1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms simple global variables that never have their address 10 // taken. If obviously true, it marks read/write globals as constant, deletes 11 // variables only stored to, etc. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/GlobalOpt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/BinaryFormat/Dwarf.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Use.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/AtomicOrdering.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/IPO.h" 65 #include "llvm/Transforms/Utils/CtorUtils.h" 66 #include "llvm/Transforms/Utils/Evaluator.h" 67 #include "llvm/Transforms/Utils/GlobalStatus.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include <cassert> 70 #include <cstdint> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "globalopt" 77 78 STATISTIC(NumMarked , "Number of globals marked constant"); 79 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 80 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 82 STATISTIC(NumDeleted , "Number of globals deleted"); 83 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 84 STATISTIC(NumLocalized , "Number of globals localized"); 85 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 86 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 88 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 92 STATISTIC(NumInternalFunc, "Number of internal functions"); 93 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 94 95 static cl::opt<bool> 96 EnableColdCCStressTest("enable-coldcc-stress-test", 97 cl::desc("Enable stress test of coldcc by adding " 98 "calling conv to all internal functions."), 99 cl::init(false), cl::Hidden); 100 101 static cl::opt<int> ColdCCRelFreq( 102 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 103 cl::desc( 104 "Maximum block frequency, expressed as a percentage of caller's " 105 "entry frequency, for a call site to be considered cold for enabling" 106 "coldcc")); 107 108 /// Is this global variable possibly used by a leak checker as a root? If so, 109 /// we might not really want to eliminate the stores to it. 110 static bool isLeakCheckerRoot(GlobalVariable *GV) { 111 // A global variable is a root if it is a pointer, or could plausibly contain 112 // a pointer. There are two challenges; one is that we could have a struct 113 // the has an inner member which is a pointer. We recurse through the type to 114 // detect these (up to a point). The other is that we may actually be a union 115 // of a pointer and another type, and so our LLVM type is an integer which 116 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 117 // potentially contained here. 118 119 if (GV->hasPrivateLinkage()) 120 return false; 121 122 SmallVector<Type *, 4> Types; 123 Types.push_back(GV->getValueType()); 124 125 unsigned Limit = 20; 126 do { 127 Type *Ty = Types.pop_back_val(); 128 switch (Ty->getTypeID()) { 129 default: break; 130 case Type::PointerTyID: 131 return true; 132 case Type::FixedVectorTyID: 133 case Type::ScalableVectorTyID: 134 if (cast<VectorType>(Ty)->getElementType()->isPointerTy()) 135 return true; 136 break; 137 case Type::ArrayTyID: 138 Types.push_back(cast<ArrayType>(Ty)->getElementType()); 139 break; 140 case Type::StructTyID: { 141 StructType *STy = cast<StructType>(Ty); 142 if (STy->isOpaque()) return true; 143 for (StructType::element_iterator I = STy->element_begin(), 144 E = STy->element_end(); I != E; ++I) { 145 Type *InnerTy = *I; 146 if (isa<PointerType>(InnerTy)) return true; 147 if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) || 148 isa<VectorType>(InnerTy)) 149 Types.push_back(InnerTy); 150 } 151 break; 152 } 153 } 154 if (--Limit == 0) return true; 155 } while (!Types.empty()); 156 return false; 157 } 158 159 /// Given a value that is stored to a global but never read, determine whether 160 /// it's safe to remove the store and the chain of computation that feeds the 161 /// store. 162 static bool IsSafeComputationToRemove( 163 Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 164 do { 165 if (isa<Constant>(V)) 166 return true; 167 if (!V->hasOneUse()) 168 return false; 169 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 170 isa<GlobalValue>(V)) 171 return false; 172 if (isAllocationFn(V, GetTLI)) 173 return true; 174 175 Instruction *I = cast<Instruction>(V); 176 if (I->mayHaveSideEffects()) 177 return false; 178 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 179 if (!GEP->hasAllConstantIndices()) 180 return false; 181 } else if (I->getNumOperands() != 1) { 182 return false; 183 } 184 185 V = I->getOperand(0); 186 } while (true); 187 } 188 189 /// This GV is a pointer root. Loop over all users of the global and clean up 190 /// any that obviously don't assign the global a value that isn't dynamically 191 /// allocated. 192 static bool 193 CleanupPointerRootUsers(GlobalVariable *GV, 194 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 195 // A brief explanation of leak checkers. The goal is to find bugs where 196 // pointers are forgotten, causing an accumulating growth in memory 197 // usage over time. The common strategy for leak checkers is to explicitly 198 // allow the memory pointed to by globals at exit. This is popular because it 199 // also solves another problem where the main thread of a C++ program may shut 200 // down before other threads that are still expecting to use those globals. To 201 // handle that case, we expect the program may create a singleton and never 202 // destroy it. 203 204 bool Changed = false; 205 206 // If Dead[n].first is the only use of a malloc result, we can delete its 207 // chain of computation and the store to the global in Dead[n].second. 208 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 209 210 // Constants can't be pointers to dynamically allocated memory. 211 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end(); 212 UI != E;) { 213 User *U = *UI++; 214 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 215 Value *V = SI->getValueOperand(); 216 if (isa<Constant>(V)) { 217 Changed = true; 218 SI->eraseFromParent(); 219 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 220 if (I->hasOneUse()) 221 Dead.push_back(std::make_pair(I, SI)); 222 } 223 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 224 if (isa<Constant>(MSI->getValue())) { 225 Changed = true; 226 MSI->eraseFromParent(); 227 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 228 if (I->hasOneUse()) 229 Dead.push_back(std::make_pair(I, MSI)); 230 } 231 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 232 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 233 if (MemSrc && MemSrc->isConstant()) { 234 Changed = true; 235 MTI->eraseFromParent(); 236 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 237 if (I->hasOneUse()) 238 Dead.push_back(std::make_pair(I, MTI)); 239 } 240 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 241 if (CE->use_empty()) { 242 CE->destroyConstant(); 243 Changed = true; 244 } 245 } else if (Constant *C = dyn_cast<Constant>(U)) { 246 if (isSafeToDestroyConstant(C)) { 247 C->destroyConstant(); 248 // This could have invalidated UI, start over from scratch. 249 Dead.clear(); 250 CleanupPointerRootUsers(GV, GetTLI); 251 return true; 252 } 253 } 254 } 255 256 for (int i = 0, e = Dead.size(); i != e; ++i) { 257 if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) { 258 Dead[i].second->eraseFromParent(); 259 Instruction *I = Dead[i].first; 260 do { 261 if (isAllocationFn(I, GetTLI)) 262 break; 263 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 264 if (!J) 265 break; 266 I->eraseFromParent(); 267 I = J; 268 } while (true); 269 I->eraseFromParent(); 270 Changed = true; 271 } 272 } 273 274 return Changed; 275 } 276 277 /// We just marked GV constant. Loop over all users of the global, cleaning up 278 /// the obvious ones. This is largely just a quick scan over the use list to 279 /// clean up the easy and obvious cruft. This returns true if it made a change. 280 static bool CleanupConstantGlobalUsers( 281 Value *V, Constant *Init, const DataLayout &DL, 282 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 283 bool Changed = false; 284 // Note that we need to use a weak value handle for the worklist items. When 285 // we delete a constant array, we may also be holding pointer to one of its 286 // elements (or an element of one of its elements if we're dealing with an 287 // array of arrays) in the worklist. 288 SmallVector<WeakTrackingVH, 8> WorkList(V->users()); 289 while (!WorkList.empty()) { 290 Value *UV = WorkList.pop_back_val(); 291 if (!UV) 292 continue; 293 294 User *U = cast<User>(UV); 295 296 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 297 if (Init) { 298 if (auto *Casted = 299 ConstantFoldLoadThroughBitcast(Init, LI->getType(), DL)) { 300 // Replace the load with the initializer. 301 LI->replaceAllUsesWith(Casted); 302 LI->eraseFromParent(); 303 Changed = true; 304 } 305 } 306 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 307 // Store must be unreachable or storing Init into the global. 308 SI->eraseFromParent(); 309 Changed = true; 310 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 311 if (CE->getOpcode() == Instruction::GetElementPtr) { 312 Constant *SubInit = nullptr; 313 if (Init) 314 SubInit = ConstantFoldLoadThroughGEPConstantExpr( 315 Init, CE, V->getType()->getPointerElementType(), DL); 316 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI); 317 } else if ((CE->getOpcode() == Instruction::BitCast && 318 CE->getType()->isPointerTy()) || 319 CE->getOpcode() == Instruction::AddrSpaceCast) { 320 // Pointer cast, delete any stores and memsets to the global. 321 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI); 322 } 323 324 if (CE->use_empty()) { 325 CE->destroyConstant(); 326 Changed = true; 327 } 328 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 329 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 330 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 331 // and will invalidate our notion of what Init is. 332 Constant *SubInit = nullptr; 333 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 334 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 335 ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction()))); 336 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 337 SubInit = ConstantFoldLoadThroughGEPConstantExpr( 338 Init, CE, V->getType()->getPointerElementType(), DL); 339 340 // If the initializer is an all-null value and we have an inbounds GEP, 341 // we already know what the result of any load from that GEP is. 342 // TODO: Handle splats. 343 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 344 SubInit = Constant::getNullValue(GEP->getResultElementType()); 345 } 346 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI); 347 348 if (GEP->use_empty()) { 349 GEP->eraseFromParent(); 350 Changed = true; 351 } 352 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 353 if (MI->getRawDest() == V) { 354 MI->eraseFromParent(); 355 Changed = true; 356 } 357 358 } else if (Constant *C = dyn_cast<Constant>(U)) { 359 // If we have a chain of dead constantexprs or other things dangling from 360 // us, and if they are all dead, nuke them without remorse. 361 if (isSafeToDestroyConstant(C)) { 362 C->destroyConstant(); 363 CleanupConstantGlobalUsers(V, Init, DL, GetTLI); 364 return true; 365 } 366 } 367 } 368 return Changed; 369 } 370 371 static bool isSafeSROAElementUse(Value *V); 372 373 /// Return true if the specified GEP is a safe user of a derived 374 /// expression from a global that we want to SROA. 375 static bool isSafeSROAGEP(User *U) { 376 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 377 // don't like < 3 operand CE's, and we don't like non-constant integer 378 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 379 // value of C. 380 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 381 !cast<Constant>(U->getOperand(1))->isNullValue()) 382 return false; 383 384 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 385 ++GEPI; // Skip over the pointer index. 