1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/BinaryFormat/Dwarf.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Use.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/IPO.h"
66 #include "llvm/Transforms/Utils/CtorUtils.h"
67 #include "llvm/Transforms/Utils/Evaluator.h"
68 #include "llvm/Transforms/Utils/GlobalStatus.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include <cassert>
71 #include <cstdint>
72 #include <utility>
73 #include <vector>
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "globalopt"
78 
79 STATISTIC(NumMarked    , "Number of globals marked constant");
80 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
81 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83 STATISTIC(NumDeleted   , "Number of globals deleted");
84 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
85 STATISTIC(NumLocalized , "Number of globals localized");
86 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
87 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93 STATISTIC(NumInternalFunc, "Number of internal functions");
94 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 
96 static cl::opt<bool>
97     EnableColdCCStressTest("enable-coldcc-stress-test",
98                            cl::desc("Enable stress test of coldcc by adding "
99                                     "calling conv to all internal functions."),
100                            cl::init(false), cl::Hidden);
101 
102 static cl::opt<int> ColdCCRelFreq(
103     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
104     cl::desc(
105         "Maximum block frequency, expressed as a percentage of caller's "
106         "entry frequency, for a call site to be considered cold for enabling"
107         "coldcc"));
108 
109 /// Is this global variable possibly used by a leak checker as a root?  If so,
110 /// we might not really want to eliminate the stores to it.
111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112   // A global variable is a root if it is a pointer, or could plausibly contain
113   // a pointer.  There are two challenges; one is that we could have a struct
114   // the has an inner member which is a pointer.  We recurse through the type to
115   // detect these (up to a point).  The other is that we may actually be a union
116   // of a pointer and another type, and so our LLVM type is an integer which
117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118   // potentially contained here.
119 
120   if (GV->hasPrivateLinkage())
121     return false;
122 
123   SmallVector<Type *, 4> Types;
124   Types.push_back(GV->getValueType());
125 
126   unsigned Limit = 20;
127   do {
128     Type *Ty = Types.pop_back_val();
129     switch (Ty->getTypeID()) {
130       default: break;
131       case Type::PointerTyID:
132         return true;
133       case Type::FixedVectorTyID:
134       case Type::ScalableVectorTyID:
135         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
136           return true;
137         break;
138       case Type::ArrayTyID:
139         Types.push_back(cast<ArrayType>(Ty)->getElementType());
140         break;
141       case Type::StructTyID: {
142         StructType *STy = cast<StructType>(Ty);
143         if (STy->isOpaque()) return true;
144         for (StructType::element_iterator I = STy->element_begin(),
145                  E = STy->element_end(); I != E; ++I) {
146           Type *InnerTy = *I;
147           if (isa<PointerType>(InnerTy)) return true;
148           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
149               isa<VectorType>(InnerTy))
150             Types.push_back(InnerTy);
151         }
152         break;
153       }
154     }
155     if (--Limit == 0) return true;
156   } while (!Types.empty());
157   return false;
158 }
159 
160 /// Given a value that is stored to a global but never read, determine whether
161 /// it's safe to remove the store and the chain of computation that feeds the
162 /// store.
163 static bool IsSafeComputationToRemove(
164     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
165   do {
166     if (isa<Constant>(V))
167       return true;
168     if (!V->hasOneUse())
169       return false;
170     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
171         isa<GlobalValue>(V))
172       return false;
173     if (isAllocationFn(V, GetTLI))
174       return true;
175 
176     Instruction *I = cast<Instruction>(V);
177     if (I->mayHaveSideEffects())
178       return false;
179     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
180       if (!GEP->hasAllConstantIndices())
181         return false;
182     } else if (I->getNumOperands() != 1) {
183       return false;
184     }
185 
186     V = I->getOperand(0);
187   } while (true);
188 }
189 
190 /// This GV is a pointer root.  Loop over all users of the global and clean up
191 /// any that obviously don't assign the global a value that isn't dynamically
192 /// allocated.
193 static bool
194 CleanupPointerRootUsers(GlobalVariable *GV,
195                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
196   // A brief explanation of leak checkers.  The goal is to find bugs where
197   // pointers are forgotten, causing an accumulating growth in memory
198   // usage over time.  The common strategy for leak checkers is to explicitly
199   // allow the memory pointed to by globals at exit.  This is popular because it
200   // also solves another problem where the main thread of a C++ program may shut
201   // down before other threads that are still expecting to use those globals. To
202   // handle that case, we expect the program may create a singleton and never
203   // destroy it.
204 
205   bool Changed = false;
206 
207   // If Dead[n].first is the only use of a malloc result, we can delete its
208   // chain of computation and the store to the global in Dead[n].second.
209   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
210 
211   // Constants can't be pointers to dynamically allocated memory.
212   for (User *U : llvm::make_early_inc_range(GV->users())) {
213     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
214       Value *V = SI->getValueOperand();
215       if (isa<Constant>(V)) {
216         Changed = true;
217         SI->eraseFromParent();
218       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
219         if (I->hasOneUse())
220           Dead.push_back(std::make_pair(I, SI));
221       }
222     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
223       if (isa<Constant>(MSI->getValue())) {
224         Changed = true;
225         MSI->eraseFromParent();
226       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
227         if (I->hasOneUse())
228           Dead.push_back(std::make_pair(I, MSI));
229       }
230     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
231       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
232       if (MemSrc && MemSrc->isConstant()) {
233         Changed = true;
234         MTI->eraseFromParent();
235       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
236         if (I->hasOneUse())
237           Dead.push_back(std::make_pair(I, MTI));
238       }
239     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
240       if (CE->use_empty()) {
241         CE->destroyConstant();
242         Changed = true;
243       }
244     } else if (Constant *C = dyn_cast<Constant>(U)) {
245       if (isSafeToDestroyConstant(C)) {
246         C->destroyConstant();
247         // This could have invalidated UI, start over from scratch.
248         Dead.clear();
249         CleanupPointerRootUsers(GV, GetTLI);
250         return true;
251       }
252     }
253   }
254 
255   for (int i = 0, e = Dead.size(); i != e; ++i) {
256     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
257       Dead[i].second->eraseFromParent();
258       Instruction *I = Dead[i].first;
259       do {
260         if (isAllocationFn(I, GetTLI))
261           break;
262         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
263         if (!J)
264           break;
265         I->eraseFromParent();
266         I = J;
267       } while (true);
268       I->eraseFromParent();
269       Changed = true;
270     }
271   }
272 
273   return Changed;
274 }
275 
276 /// We just marked GV constant.  Loop over all users of the global, cleaning up
277 /// the obvious ones.  This is largely just a quick scan over the use list to
278 /// clean up the easy and obvious cruft.  This returns true if it made a change.
279 static bool CleanupConstantGlobalUsers(GlobalVariable *GV,
280                                        const DataLayout &DL) {
281   Constant *Init = GV->getInitializer();
282   SmallVector<User *, 8> WorkList(GV->users());
283   SmallPtrSet<User *, 8> Visited;
284   bool Changed = false;
285 
286   SmallVector<WeakTrackingVH> MaybeDeadInsts;
287   auto EraseFromParent = [&](Instruction *I) {
288     for (Value *Op : I->operands())
289       if (auto *OpI = dyn_cast<Instruction>(Op))
290         MaybeDeadInsts.push_back(OpI);
291     I->eraseFromParent();
292     Changed = true;
293   };
294   while (!WorkList.empty()) {
295     User *U = WorkList.pop_back_val();
296     if (!Visited.insert(U).second)
297       continue;
298 
299     if (auto *BO = dyn_cast<BitCastOperator>(U))
300       append_range(WorkList, BO->users());
301     if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(U))
302       append_range(WorkList, ASC->users());
303     else if (auto *GEP = dyn_cast<GEPOperator>(U))
304       append_range(WorkList, GEP->users());
305     else if (auto *LI = dyn_cast<LoadInst>(U)) {
306       // A load from zeroinitializer is always zeroinitializer, regardless of
307       // any applied offset.
308       if (Init->isNullValue()) {
309         LI->replaceAllUsesWith(Constant::getNullValue(LI->getType()));
310         EraseFromParent(LI);
311         continue;
312       }
313 
314       Value *PtrOp = LI->getPointerOperand();
315       APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
316       PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
317           DL, Offset, /* AllowNonInbounds */ true);
318       if (PtrOp == GV) {
319         if (auto *Value = ConstantFoldLoadFromConst(Init, LI->getType(),
320                                                     Offset, DL)) {
321           LI->replaceAllUsesWith(Value);
322           EraseFromParent(LI);
323         }
324       }
325     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
326       // Store must be unreachable or storing Init into the global.
327       EraseFromParent(SI);
328     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
329       if (getUnderlyingObject(MI->getRawDest()) == GV)
330         EraseFromParent(MI);
331     }
332   }
333 
334   Changed |=
335       RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts);
336   GV->removeDeadConstantUsers();
337   return Changed;
338 }
339 
340 static bool isSafeSROAElementUse(Value *V);
341 
342 /// Return true if the specified GEP is a safe user of a derived
343 /// expression from a global that we want to SROA.
344 static bool isSafeSROAGEP(User *U) {
345   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
346   // don't like < 3 operand CE's, and we don't like non-constant integer
347   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
348   // value of C.
349   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
350       !cast<Constant>(U->getOperand(1))->isNullValue())
351     return false;
352 
353   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
354   ++GEPI; // Skip over the pointer index.
355 
356   // For all other level we require that the indices are constant and inrange.
357   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
358   // invalid things like allowing i to index an out-of-range subscript that
359   // accesses A[1]. This can also happen between different members of a struct
360   // in llvm IR.
361   for (; GEPI != E; ++GEPI) {
362     if (GEPI.isStruct())
363       continue;
364 
365     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
366     if (!IdxVal || (GEPI.isBoundedSequential() &&
367                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
368       return false;
369   }
370 
371   return llvm::all_of(U->users(),
372                       [](User *UU) { return isSafeSROAElementUse(UU); });
373 }
374 
375 /// Return true if the specified instruction is a safe user of a derived
376 /// expression from a global that we want to SROA.
377 static bool isSafeSROAElementUse(Value *V) {
378   // We might have a dead and dangling constant hanging off of here.
379   if (Constant *C = dyn_cast<Constant>(V))
380     return isSafeToDestroyConstant(C);
381 
382   Instruction *I = dyn_cast<Instruction>(V);
383   if (!I) return false;
384 
385   // Loads are ok.
386   if (isa<LoadInst>(I)) return true;
387 
388   // Stores *to* the pointer are ok.
389   if (StoreInst *SI = dyn_cast<StoreInst>(I))
390     return SI->getOperand(0) != V;
391 
392   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
393   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
394 }
395 
396 /// Look at all uses of the global and decide whether it is safe for us to
397 /// perform this transformation.
