1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/BinaryFormat/Dwarf.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "globalopt"
77 
78 STATISTIC(NumMarked    , "Number of globals marked constant");
79 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83 STATISTIC(NumDeleted   , "Number of globals deleted");
84 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
85 STATISTIC(NumLocalized , "Number of globals localized");
86 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
87 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93 STATISTIC(NumInternalFunc, "Number of internal functions");
94 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 
96 static cl::opt<bool>
97     EnableColdCCStressTest("enable-coldcc-stress-test",
98                            cl::desc("Enable stress test of coldcc by adding "
99                                     "calling conv to all internal functions."),
100                            cl::init(false), cl::Hidden);
101 
102 static cl::opt<int> ColdCCRelFreq(
103     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
104     cl::desc(
105         "Maximum block frequency, expressed as a percentage of caller's "
106         "entry frequency, for a call site to be considered cold for enabling"
107         "coldcc"));
108 
109 /// Is this global variable possibly used by a leak checker as a root?  If so,
110 /// we might not really want to eliminate the stores to it.
111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112   // A global variable is a root if it is a pointer, or could plausibly contain
113   // a pointer.  There are two challenges; one is that we could have a struct
114   // the has an inner member which is a pointer.  We recurse through the type to
115   // detect these (up to a point).  The other is that we may actually be a union
116   // of a pointer and another type, and so our LLVM type is an integer which
117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118   // potentially contained here.
119 
120   if (GV->hasPrivateLinkage())
121     return false;
122 
123   SmallVector<Type *, 4> Types;
124   Types.push_back(GV->getValueType());
125 
126   unsigned Limit = 20;
127   do {
128     Type *Ty = Types.pop_back_val();
129     switch (Ty->getTypeID()) {
130       default: break;
131       case Type::PointerTyID: return true;
132       case Type::ArrayTyID:
133       case Type::VectorTyID: {
134         SequentialType *STy = cast<SequentialType>(Ty);
135         Types.push_back(STy->getElementType());
136         break;
137       }
138       case Type::StructTyID: {
139         StructType *STy = cast<StructType>(Ty);
140         if (STy->isOpaque()) return true;
141         for (StructType::element_iterator I = STy->element_begin(),
142                  E = STy->element_end(); I != E; ++I) {
143           Type *InnerTy = *I;
144           if (isa<PointerType>(InnerTy)) return true;
145           if (isa<StructType>(InnerTy) || isa<SequentialType>(InnerTy))
146             Types.push_back(InnerTy);
147         }
148         break;
149       }
150     }
151     if (--Limit == 0) return true;
152   } while (!Types.empty());
153   return false;
154 }
155 
156 /// Given a value that is stored to a global but never read, determine whether
157 /// it's safe to remove the store and the chain of computation that feeds the
158 /// store.
159 static bool IsSafeComputationToRemove(
160     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
161   do {
162     if (isa<Constant>(V))
163       return true;
164     if (!V->hasOneUse())
165       return false;
166     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
167         isa<GlobalValue>(V))
168       return false;
169     if (isAllocationFn(V, GetTLI))
170       return true;
171 
172     Instruction *I = cast<Instruction>(V);
173     if (I->mayHaveSideEffects())
174       return false;
175     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
176       if (!GEP->hasAllConstantIndices())
177         return false;
178     } else if (I->getNumOperands() != 1) {
179       return false;
180     }
181 
182     V = I->getOperand(0);
183   } while (true);
184 }
185 
186 /// This GV is a pointer root.  Loop over all users of the global and clean up
187 /// any that obviously don't assign the global a value that isn't dynamically
188 /// allocated.
189 static bool
190 CleanupPointerRootUsers(GlobalVariable *GV,
191                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
192   // A brief explanation of leak checkers.  The goal is to find bugs where
193   // pointers are forgotten, causing an accumulating growth in memory
194   // usage over time.  The common strategy for leak checkers is to whitelist the
195   // memory pointed to by globals at exit.  This is popular because it also
196   // solves another problem where the main thread of a C++ program may shut down
197   // before other threads that are still expecting to use those globals.  To
198   // handle that case, we expect the program may create a singleton and never
199   // destroy it.
200 
201   bool Changed = false;
202 
203   // If Dead[n].first is the only use of a malloc result, we can delete its
204   // chain of computation and the store to the global in Dead[n].second.
205   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
206 
207   // Constants can't be pointers to dynamically allocated memory.