386 387 // For all other level we require that the indices are constant and inrange. 388 // In particular, consider: A[0][i]. We cannot know that the user isn't doing 389 // invalid things like allowing i to index an out-of-range subscript that 390 // accesses A[1]. This can also happen between different members of a struct 391 // in llvm IR. 392 for (; GEPI != E; ++GEPI) { 393 if (GEPI.isStruct()) 394 continue; 395 396 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 397 if (!IdxVal || (GEPI.isBoundedSequential() && 398 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 399 return false; 400 } 401 402 return llvm::all_of(U->users(), 403 [](User *UU) { return isSafeSROAElementUse(UU); }); 404 } 405 406 /// Return true if the specified instruction is a safe user of a derived 407 /// expression from a global that we want to SROA. 408 static bool isSafeSROAElementUse(Value *V) { 409 // We might have a dead and dangling constant hanging off of here. 410 if (Constant *C = dyn_cast<Constant>(V)) 411 return isSafeToDestroyConstant(C); 412 413 Instruction *I = dyn_cast<Instruction>(V); 414 if (!I) return false; 415 416 // Loads are ok. 417 if (isa<LoadInst>(I)) return true; 418 419 // Stores *to* the pointer are ok. 420 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 421 return SI->getOperand(0) != V; 422 423 // Otherwise, it must be a GEP. Check it and its users are safe to SRA. 424 return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I); 425 } 426 427 /// Look at all uses of the global and decide whether it is safe for us to 428 /// perform this transformation. 429 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 430 for (User *U : GV->users()) { 431 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 432 if (!isa<GetElementPtrInst>(U) && 433 (!isa<ConstantExpr>(U) || 434 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 435 return false; 436 437 // Check the gep and it's users are safe to SRA 438 if (!isSafeSROAGEP(U)) 439 return false; 440 } 441 442 return true; 443 } 444 445 static bool IsSRASequential(Type *T) { 446 return isa<ArrayType>(T) || isa<VectorType>(T); 447 } 448 static uint64_t GetSRASequentialNumElements(Type *T) { 449 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 450 return AT->getNumElements(); 451 return cast<FixedVectorType>(T)->getNumElements(); 452 } 453 static Type *GetSRASequentialElementType(Type *T) { 454 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 455 return AT->getElementType(); 456 return cast<VectorType>(T)->getElementType(); 457 } 458 static bool CanDoGlobalSRA(GlobalVariable *GV) { 459 Constant *Init = GV->getInitializer(); 460 461 if (isa<StructType>(Init->getType())) { 462 // nothing to check 463 } else if (IsSRASequential(Init->getType())) { 464 if (GetSRASequentialNumElements(Init->getType()) > 16 && 465 GV->hasNUsesOrMore(16)) 466 return false; // It's not worth it. 467 } else 468 return false; 469 470 return GlobalUsersSafeToSRA(GV); 471 } 472 473 /// Copy over the debug info for a variable to its SRA replacements. 474 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 475 uint64_t FragmentOffsetInBits, 476 uint64_t FragmentSizeInBits, 477 uint64_t VarSize) { 478 SmallVector<DIGlobalVariableExpression *, 1> GVs; 479 GV->getDebugInfo(GVs); 480 for (auto *GVE : GVs) { 481 DIVariable *Var = GVE->getVariable(); 482 DIExpression *Expr = GVE->getExpression(); 483 // If the FragmentSize is smaller than the variable, 484 // emit a fragment expression. 485 if (FragmentSizeInBits < VarSize) { 486 if (auto E = DIExpression::createFragmentExpression( 487 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 488 Expr = *E; 489 else 490 return; 491 } 492 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 493 NGV->addDebugInfo(NGVE); 494 } 495 } 496 497 /// Perform scalar replacement of aggregates on the specified global variable. 498 /// This opens the door for other optimizations by exposing the behavior of the 499 /// program in a more fine-grained way. We have determined that this 500 /// transformation is safe already. We return the first global variable we 501 /// insert so that the caller can reprocess it. 502 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 503 // Make sure this global only has simple uses that we can SRA. 504 if (!CanDoGlobalSRA(GV)) 505 return nullptr; 506 507 assert(GV->hasLocalLinkage()); 508 Constant *Init = GV->getInitializer(); 509 Type *Ty = Init->getType(); 510 uint64_t VarSize = DL.getTypeSizeInBits(Ty); 511 512 std::map<unsigned, GlobalVariable *> NewGlobals; 513 514 // Get the alignment of the global, either explicit or target-specific. 515 Align StartAlignment = 516 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType()); 517 518 // Loop over all users and create replacement variables for used aggregate 519 // elements. 520 for (User *GEP : GV->users()) { 521 assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() == 522 Instruction::GetElementPtr) || 523 isa<GetElementPtrInst>(GEP)) && 524 "NonGEP CE's are not SRAable!"); 525 526 // Ignore the 1th operand, which has to be zero or else the program is quite 527 // broken (undefined). Get the 2nd operand, which is the structure or array 528 // index. 529 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 530 if (NewGlobals.count(ElementIdx) == 1) 531 continue; // we`ve already created replacement variable 532 assert(NewGlobals.count(ElementIdx) == 0); 533 534 Type *ElTy = nullptr; 535 if (StructType *STy = dyn_cast<StructType>(Ty)) 536 ElTy = STy->getElementType(ElementIdx); 537 else 538 ElTy = GetSRASequentialElementType(Ty); 539 assert(ElTy); 540 541 Constant *In = Init->getAggregateElement(ElementIdx); 542 assert(In && "Couldn't get element of initializer?"); 543 544 GlobalVariable *NGV = new GlobalVariable( 545 ElTy, false, GlobalVariable::InternalLinkage, In, 546 GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(), 547 GV->getType()->getAddressSpace()); 548 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 549 NGV->copyAttributesFrom(GV); 550 NewGlobals.insert(std::make_pair(ElementIdx, NGV)); 551 552 if (StructType *STy = dyn_cast<StructType>(Ty)) { 553 const StructLayout &Layout = *DL.getStructLayout(STy); 554 555 // Calculate the known alignment of the field. If the original aggregate 556 // had 256 byte alignment for example, something might depend on that: 557 // propagate info to each field. 558 uint64_t FieldOffset = Layout.getElementOffset(ElementIdx); 559 Align NewAlign = commonAlignment(StartAlignment, FieldOffset); 560 if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx))) 561 NGV->setAlignment(NewAlign); 562 563 // Copy over the debug info for the variable. 564 uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType()); 565 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx); 566 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize); 567 } else { 568 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 569 Align EltAlign = DL.getABITypeAlign(ElTy); 570 uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy); 571 572 // Calculate the known alignment of the field. If the original aggregate 573 // had 256 byte alignment for example, something might depend on that: 574 // propagate info to each field. 575 Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx); 576 if (NewAlign > EltAlign) 577 NGV->setAlignment(NewAlign); 578 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx, 579 FragmentSizeInBits, VarSize); 580 } 581 } 582 583 if (NewGlobals.empty()) 584 return nullptr; 585 586 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 587 for (auto NewGlobalVar : NewGlobals) 588 Globals.push_back(NewGlobalVar.second); 589 590 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 591 592 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 593 594 // Loop over all of the uses of the global, replacing the constantexpr geps, 595 // with smaller constantexpr geps or direct references. 596 while (!GV->use_empty()) { 597 User *GEP = GV->user_back(); 598 assert(((isa<ConstantExpr>(GEP) && 599 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 600 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 601 602 // Ignore the 1th operand, which has to be zero or else the program is quite 603 // broken (undefined). Get the 2nd operand, which is the structure or array 604 // index. 605 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 606 assert(NewGlobals.count(ElementIdx) == 1); 607 608 Value *NewPtr = NewGlobals[ElementIdx]; 609 Type *NewTy = NewGlobals[ElementIdx]->getValueType(); 610 611 // Form a shorter GEP if needed. 612 if (GEP->getNumOperands() > 3) { 613 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 614 SmallVector<Constant*, 8> Idxs; 615 Idxs.push_back(NullInt); 616 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 617 Idxs.push_back(CE->getOperand(i)); 618 NewPtr = 619 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 620 } else { 621 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 622 SmallVector<Value*, 8> Idxs; 623 Idxs.push_back(NullInt); 624 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 625 Idxs.push_back(GEPI->getOperand(i)); 626 NewPtr = GetElementPtrInst::Create( 627 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx), 628 GEPI); 629 } 630 } 631 GEP->replaceAllUsesWith(NewPtr); 632 633 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 634 GEPI->eraseFromParent(); 635 else 636 cast<ConstantExpr>(GEP)->destroyConstant(); 637 } 638 639 // Delete the old global, now that it is dead. 640 Globals.erase(GV); 641 ++NumSRA; 642 643 assert(NewGlobals.size() > 0); 644 return NewGlobals.begin()->second; 645 } 646 647 /// Return true if all users of the specified value will trap if the value is 648 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 649 /// reprocessing them. 650 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 651 SmallPtrSetImpl<const PHINode*> &PHIs) { 652 for (const User *U : V->users()) { 653 if (const Instruction *I = dyn_cast<Instruction>(U)) { 654 // If null pointer is considered valid, then all uses are non-trapping. 655 // Non address-space 0 globals have already been pruned by the caller. 656 if (NullPointerIsDefined(I->getFunction())) 657 return false; 658 } 659 if (isa<LoadInst>(U)) { 660 // Will trap. 661 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 662 if (SI->getOperand(0) == V) { 663 //cerr << "NONTRAPPING USE: " << *U; 664 return false; // Storing the value. 665 } 666 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 667 if (CI->getCalledOperand() != V) { 668 //cerr << "NONTRAPPING USE: " << *U; 669 return false; // Not calling the ptr 670 } 671 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 672 if (II->getCalledOperand() != V) { 673 //cerr << "NONTRAPPING USE: " << *U; 674 return false; // Not calling the ptr 675 } 676 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 677 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 678 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 679 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 680 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 681 // If we've already seen this phi node, ignore it, it has already been 682 // checked. 683 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 684 return false; 685 } else { 686 //cerr << "NONTRAPPING USE: " << *U; 687 return false; 688 } 689 } 690 return true; 691 } 692 693 /// Return true if all uses of any loads from GV will trap if the loaded value 694 /// is null. Note that this also permits comparisons of the loaded value 695 /// against null, as a special case. 696 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 697 for (const User *U : GV->users()) 698 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 699 SmallPtrSet<const PHINode*, 8> PHIs; 700 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 701 return false; 702 } else if (isa<StoreInst>(U)) { 703 // Ignore stores to the global. 