398 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
399   for (User *U : GV->users()) {
400     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
401     if (!isa<GetElementPtrInst>(U) &&
402         (!isa<ConstantExpr>(U) ||
403         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
404       return false;
405 
406     // Check the gep and it's users are safe to SRA
407     if (!isSafeSROAGEP(U))
408       return false;
409   }
410 
411   return true;
412 }
413 
414 static bool IsSRASequential(Type *T) {
415   return isa<ArrayType>(T) || isa<VectorType>(T);
416 }
417 static uint64_t GetSRASequentialNumElements(Type *T) {
418   if (ArrayType *AT = dyn_cast<ArrayType>(T))
419     return AT->getNumElements();
420   return cast<FixedVectorType>(T)->getNumElements();
421 }
422 static Type *GetSRASequentialElementType(Type *T) {
423   if (ArrayType *AT = dyn_cast<ArrayType>(T))
424     return AT->getElementType();
425   return cast<VectorType>(T)->getElementType();
426 }
427 static bool CanDoGlobalSRA(GlobalVariable *GV) {
428   Constant *Init = GV->getInitializer();
429 
430   if (isa<StructType>(Init->getType())) {
431     // nothing to check
432   } else if (IsSRASequential(Init->getType())) {
433     if (GetSRASequentialNumElements(Init->getType()) > 16 &&
434         GV->hasNUsesOrMore(16))
435       return false; // It's not worth it.
436   } else
437     return false;
438 
439   return GlobalUsersSafeToSRA(GV);
440 }
441 
442 /// Copy over the debug info for a variable to its SRA replacements.
443 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
444                                  uint64_t FragmentOffsetInBits,
445                                  uint64_t FragmentSizeInBits,
446                                  uint64_t VarSize) {
447   SmallVector<DIGlobalVariableExpression *, 1> GVs;
448   GV->getDebugInfo(GVs);
449   for (auto *GVE : GVs) {
450     DIVariable *Var = GVE->getVariable();
451     DIExpression *Expr = GVE->getExpression();
452     // If the FragmentSize is smaller than the variable,
453     // emit a fragment expression.
454     if (FragmentSizeInBits < VarSize) {
455       if (auto E = DIExpression::createFragmentExpression(
456               Expr, FragmentOffsetInBits, FragmentSizeInBits))
457         Expr = *E;
458       else
459         return;
460     }
461     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
462     NGV->addDebugInfo(NGVE);
463   }
464 }
465 
466 /// Perform scalar replacement of aggregates on the specified global variable.
467 /// This opens the door for other optimizations by exposing the behavior of the
468 /// program in a more fine-grained way.  We have determined that this
469 /// transformation is safe already.  We return the first global variable we
470 /// insert so that the caller can reprocess it.
471 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
472   // Make sure this global only has simple uses that we can SRA.
473   if (!CanDoGlobalSRA(GV))
474     return nullptr;
475 
476   assert(GV->hasLocalLinkage());
477   Constant *Init = GV->getInitializer();
478   Type *Ty = Init->getType();
479   uint64_t VarSize = DL.getTypeSizeInBits(Ty);
480 
481   std::map<unsigned, GlobalVariable *> NewGlobals;
482 
483   // Get the alignment of the global, either explicit or target-specific.
484   Align StartAlignment =
485       DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType());
486 
487   // Loop over all users and create replacement variables for used aggregate
488   // elements.
489   for (User *GEP : GV->users()) {
490     assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
491                                            Instruction::GetElementPtr) ||
492             isa<GetElementPtrInst>(GEP)) &&
493            "NonGEP CE's are not SRAable!");
494 
495     // Ignore the 1th operand, which has to be zero or else the program is quite
496     // broken (undefined).  Get the 2nd operand, which is the structure or array
497     // index.
498     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
499     if (NewGlobals.count(ElementIdx) == 1)
500       continue; // we`ve already created replacement variable
501     assert(NewGlobals.count(ElementIdx) == 0);
502 
503     Type *ElTy = nullptr;
504     if (StructType *STy = dyn_cast<StructType>(Ty))
505       ElTy = STy->getElementType(ElementIdx);
506     else
507       ElTy = GetSRASequentialElementType(Ty);
508     assert(ElTy);
509 
510     Constant *In = Init->getAggregateElement(ElementIdx);
511     assert(In && "Couldn't get element of initializer?");
512 
513     GlobalVariable *NGV = new GlobalVariable(
514         ElTy, false, GlobalVariable::InternalLinkage, In,
515         GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
516         GV->getType()->getAddressSpace());
517     NGV->setExternallyInitialized(GV->isExternallyInitialized());
518     NGV->copyAttributesFrom(GV);
519     NewGlobals.insert(std::make_pair(ElementIdx, NGV));
520 
521     if (StructType *STy = dyn_cast<StructType>(Ty)) {
522       const StructLayout &Layout = *DL.getStructLayout(STy);
523 
524       // Calculate the known alignment of the field.  If the original aggregate
525       // had 256 byte alignment for example, something might depend on that:
526       // propagate info to each field.
527       uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
528       Align NewAlign = commonAlignment(StartAlignment, FieldOffset);
529       if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx)))
530         NGV->setAlignment(NewAlign);
531 
532       // Copy over the debug info for the variable.
533       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
534       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
535       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize);
536     } else {
537       uint64_t EltSize = DL.getTypeAllocSize(ElTy);
538       Align EltAlign = DL.getABITypeAlign(ElTy);
539       uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
540 
541       // Calculate the known alignment of the field.  If the original aggregate
542       // had 256 byte alignment for example, something might depend on that:
543       // propagate info to each field.
544       Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx);
545       if (NewAlign > EltAlign)
546         NGV->setAlignment(NewAlign);
547       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
548                            FragmentSizeInBits, VarSize);
549     }
550   }
551 
552   if (NewGlobals.empty())
553     return nullptr;
554 
555   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
556   for (auto NewGlobalVar : NewGlobals)
557     Globals.push_back(NewGlobalVar.second);
558 
559   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
560 
561   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
562 
563   // Loop over all of the uses of the global, replacing the constantexpr geps,
564   // with smaller constantexpr geps or direct references.
565   while (!GV->use_empty()) {
566     User *GEP = GV->user_back();
567     assert(((isa<ConstantExpr>(GEP) &&
568              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
569             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
570 
571     // Ignore the 1th operand, which has to be zero or else the program is quite
572     // broken (undefined).  Get the 2nd operand, which is the structure or array
573     // index.
574     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
575     assert(NewGlobals.count(ElementIdx) == 1);
576 
577     Value *NewPtr = NewGlobals[ElementIdx];
578     Type *NewTy = NewGlobals[ElementIdx]->getValueType();
579 
580     // Form a shorter GEP if needed.
581     if (GEP->getNumOperands() > 3) {
582       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
583         SmallVector<Constant*, 8> Idxs;
584         Idxs.push_back(NullInt);
585         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
586           Idxs.push_back(CE->getOperand(i));
587         NewPtr =
588             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
589       } else {
590         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
591         SmallVector<Value*, 8> Idxs;
592         Idxs.push_back(NullInt);
593         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
594           Idxs.push_back(GEPI->getOperand(i));
595         NewPtr = GetElementPtrInst::Create(
596             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
597             GEPI);
598       }
599     }
600     GEP->replaceAllUsesWith(NewPtr);
601 
602     // We changed the pointer of any memory access user. Recalculate alignments.
603     for (User *U : NewPtr->users()) {
604       if (auto *Load = dyn_cast<LoadInst>(U)) {
605         Align PrefAlign = DL.getPrefTypeAlign(Load->getType());
606         Align NewAlign = getOrEnforceKnownAlignment(Load->getPointerOperand(),
607                                                     PrefAlign, DL, Load);
608         Load->setAlignment(NewAlign);
609       }
610       if (auto *Store = dyn_cast<StoreInst>(U)) {
611         Align PrefAlign =
612             DL.getPrefTypeAlign(Store->getValueOperand()->getType());
613         Align NewAlign = getOrEnforceKnownAlignment(Store->getPointerOperand(),
614                                                     PrefAlign, DL, Store);
615         Store->setAlignment(NewAlign);
616       }
617     }
618 
619     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
620       GEPI->eraseFromParent();
621     else
622       cast<ConstantExpr>(GEP)->destroyConstant();
623   }
624 
625   // Delete the old global, now that it is dead.
626   Globals.erase(GV);
627   ++NumSRA;
628 
629   assert(NewGlobals.size() > 0);
630   return NewGlobals.begin()->second;
631 }
632 
633 /// Return true if all users of the specified value will trap if the value is
634 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
635 /// reprocessing them.
636 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
637                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
638   for (const User *U : V->users()) {
639     if (const Instruction *I = dyn_cast<Instruction>(U)) {
640       // If null pointer is considered valid, then all uses are non-trapping.
641       // Non address-space 0 globals have already been pruned by the caller.
642       if (NullPointerIsDefined(I->getFunction()))
643         return false;
644     }
645     if (isa<LoadInst>(U)) {
646       // Will trap.
647     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
648       if (SI->getOperand(0) == V) {
649         //cerr << "NONTRAPPING USE: " << *U;
650         return false;  // Storing the value.
651       }
652     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
653       if (CI->getCalledOperand() != V) {
654         //cerr << "NONTRAPPING USE: " << *U;
655         return false;  // Not calling the ptr
656       }
657     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
658       if (II->getCalledOperand() != V) {
659         //cerr << "NONTRAPPING USE: " << *U;
660         return false;  // Not calling the ptr
661       }
662     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
663       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
664     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
665       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
666     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
667       // If we've already seen this phi node, ignore it, it has already been
668       // checked.
669       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
670         return false;
671     } else if (isa<ICmpInst>(U) &&
672                !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) &&
673                isa<LoadInst>(U->getOperand(0)) &&
674                isa<ConstantPointerNull>(U->getOperand(1))) {
675       assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0))
676                                   ->getPointerOperand()
677                                   ->stripPointerCasts()) &&
678              "Should be GlobalVariable");
679       // This and only this kind of non-signed ICmpInst is to be replaced with
680       // the comparing of the value of the created global init bool later in
681       // optimizeGlobalAddressOfMalloc for the global variable.
682     } else {
683       //cerr << "NONTRAPPING USE: " << *U;
684       return false;
685     }
686   }
687   return true;
688 }
689 
690 /// Return true if all uses of any loads from GV will trap if the loaded value
691 /// is null.  Note that this also permits comparisons of the loaded value
692 /// against null, as a special case.
693 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
694   SmallVector<const Value *, 4> Worklist;
695   Worklist.push_back(GV);
696   while (!Worklist.empty()) {
697     const Value *P = Worklist.pop_back_val();
698     for (auto *U : P->users()) {
699       if (auto *LI = dyn_cast<LoadInst>(U)) {
700         SmallPtrSet<const PHINode *, 8> PHIs;
701         if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
702           return false;
703       } else if (auto *SI = dyn_cast<StoreInst>(U)) {
704         // Ignore stores to the global.
705         if (SI->getPointerOperand() != P)
706           return false;
707       } else if (auto *CE = dyn_cast<ConstantExpr>(U)) {
708         if (CE->stripPointerCasts() != GV)
709           return false;
710         // Check further the ConstantExpr.
711         Worklist.push_back(CE);
712       } else {
713         // We don't know or understand this user, bail out.
714         return false;
715       }
716     }
717   }
718 
719   return true;
720 }
721 
722 /// Get all the loads/store uses for global variable \p GV.
