1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass transforms simple global variables that never have their address 10 // taken. If obviously true, it marks read/write globals as constant, deletes 11 // variables only stored to, etc. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/IPO/GlobalOpt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/BinaryFormat/Dwarf.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Use.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/InitializePasses.h" 56 #include "llvm/Pass.h" 57 #include "llvm/Support/AtomicOrdering.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/IPO.h" 65 #include "llvm/Transforms/Utils/CtorUtils.h" 66 #include "llvm/Transforms/Utils/Evaluator.h" 67 #include "llvm/Transforms/Utils/GlobalStatus.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include <cassert> 70 #include <cstdint> 71 #include <utility> 72 #include <vector> 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "globalopt" 77 78 STATISTIC(NumMarked , "Number of globals marked constant"); 79 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr"); 80 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars"); 81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them"); 82 STATISTIC(NumDeleted , "Number of globals deleted"); 83 STATISTIC(NumGlobUses , "Number of global uses devirtualized"); 84 STATISTIC(NumLocalized , "Number of globals localized"); 85 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans"); 86 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc"); 87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated"); 88 STATISTIC(NumNestRemoved , "Number of nest attributes removed"); 89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved"); 90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated"); 91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed"); 92 STATISTIC(NumInternalFunc, "Number of internal functions"); 93 STATISTIC(NumColdCC, "Number of functions marked coldcc"); 94 95 static cl::opt<bool> 96 EnableColdCCStressTest("enable-coldcc-stress-test", 97 cl::desc("Enable stress test of coldcc by adding " 98 "calling conv to all internal functions."), 99 cl::init(false), cl::Hidden); 100 101 static cl::opt<int> ColdCCRelFreq( 102 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 103 cl::desc( 104 "Maximum block frequency, expressed as a percentage of caller's " 105 "entry frequency, for a call site to be considered cold for enabling" 106 "coldcc")); 107 108 /// Is this global variable possibly used by a leak checker as a root? If so, 109 /// we might not really want to eliminate the stores to it. 110 static bool isLeakCheckerRoot(GlobalVariable *GV) { 111 // A global variable is a root if it is a pointer, or could plausibly contain 112 // a pointer. There are two challenges; one is that we could have a struct 113 // the has an inner member which is a pointer. We recurse through the type to 114 // detect these (up to a point). The other is that we may actually be a union 115 // of a pointer and another type, and so our LLVM type is an integer which 116 // gets converted into a pointer, or our type is an [i8 x #] with a pointer 117 // potentially contained here. 118 119 if (GV->hasPrivateLinkage()) 120 return false; 121 122 SmallVector<Type *, 4> Types; 123 Types.push_back(GV->getValueType()); 124 125 unsigned Limit = 20; 126 do { 127 Type *Ty = Types.pop_back_val(); 128 switch (Ty->getTypeID()) { 129 default: break; 130 case Type::PointerTyID: 131 return true; 132 case Type::FixedVectorTyID: 133 case Type::ScalableVectorTyID: 134 if (cast<VectorType>(Ty)->getElementType()->isPointerTy()) 135 return true; 136 break; 137 case Type::ArrayTyID: 138 Types.push_back(cast<ArrayType>(Ty)->getElementType()); 139 break; 140 case Type::StructTyID: { 141 StructType *STy = cast<StructType>(Ty); 142 if (STy->isOpaque()) return true; 143 for (StructType::element_iterator I = STy->element_begin(), 144 E = STy->element_end(); I != E; ++I) { 145 Type *InnerTy = *I; 146 if (isa<PointerType>(InnerTy)) return true; 147 if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) || 148 isa<VectorType>(InnerTy)) 149 Types.push_back(InnerTy); 150 } 151 break; 152 } 153 } 154 if (--Limit == 0) return true; 155 } while (!Types.empty()); 156 return false; 157 } 158 159 /// Given a value that is stored to a global but never read, determine whether 160 /// it's safe to remove the store and the chain of computation that feeds the 161 /// store. 162 static bool IsSafeComputationToRemove( 163 Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 164 do { 165 if (isa<Constant>(V)) 166 return true; 167 if (!V->hasOneUse()) 168 return false; 169 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) || 170 isa<GlobalValue>(V)) 171 return false; 172 if (isAllocationFn(V, GetTLI)) 173 return true; 174 175 Instruction *I = cast<Instruction>(V); 176 if (I->mayHaveSideEffects()) 177 return false; 178 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 179 if (!GEP->hasAllConstantIndices()) 180 return false; 181 } else if (I->getNumOperands() != 1) { 182 return false; 183 } 184 185 V = I->getOperand(0); 186 } while (true); 187 } 188 189 /// This GV is a pointer root. Loop over all users of the global and clean up 190 /// any that obviously don't assign the global a value that isn't dynamically 191 /// allocated. 192 static bool 193 CleanupPointerRootUsers(GlobalVariable *GV, 194 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 195 // A brief explanation of leak checkers. The goal is to find bugs where 196 // pointers are forgotten, causing an accumulating growth in memory 197 // usage over time. The common strategy for leak checkers is to explicitly 198 // allow the memory pointed to by globals at exit. This is popular because it 199 // also solves another problem where the main thread of a C++ program may shut 200 // down before other threads that are still expecting to use those globals. To 201 // handle that case, we expect the program may create a singleton and never 202 // destroy it. 203 204 bool Changed = false; 205 206 // If Dead[n].first is the only use of a malloc result, we can delete its 207 // chain of computation and the store to the global in Dead[n].second. 208 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead; 209 210 // Constants can't be pointers to dynamically allocated memory. 211 for (User *U : llvm::make_early_inc_range(GV->users())) { 212 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 213 Value *V = SI->getValueOperand(); 214 if (isa<Constant>(V)) { 215 Changed = true; 216 SI->eraseFromParent(); 217 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 218 if (I->hasOneUse()) 219 Dead.push_back(std::make_pair(I, SI)); 220 } 221 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) { 222 if (isa<Constant>(MSI->getValue())) { 223 Changed = true; 224 MSI->eraseFromParent(); 225 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) { 226 if (I->hasOneUse()) 227 Dead.push_back(std::make_pair(I, MSI)); 228 } 229 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) { 230 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource()); 231 if (MemSrc && MemSrc->isConstant()) { 232 Changed = true; 233 MTI->eraseFromParent(); 234 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) { 235 if (I->hasOneUse()) 236 Dead.push_back(std::make_pair(I, MTI)); 237 } 238 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 239 if (CE->use_empty()) { 240 CE->destroyConstant(); 241 Changed = true; 242 } 243 } else if (Constant *C = dyn_cast<Constant>(U)) { 244 if (isSafeToDestroyConstant(C)) { 245 C->destroyConstant(); 246 // This could have invalidated UI, start over from scratch. 247 Dead.clear(); 248 CleanupPointerRootUsers(GV, GetTLI); 249 return true; 250 } 251 } 252 } 253 254 for (int i = 0, e = Dead.size(); i != e; ++i) { 255 if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) { 256 Dead[i].second->eraseFromParent(); 257 Instruction *I = Dead[i].first; 258 do { 259 if (isAllocationFn(I, GetTLI)) 260 break; 261 Instruction *J = dyn_cast<Instruction>(I->getOperand(0)); 262 if (!J) 263 break; 264 I->eraseFromParent(); 265 I = J; 266 } while (true); 267 I->eraseFromParent(); 268 Changed = true; 269 } 270 } 271 272 return Changed; 273 } 274 275 /// We just marked GV constant. Loop over all users of the global, cleaning up 276 /// the obvious ones. This is largely just a quick scan over the use list to 277 /// clean up the easy and obvious cruft. This returns true if it made a change. 278 static bool CleanupConstantGlobalUsers( 279 Value *V, Constant *Init, const DataLayout &DL, 280 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 281 bool Changed = false; 282 // Note that we need to use a weak value handle for the worklist items. When 283 // we delete a constant array, we may also be holding pointer to one of its 284 // elements (or an element of one of its elements if we're dealing with an 285 // array of arrays) in the worklist. 286 SmallVector<WeakTrackingVH, 8> WorkList(V->users()); 287 while (!WorkList.empty()) { 288 Value *UV = WorkList.pop_back_val(); 289 if (!UV) 290 continue; 291 292 User *U = cast<User>(UV); 293 294 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 295 if (Init) { 296 if (auto *Casted = 297 ConstantFoldLoadThroughBitcast(Init, LI->getType(), DL)) { 298 // Replace the load with the initializer. 299 LI->replaceAllUsesWith(Casted); 300 LI->eraseFromParent(); 301 Changed = true; 302 } 303 } 304 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 305 // Store must be unreachable or storing Init into the global. 306 SI->eraseFromParent(); 307 Changed = true; 308 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { 309 if (CE->getOpcode() == Instruction::GetElementPtr) { 310 Constant *SubInit = nullptr; 311 if (Init) 312 SubInit = ConstantFoldLoadThroughGEPConstantExpr( 313 Init, CE, V->getType()->getPointerElementType(), DL); 314 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI); 315 } else if ((CE->getOpcode() == Instruction::BitCast && 316 CE->getType()->isPointerTy()) || 317 CE->getOpcode() == Instruction::AddrSpaceCast) { 318 // Pointer cast, delete any stores and memsets to the global. 319 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI); 320 } 321 322 if (CE->use_empty()) { 323 CE->destroyConstant(); 324 Changed = true; 325 } 326 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 327 // Do not transform "gepinst (gep constexpr (GV))" here, because forming 328 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold 329 // and will invalidate our notion of what Init is. 330 Constant *SubInit = nullptr; 331 if (!isa<ConstantExpr>(GEP->getOperand(0))) { 332 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>( 333 ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction()))); 334 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr) 335 SubInit = ConstantFoldLoadThroughGEPConstantExpr( 336 Init, CE, V->getType()->getPointerElementType(), DL); 337 338 // If the initializer is an all-null value and we have an inbounds GEP, 339 // we already know what the result of any load from that GEP is. 340 // TODO: Handle splats. 341 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds()) 342 SubInit = Constant::getNullValue(GEP->getResultElementType()); 343 } 344 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI); 345 346 if (GEP->use_empty()) { 347 GEP->eraseFromParent(); 348 Changed = true; 349 } 350 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv 351 if (MI->getRawDest() == V) { 352 MI->eraseFromParent(); 353 Changed = true; 354 } 355 356 } else if (Constant *C = dyn_cast<Constant>(U)) { 357 // If we have a chain of dead constantexprs or other things dangling from 358 // us, and if they are all dead, nuke them without remorse. 359 if (isSafeToDestroyConstant(C)) { 360 C->destroyConstant(); 361 CleanupConstantGlobalUsers(V, Init, DL, GetTLI); 362 return true; 363 } 364 } 365 } 366 return Changed; 367 } 368 369 static bool isSafeSROAElementUse(Value *V); 370 371 /// Return true if the specified GEP is a safe user of a derived 372 /// expression from a global that we want to SROA. 373 static bool isSafeSROAGEP(User *U) { 374 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we 375 // don't like < 3 operand CE's, and we don't like non-constant integer 376 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some 377 // value of C. 378 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) || 379 !cast<Constant>(U->getOperand(1))->isNullValue()) 380 return false; 381 382 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U); 383 ++GEPI; // Skip over the pointer index. 