704 } else { 705 // We don't know or understand this user, bail out. 706 //cerr << "UNKNOWN USER OF GLOBAL!: " << *U; 707 return false; 708 } 709 return true; 710 } 711 712 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 713 bool Changed = false; 714 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 715 Instruction *I = cast<Instruction>(*UI++); 716 // Uses are non-trapping if null pointer is considered valid. 717 // Non address-space 0 globals are already pruned by the caller. 718 if (NullPointerIsDefined(I->getFunction())) 719 return false; 720 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 721 LI->setOperand(0, NewV); 722 Changed = true; 723 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 724 if (SI->getOperand(1) == V) { 725 SI->setOperand(1, NewV); 726 Changed = true; 727 } 728 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 729 CallBase *CB = cast<CallBase>(I); 730 if (CB->getCalledOperand() == V) { 731 // Calling through the pointer! Turn into a direct call, but be careful 732 // that the pointer is not also being passed as an argument. 733 CB->setCalledOperand(NewV); 734 Changed = true; 735 bool PassedAsArg = false; 736 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 737 if (CB->getArgOperand(i) == V) { 738 PassedAsArg = true; 739 CB->setArgOperand(i, NewV); 740 } 741 742 if (PassedAsArg) { 743 // Being passed as an argument also. Be careful to not invalidate UI! 744 UI = V->user_begin(); 745 } 746 } 747 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 748 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 749 ConstantExpr::getCast(CI->getOpcode(), 750 NewV, CI->getType())); 751 if (CI->use_empty()) { 752 Changed = true; 753 CI->eraseFromParent(); 754 } 755 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 756 // Should handle GEP here. 757 SmallVector<Constant*, 8> Idxs; 758 Idxs.reserve(GEPI->getNumOperands()-1); 759 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 760 i != e; ++i) 761 if (Constant *C = dyn_cast<Constant>(*i)) 762 Idxs.push_back(C); 763 else 764 break; 765 if (Idxs.size() == GEPI->getNumOperands()-1) 766 Changed |= OptimizeAwayTrappingUsesOfValue( 767 GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(), 768 NewV, Idxs)); 769 if (GEPI->use_empty()) { 770 Changed = true; 771 GEPI->eraseFromParent(); 772 } 773 } 774 } 775 776 return Changed; 777 } 778 779 /// The specified global has only one non-null value stored into it. If there 780 /// are uses of the loaded value that would trap if the loaded value is 781 /// dynamically null, then we know that they cannot be reachable with a null 782 /// optimize away the load. 783 static bool OptimizeAwayTrappingUsesOfLoads( 784 GlobalVariable *GV, Constant *LV, const DataLayout &DL, 785 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 786 bool Changed = false; 787 788 // Keep track of whether we are able to remove all the uses of the global 789 // other than the store that defines it. 790 bool AllNonStoreUsesGone = true; 791 792 // Replace all uses of loads with uses of uses of the stored value. 793 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){ 794 User *GlobalUser = *GUI++; 795 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 796 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 797 // If we were able to delete all uses of the loads 798 if (LI->use_empty()) { 799 LI->eraseFromParent(); 800 Changed = true; 801 } else { 802 AllNonStoreUsesGone = false; 803 } 804 } else if (isa<StoreInst>(GlobalUser)) { 805 // Ignore the store that stores "LV" to the global. 806 assert(GlobalUser->getOperand(1) == GV && 807 "Must be storing *to* the global"); 808 } else { 809 AllNonStoreUsesGone = false; 810 811 // If we get here we could have other crazy uses that are transitively 812 // loaded. 813 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 814 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 815 isa<BitCastInst>(GlobalUser) || 816 isa<GetElementPtrInst>(GlobalUser)) && 817 "Only expect load and stores!"); 818 } 819 } 820 821 if (Changed) { 822 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV 823 << "\n"); 824 ++NumGlobUses; 825 } 826 827 // If we nuked all of the loads, then none of the stores are needed either, 828 // nor is the global. 829 if (AllNonStoreUsesGone) { 830 if (isLeakCheckerRoot(GV)) { 831 Changed |= CleanupPointerRootUsers(GV, GetTLI); 832 } else { 833 Changed = true; 834 CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI); 835 } 836 if (GV->use_empty()) { 837 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 838 Changed = true; 839 GV->eraseFromParent(); 840 ++NumDeleted; 841 } 842 } 843 return Changed; 844 } 845 846 /// Walk the use list of V, constant folding all of the instructions that are 847 /// foldable. 848 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 849 TargetLibraryInfo *TLI) { 850 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 851 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 852 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 853 I->replaceAllUsesWith(NewC); 854 855 // Advance UI to the next non-I use to avoid invalidating it! 856 // Instructions could multiply use V. 857 while (UI != E && *UI == I) 858 ++UI; 859 if (isInstructionTriviallyDead(I, TLI)) 860 I->eraseFromParent(); 861 } 862 } 863 864 /// This function takes the specified global variable, and transforms the 865 /// program as if it always contained the result of the specified malloc. 866 /// Because it is always the result of the specified malloc, there is no reason 867 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 868 /// loads of GV as uses of the new global. 869 static GlobalVariable * 870 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 871 ConstantInt *NElements, const DataLayout &DL, 872 TargetLibraryInfo *TLI) { 873 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI 874 << '\n'); 875 876 Type *GlobalType; 877 if (NElements->getZExtValue() == 1) 878 GlobalType = AllocTy; 879 else 880 // If we have an array allocation, the global variable is of an array. 881 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 882 883 // Create the new global variable. The contents of the malloc'd memory is 884 // undefined, so initialize with an undef value. 885 GlobalVariable *NewGV = new GlobalVariable( 886 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 887 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 888 GV->getThreadLocalMode()); 889 890 // If there are bitcast users of the malloc (which is typical, usually we have 891 // a malloc + bitcast) then replace them with uses of the new global. Update 892 // other users to use the global as well. 893 BitCastInst *TheBC = nullptr; 894 while (!CI->use_empty()) { 895 Instruction *User = cast<Instruction>(CI->user_back()); 896 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 897 if (BCI->getType() == NewGV->getType()) { 898 BCI->replaceAllUsesWith(NewGV); 899 BCI->eraseFromParent(); 900 } else { 901 BCI->setOperand(0, NewGV); 902 } 903 } else { 904 if (!TheBC) 905 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 906 User->replaceUsesOfWith(CI, TheBC); 907 } 908 } 909 910 Constant *RepValue = NewGV; 911 if (NewGV->getType() != GV->getValueType()) 912 RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType()); 913 914 // If there is a comparison against null, we will insert a global bool to 915 // keep track of whether the global was initialized yet or not. 916 GlobalVariable *InitBool = 917 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 918 GlobalValue::InternalLinkage, 919 ConstantInt::getFalse(GV->getContext()), 920 GV->getName()+".init", GV->getThreadLocalMode()); 921 bool InitBoolUsed = false; 922 923 // Loop over all uses of GV, processing them in turn. 924 while (!GV->use_empty()) { 925 if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) { 926 // The global is initialized when the store to it occurs. 927 new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 928 Align(1), SI->getOrdering(), SI->getSyncScopeID(), SI); 929 SI->eraseFromParent(); 930 continue; 931 } 932 933 LoadInst *LI = cast<LoadInst>(GV->user_back()); 934 while (!LI->use_empty()) { 935 Use &LoadUse = *LI->use_begin(); 936 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 937 if (!ICI) { 938 LoadUse = RepValue; 939 continue; 940 } 941 942 // Replace the cmp X, 0 with a use of the bool value. 943 // Sink the load to where the compare was, if atomic rules allow us to. 944 Value *LV = new LoadInst(InitBool->getValueType(), InitBool, 945 InitBool->getName() + ".val", false, Align(1), 946 LI->getOrdering(), LI->getSyncScopeID(), 947 LI->isUnordered() ? (Instruction *)ICI : LI); 948 InitBoolUsed = true; 949 switch (ICI->getPredicate()) { 950 default: llvm_unreachable("Unknown ICmp Predicate!"); 951 case ICmpInst::ICMP_ULT: 952 case ICmpInst::ICMP_SLT: // X < null -> always false 953 LV = ConstantInt::getFalse(GV->getContext()); 954 break; 955 case ICmpInst::ICMP_ULE: 956 case ICmpInst::ICMP_SLE: 957 case ICmpInst::ICMP_EQ: 958 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 959 break; 960 case ICmpInst::ICMP_NE: 961 case ICmpInst::ICMP_UGE: 962 case ICmpInst::ICMP_SGE: 963 case ICmpInst::ICMP_UGT: 964 case ICmpInst::ICMP_SGT: 965 break; // no change. 966 } 967 ICI->replaceAllUsesWith(LV); 968 ICI->eraseFromParent(); 969 } 970 LI->eraseFromParent(); 971 } 972 973 // If the initialization boolean was used, insert it, otherwise delete it. 974 if (!InitBoolUsed) { 975 while (!InitBool->use_empty()) // Delete initializations 976 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 977 delete InitBool; 978 } else 979 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 980 981 // Now the GV is dead, nuke it and the malloc.. 982 GV->eraseFromParent(); 983 CI->eraseFromParent(); 984 985 // To further other optimizations, loop over all users of NewGV and try to 986 // constant prop them. This will promote GEP instructions with constant 987 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 988 ConstantPropUsersOf(NewGV, DL, TLI); 989 if (RepValue != NewGV) 990 ConstantPropUsersOf(RepValue, DL, TLI); 991 992 return NewGV; 993 } 994 995 /// Scan the use-list of V checking to make sure that there are no complex uses 996 /// of V. We permit simple things like dereferencing the pointer, but not 997 /// storing through the address, unless it is to the specified global. 998 static bool 999 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V, 1000 const GlobalVariable *GV) { 1001 for (const User *U : V->users()) { 1002 const Instruction *Inst = cast<Instruction>(U); 1003 1004 if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) { 1005 continue; // Fine, ignore. 1006 } 1007 1008 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 1009 if (SI->getOperand(0) == V && SI->getOperand(1) != GV) 1010 return false; // Storing the pointer itself... bad. 1011 continue; // Otherwise, storing through it, or storing into GV... fine. 1012 } 1013 1014 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) { 1015 if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV)) 1016 return false; 1017 continue; 1018 } 1019 1020 return false; 1021 } 1022 return true; 1023 } 1024 1025 /// This function is called when we see a pointer global variable with a single 1026 /// value stored it that is a malloc or cast of malloc. 1027 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1028 Type *AllocTy, 1029 AtomicOrdering Ordering, 1030 const DataLayout &DL, 1031 TargetLibraryInfo *TLI) { 1032 // If this is a malloc of an abstract type, don't touch it. 1033 if (!AllocTy->isSized()) 1034 return false; 1035 1036 // We can't optimize this global unless all uses of it are *known* to be 1037 // of the malloc value, not of the null initializer value (consider a use 1038 // that compares the global's value against zero to see if the malloc has 1039 // been reached). To do this, we check to see if all uses of the global 1040 // would trap if the global were null: this proves that they must all 1041 // happen after the malloc. 