208   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
209        UI != E;) {
210     User *U = *UI++;
211     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
212       Value *V = SI->getValueOperand();
213       if (isa<Constant>(V)) {
214         Changed = true;
215         SI->eraseFromParent();
216       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
217         if (I->hasOneUse())
218           Dead.push_back(std::make_pair(I, SI));
219       }
220     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
221       if (isa<Constant>(MSI->getValue())) {
222         Changed = true;
223         MSI->eraseFromParent();
224       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
225         if (I->hasOneUse())
226           Dead.push_back(std::make_pair(I, MSI));
227       }
228     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
229       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
230       if (MemSrc && MemSrc->isConstant()) {
231         Changed = true;
232         MTI->eraseFromParent();
233       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
234         if (I->hasOneUse())
235           Dead.push_back(std::make_pair(I, MTI));
236       }
237     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
238       if (CE->use_empty()) {
239         CE->destroyConstant();
240         Changed = true;
241       }
242     } else if (Constant *C = dyn_cast<Constant>(U)) {
243       if (isSafeToDestroyConstant(C)) {
244         C->destroyConstant();
245         // This could have invalidated UI, start over from scratch.
246         Dead.clear();
247         CleanupPointerRootUsers(GV, GetTLI);
248         return true;
249       }
250     }
251   }
252 
253   for (int i = 0, e = Dead.size(); i != e; ++i) {
254     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
255       Dead[i].second->eraseFromParent();
256       Instruction *I = Dead[i].first;
257       do {
258         if (isAllocationFn(I, GetTLI))
259           break;
260         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
261         if (!J)
262           break;
263         I->eraseFromParent();
264         I = J;
265       } while (true);
266       I->eraseFromParent();
267     }
268   }
269 
270   return Changed;
271 }
272 
273 /// We just marked GV constant.  Loop over all users of the global, cleaning up
274 /// the obvious ones.  This is largely just a quick scan over the use list to
275 /// clean up the easy and obvious cruft.  This returns true if it made a change.
276 static bool CleanupConstantGlobalUsers(
277     Value *V, Constant *Init, const DataLayout &DL,
278     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
279   bool Changed = false;
280   // Note that we need to use a weak value handle for the worklist items. When
281   // we delete a constant array, we may also be holding pointer to one of its
282   // elements (or an element of one of its elements if we're dealing with an
283   // array of arrays) in the worklist.
284   SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
285   while (!WorkList.empty()) {
286     Value *UV = WorkList.pop_back_val();
287     if (!UV)
288       continue;
289 
290     User *U = cast<User>(UV);
291 
292     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
293       if (Init) {
294         // Replace the load with the initializer.
295         LI->replaceAllUsesWith(Init);
296         LI->eraseFromParent();
297         Changed = true;
298       }
299     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
300       // Store must be unreachable or storing Init into the global.
301       SI->eraseFromParent();
302       Changed = true;
303     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
304       if (CE->getOpcode() == Instruction::GetElementPtr) {
305         Constant *SubInit = nullptr;
306         if (Init)
307           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
308         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
309       } else if ((CE->getOpcode() == Instruction::BitCast &&
310                   CE->getType()->isPointerTy()) ||
311                  CE->getOpcode() == Instruction::AddrSpaceCast) {
312         // Pointer cast, delete any stores and memsets to the global.
313         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
314       }
315 
316       if (CE->use_empty()) {
317         CE->destroyConstant();
318         Changed = true;
319       }
320     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
321       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
322       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
323       // and will invalidate our notion of what Init is.
324       Constant *SubInit = nullptr;
325       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
326         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
327             ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
328         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
329           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
330 
331         // If the initializer is an all-null value and we have an inbounds GEP,
332         // we already know what the result of any load from that GEP is.
333         // TODO: Handle splats.
334         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
335           SubInit = Constant::getNullValue(GEP->getResultElementType());
336       }
337       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
338 
339       if (GEP->use_empty()) {
340         GEP->eraseFromParent();
341         Changed = true;
342       }
343     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
344       if (MI->getRawDest() == V) {
345         MI->eraseFromParent();
346         Changed = true;
347       }
348 
349     } else if (Constant *C = dyn_cast<Constant>(U)) {
350       // If we have a chain of dead constantexprs or other things dangling from
351       // us, and if they are all dead, nuke them without remorse.
352       if (isSafeToDestroyConstant(C)) {
353         C->destroyConstant();
354         CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
355         return true;
356       }
357     }
358   }
359   return Changed;
360 }
361 
362 static bool isSafeSROAElementUse(Value *V);
363 
364 /// Return true if the specified GEP is a safe user of a derived
365 /// expression from a global that we want to SROA.