384 385 // For all other level we require that the indices are constant and inrange. 386 // In particular, consider: A[0][i]. We cannot know that the user isn't doing 387 // invalid things like allowing i to index an out-of-range subscript that 388 // accesses A[1]. This can also happen between different members of a struct 389 // in llvm IR. 390 for (; GEPI != E; ++GEPI) { 391 if (GEPI.isStruct()) 392 continue; 393 394 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand()); 395 if (!IdxVal || (GEPI.isBoundedSequential() && 396 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements())) 397 return false; 398 } 399 400 return llvm::all_of(U->users(), 401 [](User *UU) { return isSafeSROAElementUse(UU); }); 402 } 403 404 /// Return true if the specified instruction is a safe user of a derived 405 /// expression from a global that we want to SROA. 406 static bool isSafeSROAElementUse(Value *V) { 407 // We might have a dead and dangling constant hanging off of here. 408 if (Constant *C = dyn_cast<Constant>(V)) 409 return isSafeToDestroyConstant(C); 410 411 Instruction *I = dyn_cast<Instruction>(V); 412 if (!I) return false; 413 414 // Loads are ok. 415 if (isa<LoadInst>(I)) return true; 416 417 // Stores *to* the pointer are ok. 418 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 419 return SI->getOperand(0) != V; 420 421 // Otherwise, it must be a GEP. Check it and its users are safe to SRA. 422 return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I); 423 } 424 425 /// Look at all uses of the global and decide whether it is safe for us to 426 /// perform this transformation. 427 static bool GlobalUsersSafeToSRA(GlobalValue *GV) { 428 for (User *U : GV->users()) { 429 // The user of the global must be a GEP Inst or a ConstantExpr GEP. 430 if (!isa<GetElementPtrInst>(U) && 431 (!isa<ConstantExpr>(U) || 432 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr)) 433 return false; 434 435 // Check the gep and it's users are safe to SRA 436 if (!isSafeSROAGEP(U)) 437 return false; 438 } 439 440 return true; 441 } 442 443 static bool IsSRASequential(Type *T) { 444 return isa<ArrayType>(T) || isa<VectorType>(T); 445 } 446 static uint64_t GetSRASequentialNumElements(Type *T) { 447 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 448 return AT->getNumElements(); 449 return cast<FixedVectorType>(T)->getNumElements(); 450 } 451 static Type *GetSRASequentialElementType(Type *T) { 452 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 453 return AT->getElementType(); 454 return cast<VectorType>(T)->getElementType(); 455 } 456 static bool CanDoGlobalSRA(GlobalVariable *GV) { 457 Constant *Init = GV->getInitializer(); 458 459 if (isa<StructType>(Init->getType())) { 460 // nothing to check 461 } else if (IsSRASequential(Init->getType())) { 462 if (GetSRASequentialNumElements(Init->getType()) > 16 && 463 GV->hasNUsesOrMore(16)) 464 return false; // It's not worth it. 465 } else 466 return false; 467 468 return GlobalUsersSafeToSRA(GV); 469 } 470 471 /// Copy over the debug info for a variable to its SRA replacements. 472 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV, 473 uint64_t FragmentOffsetInBits, 474 uint64_t FragmentSizeInBits, 475 uint64_t VarSize) { 476 SmallVector<DIGlobalVariableExpression *, 1> GVs; 477 GV->getDebugInfo(GVs); 478 for (auto *GVE : GVs) { 479 DIVariable *Var = GVE->getVariable(); 480 DIExpression *Expr = GVE->getExpression(); 481 // If the FragmentSize is smaller than the variable, 482 // emit a fragment expression. 483 if (FragmentSizeInBits < VarSize) { 484 if (auto E = DIExpression::createFragmentExpression( 485 Expr, FragmentOffsetInBits, FragmentSizeInBits)) 486 Expr = *E; 487 else 488 return; 489 } 490 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr); 491 NGV->addDebugInfo(NGVE); 492 } 493 } 494 495 /// Perform scalar replacement of aggregates on the specified global variable. 496 /// This opens the door for other optimizations by exposing the behavior of the 497 /// program in a more fine-grained way. We have determined that this 498 /// transformation is safe already. We return the first global variable we 499 /// insert so that the caller can reprocess it. 500 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) { 501 // Make sure this global only has simple uses that we can SRA. 502 if (!CanDoGlobalSRA(GV)) 503 return nullptr; 504 505 assert(GV->hasLocalLinkage()); 506 Constant *Init = GV->getInitializer(); 507 Type *Ty = Init->getType(); 508 uint64_t VarSize = DL.getTypeSizeInBits(Ty); 509 510 std::map<unsigned, GlobalVariable *> NewGlobals; 511 512 // Get the alignment of the global, either explicit or target-specific. 513 Align StartAlignment = 514 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType()); 515 516 // Loop over all users and create replacement variables for used aggregate 517 // elements. 518 for (User *GEP : GV->users()) { 519 assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() == 520 Instruction::GetElementPtr) || 521 isa<GetElementPtrInst>(GEP)) && 522 "NonGEP CE's are not SRAable!"); 523 524 // Ignore the 1th operand, which has to be zero or else the program is quite 525 // broken (undefined). Get the 2nd operand, which is the structure or array 526 // index. 527 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 528 if (NewGlobals.count(ElementIdx) == 1) 529 continue; // we`ve already created replacement variable 530 assert(NewGlobals.count(ElementIdx) == 0); 531 532 Type *ElTy = nullptr; 533 if (StructType *STy = dyn_cast<StructType>(Ty)) 534 ElTy = STy->getElementType(ElementIdx); 535 else 536 ElTy = GetSRASequentialElementType(Ty); 537 assert(ElTy); 538 539 Constant *In = Init->getAggregateElement(ElementIdx); 540 assert(In && "Couldn't get element of initializer?"); 541 542 GlobalVariable *NGV = new GlobalVariable( 543 ElTy, false, GlobalVariable::InternalLinkage, In, 544 GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(), 545 GV->getType()->getAddressSpace()); 546 NGV->setExternallyInitialized(GV->isExternallyInitialized()); 547 NGV->copyAttributesFrom(GV); 548 NewGlobals.insert(std::make_pair(ElementIdx, NGV)); 549 550 if (StructType *STy = dyn_cast<StructType>(Ty)) { 551 const StructLayout &Layout = *DL.getStructLayout(STy); 552 553 // Calculate the known alignment of the field. If the original aggregate 554 // had 256 byte alignment for example, something might depend on that: 555 // propagate info to each field. 556 uint64_t FieldOffset = Layout.getElementOffset(ElementIdx); 557 Align NewAlign = commonAlignment(StartAlignment, FieldOffset); 558 if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx))) 559 NGV->setAlignment(NewAlign); 560 561 // Copy over the debug info for the variable. 562 uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType()); 563 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx); 564 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize); 565 } else { 566 uint64_t EltSize = DL.getTypeAllocSize(ElTy); 567 Align EltAlign = DL.getABITypeAlign(ElTy); 568 uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy); 569 570 // Calculate the known alignment of the field. If the original aggregate 571 // had 256 byte alignment for example, something might depend on that: 572 // propagate info to each field. 573 Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx); 574 if (NewAlign > EltAlign) 575 NGV->setAlignment(NewAlign); 576 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx, 577 FragmentSizeInBits, VarSize); 578 } 579 } 580 581 if (NewGlobals.empty()) 582 return nullptr; 583 584 Module::GlobalListType &Globals = GV->getParent()->getGlobalList(); 585 for (auto NewGlobalVar : NewGlobals) 586 Globals.push_back(NewGlobalVar.second); 587 588 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n"); 589 590 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext())); 591 592 // Loop over all of the uses of the global, replacing the constantexpr geps, 593 // with smaller constantexpr geps or direct references. 594 while (!GV->use_empty()) { 595 User *GEP = GV->user_back(); 596 assert(((isa<ConstantExpr>(GEP) && 597 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)|| 598 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!"); 599 600 // Ignore the 1th operand, which has to be zero or else the program is quite 601 // broken (undefined). Get the 2nd operand, which is the structure or array 602 // index. 603 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); 604 assert(NewGlobals.count(ElementIdx) == 1); 605 606 Value *NewPtr = NewGlobals[ElementIdx]; 607 Type *NewTy = NewGlobals[ElementIdx]->getValueType(); 608 609 // Form a shorter GEP if needed. 610 if (GEP->getNumOperands() > 3) { 611 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) { 612 SmallVector<Constant*, 8> Idxs; 613 Idxs.push_back(NullInt); 614 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i) 615 Idxs.push_back(CE->getOperand(i)); 616 NewPtr = 617 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs); 618 } else { 619 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP); 620 SmallVector<Value*, 8> Idxs; 621 Idxs.push_back(NullInt); 622 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) 623 Idxs.push_back(GEPI->getOperand(i)); 624 NewPtr = GetElementPtrInst::Create( 625 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx), 626 GEPI); 627 } 628 } 629 GEP->replaceAllUsesWith(NewPtr); 630 631 // We changed the pointer of any memory access user. Recalculate alignments. 632 for (User *U : NewPtr->users()) { 633 if (auto *Load = dyn_cast<LoadInst>(U)) { 634 Align PrefAlign = DL.getPrefTypeAlign(Load->getType()); 635 Align NewAlign = getOrEnforceKnownAlignment(Load->getPointerOperand(), 636 PrefAlign, DL, Load); 637 Load->setAlignment(NewAlign); 638 } 639 if (auto *Store = dyn_cast<StoreInst>(U)) { 640 Align PrefAlign = 641 DL.getPrefTypeAlign(Store->getValueOperand()->getType()); 642 Align NewAlign = getOrEnforceKnownAlignment(Store->getPointerOperand(), 643 PrefAlign, DL, Store); 644 Store->setAlignment(NewAlign); 645 } 646 } 647 648 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP)) 649 GEPI->eraseFromParent(); 650 else 651 cast<ConstantExpr>(GEP)->destroyConstant(); 652 } 653 654 // Delete the old global, now that it is dead. 655 Globals.erase(GV); 656 ++NumSRA; 657 658 assert(NewGlobals.size() > 0); 659 return NewGlobals.begin()->second; 660 } 661 662 /// Return true if all users of the specified value will trap if the value is 663 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid 664 /// reprocessing them. 665 static bool AllUsesOfValueWillTrapIfNull(const Value *V, 666 SmallPtrSetImpl<const PHINode*> &PHIs) { 667 for (const User *U : V->users()) { 668 if (const Instruction *I = dyn_cast<Instruction>(U)) { 669 // If null pointer is considered valid, then all uses are non-trapping. 670 // Non address-space 0 globals have already been pruned by the caller. 671 if (NullPointerIsDefined(I->getFunction())) 672 return false; 673 } 674 if (isa<LoadInst>(U)) { 675 // Will trap. 676 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 677 if (SI->getOperand(0) == V) { 678 //cerr << "NONTRAPPING USE: " << *U; 679 return false; // Storing the value. 680 } 681 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) { 682 if (CI->getCalledOperand() != V) { 683 //cerr << "NONTRAPPING USE: " << *U; 684 return false; // Not calling the ptr 685 } 686 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) { 687 if (II->getCalledOperand() != V) { 688 //cerr << "NONTRAPPING USE: " << *U; 689 return false; // Not calling the ptr 690 } 691 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) { 692 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false; 693 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 694 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false; 695 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 696 // If we've already seen this phi node, ignore it, it has already been 697 // checked. 698 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs)) 699 return false; 700 } else if (isa<ICmpInst>(U) && 701 !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) && 702 isa<LoadInst>(U->getOperand(0)) && 703 isa<ConstantPointerNull>(U->getOperand(1))) { 704 assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0)) 705 ->getPointerOperand() 706 ->stripPointerCasts()) && 707 "Should be GlobalVariable"); 708 // This and only this kind of non-signed ICmpInst is to be replaced with 709 // the comparing of the value of the created global init bool later in 710 // optimizeGlobalAddressOfMalloc for the global variable. 