1042 if (!AllUsesOfLoadedValueWillTrapIfNull(GV)) 1043 return false; 1044 1045 // We can't optimize this if the malloc itself is used in a complex way, 1046 // for example, being stored into multiple globals. This allows the 1047 // malloc to be stored into the specified global, loaded icmp'd. 1048 // These are all things we could transform to using the global for. 1049 if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV)) 1050 return false; 1051 1052 // If we have a global that is only initialized with a fixed size malloc, 1053 // transform the program to use global memory instead of malloc'd memory. 1054 // This eliminates dynamic allocation, avoids an indirection accessing the 1055 // data, and exposes the resultant global to further GlobalOpt. 1056 // We cannot optimize the malloc if we cannot determine malloc array size. 1057 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1058 if (!NElems) 1059 return false; 1060 1061 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1062 // Restrict this transformation to only working on small allocations 1063 // (2048 bytes currently), as we don't want to introduce a 16M global or 1064 // something. 1065 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1066 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1067 return true; 1068 } 1069 1070 return false; 1071 } 1072 1073 // Try to optimize globals based on the knowledge that only one value (besides 1074 // its initializer) is ever stored to the global. 1075 static bool 1076 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1077 AtomicOrdering Ordering, const DataLayout &DL, 1078 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1079 // Ignore no-op GEPs and bitcasts. 1080 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1081 1082 // If we are dealing with a pointer global that is initialized to null and 1083 // only has one (non-null) value stored into it, then we can optimize any 1084 // users of the loaded value (often calls and loads) that would trap if the 1085 // value was null. 1086 if (GV->getInitializer()->getType()->isPointerTy() && 1087 GV->getInitializer()->isNullValue() && 1088 !NullPointerIsDefined( 1089 nullptr /* F */, 1090 GV->getInitializer()->getType()->getPointerAddressSpace())) { 1091 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1092 if (GV->getInitializer()->getType() != SOVC->getType()) 1093 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1094 1095 // Optimize away any trapping uses of the loaded value. 1096 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI)) 1097 return true; 1098 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) { 1099 auto *TLI = &GetTLI(*CI->getFunction()); 1100 Type *MallocType = getMallocAllocatedType(CI, TLI); 1101 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1102 Ordering, DL, TLI)) 1103 return true; 1104 } 1105 } 1106 1107 return false; 1108 } 1109 1110 /// At this point, we have learned that the only two values ever stored into GV 1111 /// are its initializer and OtherVal. See if we can shrink the global into a 1112 /// boolean and select between the two values whenever it is used. This exposes 1113 /// the values to other scalar optimizations. 1114 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1115 Type *GVElType = GV->getValueType(); 1116 1117 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1118 // an FP value, pointer or vector, don't do this optimization because a select 1119 // between them is very expensive and unlikely to lead to later 1120 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1121 // where v1 and v2 both require constant pool loads, a big loss. 1122 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1123 GVElType->isFloatingPointTy() || 1124 GVElType->isPointerTy() || GVElType->isVectorTy()) 1125 return false; 1126 1127 // Walk the use list of the global seeing if all the uses are load or store. 1128 // If there is anything else, bail out. 1129 for (User *U : GV->users()) 1130 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1131 return false; 1132 1133 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1134 1135 // Create the new global, initializing it to false. 1136 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1137 false, 1138 GlobalValue::InternalLinkage, 1139 ConstantInt::getFalse(GV->getContext()), 1140 GV->getName()+".b", 1141 GV->getThreadLocalMode(), 1142 GV->getType()->getAddressSpace()); 1143 NewGV->copyAttributesFrom(GV); 1144 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1145 1146 Constant *InitVal = GV->getInitializer(); 1147 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1148 "No reason to shrink to bool!"); 1149 1150 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1151 GV->getDebugInfo(GVs); 1152 1153 // If initialized to zero and storing one into the global, we can use a cast 1154 // instead of a select to synthesize the desired value. 1155 bool IsOneZero = false; 1156 bool EmitOneOrZero = true; 1157 auto *CI = dyn_cast<ConstantInt>(OtherVal); 1158 if (CI && CI->getValue().getActiveBits() <= 64) { 1159 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1160 1161 auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer()); 1162 if (CIInit && CIInit->getValue().getActiveBits() <= 64) { 1163 uint64_t ValInit = CIInit->getZExtValue(); 1164 uint64_t ValOther = CI->getZExtValue(); 1165 uint64_t ValMinus = ValOther - ValInit; 1166 1167 for(auto *GVe : GVs){ 1168 DIGlobalVariable *DGV = GVe->getVariable(); 1169 DIExpression *E = GVe->getExpression(); 1170 const DataLayout &DL = GV->getParent()->getDataLayout(); 1171 unsigned SizeInOctets = 1172 DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8; 1173 1174 // It is expected that the address of global optimized variable is on 1175 // top of the stack. After optimization, value of that variable will 1176 // be ether 0 for initial value or 1 for other value. The following 1177 // expression should return constant integer value depending on the 1178 // value at global object address: 1179 // val * (ValOther - ValInit) + ValInit: 1180 // DW_OP_deref DW_OP_constu <ValMinus> 1181 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1182 SmallVector<uint64_t, 12> Ops = { 1183 dwarf::DW_OP_deref_size, SizeInOctets, 1184 dwarf::DW_OP_constu, ValMinus, 1185 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1186 dwarf::DW_OP_plus}; 1187 bool WithStackValue = true; 1188 E = DIExpression::prependOpcodes(E, Ops, WithStackValue); 1189 DIGlobalVariableExpression *DGVE = 1190 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1191 NewGV->addDebugInfo(DGVE); 1192 } 1193 EmitOneOrZero = false; 1194 } 1195 } 1196 1197 if (EmitOneOrZero) { 1198 // FIXME: This will only emit address for debugger on which will 1199 // be written only 0 or 1. 1200 for(auto *GV : GVs) 1201 NewGV->addDebugInfo(GV); 1202 } 1203 1204 while (!GV->use_empty()) { 1205 Instruction *UI = cast<Instruction>(GV->user_back()); 1206 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1207 // Change the store into a boolean store. 1208 bool StoringOther = SI->getOperand(0) == OtherVal; 1209 // Only do this if we weren't storing a loaded value. 1210 Value *StoreVal; 1211 if (StoringOther || SI->getOperand(0) == InitVal) { 1212 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1213 StoringOther); 1214 } else { 1215 // Otherwise, we are storing a previously loaded copy. To do this, 1216 // change the copy from copying the original value to just copying the 1217 // bool. 1218 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1219 1220 // If we've already replaced the input, StoredVal will be a cast or 1221 // select instruction. If not, it will be a load of the original 1222 // global. 1223 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1224 assert(LI->getOperand(0) == GV && "Not a copy!"); 1225 // Insert a new load, to preserve the saved value. 1226 StoreVal = new LoadInst(NewGV->getValueType(), NewGV, 1227 LI->getName() + ".b", false, Align(1), 1228 LI->getOrdering(), LI->getSyncScopeID(), LI); 1229 } else { 1230 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1231 "This is not a form that we understand!"); 1232 StoreVal = StoredVal->getOperand(0); 1233 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1234 } 1235 } 1236 StoreInst *NSI = 1237 new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(), 1238 SI->getSyncScopeID(), SI); 1239 NSI->setDebugLoc(SI->getDebugLoc()); 1240 } else { 1241 // Change the load into a load of bool then a select. 1242 LoadInst *LI = cast<LoadInst>(UI); 1243 LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV, 1244 LI->getName() + ".b", false, Align(1), 1245 LI->getOrdering(), LI->getSyncScopeID(), LI); 1246 Instruction *NSI; 1247 if (IsOneZero) 1248 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1249 else 1250 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1251 NSI->takeName(LI); 1252 // Since LI is split into two instructions, NLI and NSI both inherit the 1253 // same DebugLoc 1254 NLI->setDebugLoc(LI->getDebugLoc()); 1255 NSI->setDebugLoc(LI->getDebugLoc()); 1256 LI->replaceAllUsesWith(NSI); 1257 } 1258 UI->eraseFromParent(); 1259 } 1260 1261 // Retain the name of the old global variable. People who are debugging their 1262 // programs may expect these variables to be named the same. 1263 NewGV->takeName(GV); 1264 GV->eraseFromParent(); 1265 return true; 1266 } 1267 1268 static bool deleteIfDead( 1269 GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1270 GV.removeDeadConstantUsers(); 1271 1272 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1273 return false; 1274 1275 if (const Comdat *C = GV.getComdat()) 1276 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1277 return false; 1278 1279 bool Dead; 1280 if (auto *F = dyn_cast<Function>(&GV)) 1281 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1282 else 1283 Dead = GV.use_empty(); 1284 if (!Dead) 1285 return false; 1286 1287 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1288 GV.eraseFromParent(); 1289 ++NumDeleted; 1290 return true; 1291 } 1292 1293 static bool isPointerValueDeadOnEntryToFunction( 1294 const Function *F, GlobalValue *GV, 1295 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1296 // Find all uses of GV. We expect them all to be in F, and if we can't 1297 // identify any of the uses we bail out. 1298 // 1299 // On each of these uses, identify if the memory that GV points to is 1300 // used/required/live at the start of the function. If it is not, for example 1301 // if the first thing the function does is store to the GV, the GV can 1302 // possibly be demoted. 1303 // 1304 // We don't do an exhaustive search for memory operations - simply look 1305 // through bitcasts as they're quite common and benign. 1306 const DataLayout &DL = GV->getParent()->getDataLayout(); 1307 SmallVector<LoadInst *, 4> Loads; 1308 SmallVector<StoreInst *, 4> Stores; 1309 for (auto *U : GV->users()) { 1310 if (Operator::getOpcode(U) == Instruction::BitCast) { 1311 for (auto *UU : U->users()) { 1312 if (auto *LI = dyn_cast<LoadInst>(UU)) 1313 Loads.push_back(LI); 1314 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1315 Stores.push_back(SI); 1316 else 1317 return false; 1318 } 1319 continue; 1320 } 1321 1322 Instruction *I = dyn_cast<Instruction>(U); 1323 if (!I) 1324 return false; 1325 assert(I->getParent()->getParent() == F); 1326 1327 if (auto *LI = dyn_cast<LoadInst>(I)) 1328 Loads.push_back(LI); 1329 else if (auto *SI = dyn_cast<StoreInst>(I)) 1330 Stores.push_back(SI); 1331 else 1332 return false; 1333 } 1334 1335 // We have identified all uses of GV into loads and stores. Now check if all 1336 // of them are known not to depend on the value of the global at the function 1337 // entry point. We do this by ensuring that every load is dominated by at 1338 // least one store. 