723 static void allUsesOfLoadAndStores(GlobalVariable *GV,
724                                    SmallVector<Value *, 4> &Uses) {
725   SmallVector<Value *, 4> Worklist;
726   Worklist.push_back(GV);
727   while (!Worklist.empty()) {
728     auto *P = Worklist.pop_back_val();
729     for (auto *U : P->users()) {
730       if (auto *CE = dyn_cast<ConstantExpr>(U)) {
731         Worklist.push_back(CE);
732         continue;
733       }
734 
735       assert((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
736              "Expect only load or store instructions");
737       Uses.push_back(U);
738     }
739   }
740 }
741 
742 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
743   bool Changed = false;
744   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
745     Instruction *I = cast<Instruction>(*UI++);
746     // Uses are non-trapping if null pointer is considered valid.
747     // Non address-space 0 globals are already pruned by the caller.
748     if (NullPointerIsDefined(I->getFunction()))
749       return false;
750     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
751       LI->setOperand(0, NewV);
752       Changed = true;
753     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
754       if (SI->getOperand(1) == V) {
755         SI->setOperand(1, NewV);
756         Changed = true;
757       }
758     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
759       CallBase *CB = cast<CallBase>(I);
760       if (CB->getCalledOperand() == V) {
761         // Calling through the pointer!  Turn into a direct call, but be careful
762         // that the pointer is not also being passed as an argument.
763         CB->setCalledOperand(NewV);
764         Changed = true;
765         bool PassedAsArg = false;
766         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
767           if (CB->getArgOperand(i) == V) {
768             PassedAsArg = true;
769             CB->setArgOperand(i, NewV);
770           }
771 
772         if (PassedAsArg) {
773           // Being passed as an argument also.  Be careful to not invalidate UI!
774           UI = V->user_begin();
775         }
776       }
777     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
778       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
779                                 ConstantExpr::getCast(CI->getOpcode(),
780                                                       NewV, CI->getType()));
781       if (CI->use_empty()) {
782         Changed = true;
783         CI->eraseFromParent();
784       }
785     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
786       // Should handle GEP here.
787       SmallVector<Constant*, 8> Idxs;
788       Idxs.reserve(GEPI->getNumOperands()-1);
789       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
790            i != e; ++i)
791         if (Constant *C = dyn_cast<Constant>(*i))
792           Idxs.push_back(C);
793         else
794           break;
795       if (Idxs.size() == GEPI->getNumOperands()-1)
796         Changed |= OptimizeAwayTrappingUsesOfValue(
797             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
798                                                  NewV, Idxs));
799       if (GEPI->use_empty()) {
800         Changed = true;
801         GEPI->eraseFromParent();
802       }
803     }
804   }
805 
806   return Changed;
807 }
808 
809 /// The specified global has only one non-null value stored into it.  If there
810 /// are uses of the loaded value that would trap if the loaded value is
811 /// dynamically null, then we know that they cannot be reachable with a null
812 /// optimize away the load.
813 static bool OptimizeAwayTrappingUsesOfLoads(
814     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
815     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
816   bool Changed = false;
817 
818   // Keep track of whether we are able to remove all the uses of the global
819   // other than the store that defines it.
820   bool AllNonStoreUsesGone = true;
821 
822   // Replace all uses of loads with uses of uses of the stored value.
823   for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) {
824     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
825       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
826       // If we were able to delete all uses of the loads
827       if (LI->use_empty()) {
828         LI->eraseFromParent();
829         Changed = true;
830       } else {
831         AllNonStoreUsesGone = false;
832       }
833     } else if (isa<StoreInst>(GlobalUser)) {
834       // Ignore the store that stores "LV" to the global.
835       assert(GlobalUser->getOperand(1) == GV &&
836              "Must be storing *to* the global");
837     } else {
838       AllNonStoreUsesGone = false;
839 
840       // If we get here we could have other crazy uses that are transitively
841       // loaded.
842       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
843               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
844               isa<BitCastInst>(GlobalUser) ||
845               isa<GetElementPtrInst>(GlobalUser)) &&
846              "Only expect load and stores!");
847     }
848   }
849 
850   if (Changed) {
851     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
852                       << "\n");
853     ++NumGlobUses;
854   }
855 
856   // If we nuked all of the loads, then none of the stores are needed either,
857   // nor is the global.
858   if (AllNonStoreUsesGone) {
859     if (isLeakCheckerRoot(GV)) {
860       Changed |= CleanupPointerRootUsers(GV, GetTLI);
861     } else {
862       Changed = true;
863       CleanupConstantGlobalUsers(GV, DL);
864     }
865     if (GV->use_empty()) {
866       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
867       Changed = true;
868       GV->eraseFromParent();
869       ++NumDeleted;
870     }
871   }
872   return Changed;
873 }
874 
875 /// Walk the use list of V, constant folding all of the instructions that are
876 /// foldable.
877 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
878                                 TargetLibraryInfo *TLI) {
879   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
880     if (Instruction *I = dyn_cast<Instruction>(*UI++))
881       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
882         I->replaceAllUsesWith(NewC);
883 
884         // Advance UI to the next non-I use to avoid invalidating it!
885         // Instructions could multiply use V.
886         while (UI != E && *UI == I)
887           ++UI;
888         if (isInstructionTriviallyDead(I, TLI))
889           I->eraseFromParent();
890       }
891 }
892 
893 /// This function takes the specified global variable, and transforms the
894 /// program as if it always contained the result of the specified malloc.
895 /// Because it is always the result of the specified malloc, there is no reason
896 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
897 /// loads of GV as uses of the new global.
898 static GlobalVariable *
899 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
900                               ConstantInt *NElements, const DataLayout &DL,
901                               TargetLibraryInfo *TLI) {
902   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
903                     << '\n');
904 
905   Type *GlobalType;
906   if (NElements->getZExtValue() == 1)
907     GlobalType = AllocTy;
908   else
909     // If we have an array allocation, the global variable is of an array.
910     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
911 
912   // Create the new global variable.  The contents of the malloc'd memory is
913   // undefined, so initialize with an undef value.
914   GlobalVariable *NewGV = new GlobalVariable(
915       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
916       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
917       GV->getThreadLocalMode());
918 
919   // If there are bitcast users of the malloc (which is typical, usually we have
920   // a malloc + bitcast) then replace them with uses of the new global.  Update
921   // other users to use the global as well.
922   BitCastInst *TheBC = nullptr;
923   while (!CI->use_empty()) {
924     Instruction *User = cast<Instruction>(CI->user_back());
925     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
926       if (BCI->getType() == NewGV->getType()) {
927         BCI->replaceAllUsesWith(NewGV);
928         BCI->eraseFromParent();
929       } else {
930         BCI->setOperand(0, NewGV);
931       }
932     } else {
933       if (!TheBC)
934         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
935       User->replaceUsesOfWith(CI, TheBC);
936     }
937   }
938 
939   SmallPtrSet<Constant *, 1> RepValues;
940   RepValues.insert(NewGV);
941 
942   // If there is a comparison against null, we will insert a global bool to
943   // keep track of whether the global was initialized yet or not.
944   GlobalVariable *InitBool =
945     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
946                        GlobalValue::InternalLinkage,
947                        ConstantInt::getFalse(GV->getContext()),
948                        GV->getName()+".init", GV->getThreadLocalMode());
949   bool InitBoolUsed = false;
950 
951   // Loop over all instruction uses of GV, processing them in turn.
952   SmallVector<Value *, 4> Guses;
953   allUsesOfLoadAndStores(GV, Guses);
954   for (auto *U : Guses) {
955     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
956       // The global is initialized when the store to it occurs. If the stored
957       // value is null value, the global bool is set to false, otherwise true.
958       new StoreInst(ConstantInt::getBool(
959                         GV->getContext(),
960                         !isa<ConstantPointerNull>(SI->getValueOperand())),
961                     InitBool, false, Align(1), SI->getOrdering(),
962                     SI->getSyncScopeID(), SI);
963       SI->eraseFromParent();
964       continue;
965     }
966 
967     LoadInst *LI = cast<LoadInst>(U);
968     while (!LI->use_empty()) {
969       Use &LoadUse = *LI->use_begin();
970       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
971       if (!ICI) {
972         auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType());
973         RepValues.insert(CE);
974         LoadUse.set(CE);
975         continue;
976       }
977 
978       // Replace the cmp X, 0 with a use of the bool value.
979       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
980                                InitBool->getName() + ".val", false, Align(1),
981                                LI->getOrdering(), LI->getSyncScopeID(), LI);
982       InitBoolUsed = true;
983       switch (ICI->getPredicate()) {
984       default: llvm_unreachable("Unknown ICmp Predicate!");
985       case ICmpInst::ICMP_ULT: // X < null -> always false
986         LV = ConstantInt::getFalse(GV->getContext());
987         break;
988       case ICmpInst::ICMP_UGE: // X >= null -> always true
989         LV = ConstantInt::getTrue(GV->getContext());
990         break;
991       case ICmpInst::ICMP_ULE:
992       case ICmpInst::ICMP_EQ:
993         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
994         break;
995       case ICmpInst::ICMP_NE:
996       case ICmpInst::ICMP_UGT:
997         break;  // no change.
998       }
999       ICI->replaceAllUsesWith(LV);
1000       ICI->eraseFromParent();
1001     }
1002     LI->eraseFromParent();
1003   }
1004 
1005   // If the initialization boolean was used, insert it, otherwise delete it.
1006   if (!InitBoolUsed) {
1007     while (!InitBool->use_empty())  // Delete initializations
1008       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
1009     delete InitBool;
1010   } else
1011     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
1012 
1013   // Now the GV is dead, nuke it and the malloc..
1014   GV->eraseFromParent();
1015   CI->eraseFromParent();
1016 
1017   // To further other optimizations, loop over all users of NewGV and try to
1018   // constant prop them.  This will promote GEP instructions with constant
1019   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
1020   for (auto *CE : RepValues)
1021     ConstantPropUsersOf(CE, DL, TLI);
1022 
1023   return NewGV;
1024 }
1025 
1026 /// Scan the use-list of GV checking to make sure that there are no complex uses
1027 /// of GV.  We permit simple things like dereferencing the pointer, but not
1028 /// storing through the address, unless it is to the specified global.
1029 static bool
1030 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI,
1031                                           const GlobalVariable *GV) {
1032   SmallPtrSet<const Value *, 4> Visited;
1033   SmallVector<const Value *, 4> Worklist;
1034   Worklist.push_back(CI);
1035 
1036   while (!Worklist.empty()) {
1037     const Value *V = Worklist.pop_back_val();
1038     if (!Visited.insert(V).second)
1039       continue;
1040 
1041     for (const Use &VUse : V->uses()) {
1042       const User *U = VUse.getUser();
1043       if (isa<LoadInst>(U) || isa<CmpInst>(U))
1044         continue; // Fine, ignore.
1045 
1046       if (auto *SI = dyn_cast<StoreInst>(U)) {
1047         if (SI->getValueOperand() == V &&
1048             SI->getPointerOperand()->stripPointerCasts() != GV)
1049           return false; // Storing the pointer not into GV... bad.
1050         continue; // Otherwise, storing through it, or storing into GV... fine.
