1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/BinaryFormat/Dwarf.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
82 STATISTIC(NumDeleted   , "Number of globals deleted");
83 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
84 STATISTIC(NumLocalized , "Number of globals localized");
85 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
86 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
88 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
92 STATISTIC(NumInternalFunc, "Number of internal functions");
93 STATISTIC(NumColdCC, "Number of functions marked coldcc");
94 
95 static cl::opt<bool>
96     EnableColdCCStressTest("enable-coldcc-stress-test",
97                            cl::desc("Enable stress test of coldcc by adding "
98                                     "calling conv to all internal functions."),
99                            cl::init(false), cl::Hidden);
100 
101 static cl::opt<int> ColdCCRelFreq(
102     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
103     cl::desc(
104         "Maximum block frequency, expressed as a percentage of caller's "
105         "entry frequency, for a call site to be considered cold for enabling"
106         "coldcc"));
107 
108 /// Is this global variable possibly used by a leak checker as a root?  If so,
109 /// we might not really want to eliminate the stores to it.
110 static bool isLeakCheckerRoot(GlobalVariable *GV) {
111   // A global variable is a root if it is a pointer, or could plausibly contain
112   // a pointer.  There are two challenges; one is that we could have a struct
113   // the has an inner member which is a pointer.  We recurse through the type to
114   // detect these (up to a point).  The other is that we may actually be a union
115   // of a pointer and another type, and so our LLVM type is an integer which
116   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
117   // potentially contained here.
118 
119   if (GV->hasPrivateLinkage())
120     return false;
121 
122   SmallVector<Type *, 4> Types;
123   Types.push_back(GV->getValueType());
124 
125   unsigned Limit = 20;
126   do {
127     Type *Ty = Types.pop_back_val();
128     switch (Ty->getTypeID()) {
129       default: break;
130       case Type::PointerTyID:
131         return true;
132       case Type::FixedVectorTyID:
133       case Type::ScalableVectorTyID:
134         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
135           return true;
136         break;
137       case Type::ArrayTyID:
138         Types.push_back(cast<ArrayType>(Ty)->getElementType());
139         break;
140       case Type::StructTyID: {
141         StructType *STy = cast<StructType>(Ty);
142         if (STy->isOpaque()) return true;
143         for (StructType::element_iterator I = STy->element_begin(),
144                  E = STy->element_end(); I != E; ++I) {
145           Type *InnerTy = *I;
146           if (isa<PointerType>(InnerTy)) return true;
147           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
148               isa<VectorType>(InnerTy))
149             Types.push_back(InnerTy);
150         }
151         break;
152       }
153     }
154     if (--Limit == 0) return true;
155   } while (!Types.empty());
156   return false;
157 }
158 
159 /// Given a value that is stored to a global but never read, determine whether
160 /// it's safe to remove the store and the chain of computation that feeds the
161 /// store.
162 static bool IsSafeComputationToRemove(
163     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
164   do {
165     if (isa<Constant>(V))
166       return true;
167     if (!V->hasOneUse())
168       return false;
169     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
170         isa<GlobalValue>(V))
171       return false;
172     if (isAllocationFn(V, GetTLI))
173       return true;
174 
175     Instruction *I = cast<Instruction>(V);
176     if (I->mayHaveSideEffects())
177       return false;
178     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
179       if (!GEP->hasAllConstantIndices())
180         return false;
181     } else if (I->getNumOperands() != 1) {
182       return false;
183     }
184 
185     V = I->getOperand(0);
186   } while (true);
187 }
188 
189 /// This GV is a pointer root.  Loop over all users of the global and clean up
190 /// any that obviously don't assign the global a value that isn't dynamically
191 /// allocated.
192 static bool
193 CleanupPointerRootUsers(GlobalVariable *GV,
194                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
195   // A brief explanation of leak checkers.  The goal is to find bugs where
196   // pointers are forgotten, causing an accumulating growth in memory
197   // usage over time.  The common strategy for leak checkers is to explicitly
198   // allow the memory pointed to by globals at exit.  This is popular because it
199   // also solves another problem where the main thread of a C++ program may shut
200   // down before other threads that are still expecting to use those globals. To
201   // handle that case, we expect the program may create a singleton and never
202   // destroy it.
203 
204   bool Changed = false;
205 
206   // If Dead[n].first is the only use of a malloc result, we can delete its
207   // chain of computation and the store to the global in Dead[n].second.
208   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
209 
210   // Constants can't be pointers to dynamically allocated memory.
211   for (User *U : llvm::make_early_inc_range(GV->users())) {
212     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
213       Value *V = SI->getValueOperand();
214       if (isa<Constant>(V)) {
215         Changed = true;
216         SI->eraseFromParent();
217       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
218         if (I->hasOneUse())
219           Dead.push_back(std::make_pair(I, SI));
220       }
221     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
222       if (isa<Constant>(MSI->getValue())) {
223         Changed = true;
224         MSI->eraseFromParent();
225       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
226         if (I->hasOneUse())
227           Dead.push_back(std::make_pair(I, MSI));
228       }
229     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
230       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
231       if (MemSrc && MemSrc->isConstant()) {
232         Changed = true;
233         MTI->eraseFromParent();
234       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
235         if (I->hasOneUse())
236           Dead.push_back(std::make_pair(I, MTI));
237       }
238     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
239       if (CE->use_empty()) {
240         CE->destroyConstant();
241         Changed = true;
242       }
243     } else if (Constant *C = dyn_cast<Constant>(U)) {
244       if (isSafeToDestroyConstant(C)) {
245         C->destroyConstant();
246         // This could have invalidated UI, start over from scratch.
247         Dead.clear();
248         CleanupPointerRootUsers(GV, GetTLI);
249         return true;
250       }
251     }
252   }
253 
254   for (int i = 0, e = Dead.size(); i != e; ++i) {
255     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
256       Dead[i].second->eraseFromParent();
257       Instruction *I = Dead[i].first;
258       do {
259         if (isAllocationFn(I, GetTLI))
260           break;
261         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
262         if (!J)
263           break;
264         I->eraseFromParent();
265         I = J;
266       } while (true);
267       I->eraseFromParent();
268       Changed = true;
269     }
270   }
271 
272   return Changed;
273 }
274 
275 /// We just marked GV constant.  Loop over all users of the global, cleaning up
276 /// the obvious ones.  This is largely just a quick scan over the use list to
277 /// clean up the easy and obvious cruft.  This returns true if it made a change.
278 static bool CleanupConstantGlobalUsers(
279     Value *V, Constant *Init, const DataLayout &DL,
280     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
281   bool Changed = false;
282   // Note that we need to use a weak value handle for the worklist items. When
283   // we delete a constant array, we may also be holding pointer to one of its
284   // elements (or an element of one of its elements if we're dealing with an
285   // array of arrays) in the worklist.
286   SmallVector<WeakTrackingVH, 8> WorkList(V->users());
287   while (!WorkList.empty()) {
288     Value *UV = WorkList.pop_back_val();
289     if (!UV)
290       continue;
291 
292     User *U = cast<User>(UV);
293 
294     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
295       if (Init) {
296         if (auto *Casted =
297                 ConstantFoldLoadThroughBitcast(Init, LI->getType(), DL)) {
298           // Replace the load with the initializer.
299           LI->replaceAllUsesWith(Casted);
300           LI->eraseFromParent();
301           Changed = true;
302         }
303       }
304     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
305       // Store must be unreachable or storing Init into the global.
306       SI->eraseFromParent();
307       Changed = true;
308     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
309       if (CE->getOpcode() == Instruction::GetElementPtr) {
310         Constant *SubInit = nullptr;
311         if (Init)
312           SubInit = ConstantFoldLoadThroughGEPConstantExpr(
313               Init, CE, V->getType()->getPointerElementType(), DL);
314         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
315       } else if ((CE->getOpcode() == Instruction::BitCast &&
316                   CE->getType()->isPointerTy()) ||
317                  CE->getOpcode() == Instruction::AddrSpaceCast) {
318         // Pointer cast, delete any stores and memsets to the global.
319         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
320       }
321 
322       if (CE->use_empty()) {
323         CE->destroyConstant();
324         Changed = true;
325       }
326     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
327       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
328       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
329       // and will invalidate our notion of what Init is.
330       Constant *SubInit = nullptr;
331       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
332         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
333             ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
334         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
335           SubInit = ConstantFoldLoadThroughGEPConstantExpr(
336               Init, CE, V->getType()->getPointerElementType(), DL);
337 
338         // If the initializer is an all-null value and we have an inbounds GEP,
339         // we already know what the result of any load from that GEP is.
340         // TODO: Handle splats.
341         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
342           SubInit = Constant::getNullValue(GEP->getResultElementType());
343       }
344       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
345 
346       if (GEP->use_empty()) {
347         GEP->eraseFromParent();
348         Changed = true;
349       }
350     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
351       if (MI->getRawDest() == V) {
352         MI->eraseFromParent();
353         Changed = true;
354       }
355 
356     } else if (Constant *C = dyn_cast<Constant>(U)) {
357       // If we have a chain of dead constantexprs or other things dangling from
358       // us, and if they are all dead, nuke them without remorse.
359       if (isSafeToDestroyConstant(C)) {
360         C->destroyConstant();
361         CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
362         return true;
363       }
364     }
365   }
366   return Changed;
367 }
368 
369 static bool isSafeSROAElementUse(Value *V);
370 
371 /// Return true if the specified GEP is a safe user of a derived
372 /// expression from a global that we want to SROA.
373 static bool isSafeSROAGEP(User *U) {
374   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
375   // don't like < 3 operand CE's, and we don't like non-constant integer
376   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
377   // value of C.
378   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
379       !cast<Constant>(U->getOperand(1))->isNullValue())
380     return false;
381 
382   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
383   ++GEPI; // Skip over the pointer index.
384 
385   // For all other level we require that the indices are constant and inrange.
386   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
387   // invalid things like allowing i to index an out-of-range subscript that
388   // accesses A[1]. This can also happen between different members of a struct
389   // in llvm IR.
390   for (; GEPI != E; ++GEPI) {
391     if (GEPI.isStruct())
392       continue;
393 
394     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
395     if (!IdxVal || (GEPI.isBoundedSequential() &&
396                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
397       return false;
398   }
399 
400   return llvm::all_of(U->users(),
401                       [](User *UU) { return isSafeSROAElementUse(UU); });
402 }
403 
404 /// Return true if the specified instruction is a safe user of a derived
405 /// expression from a global that we want to SROA.
406 static bool isSafeSROAElementUse(Value *V) {
407   // We might have a dead and dangling constant hanging off of here.
408   if (Constant *C = dyn_cast<Constant>(V))
409     return isSafeToDestroyConstant(C);
410 
411   Instruction *I = dyn_cast<Instruction>(V);
412   if (!I) return false;
413 
414   // Loads are ok.
415   if (isa<LoadInst>(I)) return true;
416 
417   // Stores *to* the pointer are ok.
418   if (StoreInst *SI = dyn_cast<StoreInst>(I))
419     return SI->getOperand(0) != V;
420 
421   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
422   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
423 }
424 
425 /// Look at all uses of the global and decide whether it is safe for us to
426 /// perform this transformation.