1339 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1340 1341 // The below check is quadratic. Check we're not going to do too many tests. 1342 // FIXME: Even though this will always have worst-case quadratic time, we 1343 // could put effort into minimizing the average time by putting stores that 1344 // have been shown to dominate at least one load at the beginning of the 1345 // Stores array, making subsequent dominance checks more likely to succeed 1346 // early. 1347 // 1348 // The threshold here is fairly large because global->local demotion is a 1349 // very powerful optimization should it fire. 1350 const unsigned Threshold = 100; 1351 if (Loads.size() * Stores.size() > Threshold) 1352 return false; 1353 1354 for (auto *L : Loads) { 1355 auto *LTy = L->getType(); 1356 if (none_of(Stores, [&](const StoreInst *S) { 1357 auto *STy = S->getValueOperand()->getType(); 1358 // The load is only dominated by the store if DomTree says so 1359 // and the number of bits loaded in L is less than or equal to 1360 // the number of bits stored in S. 1361 return DT.dominates(S, L) && 1362 DL.getTypeStoreSize(LTy).getFixedSize() <= 1363 DL.getTypeStoreSize(STy).getFixedSize(); 1364 })) 1365 return false; 1366 } 1367 // All loads have known dependences inside F, so the global can be localized. 1368 return true; 1369 } 1370 1371 /// C may have non-instruction users. Can all of those users be turned into 1372 /// instructions? 1373 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1374 // We don't do this exhaustively. The most common pattern that we really need 1375 // to care about is a constant GEP or constant bitcast - so just looking 1376 // through one single ConstantExpr. 1377 // 1378 // The set of constants that this function returns true for must be able to be 1379 // handled by makeAllConstantUsesInstructions. 1380 for (auto *U : C->users()) { 1381 if (isa<Instruction>(U)) 1382 continue; 1383 if (!isa<ConstantExpr>(U)) 1384 // Non instruction, non-constantexpr user; cannot convert this. 1385 return false; 1386 for (auto *UU : U->users()) 1387 if (!isa<Instruction>(UU)) 1388 // A constantexpr used by another constant. We don't try and recurse any 1389 // further but just bail out at this point. 1390 return false; 1391 } 1392 1393 return true; 1394 } 1395 1396 /// C may have non-instruction users, and 1397 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1398 /// non-instruction users to instructions. 1399 static void makeAllConstantUsesInstructions(Constant *C) { 1400 SmallVector<ConstantExpr*,4> Users; 1401 for (auto *U : C->users()) { 1402 if (isa<ConstantExpr>(U)) 1403 Users.push_back(cast<ConstantExpr>(U)); 1404 else 1405 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1406 // should not have returned true for C. 1407 assert( 1408 isa<Instruction>(U) && 1409 "Can't transform non-constantexpr non-instruction to instruction!"); 1410 } 1411 1412 SmallVector<Value*,4> UUsers; 1413 for (auto *U : Users) { 1414 UUsers.clear(); 1415 append_range(UUsers, U->users()); 1416 for (auto *UU : UUsers) { 1417 Instruction *UI = cast<Instruction>(UU); 1418 Instruction *NewU = U->getAsInstruction(); 1419 NewU->insertBefore(UI); 1420 UI->replaceUsesOfWith(U, NewU); 1421 } 1422 // We've replaced all the uses, so destroy the constant. (destroyConstant 1423 // will update value handles and metadata.) 1424 U->destroyConstant(); 1425 } 1426 } 1427 1428 /// Analyze the specified global variable and optimize 1429 /// it if possible. If we make a change, return true. 1430 static bool 1431 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, 1432 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1433 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1434 auto &DL = GV->getParent()->getDataLayout(); 1435 // If this is a first class global and has only one accessing function and 1436 // this function is non-recursive, we replace the global with a local alloca 1437 // in this function. 1438 // 1439 // NOTE: It doesn't make sense to promote non-single-value types since we 1440 // are just replacing static memory to stack memory. 1441 // 1442 // If the global is in different address space, don't bring it to stack. 1443 if (!GS.HasMultipleAccessingFunctions && 1444 GS.AccessingFunction && 1445 GV->getValueType()->isSingleValueType() && 1446 GV->getType()->getAddressSpace() == 0 && 1447 !GV->isExternallyInitialized() && 1448 allNonInstructionUsersCanBeMadeInstructions(GV) && 1449 GS.AccessingFunction->doesNotRecurse() && 1450 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1451 LookupDomTree)) { 1452 const DataLayout &DL = GV->getParent()->getDataLayout(); 1453 1454 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1455 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1456 ->getEntryBlock().begin()); 1457 Type *ElemTy = GV->getValueType(); 1458 // FIXME: Pass Global's alignment when globals have alignment 1459 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1460 GV->getName(), &FirstI); 1461 if (!isa<UndefValue>(GV->getInitializer())) 1462 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1463 1464 makeAllConstantUsesInstructions(GV); 1465 1466 GV->replaceAllUsesWith(Alloca); 1467 GV->eraseFromParent(); 1468 ++NumLocalized; 1469 return true; 1470 } 1471 1472 bool Changed = false; 1473 1474 // If the global is never loaded (but may be stored to), it is dead. 1475 // Delete it now. 1476 if (!GS.IsLoaded) { 1477 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1478 1479 if (isLeakCheckerRoot(GV)) { 1480 // Delete any constant stores to the global. 1481 Changed = CleanupPointerRootUsers(GV, GetTLI); 1482 } else { 1483 // Delete any stores we can find to the global. We may not be able to 1484 // make it completely dead though. 1485 Changed = 1486 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 1487 } 1488 1489 // If the global is dead now, delete it. 1490 if (GV->use_empty()) { 1491 GV->eraseFromParent(); 1492 ++NumDeleted; 1493 Changed = true; 1494 } 1495 return Changed; 1496 1497 } 1498 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1499 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1500 1501 // Don't actually mark a global constant if it's atomic because atomic loads 1502 // are implemented by a trivial cmpxchg in some edge-cases and that usually 1503 // requires write access to the variable even if it's not actually changed. 1504 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1505 assert(!GV->isConstant() && "Expected a non-constant global"); 1506 GV->setConstant(true); 1507 Changed = true; 1508 } 1509 1510 // Clean up any obviously simplifiable users now. 1511 Changed |= CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 1512 1513 // If the global is dead now, just nuke it. 1514 if (GV->use_empty()) { 1515 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1516 << "all users and delete global!\n"); 1517 GV->eraseFromParent(); 1518 ++NumDeleted; 1519 return true; 1520 } 1521 1522 // Fall through to the next check; see if we can optimize further. 1523 ++NumMarked; 1524 } 1525 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1526 const DataLayout &DL = GV->getParent()->getDataLayout(); 1527 if (SRAGlobal(GV, DL)) 1528 return true; 1529 } 1530 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) { 1531 // If the initial value for the global was an undef value, and if only 1532 // one other value was stored into it, we can just change the 1533 // initializer to be the stored value, then delete all stores to the 1534 // global. This allows us to mark it constant. 1535 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) 1536 if (isa<UndefValue>(GV->getInitializer())) { 1537 // Change the initial value here. 1538 GV->setInitializer(SOVConstant); 1539 1540 // Clean up any obviously simplifiable users now. 1541 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 1542 1543 if (GV->use_empty()) { 1544 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1545 << "simplify all users and delete global!\n"); 1546 GV->eraseFromParent(); 1547 ++NumDeleted; 1548 } 1549 ++NumSubstitute; 1550 return true; 1551 } 1552 1553 // Try to optimize globals based on the knowledge that only one value 1554 // (besides its initializer) is ever stored to the global. 1555 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL, 1556 GetTLI)) 1557 return true; 1558 1559 // Otherwise, if the global was not a boolean, we can shrink it to be a 1560 // boolean. 1561 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) { 1562 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1563 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1564 ++NumShrunkToBool; 1565 return true; 1566 } 1567 } 1568 } 1569 } 1570 1571 return Changed; 1572 } 1573 1574 /// Analyze the specified global variable and optimize it if possible. If we 1575 /// make a change, return true. 1576 static bool 1577 processGlobal(GlobalValue &GV, 1578 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1579 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1580 if (GV.getName().startswith("llvm.")) 1581 return false; 1582 1583 GlobalStatus GS; 1584 1585 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1586 return false; 1587 1588 bool Changed = false; 1589 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 1590 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 1591 : GlobalValue::UnnamedAddr::Local; 1592 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 1593 GV.setUnnamedAddr(NewUnnamedAddr); 1594 NumUnnamed++; 1595 Changed = true; 1596 } 1597 } 1598 1599 // Do more involved optimizations if the global is internal. 1600 if (!GV.hasLocalLinkage()) 1601 return Changed; 1602 1603 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1604 if (!GVar) 1605 return Changed; 1606 1607 if (GVar->isConstant() || !GVar->hasInitializer()) 1608 return Changed; 1609 1610 return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed; 1611 } 1612 1613 /// Walk all of the direct calls of the specified function, changing them to 1614 /// FastCC. 1615 static void ChangeCalleesToFastCall(Function *F) { 1616 for (User *U : F->users()) { 1617 if (isa<BlockAddress>(U)) 1618 continue; 1619 cast<CallBase>(U)->setCallingConv(CallingConv::Fast); 1620 } 1621 } 1622 1623 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, 1624 Attribute::AttrKind A) { 1625 unsigned AttrIndex; 1626 if (Attrs.hasAttrSomewhere(A, &AttrIndex)) 1627 return Attrs.removeAttribute(C, AttrIndex, A); 1628 return Attrs; 1629 } 1630 1631 static void RemoveAttribute(Function *F, Attribute::AttrKind A) { 1632 F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A)); 1633 for (User *U : F->users()) { 1634 if (isa<BlockAddress>(U)) 1635 continue; 1636 CallBase *CB = cast<CallBase>(U); 1637 CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A)); 1638 } 1639 } 1640 1641 /// Return true if this is a calling convention that we'd like to change. The 1642 /// idea here is that we don't want to mess with the convention if the user 1643 /// explicitly requested something with performance implications like coldcc, 1644 /// GHC, or anyregcc. 1645 static bool hasChangeableCC(Function *F) { 1646 CallingConv::ID CC = F->getCallingConv(); 1647 1648 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 1649 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 1650 return false; 1651 1652 // FIXME: Change CC for the whole chain of musttail calls when possible. 1653 // 1654 // Can't change CC of the function that either has musttail calls, or is a 1655 // musttail callee itself 1656 for (User *U : F->users()) { 1657 if (isa<BlockAddress>(U)) 1658 continue; 1659 CallInst* CI = dyn_cast<CallInst>(U); 1660 if (!CI) 1661 continue; 1662 1663 if (CI->isMustTailCall()) 1664 return false; 1665 } 1666 1667 for (BasicBlock &BB : *F) 1668 if (BB.getTerminatingMustTailCall()) 1669 return false; 1670 1671 return true; 1672 } 1673 1674 /// Return true if the block containing the call site has a BlockFrequency of 1675 /// less than ColdCCRelFreq% of the entry block. 