1051       }
1052 
1053       if (auto *BCI = dyn_cast<BitCastInst>(U)) {
1054         Worklist.push_back(BCI);
1055         continue;
1056       }
1057 
1058       if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1059         Worklist.push_back(GEPI);
1060         continue;
1061       }
1062 
1063       return false;
1064     }
1065   }
1066 
1067   return true;
1068 }
1069 
1070 /// This function is called when we see a pointer global variable with a single
1071 /// value stored it that is a malloc or cast of malloc.
1072 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1073                                                Type *AllocTy,
1074                                                AtomicOrdering Ordering,
1075                                                const DataLayout &DL,
1076                                                TargetLibraryInfo *TLI) {
1077   // If this is a malloc of an abstract type, don't touch it.
1078   if (!AllocTy->isSized())
1079     return false;
1080 
1081   // We can't optimize this global unless all uses of it are *known* to be
1082   // of the malloc value, not of the null initializer value (consider a use
1083   // that compares the global's value against zero to see if the malloc has
1084   // been reached).  To do this, we check to see if all uses of the global
1085   // would trap if the global were null: this proves that they must all
1086   // happen after the malloc.
1087   if (!allUsesOfLoadedValueWillTrapIfNull(GV))
1088     return false;
1089 
1090   // We can't optimize this if the malloc itself is used in a complex way,
1091   // for example, being stored into multiple globals.  This allows the
1092   // malloc to be stored into the specified global, loaded, gep, icmp'd.
1093   // These are all things we could transform to using the global for.
1094   if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV))
1095     return false;
1096 
1097   // If we have a global that is only initialized with a fixed size malloc,
1098   // transform the program to use global memory instead of malloc'd memory.
1099   // This eliminates dynamic allocation, avoids an indirection accessing the
1100   // data, and exposes the resultant global to further GlobalOpt.
1101   // We cannot optimize the malloc if we cannot determine malloc array size.
1102   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1103   if (!NElems)
1104     return false;
1105 
1106   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1107     // Restrict this transformation to only working on small allocations
1108     // (2048 bytes currently), as we don't want to introduce a 16M global or
1109     // something.
1110     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1111       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1112       return true;
1113     }
1114 
1115   return false;
1116 }
1117 
1118 // Try to optimize globals based on the knowledge that only one value (besides
1119 // its initializer) is ever stored to the global.
1120 static bool
1121 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1122                          AtomicOrdering Ordering, const DataLayout &DL,
1123                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1124   // Ignore no-op GEPs and bitcasts.
1125   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1126 
1127   // If we are dealing with a pointer global that is initialized to null and
1128   // only has one (non-null) value stored into it, then we can optimize any
1129   // users of the loaded value (often calls and loads) that would trap if the
1130   // value was null.
1131   if (GV->getInitializer()->getType()->isPointerTy() &&
1132       GV->getInitializer()->isNullValue() &&
1133       StoredOnceVal->getType()->isPointerTy() &&
1134       !NullPointerIsDefined(
1135           nullptr /* F */,
1136           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1137     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1138       if (GV->getInitializer()->getType() != SOVC->getType())
1139         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1140 
1141       // Optimize away any trapping uses of the loaded value.
1142       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1143         return true;
1144     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1145       auto *TLI = &GetTLI(*CI->getFunction());
1146       Type *MallocType = getMallocAllocatedType(CI, TLI);
1147       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1148                                                            Ordering, DL, TLI))
1149         return true;
1150     }
1151   }
1152 
1153   return false;
1154 }
1155 
1156 /// At this point, we have learned that the only two values ever stored into GV
1157 /// are its initializer and OtherVal.  See if we can shrink the global into a
1158 /// boolean and select between the two values whenever it is used.  This exposes
1159 /// the values to other scalar optimizations.
1160 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1161   Type *GVElType = GV->getValueType();
1162 
1163   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1164   // an FP value, pointer or vector, don't do this optimization because a select
1165   // between them is very expensive and unlikely to lead to later
1166   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1167   // where v1 and v2 both require constant pool loads, a big loss.
1168   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1169       GVElType->isFloatingPointTy() ||
1170       GVElType->isPointerTy() || GVElType->isVectorTy())
1171     return false;
1172 
1173   // Walk the use list of the global seeing if all the uses are load or store.
1174   // If there is anything else, bail out.
1175   for (User *U : GV->users())
1176     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1177       return false;
1178 
1179   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1180 
1181   // Create the new global, initializing it to false.
1182   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1183                                              false,
1184                                              GlobalValue::InternalLinkage,
1185                                         ConstantInt::getFalse(GV->getContext()),
1186                                              GV->getName()+".b",
1187                                              GV->getThreadLocalMode(),
1188                                              GV->getType()->getAddressSpace());
1189   NewGV->copyAttributesFrom(GV);
1190   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1191 
1192   Constant *InitVal = GV->getInitializer();
1193   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1194          "No reason to shrink to bool!");
1195 
1196   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1197   GV->getDebugInfo(GVs);
1198 
1199   // If initialized to zero and storing one into the global, we can use a cast
1200   // instead of a select to synthesize the desired value.
1201   bool IsOneZero = false;
1202   bool EmitOneOrZero = true;
1203   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1204   if (CI && CI->getValue().getActiveBits() <= 64) {
1205     IsOneZero = InitVal->isNullValue() && CI->isOne();
1206 
1207     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1208     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1209       uint64_t ValInit = CIInit->getZExtValue();
1210       uint64_t ValOther = CI->getZExtValue();
1211       uint64_t ValMinus = ValOther - ValInit;
1212 
1213       for(auto *GVe : GVs){
1214         DIGlobalVariable *DGV = GVe->getVariable();
1215         DIExpression *E = GVe->getExpression();
1216         const DataLayout &DL = GV->getParent()->getDataLayout();
1217         unsigned SizeInOctets =
1218             DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8;
1219 
1220         // It is expected that the address of global optimized variable is on
1221         // top of the stack. After optimization, value of that variable will
1222         // be ether 0 for initial value or 1 for other value. The following
1223         // expression should return constant integer value depending on the
1224         // value at global object address:
1225         // val * (ValOther - ValInit) + ValInit:
1226         // DW_OP_deref DW_OP_constu <ValMinus>
1227         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1228         SmallVector<uint64_t, 12> Ops = {
1229             dwarf::DW_OP_deref_size, SizeInOctets,
1230             dwarf::DW_OP_constu, ValMinus,
1231             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1232             dwarf::DW_OP_plus};
1233         bool WithStackValue = true;
1234         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1235         DIGlobalVariableExpression *DGVE =
1236           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1237         NewGV->addDebugInfo(DGVE);
1238      }
1239      EmitOneOrZero = false;
1240     }
1241   }
1242 
1243   if (EmitOneOrZero) {
1244      // FIXME: This will only emit address for debugger on which will
1245      // be written only 0 or 1.
1246      for(auto *GV : GVs)
1247        NewGV->addDebugInfo(GV);
1248    }
1249 
1250   while (!GV->use_empty()) {
1251     Instruction *UI = cast<Instruction>(GV->user_back());
1252     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1253       // Change the store into a boolean store.
1254       bool StoringOther = SI->getOperand(0) == OtherVal;
1255       // Only do this if we weren't storing a loaded value.
1256       Value *StoreVal;
1257       if (StoringOther || SI->getOperand(0) == InitVal) {
1258         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1259                                     StoringOther);
1260       } else {
1261         // Otherwise, we are storing a previously loaded copy.  To do this,
1262         // change the copy from copying the original value to just copying the
1263         // bool.
1264         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1265 
1266         // If we've already replaced the input, StoredVal will be a cast or
1267         // select instruction.  If not, it will be a load of the original
1268         // global.
1269         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1270           assert(LI->getOperand(0) == GV && "Not a copy!");
1271           // Insert a new load, to preserve the saved value.
1272           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1273                                   LI->getName() + ".b", false, Align(1),
1274                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1275         } else {
1276           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1277                  "This is not a form that we understand!");
1278           StoreVal = StoredVal->getOperand(0);
1279           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1280         }
1281       }
1282       StoreInst *NSI =
1283           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1284                         SI->getSyncScopeID(), SI);
1285       NSI->setDebugLoc(SI->getDebugLoc());
1286     } else {
1287       // Change the load into a load of bool then a select.
1288       LoadInst *LI = cast<LoadInst>(UI);
1289       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1290                                    LI->getName() + ".b", false, Align(1),
1291                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1292       Instruction *NSI;
1293       if (IsOneZero)
1294         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1295       else
1296         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1297       NSI->takeName(LI);
1298       // Since LI is split into two instructions, NLI and NSI both inherit the
1299       // same DebugLoc
1300       NLI->setDebugLoc(LI->getDebugLoc());
1301       NSI->setDebugLoc(LI->getDebugLoc());
1302       LI->replaceAllUsesWith(NSI);
1303     }
1304     UI->eraseFromParent();
1305   }
1306 
1307   // Retain the name of the old global variable. People who are debugging their
1308   // programs may expect these variables to be named the same.
1309   NewGV->takeName(GV);
1310   GV->eraseFromParent();
1311   return true;
1312 }
1313 
1314 static bool deleteIfDead(
1315     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1316   GV.removeDeadConstantUsers();
1317 
1318   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1319     return false;
1320 
1321   if (const Comdat *C = GV.getComdat())
1322     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1323       return false;
1324 
1325   bool Dead;
1326   if (auto *F = dyn_cast<Function>(&GV))
1327     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1328   else
1329     Dead = GV.use_empty();
1330   if (!Dead)
1331     return false;
1332 
1333   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1334   GV.eraseFromParent();
1335   ++NumDeleted;
1336   return true;
1337 }
1338 
1339 static bool isPointerValueDeadOnEntryToFunction(
1340     const Function *F, GlobalValue *GV,
1341     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1342   // Find all uses of GV. We expect them all to be in F, and if we can't
1343   // identify any of the uses we bail out.
1344   //
1345   // On each of these uses, identify if the memory that GV points to is
1346   // used/required/live at the start of the function. If it is not, for example
1347   // if the first thing the function does is store to the GV, the GV can
1348   // possibly be demoted.
1349   //
1350   // We don't do an exhaustive search for memory operations - simply look
1351   // through bitcasts as they're quite common and benign.
1352   const DataLayout &DL = GV->getParent()->getDataLayout();
1353   SmallVector<LoadInst *, 4> Loads;
1354   SmallVector<StoreInst *, 4> Stores;
1355   for (auto *U : GV->users()) {
1356     if (Operator::getOpcode(U) == Instruction::BitCast) {
1357       for (auto *UU : U->users()) {
1358         if (auto *LI = dyn_cast<LoadInst>(UU))
1359           Loads.push_back(LI);
1360         else if (auto *SI = dyn_cast<StoreInst>(UU))
1361           Stores.push_back(SI);
1362         else
1363           return false;
1364       }
1365       continue;
1366     }
1367 
1368     Instruction *I = dyn_cast<Instruction>(U);
1369     if (!I)
1370       return false;
1371     assert(I->getParent()->getParent() == F);
1372 
1373     if (auto *LI = dyn_cast<LoadInst>(I))
1374       Loads.push_back(LI);
1375     else if (auto *SI = dyn_cast<StoreInst>(I))
1376       Stores.push_back(SI);
1377     else
1378       return false;
1379   }
1380 
1381   // We have identified all uses of GV into loads and stores. Now check if all
1382   // of them are known not to depend on the value of the global at the function
1383   // entry point. We do this by ensuring that every load is dominated by at
1384   // least one store.