427 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
428   for (User *U : GV->users()) {
429     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
430     if (!isa<GetElementPtrInst>(U) &&
431         (!isa<ConstantExpr>(U) ||
432         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
433       return false;
434 
435     // Check the gep and it's users are safe to SRA
436     if (!isSafeSROAGEP(U))
437       return false;
438   }
439 
440   return true;
441 }
442 
443 static bool IsSRASequential(Type *T) {
444   return isa<ArrayType>(T) || isa<VectorType>(T);
445 }
446 static uint64_t GetSRASequentialNumElements(Type *T) {
447   if (ArrayType *AT = dyn_cast<ArrayType>(T))
448     return AT->getNumElements();
449   return cast<FixedVectorType>(T)->getNumElements();
450 }
451 static Type *GetSRASequentialElementType(Type *T) {
452   if (ArrayType *AT = dyn_cast<ArrayType>(T))
453     return AT->getElementType();
454   return cast<VectorType>(T)->getElementType();
455 }
456 static bool CanDoGlobalSRA(GlobalVariable *GV) {
457   Constant *Init = GV->getInitializer();
458 
459   if (isa<StructType>(Init->getType())) {
460     // nothing to check
461   } else if (IsSRASequential(Init->getType())) {
462     if (GetSRASequentialNumElements(Init->getType()) > 16 &&
463         GV->hasNUsesOrMore(16))
464       return false; // It's not worth it.
465   } else
466     return false;
467 
468   return GlobalUsersSafeToSRA(GV);
469 }
470 
471 /// Copy over the debug info for a variable to its SRA replacements.
472 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
473                                  uint64_t FragmentOffsetInBits,
474                                  uint64_t FragmentSizeInBits,
475                                  uint64_t VarSize) {
476   SmallVector<DIGlobalVariableExpression *, 1> GVs;
477   GV->getDebugInfo(GVs);
478   for (auto *GVE : GVs) {
479     DIVariable *Var = GVE->getVariable();
480     DIExpression *Expr = GVE->getExpression();
481     // If the FragmentSize is smaller than the variable,
482     // emit a fragment expression.
483     if (FragmentSizeInBits < VarSize) {
484       if (auto E = DIExpression::createFragmentExpression(
485               Expr, FragmentOffsetInBits, FragmentSizeInBits))
486         Expr = *E;
487       else
488         return;
489     }
490     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
491     NGV->addDebugInfo(NGVE);
492   }
493 }
494 
495 /// Perform scalar replacement of aggregates on the specified global variable.
496 /// This opens the door for other optimizations by exposing the behavior of the
497 /// program in a more fine-grained way.  We have determined that this
498 /// transformation is safe already.  We return the first global variable we
499 /// insert so that the caller can reprocess it.
500 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
501   // Make sure this global only has simple uses that we can SRA.
502   if (!CanDoGlobalSRA(GV))
503     return nullptr;
504 
505   assert(GV->hasLocalLinkage());
506   Constant *Init = GV->getInitializer();
507   Type *Ty = Init->getType();
508   uint64_t VarSize = DL.getTypeSizeInBits(Ty);
509 
510   std::map<unsigned, GlobalVariable *> NewGlobals;
511 
512   // Get the alignment of the global, either explicit or target-specific.
513   Align StartAlignment =
514       DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType());
515 
516   // Loop over all users and create replacement variables for used aggregate
517   // elements.
518   for (User *GEP : GV->users()) {
519     assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
520                                            Instruction::GetElementPtr) ||
521             isa<GetElementPtrInst>(GEP)) &&
522            "NonGEP CE's are not SRAable!");
523 
524     // Ignore the 1th operand, which has to be zero or else the program is quite
525     // broken (undefined).  Get the 2nd operand, which is the structure or array
526     // index.
527     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
528     if (NewGlobals.count(ElementIdx) == 1)
529       continue; // we`ve already created replacement variable
530     assert(NewGlobals.count(ElementIdx) == 0);
531 
532     Type *ElTy = nullptr;
533     if (StructType *STy = dyn_cast<StructType>(Ty))
534       ElTy = STy->getElementType(ElementIdx);
535     else
536       ElTy = GetSRASequentialElementType(Ty);
537     assert(ElTy);
538 
539     Constant *In = Init->getAggregateElement(ElementIdx);
540     assert(In && "Couldn't get element of initializer?");
541 
542     GlobalVariable *NGV = new GlobalVariable(
543         ElTy, false, GlobalVariable::InternalLinkage, In,
544         GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
545         GV->getType()->getAddressSpace());
546     NGV->setExternallyInitialized(GV->isExternallyInitialized());
547     NGV->copyAttributesFrom(GV);
548     NewGlobals.insert(std::make_pair(ElementIdx, NGV));
549 
550     if (StructType *STy = dyn_cast<StructType>(Ty)) {
551       const StructLayout &Layout = *DL.getStructLayout(STy);
552 
553       // Calculate the known alignment of the field.  If the original aggregate
554       // had 256 byte alignment for example, something might depend on that:
555       // propagate info to each field.
556       uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
557       Align NewAlign = commonAlignment(StartAlignment, FieldOffset);
558       if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx)))
559         NGV->setAlignment(NewAlign);
560 
561       // Copy over the debug info for the variable.
562       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
563       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
564       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize);
565     } else {
566       uint64_t EltSize = DL.getTypeAllocSize(ElTy);
567       Align EltAlign = DL.getABITypeAlign(ElTy);
568       uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
569 
570       // Calculate the known alignment of the field.  If the original aggregate
571       // had 256 byte alignment for example, something might depend on that:
572       // propagate info to each field.
573       Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx);
574       if (NewAlign > EltAlign)
575         NGV->setAlignment(NewAlign);
576       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
577                            FragmentSizeInBits, VarSize);
578     }
579   }
580 
581   if (NewGlobals.empty())
582     return nullptr;
583 
584   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
585   for (auto NewGlobalVar : NewGlobals)
586     Globals.push_back(NewGlobalVar.second);
587 
588   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
589 
590   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
591 
592   // Loop over all of the uses of the global, replacing the constantexpr geps,
593   // with smaller constantexpr geps or direct references.
594   while (!GV->use_empty()) {
595     User *GEP = GV->user_back();
596     assert(((isa<ConstantExpr>(GEP) &&
597              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
598             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
599 
600     // Ignore the 1th operand, which has to be zero or else the program is quite
601     // broken (undefined).  Get the 2nd operand, which is the structure or array
602     // index.
603     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
604     assert(NewGlobals.count(ElementIdx) == 1);
605 
606     Value *NewPtr = NewGlobals[ElementIdx];
607     Type *NewTy = NewGlobals[ElementIdx]->getValueType();
608 
609     // Form a shorter GEP if needed.
610     if (GEP->getNumOperands() > 3) {
611       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
612         SmallVector<Constant*, 8> Idxs;
613         Idxs.push_back(NullInt);
614         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
615           Idxs.push_back(CE->getOperand(i));
616         NewPtr =
617             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
618       } else {
619         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
620         SmallVector<Value*, 8> Idxs;
621         Idxs.push_back(NullInt);
622         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
623           Idxs.push_back(GEPI->getOperand(i));
624         NewPtr = GetElementPtrInst::Create(
625             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
626             GEPI);
627       }
628     }
629     GEP->replaceAllUsesWith(NewPtr);
630 
631     // We changed the pointer of any memory access user. Recalculate alignments.
632     for (User *U : NewPtr->users()) {
633       if (auto *Load = dyn_cast<LoadInst>(U)) {
634         Align PrefAlign = DL.getPrefTypeAlign(Load->getType());
635         Align NewAlign = getOrEnforceKnownAlignment(Load->getPointerOperand(),
636                                                     PrefAlign, DL, Load);
637         Load->setAlignment(NewAlign);
638       }
639       if (auto *Store = dyn_cast<StoreInst>(U)) {
640         Align PrefAlign =
641             DL.getPrefTypeAlign(Store->getValueOperand()->getType());
642         Align NewAlign = getOrEnforceKnownAlignment(Store->getPointerOperand(),
643                                                     PrefAlign, DL, Store);
644         Store->setAlignment(NewAlign);
645       }
646     }
647 
648     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
649       GEPI->eraseFromParent();
650     else
651       cast<ConstantExpr>(GEP)->destroyConstant();
652   }
653 
654   // Delete the old global, now that it is dead.
655   Globals.erase(GV);
656   ++NumSRA;
657 
658   assert(NewGlobals.size() > 0);
659   return NewGlobals.begin()->second;
660 }
661 
662 /// Return true if all users of the specified value will trap if the value is
663 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
664 /// reprocessing them.
665 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
666                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
667   for (const User *U : V->users()) {
668     if (const Instruction *I = dyn_cast<Instruction>(U)) {
669       // If null pointer is considered valid, then all uses are non-trapping.
670       // Non address-space 0 globals have already been pruned by the caller.
671       if (NullPointerIsDefined(I->getFunction()))
672         return false;
673     }
674     if (isa<LoadInst>(U)) {
675       // Will trap.
676     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
677       if (SI->getOperand(0) == V) {
678         //cerr << "NONTRAPPING USE: " << *U;
679         return false;  // Storing the value.
680       }
681     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
682       if (CI->getCalledOperand() != V) {
683         //cerr << "NONTRAPPING USE: " << *U;
684         return false;  // Not calling the ptr
685       }
686     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
687       if (II->getCalledOperand() != V) {
688         //cerr << "NONTRAPPING USE: " << *U;
689         return false;  // Not calling the ptr
690       }
691     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
692       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
693     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
694       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
695     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
696       // If we've already seen this phi node, ignore it, it has already been
697       // checked.
698       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
699         return false;
700     } else if (isa<ICmpInst>(U) &&
701                !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) &&
702                isa<LoadInst>(U->getOperand(0)) &&
703                isa<ConstantPointerNull>(U->getOperand(1))) {
704       assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0))
705                                   ->getPointerOperand()
706                                   ->stripPointerCasts()) &&
707              "Should be GlobalVariable");
708       // This and only this kind of non-signed ICmpInst is to be replaced with
709       // the comparing of the value of the created global init bool later in
710       // optimizeGlobalAddressOfMalloc for the global variable.
711     } else {
712       //cerr << "NONTRAPPING USE: " << *U;
713       return false;
714     }
715   }
716   return true;
717 }
718 
719 /// Return true if all uses of any loads from GV will trap if the loaded value
720 /// is null.  Note that this also permits comparisons of the loaded value
721 /// against null, as a special case.
722 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
723   SmallVector<const Value *, 4> Worklist;
724   Worklist.push_back(GV);
725   while (!Worklist.empty()) {
726     const Value *P = Worklist.pop_back_val();
727     for (auto *U : P->users()) {
728       if (auto *LI = dyn_cast<LoadInst>(U)) {
729         SmallPtrSet<const PHINode *, 8> PHIs;
730         if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
731           return false;
732       } else if (auto *SI = dyn_cast<StoreInst>(U)) {
733         // Ignore stores to the global.
734         if (SI->getPointerOperand() != P)
735           return false;
736       } else if (auto *CE = dyn_cast<ConstantExpr>(U)) {
737         if (CE->stripPointerCasts() != GV)
738           return false;
739         // Check further the ConstantExpr.