1676 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) { 1677 const BranchProbability ColdProb(ColdCCRelFreq, 100); 1678 auto *CallSiteBB = CB.getParent(); 1679 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 1680 auto CallerEntryFreq = 1681 CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock())); 1682 return CallSiteFreq < CallerEntryFreq * ColdProb; 1683 } 1684 1685 // This function checks if the input function F is cold at all call sites. It 1686 // also looks each call site's containing function, returning false if the 1687 // caller function contains other non cold calls. The input vector AllCallsCold 1688 // contains a list of functions that only have call sites in cold blocks. 1689 static bool 1690 isValidCandidateForColdCC(Function &F, 1691 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1692 const std::vector<Function *> &AllCallsCold) { 1693 1694 if (F.user_empty()) 1695 return false; 1696 1697 for (User *U : F.users()) { 1698 if (isa<BlockAddress>(U)) 1699 continue; 1700 1701 CallBase &CB = cast<CallBase>(*U); 1702 Function *CallerFunc = CB.getParent()->getParent(); 1703 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 1704 if (!isColdCallSite(CB, CallerBFI)) 1705 return false; 1706 if (!llvm::is_contained(AllCallsCold, CallerFunc)) 1707 return false; 1708 } 1709 return true; 1710 } 1711 1712 static void changeCallSitesToColdCC(Function *F) { 1713 for (User *U : F->users()) { 1714 if (isa<BlockAddress>(U)) 1715 continue; 1716 cast<CallBase>(U)->setCallingConv(CallingConv::Cold); 1717 } 1718 } 1719 1720 // This function iterates over all the call instructions in the input Function 1721 // and checks that all call sites are in cold blocks and are allowed to use the 1722 // coldcc calling convention. 1723 static bool 1724 hasOnlyColdCalls(Function &F, 1725 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { 1726 for (BasicBlock &BB : F) { 1727 for (Instruction &I : BB) { 1728 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1729 // Skip over isline asm instructions since they aren't function calls. 1730 if (CI->isInlineAsm()) 1731 continue; 1732 Function *CalledFn = CI->getCalledFunction(); 1733 if (!CalledFn) 1734 return false; 1735 if (!CalledFn->hasLocalLinkage()) 1736 return false; 1737 // Skip over instrinsics since they won't remain as function calls. 1738 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 1739 continue; 1740 // Check if it's valid to use coldcc calling convention. 1741 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || 1742 CalledFn->hasAddressTaken()) 1743 return false; 1744 BlockFrequencyInfo &CallerBFI = GetBFI(F); 1745 if (!isColdCallSite(*CI, CallerBFI)) 1746 return false; 1747 } 1748 } 1749 } 1750 return true; 1751 } 1752 1753 static bool hasMustTailCallers(Function *F) { 1754 for (User *U : F->users()) { 1755 CallBase *CB = dyn_cast<CallBase>(U); 1756 if (!CB) { 1757 assert(isa<BlockAddress>(U) && 1758 "Expected either CallBase or BlockAddress"); 1759 continue; 1760 } 1761 if (CB->isMustTailCall()) 1762 return true; 1763 } 1764 return false; 1765 } 1766 1767 static bool hasInvokeCallers(Function *F) { 1768 for (User *U : F->users()) 1769 if (isa<InvokeInst>(U)) 1770 return true; 1771 return false; 1772 } 1773 1774 static void RemovePreallocated(Function *F) { 1775 RemoveAttribute(F, Attribute::Preallocated); 1776 1777 auto *M = F->getParent(); 1778 1779 IRBuilder<> Builder(M->getContext()); 1780 1781 // Cannot modify users() while iterating over it, so make a copy. 1782 SmallVector<User *, 4> PreallocatedCalls(F->users()); 1783 for (User *U : PreallocatedCalls) { 1784 CallBase *CB = dyn_cast<CallBase>(U); 1785 if (!CB) 1786 continue; 1787 1788 assert( 1789 !CB->isMustTailCall() && 1790 "Shouldn't call RemotePreallocated() on a musttail preallocated call"); 1791 // Create copy of call without "preallocated" operand bundle. 1792 SmallVector<OperandBundleDef, 1> OpBundles; 1793 CB->getOperandBundlesAsDefs(OpBundles); 1794 CallBase *PreallocatedSetup = nullptr; 1795 for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) { 1796 if (It->getTag() == "preallocated") { 1797 PreallocatedSetup = cast<CallBase>(*It->input_begin()); 1798 OpBundles.erase(It); 1799 break; 1800 } 1801 } 1802 assert(PreallocatedSetup && "Did not find preallocated bundle"); 1803 uint64_t ArgCount = 1804 cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue(); 1805 1806 assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) && 1807 "Unknown indirect call type"); 1808 CallBase *NewCB = CallBase::Create(CB, OpBundles, CB); 1809 CB->replaceAllUsesWith(NewCB); 1810 NewCB->takeName(CB); 1811 CB->eraseFromParent(); 1812 1813 Builder.SetInsertPoint(PreallocatedSetup); 1814 auto *StackSave = 1815 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave)); 1816 1817 Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction()); 1818 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore), 1819 StackSave); 1820 1821 // Replace @llvm.call.preallocated.arg() with alloca. 1822 // Cannot modify users() while iterating over it, so make a copy. 1823 // @llvm.call.preallocated.arg() can be called with the same index multiple 1824 // times. So for each @llvm.call.preallocated.arg(), we see if we have 1825 // already created a Value* for the index, and if not, create an alloca and 1826 // bitcast right after the @llvm.call.preallocated.setup() so that it 1827 // dominates all uses. 1828 SmallVector<Value *, 2> ArgAllocas(ArgCount); 1829 SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users()); 1830 for (auto *User : PreallocatedArgs) { 1831 auto *UseCall = cast<CallBase>(User); 1832 assert(UseCall->getCalledFunction()->getIntrinsicID() == 1833 Intrinsic::call_preallocated_arg && 1834 "preallocated token use was not a llvm.call.preallocated.arg"); 1835 uint64_t AllocArgIndex = 1836 cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue(); 1837 Value *AllocaReplacement = ArgAllocas[AllocArgIndex]; 1838 if (!AllocaReplacement) { 1839 auto AddressSpace = UseCall->getType()->getPointerAddressSpace(); 1840 auto *ArgType = UseCall 1841 ->getAttribute(AttributeList::FunctionIndex, 1842 Attribute::Preallocated) 1843 .getValueAsType(); 1844 auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction(); 1845 Builder.SetInsertPoint(InsertBefore); 1846 auto *Alloca = 1847 Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg"); 1848 auto *BitCast = Builder.CreateBitCast( 1849 Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName()); 1850 ArgAllocas[AllocArgIndex] = BitCast; 1851 AllocaReplacement = BitCast; 1852 } 1853 1854 UseCall->replaceAllUsesWith(AllocaReplacement); 1855 UseCall->eraseFromParent(); 1856 } 1857 // Remove @llvm.call.preallocated.setup(). 1858 cast<Instruction>(PreallocatedSetup)->eraseFromParent(); 1859 } 1860 } 1861 1862 static bool 1863 OptimizeFunctions(Module &M, 1864 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1865 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1866 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1867 function_ref<DominatorTree &(Function &)> LookupDomTree, 1868 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1869 1870 bool Changed = false; 1871 1872 std::vector<Function *> AllCallsCold; 1873 for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) { 1874 Function *F = &*FI++; 1875 if (hasOnlyColdCalls(*F, GetBFI)) 1876 AllCallsCold.push_back(F); 1877 } 1878 1879 // Optimize functions. 1880 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) { 1881 Function *F = &*FI++; 1882 1883 // Don't perform global opt pass on naked functions; we don't want fast 1884 // calling conventions for naked functions. 1885 if (F->hasFnAttribute(Attribute::Naked)) 1886 continue; 1887 1888 // Functions without names cannot be referenced outside this module. 1889 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage()) 1890 F->setLinkage(GlobalValue::InternalLinkage); 1891 1892 if (deleteIfDead(*F, NotDiscardableComdats)) { 1893 Changed = true; 1894 continue; 1895 } 1896 1897 // LLVM's definition of dominance allows instructions that are cyclic 1898 // in unreachable blocks, e.g.: 1899 // %pat = select i1 %condition, @global, i16* %pat 1900 // because any instruction dominates an instruction in a block that's 1901 // not reachable from entry. 1902 // So, remove unreachable blocks from the function, because a) there's 1903 // no point in analyzing them and b) GlobalOpt should otherwise grow 1904 // some more complicated logic to break these cycles. 1905 // Removing unreachable blocks might invalidate the dominator so we 1906 // recalculate it. 1907 if (!F->isDeclaration()) { 1908 if (removeUnreachableBlocks(*F)) { 1909 auto &DT = LookupDomTree(*F); 1910 DT.recalculate(*F); 1911 Changed = true; 1912 } 1913 } 1914 1915 Changed |= processGlobal(*F, GetTLI, LookupDomTree); 1916 1917 if (!F->hasLocalLinkage()) 1918 continue; 1919 1920 // If we have an inalloca parameter that we can safely remove the 1921 // inalloca attribute from, do so. This unlocks optimizations that 1922 // wouldn't be safe in the presence of inalloca. 1923 // FIXME: We should also hoist alloca affected by this to the entry 1924 // block if possible. 1925 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) && 1926 !F->hasAddressTaken() && !hasMustTailCallers(F)) { 1927 RemoveAttribute(F, Attribute::InAlloca); 1928 Changed = true; 1929 } 1930 1931 // FIXME: handle invokes 1932 // FIXME: handle musttail 1933 if (F->getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { 1934 if (!F->hasAddressTaken() && !hasMustTailCallers(F) && 1935 !hasInvokeCallers(F)) { 1936 RemovePreallocated(F); 1937 Changed = true; 1938 } 1939 continue; 1940 } 1941 1942 if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) { 1943 NumInternalFunc++; 1944 TargetTransformInfo &TTI = GetTTI(*F); 1945 // Change the calling convention to coldcc if either stress testing is 1946 // enabled or the target would like to use coldcc on functions which are 1947 // cold at all call sites and the callers contain no other non coldcc 1948 // calls. 1949 if (EnableColdCCStressTest || 1950 (TTI.useColdCCForColdCall(*F) && 1951 isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) { 1952 F->setCallingConv(CallingConv::Cold); 1953 changeCallSitesToColdCC(F); 1954 Changed = true; 1955 NumColdCC++; 1956 } 1957 } 1958 1959 if (hasChangeableCC(F) && !F->isVarArg() && 1960 !F->hasAddressTaken()) { 1961 // If this function has a calling convention worth changing, is not a 1962 // varargs function, and is only called directly, promote it to use the 1963 // Fast calling convention. 1964 F->setCallingConv(CallingConv::Fast); 1965 ChangeCalleesToFastCall(F); 1966 ++NumFastCallFns; 1967 Changed = true; 1968 } 1969 1970 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) && 1971 !F->hasAddressTaken()) { 1972 // The function is not used by a trampoline intrinsic, so it is safe 1973 // to remove the 'nest' attribute. 1974 RemoveAttribute(F, Attribute::Nest); 1975 ++NumNestRemoved; 1976 Changed = true; 1977 } 1978 } 1979 return Changed; 1980 } 1981 1982 static bool 1983 OptimizeGlobalVars(Module &M, 1984 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1985 function_ref<DominatorTree &(Function &)> LookupDomTree, 1986 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1987 bool Changed = false; 1988 1989 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end(); 1990 GVI != E; ) { 1991 GlobalVariable *GV = &*GVI++; 1992 // Global variables without names cannot be referenced outside this module. 1993 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage()) 1994 GV->setLinkage(GlobalValue::InternalLinkage); 1995 // Simplify the initializer. 