1385   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1386 
1387   // The below check is quadratic. Check we're not going to do too many tests.
1388   // FIXME: Even though this will always have worst-case quadratic time, we
1389   // could put effort into minimizing the average time by putting stores that
1390   // have been shown to dominate at least one load at the beginning of the
1391   // Stores array, making subsequent dominance checks more likely to succeed
1392   // early.
1393   //
1394   // The threshold here is fairly large because global->local demotion is a
1395   // very powerful optimization should it fire.
1396   const unsigned Threshold = 100;
1397   if (Loads.size() * Stores.size() > Threshold)
1398     return false;
1399 
1400   for (auto *L : Loads) {
1401     auto *LTy = L->getType();
1402     if (none_of(Stores, [&](const StoreInst *S) {
1403           auto *STy = S->getValueOperand()->getType();
1404           // The load is only dominated by the store if DomTree says so
1405           // and the number of bits loaded in L is less than or equal to
1406           // the number of bits stored in S.
1407           return DT.dominates(S, L) &&
1408                  DL.getTypeStoreSize(LTy).getFixedSize() <=
1409                      DL.getTypeStoreSize(STy).getFixedSize();
1410         }))
1411       return false;
1412   }
1413   // All loads have known dependences inside F, so the global can be localized.
1414   return true;
1415 }
1416 
1417 /// C may have non-instruction users. Can all of those users be turned into
1418 /// instructions?
1419 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1420   // We don't do this exhaustively. The most common pattern that we really need
1421   // to care about is a constant GEP or constant bitcast - so just looking
1422   // through one single ConstantExpr.
1423   //
1424   // The set of constants that this function returns true for must be able to be
1425   // handled by makeAllConstantUsesInstructions.
1426   for (auto *U : C->users()) {
1427     if (isa<Instruction>(U))
1428       continue;
1429     if (!isa<ConstantExpr>(U))
1430       // Non instruction, non-constantexpr user; cannot convert this.
1431       return false;
1432     for (auto *UU : U->users())
1433       if (!isa<Instruction>(UU))
1434         // A constantexpr used by another constant. We don't try and recurse any
1435         // further but just bail out at this point.
1436         return false;
1437   }
1438 
1439   return true;
1440 }
1441 
1442 /// C may have non-instruction users, and
1443 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1444 /// non-instruction users to instructions.
1445 static void makeAllConstantUsesInstructions(Constant *C) {
1446   SmallVector<ConstantExpr*,4> Users;
1447   for (auto *U : C->users()) {
1448     if (isa<ConstantExpr>(U))
1449       Users.push_back(cast<ConstantExpr>(U));
1450     else
1451       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1452       // should not have returned true for C.
1453       assert(
1454           isa<Instruction>(U) &&
1455           "Can't transform non-constantexpr non-instruction to instruction!");
1456   }
1457 
1458   SmallVector<Value*,4> UUsers;
1459   for (auto *U : Users) {
1460     UUsers.clear();
1461     append_range(UUsers, U->users());
1462     for (auto *UU : UUsers) {
1463       Instruction *UI = cast<Instruction>(UU);
1464       Instruction *NewU = U->getAsInstruction(UI);
1465       UI->replaceUsesOfWith(U, NewU);
1466     }
1467     // We've replaced all the uses, so destroy the constant. (destroyConstant
1468     // will update value handles and metadata.)
1469     U->destroyConstant();
1470   }
1471 }
1472 
1473 /// Analyze the specified global variable and optimize
1474 /// it if possible.  If we make a change, return true.
1475 static bool
1476 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1477                       function_ref<TargetTransformInfo &(Function &)> GetTTI,
1478                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1479                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1480   auto &DL = GV->getParent()->getDataLayout();
1481   // If this is a first class global and has only one accessing function and
1482   // this function is non-recursive, we replace the global with a local alloca
1483   // in this function.
1484   //
1485   // NOTE: It doesn't make sense to promote non-single-value types since we
1486   // are just replacing static memory to stack memory.
1487   //
1488   // If the global is in different address space, don't bring it to stack.
1489   if (!GS.HasMultipleAccessingFunctions &&
1490       GS.AccessingFunction &&
1491       GV->getValueType()->isSingleValueType() &&
1492       GV->getType()->getAddressSpace() == 0 &&
1493       !GV->isExternallyInitialized() &&
1494       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1495       GS.AccessingFunction->doesNotRecurse() &&
1496       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1497                                           LookupDomTree)) {
1498     const DataLayout &DL = GV->getParent()->getDataLayout();
1499 
1500     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1501     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1502                                                    ->getEntryBlock().begin());
1503     Type *ElemTy = GV->getValueType();
1504     // FIXME: Pass Global's alignment when globals have alignment
1505     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1506                                         GV->getName(), &FirstI);
1507     if (!isa<UndefValue>(GV->getInitializer()))
1508       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1509 
1510     makeAllConstantUsesInstructions(GV);
1511 
1512     GV->replaceAllUsesWith(Alloca);
1513     GV->eraseFromParent();
1514     ++NumLocalized;
1515     return true;
1516   }
1517 
1518   bool Changed = false;
1519 
1520   // If the global is never loaded (but may be stored to), it is dead.
1521   // Delete it now.
1522   if (!GS.IsLoaded) {
1523     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1524 
1525     if (isLeakCheckerRoot(GV)) {
1526       // Delete any constant stores to the global.
1527       Changed = CleanupPointerRootUsers(GV, GetTLI);
1528     } else {
1529       // Delete any stores we can find to the global.  We may not be able to
1530       // make it completely dead though.
1531       Changed = CleanupConstantGlobalUsers(GV, DL);
1532     }
1533 
1534     // If the global is dead now, delete it.
1535     if (GV->use_empty()) {
1536       GV->eraseFromParent();
1537       ++NumDeleted;
1538       Changed = true;
1539     }
1540     return Changed;
1541 
1542   }
1543   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1544     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1545 
1546     // Don't actually mark a global constant if it's atomic because atomic loads
1547     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1548     // requires write access to the variable even if it's not actually changed.
1549     if (GS.Ordering == AtomicOrdering::NotAtomic) {
1550       assert(!GV->isConstant() && "Expected a non-constant global");
1551       GV->setConstant(true);
1552       Changed = true;
1553     }
1554 
1555     // Clean up any obviously simplifiable users now.
1556     Changed |= CleanupConstantGlobalUsers(GV, DL);
1557 
1558     // If the global is dead now, just nuke it.
1559     if (GV->use_empty()) {
1560       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1561                         << "all users and delete global!\n");
1562       GV->eraseFromParent();
1563       ++NumDeleted;
1564       return true;
1565     }
1566 
1567     // Fall through to the next check; see if we can optimize further.
1568     ++NumMarked;
1569   }
1570   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1571     const DataLayout &DL = GV->getParent()->getDataLayout();
1572     if (SRAGlobal(GV, DL))
1573       return true;
1574   }
1575   Value *StoredOnceValue = GS.getStoredOnceValue();
1576   if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) {
1577     // Avoid speculating constant expressions that might trap (div/rem).
1578     auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue);
1579     if (SOVConstant && SOVConstant->canTrap())
1580       return Changed;
1581 
1582     Function &StoreFn =
1583         const_cast<Function &>(*GS.StoredOnceStore->getFunction());
1584     bool CanHaveNonUndefGlobalInitializer =
1585         GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace(
1586             GV->getType()->getAddressSpace());
1587     // If the initial value for the global was an undef value, and if only
1588     // one other value was stored into it, we can just change the
1589     // initializer to be the stored value, then delete all stores to the
1590     // global.  This allows us to mark it constant.
1591     // This is restricted to address spaces that allow globals to have
1592     // initializers. NVPTX, for example, does not support initializers for
1593     // shared memory (AS 3).
1594     if (SOVConstant && SOVConstant->getType() == GV->getValueType() &&
1595         isa<UndefValue>(GV->getInitializer()) &&
1596         CanHaveNonUndefGlobalInitializer) {
1597       // Change the initial value here.
1598       GV->setInitializer(SOVConstant);
1599 
1600       // Clean up any obviously simplifiable users now.
1601       CleanupConstantGlobalUsers(GV, DL);
1602 
1603       if (GV->use_empty()) {
1604         LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1605                           << "simplify all users and delete global!\n");
1606         GV->eraseFromParent();
1607         ++NumDeleted;
1608       }
1609       ++NumSubstitute;
1610       return true;
1611     }
1612 
1613     // Try to optimize globals based on the knowledge that only one value
1614     // (besides its initializer) is ever stored to the global.
1615     if (optimizeOnceStoredGlobal(GV, StoredOnceValue, GS.Ordering, DL, GetTLI))
1616       return true;
1617 
1618     // Otherwise, if the global was not a boolean, we can shrink it to be a
1619     // boolean. Skip this optimization for AS that doesn't allow an initializer.
1620     if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic &&
1621         (!isa<UndefValue>(GV->getInitializer()) ||
1622          CanHaveNonUndefGlobalInitializer)) {
1623       if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1624         ++NumShrunkToBool;
1625         return true;
1626       }
1627     }
1628   }
1629 
1630   return Changed;
1631 }
1632 
1633 /// Analyze the specified global variable and optimize it if possible.  If we
1634 /// make a change, return true.
1635 static bool
1636 processGlobal(GlobalValue &GV,
1637               function_ref<TargetTransformInfo &(Function &)> GetTTI,
1638               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1639               function_ref<DominatorTree &(Function &)> LookupDomTree) {
1640   if (GV.getName().startswith("llvm."))
1641     return false;
1642 
1643   GlobalStatus GS;
1644 
1645   if (GlobalStatus::analyzeGlobal(&GV, GS))
1646     return false;
1647 
1648   bool Changed = false;
1649   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1650     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1651                                                : GlobalValue::UnnamedAddr::Local;
1652     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1653       GV.setUnnamedAddr(NewUnnamedAddr);
1654       NumUnnamed++;
1655       Changed = true;
1656     }
1657   }
1658 
1659   // Do more involved optimizations if the global is internal.
1660   if (!GV.hasLocalLinkage())
1661     return Changed;
1662 
1663   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1664   if (!GVar)
1665     return Changed;
1666 
1667   if (GVar->isConstant() || !GVar->hasInitializer())
1668     return Changed;
1669 
1670   return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) ||
1671          Changed;
1672 }
1673 
1674 /// Walk all of the direct calls of the specified function, changing them to
1675 /// FastCC.