711 } else { 712 //cerr << "NONTRAPPING USE: " << *U; 713 return false; 714 } 715 } 716 return true; 717 } 718 719 /// Return true if all uses of any loads from GV will trap if the loaded value 720 /// is null. Note that this also permits comparisons of the loaded value 721 /// against null, as a special case. 722 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) { 723 SmallVector<const Value *, 4> Worklist; 724 Worklist.push_back(GV); 725 while (!Worklist.empty()) { 726 const Value *P = Worklist.pop_back_val(); 727 for (auto *U : P->users()) { 728 if (auto *LI = dyn_cast<LoadInst>(U)) { 729 SmallPtrSet<const PHINode *, 8> PHIs; 730 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs)) 731 return false; 732 } else if (auto *SI = dyn_cast<StoreInst>(U)) { 733 // Ignore stores to the global. 734 if (SI->getPointerOperand() != P) 735 return false; 736 } else if (auto *CE = dyn_cast<ConstantExpr>(U)) { 737 if (CE->stripPointerCasts() != GV) 738 return false; 739 // Check further the ConstantExpr. 740 Worklist.push_back(CE); 741 } else { 742 // We don't know or understand this user, bail out. 743 return false; 744 } 745 } 746 } 747 748 return true; 749 } 750 751 /// Get all the loads/store uses for global variable \p GV. 752 static void allUsesOfLoadAndStores(GlobalVariable *GV, 753 SmallVector<Value *, 4> &Uses) { 754 SmallVector<Value *, 4> Worklist; 755 Worklist.push_back(GV); 756 while (!Worklist.empty()) { 757 auto *P = Worklist.pop_back_val(); 758 for (auto *U : P->users()) { 759 if (auto *CE = dyn_cast<ConstantExpr>(U)) { 760 Worklist.push_back(CE); 761 continue; 762 } 763 764 assert((isa<LoadInst>(U) || isa<StoreInst>(U)) && 765 "Expect only load or store instructions"); 766 Uses.push_back(U); 767 } 768 } 769 } 770 771 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) { 772 bool Changed = false; 773 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) { 774 Instruction *I = cast<Instruction>(*UI++); 775 // Uses are non-trapping if null pointer is considered valid. 776 // Non address-space 0 globals are already pruned by the caller. 777 if (NullPointerIsDefined(I->getFunction())) 778 return false; 779 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 780 LI->setOperand(0, NewV); 781 Changed = true; 782 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 783 if (SI->getOperand(1) == V) { 784 SI->setOperand(1, NewV); 785 Changed = true; 786 } 787 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 788 CallBase *CB = cast<CallBase>(I); 789 if (CB->getCalledOperand() == V) { 790 // Calling through the pointer! Turn into a direct call, but be careful 791 // that the pointer is not also being passed as an argument. 792 CB->setCalledOperand(NewV); 793 Changed = true; 794 bool PassedAsArg = false; 795 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 796 if (CB->getArgOperand(i) == V) { 797 PassedAsArg = true; 798 CB->setArgOperand(i, NewV); 799 } 800 801 if (PassedAsArg) { 802 // Being passed as an argument also. Be careful to not invalidate UI! 803 UI = V->user_begin(); 804 } 805 } 806 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 807 Changed |= OptimizeAwayTrappingUsesOfValue(CI, 808 ConstantExpr::getCast(CI->getOpcode(), 809 NewV, CI->getType())); 810 if (CI->use_empty()) { 811 Changed = true; 812 CI->eraseFromParent(); 813 } 814 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 815 // Should handle GEP here. 816 SmallVector<Constant*, 8> Idxs; 817 Idxs.reserve(GEPI->getNumOperands()-1); 818 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end(); 819 i != e; ++i) 820 if (Constant *C = dyn_cast<Constant>(*i)) 821 Idxs.push_back(C); 822 else 823 break; 824 if (Idxs.size() == GEPI->getNumOperands()-1) 825 Changed |= OptimizeAwayTrappingUsesOfValue( 826 GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(), 827 NewV, Idxs)); 828 if (GEPI->use_empty()) { 829 Changed = true; 830 GEPI->eraseFromParent(); 831 } 832 } 833 } 834 835 return Changed; 836 } 837 838 /// The specified global has only one non-null value stored into it. If there 839 /// are uses of the loaded value that would trap if the loaded value is 840 /// dynamically null, then we know that they cannot be reachable with a null 841 /// optimize away the load. 842 static bool OptimizeAwayTrappingUsesOfLoads( 843 GlobalVariable *GV, Constant *LV, const DataLayout &DL, 844 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 845 bool Changed = false; 846 847 // Keep track of whether we are able to remove all the uses of the global 848 // other than the store that defines it. 849 bool AllNonStoreUsesGone = true; 850 851 // Replace all uses of loads with uses of uses of the stored value. 852 for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) { 853 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) { 854 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV); 855 // If we were able to delete all uses of the loads 856 if (LI->use_empty()) { 857 LI->eraseFromParent(); 858 Changed = true; 859 } else { 860 AllNonStoreUsesGone = false; 861 } 862 } else if (isa<StoreInst>(GlobalUser)) { 863 // Ignore the store that stores "LV" to the global. 864 assert(GlobalUser->getOperand(1) == GV && 865 "Must be storing *to* the global"); 866 } else { 867 AllNonStoreUsesGone = false; 868 869 // If we get here we could have other crazy uses that are transitively 870 // loaded. 871 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) || 872 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) || 873 isa<BitCastInst>(GlobalUser) || 874 isa<GetElementPtrInst>(GlobalUser)) && 875 "Only expect load and stores!"); 876 } 877 } 878 879 if (Changed) { 880 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV 881 << "\n"); 882 ++NumGlobUses; 883 } 884 885 // If we nuked all of the loads, then none of the stores are needed either, 886 // nor is the global. 887 if (AllNonStoreUsesGone) { 888 if (isLeakCheckerRoot(GV)) { 889 Changed |= CleanupPointerRootUsers(GV, GetTLI); 890 } else { 891 Changed = true; 892 CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI); 893 } 894 if (GV->use_empty()) { 895 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n"); 896 Changed = true; 897 GV->eraseFromParent(); 898 ++NumDeleted; 899 } 900 } 901 return Changed; 902 } 903 904 /// Walk the use list of V, constant folding all of the instructions that are 905 /// foldable. 906 static void ConstantPropUsersOf(Value *V, const DataLayout &DL, 907 TargetLibraryInfo *TLI) { 908 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; ) 909 if (Instruction *I = dyn_cast<Instruction>(*UI++)) 910 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) { 911 I->replaceAllUsesWith(NewC); 912 913 // Advance UI to the next non-I use to avoid invalidating it! 914 // Instructions could multiply use V. 915 while (UI != E && *UI == I) 916 ++UI; 917 if (isInstructionTriviallyDead(I, TLI)) 918 I->eraseFromParent(); 919 } 920 } 921 922 /// This function takes the specified global variable, and transforms the 923 /// program as if it always contained the result of the specified malloc. 924 /// Because it is always the result of the specified malloc, there is no reason 925 /// to actually DO the malloc. Instead, turn the malloc into a global, and any 926 /// loads of GV as uses of the new global. 927 static GlobalVariable * 928 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy, 929 ConstantInt *NElements, const DataLayout &DL, 930 TargetLibraryInfo *TLI) { 931 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI 932 << '\n'); 933 934 Type *GlobalType; 935 if (NElements->getZExtValue() == 1) 936 GlobalType = AllocTy; 937 else 938 // If we have an array allocation, the global variable is of an array. 939 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue()); 940 941 // Create the new global variable. The contents of the malloc'd memory is 942 // undefined, so initialize with an undef value. 943 GlobalVariable *NewGV = new GlobalVariable( 944 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage, 945 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr, 946 GV->getThreadLocalMode()); 947 948 // If there are bitcast users of the malloc (which is typical, usually we have 949 // a malloc + bitcast) then replace them with uses of the new global. Update 950 // other users to use the global as well. 951 BitCastInst *TheBC = nullptr; 952 while (!CI->use_empty()) { 953 Instruction *User = cast<Instruction>(CI->user_back()); 954 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) { 955 if (BCI->getType() == NewGV->getType()) { 956 BCI->replaceAllUsesWith(NewGV); 957 BCI->eraseFromParent(); 958 } else { 959 BCI->setOperand(0, NewGV); 960 } 961 } else { 962 if (!TheBC) 963 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI); 964 User->replaceUsesOfWith(CI, TheBC); 965 } 966 } 967 968 SmallPtrSet<Constant *, 1> RepValues; 969 RepValues.insert(NewGV); 970 971 // If there is a comparison against null, we will insert a global bool to 972 // keep track of whether the global was initialized yet or not. 973 GlobalVariable *InitBool = 974 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false, 975 GlobalValue::InternalLinkage, 976 ConstantInt::getFalse(GV->getContext()), 977 GV->getName()+".init", GV->getThreadLocalMode()); 978 bool InitBoolUsed = false; 979 980 // Loop over all instruction uses of GV, processing them in turn. 981 SmallVector<Value *, 4> Guses; 982 allUsesOfLoadAndStores(GV, Guses); 983 for (auto *U : Guses) { 984 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 985 // The global is initialized when the store to it occurs. If the stored 986 // value is null value, the global bool is set to false, otherwise true. 987 new StoreInst(ConstantInt::getBool( 988 GV->getContext(), 989 !isa<ConstantPointerNull>(SI->getValueOperand())), 990 InitBool, false, Align(1), SI->getOrdering(), 991 SI->getSyncScopeID(), SI); 992 SI->eraseFromParent(); 993 continue; 994 } 995 996 LoadInst *LI = cast<LoadInst>(U); 997 while (!LI->use_empty()) { 998 Use &LoadUse = *LI->use_begin(); 999 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser()); 1000 if (!ICI) { 1001 auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType()); 1002 RepValues.insert(CE); 1003 LoadUse.set(CE); 1004 continue; 1005 } 1006 1007 // Replace the cmp X, 0 with a use of the bool value. 1008 Value *LV = new LoadInst(InitBool->getValueType(), InitBool, 1009 InitBool->getName() + ".val", false, Align(1), 1010 LI->getOrdering(), LI->getSyncScopeID(), LI); 1011 InitBoolUsed = true; 1012 switch (ICI->getPredicate()) { 1013 default: llvm_unreachable("Unknown ICmp Predicate!"); 1014 case ICmpInst::ICMP_ULT: // X < null -> always false 1015 LV = ConstantInt::getFalse(GV->getContext()); 1016 break; 1017 case ICmpInst::ICMP_UGE: // X >= null -> always true 1018 LV = ConstantInt::getTrue(GV->getContext()); 1019 break; 1020 case ICmpInst::ICMP_ULE: 1021 case ICmpInst::ICMP_EQ: 1022 LV = BinaryOperator::CreateNot(LV, "notinit", ICI); 1023 break; 1024 case ICmpInst::ICMP_NE: 1025 case ICmpInst::ICMP_UGT: 1026 break; // no change. 1027 } 1028 ICI->replaceAllUsesWith(LV); 1029 ICI->eraseFromParent(); 1030 } 1031 LI->eraseFromParent(); 1032 } 1033 1034 // If the initialization boolean was used, insert it, otherwise delete it. 1035 if (!InitBoolUsed) { 1036 while (!InitBool->use_empty()) // Delete initializations 1037 cast<StoreInst>(InitBool->user_back())->eraseFromParent(); 1038 delete InitBool; 1039 } else 1040 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool); 1041 1042 // Now the GV is dead, nuke it and the malloc.. 1043 GV->eraseFromParent(); 1044 CI->eraseFromParent(); 1045 1046 // To further other optimizations, loop over all users of NewGV and try to 1047 // constant prop them. This will promote GEP instructions with constant 1048 // indices into GEP constant-exprs, which will allow global-opt to hack on it. 1049 for (auto *CE : RepValues) 1050 ConstantPropUsersOf(CE, DL, TLI); 1051 1052 return NewGV; 1053 } 1054 1055 /// Scan the use-list of GV checking to make sure that there are no complex uses 1056 /// of GV. We permit simple things like dereferencing the pointer, but not 1057 /// storing through the address, unless it is to the specified global. 