect free instructions.
2813 static bool cxxDtorIsEmpty(const Function &Fn,
2814                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
2815   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2816   // nounwind, but that doesn't seem worth doing.
2817   if (Fn.isDeclaration())
2818     return false;
2819 
2820   if (++Fn.begin() != Fn.end())
2821     return false;
2822 
2823   const BasicBlock &EntryBlock = Fn.getEntryBlock();
2824   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2825        I != E; ++I) {
2826     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2827       // Ignore debug intrinsics.
2828       if (isa<DbgInfoIntrinsic>(CI))
2829         continue;
2830 
2831       const Function *CalledFn = CI->getCalledFunction();
2832 
2833       if (!CalledFn)
2834         return false;
2835 
2836       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2837 
2838       // Don't treat recursive functions as empty.
2839       if (!NewCalledFunctions.insert(CalledFn).second)
2840         return false;
2841 
2842       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2843         return false;
2844     } else if (isa<ReturnInst>(*I))
2845       return true; // We're done.
2846     else if (I->mayHaveSideEffects())
2847       return false; // Destructor with side effects, bail.
2848   }
2849 
2850   return false;
2851 }
2852 
2853 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2854   /// Itanium C++ ABI p3.3.5:
2855   ///
2856   ///   After constructing a global (or local static) object, that will require
2857   ///   destruction on exit, a termination function is registered as follows:
2858   ///
2859   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2860   ///
2861   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2862   ///   call f(p) when DSO d is unloaded, before all such termination calls
2863   ///   registered before this one. It returns zero if registration is
2864   ///   successful, nonzero on failure.
2865 
2866   // This pass will look for calls to __cxa_atexit where the function is trivial
2867   // and remove them.
2868   bool Changed = false;
2869 
2870   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2871        I != E;) {
2872     // We're only interested in calls. Theoretically, we could handle invoke
2873     // instructions as well, but neither llvm-gcc nor clang generate invokes
2874     // to __cxa_atexit.
2875     CallInst *CI = dyn_cast<CallInst>(*I++);
2876     if (!CI)
2877       continue;
2878 
2879     Function *DtorFn =
2880       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2881     if (!DtorFn)
2882       continue;
2883 
2884     SmallPtrSet<const Function *, 8> CalledFunctions;
2885     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2886       continue;
2887 
2888     // Just remove the call.
2889     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2890     CI->eraseFromParent();
2891 
2892     ++NumCXXDtorsRemoved;
2893 
2894     Changed |= true;
2895   }
2896 
2897   return Changed;
2898 }
2899 
2900 static bool optimizeGlobalsInModule(
2901     Module &M, const DataLayout &DL, TargetLibraryInfo *TLI,
2902     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2903     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2904     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2905   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2906   bool Changed = false;
2907   bool LocalChange = true;
2908   while (LocalChange) {
2909     LocalChange = false;
2910 
2911     NotDiscardableComdats.clear();
2912     for (const GlobalVariable &GV : M.globals())
2913       if (const Comdat *C = GV.getComdat())
2914         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2915           NotDiscardableComdats.insert(C);
2916     for (Function &F : M)
2917       if (const Comdat *C = F.getComdat())
2918         if (!F.isDefTriviallyDead())
2919           NotDiscardableComdats.insert(C);
2920     for (GlobalAlias &GA : M.aliases())
2921       if (const Comdat *C = GA.getComdat())
2922         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2923           NotDiscardableComdats.insert(C);
2924 
2925     // Delete functions that are trivially dead, ccc -> fastcc
2926     LocalChange |= OptimizeFunctions(M, TLI, GetTTI, GetBFI, LookupDomTree,
2927                                      NotDiscardableComdats);
2928 
2929     // Optimize global_ctors list.
2930     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2931       return EvaluateStaticConstructor(F, DL, TLI);
2932     });
2933 
2934     // Optimize non-address-taken globals.
2935     LocalChange |= OptimizeGlobalVars(M, TLI, LookupDomTree,
2936                                       NotDiscardableComdats);
2937 
2938     // Resolve aliases, when possible.
2939     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2940 
2941     // Try to remove trivial global destructors if they are not removed
2942     // already.
2943     Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
2944     if (CXAAtExitFn)
2945       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2946 
2947     Changed |= LocalChange;
2948   }
2949 
2950   // TODO: Move all global ctors functions to the end of the module for code
2951   // layout.
2952 
2953   return Changed;
2954 }
2955 
2956 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2957     auto &DL = M.getDataLayout();
2958     auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
2959     auto &FAM =
2960         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2961     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2962       return FAM.getResult<DominatorTreeAnalysis>(F);
2963     };
2964     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2965       return FAM.getResult<TargetIRAnalysis>(F);
2966     };
2967 
2968     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2969       return FAM.getResult<BlockFrequencyAnalysis>(F);
2970     };
2971 
2972     if (!optimizeGlobalsInModule(M, DL, &TLI, GetTTI, GetBFI, LookupDomTree))
2973       return PreservedAnalyses::all();
2974     return PreservedAnalyses::none();
2975 }
2976 
2977 namespace {
2978 
2979 struct GlobalOptLegacyPass : public ModulePass {
2980   static char ID; // Pass identification, replacement for typeid
2981 
2982   GlobalOptLegacyPass() : ModulePass(ID) {
2983     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2984   }
2985 
2986   bool runOnModule(Module &M) override {
2987     if (skipModule(M))
2988       return false;
2989 
2990     auto &DL = M.getDataLayout();
2991     auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
2992     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2993       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2994     };
2995     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2996       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2997     };
2998 
2999     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3000       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3001     };
3002 
3003     return optimizeGlobalsInModule(M, DL, TLI, GetTTI, GetBFI, LookupDomTree);
3004   }
3005 
3006   void getAnalysisUsage(AnalysisUsage &AU) const override {
3007     AU.addRequired<TargetLibraryInfoWrapperPass>();
3008     AU.addRequired<TargetTransformInfoWrapperPass>();
3009     AU.addRequired<DominatorTreeWrapperPass>();
3010     AU.addRequired<BlockFrequencyInfoWrapperPass>();
3011   }
3012 };
3013 
3014 } // end anonymous namespace
3015 
3016 char GlobalOptLegacyPass::ID = 0;
3017 
3018 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3019                       "Global Variable Optimizer", false, false)
3020 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3021 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3022 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3023 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3024 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3025                     "Global Variable Optimizer", false, false)
3026 
3027 ModulePass *llvm::createGlobalOptimizerPass() {
3028   return new GlobalOptLegacyPass();
3029 }
3030