1676 static void ChangeCalleesToFastCall(Function *F) {
1677   for (User *U : F->users()) {
1678     if (isa<BlockAddress>(U))
1679       continue;
1680     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
1681   }
1682 }
1683 
1684 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
1685                                Attribute::AttrKind A) {
1686   unsigned AttrIndex;
1687   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
1688     return Attrs.removeAttributeAtIndex(C, AttrIndex, A);
1689   return Attrs;
1690 }
1691 
1692 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
1693   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
1694   for (User *U : F->users()) {
1695     if (isa<BlockAddress>(U))
1696       continue;
1697     CallBase *CB = cast<CallBase>(U);
1698     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
1699   }
1700 }
1701 
1702 /// Return true if this is a calling convention that we'd like to change.  The
1703 /// idea here is that we don't want to mess with the convention if the user
1704 /// explicitly requested something with performance implications like coldcc,
1705 /// GHC, or anyregcc.
1706 static bool hasChangeableCC(Function *F) {
1707   CallingConv::ID CC = F->getCallingConv();
1708 
1709   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1710   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
1711     return false;
1712 
1713   // FIXME: Change CC for the whole chain of musttail calls when possible.
1714   //
1715   // Can't change CC of the function that either has musttail calls, or is a
1716   // musttail callee itself
1717   for (User *U : F->users()) {
1718     if (isa<BlockAddress>(U))
1719       continue;
1720     CallInst* CI = dyn_cast<CallInst>(U);
1721     if (!CI)
1722       continue;
1723 
1724     if (CI->isMustTailCall())
1725       return false;
1726   }
1727 
1728   for (BasicBlock &BB : *F)
1729     if (BB.getTerminatingMustTailCall())
1730       return false;
1731 
1732   return true;
1733 }
1734 
1735 /// Return true if the block containing the call site has a BlockFrequency of
1736 /// less than ColdCCRelFreq% of the entry block.
1737 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
1738   const BranchProbability ColdProb(ColdCCRelFreq, 100);
1739   auto *CallSiteBB = CB.getParent();
1740   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
1741   auto CallerEntryFreq =
1742       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
1743   return CallSiteFreq < CallerEntryFreq * ColdProb;
1744 }
1745 
1746 // This function checks if the input function F is cold at all call sites. It
1747 // also looks each call site's containing function, returning false if the
1748 // caller function contains other non cold calls. The input vector AllCallsCold
1749 // contains a list of functions that only have call sites in cold blocks.
1750 static bool
1751 isValidCandidateForColdCC(Function &F,
1752                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1753                           const std::vector<Function *> &AllCallsCold) {
1754 
1755   if (F.user_empty())
1756     return false;
1757 
1758   for (User *U : F.users()) {
1759     if (isa<BlockAddress>(U))
1760       continue;
1761 
1762     CallBase &CB = cast<CallBase>(*U);
1763     Function *CallerFunc = CB.getParent()->getParent();
1764     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
1765     if (!isColdCallSite(CB, CallerBFI))
1766       return false;
1767     if (!llvm::is_contained(AllCallsCold, CallerFunc))
1768       return false;
1769   }
1770   return true;
1771 }
1772 
1773 static void changeCallSitesToColdCC(Function *F) {
1774   for (User *U : F->users()) {
1775     if (isa<BlockAddress>(U))
1776       continue;
1777     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
1778   }
1779 }
1780 
1781 // This function iterates over all the call instructions in the input Function
1782 // and checks that all call sites are in cold blocks and are allowed to use the
1783 // coldcc calling convention.
1784 static bool
1785 hasOnlyColdCalls(Function &F,
1786                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
1787   for (BasicBlock &BB : F) {
1788     for (Instruction &I : BB) {
1789       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1790         // Skip over isline asm instructions since they aren't function calls.
1791         if (CI->isInlineAsm())
1792           continue;
1793         Function *CalledFn = CI->getCalledFunction();
1794         if (!CalledFn)
1795           return false;
1796         if (!CalledFn->hasLocalLinkage())
1797           return false;
1798         // Skip over instrinsics since they won't remain as function calls.
1799         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
1800           continue;
1801         // Check if it's valid to use coldcc calling convention.
1802         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
1803             CalledFn->hasAddressTaken())
1804           return false;
1805         BlockFrequencyInfo &CallerBFI = GetBFI(F);
1806         if (!isColdCallSite(*CI, CallerBFI))
1807           return false;
1808       }
1809     }
1810   }
1811   return true;
1812 }
1813 
1814 static bool hasMustTailCallers(Function *F) {
1815   for (User *U : F->users()) {
1816     CallBase *CB = dyn_cast<CallBase>(U);
1817     if (!CB) {
1818       assert(isa<BlockAddress>(U) &&
1819              "Expected either CallBase or BlockAddress");
1820       continue;
1821     }
1822     if (CB->isMustTailCall())
1823       return true;
1824   }
1825   return false;
1826 }
1827 
1828 static bool hasInvokeCallers(Function *F) {
1829   for (User *U : F->users())
1830     if (isa<InvokeInst>(U))
1831       return true;
1832   return false;
1833 }
1834 
1835 static void RemovePreallocated(Function *F) {
1836   RemoveAttribute(F, Attribute::Preallocated);
1837 
1838   auto *M = F->getParent();
1839 
1840   IRBuilder<> Builder(M->getContext());
1841 
1842   // Cannot modify users() while iterating over it, so make a copy.
1843   SmallVector<User *, 4> PreallocatedCalls(F->users());
1844   for (User *U : PreallocatedCalls) {
1845     CallBase *CB = dyn_cast<CallBase>(U);
1846     if (!CB)
1847       continue;
1848 
1849     assert(
1850         !CB->isMustTailCall() &&
1851         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
1852     // Create copy of call without "preallocated" operand bundle.
1853     SmallVector<OperandBundleDef, 1> OpBundles;
1854     CB->getOperandBundlesAsDefs(OpBundles);
1855     CallBase *PreallocatedSetup = nullptr;
1856     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
1857       if (It->getTag() == "preallocated") {
1858         PreallocatedSetup = cast<CallBase>(*It->input_begin());
1859         OpBundles.erase(It);
1860         break;
1861       }
1862     }
1863     assert(PreallocatedSetup && "Did not find preallocated bundle");
1864     uint64_t ArgCount =
1865         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
1866 
1867     assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
1868            "Unknown indirect call type");
1869     CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
1870     CB->replaceAllUsesWith(NewCB);
1871     NewCB->takeName(CB);
1872     CB->eraseFromParent();
1873 
1874     Builder.SetInsertPoint(PreallocatedSetup);
1875     auto *StackSave =
1876         Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
1877 
1878     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
1879     Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
1880                        StackSave);
1881 
1882     // Replace @llvm.call.preallocated.arg() with alloca.
1883     // Cannot modify users() while iterating over it, so make a copy.
1884     // @llvm.call.preallocated.arg() can be called with the same index multiple
1885     // times. So for each @llvm.call.preallocated.arg(), we see if we have
1886     // already created a Value* for the index, and if not, create an alloca and
1887     // bitcast right after the @llvm.call.preallocated.setup() so that it
1888     // dominates all uses.
1889     SmallVector<Value *, 2> ArgAllocas(ArgCount);
1890     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
1891     for (auto *User : PreallocatedArgs) {
1892       auto *UseCall = cast<CallBase>(User);
1893       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
1894                  Intrinsic::call_preallocated_arg &&
1895              "preallocated token use was not a llvm.call.preallocated.arg");
1896       uint64_t AllocArgIndex =
1897           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
1898       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
1899       if (!AllocaReplacement) {
1900         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
1901         auto *ArgType =
1902             UseCall->getFnAttr(Attribute::Preallocated).getValueAsType();
1903         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
1904         Builder.SetInsertPoint(InsertBefore);
1905         auto *Alloca =
1906             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
1907         auto *BitCast = Builder.CreateBitCast(
1908             Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
1909         ArgAllocas[AllocArgIndex] = BitCast;
1910         AllocaReplacement = BitCast;
1911       }
1912 
1913       UseCall->replaceAllUsesWith(AllocaReplacement);
1914       UseCall->eraseFromParent();
1915     }
1916     // Remove @llvm.call.preallocated.setup().
1917     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
1918   }
1919 }
1920 
1921 static bool
1922 OptimizeFunctions(Module &M,
1923                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1924                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
1925                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1926                   function_ref<DominatorTree &(Function &)> LookupDomTree,
1927                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1928 
1929   bool Changed = false;
1930 
1931   std::vector<Function *> AllCallsCold;
1932   for (Function &F : llvm::make_early_inc_range(M))
1933     if (hasOnlyColdCalls(F, GetBFI))
1934       AllCallsCold.push_back(&F);
1935 
1936   // Optimize functions.
1937   for (Function &F : llvm::make_early_inc_range(M)) {
1938     // Don't perform global opt pass on naked functions; we don't want fast
1939     // calling conventions for naked functions.
1940     if (F.hasFnAttribute(Attribute::Naked))
1941       continue;
1942 
1943     // Functions without names cannot be referenced outside this module.
1944     if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage())
1945       F.setLinkage(GlobalValue::InternalLinkage);
1946 
1947     if (deleteIfDead(F, NotDiscardableComdats)) {
1948       Changed = true;
1949       continue;
1950     }
1951 
1952     // LLVM's definition of dominance allows instructions that are cyclic
1953     // in unreachable blocks, e.g.:
1954     // %pat = select i1 %condition, @global, i16* %pat
1955     // because any instruction dominates an instruction in a block that's
1956     // not reachable from entry.
1957     // So, remove unreachable blocks from the function, because a) there's
1958     // no point in analyzing them and b) GlobalOpt should otherwise grow
1959     // some more complicated logic to break these cycles.
1960     // Removing unreachable blocks might invalidate the dominator so we
1961     // recalculate it.
1962     if (!F.isDeclaration()) {
1963       if (removeUnreachableBlocks(F)) {
1964         auto &DT = LookupDomTree(F);
1965         DT.recalculate(F);
1966         Changed = true;
1967       }
1968     }
1969 
1970     Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree);
1971 
1972     if (!F.hasLocalLinkage())
1973       continue;
1974 
1975     // If we have an inalloca parameter that we can safely remove the
1976     // inalloca attribute from, do so. This unlocks optimizations that
1977     // wouldn't be safe in the presence of inalloca.
1978     // FIXME: We should also hoist alloca affected by this to the entry
1979     // block if possible.
1980     if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
1981         !F.hasAddressTaken() && !hasMustTailCallers(&F)) {
1982       RemoveAttribute(&F, Attribute::InAlloca);
1983       Changed = true;
1984     }
1985 
1986     // FIXME: handle invokes
1987     // FIXME: handle musttail
1988     if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
1989       if (!F.hasAddressTaken() && !hasMustTailCallers(&F) &&
1990           !hasInvokeCallers(&F)) {
1991         RemovePreallocated(&F);
1992         Changed = true;
1993       }
1994       continue;
1995     }
1996 
1997     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
1998       NumInternalFunc++;
1999       TargetTransformInfo &TTI = GetTTI(F);
2000       // Change the calling convention to coldcc if either stress testing is
2001       // enabled or the target would like to use coldcc on functions which are
2002       // cold at all call sites and the callers contain no other non coldcc
2003       // calls.
2004       if (EnableColdCCStressTest ||
2005           (TTI.useColdCCForColdCall(F) &&
2006            isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) {
2007         F.setCallingConv(CallingConv::Cold);
2008         changeCallSitesToColdCC(&F);
2009         Changed = true;
2010         NumColdCC++;
2011       }
2012     }
2013 
2014     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
2015       // If this function has a calling convention worth changing, is not a
2016       // varargs function, and is only called directly, promote it to use the
2017       // Fast calling convention.