1058 static bool 1059 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI, 1060 const GlobalVariable *GV) { 1061 SmallPtrSet<const Value *, 4> Visited; 1062 SmallVector<const Value *, 4> Worklist; 1063 Worklist.push_back(CI); 1064 1065 while (!Worklist.empty()) { 1066 const Value *V = Worklist.pop_back_val(); 1067 if (!Visited.insert(V).second) 1068 continue; 1069 1070 for (const Use &VUse : V->uses()) { 1071 const User *U = VUse.getUser(); 1072 if (isa<LoadInst>(U) || isa<CmpInst>(U)) 1073 continue; // Fine, ignore. 1074 1075 if (auto *SI = dyn_cast<StoreInst>(U)) { 1076 if (SI->getValueOperand() == V && 1077 SI->getPointerOperand()->stripPointerCasts() != GV) 1078 return false; // Storing the pointer not into GV... bad. 1079 continue; // Otherwise, storing through it, or storing into GV... fine. 1080 } 1081 1082 if (auto *BCI = dyn_cast<BitCastInst>(U)) { 1083 Worklist.push_back(BCI); 1084 continue; 1085 } 1086 1087 if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) { 1088 Worklist.push_back(GEPI); 1089 continue; 1090 } 1091 1092 return false; 1093 } 1094 } 1095 1096 return true; 1097 } 1098 1099 /// This function is called when we see a pointer global variable with a single 1100 /// value stored it that is a malloc or cast of malloc. 1101 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI, 1102 Type *AllocTy, 1103 AtomicOrdering Ordering, 1104 const DataLayout &DL, 1105 TargetLibraryInfo *TLI) { 1106 // If this is a malloc of an abstract type, don't touch it. 1107 if (!AllocTy->isSized()) 1108 return false; 1109 1110 // We can't optimize this global unless all uses of it are *known* to be 1111 // of the malloc value, not of the null initializer value (consider a use 1112 // that compares the global's value against zero to see if the malloc has 1113 // been reached). To do this, we check to see if all uses of the global 1114 // would trap if the global were null: this proves that they must all 1115 // happen after the malloc. 1116 if (!allUsesOfLoadedValueWillTrapIfNull(GV)) 1117 return false; 1118 1119 // We can't optimize this if the malloc itself is used in a complex way, 1120 // for example, being stored into multiple globals. This allows the 1121 // malloc to be stored into the specified global, loaded, gep, icmp'd. 1122 // These are all things we could transform to using the global for. 1123 if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV)) 1124 return false; 1125 1126 // If we have a global that is only initialized with a fixed size malloc, 1127 // transform the program to use global memory instead of malloc'd memory. 1128 // This eliminates dynamic allocation, avoids an indirection accessing the 1129 // data, and exposes the resultant global to further GlobalOpt. 1130 // We cannot optimize the malloc if we cannot determine malloc array size. 1131 Value *NElems = getMallocArraySize(CI, DL, TLI, true); 1132 if (!NElems) 1133 return false; 1134 1135 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) 1136 // Restrict this transformation to only working on small allocations 1137 // (2048 bytes currently), as we don't want to introduce a 16M global or 1138 // something. 1139 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) { 1140 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI); 1141 return true; 1142 } 1143 1144 return false; 1145 } 1146 1147 // Try to optimize globals based on the knowledge that only one value (besides 1148 // its initializer) is ever stored to the global. 1149 static bool 1150 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal, 1151 AtomicOrdering Ordering, const DataLayout &DL, 1152 function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 1153 // Ignore no-op GEPs and bitcasts. 1154 StoredOnceVal = StoredOnceVal->stripPointerCasts(); 1155 1156 // If we are dealing with a pointer global that is initialized to null and 1157 // only has one (non-null) value stored into it, then we can optimize any 1158 // users of the loaded value (often calls and loads) that would trap if the 1159 // value was null. 1160 if (GV->getInitializer()->getType()->isPointerTy() && 1161 GV->getInitializer()->isNullValue() && 1162 StoredOnceVal->getType()->isPointerTy() && 1163 !NullPointerIsDefined( 1164 nullptr /* F */, 1165 GV->getInitializer()->getType()->getPointerAddressSpace())) { 1166 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) { 1167 if (GV->getInitializer()->getType() != SOVC->getType()) 1168 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType()); 1169 1170 // Optimize away any trapping uses of the loaded value. 1171 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI)) 1172 return true; 1173 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) { 1174 auto *TLI = &GetTLI(*CI->getFunction()); 1175 Type *MallocType = getMallocAllocatedType(CI, TLI); 1176 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, 1177 Ordering, DL, TLI)) 1178 return true; 1179 } 1180 } 1181 1182 return false; 1183 } 1184 1185 /// At this point, we have learned that the only two values ever stored into GV 1186 /// are its initializer and OtherVal. See if we can shrink the global into a 1187 /// boolean and select between the two values whenever it is used. This exposes 1188 /// the values to other scalar optimizations. 1189 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) { 1190 Type *GVElType = GV->getValueType(); 1191 1192 // If GVElType is already i1, it is already shrunk. If the type of the GV is 1193 // an FP value, pointer or vector, don't do this optimization because a select 1194 // between them is very expensive and unlikely to lead to later 1195 // simplification. In these cases, we typically end up with "cond ? v1 : v2" 1196 // where v1 and v2 both require constant pool loads, a big loss. 1197 if (GVElType == Type::getInt1Ty(GV->getContext()) || 1198 GVElType->isFloatingPointTy() || 1199 GVElType->isPointerTy() || GVElType->isVectorTy()) 1200 return false; 1201 1202 // Walk the use list of the global seeing if all the uses are load or store. 1203 // If there is anything else, bail out. 1204 for (User *U : GV->users()) 1205 if (!isa<LoadInst>(U) && !isa<StoreInst>(U)) 1206 return false; 1207 1208 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n"); 1209 1210 // Create the new global, initializing it to false. 1211 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()), 1212 false, 1213 GlobalValue::InternalLinkage, 1214 ConstantInt::getFalse(GV->getContext()), 1215 GV->getName()+".b", 1216 GV->getThreadLocalMode(), 1217 GV->getType()->getAddressSpace()); 1218 NewGV->copyAttributesFrom(GV); 1219 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV); 1220 1221 Constant *InitVal = GV->getInitializer(); 1222 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) && 1223 "No reason to shrink to bool!"); 1224 1225 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1226 GV->getDebugInfo(GVs); 1227 1228 // If initialized to zero and storing one into the global, we can use a cast 1229 // instead of a select to synthesize the desired value. 1230 bool IsOneZero = false; 1231 bool EmitOneOrZero = true; 1232 auto *CI = dyn_cast<ConstantInt>(OtherVal); 1233 if (CI && CI->getValue().getActiveBits() <= 64) { 1234 IsOneZero = InitVal->isNullValue() && CI->isOne(); 1235 1236 auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer()); 1237 if (CIInit && CIInit->getValue().getActiveBits() <= 64) { 1238 uint64_t ValInit = CIInit->getZExtValue(); 1239 uint64_t ValOther = CI->getZExtValue(); 1240 uint64_t ValMinus = ValOther - ValInit; 1241 1242 for(auto *GVe : GVs){ 1243 DIGlobalVariable *DGV = GVe->getVariable(); 1244 DIExpression *E = GVe->getExpression(); 1245 const DataLayout &DL = GV->getParent()->getDataLayout(); 1246 unsigned SizeInOctets = 1247 DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8; 1248 1249 // It is expected that the address of global optimized variable is on 1250 // top of the stack. After optimization, value of that variable will 1251 // be ether 0 for initial value or 1 for other value. The following 1252 // expression should return constant integer value depending on the 1253 // value at global object address: 1254 // val * (ValOther - ValInit) + ValInit: 1255 // DW_OP_deref DW_OP_constu <ValMinus> 1256 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value 1257 SmallVector<uint64_t, 12> Ops = { 1258 dwarf::DW_OP_deref_size, SizeInOctets, 1259 dwarf::DW_OP_constu, ValMinus, 1260 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit, 1261 dwarf::DW_OP_plus}; 1262 bool WithStackValue = true; 1263 E = DIExpression::prependOpcodes(E, Ops, WithStackValue); 1264 DIGlobalVariableExpression *DGVE = 1265 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E); 1266 NewGV->addDebugInfo(DGVE); 1267 } 1268 EmitOneOrZero = false; 1269 } 1270 } 1271 1272 if (EmitOneOrZero) { 1273 // FIXME: This will only emit address for debugger on which will 1274 // be written only 0 or 1. 1275 for(auto *GV : GVs) 1276 NewGV->addDebugInfo(GV); 1277 } 1278 1279 while (!GV->use_empty()) { 1280 Instruction *UI = cast<Instruction>(GV->user_back()); 1281 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { 1282 // Change the store into a boolean store. 1283 bool StoringOther = SI->getOperand(0) == OtherVal; 1284 // Only do this if we weren't storing a loaded value. 1285 Value *StoreVal; 1286 if (StoringOther || SI->getOperand(0) == InitVal) { 1287 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()), 1288 StoringOther); 1289 } else { 1290 // Otherwise, we are storing a previously loaded copy. To do this, 1291 // change the copy from copying the original value to just copying the 1292 // bool. 1293 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0)); 1294 1295 // If we've already replaced the input, StoredVal will be a cast or 1296 // select instruction. If not, it will be a load of the original 1297 // global. 1298 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 1299 assert(LI->getOperand(0) == GV && "Not a copy!"); 1300 // Insert a new load, to preserve the saved value. 1301 StoreVal = new LoadInst(NewGV->getValueType(), NewGV, 1302 LI->getName() + ".b", false, Align(1), 1303 LI->getOrdering(), LI->getSyncScopeID(), LI); 1304 } else { 1305 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) && 1306 "This is not a form that we understand!"); 1307 StoreVal = StoredVal->getOperand(0); 1308 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!"); 1309 } 1310 } 1311 StoreInst *NSI = 1312 new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(), 1313 SI->getSyncScopeID(), SI); 1314 NSI->setDebugLoc(SI->getDebugLoc()); 1315 } else { 1316 // Change the load into a load of bool then a select. 1317 LoadInst *LI = cast<LoadInst>(UI); 1318 LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV, 1319 LI->getName() + ".b", false, Align(1), 1320 LI->getOrdering(), LI->getSyncScopeID(), LI); 1321 Instruction *NSI; 1322 if (IsOneZero) 1323 NSI = new ZExtInst(NLI, LI->getType(), "", LI); 1324 else 1325 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI); 1326 NSI->takeName(LI); 1327 // Since LI is split into two instructions, NLI and NSI both inherit the 1328 // same DebugLoc 1329 NLI->setDebugLoc(LI->getDebugLoc()); 1330 NSI->setDebugLoc(LI->getDebugLoc()); 1331 LI->replaceAllUsesWith(NSI); 1332 } 1333 UI->eraseFromParent(); 1334 } 1335 1336 // Retain the name of the old global variable. People who are debugging their 1337 // programs may expect these variables to be named the same. 1338 NewGV->takeName(GV); 1339 GV->eraseFromParent(); 1340 return true; 1341 } 1342 1343 static bool deleteIfDead( 1344 GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1345 GV.removeDeadConstantUsers(); 1346 1347 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration()) 1348 return false; 1349 1350 if (const Comdat *C = GV.getComdat()) 1351 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C)) 1352 return false; 1353 1354 bool Dead; 1355 if (auto *F = dyn_cast<Function>(&GV)) 1356 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead(); 1357 else 1358 Dead = GV.use_empty(); 1359 if (!Dead) 1360 return false; 1361 1362 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n"); 1363 GV.eraseFromParent(); 1364 ++NumDeleted; 1365 return true; 1366 } 1367 1368 static bool isPointerValueDeadOnEntryToFunction( 1369 const Function *F, GlobalValue *GV, 1370 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1371 // Find all uses of GV. We expect them all to be in F, and if we can't 1372 // identify any of the uses we bail out. 1373 // 1374 // On each of these uses, identify if the memory that GV points to is 1375 // used/required/live at the start of the function. If it is not, for example 1376 // if the first thing the function does is store to the GV, the GV can 1377 // possibly be demoted. 