1996 if (GV->hasInitializer()) 1997 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) { 1998 auto &DL = M.getDataLayout(); 1999 // TLI is not used in the case of a Constant, so use default nullptr 2000 // for that optional parameter, since we don't have a Function to 2001 // provide GetTLI anyway. 2002 Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); 2003 if (New != C) 2004 GV->setInitializer(New); 2005 } 2006 2007 if (deleteIfDead(*GV, NotDiscardableComdats)) { 2008 Changed = true; 2009 continue; 2010 } 2011 2012 Changed |= processGlobal(*GV, GetTLI, LookupDomTree); 2013 } 2014 return Changed; 2015 } 2016 2017 /// Evaluate a piece of a constantexpr store into a global initializer. This 2018 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2019 /// GEP operands of Addr [0, OpNo) have been stepped into. 2020 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2021 ConstantExpr *Addr, unsigned OpNo) { 2022 // Base case of the recursion. 2023 if (OpNo == Addr->getNumOperands()) { 2024 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2025 return Val; 2026 } 2027 2028 SmallVector<Constant*, 32> Elts; 2029 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2030 // Break up the constant into its elements. 2031 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2032 Elts.push_back(Init->getAggregateElement(i)); 2033 2034 // Replace the element that we are supposed to. 2035 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2036 unsigned Idx = CU->getZExtValue(); 2037 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2038 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2039 2040 // Return the modified struct. 2041 return ConstantStruct::get(STy, Elts); 2042 } 2043 2044 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2045 uint64_t NumElts; 2046 if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) 2047 NumElts = ATy->getNumElements(); 2048 else 2049 NumElts = cast<FixedVectorType>(Init->getType())->getNumElements(); 2050 2051 // Break up the array into elements. 2052 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2053 Elts.push_back(Init->getAggregateElement(i)); 2054 2055 assert(CI->getZExtValue() < NumElts); 2056 Elts[CI->getZExtValue()] = 2057 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2058 2059 if (Init->getType()->isArrayTy()) 2060 return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts); 2061 return ConstantVector::get(Elts); 2062 } 2063 2064 /// We have decided that Addr (which satisfies the predicate 2065 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2066 static void CommitValueTo(Constant *Val, Constant *Addr) { 2067 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2068 assert(GV->hasInitializer()); 2069 GV->setInitializer(Val); 2070 return; 2071 } 2072 2073 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2074 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2075 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2076 } 2077 2078 /// Given a map of address -> value, where addresses are expected to be some form 2079 /// of either a global or a constant GEP, set the initializer for the address to 2080 /// be the value. This performs mostly the same function as CommitValueTo() 2081 /// and EvaluateStoreInto() but is optimized to be more efficient for the common 2082 /// case where the set of addresses are GEPs sharing the same underlying global, 2083 /// processing the GEPs in batches rather than individually. 2084 /// 2085 /// To give an example, consider the following C++ code adapted from the clang 2086 /// regression tests: 2087 /// struct S { 2088 /// int n = 10; 2089 /// int m = 2 * n; 2090 /// S(int a) : n(a) {} 2091 /// }; 2092 /// 2093 /// template<typename T> 2094 /// struct U { 2095 /// T *r = &q; 2096 /// T q = 42; 2097 /// U *p = this; 2098 /// }; 2099 /// 2100 /// U<S> e; 2101 /// 2102 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of 2103 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm' 2104 /// members. This batch algorithm will simply use general CommitValueTo() method 2105 /// to handle the complex nested S struct initialization of 'q', before 2106 /// processing the outermost members in a single batch. Using CommitValueTo() to 2107 /// handle member in the outer struct is inefficient when the struct/array is 2108 /// very large as we end up creating and destroy constant arrays for each 2109 /// initialization. 2110 /// For the above case, we expect the following IR to be generated: 2111 /// 2112 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* } 2113 /// %struct.S = type { i32, i32 } 2114 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e, 2115 /// i64 0, i32 1), 2116 /// %struct.S { i32 42, i32 84 }, %struct.U* @e } 2117 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex 2118 /// constant expression, while the other two elements of @e are "simple". 2119 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) { 2120 SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs; 2121 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs; 2122 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs; 2123 SimpleCEs.reserve(Mem.size()); 2124 2125 for (const auto &I : Mem) { 2126 if (auto *GV = dyn_cast<GlobalVariable>(I.first)) { 2127 GVs.push_back(std::make_pair(GV, I.second)); 2128 } else { 2129 ConstantExpr *GEP = cast<ConstantExpr>(I.first); 2130 // We don't handle the deeply recursive case using the batch method. 2131 if (GEP->getNumOperands() > 3) 2132 ComplexCEs.push_back(std::make_pair(GEP, I.second)); 2133 else 2134 SimpleCEs.push_back(std::make_pair(GEP, I.second)); 2135 } 2136 } 2137 2138 // The algorithm below doesn't handle cases like nested structs, so use the 2139 // slower fully general method if we have to. 2140 for (auto ComplexCE : ComplexCEs) 2141 CommitValueTo(ComplexCE.second, ComplexCE.first); 2142 2143 for (auto GVPair : GVs) { 2144 assert(GVPair.first->hasInitializer()); 2145 GVPair.first->setInitializer(GVPair.second); 2146 } 2147 2148 if (SimpleCEs.empty()) 2149 return; 2150 2151 // We cache a single global's initializer elements in the case where the 2152 // subsequent address/val pair uses the same one. This avoids throwing away and 2153 // rebuilding the constant struct/vector/array just because one element is 2154 // modified at a time. 2155 SmallVector<Constant *, 32> Elts; 2156 Elts.reserve(SimpleCEs.size()); 2157 GlobalVariable *CurrentGV = nullptr; 2158 2159 auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) { 2160 Constant *Init = GV->getInitializer(); 2161 Type *Ty = Init->getType(); 2162 if (Update) { 2163 if (CurrentGV) { 2164 assert(CurrentGV && "Expected a GV to commit to!"); 2165 Type *CurrentInitTy = CurrentGV->getInitializer()->getType(); 2166 // We have a valid cache that needs to be committed. 2167 if (StructType *STy = dyn_cast<StructType>(CurrentInitTy)) 2168 CurrentGV->setInitializer(ConstantStruct::get(STy, Elts)); 2169 else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy)) 2170 CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts)); 2171 else 2172 CurrentGV->setInitializer(ConstantVector::get(Elts)); 2173 } 2174 if (CurrentGV == GV) 2175 return; 2176 // Need to clear and set up cache for new initializer. 2177 CurrentGV = GV; 2178 Elts.clear(); 2179 unsigned NumElts; 2180 if (auto *STy = dyn_cast<StructType>(Ty)) 2181 NumElts = STy->getNumElements(); 2182 else if (auto *ATy = dyn_cast<ArrayType>(Ty)) 2183 NumElts = ATy->getNumElements(); 2184 else 2185 NumElts = cast<FixedVectorType>(Ty)->getNumElements(); 2186 for (unsigned i = 0, e = NumElts; i != e; ++i) 2187 Elts.push_back(Init->getAggregateElement(i)); 2188 } 2189 }; 2190 2191 for (auto CEPair : SimpleCEs) { 2192 ConstantExpr *GEP = CEPair.first; 2193 Constant *Val = CEPair.second; 2194 2195 GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0)); 2196 commitAndSetupCache(GV, GV != CurrentGV); 2197 ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2)); 2198 Elts[CI->getZExtValue()] = Val; 2199 } 2200 // The last initializer in the list needs to be committed, others 2201 // will be committed on a new initializer being processed. 2202 commitAndSetupCache(CurrentGV, true); 2203 } 2204 2205 /// Evaluate static constructors in the function, if we can. Return true if we 2206 /// can, false otherwise. 2207 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2208 TargetLibraryInfo *TLI) { 2209 // Call the function. 2210 Evaluator Eval(DL, TLI); 2211 Constant *RetValDummy; 2212 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2213 SmallVector<Constant*, 0>()); 2214 2215 if (EvalSuccess) { 2216 ++NumCtorsEvaluated; 2217 2218 // We succeeded at evaluation: commit the result. 2219 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2220 << F->getName() << "' to " 2221 << Eval.getMutatedMemory().size() << " stores.\n"); 2222 BatchCommitValueTo(Eval.getMutatedMemory()); 2223 for (GlobalVariable *GV : Eval.getInvariants()) 2224 GV->setConstant(true); 2225 } 2226 2227 return EvalSuccess; 2228 } 2229 2230 static int compareNames(Constant *const *A, Constant *const *B) { 2231 Value *AStripped = (*A)->stripPointerCasts(); 2232 Value *BStripped = (*B)->stripPointerCasts(); 2233 return AStripped->getName().compare(BStripped->getName()); 2234 } 2235 2236 static void setUsedInitializer(GlobalVariable &V, 2237 const SmallPtrSetImpl<GlobalValue *> &Init) { 2238 if (Init.empty()) { 2239 V.eraseFromParent(); 2240 return; 2241 } 2242 2243 // Type of pointer to the array of pointers. 2244 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2245 2246 SmallVector<Constant *, 8> UsedArray; 2247 for (GlobalValue *GV : Init) { 2248 Constant *Cast 2249 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2250 UsedArray.push_back(Cast); 2251 } 2252 // Sort to get deterministic order. 2253 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2254 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2255 2256 Module *M = V.getParent(); 2257 V.removeFromParent(); 2258 GlobalVariable *NV = 2259 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2260 ConstantArray::get(ATy, UsedArray), ""); 2261 NV->takeName(&V); 2262 NV->setSection("llvm.metadata"); 2263 delete &V; 2264 } 2265 2266 namespace { 2267 2268 /// An easy to access representation of llvm.used and llvm.compiler.used. 2269 class LLVMUsed { 2270 SmallPtrSet<GlobalValue *, 4> Used; 2271 SmallPtrSet<GlobalValue *, 4> CompilerUsed; 2272 GlobalVariable *UsedV; 2273 GlobalVariable *CompilerUsedV; 2274 2275 public: 2276 LLVMUsed(Module &M) { 2277 SmallVector<GlobalValue *, 4> Vec; 2278 UsedV = collectUsedGlobalVariables(M, Vec, false); 2279 Used = {Vec.begin(), Vec.end()}; 2280 Vec.clear(); 2281 CompilerUsedV = collectUsedGlobalVariables(M, Vec, true); 2282 CompilerUsed = {Vec.begin(), Vec.end()}; 2283 } 2284 2285 using iterator = SmallPtrSet<GlobalValue *, 4>::iterator; 2286 using used_iterator_range = iterator_range<iterator>; 2287 2288 iterator usedBegin() { return Used.begin(); } 2289 iterator usedEnd() { return Used.end(); } 2290 2291 used_iterator_range used() { 2292 return used_iterator_range(usedBegin(), usedEnd()); 2293 } 2294 2295 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2296 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2297 2298 used_iterator_range compilerUsed() { 2299 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2300 } 2301 2302 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2303 2304 bool compilerUsedCount(GlobalValue *GV) const { 2305 return CompilerUsed.count(GV); 2306 } 2307 2308 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2309 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2310 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2311 2312 bool compilerUsedInsert(GlobalValue *GV) { 2313 return CompilerUsed.insert(GV).second; 2314 } 2315 2316 void syncVariablesAndSets() { 2317 if (UsedV) 2318 setUsedInitializer(*UsedV, Used); 2319 if (CompilerUsedV) 2320 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2321 } 2322 }; 2323 2324 } // end anonymous namespace 2325 2326 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2327 if (GA.use_empty()) // No use at all. 2328 return false; 2329 2330 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2331 "We should have removed the duplicated " 2332 "element from llvm.compiler.used"); 2333 if (!GA.hasOneUse()) 2334 // Strictly more than one use. So at least one is not in llvm.used and 2335 // llvm.compiler.used. 2336 return true; 2337 2338 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2339 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2340 } 2341 2342 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2343 const LLVMUsed &U) { 2344 unsigned N = 2; 2345 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2346 "We should have removed the duplicated " 2347 "element from llvm.compiler.used"); 2348 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2349 ++N; 2350 return V.hasNUsesOrMore(N); 2351 } 2352 2353 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2354 if (!GA.hasLocalLinkage()) 2355 return true; 2356 2357 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2358 } 2359 2360 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2361 bool &RenameTarget) { 2362 RenameTarget = false; 2363 bool Ret = false; 2364 if (hasUseOtherThanLLVMUsed(GA, U)) 2365 Ret = true; 2366 2367 // If the alias is externally visible, we may still be able to simplify it. 2368 if (!mayHaveOtherReferences(GA, U)) 2369 return Ret; 2370 2371 // If the aliasee has internal linkage, give it the name and linkage 2372 // of the alias, and delete the alias. This turns: 2373 // define internal ... @f(...) 