2018       F.setCallingConv(CallingConv::Fast);
2019       ChangeCalleesToFastCall(&F);
2020       ++NumFastCallFns;
2021       Changed = true;
2022     }
2023 
2024     if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2025         !F.hasAddressTaken()) {
2026       // The function is not used by a trampoline intrinsic, so it is safe
2027       // to remove the 'nest' attribute.
2028       RemoveAttribute(&F, Attribute::Nest);
2029       ++NumNestRemoved;
2030       Changed = true;
2031     }
2032   }
2033   return Changed;
2034 }
2035 
2036 static bool
2037 OptimizeGlobalVars(Module &M,
2038                    function_ref<TargetTransformInfo &(Function &)> GetTTI,
2039                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2040                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2041                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2042   bool Changed = false;
2043 
2044   for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) {
2045     // Global variables without names cannot be referenced outside this module.
2046     if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage())
2047       GV.setLinkage(GlobalValue::InternalLinkage);
2048     // Simplify the initializer.
2049     if (GV.hasInitializer())
2050       if (auto *C = dyn_cast<Constant>(GV.getInitializer())) {
2051         auto &DL = M.getDataLayout();
2052         // TLI is not used in the case of a Constant, so use default nullptr
2053         // for that optional parameter, since we don't have a Function to
2054         // provide GetTLI anyway.
2055         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2056         if (New != C)
2057           GV.setInitializer(New);
2058       }
2059 
2060     if (deleteIfDead(GV, NotDiscardableComdats)) {
2061       Changed = true;
2062       continue;
2063     }
2064 
2065     Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree);
2066   }
2067   return Changed;
2068 }
2069 
2070 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2071 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2072 /// GEP operands of Addr [0, OpNo) have been stepped into.
2073 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2074                                    ConstantExpr *Addr, unsigned OpNo) {
2075   // Base case of the recursion.
2076   if (OpNo == Addr->getNumOperands()) {
2077     assert(Val->getType() == Init->getType() && "Type mismatch!");
2078     return Val;
2079   }
2080 
2081   SmallVector<Constant*, 32> Elts;
2082   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2083     // Break up the constant into its elements.
2084     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2085       Elts.push_back(Init->getAggregateElement(i));
2086 
2087     // Replace the element that we are supposed to.
2088     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2089     unsigned Idx = CU->getZExtValue();
2090     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2091     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2092 
2093     // Return the modified struct.
2094     return ConstantStruct::get(STy, Elts);
2095   }
2096 
2097   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2098   uint64_t NumElts;
2099   if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType()))
2100     NumElts = ATy->getNumElements();
2101   else
2102     NumElts = cast<FixedVectorType>(Init->getType())->getNumElements();
2103 
2104   // Break up the array into elements.
2105   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2106     Elts.push_back(Init->getAggregateElement(i));
2107 
2108   assert(CI->getZExtValue() < NumElts);
2109   Elts[CI->getZExtValue()] =
2110     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2111 
2112   if (Init->getType()->isArrayTy())
2113     return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts);
2114   return ConstantVector::get(Elts);
2115 }
2116 
2117 /// We have decided that Addr (which satisfies the predicate
2118 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2119 static void CommitValueTo(Constant *Val, Constant *Addr) {
2120   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2121     assert(GV->hasInitializer());
2122     GV->setInitializer(Val);
2123     return;
2124   }
2125 
2126   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2127   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2128   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2129 }
2130 
2131 /// Given a map of address -> value, where addresses are expected to be some form
2132 /// of either a global or a constant GEP, set the initializer for the address to
2133 /// be the value. This performs mostly the same function as CommitValueTo()
2134 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2135 /// case where the set of addresses are GEPs sharing the same underlying global,
2136 /// processing the GEPs in batches rather than individually.
2137 ///
2138 /// To give an example, consider the following C++ code adapted from the clang
2139 /// regression tests:
2140 /// struct S {
2141 ///  int n = 10;
2142 ///  int m = 2 * n;
2143 ///  S(int a) : n(a) {}
2144 /// };
2145 ///
2146 /// template<typename T>
2147 /// struct U {
2148 ///  T *r = &q;
2149 ///  T q = 42;
2150 ///  U *p = this;
2151 /// };
2152 ///
2153 /// U<S> e;
2154 ///
2155 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2156 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2157 /// members. This batch algorithm will simply use general CommitValueTo() method
2158 /// to handle the complex nested S struct initialization of 'q', before
2159 /// processing the outermost members in a single batch. Using CommitValueTo() to
2160 /// handle member in the outer struct is inefficient when the struct/array is
2161 /// very large as we end up creating and destroy constant arrays for each
2162 /// initialization.
2163 /// For the above case, we expect the following IR to be generated:
2164 ///
2165 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2166 /// %struct.S = type { i32, i32 }
2167 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2168 ///                                                  i64 0, i32 1),
2169 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2170 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2171 /// constant expression, while the other two elements of @e are "simple".
2172 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2173   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2174   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2175   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2176   SimpleCEs.reserve(Mem.size());
2177 
2178   for (const auto &I : Mem) {
2179     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2180       GVs.push_back(std::make_pair(GV, I.second));
2181     } else {
2182       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2183       // We don't handle the deeply recursive case using the batch method.
2184       if (GEP->getNumOperands() > 3)
2185         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2186       else
2187         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2188     }
2189   }
2190 
2191   // The algorithm below doesn't handle cases like nested structs, so use the
2192   // slower fully general method if we have to.
2193   for (auto ComplexCE : ComplexCEs)
2194     CommitValueTo(ComplexCE.second, ComplexCE.first);
2195 
2196   for (auto GVPair : GVs) {
2197     assert(GVPair.first->hasInitializer());
2198     GVPair.first->setInitializer(GVPair.second);
2199   }
2200 
2201   if (SimpleCEs.empty())
2202     return;
2203 
2204   // We cache a single global's initializer elements in the case where the
2205   // subsequent address/val pair uses the same one. This avoids throwing away and
2206   // rebuilding the constant struct/vector/array just because one element is
2207   // modified at a time.
2208   SmallVector<Constant *, 32> Elts;
2209   Elts.reserve(SimpleCEs.size());
2210   GlobalVariable *CurrentGV = nullptr;
2211 
2212   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2213     Constant *Init = GV->getInitializer();
2214     Type *Ty = Init->getType();
2215     if (Update) {
2216       if (CurrentGV) {
2217         assert(CurrentGV && "Expected a GV to commit to!");
2218         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2219         // We have a valid cache that needs to be committed.
2220         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2221           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2222         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2223           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2224         else
2225           CurrentGV->setInitializer(ConstantVector::get(Elts));
2226       }
2227       if (CurrentGV == GV)
2228         return;
2229       // Need to clear and set up cache for new initializer.
2230       CurrentGV = GV;
2231       Elts.clear();
2232       unsigned NumElts;
2233       if (auto *STy = dyn_cast<StructType>(Ty))
2234         NumElts = STy->getNumElements();
2235       else if (auto *ATy = dyn_cast<ArrayType>(Ty))
2236         NumElts = ATy->getNumElements();
2237       else
2238         NumElts = cast<FixedVectorType>(Ty)->getNumElements();
2239       for (unsigned i = 0, e = NumElts; i != e; ++i)
2240         Elts.push_back(Init->getAggregateElement(i));
2241     }
2242   };
2243 
2244   for (auto CEPair : SimpleCEs) {
2245     ConstantExpr *GEP = CEPair.first;
2246     Constant *Val = CEPair.second;
2247 
2248     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2249     commitAndSetupCache(GV, GV != CurrentGV);
2250     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2251     Elts[CI->getZExtValue()] = Val;
2252   }
2253   // The last initializer in the list needs to be committed, others
2254   // will be committed on a new initializer being processed.
2255   commitAndSetupCache(CurrentGV, true);
2256 }
2257 
2258 /// Evaluate static constructors in the function, if we can.  Return true if we
2259 /// can, false otherwise.
2260 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2261                                       TargetLibraryInfo *TLI) {
2262   // Call the function.
2263   Evaluator Eval(DL, TLI);
2264   Constant *RetValDummy;
2265   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2266                                            SmallVector<Constant*, 0>());
2267 
2268   if (EvalSuccess) {
2269     ++NumCtorsEvaluated;
2270 
2271     // We succeeded at evaluation: commit the result.
2272     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2273                       << F->getName() << "' to "
2274                       << Eval.getMutatedMemory().size() << " stores.\n");
2275     BatchCommitValueTo(Eval.getMutatedMemory());
2276     for (GlobalVariable *GV : Eval.getInvariants())
2277       GV->setConstant(true);
2278   }
2279 
2280   return EvalSuccess;
2281 }
2282 
2283 static int compareNames(Constant *const *A, Constant *const *B) {
2284   Value *AStripped = (*A)->stripPointerCasts();
2285   Value *BStripped = (*B)->stripPointerCasts();
2286   return AStripped->getName().compare(BStripped->getName());
2287 }
2288 
2289 static void setUsedInitializer(GlobalVariable &V,
2290                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2291   if (Init.empty()) {
2292     V.eraseFromParent();
2293     return;
2294   }
2295 
2296   // Type of pointer to the array of pointers.
2297   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2298 
2299   SmallVector<Constant *, 8> UsedArray;
2300   for (GlobalValue *GV : Init) {
2301     Constant *Cast
2302       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2303     UsedArray.push_back(Cast);
2304   }
2305   // Sort to get deterministic order.
2306   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2307   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2308 
2309   Module *M = V.getParent();
2310   V.removeFromParent();
2311   GlobalVariable *NV =
2312       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2313                          ConstantArray::get(ATy, UsedArray), "");
2314   NV->takeName(&V);
2315   NV->setSection("llvm.metadata");
2316   delete &V;
2317 }
2318 
2319 namespace {
2320 
2321 /// An easy to access representation of llvm.used and llvm.compiler.used.
2322 class LLVMUsed {
2323   SmallPtrSet<GlobalValue *, 4> Used;
2324   SmallPtrSet<GlobalValue *, 4> CompilerUsed;
2325   GlobalVariable *UsedV;
2326   GlobalVariable *CompilerUsedV;
2327 
2328 public:
2329   LLVMUsed(Module &M) {
2330     SmallVector<GlobalValue *, 4> Vec;
2331     UsedV = collectUsedGlobalVariables(M, Vec, false);
2332     Used = {Vec.begin(), Vec.end()};
2333     Vec.clear();
2334     CompilerUsedV = collectUsedGlobalVariables(M, Vec, true);
2335     CompilerUsed = {Vec.begin(), Vec.end()};
2336   }
2337 
2338   using iterator = SmallPtrSet<GlobalValue *, 4>::iterator;
2339   using used_iterator_range = iterator_range<iterator>;
2340 
2341   iterator usedBegin() { return Used.begin(); }
2342   iterator usedEnd() { return Used.end(); }
2343 
2344   used_iterator_range used() {
2345     return used_iterator_range(usedBegin(), usedEnd());
2346   }
2347 
2348   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2349   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2350 
2351   used_iterator_range compilerUsed() {
2352     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2353   }
2354 
2355   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2356 
2357   bool compilerUsedCount(GlobalValue *GV) const {
2358     return CompilerUsed.count(GV);
2359   }
2360 
2361   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2362   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2363   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2364 
2365   bool compilerUsedInsert(GlobalValue *GV) {
2366     return CompilerUsed.insert(GV).second;
2367   }
2368 
2369   void syncVariablesAndSets() {
2370     if (UsedV)
2371       setUsedInitializer(*UsedV, Used);
2372     if (CompilerUsedV)
2373       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2374   }
2375 };
2376 
2377 } // end anonymous namespace
2378 
2379 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2380   if (GA.use_empty()) // No use at all.