366 static bool isSafeSROAGEP(User *U) {
367   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
368   // don't like < 3 operand CE's, and we don't like non-constant integer
369   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
370   // value of C.
371   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
372       !cast<Constant>(U->getOperand(1))->isNullValue())
373     return false;
374 
375   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
376   ++GEPI; // Skip over the pointer index.
377 
378   // For all other level we require that the indices are constant and inrange.
379   // In particular, consider: A[0][i].  We cannot know that the user isn't doing
380   // invalid things like allowing i to index an out-of-range subscript that
381   // accesses A[1]. This can also happen between different members of a struct
382   // in llvm IR.
383   for (; GEPI != E; ++GEPI) {
384     if (GEPI.isStruct())
385       continue;
386 
387     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
388     if (!IdxVal || (GEPI.isBoundedSequential() &&
389                     IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
390       return false;
391   }
392 
393   return llvm::all_of(U->users(),
394                       [](User *UU) { return isSafeSROAElementUse(UU); });
395 }
396 
397 /// Return true if the specified instruction is a safe user of a derived
398 /// expression from a global that we want to SROA.
399 static bool isSafeSROAElementUse(Value *V) {
400   // We might have a dead and dangling constant hanging off of here.
401   if (Constant *C = dyn_cast<Constant>(V))
402     return isSafeToDestroyConstant(C);
403 
404   Instruction *I = dyn_cast<Instruction>(V);
405   if (!I) return false;
406 
407   // Loads are ok.
408   if (isa<LoadInst>(I)) return true;
409 
410   // Stores *to* the pointer are ok.
411   if (StoreInst *SI = dyn_cast<StoreInst>(I))
412     return SI->getOperand(0) != V;
413 
414   // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
415   return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
416 }
417 
418 /// Look at all uses of the global and decide whether it is safe for us to
419 /// perform this transformation.
420 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
421   for (User *U : GV->users()) {
422     // The user of the global must be a GEP Inst or a ConstantExpr GEP.
423     if (!isa<GetElementPtrInst>(U) &&
424         (!isa<ConstantExpr>(U) ||
425         cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
426       return false;
427 
428     // Check the gep and it's users are safe to SRA
429     if (!isSafeSROAGEP(U))
430       return false;
431   }
432 
433   return true;
434 }
435 
436 static bool CanDoGlobalSRA(GlobalVariable *GV) {
437   Constant *Init = GV->getInitializer();
438 
439   if (isa<StructType>(Init->getType())) {
440     // nothing to check
441   } else if (SequentialType *STy = dyn_cast<SequentialType>(Init->getType())) {
442     if (STy->getNumElements() > 16 && GV->hasNUsesOrMore(16))
443       return false; // It's not worth it.
444   } else
445     return false;
446 
447   return GlobalUsersSafeToSRA(GV);
448 }
449 
450 /// Copy over the debug info for a variable to its SRA replacements.
451 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
452                                  uint64_t FragmentOffsetInBits,
453                                  uint64_t FragmentSizeInBits,
454                                  unsigned NumElements) {
455   SmallVector<DIGlobalVariableExpression *, 1> GVs;
456   GV->getDebugInfo(GVs);
457   for (auto *GVE : GVs) {
458     DIVariable *Var = GVE->getVariable();
459     DIExpression *Expr = GVE->getExpression();
460     if (NumElements > 1) {
461       if (auto E = DIExpression::createFragmentExpression(
462               Expr, FragmentOffsetInBits, FragmentSizeInBits))
463         Expr = *E;
464       else
465         return;
466     }
467     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
468     NGV->addDebugInfo(NGVE);
469   }
470 }
471 
472 /// Perform scalar replacement of aggregates on the specified global variable.
473 /// This opens the door for other optimizations by exposing the behavior of the
474 /// program in a more fine-grained way.  We have determined that this
475 /// transformation is safe already.  We return the first global variable we
476 /// insert so that the caller can reprocess it.
477 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
478   // Make sure this global only has simple uses that we can SRA.
479   if (!CanDoGlobalSRA(GV))
480     return nullptr;
481 
482   assert(GV->hasLocalLinkage());
483   Constant *Init = GV->getInitializer();
484   Type *Ty = Init->getType();
485 
486   std::map<unsigned, GlobalVariable *> NewGlobals;
487 
488   // Get the alignment of the global, either explicit or target-specific.
489   unsigned StartAlignment = GV->getAlignment();
490   if (StartAlignment == 0)
491     StartAlignment = DL.getABITypeAlignment(GV->getType());
492 
493   // Loop over all users and create replacement variables for used aggregate
494   // elements.