740         Worklist.push_back(CE);
741       } else {
742         // We don't know or understand this user, bail out.
743         return false;
744       }
745     }
746   }
747 
748   return true;
749 }
750 
751 /// Get all the loads/store uses for global variable \p GV.
752 static void allUsesOfLoadAndStores(GlobalVariable *GV,
753                                    SmallVector<Value *, 4> &Uses) {
754   SmallVector<Value *, 4> Worklist;
755   Worklist.push_back(GV);
756   while (!Worklist.empty()) {
757     auto *P = Worklist.pop_back_val();
758     for (auto *U : P->users()) {
759       if (auto *CE = dyn_cast<ConstantExpr>(U)) {
760         Worklist.push_back(CE);
761         continue;
762       }
763 
764       assert((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
765              "Expect only load or store instructions");
766       Uses.push_back(U);
767     }
768   }
769 }
770 
771 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
772   bool Changed = false;
773   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
774     Instruction *I = cast<Instruction>(*UI++);
775     // Uses are non-trapping if null pointer is considered valid.
776     // Non address-space 0 globals are already pruned by the caller.
777     if (NullPointerIsDefined(I->getFunction()))
778       return false;
779     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
780       LI->setOperand(0, NewV);
781       Changed = true;
782     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
783       if (SI->getOperand(1) == V) {
784         SI->setOperand(1, NewV);
785         Changed = true;
786       }
787     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
788       CallBase *CB = cast<CallBase>(I);
789       if (CB->getCalledOperand() == V) {
790         // Calling through the pointer!  Turn into a direct call, but be careful
791         // that the pointer is not also being passed as an argument.
792         CB->setCalledOperand(NewV);
793         Changed = true;
794         bool PassedAsArg = false;
795         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
796           if (CB->getArgOperand(i) == V) {
797             PassedAsArg = true;
798             CB->setArgOperand(i, NewV);
799           }
800 
801         if (PassedAsArg) {
802           // Being passed as an argument also.  Be careful to not invalidate UI!
803           UI = V->user_begin();
804         }
805       }
806     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
807       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
808                                 ConstantExpr::getCast(CI->getOpcode(),
809                                                       NewV, CI->getType()));
810       if (CI->use_empty()) {
811         Changed = true;
812         CI->eraseFromParent();
813       }
814     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
815       // Should handle GEP here.
816       SmallVector<Constant*, 8> Idxs;
817       Idxs.reserve(GEPI->getNumOperands()-1);
818       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
819            i != e; ++i)
820         if (Constant *C = dyn_cast<Constant>(*i))
821           Idxs.push_back(C);
822         else
823           break;
824       if (Idxs.size() == GEPI->getNumOperands()-1)
825         Changed |= OptimizeAwayTrappingUsesOfValue(
826             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
827                                                  NewV, Idxs));
828       if (GEPI->use_empty()) {
829         Changed = true;
830         GEPI->eraseFromParent();
831       }
832     }
833   }
834 
835   return Changed;
836 }
837 
838 /// The specified global has only one non-null value stored into it.  If there
839 /// are uses of the loaded value that would trap if the loaded value is
840 /// dynamically null, then we know that they cannot be reachable with a null
841 /// optimize away the load.
842 static bool OptimizeAwayTrappingUsesOfLoads(
843     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
844     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
845   bool Changed = false;
846 
847   // Keep track of whether we are able to remove all the uses of the global
848   // other than the store that defines it.
849   bool AllNonStoreUsesGone = true;
850 
851   // Replace all uses of loads with uses of uses of the stored value.
852   for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) {
853     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
854       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
855       // If we were able to delete all uses of the loads
856       if (LI->use_empty()) {
857         LI->eraseFromParent();
858         Changed = true;
859       } else {
860         AllNonStoreUsesGone = false;
861       }
862     } else if (isa<StoreInst>(GlobalUser)) {
863       // Ignore the store that stores "LV" to the global.
864       assert(GlobalUser->getOperand(1) == GV &&
865              "Must be storing *to* the global");
866     } else {
867       AllNonStoreUsesGone = false;
868 
869       // If we get here we could have other crazy uses that are transitively
870       // loaded.
871       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
872               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
873               isa<BitCastInst>(GlobalUser) ||
874               isa<GetElementPtrInst>(GlobalUser)) &&
875              "Only expect load and stores!");
876     }
877   }
878 
879   if (Changed) {
880     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
881                       << "\n");
882     ++NumGlobUses;
883   }
884 
885   // If we nuked all of the loads, then none of the stores are needed either,
886   // nor is the global.
887   if (AllNonStoreUsesGone) {
888     if (isLeakCheckerRoot(GV)) {
889       Changed |= CleanupPointerRootUsers(GV, GetTLI);
890     } else {
891       Changed = true;
892       CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
893     }
894     if (GV->use_empty()) {
895       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
896       Changed = true;
897       GV->eraseFromParent();
898       ++NumDeleted;
899     }
900   }
901   return Changed;
902 }
903 
904 /// Walk the use list of V, constant folding all of the instructions that are
905 /// foldable.
906 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
907                                 TargetLibraryInfo *TLI) {
908   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
909     if (Instruction *I = dyn_cast<Instruction>(*UI++))
910       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
911         I->replaceAllUsesWith(NewC);
912 
913         // Advance UI to the next non-I use to avoid invalidating it!
914         // Instructions could multiply use V.
915         while (UI != E && *UI == I)
916           ++UI;
917         if (isInstructionTriviallyDead(I, TLI))
918           I->eraseFromParent();
919       }
920 }
921 
922 /// This function takes the specified global variable, and transforms the
923 /// program as if it always contained the result of the specified malloc.
924 /// Because it is always the result of the specified malloc, there is no reason
925 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
926 /// loads of GV as uses of the new global.
927 static GlobalVariable *
928 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
929                               ConstantInt *NElements, const DataLayout &DL,
930                               TargetLibraryInfo *TLI) {
931   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
932                     << '\n');
933 
934   Type *GlobalType;
935   if (NElements->getZExtValue() == 1)
936     GlobalType = AllocTy;
937   else
938     // If we have an array allocation, the global variable is of an array.
939     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
940 
941   // Create the new global variable.  The contents of the malloc'd memory is
942   // undefined, so initialize with an undef value.
943   GlobalVariable *NewGV = new GlobalVariable(
944       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
945       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
946       GV->getThreadLocalMode());
947 
948   // If there are bitcast users of the malloc (which is typical, usually we have
949   // a malloc + bitcast) then replace them with uses of the new global.  Update
950   // other users to use the global as well.
951   BitCastInst *TheBC = nullptr;
952   while (!CI->use_empty()) {
953     Instruction *User = cast<Instruction>(CI->user_back());
954     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
955       if (BCI->getType() == NewGV->getType()) {
956         BCI->replaceAllUsesWith(NewGV);
957         BCI->eraseFromParent();
958       } else {
959         BCI->setOperand(0, NewGV);
960       }
961     } else {
962       if (!TheBC)
963         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
964       User->replaceUsesOfWith(CI, TheBC);
965     }
966   }
967 
968   SmallPtrSet<Constant *, 1> RepValues;
969   RepValues.insert(NewGV);
970 
971   // If there is a comparison against null, we will insert a global bool to
972   // keep track of whether the global was initialized yet or not.
973   GlobalVariable *InitBool =
974     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
975                        GlobalValue::InternalLinkage,
976                        ConstantInt::getFalse(GV->getContext()),
977                        GV->getName()+".init", GV->getThreadLocalMode());
978   bool InitBoolUsed = false;
979 
980   // Loop over all instruction uses of GV, processing them in turn.
981   SmallVector<Value *, 4> Guses;
982   allUsesOfLoadAndStores(GV, Guses);
983   for (auto *U : Guses) {
984     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
985       // The global is initialized when the store to it occurs. If the stored
986       // value is null value, the global bool is set to false, otherwise true.
987       new StoreInst(ConstantInt::getBool(
988                         GV->getContext(),
989                         !isa<ConstantPointerNull>(SI->getValueOperand())),
990                     InitBool, false, Align(1), SI->getOrdering(),
991                     SI->getSyncScopeID(), SI);
992       SI->eraseFromParent();
993       continue;
994     }
995 
996     LoadInst *LI = cast<LoadInst>(U);
997     while (!LI->use_empty()) {
998       Use &LoadUse = *LI->use_begin();
999       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
1000       if (!ICI) {
1001         auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType());
1002         RepValues.insert(CE);
1003         LoadUse.set(CE);
1004         continue;
1005       }
1006 
1007       // Replace the cmp X, 0 with a use of the bool value.
1008       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
1009                                InitBool->getName() + ".val", false, Align(1),
1010                                LI->getOrdering(), LI->getSyncScopeID(), LI);
1011       InitBoolUsed = true;
1012       switch (ICI->getPredicate()) {
1013       default: llvm_unreachable("Unknown ICmp Predicate!");
1014       case ICmpInst::ICMP_ULT: // X < null -> always false
1015         LV = ConstantInt::getFalse(GV->getContext());
1016         break;
1017       case ICmpInst::ICMP_UGE: // X >= null -> always true
1018         LV = ConstantInt::getTrue(GV->getContext());
1019         break;
1020       case ICmpInst::ICMP_ULE:
1021       case ICmpInst::ICMP_EQ:
1022         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
1023         break;
1024       case ICmpInst::ICMP_NE:
1025       case ICmpInst::ICMP_UGT:
1026         break;  // no change.
1027       }
1028       ICI->replaceAllUsesWith(LV);
1029       ICI->eraseFromParent();
1030     }
1031     LI->eraseFromParent();
1032   }
1033 
1034   // If the initialization boolean was used, insert it, otherwise delete it.
1035   if (!InitBoolUsed) {
1036     while (!InitBool->use_empty())  // Delete initializations
1037       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
1038     delete InitBool;
1039   } else
1040     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
1041 
1042   // Now the GV is dead, nuke it and the malloc..
1043   GV->eraseFromParent();
1044   CI->eraseFromParent();
1045 
1046   // To further other optimizations, loop over all users of NewGV and try to
1047   // constant prop them.  This will promote GEP instructions with constant
1048   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
1049   for (auto *CE : RepValues)
1050     ConstantPropUsersOf(CE, DL, TLI);
1051 
1052   return NewGV;
1053 }
1054 
1055 /// Scan the use-list of GV checking to make sure that there are no complex uses
1056 /// of GV.  We permit simple things like dereferencing the pointer, but not
1057 /// storing through the address, unless it is to the specified global.
1058 static bool
1059 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI,
1060                                           const GlobalVariable *GV) {
1061   SmallPtrSet<const Value *, 4> Visited;
1062   SmallVector<const Value *, 4> Worklist;
1063   Worklist.push_back(CI);
1064 
1065   while (!Worklist.empty()) {
1066     const Value *V = Worklist.pop_back_val();
1067     if (!Visited.insert(V).second)
1068       continue;
1069 
1070     for (const Use &VUse : V->uses()) {
1071       const User *U = VUse.getUser();
1072       if (isa<LoadInst>(U) || isa<CmpInst>(U))
1073         continue; // Fine, ignore.