1378 // 1379 // We don't do an exhaustive search for memory operations - simply look 1380 // through bitcasts as they're quite common and benign. 1381 const DataLayout &DL = GV->getParent()->getDataLayout(); 1382 SmallVector<LoadInst *, 4> Loads; 1383 SmallVector<StoreInst *, 4> Stores; 1384 for (auto *U : GV->users()) { 1385 if (Operator::getOpcode(U) == Instruction::BitCast) { 1386 for (auto *UU : U->users()) { 1387 if (auto *LI = dyn_cast<LoadInst>(UU)) 1388 Loads.push_back(LI); 1389 else if (auto *SI = dyn_cast<StoreInst>(UU)) 1390 Stores.push_back(SI); 1391 else 1392 return false; 1393 } 1394 continue; 1395 } 1396 1397 Instruction *I = dyn_cast<Instruction>(U); 1398 if (!I) 1399 return false; 1400 assert(I->getParent()->getParent() == F); 1401 1402 if (auto *LI = dyn_cast<LoadInst>(I)) 1403 Loads.push_back(LI); 1404 else if (auto *SI = dyn_cast<StoreInst>(I)) 1405 Stores.push_back(SI); 1406 else 1407 return false; 1408 } 1409 1410 // We have identified all uses of GV into loads and stores. Now check if all 1411 // of them are known not to depend on the value of the global at the function 1412 // entry point. We do this by ensuring that every load is dominated by at 1413 // least one store. 1414 auto &DT = LookupDomTree(*const_cast<Function *>(F)); 1415 1416 // The below check is quadratic. Check we're not going to do too many tests. 1417 // FIXME: Even though this will always have worst-case quadratic time, we 1418 // could put effort into minimizing the average time by putting stores that 1419 // have been shown to dominate at least one load at the beginning of the 1420 // Stores array, making subsequent dominance checks more likely to succeed 1421 // early. 1422 // 1423 // The threshold here is fairly large because global->local demotion is a 1424 // very powerful optimization should it fire. 1425 const unsigned Threshold = 100; 1426 if (Loads.size() * Stores.size() > Threshold) 1427 return false; 1428 1429 for (auto *L : Loads) { 1430 auto *LTy = L->getType(); 1431 if (none_of(Stores, [&](const StoreInst *S) { 1432 auto *STy = S->getValueOperand()->getType(); 1433 // The load is only dominated by the store if DomTree says so 1434 // and the number of bits loaded in L is less than or equal to 1435 // the number of bits stored in S. 1436 return DT.dominates(S, L) && 1437 DL.getTypeStoreSize(LTy).getFixedSize() <= 1438 DL.getTypeStoreSize(STy).getFixedSize(); 1439 })) 1440 return false; 1441 } 1442 // All loads have known dependences inside F, so the global can be localized. 1443 return true; 1444 } 1445 1446 /// C may have non-instruction users. Can all of those users be turned into 1447 /// instructions? 1448 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) { 1449 // We don't do this exhaustively. The most common pattern that we really need 1450 // to care about is a constant GEP or constant bitcast - so just looking 1451 // through one single ConstantExpr. 1452 // 1453 // The set of constants that this function returns true for must be able to be 1454 // handled by makeAllConstantUsesInstructions. 1455 for (auto *U : C->users()) { 1456 if (isa<Instruction>(U)) 1457 continue; 1458 if (!isa<ConstantExpr>(U)) 1459 // Non instruction, non-constantexpr user; cannot convert this. 1460 return false; 1461 for (auto *UU : U->users()) 1462 if (!isa<Instruction>(UU)) 1463 // A constantexpr used by another constant. We don't try and recurse any 1464 // further but just bail out at this point. 1465 return false; 1466 } 1467 1468 return true; 1469 } 1470 1471 /// C may have non-instruction users, and 1472 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the 1473 /// non-instruction users to instructions. 1474 static void makeAllConstantUsesInstructions(Constant *C) { 1475 SmallVector<ConstantExpr*,4> Users; 1476 for (auto *U : C->users()) { 1477 if (isa<ConstantExpr>(U)) 1478 Users.push_back(cast<ConstantExpr>(U)); 1479 else 1480 // We should never get here; allNonInstructionUsersCanBeMadeInstructions 1481 // should not have returned true for C. 1482 assert( 1483 isa<Instruction>(U) && 1484 "Can't transform non-constantexpr non-instruction to instruction!"); 1485 } 1486 1487 SmallVector<Value*,4> UUsers; 1488 for (auto *U : Users) { 1489 UUsers.clear(); 1490 append_range(UUsers, U->users()); 1491 for (auto *UU : UUsers) { 1492 Instruction *UI = cast<Instruction>(UU); 1493 Instruction *NewU = U->getAsInstruction(); 1494 NewU->insertBefore(UI); 1495 UI->replaceUsesOfWith(U, NewU); 1496 } 1497 // We've replaced all the uses, so destroy the constant. (destroyConstant 1498 // will update value handles and metadata.) 1499 U->destroyConstant(); 1500 } 1501 } 1502 1503 /// Analyze the specified global variable and optimize 1504 /// it if possible. If we make a change, return true. 1505 static bool 1506 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS, 1507 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1508 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1509 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1510 auto &DL = GV->getParent()->getDataLayout(); 1511 // If this is a first class global and has only one accessing function and 1512 // this function is non-recursive, we replace the global with a local alloca 1513 // in this function. 1514 // 1515 // NOTE: It doesn't make sense to promote non-single-value types since we 1516 // are just replacing static memory to stack memory. 1517 // 1518 // If the global is in different address space, don't bring it to stack. 1519 if (!GS.HasMultipleAccessingFunctions && 1520 GS.AccessingFunction && 1521 GV->getValueType()->isSingleValueType() && 1522 GV->getType()->getAddressSpace() == 0 && 1523 !GV->isExternallyInitialized() && 1524 allNonInstructionUsersCanBeMadeInstructions(GV) && 1525 GS.AccessingFunction->doesNotRecurse() && 1526 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV, 1527 LookupDomTree)) { 1528 const DataLayout &DL = GV->getParent()->getDataLayout(); 1529 1530 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n"); 1531 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction 1532 ->getEntryBlock().begin()); 1533 Type *ElemTy = GV->getValueType(); 1534 // FIXME: Pass Global's alignment when globals have alignment 1535 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr, 1536 GV->getName(), &FirstI); 1537 if (!isa<UndefValue>(GV->getInitializer())) 1538 new StoreInst(GV->getInitializer(), Alloca, &FirstI); 1539 1540 makeAllConstantUsesInstructions(GV); 1541 1542 GV->replaceAllUsesWith(Alloca); 1543 GV->eraseFromParent(); 1544 ++NumLocalized; 1545 return true; 1546 } 1547 1548 bool Changed = false; 1549 1550 // If the global is never loaded (but may be stored to), it is dead. 1551 // Delete it now. 1552 if (!GS.IsLoaded) { 1553 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n"); 1554 1555 if (isLeakCheckerRoot(GV)) { 1556 // Delete any constant stores to the global. 1557 Changed = CleanupPointerRootUsers(GV, GetTLI); 1558 } else { 1559 // Delete any stores we can find to the global. We may not be able to 1560 // make it completely dead though. 1561 Changed = 1562 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 1563 } 1564 1565 // If the global is dead now, delete it. 1566 if (GV->use_empty()) { 1567 GV->eraseFromParent(); 1568 ++NumDeleted; 1569 Changed = true; 1570 } 1571 return Changed; 1572 1573 } 1574 if (GS.StoredType <= GlobalStatus::InitializerStored) { 1575 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n"); 1576 1577 // Don't actually mark a global constant if it's atomic because atomic loads 1578 // are implemented by a trivial cmpxchg in some edge-cases and that usually 1579 // requires write access to the variable even if it's not actually changed. 1580 if (GS.Ordering == AtomicOrdering::NotAtomic) { 1581 assert(!GV->isConstant() && "Expected a non-constant global"); 1582 GV->setConstant(true); 1583 Changed = true; 1584 } 1585 1586 // Clean up any obviously simplifiable users now. 1587 Changed |= CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 1588 1589 // If the global is dead now, just nuke it. 1590 if (GV->use_empty()) { 1591 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify " 1592 << "all users and delete global!\n"); 1593 GV->eraseFromParent(); 1594 ++NumDeleted; 1595 return true; 1596 } 1597 1598 // Fall through to the next check; see if we can optimize further. 1599 ++NumMarked; 1600 } 1601 if (!GV->getInitializer()->getType()->isSingleValueType()) { 1602 const DataLayout &DL = GV->getParent()->getDataLayout(); 1603 if (SRAGlobal(GV, DL)) 1604 return true; 1605 } 1606 Value *StoredOnceValue = GS.getStoredOnceValue(); 1607 if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) { 1608 // Avoid speculating constant expressions that might trap (div/rem). 1609 auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue); 1610 if (SOVConstant && SOVConstant->canTrap()) 1611 return Changed; 1612 1613 Function &StoreFn = 1614 const_cast<Function &>(*GS.StoredOnceStore->getFunction()); 1615 // If the initial value for the global was an undef value, and if only 1616 // one other value was stored into it, we can just change the 1617 // initializer to be the stored value, then delete all stores to the 1618 // global. This allows us to mark it constant. 1619 // This is restricted to address spaces that allow globals to have 1620 // initializers. NVPTX, for example, does not support initializers for 1621 // shared memory (AS 3). 1622 if (SOVConstant && SOVConstant->getType() == GV->getValueType() && 1623 isa<UndefValue>(GV->getInitializer()) && 1624 GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace( 1625 GV->getType()->getAddressSpace())) { 1626 // Change the initial value here. 1627 GV->setInitializer(SOVConstant); 1628 1629 // Clean up any obviously simplifiable users now. 1630 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI); 1631 1632 if (GV->use_empty()) { 1633 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to " 1634 << "simplify all users and delete global!\n"); 1635 GV->eraseFromParent(); 1636 ++NumDeleted; 1637 } 1638 ++NumSubstitute; 1639 return true; 1640 } 1641 1642 // Try to optimize globals based on the knowledge that only one value 1643 // (besides its initializer) is ever stored to the global. 1644 if (optimizeOnceStoredGlobal(GV, StoredOnceValue, GS.Ordering, DL, GetTLI)) 1645 return true; 1646 1647 // Otherwise, if the global was not a boolean, we can shrink it to be a 1648 // boolean. 1649 if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic) { 1650 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) { 1651 ++NumShrunkToBool; 1652 return true; 1653 } 1654 } 1655 } 1656 1657 return Changed; 1658 } 1659 1660 /// Analyze the specified global variable and optimize it if possible. If we 1661 /// make a change, return true. 1662 static bool 1663 processGlobal(GlobalValue &GV, 1664 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1665 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1666 function_ref<DominatorTree &(Function &)> LookupDomTree) { 1667 if (GV.getName().startswith("llvm.")) 1668 return false; 1669 1670 GlobalStatus GS; 1671 1672 if (GlobalStatus::analyzeGlobal(&GV, GS)) 1673 return false; 1674 1675 bool Changed = false; 1676 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) { 1677 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global 1678 : GlobalValue::UnnamedAddr::Local; 1679 if (NewUnnamedAddr != GV.getUnnamedAddr()) { 1680 GV.setUnnamedAddr(NewUnnamedAddr); 1681 NumUnnamed++; 1682 Changed = true; 1683 } 1684 } 1685 1686 // Do more involved optimizations if the global is internal. 1687 if (!GV.hasLocalLinkage()) 1688 return Changed; 1689 1690 auto *GVar = dyn_cast<GlobalVariable>(&GV); 1691 if (!GVar) 1692 return Changed; 1693 1694 if (GVar->isConstant() || !GVar->hasInitializer()) 1695 return Changed; 1696 1697 return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) || 1698 Changed; 1699 } 1700 1701 /// Walk all of the direct calls of the specified function, changing them to 1702 /// FastCC. 