2381     return false;
2382 
2383   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2384          "We should have removed the duplicated "
2385          "element from llvm.compiler.used");
2386   if (!GA.hasOneUse())
2387     // Strictly more than one use. So at least one is not in llvm.used and
2388     // llvm.compiler.used.
2389     return true;
2390 
2391   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2392   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2393 }
2394 
2395 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2396                                                const LLVMUsed &U) {
2397   unsigned N = 2;
2398   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2399          "We should have removed the duplicated "
2400          "element from llvm.compiler.used");
2401   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2402     ++N;
2403   return V.hasNUsesOrMore(N);
2404 }
2405 
2406 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2407   if (!GA.hasLocalLinkage())
2408     return true;
2409 
2410   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2411 }
2412 
2413 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2414                              bool &RenameTarget) {
2415   RenameTarget = false;
2416   bool Ret = false;
2417   if (hasUseOtherThanLLVMUsed(GA, U))
2418     Ret = true;
2419 
2420   // If the alias is externally visible, we may still be able to simplify it.
2421   if (!mayHaveOtherReferences(GA, U))
2422     return Ret;
2423 
2424   // If the aliasee has internal linkage, give it the name and linkage
2425   // of the alias, and delete the alias.  This turns:
2426   //   define internal ... @f(...)
2427   //   @a = alias ... @f
2428   // into:
2429   //   define ... @a(...)
2430   Constant *Aliasee = GA.getAliasee();
2431   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2432   if (!Target->hasLocalLinkage())
2433     return Ret;
2434 
2435   // Do not perform the transform if multiple aliases potentially target the
2436   // aliasee. This check also ensures that it is safe to replace the section
2437   // and other attributes of the aliasee with those of the alias.
2438   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2439     return Ret;
2440 
2441   RenameTarget = true;
2442   return true;
2443 }
2444 
2445 static bool
2446 OptimizeGlobalAliases(Module &M,
2447                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2448   bool Changed = false;
2449   LLVMUsed Used(M);
2450 
2451   for (GlobalValue *GV : Used.used())
2452     Used.compilerUsedErase(GV);
2453 
2454   for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) {
2455     // Aliases without names cannot be referenced outside this module.
2456     if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage())
2457       J.setLinkage(GlobalValue::InternalLinkage);
2458 
2459     if (deleteIfDead(J, NotDiscardableComdats)) {
2460       Changed = true;
2461       continue;
2462     }
2463 
2464     // If the alias can change at link time, nothing can be done - bail out.
2465     if (J.isInterposable())
2466       continue;
2467 
2468     Constant *Aliasee = J.getAliasee();
2469     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2470     // We can't trivially replace the alias with the aliasee if the aliasee is
2471     // non-trivial in some way. We also can't replace the alias with the aliasee
2472     // if the aliasee is interposable because aliases point to the local
2473     // definition.
2474     // TODO: Try to handle non-zero GEPs of local aliasees.
2475     if (!Target || Target->isInterposable())
2476       continue;
2477     Target->removeDeadConstantUsers();
2478 
2479     // Make all users of the alias use the aliasee instead.
2480     bool RenameTarget;
2481     if (!hasUsesToReplace(J, Used, RenameTarget))
2482       continue;
2483 
2484     J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType()));
2485     ++NumAliasesResolved;
2486     Changed = true;
2487 
2488     if (RenameTarget) {
2489       // Give the aliasee the name, linkage and other attributes of the alias.
2490       Target->takeName(&J);
2491       Target->setLinkage(J.getLinkage());
2492       Target->setDSOLocal(J.isDSOLocal());
2493       Target->setVisibility(J.getVisibility());
2494       Target->setDLLStorageClass(J.getDLLStorageClass());
2495 
2496       if (Used.usedErase(&J))
2497         Used.usedInsert(Target);
2498 
2499       if (Used.compilerUsedErase(&J))
2500         Used.compilerUsedInsert(Target);
2501     } else if (mayHaveOtherReferences(J, Used))
2502       continue;
2503 
2504     // Delete the alias.
2505     M.getAliasList().erase(&J);
2506     ++NumAliasesRemoved;
2507     Changed = true;
2508   }
2509 
2510   Used.syncVariablesAndSets();
2511 
2512   return Changed;
2513 }
2514 
2515 static Function *
2516 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2517   // Hack to get a default TLI before we have actual Function.
2518   auto FuncIter = M.begin();
2519   if (FuncIter == M.end())
2520     return nullptr;
2521   auto *TLI = &GetTLI(*FuncIter);
2522 
2523   LibFunc F = LibFunc_cxa_atexit;
2524   if (!TLI->has(F))
2525     return nullptr;
2526 
2527   Function *Fn = M.getFunction(TLI->getName(F));
2528   if (!Fn)
2529     return nullptr;
2530 
2531   // Now get the actual TLI for Fn.
2532   TLI = &GetTLI(*Fn);
2533 
2534   // Make sure that the function has the correct prototype.
2535   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2536     return nullptr;
2537 
2538   return Fn;
2539 }
2540 
2541 /// Returns whether the given function is an empty C++ destructor and can
2542 /// therefore be eliminated.
2543 /// Note that we assume that other optimization passes have already simplified
2544 /// the code so we simply check for 'ret'.
2545 static bool cxxDtorIsEmpty(const Function &Fn) {
2546   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2547   // nounwind, but that doesn't seem worth doing.
2548   if (Fn.isDeclaration())
2549     return false;
2550 
2551   for (auto &I : Fn.getEntryBlock()) {
2552     if (I.isDebugOrPseudoInst())
2553       continue;
2554     if (isa<ReturnInst>(I))
2555       return true;
2556     break;
2557   }
2558   return false;
2559 }
2560 
2561 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2562   /// Itanium C++ ABI p3.3.5:
2563   ///
2564   ///   After constructing a global (or local static) object, that will require
2565   ///   destruction on exit, a termination function is registered as follows:
2566   ///
2567   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2568   ///
2569   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2570   ///   call f(p) when DSO d is unloaded, before all such termination calls
2571   ///   registered before this one. It returns zero if registration is
2572   ///   successful, nonzero on failure.
2573 
2574   // This pass will look for calls to __cxa_atexit where the function is trivial
2575   // and remove them.
2576   bool Changed = false;
2577 
2578   for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) {
2579     // We're only interested in calls. Theoretically, we could handle invoke
2580     // instructions as well, but neither llvm-gcc nor clang generate invokes
2581     // to __cxa_atexit.
2582     CallInst *CI = dyn_cast<CallInst>(U);
2583     if (!CI)
2584       continue;
2585 
2586     Function *DtorFn =
2587       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2588     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2589       continue;
2590 
2591     // Just remove the call.
2592     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2593     CI->eraseFromParent();
2594 
2595     ++NumCXXDtorsRemoved;
2596 
2597     Changed |= true;
2598   }
2599 
2600   return Changed;
2601 }
2602 
2603 static bool optimizeGlobalsInModule(
2604     Module &M, const DataLayout &DL,
2605     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2606     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2607     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2608     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2609   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2610   bool Changed = false;
2611   bool LocalChange = true;
2612   while (LocalChange) {
2613     LocalChange = false;
2614 
2615     NotDiscardableComdats.clear();
2616     for (const GlobalVariable &GV : M.globals())
2617       if (const Comdat *C = GV.getComdat())
2618         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2619           NotDiscardableComdats.insert(C);
2620     for (Function &F : M)
2621       if (const Comdat *C = F.getComdat())
2622         if (!F.isDefTriviallyDead())
2623           NotDiscardableComdats.insert(C);
2624     for (GlobalAlias &GA : M.aliases())
2625       if (const Comdat *C = GA.getComdat())
2626         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2627           NotDiscardableComdats.insert(C);
2628 
2629     // Delete functions that are trivially dead, ccc -> fastcc
2630     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2631                                      NotDiscardableComdats);
2632 
2633     // Optimize global_ctors list.
2634     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2635       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2636     });
2637 
2638     // Optimize non-address-taken globals.
2639     LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree,
2640                                       NotDiscardableComdats);
2641 
2642     // Resolve aliases, when possible.
2643     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2644 
2645     // Try to remove trivial global destructors if they are not removed
2646     // already.
2647     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2648     if (CXAAtExitFn)
2649       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2650 
2651     Changed |= LocalChange;
2652   }
2653 
2654   // TODO: Move all global ctors functions to the end of the module for code
2655   // layout.
2656 
2657   return Changed;
2658 }
2659 
2660 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2661     auto &DL = M.getDataLayout();
2662     auto &FAM =
2663         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2664     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2665       return FAM.getResult<DominatorTreeAnalysis>(F);
2666     };
2667     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2668       return FAM.getResult<TargetLibraryAnalysis>(F);
2669     };
2670     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2671       return FAM.getResult<TargetIRAnalysis>(F);
2672     };
2673 
2674     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2675       return FAM.getResult<BlockFrequencyAnalysis>(F);
2676     };
2677 
2678     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
2679       return PreservedAnalyses::all();
2680     return PreservedAnalyses::none();
2681 }
2682 
2683 namespace {
2684 
2685 struct GlobalOptLegacyPass : public ModulePass {
2686   static char ID; // Pass identification, replacement for typeid
2687 
2688   GlobalOptLegacyPass() : ModulePass(ID) {
2689     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2690   }
2691 
2692   bool runOnModule(Module &M) override {
2693     if (skipModule(M))
2694       return false;
2695 
2696     auto &DL = M.getDataLayout();
2697     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2698       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2699     };
2700     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
2701       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2702     };
2703     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2704       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2705     };
2706 
2707     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
2708       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
2709     };
2710 
2711     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
2712                                    LookupDomTree);
2713   }
2714 
2715   void getAnalysisUsage(AnalysisUsage &AU) const override {
2716     AU.addRequired<TargetLibraryInfoWrapperPass>();
2717     AU.addRequired<TargetTransformInfoWrapperPass>();
2718     AU.addRequired<DominatorTreeWrapperPass>();
2719     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2720   }
2721 };
2722 
2723 } // end anonymous namespace
2724 
2725 char GlobalOptLegacyPass::ID = 0;
2726 
2727 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2728                       "Global Variable Optimizer", false, false)
2729 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2730 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2731 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
2732 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2733 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2734                     "Global Variable Optimizer", false, false)
2735 
2736 ModulePass *llvm::createGlobalOptimizerPass() {
2737   return new GlobalOptLegacyPass();
2738 }
2739