1074 
1075       if (auto *SI = dyn_cast<StoreInst>(U)) {
1076         if (SI->getValueOperand() == V &&
1077             SI->getPointerOperand()->stripPointerCasts() != GV)
1078           return false; // Storing the pointer not into GV... bad.
1079         continue; // Otherwise, storing through it, or storing into GV... fine.
1080       }
1081 
1082       if (auto *BCI = dyn_cast<BitCastInst>(U)) {
1083         Worklist.push_back(BCI);
1084         continue;
1085       }
1086 
1087       if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1088         Worklist.push_back(GEPI);
1089         continue;
1090       }
1091 
1092       return false;
1093     }
1094   }
1095 
1096   return true;
1097 }
1098 
1099 /// This function is called when we see a pointer global variable with a single
1100 /// value stored it that is a malloc or cast of malloc.
1101 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1102                                                Type *AllocTy,
1103                                                AtomicOrdering Ordering,
1104                                                const DataLayout &DL,
1105                                                TargetLibraryInfo *TLI) {
1106   // If this is a malloc of an abstract type, don't touch it.
1107   if (!AllocTy->isSized())
1108     return false;
1109 
1110   // We can't optimize this global unless all uses of it are *known* to be
1111   // of the malloc value, not of the null initializer value (consider a use
1112   // that compares the global's value against zero to see if the malloc has
1113   // been reached).  To do this, we check to see if all uses of the global
1114   // would trap if the global were null: this proves that they must all
1115   // happen after the malloc.
1116   if (!allUsesOfLoadedValueWillTrapIfNull(GV))
1117     return false;
1118 
1119   // We can't optimize this if the malloc itself is used in a complex way,
1120   // for example, being stored into multiple globals.  This allows the
1121   // malloc to be stored into the specified global, loaded, gep, icmp'd.
1122   // These are all things we could transform to using the global for.
1123   if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV))
1124     return false;
1125 
1126   // If we have a global that is only initialized with a fixed size malloc,
1127   // transform the program to use global memory instead of malloc'd memory.
1128   // This eliminates dynamic allocation, avoids an indirection accessing the
1129   // data, and exposes the resultant global to further GlobalOpt.
1130   // We cannot optimize the malloc if we cannot determine malloc array size.
1131   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1132   if (!NElems)
1133     return false;
1134 
1135   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1136     // Restrict this transformation to only working on small allocations
1137     // (2048 bytes currently), as we don't want to introduce a 16M global or
1138     // something.
1139     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1140       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1141       return true;
1142     }
1143 
1144   return false;
1145 }
1146 
1147 // Try to optimize globals based on the knowledge that only one value (besides
1148 // its initializer) is ever stored to the global.
1149 static bool
1150 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1151                          AtomicOrdering Ordering, const DataLayout &DL,
1152                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1153   // Ignore no-op GEPs and bitcasts.
1154   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1155 
1156   // If we are dealing with a pointer global that is initialized to null and
1157   // only has one (non-null) value stored into it, then we can optimize any
1158   // users of the loaded value (often calls and loads) that would trap if the
1159   // value was null.
1160   if (GV->getInitializer()->getType()->isPointerTy() &&
1161       GV->getInitializer()->isNullValue() &&
1162       StoredOnceVal->getType()->isPointerTy() &&
1163       !NullPointerIsDefined(
1164           nullptr /* F */,
1165           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1166     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1167       if (GV->getInitializer()->getType() != SOVC->getType())
1168         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1169 
1170       // Optimize away any trapping uses of the loaded value.
1171       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1172         return true;
1173     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1174       auto *TLI = &GetTLI(*CI->getFunction());
1175       Type *MallocType = getMallocAllocatedType(CI, TLI);
1176       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1177                                                            Ordering, DL, TLI))
1178         return true;
1179     }
1180   }
1181 
1182   return false;
1183 }
1184 
1185 /// At this point, we have learned that the only two values ever stored into GV
1186 /// are its initializer and OtherVal.  See if we can shrink the global into a
1187 /// boolean and select between the two values whenever it is used.  This exposes
1188 /// the values to other scalar optimizations.
1189 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1190   Type *GVElType = GV->getValueType();
1191 
1192   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1193   // an FP value, pointer or vector, don't do this optimization because a select
1194   // between them is very expensive and unlikely to lead to later
1195   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1196   // where v1 and v2 both require constant pool loads, a big loss.
1197   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1198       GVElType->isFloatingPointTy() ||
1199       GVElType->isPointerTy() || GVElType->isVectorTy())
1200     return false;
1201 
1202   // Walk the use list of the global seeing if all the uses are load or store.
1203   // If there is anything else, bail out.
1204   for (User *U : GV->users())
1205     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1206       return false;
1207 
1208   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1209 
1210   // Create the new global, initializing it to false.
1211   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1212                                              false,
1213                                              GlobalValue::InternalLinkage,
1214                                         ConstantInt::getFalse(GV->getContext()),
1215                                              GV->getName()+".b",
1216                                              GV->getThreadLocalMode(),
1217                                              GV->getType()->getAddressSpace());
1218   NewGV->copyAttributesFrom(GV);
1219   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1220 
1221   Constant *InitVal = GV->getInitializer();
1222   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1223          "No reason to shrink to bool!");
1224 
1225   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1226   GV->getDebugInfo(GVs);
1227 
1228   // If initialized to zero and storing one into the global, we can use a cast
1229   // instead of a select to synthesize the desired value.
1230   bool IsOneZero = false;
1231   bool EmitOneOrZero = true;
1232   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1233   if (CI && CI->getValue().getActiveBits() <= 64) {
1234     IsOneZero = InitVal->isNullValue() && CI->isOne();
1235 
1236     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1237     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1238       uint64_t ValInit = CIInit->getZExtValue();
1239       uint64_t ValOther = CI->getZExtValue();
1240       uint64_t ValMinus = ValOther - ValInit;
1241 
1242       for(auto *GVe : GVs){
1243         DIGlobalVariable *DGV = GVe->getVariable();
1244         DIExpression *E = GVe->getExpression();
1245         const DataLayout &DL = GV->getParent()->getDataLayout();
1246         unsigned SizeInOctets =
1247             DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8;
1248 
1249         // It is expected that the address of global optimized variable is on
1250         // top of the stack. After optimization, value of that variable will
1251         // be ether 0 for initial value or 1 for other value. The following
1252         // expression should return constant integer value depending on the
1253         // value at global object address:
1254         // val * (ValOther - ValInit) + ValInit:
1255         // DW_OP_deref DW_OP_constu <ValMinus>
1256         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1257         SmallVector<uint64_t, 12> Ops = {
1258             dwarf::DW_OP_deref_size, SizeInOctets,
1259             dwarf::DW_OP_constu, ValMinus,
1260             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1261             dwarf::DW_OP_plus};
1262         bool WithStackValue = true;
1263         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1264         DIGlobalVariableExpression *DGVE =
1265           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1266         NewGV->addDebugInfo(DGVE);
1267      }
1268      EmitOneOrZero = false;
1269     }
1270   }
1271 
1272   if (EmitOneOrZero) {
1273      // FIXME: This will only emit address for debugger on which will
1274      // be written only 0 or 1.
1275      for(auto *GV : GVs)
1276        NewGV->addDebugInfo(GV);
1277    }
1278 
1279   while (!GV->use_empty()) {
1280     Instruction *UI = cast<Instruction>(GV->user_back());
1281     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1282       // Change the store into a boolean store.
1283       bool StoringOther = SI->getOperand(0) == OtherVal;
1284       // Only do this if we weren't storing a loaded value.
1285       Value *StoreVal;
1286       if (StoringOther || SI->getOperand(0) == InitVal) {
1287         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1288                                     StoringOther);
1289       } else {
1290         // Otherwise, we are storing a previously loaded copy.  To do this,
1291         // change the copy from copying the original value to just copying the
1292         // bool.
1293         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1294 
1295         // If we've already replaced the input, StoredVal will be a cast or
1296         // select instruction.  If not, it will be a load of the original
1297         // global.
1298         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1299           assert(LI->getOperand(0) == GV && "Not a copy!");
1300           // Insert a new load, to preserve the saved value.
1301           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1302                                   LI->getName() + ".b", false, Align(1),
1303                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1304         } else {
1305           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1306                  "This is not a form that we understand!");
1307           StoreVal = StoredVal->getOperand(0);
1308           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1309         }
1310       }
1311       StoreInst *NSI =
1312           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1313                         SI->getSyncScopeID(), SI);
1314       NSI->setDebugLoc(SI->getDebugLoc());
1315     } else {
1316       // Change the load into a load of bool then a select.
1317       LoadInst *LI = cast<LoadInst>(UI);
1318       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1319                                    LI->getName() + ".b", false, Align(1),
1320                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1321       Instruction *NSI;
1322       if (IsOneZero)
1323         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1324       else
1325         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1326       NSI->takeName(LI);
1327       // Since LI is split into two instructions, NLI and NSI both inherit the
1328       // same DebugLoc
1329       NLI->setDebugLoc(LI->getDebugLoc());
1330       NSI->setDebugLoc(LI->getDebugLoc());
1331       LI->replaceAllUsesWith(NSI);
1332     }
1333     UI->eraseFromParent();
1334   }
1335 
1336   // Retain the name of the old global variable. People who are debugging their
1337   // programs may expect these variables to be named the same.
1338   NewGV->takeName(GV);
1339   GV->eraseFromParent();
1340   return true;
1341 }
1342 
1343 static bool deleteIfDead(
1344     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1345   GV.removeDeadConstantUsers();
1346 
1347   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1348     return false;
1349 
1350   if (const Comdat *C = GV.getComdat())
1351     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1352       return false;
1353 
1354   bool Dead;
1355   if (auto *F = dyn_cast<Function>(&GV))
1356     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1357   else
1358     Dead = GV.use_empty();
1359   if (!Dead)
1360     return false;
1361 
1362   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1363   GV.eraseFromParent();
1364   ++NumDeleted;
1365   return true;
1366 }
1367 
1368 static bool isPointerValueDeadOnEntryToFunction(
1369     const Function *F, GlobalValue *GV,
1370     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1371   // Find all uses of GV. We expect them all to be in F, and if we can't
1372   // identify any of the uses we bail out.
1373   //
1374   // On each of these uses, identify if the memory that GV points to is
1375   // used/required/live at the start of the function. If it is not, for example
1376   // if the first thing the function does is store to the GV, the GV can
1377   // possibly be demoted.
1378   //
1379   // We don't do an exhaustive search for memory operations - simply look
1380   // through bitcasts as they're quite common and benign.