1703 static void ChangeCalleesToFastCall(Function *F) { 1704 for (User *U : F->users()) { 1705 if (isa<BlockAddress>(U)) 1706 continue; 1707 cast<CallBase>(U)->setCallingConv(CallingConv::Fast); 1708 } 1709 } 1710 1711 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs, 1712 Attribute::AttrKind A) { 1713 unsigned AttrIndex; 1714 if (Attrs.hasAttrSomewhere(A, &AttrIndex)) 1715 return Attrs.removeAttributeAtIndex(C, AttrIndex, A); 1716 return Attrs; 1717 } 1718 1719 static void RemoveAttribute(Function *F, Attribute::AttrKind A) { 1720 F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A)); 1721 for (User *U : F->users()) { 1722 if (isa<BlockAddress>(U)) 1723 continue; 1724 CallBase *CB = cast<CallBase>(U); 1725 CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A)); 1726 } 1727 } 1728 1729 /// Return true if this is a calling convention that we'd like to change. The 1730 /// idea here is that we don't want to mess with the convention if the user 1731 /// explicitly requested something with performance implications like coldcc, 1732 /// GHC, or anyregcc. 1733 static bool hasChangeableCC(Function *F) { 1734 CallingConv::ID CC = F->getCallingConv(); 1735 1736 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc? 1737 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall) 1738 return false; 1739 1740 // FIXME: Change CC for the whole chain of musttail calls when possible. 1741 // 1742 // Can't change CC of the function that either has musttail calls, or is a 1743 // musttail callee itself 1744 for (User *U : F->users()) { 1745 if (isa<BlockAddress>(U)) 1746 continue; 1747 CallInst* CI = dyn_cast<CallInst>(U); 1748 if (!CI) 1749 continue; 1750 1751 if (CI->isMustTailCall()) 1752 return false; 1753 } 1754 1755 for (BasicBlock &BB : *F) 1756 if (BB.getTerminatingMustTailCall()) 1757 return false; 1758 1759 return true; 1760 } 1761 1762 /// Return true if the block containing the call site has a BlockFrequency of 1763 /// less than ColdCCRelFreq% of the entry block. 1764 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) { 1765 const BranchProbability ColdProb(ColdCCRelFreq, 100); 1766 auto *CallSiteBB = CB.getParent(); 1767 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB); 1768 auto CallerEntryFreq = 1769 CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock())); 1770 return CallSiteFreq < CallerEntryFreq * ColdProb; 1771 } 1772 1773 // This function checks if the input function F is cold at all call sites. It 1774 // also looks each call site's containing function, returning false if the 1775 // caller function contains other non cold calls. The input vector AllCallsCold 1776 // contains a list of functions that only have call sites in cold blocks. 1777 static bool 1778 isValidCandidateForColdCC(Function &F, 1779 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1780 const std::vector<Function *> &AllCallsCold) { 1781 1782 if (F.user_empty()) 1783 return false; 1784 1785 for (User *U : F.users()) { 1786 if (isa<BlockAddress>(U)) 1787 continue; 1788 1789 CallBase &CB = cast<CallBase>(*U); 1790 Function *CallerFunc = CB.getParent()->getParent(); 1791 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc); 1792 if (!isColdCallSite(CB, CallerBFI)) 1793 return false; 1794 if (!llvm::is_contained(AllCallsCold, CallerFunc)) 1795 return false; 1796 } 1797 return true; 1798 } 1799 1800 static void changeCallSitesToColdCC(Function *F) { 1801 for (User *U : F->users()) { 1802 if (isa<BlockAddress>(U)) 1803 continue; 1804 cast<CallBase>(U)->setCallingConv(CallingConv::Cold); 1805 } 1806 } 1807 1808 // This function iterates over all the call instructions in the input Function 1809 // and checks that all call sites are in cold blocks and are allowed to use the 1810 // coldcc calling convention. 1811 static bool 1812 hasOnlyColdCalls(Function &F, 1813 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) { 1814 for (BasicBlock &BB : F) { 1815 for (Instruction &I : BB) { 1816 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1817 // Skip over isline asm instructions since they aren't function calls. 1818 if (CI->isInlineAsm()) 1819 continue; 1820 Function *CalledFn = CI->getCalledFunction(); 1821 if (!CalledFn) 1822 return false; 1823 if (!CalledFn->hasLocalLinkage()) 1824 return false; 1825 // Skip over instrinsics since they won't remain as function calls. 1826 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic) 1827 continue; 1828 // Check if it's valid to use coldcc calling convention. 1829 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() || 1830 CalledFn->hasAddressTaken()) 1831 return false; 1832 BlockFrequencyInfo &CallerBFI = GetBFI(F); 1833 if (!isColdCallSite(*CI, CallerBFI)) 1834 return false; 1835 } 1836 } 1837 } 1838 return true; 1839 } 1840 1841 static bool hasMustTailCallers(Function *F) { 1842 for (User *U : F->users()) { 1843 CallBase *CB = dyn_cast<CallBase>(U); 1844 if (!CB) { 1845 assert(isa<BlockAddress>(U) && 1846 "Expected either CallBase or BlockAddress"); 1847 continue; 1848 } 1849 if (CB->isMustTailCall()) 1850 return true; 1851 } 1852 return false; 1853 } 1854 1855 static bool hasInvokeCallers(Function *F) { 1856 for (User *U : F->users()) 1857 if (isa<InvokeInst>(U)) 1858 return true; 1859 return false; 1860 } 1861 1862 static void RemovePreallocated(Function *F) { 1863 RemoveAttribute(F, Attribute::Preallocated); 1864 1865 auto *M = F->getParent(); 1866 1867 IRBuilder<> Builder(M->getContext()); 1868 1869 // Cannot modify users() while iterating over it, so make a copy. 1870 SmallVector<User *, 4> PreallocatedCalls(F->users()); 1871 for (User *U : PreallocatedCalls) { 1872 CallBase *CB = dyn_cast<CallBase>(U); 1873 if (!CB) 1874 continue; 1875 1876 assert( 1877 !CB->isMustTailCall() && 1878 "Shouldn't call RemotePreallocated() on a musttail preallocated call"); 1879 // Create copy of call without "preallocated" operand bundle. 1880 SmallVector<OperandBundleDef, 1> OpBundles; 1881 CB->getOperandBundlesAsDefs(OpBundles); 1882 CallBase *PreallocatedSetup = nullptr; 1883 for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) { 1884 if (It->getTag() == "preallocated") { 1885 PreallocatedSetup = cast<CallBase>(*It->input_begin()); 1886 OpBundles.erase(It); 1887 break; 1888 } 1889 } 1890 assert(PreallocatedSetup && "Did not find preallocated bundle"); 1891 uint64_t ArgCount = 1892 cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue(); 1893 1894 assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) && 1895 "Unknown indirect call type"); 1896 CallBase *NewCB = CallBase::Create(CB, OpBundles, CB); 1897 CB->replaceAllUsesWith(NewCB); 1898 NewCB->takeName(CB); 1899 CB->eraseFromParent(); 1900 1901 Builder.SetInsertPoint(PreallocatedSetup); 1902 auto *StackSave = 1903 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave)); 1904 1905 Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction()); 1906 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore), 1907 StackSave); 1908 1909 // Replace @llvm.call.preallocated.arg() with alloca. 1910 // Cannot modify users() while iterating over it, so make a copy. 1911 // @llvm.call.preallocated.arg() can be called with the same index multiple 1912 // times. So for each @llvm.call.preallocated.arg(), we see if we have 1913 // already created a Value* for the index, and if not, create an alloca and 1914 // bitcast right after the @llvm.call.preallocated.setup() so that it 1915 // dominates all uses. 1916 SmallVector<Value *, 2> ArgAllocas(ArgCount); 1917 SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users()); 1918 for (auto *User : PreallocatedArgs) { 1919 auto *UseCall = cast<CallBase>(User); 1920 assert(UseCall->getCalledFunction()->getIntrinsicID() == 1921 Intrinsic::call_preallocated_arg && 1922 "preallocated token use was not a llvm.call.preallocated.arg"); 1923 uint64_t AllocArgIndex = 1924 cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue(); 1925 Value *AllocaReplacement = ArgAllocas[AllocArgIndex]; 1926 if (!AllocaReplacement) { 1927 auto AddressSpace = UseCall->getType()->getPointerAddressSpace(); 1928 auto *ArgType = 1929 UseCall->getFnAttr(Attribute::Preallocated).getValueAsType(); 1930 auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction(); 1931 Builder.SetInsertPoint(InsertBefore); 1932 auto *Alloca = 1933 Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg"); 1934 auto *BitCast = Builder.CreateBitCast( 1935 Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName()); 1936 ArgAllocas[AllocArgIndex] = BitCast; 1937 AllocaReplacement = BitCast; 1938 } 1939 1940 UseCall->replaceAllUsesWith(AllocaReplacement); 1941 UseCall->eraseFromParent(); 1942 } 1943 // Remove @llvm.call.preallocated.setup(). 1944 cast<Instruction>(PreallocatedSetup)->eraseFromParent(); 1945 } 1946 } 1947 1948 static bool 1949 OptimizeFunctions(Module &M, 1950 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 1951 function_ref<TargetTransformInfo &(Function &)> GetTTI, 1952 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1953 function_ref<DominatorTree &(Function &)> LookupDomTree, 1954 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 1955 1956 bool Changed = false; 1957 1958 std::vector<Function *> AllCallsCold; 1959 for (Function &F : llvm::make_early_inc_range(M)) 1960 if (hasOnlyColdCalls(F, GetBFI)) 1961 AllCallsCold.push_back(&F); 1962 1963 // Optimize functions. 1964 for (Function &F : llvm::make_early_inc_range(M)) { 1965 // Don't perform global opt pass on naked functions; we don't want fast 1966 // calling conventions for naked functions. 1967 if (F.hasFnAttribute(Attribute::Naked)) 1968 continue; 1969 1970 // Functions without names cannot be referenced outside this module. 1971 if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage()) 1972 F.setLinkage(GlobalValue::InternalLinkage); 1973 1974 if (deleteIfDead(F, NotDiscardableComdats)) { 1975 Changed = true; 1976 continue; 1977 } 1978 1979 // LLVM's definition of dominance allows instructions that are cyclic 1980 // in unreachable blocks, e.g.: 1981 // %pat = select i1 %condition, @global, i16* %pat 1982 // because any instruction dominates an instruction in a block that's 1983 // not reachable from entry. 1984 // So, remove unreachable blocks from the function, because a) there's 1985 // no point in analyzing them and b) GlobalOpt should otherwise grow 1986 // some more complicated logic to break these cycles. 1987 // Removing unreachable blocks might invalidate the dominator so we 1988 // recalculate it. 1989 if (!F.isDeclaration()) { 1990 if (removeUnreachableBlocks(F)) { 1991 auto &DT = LookupDomTree(F); 1992 DT.recalculate(F); 1993 Changed = true; 1994 } 1995 } 1996 1997 Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree); 1998 1999 if (!F.hasLocalLinkage()) 2000 continue; 2001 2002 // If we have an inalloca parameter that we can safely remove the 2003 // inalloca attribute from, do so. This unlocks optimizations that 2004 // wouldn't be safe in the presence of inalloca. 2005 // FIXME: We should also hoist alloca affected by this to the entry 2006 // block if possible. 2007 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) && 2008 !F.hasAddressTaken() && !hasMustTailCallers(&F)) { 2009 RemoveAttribute(&F, Attribute::InAlloca); 2010 Changed = true; 2011 } 2012 2013 // FIXME: handle invokes 2014 // FIXME: handle musttail 2015 if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) { 2016 if (!F.hasAddressTaken() && !hasMustTailCallers(&F) && 2017 !hasInvokeCallers(&F)) { 2018 RemovePreallocated(&F); 2019 Changed = true; 2020 } 2021 continue; 2022 } 2023 2024 if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) { 2025 NumInternalFunc++; 2026 TargetTransformInfo &TTI = GetTTI(F); 2027 // Change the calling convention to coldcc if either stress testing is 2028 // enabled or the target would like to use coldcc on functions which are 2029 // cold at all call sites and the callers contain no other non coldcc 2030 // calls. 2031 if (EnableColdCCStressTest || 2032 (TTI.useColdCCForColdCall(F) && 2033 isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) { 2034 F.setCallingConv(CallingConv::Cold); 2035 changeCallSitesToColdCC(&F); 2036 Changed = true; 2037 NumColdCC++; 2038 } 2039 } 2040 2041 if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) { 2042 // If this function has a calling convention worth changing, is not a 2043 // varargs function, and is only called directly, promote it to use the 2044 // Fast calling convention. 2045 F.setCallingConv(CallingConv::Fast); 2046 ChangeCalleesToFastCall(&F); 2047 ++NumFastCallFns; 2048 Changed = true; 2049 } 2050 2051 if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) && 2052 !F.hasAddressTaken()) { 2053 // The function is not used by a trampoline intrinsic, so it is safe 2054 // to remove the 'nest' attribute. 