2374 // @a = alias ... @f 2375 // into: 2376 // define ... @a(...) 2377 Constant *Aliasee = GA.getAliasee(); 2378 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2379 if (!Target->hasLocalLinkage()) 2380 return Ret; 2381 2382 // Do not perform the transform if multiple aliases potentially target the 2383 // aliasee. This check also ensures that it is safe to replace the section 2384 // and other attributes of the aliasee with those of the alias. 2385 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2386 return Ret; 2387 2388 RenameTarget = true; 2389 return true; 2390 } 2391 2392 static bool 2393 OptimizeGlobalAliases(Module &M, 2394 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2395 bool Changed = false; 2396 LLVMUsed Used(M); 2397 2398 for (GlobalValue *GV : Used.used()) 2399 Used.compilerUsedErase(GV); 2400 2401 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); 2402 I != E;) { 2403 GlobalAlias *J = &*I++; 2404 2405 // Aliases without names cannot be referenced outside this module. 2406 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage()) 2407 J->setLinkage(GlobalValue::InternalLinkage); 2408 2409 if (deleteIfDead(*J, NotDiscardableComdats)) { 2410 Changed = true; 2411 continue; 2412 } 2413 2414 // If the alias can change at link time, nothing can be done - bail out. 2415 if (J->isInterposable()) 2416 continue; 2417 2418 Constant *Aliasee = J->getAliasee(); 2419 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2420 // We can't trivially replace the alias with the aliasee if the aliasee is 2421 // non-trivial in some way. We also can't replace the alias with the aliasee 2422 // if the aliasee is interposable because aliases point to the local 2423 // definition. 2424 // TODO: Try to handle non-zero GEPs of local aliasees. 2425 if (!Target || Target->isInterposable()) 2426 continue; 2427 Target->removeDeadConstantUsers(); 2428 2429 // Make all users of the alias use the aliasee instead. 2430 bool RenameTarget; 2431 if (!hasUsesToReplace(*J, Used, RenameTarget)) 2432 continue; 2433 2434 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType())); 2435 ++NumAliasesResolved; 2436 Changed = true; 2437 2438 if (RenameTarget) { 2439 // Give the aliasee the name, linkage and other attributes of the alias. 2440 Target->takeName(&*J); 2441 Target->setLinkage(J->getLinkage()); 2442 Target->setDSOLocal(J->isDSOLocal()); 2443 Target->setVisibility(J->getVisibility()); 2444 Target->setDLLStorageClass(J->getDLLStorageClass()); 2445 2446 if (Used.usedErase(&*J)) 2447 Used.usedInsert(Target); 2448 2449 if (Used.compilerUsedErase(&*J)) 2450 Used.compilerUsedInsert(Target); 2451 } else if (mayHaveOtherReferences(*J, Used)) 2452 continue; 2453 2454 // Delete the alias. 2455 M.getAliasList().erase(J); 2456 ++NumAliasesRemoved; 2457 Changed = true; 2458 } 2459 2460 Used.syncVariablesAndSets(); 2461 2462 return Changed; 2463 } 2464 2465 static Function * 2466 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 2467 // Hack to get a default TLI before we have actual Function. 2468 auto FuncIter = M.begin(); 2469 if (FuncIter == M.end()) 2470 return nullptr; 2471 auto *TLI = &GetTLI(*FuncIter); 2472 2473 LibFunc F = LibFunc_cxa_atexit; 2474 if (!TLI->has(F)) 2475 return nullptr; 2476 2477 Function *Fn = M.getFunction(TLI->getName(F)); 2478 if (!Fn) 2479 return nullptr; 2480 2481 // Now get the actual TLI for Fn. 2482 TLI = &GetTLI(*Fn); 2483 2484 // Make sure that the function has the correct prototype. 2485 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2486 return nullptr; 2487 2488 return Fn; 2489 } 2490 2491 /// Returns whether the given function is an empty C++ destructor and can 2492 /// therefore be eliminated. 2493 /// Note that we assume that other optimization passes have already simplified 2494 /// the code so we simply check for 'ret'. 2495 static bool cxxDtorIsEmpty(const Function &Fn) { 2496 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2497 // nounwind, but that doesn't seem worth doing. 2498 if (Fn.isDeclaration()) 2499 return false; 2500 2501 for (auto &I : Fn.getEntryBlock()) { 2502 if (isa<DbgInfoIntrinsic>(I)) 2503 continue; 2504 if (isa<ReturnInst>(I)) 2505 return true; 2506 break; 2507 } 2508 return false; 2509 } 2510 2511 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2512 /// Itanium C++ ABI p3.3.5: 2513 /// 2514 /// After constructing a global (or local static) object, that will require 2515 /// destruction on exit, a termination function is registered as follows: 2516 /// 2517 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2518 /// 2519 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2520 /// call f(p) when DSO d is unloaded, before all such termination calls 2521 /// registered before this one. It returns zero if registration is 2522 /// successful, nonzero on failure. 2523 2524 // This pass will look for calls to __cxa_atexit where the function is trivial 2525 // and remove them. 2526 bool Changed = false; 2527 2528 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2529 I != E;) { 2530 // We're only interested in calls. Theoretically, we could handle invoke 2531 // instructions as well, but neither llvm-gcc nor clang generate invokes 2532 // to __cxa_atexit. 2533 CallInst *CI = dyn_cast<CallInst>(*I++); 2534 if (!CI) 2535 continue; 2536 2537 Function *DtorFn = 2538 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2539 if (!DtorFn || !cxxDtorIsEmpty(*DtorFn)) 2540 continue; 2541 2542 // Just remove the call. 2543 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2544 CI->eraseFromParent(); 2545 2546 ++NumCXXDtorsRemoved; 2547 2548 Changed |= true; 2549 } 2550 2551 return Changed; 2552 } 2553 2554 static bool optimizeGlobalsInModule( 2555 Module &M, const DataLayout &DL, 2556 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2557 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2558 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2559 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2560 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; 2561 bool Changed = false; 2562 bool LocalChange = true; 2563 while (LocalChange) { 2564 LocalChange = false; 2565 2566 NotDiscardableComdats.clear(); 2567 for (const GlobalVariable &GV : M.globals()) 2568 if (const Comdat *C = GV.getComdat()) 2569 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2570 NotDiscardableComdats.insert(C); 2571 for (Function &F : M) 2572 if (const Comdat *C = F.getComdat()) 2573 if (!F.isDefTriviallyDead()) 2574 NotDiscardableComdats.insert(C); 2575 for (GlobalAlias &GA : M.aliases()) 2576 if (const Comdat *C = GA.getComdat()) 2577 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2578 NotDiscardableComdats.insert(C); 2579 2580 // Delete functions that are trivially dead, ccc -> fastcc 2581 LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, 2582 NotDiscardableComdats); 2583 2584 // Optimize global_ctors list. 2585 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2586 return EvaluateStaticConstructor(F, DL, &GetTLI(*F)); 2587 }); 2588 2589 // Optimize non-address-taken globals. 2590 LocalChange |= 2591 OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats); 2592 2593 // Resolve aliases, when possible. 2594 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2595 2596 // Try to remove trivial global destructors if they are not removed 2597 // already. 2598 Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI); 2599 if (CXAAtExitFn) 2600 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2601 2602 Changed |= LocalChange; 2603 } 2604 2605 // TODO: Move all global ctors functions to the end of the module for code 2606 // layout. 2607 2608 return Changed; 2609 } 2610 2611 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2612 auto &DL = M.getDataLayout(); 2613 auto &FAM = 2614 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2615 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2616 return FAM.getResult<DominatorTreeAnalysis>(F); 2617 }; 2618 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 2619 return FAM.getResult<TargetLibraryAnalysis>(F); 2620 }; 2621 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 2622 return FAM.getResult<TargetIRAnalysis>(F); 2623 }; 2624 2625 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 2626 return FAM.getResult<BlockFrequencyAnalysis>(F); 2627 }; 2628 2629 if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree)) 2630 return PreservedAnalyses::all(); 2631 return PreservedAnalyses::none(); 2632 } 2633 2634 namespace { 2635 2636 struct GlobalOptLegacyPass : public ModulePass { 2637 static char ID; // Pass identification, replacement for typeid 2638 2639 GlobalOptLegacyPass() : ModulePass(ID) { 2640 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2641 } 2642 2643 bool runOnModule(Module &M) override { 2644 if (skipModule(M)) 2645 return false; 2646 2647 auto &DL = M.getDataLayout(); 2648 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2649 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2650 }; 2651 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 2652 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2653 }; 2654 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 2655 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2656 }; 2657 2658 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { 2659 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 2660 }; 2661 2662 return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, 2663 LookupDomTree); 2664 } 2665 2666 void getAnalysisUsage(AnalysisUsage &AU) const override { 2667 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2668 AU.addRequired<TargetTransformInfoWrapperPass>(); 2669 AU.addRequired<DominatorTreeWrapperPass>(); 2670 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2671 } 2672 }; 2673 2674 } // end anonymous namespace 2675 2676 char GlobalOptLegacyPass::ID = 0; 2677 2678 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2679 "Global Variable Optimizer", false, false) 2680 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2681 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2682 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 2683 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2684 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2685 "Global Variable Optimizer", false, false) 2686 2687 ModulePass *llvm::createGlobalOptimizerPass() { 2688 return new GlobalOptLegacyPass(); 2689 } 2690