1381   const DataLayout &DL = GV->getParent()->getDataLayout();
1382   SmallVector<LoadInst *, 4> Loads;
1383   SmallVector<StoreInst *, 4> Stores;
1384   for (auto *U : GV->users()) {
1385     if (Operator::getOpcode(U) == Instruction::BitCast) {
1386       for (auto *UU : U->users()) {
1387         if (auto *LI = dyn_cast<LoadInst>(UU))
1388           Loads.push_back(LI);
1389         else if (auto *SI = dyn_cast<StoreInst>(UU))
1390           Stores.push_back(SI);
1391         else
1392           return false;
1393       }
1394       continue;
1395     }
1396 
1397     Instruction *I = dyn_cast<Instruction>(U);
1398     if (!I)
1399       return false;
1400     assert(I->getParent()->getParent() == F);
1401 
1402     if (auto *LI = dyn_cast<LoadInst>(I))
1403       Loads.push_back(LI);
1404     else if (auto *SI = dyn_cast<StoreInst>(I))
1405       Stores.push_back(SI);
1406     else
1407       return false;
1408   }
1409 
1410   // We have identified all uses of GV into loads and stores. Now check if all
1411   // of them are known not to depend on the value of the global at the function
1412   // entry point. We do this by ensuring that every load is dominated by at
1413   // least one store.
1414   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1415 
1416   // The below check is quadratic. Check we're not going to do too many tests.
1417   // FIXME: Even though this will always have worst-case quadratic time, we
1418   // could put effort into minimizing the average time by putting stores that
1419   // have been shown to dominate at least one load at the beginning of the
1420   // Stores array, making subsequent dominance checks more likely to succeed
1421   // early.
1422   //
1423   // The threshold here is fairly large because global->local demotion is a
1424   // very powerful optimization should it fire.
1425   const unsigned Threshold = 100;
1426   if (Loads.size() * Stores.size() > Threshold)
1427     return false;
1428 
1429   for (auto *L : Loads) {
1430     auto *LTy = L->getType();
1431     if (none_of(Stores, [&](const StoreInst *S) {
1432           auto *STy = S->getValueOperand()->getType();
1433           // The load is only dominated by the store if DomTree says so
1434           // and the number of bits loaded in L is less than or equal to
1435           // the number of bits stored in S.
1436           return DT.dominates(S, L) &&
1437                  DL.getTypeStoreSize(LTy).getFixedSize() <=
1438                      DL.getTypeStoreSize(STy).getFixedSize();
1439         }))
1440       return false;
1441   }
1442   // All loads have known dependences inside F, so the global can be localized.
1443   return true;
1444 }
1445 
1446 /// C may have non-instruction users. Can all of those users be turned into
1447 /// instructions?
1448 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1449   // We don't do this exhaustively. The most common pattern that we really need
1450   // to care about is a constant GEP or constant bitcast - so just looking
1451   // through one single ConstantExpr.
1452   //
1453   // The set of constants that this function returns true for must be able to be
1454   // handled by makeAllConstantUsesInstructions.
1455   for (auto *U : C->users()) {
1456     if (isa<Instruction>(U))
1457       continue;
1458     if (!isa<ConstantExpr>(U))
1459       // Non instruction, non-constantexpr user; cannot convert this.
1460       return false;
1461     for (auto *UU : U->users())
1462       if (!isa<Instruction>(UU))
1463         // A constantexpr used by another constant. We don't try and recurse any
1464         // further but just bail out at this point.
1465         return false;
1466   }
1467 
1468   return true;
1469 }
1470 
1471 /// C may have non-instruction users, and
1472 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1473 /// non-instruction users to instructions.
1474 static void makeAllConstantUsesInstructions(Constant *C) {
1475   SmallVector<ConstantExpr*,4> Users;
1476   for (auto *U : C->users()) {
1477     if (isa<ConstantExpr>(U))
1478       Users.push_back(cast<ConstantExpr>(U));
1479     else
1480       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1481       // should not have returned true for C.
1482       assert(
1483           isa<Instruction>(U) &&
1484           "Can't transform non-constantexpr non-instruction to instruction!");
1485   }
1486 
1487   SmallVector<Value*,4> UUsers;
1488   for (auto *U : Users) {
1489     UUsers.clear();
1490     append_range(UUsers, U->users());
1491     for (auto *UU : UUsers) {
1492       Instruction *UI = cast<Instruction>(UU);
1493       Instruction *NewU = U->getAsInstruction();
1494       NewU->insertBefore(UI);
1495       UI->replaceUsesOfWith(U, NewU);
1496     }
1497     // We've replaced all the uses, so destroy the constant. (destroyConstant
1498     // will update value handles and metadata.)
1499     U->destroyConstant();
1500   }
1501 }
1502 
1503 /// Analyze the specified global variable and optimize
1504 /// it if possible.  If we make a change, return true.
1505 static bool
1506 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1507                       function_ref<TargetTransformInfo &(Function &)> GetTTI,
1508                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1509                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1510   auto &DL = GV->getParent()->getDataLayout();
1511   // If this is a first class global and has only one accessing function and
1512   // this function is non-recursive, we replace the global with a local alloca
1513   // in this function.
1514   //
1515   // NOTE: It doesn't make sense to promote non-single-value types since we
1516   // are just replacing static memory to stack memory.
1517   //
1518   // If the global is in different address space, don't bring it to stack.
1519   if (!GS.HasMultipleAccessingFunctions &&
1520       GS.AccessingFunction &&
1521       GV->getValueType()->isSingleValueType() &&
1522       GV->getType()->getAddressSpace() == 0 &&
1523       !GV->isExternallyInitialized() &&
1524       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1525       GS.AccessingFunction->doesNotRecurse() &&
1526       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1527                                           LookupDomTree)) {
1528     const DataLayout &DL = GV->getParent()->getDataLayout();
1529 
1530     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1531     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1532                                                    ->getEntryBlock().begin());
1533     Type *ElemTy = GV->getValueType();
1534     // FIXME: Pass Global's alignment when globals have alignment
1535     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1536                                         GV->getName(), &FirstI);
1537     if (!isa<UndefValue>(GV->getInitializer()))
1538       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1539 
1540     makeAllConstantUsesInstructions(GV);
1541 
1542     GV->replaceAllUsesWith(Alloca);
1543     GV->eraseFromParent();
1544     ++NumLocalized;
1545     return true;
1546   }
1547 
1548   bool Changed = false;
1549 
1550   // If the global is never loaded (but may be stored to), it is dead.
1551   // Delete it now.
1552   if (!GS.IsLoaded) {
1553     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1554 
1555     if (isLeakCheckerRoot(GV)) {
1556       // Delete any constant stores to the global.
1557       Changed = CleanupPointerRootUsers(GV, GetTLI);
1558     } else {
1559       // Delete any stores we can find to the global.  We may not be able to
1560       // make it completely dead though.
1561       Changed =
1562           CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1563     }
1564 
1565     // If the global is dead now, delete it.
1566     if (GV->use_empty()) {
1567       GV->eraseFromParent();
1568       ++NumDeleted;
1569       Changed = true;
1570     }
1571     return Changed;
1572 
1573   }
1574   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1575     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1576 
1577     // Don't actually mark a global constant if it's atomic because atomic loads
1578     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1579     // requires write access to the variable even if it's not actually changed.
1580     if (GS.Ordering == AtomicOrdering::NotAtomic) {
1581       assert(!GV->isConstant() && "Expected a non-constant global");
1582       GV->setConstant(true);
1583       Changed = true;
1584     }
1585 
1586     // Clean up any obviously simplifiable users now.
1587     Changed |= CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1588 
1589     // If the global is dead now, just nuke it.
1590     if (GV->use_empty()) {
1591       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1592                         << "all users and delete global!\n");
1593       GV->eraseFromParent();
1594       ++NumDeleted;
1595       return true;
1596     }
1597 
1598     // Fall through to the next check; see if we can optimize further.
1599     ++NumMarked;
1600   }
1601   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1602     const DataLayout &DL = GV->getParent()->getDataLayout();
1603     if (SRAGlobal(GV, DL))
1604       return true;
1605   }
1606   Value *StoredOnceValue = GS.getStoredOnceValue();
1607   if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) {
1608     // Avoid speculating constant expressions that might trap (div/rem).
1609     auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue);
1610     if (SOVConstant && SOVConstant->canTrap())
1611       return Changed;
1612 
1613     Function &StoreFn =
1614         const_cast<Function &>(*GS.StoredOnceStore->getFunction());
1615     // If the initial value for the global was an undef value, and if only
1616     // one other value was stored into it, we can just change the
1617     // initializer to be the stored value, then delete all stores to the
1618     // global.  This allows us to mark it constant.
1619     // This is restricted to address spaces that allow globals to have
1620     // initializers. NVPTX, for example, does not support initializers for
1621     // shared memory (AS 3).
1622     if (SOVConstant && SOVConstant->getType() == GV->getValueType() &&
1623         isa<UndefValue>(GV->getInitializer()) &&
1624         GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace(
1625             GV->getType()->getAddressSpace())) {
1626       // Change the initial value here.
1627       GV->setInitializer(SOVConstant);
1628 
1629       // Clean up any obviously simplifiable users now.
1630       CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1631 
1632       if (GV->use_empty()) {
1633         LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1634                           << "simplify all users and delete global!\n");
1635         GV->eraseFromParent();
1636         ++NumDeleted;
1637       }
1638       ++NumSubstitute;
1639       return true;
1640     }
1641 
1642     // Try to optimize globals based on the knowledge that only one value
1643     // (besides its initializer) is ever stored to the global.
1644     if (optimizeOnceStoredGlobal(GV, StoredOnceValue, GS.Ordering, DL, GetTLI))
1645       return true;
1646 
1647     // Otherwise, if the global was not a boolean, we can shrink it to be a
1648     // boolean.
1649     if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic) {
1650       if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1651         ++NumShrunkToBool;
1652         return true;
1653       }
1654     }
1655   }
1656 
1657   return Changed;
1658 }
1659 
1660 /// Analyze the specified global variable and optimize it if possible.  If we
1661 /// make a change, return true.
1662 static bool
1663 processGlobal(GlobalValue &GV,
1664               function_ref<TargetTransformInfo &(Function &)> GetTTI,
1665               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1666               function_ref<DominatorTree &(Function &)> LookupDomTree) {
1667   if (GV.getName().startswith("llvm."))
1668     return false;
1669 
1670   GlobalStatus GS;
1671 
1672   if (GlobalStatus::analyzeGlobal(&GV, GS))
1673     return false;
1674 
1675   bool Changed = false;
1676   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1677     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1678                                                : GlobalValue::UnnamedAddr::Local;
1679     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1680       GV.setUnnamedAddr(NewUnnamedAddr);
1681       NumUnnamed++;
1682       Changed = true;
1683     }
1684   }
1685 
1686   // Do more involved optimizations if the global is internal.
1687   if (!GV.hasLocalLinkage())
1688     return Changed;
1689 
1690   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1691   if (!GVar)
1692     return Changed;
1693 
1694   if (GVar->isConstant() || !GVar->hasInitializer())
1695     return Changed;
1696 
1697   return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) ||
1698          Changed;
1699 }
1700 
1701 /// Walk all of the direct calls of the specified function, changing them to
1702 /// FastCC.