2055 RemoveAttribute(&F, Attribute::Nest); 2056 ++NumNestRemoved; 2057 Changed = true; 2058 } 2059 } 2060 return Changed; 2061 } 2062 2063 static bool 2064 OptimizeGlobalVars(Module &M, 2065 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2066 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2067 function_ref<DominatorTree &(Function &)> LookupDomTree, 2068 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2069 bool Changed = false; 2070 2071 for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) { 2072 // Global variables without names cannot be referenced outside this module. 2073 if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage()) 2074 GV.setLinkage(GlobalValue::InternalLinkage); 2075 // Simplify the initializer. 2076 if (GV.hasInitializer()) 2077 if (auto *C = dyn_cast<Constant>(GV.getInitializer())) { 2078 auto &DL = M.getDataLayout(); 2079 // TLI is not used in the case of a Constant, so use default nullptr 2080 // for that optional parameter, since we don't have a Function to 2081 // provide GetTLI anyway. 2082 Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr); 2083 if (New != C) 2084 GV.setInitializer(New); 2085 } 2086 2087 if (deleteIfDead(GV, NotDiscardableComdats)) { 2088 Changed = true; 2089 continue; 2090 } 2091 2092 Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree); 2093 } 2094 return Changed; 2095 } 2096 2097 /// Evaluate a piece of a constantexpr store into a global initializer. This 2098 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the 2099 /// GEP operands of Addr [0, OpNo) have been stepped into. 2100 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val, 2101 ConstantExpr *Addr, unsigned OpNo) { 2102 // Base case of the recursion. 2103 if (OpNo == Addr->getNumOperands()) { 2104 assert(Val->getType() == Init->getType() && "Type mismatch!"); 2105 return Val; 2106 } 2107 2108 SmallVector<Constant*, 32> Elts; 2109 if (StructType *STy = dyn_cast<StructType>(Init->getType())) { 2110 // Break up the constant into its elements. 2111 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) 2112 Elts.push_back(Init->getAggregateElement(i)); 2113 2114 // Replace the element that we are supposed to. 2115 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo)); 2116 unsigned Idx = CU->getZExtValue(); 2117 assert(Idx < STy->getNumElements() && "Struct index out of range!"); 2118 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1); 2119 2120 // Return the modified struct. 2121 return ConstantStruct::get(STy, Elts); 2122 } 2123 2124 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo)); 2125 uint64_t NumElts; 2126 if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) 2127 NumElts = ATy->getNumElements(); 2128 else 2129 NumElts = cast<FixedVectorType>(Init->getType())->getNumElements(); 2130 2131 // Break up the array into elements. 2132 for (uint64_t i = 0, e = NumElts; i != e; ++i) 2133 Elts.push_back(Init->getAggregateElement(i)); 2134 2135 assert(CI->getZExtValue() < NumElts); 2136 Elts[CI->getZExtValue()] = 2137 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1); 2138 2139 if (Init->getType()->isArrayTy()) 2140 return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts); 2141 return ConstantVector::get(Elts); 2142 } 2143 2144 /// We have decided that Addr (which satisfies the predicate 2145 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen. 2146 static void CommitValueTo(Constant *Val, Constant *Addr) { 2147 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { 2148 assert(GV->hasInitializer()); 2149 GV->setInitializer(Val); 2150 return; 2151 } 2152 2153 ConstantExpr *CE = cast<ConstantExpr>(Addr); 2154 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); 2155 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2)); 2156 } 2157 2158 /// Given a map of address -> value, where addresses are expected to be some form 2159 /// of either a global or a constant GEP, set the initializer for the address to 2160 /// be the value. This performs mostly the same function as CommitValueTo() 2161 /// and EvaluateStoreInto() but is optimized to be more efficient for the common 2162 /// case where the set of addresses are GEPs sharing the same underlying global, 2163 /// processing the GEPs in batches rather than individually. 2164 /// 2165 /// To give an example, consider the following C++ code adapted from the clang 2166 /// regression tests: 2167 /// struct S { 2168 /// int n = 10; 2169 /// int m = 2 * n; 2170 /// S(int a) : n(a) {} 2171 /// }; 2172 /// 2173 /// template<typename T> 2174 /// struct U { 2175 /// T *r = &q; 2176 /// T q = 42; 2177 /// U *p = this; 2178 /// }; 2179 /// 2180 /// U<S> e; 2181 /// 2182 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of 2183 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm' 2184 /// members. This batch algorithm will simply use general CommitValueTo() method 2185 /// to handle the complex nested S struct initialization of 'q', before 2186 /// processing the outermost members in a single batch. Using CommitValueTo() to 2187 /// handle member in the outer struct is inefficient when the struct/array is 2188 /// very large as we end up creating and destroy constant arrays for each 2189 /// initialization. 2190 /// For the above case, we expect the following IR to be generated: 2191 /// 2192 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* } 2193 /// %struct.S = type { i32, i32 } 2194 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e, 2195 /// i64 0, i32 1), 2196 /// %struct.S { i32 42, i32 84 }, %struct.U* @e } 2197 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex 2198 /// constant expression, while the other two elements of @e are "simple". 2199 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) { 2200 SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs; 2201 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs; 2202 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs; 2203 SimpleCEs.reserve(Mem.size()); 2204 2205 for (const auto &I : Mem) { 2206 if (auto *GV = dyn_cast<GlobalVariable>(I.first)) { 2207 GVs.push_back(std::make_pair(GV, I.second)); 2208 } else { 2209 ConstantExpr *GEP = cast<ConstantExpr>(I.first); 2210 // We don't handle the deeply recursive case using the batch method. 2211 if (GEP->getNumOperands() > 3) 2212 ComplexCEs.push_back(std::make_pair(GEP, I.second)); 2213 else 2214 SimpleCEs.push_back(std::make_pair(GEP, I.second)); 2215 } 2216 } 2217 2218 // The algorithm below doesn't handle cases like nested structs, so use the 2219 // slower fully general method if we have to. 2220 for (auto ComplexCE : ComplexCEs) 2221 CommitValueTo(ComplexCE.second, ComplexCE.first); 2222 2223 for (auto GVPair : GVs) { 2224 assert(GVPair.first->hasInitializer()); 2225 GVPair.first->setInitializer(GVPair.second); 2226 } 2227 2228 if (SimpleCEs.empty()) 2229 return; 2230 2231 // We cache a single global's initializer elements in the case where the 2232 // subsequent address/val pair uses the same one. This avoids throwing away and 2233 // rebuilding the constant struct/vector/array just because one element is 2234 // modified at a time. 2235 SmallVector<Constant *, 32> Elts; 2236 Elts.reserve(SimpleCEs.size()); 2237 GlobalVariable *CurrentGV = nullptr; 2238 2239 auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) { 2240 Constant *Init = GV->getInitializer(); 2241 Type *Ty = Init->getType(); 2242 if (Update) { 2243 if (CurrentGV) { 2244 assert(CurrentGV && "Expected a GV to commit to!"); 2245 Type *CurrentInitTy = CurrentGV->getInitializer()->getType(); 2246 // We have a valid cache that needs to be committed. 2247 if (StructType *STy = dyn_cast<StructType>(CurrentInitTy)) 2248 CurrentGV->setInitializer(ConstantStruct::get(STy, Elts)); 2249 else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy)) 2250 CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts)); 2251 else 2252 CurrentGV->setInitializer(ConstantVector::get(Elts)); 2253 } 2254 if (CurrentGV == GV) 2255 return; 2256 // Need to clear and set up cache for new initializer. 2257 CurrentGV = GV; 2258 Elts.clear(); 2259 unsigned NumElts; 2260 if (auto *STy = dyn_cast<StructType>(Ty)) 2261 NumElts = STy->getNumElements(); 2262 else if (auto *ATy = dyn_cast<ArrayType>(Ty)) 2263 NumElts = ATy->getNumElements(); 2264 else 2265 NumElts = cast<FixedVectorType>(Ty)->getNumElements(); 2266 for (unsigned i = 0, e = NumElts; i != e; ++i) 2267 Elts.push_back(Init->getAggregateElement(i)); 2268 } 2269 }; 2270 2271 for (auto CEPair : SimpleCEs) { 2272 ConstantExpr *GEP = CEPair.first; 2273 Constant *Val = CEPair.second; 2274 2275 GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0)); 2276 commitAndSetupCache(GV, GV != CurrentGV); 2277 ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2)); 2278 Elts[CI->getZExtValue()] = Val; 2279 } 2280 // The last initializer in the list needs to be committed, others 2281 // will be committed on a new initializer being processed. 2282 commitAndSetupCache(CurrentGV, true); 2283 } 2284 2285 /// Evaluate static constructors in the function, if we can. Return true if we 2286 /// can, false otherwise. 2287 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL, 2288 TargetLibraryInfo *TLI) { 2289 // Call the function. 2290 Evaluator Eval(DL, TLI); 2291 Constant *RetValDummy; 2292 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy, 2293 SmallVector<Constant*, 0>()); 2294 2295 if (EvalSuccess) { 2296 ++NumCtorsEvaluated; 2297 2298 // We succeeded at evaluation: commit the result. 2299 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '" 2300 << F->getName() << "' to " 2301 << Eval.getMutatedMemory().size() << " stores.\n"); 2302 BatchCommitValueTo(Eval.getMutatedMemory()); 2303 for (GlobalVariable *GV : Eval.getInvariants()) 2304 GV->setConstant(true); 2305 } 2306 2307 return EvalSuccess; 2308 } 2309 2310 static int compareNames(Constant *const *A, Constant *const *B) { 2311 Value *AStripped = (*A)->stripPointerCasts(); 2312 Value *BStripped = (*B)->stripPointerCasts(); 2313 return AStripped->getName().compare(BStripped->getName()); 2314 } 2315 2316 static void setUsedInitializer(GlobalVariable &V, 2317 const SmallPtrSetImpl<GlobalValue *> &Init) { 2318 if (Init.empty()) { 2319 V.eraseFromParent(); 2320 return; 2321 } 2322 2323 // Type of pointer to the array of pointers. 2324 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0); 2325 2326 SmallVector<Constant *, 8> UsedArray; 2327 for (GlobalValue *GV : Init) { 2328 Constant *Cast 2329 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy); 2330 UsedArray.push_back(Cast); 2331 } 2332 // Sort to get deterministic order. 2333 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames); 2334 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size()); 2335 2336 Module *M = V.getParent(); 2337 V.removeFromParent(); 2338 GlobalVariable *NV = 2339 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage, 2340 ConstantArray::get(ATy, UsedArray), ""); 2341 NV->takeName(&V); 2342 NV->setSection("llvm.metadata"); 2343 delete &V; 2344 } 2345 2346 namespace { 2347 2348 /// An easy to access representation of llvm.used and llvm.compiler.used. 2349 class LLVMUsed { 2350 SmallPtrSet<GlobalValue *, 4> Used; 2351 SmallPtrSet<GlobalValue *, 4> CompilerUsed; 2352 GlobalVariable *UsedV; 2353 GlobalVariable *CompilerUsedV; 2354 2355 public: 2356 LLVMUsed(Module &M) { 2357 SmallVector<GlobalValue *, 4> Vec; 2358 UsedV = collectUsedGlobalVariables(M, Vec, false); 2359 Used = {Vec.begin(), Vec.end()}; 2360 Vec.clear(); 2361 CompilerUsedV = collectUsedGlobalVariables(M, Vec, true); 2362 CompilerUsed = {Vec.begin(), Vec.end()}; 2363 } 2364 2365 using iterator = SmallPtrSet<GlobalValue *, 4>::iterator; 2366 using used_iterator_range = iterator_range<iterator>; 2367 2368 iterator usedBegin() { return Used.begin(); } 2369 iterator usedEnd() { return Used.end(); } 2370 2371 used_iterator_range used() { 2372 return used_iterator_range(usedBegin(), usedEnd()); 2373 } 2374 2375 iterator compilerUsedBegin() { return CompilerUsed.begin(); } 2376 iterator compilerUsedEnd() { return CompilerUsed.end(); } 2377 2378 used_iterator_range compilerUsed() { 2379 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd()); 2380 } 2381 2382 bool usedCount(GlobalValue *GV) const { return Used.count(GV); } 2383 2384 bool compilerUsedCount(GlobalValue *GV) const { 2385 return CompilerUsed.count(GV); 2386 } 2387 2388 bool usedErase(GlobalValue *GV) { return Used.erase(GV); } 2389 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); } 2390 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; } 