1703 static void ChangeCalleesToFastCall(Function *F) {
1704   for (User *U : F->users()) {
1705     if (isa<BlockAddress>(U))
1706       continue;
1707     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
1708   }
1709 }
1710 
1711 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
1712                                Attribute::AttrKind A) {
1713   unsigned AttrIndex;
1714   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
1715     return Attrs.removeAttributeAtIndex(C, AttrIndex, A);
1716   return Attrs;
1717 }
1718 
1719 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
1720   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
1721   for (User *U : F->users()) {
1722     if (isa<BlockAddress>(U))
1723       continue;
1724     CallBase *CB = cast<CallBase>(U);
1725     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
1726   }
1727 }
1728 
1729 /// Return true if this is a calling convention that we'd like to change.  The
1730 /// idea here is that we don't want to mess with the convention if the user
1731 /// explicitly requested something with performance implications like coldcc,
1732 /// GHC, or anyregcc.
1733 static bool hasChangeableCC(Function *F) {
1734   CallingConv::ID CC = F->getCallingConv();
1735 
1736   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1737   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
1738     return false;
1739 
1740   // FIXME: Change CC for the whole chain of musttail calls when possible.
1741   //
1742   // Can't change CC of the function that either has musttail calls, or is a
1743   // musttail callee itself
1744   for (User *U : F->users()) {
1745     if (isa<BlockAddress>(U))
1746       continue;
1747     CallInst* CI = dyn_cast<CallInst>(U);
1748     if (!CI)
1749       continue;
1750 
1751     if (CI->isMustTailCall())
1752       return false;
1753   }
1754 
1755   for (BasicBlock &BB : *F)
1756     if (BB.getTerminatingMustTailCall())
1757       return false;
1758 
1759   return true;
1760 }
1761 
1762 /// Return true if the block containing the call site has a BlockFrequency of
1763 /// less than ColdCCRelFreq% of the entry block.
1764 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
1765   const BranchProbability ColdProb(ColdCCRelFreq, 100);
1766   auto *CallSiteBB = CB.getParent();
1767   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
1768   auto CallerEntryFreq =
1769       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
1770   return CallSiteFreq < CallerEntryFreq * ColdProb;
1771 }
1772 
1773 // This function checks if the input function F is cold at all call sites. It
1774 // also looks each call site's containing function, returning false if the
1775 // caller function contains other non cold calls. The input vector AllCallsCold
1776 // contains a list of functions that only have call sites in cold blocks.
1777 static bool
1778 isValidCandidateForColdCC(Function &F,
1779                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1780                           const std::vector<Function *> &AllCallsCold) {
1781 
1782   if (F.user_empty())
1783     return false;
1784 
1785   for (User *U : F.users()) {
1786     if (isa<BlockAddress>(U))
1787       continue;
1788 
1789     CallBase &CB = cast<CallBase>(*U);
1790     Function *CallerFunc = CB.getParent()->getParent();
1791     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
1792     if (!isColdCallSite(CB, CallerBFI))
1793       return false;
1794     if (!llvm::is_contained(AllCallsCold, CallerFunc))
1795       return false;
1796   }
1797   return true;
1798 }
1799 
1800 static void changeCallSitesToColdCC(Function *F) {
1801   for (User *U : F->users()) {
1802     if (isa<BlockAddress>(U))
1803       continue;
1804     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
1805   }
1806 }
1807 
1808 // This function iterates over all the call instructions in the input Function
1809 // and checks that all call sites are in cold blocks and are allowed to use the
1810 // coldcc calling convention.
1811 static bool
1812 hasOnlyColdCalls(Function &F,
1813                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
1814   for (BasicBlock &BB : F) {
1815     for (Instruction &I : BB) {
1816       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1817         // Skip over isline asm instructions since they aren't function calls.
1818         if (CI->isInlineAsm())
1819           continue;
1820         Function *CalledFn = CI->getCalledFunction();
1821         if (!CalledFn)
1822           return false;
1823         if (!CalledFn->hasLocalLinkage())
1824           return false;
1825         // Skip over instrinsics since they won't remain as function calls.
1826         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
1827           continue;
1828         // Check if it's valid to use coldcc calling convention.
1829         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
1830             CalledFn->hasAddressTaken())
1831           return false;
1832         BlockFrequencyInfo &CallerBFI = GetBFI(F);
1833         if (!isColdCallSite(*CI, CallerBFI))
1834           return false;
1835       }
1836     }
1837   }
1838   return true;
1839 }
1840 
1841 static bool hasMustTailCallers(Function *F) {
1842   for (User *U : F->users()) {
1843     CallBase *CB = dyn_cast<CallBase>(U);
1844     if (!CB) {
1845       assert(isa<BlockAddress>(U) &&
1846              "Expected either CallBase or BlockAddress");
1847       continue;
1848     }
1849     if (CB->isMustTailCall())
1850       return true;
1851   }
1852   return false;
1853 }
1854 
1855 static bool hasInvokeCallers(Function *F) {
1856   for (User *U : F->users())
1857     if (isa<InvokeInst>(U))
1858       return true;
1859   return false;
1860 }
1861 
1862 static void RemovePreallocated(Function *F) {
1863   RemoveAttribute(F, Attribute::Preallocated);
1864 
1865   auto *M = F->getParent();
1866 
1867   IRBuilder<> Builder(M->getContext());
1868 
1869   // Cannot modify users() while iterating over it, so make a copy.
1870   SmallVector<User *, 4> PreallocatedCalls(F->users());
1871   for (User *U : PreallocatedCalls) {
1872     CallBase *CB = dyn_cast<CallBase>(U);
1873     if (!CB)
1874       continue;
1875 
1876     assert(
1877         !CB->isMustTailCall() &&
1878         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
1879     // Create copy of call without "preallocated" operand bundle.
1880     SmallVector<OperandBundleDef, 1> OpBundles;
1881     CB->getOperandBundlesAsDefs(OpBundles);
1882     CallBase *PreallocatedSetup = nullptr;
1883     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
1884       if (It->getTag() == "preallocated") {
1885         PreallocatedSetup = cast<CallBase>(*It->input_begin());
1886         OpBundles.erase(It);
1887         break;
1888       }
1889     }
1890     assert(PreallocatedSetup && "Did not find preallocated bundle");
1891     uint64_t ArgCount =
1892         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
1893 
1894     assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
1895            "Unknown indirect call type");
1896     CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
1897     CB->replaceAllUsesWith(NewCB);
1898     NewCB->takeName(CB);
1899     CB->eraseFromParent();
1900 
1901     Builder.SetInsertPoint(PreallocatedSetup);
1902     auto *StackSave =
1903         Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
1904 
1905     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
1906     Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
1907                        StackSave);
1908 
1909     // Replace @llvm.call.preallocated.arg() with alloca.
1910     // Cannot modify users() while iterating over it, so make a copy.
1911     // @llvm.call.preallocated.arg() can be called with the same index multiple
1912     // times. So for each @llvm.call.preallocated.arg(), we see if we have
1913     // already created a Value* for the index, and if not, create an alloca and
1914     // bitcast right after the @llvm.call.preallocated.setup() so that it
1915     // dominates all uses.
1916     SmallVector<Value *, 2> ArgAllocas(ArgCount);
1917     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
1918     for (auto *User : PreallocatedArgs) {
1919       auto *UseCall = cast<CallBase>(User);
1920       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
1921                  Intrinsic::call_preallocated_arg &&
1922              "preallocated token use was not a llvm.call.preallocated.arg");
1923       uint64_t AllocArgIndex =
1924           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
1925       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
1926       if (!AllocaReplacement) {
1927         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
1928         auto *ArgType =
1929             UseCall->getFnAttr(Attribute::Preallocated).getValueAsType();
1930         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
1931         Builder.SetInsertPoint(InsertBefore);
1932         auto *Alloca =
1933             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
1934         auto *BitCast = Builder.CreateBitCast(
1935             Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
1936         ArgAllocas[AllocArgIndex] = BitCast;
1937         AllocaReplacement = BitCast;
1938       }
1939 
1940       UseCall->replaceAllUsesWith(AllocaReplacement);
1941       UseCall->eraseFromParent();
1942     }
1943     // Remove @llvm.call.preallocated.setup().
1944     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
1945   }
1946 }
1947 
1948 static bool
1949 OptimizeFunctions(Module &M,
1950                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1951                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
1952                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1953                   function_ref<DominatorTree &(Function &)> LookupDomTree,
1954                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1955 
1956   bool Changed = false;
1957 
1958   std::vector<Function *> AllCallsCold;
1959   for (Function &F : llvm::make_early_inc_range(M))
1960     if (hasOnlyColdCalls(F, GetBFI))
1961       AllCallsCold.push_back(&F);
1962 
1963   // Optimize functions.
1964   for (Function &F : llvm::make_early_inc_range(M)) {
1965     // Don't perform global opt pass on naked functions; we don't want fast
1966     // calling conventions for naked functions.
1967     if (F.hasFnAttribute(Attribute::Naked))
1968       continue;
1969 
1970     // Functions without names cannot be referenced outside this module.
1971     if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage())
1972       F.setLinkage(GlobalValue::InternalLinkage);
1973 
1974     if (deleteIfDead(F, NotDiscardableComdats)) {
1975       Changed = true;
1976       continue;
1977     }
1978 
1979     // LLVM's definition of dominance allows instructions that are cyclic
1980     // in unreachable blocks, e.g.:
1981     // %pat = select i1 %condition, @global, i16* %pat
1982     // because any instruction dominates an instruction in a block that's
1983     // not reachable from entry.
1984     // So, remove unreachable blocks from the function, because a) there's
1985     // no point in analyzing them and b) GlobalOpt should otherwise grow
1986     // some more complicated logic to break these cycles.
1987     // Removing unreachable blocks might invalidate the dominator so we
1988     // recalculate it.
1989     if (!F.isDeclaration()) {
1990       if (removeUnreachableBlocks(F)) {
1991         auto &DT = LookupDomTree(F);
1992         DT.recalculate(F);
1993         Changed = true;
1994       }
1995     }
1996 
1997     Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree);
1998 
1999     if (!F.hasLocalLinkage())
2000       continue;
2001 
2002     // If we have an inalloca parameter that we can safely remove the
2003     // inalloca attribute from, do so. This unlocks optimizations that
2004     // wouldn't be safe in the presence of inalloca.
2005     // FIXME: We should also hoist alloca affected by this to the entry
2006     // block if possible.
2007     if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2008         !F.hasAddressTaken() && !hasMustTailCallers(&F)) {
2009       RemoveAttribute(&F, Attribute::InAlloca);
2010       Changed = true;
2011     }
2012 
2013     // FIXME: handle invokes
2014     // FIXME: handle musttail
2015     if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
2016       if (!F.hasAddressTaken() && !hasMustTailCallers(&F) &&
2017           !hasInvokeCallers(&F)) {
2018         RemovePreallocated(&F);
2019         Changed = true;
2020       }
2021       continue;
2022     }
2023 
2024     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
2025       NumInternalFunc++;
2026       TargetTransformInfo &TTI = GetTTI(F);
2027       // Change the calling convention to coldcc if either stress testing is
2028       // enabled or the target would like to use coldcc on functions which are
2029       // cold at all call sites and the callers contain no other non coldcc
2030       // calls.
2031       if (EnableColdCCStressTest ||
2032           (TTI.useColdCCForColdCall(F) &&
2033            isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) {
2034         F.setCallingConv(CallingConv::Cold);
2035         changeCallSitesToColdCC(&F);
2036         Changed = true;
2037         NumColdCC++;
2038       }
2039     }
2040 
2041     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
2042       // If this function has a calling convention worth changing, is not a
2043       // varargs function, and is only called directly, promote it to use the
2044       // Fast calling convention.
2045       F.setCallingConv(CallingConv::Fast);
2046       ChangeCalleesToFastCall(&F);
2047       ++NumFastCallFns;
2048       Changed = true;
2049     }
2050 
2051     if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2052         !F.hasAddressTaken()) {
2053       // The function is not used by a trampoline intrinsic, so it is safe
2054       // to remove the 'nest' attribute.
2055       RemoveAttribute(&F, Attribute::Nest);
2056       ++NumNestRemoved;
2057       Changed = true;
2058     }
2059   }
2060   return Changed;
2061 }
2062 
2063 static bool
2064 OptimizeGlobalVars(Module &M,
2065                    function_ref<TargetTransformInfo &(Function &)> GetTTI,
2066                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2067                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2068                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2069   bool Changed = false;
2070 
2071   for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) {
2072     // Global variables without names cannot be referenced outside this module.
2073     if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage())
2074       GV.setLinkage(GlobalValue::InternalLinkage);
2075     // Simplify the initializer.
2076     if (GV.hasInitializer())
2077       if (auto *C = dyn_cast<Constant>(GV.getInitializer())) {
2078         auto &DL = M.getDataLayout();
2079         // TLI is not used in the case of a Constant, so use default nullptr
2080         // for that optional parameter, since we don't have a Function to
2081         // provide GetTLI anyway.
2082         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2083         if (New != C)
2084           GV.setInitializer(New);
2085       }
2086 
2087     if (deleteIfDead(GV, NotDiscardableComdats)) {
2088       Changed = true;
2089       continue;
2090     }
2091 
2092     Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree);
2093   }
2094   return Changed;
2095 }
2096 
2097 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2098 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2099 /// GEP operands of Addr [0, OpNo) have been stepped into.
2100 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2101                                    ConstantExpr *Addr, unsigned OpNo) {
2102   // Base case of the recursion.
2103   if (OpNo == Addr->getNumOperands()) {
2104     assert(Val->getType() == Init->getType() && "Type mismatch!");
2105     return Val;
2106   }
2107 
2108   SmallVector<Constant*, 32> Elts;
2109   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2110     // Break up the constant into its elements.
2111     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2112       Elts.push_back(Init->getAggregateElement(i));
2113 
2114     // Replace the element that we are supposed to.
2115     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2116     unsigned Idx = CU->getZExtValue();
2117     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2118     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2119 
2120     // Return the modified struct.
2121     return ConstantStruct::get(STy, Elts);
2122   }
2123 
2124   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2125   uint64_t NumElts;
2126   if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType()))
2127     NumElts = ATy->getNumElements();
2128   else
2129     NumElts = cast<FixedVectorType>(Init->getType())->getNumElements();
2130 
2131   // Break up the array into elements.
2132   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2133     Elts.push_back(Init->getAggregateElement(i));
2134 
2135   assert(CI->getZExtValue() < NumElts);
2136   Elts[CI->getZExtValue()] =
2137     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2138 
2139   if (Init->getType()->isArrayTy())
2140     return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts);
2141   return ConstantVector::get(Elts);
2142 }
2143 
2144 /// We have decided that Addr (which satisfies the predicate
2145 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2146 static void CommitValueTo(Constant *Val, Constant *Addr) {
2147   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2148     assert(GV->hasInitializer());
2149     GV->setInitializer(Val);
2150     return;
2151   }
2152 
2153   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2154   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2155   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2156 }
2157 
2158 /// Given a map of address -> value, where addresses are expected to be some form
2159 /// of either a global or a constant GEP, set the initializer for the address to
2160 /// be the value. This performs mostly the same function as CommitValueTo()
2161 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2162 /// case where the set of addresses are GEPs sharing the same underlying global,
2163 /// processing the GEPs in batches rather than individually.
2164 ///
2165 /// To give an example, consider the following C++ code adapted from the clang
2166 /// regression tests:
2167 /// struct S {
2168 ///  int n = 10;
2169 ///  int m = 2 * n;
2170 ///  S(int a) : n(a) {}
2171 /// };
2172 ///
2173 /// template<typename T>
2174 /// struct U {
2175 ///  T *r = &q;
2176 ///  T q = 42;
2177 ///  U *p = this;
2178 /// };
2179 ///
2180 /// U<S> e;
2181 ///
2182 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2183 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2184 /// members. This batch algorithm will simply use general CommitValueTo() method
2185 /// to handle the complex nested S struct initialization of 'q', before
2186 /// processing the outermost members in a single batch. Using CommitValueTo() to
2187 /// handle member in the outer struct is inefficient when the struct/array is
2188 /// very large as we end up creating and destroy constant arrays for each
2189 /// initialization.
2190 /// For the above case, we expect the following IR to be generated:
2191 ///
2192 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2193 /// %struct.S = type { i32, i32 }
2194 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2195 ///                                                  i64 0, i32 1),
2196 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2197 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2198 /// constant expression, while the other two elements of @e are "simple".
2199 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2200   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2201   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2202   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2203   SimpleCEs.reserve(Mem.size());
2204 
2205   for (const auto &I : Mem) {
2206     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2207       GVs.push_back(std::make_pair(GV, I.second));
2208     } else {
2209       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2210       // We don't handle the deeply recursive case using the batch method.
2211       if (GEP->getNumOperands() > 3)
2212         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2213       else
2214         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2215     }
2216   }
2217 
2218   // The algorithm below doesn't handle cases like nested structs, so use the
2219   // slower fully general method if we have to.
2220   for (auto ComplexCE : ComplexCEs)
2221     CommitValueTo(ComplexCE.second, ComplexCE.first);
2222 
2223   for (auto GVPair : GVs) {
2224     assert(GVPair.first->hasInitializer());
2225     GVPair.first->setInitializer(GVPair.second);
2226   }
2227 
2228   if (SimpleCEs.empty())
2229     return;
2230 
2231   // We cache a single global's initializer elements in the case where the
2232   // subsequent address/val pair uses the same one. This avoids throwing away and
2233   // rebuilding the constant struct/vector/array just because one element is
2234   // modified at a time.
2235   SmallVector<Constant *, 32> Elts;
2236   Elts.reserve(SimpleCEs.size());
2237   GlobalVariable *CurrentGV = nullptr;
2238 
2239   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2240     Constant *Init = GV->getInitializer();
2241     Type *Ty = Init->getType();
2242     if (Update) {
2243       if (CurrentGV) {
2244         assert(CurrentGV && "Expected a GV to commit to!");
2245         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2246         // We have a valid cache that needs to be committed.
2247         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2248           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2249         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2250           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2251         else
2252           CurrentGV->setInitializer(ConstantVector::get(Elts));
2253       }
2254       if (CurrentGV == GV)
2255         return;
2256       // Need to clear and set up cache for new initializer.
2257       CurrentGV = GV;
2258       Elts.clear();
2259       unsigned NumElts;
2260       if (auto *STy = dyn_cast<StructType>(Ty))
2261         NumElts = STy->getNumElements();
2262       else if (auto *ATy = dyn_cast<ArrayType>(Ty))
2263         NumElts = ATy->getNumElements();
2264       else
2265         NumElts = cast<FixedVectorType>(Ty)->getNumElements();
2266       for (unsigned i = 0, e = NumElts; i != e; ++i)
2267         Elts.push_back(Init->getAggregateElement(i));
2268     }
2269   };
2270 
2271   for (auto CEPair : SimpleCEs) {
2272     ConstantExpr *GEP = CEPair.first;
2273     Constant *Val = CEPair.second;
2274 
2275     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2276     commitAndSetupCache(GV, GV != CurrentGV);
2277     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2278     Elts[CI->getZExtValue()] = Val;
2279   }
2280   // The last initializer in the list needs to be committed, others
2281   // will be committed on a new initializer being processed.
2282   commitAndSetupCache(CurrentGV, true);
2283 }
2284 
2285 /// Evaluate static constructors in the function, if we can.  Return true if we
2286 /// can, false otherwise.
2287 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2288                                       TargetLibraryInfo *TLI) {
2289   // Call the function.
2290   Evaluator Eval(DL, TLI);
2291   Constant *RetValDummy;
2292   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2293                                            SmallVector<Constant*, 0>());
2294 
2295   if (EvalSuccess) {
2296     ++NumCtorsEvaluated;
2297 
2298     // We succeeded at evaluation: commit the result.
2299     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2300                       << F->getName() << "' to "
2301                       << Eval.getMutatedMemory().size() << " stores.\n");
2302     BatchCommitValueTo(Eval.getMutatedMemory());
2303     for (GlobalVariable *GV : Eval.getInvariants())
2304       GV->setConstant(true);
2305   }
2306 
2307   return EvalSuccess;
2308 }
2309 
2310 static int compareNames(Constant *const *A, Constant *const *B) {
2311   Value *AStripped = (*A)->stripPointerCasts();
2312   Value *BStripped = (*B)->stripPointerCasts();
2313   return AStripped->getName().compare(BStripped->getName());
2314 }
2315 
2316 static void setUsedInitializer(GlobalVariable &V,
2317                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2318   if (Init.empty()) {
2319     V.eraseFromParent();
2320     return;
2321   }
2322 
2323   // Type of pointer to the array of pointers.
2324   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2325 
2326   SmallVector<Constant *, 8> UsedArray;
2327   for (GlobalValue *GV : Init) {
2328     Constant *Cast
2329       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2330     UsedArray.push_back(Cast);
2331   }
2332   // Sort to get deterministic order.
2333   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2334   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2335 
2336   Module *M = V.getParent();
2337   V.removeFromParent();
2338   GlobalVariable *NV =
2339       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2340                          ConstantArray::get(ATy, UsedArray), "");
2341   NV->takeName(&V);
2342   NV->setSection("llvm.metadata");
2343   delete &V;
2344 }
2345 
2346 namespace {
2347 
2348 /// An easy to access representation of llvm.used and llvm.compiler.used.
2349 class LLVMUsed {
2350   SmallPtrSet<GlobalValue *, 4> Used;
2351   SmallPtrSet<GlobalValue *, 4> CompilerUsed;
2352   GlobalVariable *UsedV;
2353   GlobalVariable *CompilerUsedV;
2354 
2355 public:
2356   LLVMUsed(Module &M) {
2357     SmallVector<GlobalValue *, 4> Vec;
2358     UsedV = collectUsedGlobalVariables(M, Vec, false);
2359     Used = {Vec.begin(), Vec.end()};
2360     Vec.clear();
2361     CompilerUsedV = collectUsedGlobalVariables(M, Vec, true);
2362     CompilerUsed = {Vec.begin(), Vec.end()};
2363   }
2364 
2365   using iterator = SmallPtrSet<GlobalValue *, 4>::iterator;
2366   using used_iterator_range = iterator_range<iterator>;
2367 
2368   iterator usedBegin() { return Used.begin(); }
2369   iterator usedEnd() { return Used.end(); }
2370 
2371   used_iterator_range used() {
2372     return used_iterator_range(usedBegin(), usedEnd());
2373   }
2374 
2375   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2376   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2377 
2378   used_iterator_range compilerUsed() {
2379     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2380   }
2381 
2382   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2383 
2384   bool compilerUsedCount(GlobalValue *GV) const {
2385     return CompilerUsed.count(GV);
2386   }
2387 
2388   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2389   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2390   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2391 
2392   bool compilerUsedInsert(GlobalValue *GV) {
2393     return CompilerUsed.insert(GV).second;
2394   }
2395 
2396   void syncVariablesAndSets() {
2397     if (UsedV)
2398       setUsedInitializer(*UsedV, Used);
2399     if (CompilerUsedV)
2400       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2401   }
2402 };
2403 
2404 } // end anonymous namespace
2405 
2406 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2407   if (GA.use_empty()) // No use at all.