2391 2392 bool compilerUsedInsert(GlobalValue *GV) { 2393 return CompilerUsed.insert(GV).second; 2394 } 2395 2396 void syncVariablesAndSets() { 2397 if (UsedV) 2398 setUsedInitializer(*UsedV, Used); 2399 if (CompilerUsedV) 2400 setUsedInitializer(*CompilerUsedV, CompilerUsed); 2401 } 2402 }; 2403 2404 } // end anonymous namespace 2405 2406 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) { 2407 if (GA.use_empty()) // No use at all. 2408 return false; 2409 2410 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) && 2411 "We should have removed the duplicated " 2412 "element from llvm.compiler.used"); 2413 if (!GA.hasOneUse()) 2414 // Strictly more than one use. So at least one is not in llvm.used and 2415 // llvm.compiler.used. 2416 return true; 2417 2418 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used. 2419 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA); 2420 } 2421 2422 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V, 2423 const LLVMUsed &U) { 2424 unsigned N = 2; 2425 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) && 2426 "We should have removed the duplicated " 2427 "element from llvm.compiler.used"); 2428 if (U.usedCount(&V) || U.compilerUsedCount(&V)) 2429 ++N; 2430 return V.hasNUsesOrMore(N); 2431 } 2432 2433 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) { 2434 if (!GA.hasLocalLinkage()) 2435 return true; 2436 2437 return U.usedCount(&GA) || U.compilerUsedCount(&GA); 2438 } 2439 2440 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U, 2441 bool &RenameTarget) { 2442 RenameTarget = false; 2443 bool Ret = false; 2444 if (hasUseOtherThanLLVMUsed(GA, U)) 2445 Ret = true; 2446 2447 // If the alias is externally visible, we may still be able to simplify it. 2448 if (!mayHaveOtherReferences(GA, U)) 2449 return Ret; 2450 2451 // If the aliasee has internal linkage, give it the name and linkage 2452 // of the alias, and delete the alias. This turns: 2453 // define internal ... @f(...) 2454 // @a = alias ... @f 2455 // into: 2456 // define ... @a(...) 2457 Constant *Aliasee = GA.getAliasee(); 2458 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts()); 2459 if (!Target->hasLocalLinkage()) 2460 return Ret; 2461 2462 // Do not perform the transform if multiple aliases potentially target the 2463 // aliasee. This check also ensures that it is safe to replace the section 2464 // and other attributes of the aliasee with those of the alias. 2465 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U)) 2466 return Ret; 2467 2468 RenameTarget = true; 2469 return true; 2470 } 2471 2472 static bool 2473 OptimizeGlobalAliases(Module &M, 2474 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) { 2475 bool Changed = false; 2476 LLVMUsed Used(M); 2477 2478 for (GlobalValue *GV : Used.used()) 2479 Used.compilerUsedErase(GV); 2480 2481 for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) { 2482 // Aliases without names cannot be referenced outside this module. 2483 if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage()) 2484 J.setLinkage(GlobalValue::InternalLinkage); 2485 2486 if (deleteIfDead(J, NotDiscardableComdats)) { 2487 Changed = true; 2488 continue; 2489 } 2490 2491 // If the alias can change at link time, nothing can be done - bail out. 2492 if (J.isInterposable()) 2493 continue; 2494 2495 Constant *Aliasee = J.getAliasee(); 2496 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts()); 2497 // We can't trivially replace the alias with the aliasee if the aliasee is 2498 // non-trivial in some way. We also can't replace the alias with the aliasee 2499 // if the aliasee is interposable because aliases point to the local 2500 // definition. 2501 // TODO: Try to handle non-zero GEPs of local aliasees. 2502 if (!Target || Target->isInterposable()) 2503 continue; 2504 Target->removeDeadConstantUsers(); 2505 2506 // Make all users of the alias use the aliasee instead. 2507 bool RenameTarget; 2508 if (!hasUsesToReplace(J, Used, RenameTarget)) 2509 continue; 2510 2511 J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType())); 2512 ++NumAliasesResolved; 2513 Changed = true; 2514 2515 if (RenameTarget) { 2516 // Give the aliasee the name, linkage and other attributes of the alias. 2517 Target->takeName(&J); 2518 Target->setLinkage(J.getLinkage()); 2519 Target->setDSOLocal(J.isDSOLocal()); 2520 Target->setVisibility(J.getVisibility()); 2521 Target->setDLLStorageClass(J.getDLLStorageClass()); 2522 2523 if (Used.usedErase(&J)) 2524 Used.usedInsert(Target); 2525 2526 if (Used.compilerUsedErase(&J)) 2527 Used.compilerUsedInsert(Target); 2528 } else if (mayHaveOtherReferences(J, Used)) 2529 continue; 2530 2531 // Delete the alias. 2532 M.getAliasList().erase(&J); 2533 ++NumAliasesRemoved; 2534 Changed = true; 2535 } 2536 2537 Used.syncVariablesAndSets(); 2538 2539 return Changed; 2540 } 2541 2542 static Function * 2543 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { 2544 // Hack to get a default TLI before we have actual Function. 2545 auto FuncIter = M.begin(); 2546 if (FuncIter == M.end()) 2547 return nullptr; 2548 auto *TLI = &GetTLI(*FuncIter); 2549 2550 LibFunc F = LibFunc_cxa_atexit; 2551 if (!TLI->has(F)) 2552 return nullptr; 2553 2554 Function *Fn = M.getFunction(TLI->getName(F)); 2555 if (!Fn) 2556 return nullptr; 2557 2558 // Now get the actual TLI for Fn. 2559 TLI = &GetTLI(*Fn); 2560 2561 // Make sure that the function has the correct prototype. 2562 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit) 2563 return nullptr; 2564 2565 return Fn; 2566 } 2567 2568 /// Returns whether the given function is an empty C++ destructor and can 2569 /// therefore be eliminated. 2570 /// Note that we assume that other optimization passes have already simplified 2571 /// the code so we simply check for 'ret'. 2572 static bool cxxDtorIsEmpty(const Function &Fn) { 2573 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and 2574 // nounwind, but that doesn't seem worth doing. 2575 if (Fn.isDeclaration()) 2576 return false; 2577 2578 for (auto &I : Fn.getEntryBlock()) { 2579 if (isa<DbgInfoIntrinsic>(I)) 2580 continue; 2581 if (isa<ReturnInst>(I)) 2582 return true; 2583 break; 2584 } 2585 return false; 2586 } 2587 2588 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) { 2589 /// Itanium C++ ABI p3.3.5: 2590 /// 2591 /// After constructing a global (or local static) object, that will require 2592 /// destruction on exit, a termination function is registered as follows: 2593 /// 2594 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d ); 2595 /// 2596 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the 2597 /// call f(p) when DSO d is unloaded, before all such termination calls 2598 /// registered before this one. It returns zero if registration is 2599 /// successful, nonzero on failure. 2600 2601 // This pass will look for calls to __cxa_atexit where the function is trivial 2602 // and remove them. 2603 bool Changed = false; 2604 2605 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end(); 2606 I != E;) { 2607 // We're only interested in calls. Theoretically, we could handle invoke 2608 // instructions as well, but neither llvm-gcc nor clang generate invokes 2609 // to __cxa_atexit. 2610 CallInst *CI = dyn_cast<CallInst>(*I++); 2611 if (!CI) 2612 continue; 2613 2614 Function *DtorFn = 2615 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts()); 2616 if (!DtorFn || !cxxDtorIsEmpty(*DtorFn)) 2617 continue; 2618 2619 // Just remove the call. 2620 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType())); 2621 CI->eraseFromParent(); 2622 2623 ++NumCXXDtorsRemoved; 2624 2625 Changed |= true; 2626 } 2627 2628 return Changed; 2629 } 2630 2631 static bool optimizeGlobalsInModule( 2632 Module &M, const DataLayout &DL, 2633 function_ref<TargetLibraryInfo &(Function &)> GetTLI, 2634 function_ref<TargetTransformInfo &(Function &)> GetTTI, 2635 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2636 function_ref<DominatorTree &(Function &)> LookupDomTree) { 2637 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats; 2638 bool Changed = false; 2639 bool LocalChange = true; 2640 while (LocalChange) { 2641 LocalChange = false; 2642 2643 NotDiscardableComdats.clear(); 2644 for (const GlobalVariable &GV : M.globals()) 2645 if (const Comdat *C = GV.getComdat()) 2646 if (!GV.isDiscardableIfUnused() || !GV.use_empty()) 2647 NotDiscardableComdats.insert(C); 2648 for (Function &F : M) 2649 if (const Comdat *C = F.getComdat()) 2650 if (!F.isDefTriviallyDead()) 2651 NotDiscardableComdats.insert(C); 2652 for (GlobalAlias &GA : M.aliases()) 2653 if (const Comdat *C = GA.getComdat()) 2654 if (!GA.isDiscardableIfUnused() || !GA.use_empty()) 2655 NotDiscardableComdats.insert(C); 2656 2657 // Delete functions that are trivially dead, ccc -> fastcc 2658 LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree, 2659 NotDiscardableComdats); 2660 2661 // Optimize global_ctors list. 2662 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) { 2663 return EvaluateStaticConstructor(F, DL, &GetTLI(*F)); 2664 }); 2665 2666 // Optimize non-address-taken globals. 2667 LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree, 2668 NotDiscardableComdats); 2669 2670 // Resolve aliases, when possible. 2671 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats); 2672 2673 // Try to remove trivial global destructors if they are not removed 2674 // already. 2675 Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI); 2676 if (CXAAtExitFn) 2677 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn); 2678 2679 Changed |= LocalChange; 2680 } 2681 2682 // TODO: Move all global ctors functions to the end of the module for code 2683 // layout. 2684 2685 return Changed; 2686 } 2687 2688 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) { 2689 auto &DL = M.getDataLayout(); 2690 auto &FAM = 2691 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 2692 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{ 2693 return FAM.getResult<DominatorTreeAnalysis>(F); 2694 }; 2695 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 2696 return FAM.getResult<TargetLibraryAnalysis>(F); 2697 }; 2698 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { 2699 return FAM.getResult<TargetIRAnalysis>(F); 2700 }; 2701 2702 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { 2703 return FAM.getResult<BlockFrequencyAnalysis>(F); 2704 }; 2705 2706 if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree)) 2707 return PreservedAnalyses::all(); 2708 return PreservedAnalyses::none(); 2709 } 2710 2711 namespace { 2712 2713 struct GlobalOptLegacyPass : public ModulePass { 2714 static char ID; // Pass identification, replacement for typeid 2715 2716 GlobalOptLegacyPass() : ModulePass(ID) { 2717 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry()); 2718 } 2719 2720 bool runOnModule(Module &M) override { 2721 if (skipModule(M)) 2722 return false; 2723 2724 auto &DL = M.getDataLayout(); 2725 auto LookupDomTree = [this](Function &F) -> DominatorTree & { 2726 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 2727 }; 2728 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 2729 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2730 }; 2731 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 2732 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2733 }; 2734 2735 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { 2736 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); 2737 }; 2738 2739 return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, 2740 LookupDomTree); 2741 } 2742 2743 void getAnalysisUsage(AnalysisUsage &AU) const override { 2744 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2745 AU.addRequired<TargetTransformInfoWrapperPass>(); 2746 AU.addRequired<DominatorTreeWrapperPass>(); 2747 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2748 } 2749 }; 2750 2751 } // end anonymous namespace 2752 2753 char GlobalOptLegacyPass::ID = 0; 2754 2755 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt", 2756 "Global Variable Optimizer", false, false) 2757 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2758 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 2759 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 2760 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2761 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt", 2762 "Global Variable Optimizer", false, false) 2763 2764 ModulePass *llvm::createGlobalOptimizerPass() { 2765 return new GlobalOptLegacyPass(); 2766 } 2767