2408     return false;
2409 
2410   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2411          "We should have removed the duplicated "
2412          "element from llvm.compiler.used");
2413   if (!GA.hasOneUse())
2414     // Strictly more than one use. So at least one is not in llvm.used and
2415     // llvm.compiler.used.
2416     return true;
2417 
2418   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2419   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2420 }
2421 
2422 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2423                                                const LLVMUsed &U) {
2424   unsigned N = 2;
2425   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2426          "We should have removed the duplicated "
2427          "element from llvm.compiler.used");
2428   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2429     ++N;
2430   return V.hasNUsesOrMore(N);
2431 }
2432 
2433 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2434   if (!GA.hasLocalLinkage())
2435     return true;
2436 
2437   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2438 }
2439 
2440 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2441                              bool &RenameTarget) {
2442   RenameTarget = false;
2443   bool Ret = false;
2444   if (hasUseOtherThanLLVMUsed(GA, U))
2445     Ret = true;
2446 
2447   // If the alias is externally visible, we may still be able to simplify it.
2448   if (!mayHaveOtherReferences(GA, U))
2449     return Ret;
2450 
2451   // If the aliasee has internal linkage, give it the name and linkage
2452   // of the alias, and delete the alias.  This turns:
2453   //   define internal ... @f(...)
2454   //   @a = alias ... @f
2455   // into:
2456   //   define ... @a(...)
2457   Constant *Aliasee = GA.getAliasee();
2458   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2459   if (!Target->hasLocalLinkage())
2460     return Ret;
2461 
2462   // Do not perform the transform if multiple aliases potentially target the
2463   // aliasee. This check also ensures that it is safe to replace the section
2464   // and other attributes of the aliasee with those of the alias.
2465   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2466     return Ret;
2467 
2468   RenameTarget = true;
2469   return true;
2470 }
2471 
2472 static bool
2473 OptimizeGlobalAliases(Module &M,
2474                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2475   bool Changed = false;
2476   LLVMUsed Used(M);
2477 
2478   for (GlobalValue *GV : Used.used())
2479     Used.compilerUsedErase(GV);
2480 
2481   for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) {
2482     // Aliases without names cannot be referenced outside this module.
2483     if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage())
2484       J.setLinkage(GlobalValue::InternalLinkage);
2485 
2486     if (deleteIfDead(J, NotDiscardableComdats)) {
2487       Changed = true;
2488       continue;
2489     }
2490 
2491     // If the alias can change at link time, nothing can be done - bail out.
2492     if (J.isInterposable())
2493       continue;
2494 
2495     Constant *Aliasee = J.getAliasee();
2496     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2497     // We can't trivially replace the alias with the aliasee if the aliasee is
2498     // non-trivial in some way. We also can't replace the alias with the aliasee
2499     // if the aliasee is interposable because aliases point to the local
2500     // definition.
2501     // TODO: Try to handle non-zero GEPs of local aliasees.
2502     if (!Target || Target->isInterposable())
2503       continue;
2504     Target->removeDeadConstantUsers();
2505 
2506     // Make all users of the alias use the aliasee instead.
2507     bool RenameTarget;
2508     if (!hasUsesToReplace(J, Used, RenameTarget))
2509       continue;
2510 
2511     J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType()));
2512     ++NumAliasesResolved;
2513     Changed = true;
2514 
2515     if (RenameTarget) {
2516       // Give the aliasee the name, linkage and other attributes of the alias.
2517       Target->takeName(&J);
2518       Target->setLinkage(J.getLinkage());
2519       Target->setDSOLocal(J.isDSOLocal());
2520       Target->setVisibility(J.getVisibility());
2521       Target->setDLLStorageClass(J.getDLLStorageClass());
2522 
2523       if (Used.usedErase(&J))
2524         Used.usedInsert(Target);
2525 
2526       if (Used.compilerUsedErase(&J))
2527         Used.compilerUsedInsert(Target);
2528     } else if (mayHaveOtherReferences(J, Used))
2529       continue;
2530 
2531     // Delete the alias.
2532     M.getAliasList().erase(&J);
2533     ++NumAliasesRemoved;
2534     Changed = true;
2535   }
2536 
2537   Used.syncVariablesAndSets();
2538 
2539   return Changed;
2540 }
2541 
2542 static Function *
2543 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2544   // Hack to get a default TLI before we have actual Function.
2545   auto FuncIter = M.begin();
2546   if (FuncIter == M.end())
2547     return nullptr;
2548   auto *TLI = &GetTLI(*FuncIter);
2549 
2550   LibFunc F = LibFunc_cxa_atexit;
2551   if (!TLI->has(F))
2552     return nullptr;
2553 
2554   Function *Fn = M.getFunction(TLI->getName(F));
2555   if (!Fn)
2556     return nullptr;
2557 
2558   // Now get the actual TLI for Fn.
2559   TLI = &GetTLI(*Fn);
2560 
2561   // Make sure that the function has the correct prototype.
2562   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2563     return nullptr;
2564 
2565   return Fn;
2566 }
2567 
2568 /// Returns whether the given function is an empty C++ destructor and can
2569 /// therefore be eliminated.
2570 /// Note that we assume that other optimization passes have already simplified
2571 /// the code so we simply check for 'ret'.
2572 static bool cxxDtorIsEmpty(const Function &Fn) {
2573   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2574   // nounwind, but that doesn't seem worth doing.
2575   if (Fn.isDeclaration())
2576     return false;
2577 
2578   for (auto &I : Fn.getEntryBlock()) {
2579     if (isa<DbgInfoIntrinsic>(I))
2580       continue;
2581     if (isa<ReturnInst>(I))
2582       return true;
2583     break;
2584   }
2585   return false;
2586 }
2587 
2588 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2589   /// Itanium C++ ABI p3.3.5:
2590   ///
2591   ///   After constructing a global (or local static) object, that will require
2592   ///   destruction on exit, a termination function is registered as follows:
2593   ///
2594   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2595   ///
2596   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2597   ///   call f(p) when DSO d is unloaded, before all such termination calls
2598   ///   registered before this one. It returns zero if registration is
2599   ///   successful, nonzero on failure.
2600 
2601   // This pass will look for calls to __cxa_atexit where the function is trivial
2602   // and remove them.
2603   bool Changed = false;
2604 
2605   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2606        I != E;) {
2607     // We're only interested in calls. Theoretically, we could handle invoke
2608     // instructions as well, but neither llvm-gcc nor clang generate invokes
2609     // to __cxa_atexit.
2610     CallInst *CI = dyn_cast<CallInst>(*I++);
2611     if (!CI)
2612       continue;
2613 
2614     Function *DtorFn =
2615       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2616     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2617       continue;
2618 
2619     // Just remove the call.
2620     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2621     CI->eraseFromParent();
2622 
2623     ++NumCXXDtorsRemoved;
2624 
2625     Changed |= true;
2626   }
2627 
2628   return Changed;
2629 }
2630 
2631 static bool optimizeGlobalsInModule(
2632     Module &M, const DataLayout &DL,
2633     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2634     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2635     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2636     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2637   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2638   bool Changed = false;
2639   bool LocalChange = true;
2640   while (LocalChange) {
2641     LocalChange = false;
2642 
2643     NotDiscardableComdats.clear();
2644     for (const GlobalVariable &GV : M.globals())
2645       if (const Comdat *C = GV.getComdat())
2646         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2647           NotDiscardableComdats.insert(C);
2648     for (Function &F : M)
2649       if (const Comdat *C = F.getComdat())
2650         if (!F.isDefTriviallyDead())
2651           NotDiscardableComdats.insert(C);
2652     for (GlobalAlias &GA : M.aliases())
2653       if (const Comdat *C = GA.getComdat())
2654         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2655           NotDiscardableComdats.insert(C);
2656 
2657     // Delete functions that are trivially dead, ccc -> fastcc
2658     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2659                                      NotDiscardableComdats);
2660 
2661     // Optimize global_ctors list.
2662     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2663       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2664     });
2665 
2666     // Optimize non-address-taken globals.
2667     LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree,
2668                                       NotDiscardableComdats);
2669 
2670     // Resolve aliases, when possible.
2671     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2672 
2673     // Try to remove trivial global destructors if they are not removed
2674     // already.
2675     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2676     if (CXAAtExitFn)
2677       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2678 
2679     Changed |= LocalChange;
2680   }
2681 
2682   // TODO: Move all global ctors functions to the end of the module for code
2683   // layout.
2684 
2685   return Changed;
2686 }
2687 
2688 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2689     auto &DL = M.getDataLayout();
2690     auto &FAM =
2691         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2692     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2693       return FAM.getResult<DominatorTreeAnalysis>(F);
2694     };
2695     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2696       return FAM.getResult<TargetLibraryAnalysis>(F);
2697     };
2698     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2699       return FAM.getResult<TargetIRAnalysis>(F);
2700     };
2701 
2702     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2703       return FAM.getResult<BlockFrequencyAnalysis>(F);
2704     };
2705 
2706     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
2707       return PreservedAnalyses::all();
2708     return PreservedAnalyses::none();
2709 }
2710 
2711 namespace {
2712 
2713 struct GlobalOptLegacyPass : public ModulePass {
2714   static char ID; // Pass identification, replacement for typeid
2715 
2716   GlobalOptLegacyPass() : ModulePass(ID) {
2717     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2718   }
2719 
2720   bool runOnModule(Module &M) override {
2721     if (skipModule(M))
2722       return false;
2723 
2724     auto &DL = M.getDataLayout();
2725     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2726       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2727     };
2728     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
2729       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2730     };
2731     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2732       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2733     };
2734 
2735     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
2736       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
2737     };
2738 
2739     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
2740                                    LookupDomTree);
2741   }
2742 
2743   void getAnalysisUsage(AnalysisUsage &AU) const override {
2744     AU.addRequired<TargetLibraryInfoWrapperPass>();
2745     AU.addRequired<TargetTransformInfoWrapperPass>();
2746     AU.addRequired<DominatorTreeWrapperPass>();
2747     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2748   }
2749 };
2750 
2751 } // end anonymous namespace
2752 
2753 char GlobalOptLegacyPass::ID = 0;
2754 
2755 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2756                       "Global Variable Optimizer", false, false)
2757 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2758 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2759 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
2760 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2761 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2762                     "Global Variable Optimizer", false, false)
2763 
2764 ModulePass *llvm::createGlobalOptimizerPass() {
2765   return new GlobalOptLegacyPass();
2766 }
2767