495   for (User *GEP : GV->users()) {
496     assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
497                                            Instruction::GetElementPtr) ||
498             isa<GetElementPtrInst>(GEP)) &&
499            "NonGEP CE's are not SRAable!");
500 
501     // Ignore the 1th operand, which has to be zero or else the program is quite
502     // broken (undefined).  Get the 2nd operand, which is the structure or array
503     // index.
504     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
505     if (NewGlobals.count(ElementIdx) == 1)
506       continue; // we`ve already created replacement variable
507     assert(NewGlobals.count(ElementIdx) == 0);
508 
509     Type *ElTy = nullptr;
510     if (StructType *STy = dyn_cast<StructType>(Ty))
511       ElTy = STy->getElementType(ElementIdx);
512     else if (SequentialType *STy = dyn_cast<SequentialType>(Ty))
513       ElTy = STy->getElementType();
514     assert(ElTy);
515 
516     Constant *In = Init->getAggregateElement(ElementIdx);
517     assert(In && "Couldn't get element of initializer?");
518 
519     GlobalVariable *NGV = new GlobalVariable(
520         ElTy, false, GlobalVariable::InternalLinkage, In,
521         GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
522         GV->getType()->getAddressSpace());
523     NGV->setExternallyInitialized(GV->isExternallyInitialized());
524     NGV->copyAttributesFrom(GV);
525     NewGlobals.insert(std::make_pair(ElementIdx, NGV));
526 
527     if (StructType *STy = dyn_cast<StructType>(Ty)) {
528       const StructLayout &Layout = *DL.getStructLayout(STy);
529 
530       // Calculate the known alignment of the field.  If the original aggregate
531       // had 256 byte alignment for example, something might depend on that:
532       // propagate info to each field.
533       uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
534       Align NewAlign(MinAlign(StartAlignment, FieldOffset));
535       if (NewAlign >
536           Align(DL.getABITypeAlignment(STy->getElementType(ElementIdx))))
537         NGV->setAlignment(NewAlign);
538 
539       // Copy over the debug info for the variable.
540       uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
541       uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
542       transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size,
543                            STy->getNumElements());
544     } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
545       uint64_t EltSize = DL.getTypeAllocSize(ElTy);
546       Align EltAlign(DL.getABITypeAlignment(ElTy));
547       uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
548 
549       // Calculate the known alignment of the field.  If the original aggregate
550       // had 256 byte alignment for example, something might depend on that:
551       // propagate info to each field.
552       Align NewAlign(MinAlign(StartAlignment, EltSize * ElementIdx));
553       if (NewAlign > EltAlign)
554         NGV->setAlignment(NewAlign);
555       transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
556                            FragmentSizeInBits, STy->getNumElements());
557     }
558   }
559 
560   if (NewGlobals.empty())
561     return nullptr;
562 
563   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
564   for (auto NewGlobalVar : NewGlobals)
565     Globals.push_back(NewGlobalVar.second);
566 
567   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
568 
569   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
570 
571   // Loop over all of the uses of the global, replacing the constantexpr geps,
572   // with smaller constantexpr geps or direct references.
573   while (!GV->use_empty()) {
574     User *GEP = GV->user_back();
575     assert(((isa<ConstantExpr>(GEP) &&
576              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
577             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
578 
579     // Ignore the 1th operand, which has to be zero or else the program is quite
580     // broken (undefined).  Get the 2nd operand, which is the structure or array
581     // index.
582     unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
583     assert(NewGlobals.count(ElementIdx) == 1);
584 
585     Value *NewPtr = NewGlobals[ElementIdx];
586     Type *NewTy = NewGlobals[ElementIdx]->getValueType();
587 
588     // Form a shorter GEP if needed.
589     if (GEP->getNumOperands() > 3) {
590       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
591         SmallVector<Constant*, 8> Idxs;
592         Idxs.push_back(NullInt);
593         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
594           Idxs.push_back(CE->getOperand(i));
595         NewPtr =
596             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
597       } else {
598         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
599         SmallVector<Value*, 8> Idxs;
600         Idxs.push_back(NullInt);
601         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
602           Idxs.push_back(GEPI->getOperand(i));
603         NewPtr = GetElementPtrInst::Create(
604             NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
605             GEPI);
606       }
607     }
608     GEP->replaceAllUsesWith(NewPtr);
609 
610     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
611       GEPI->eraseFromParent();
612     else
613       cast<ConstantExpr>(GEP)->destroyConstant();
614   }
615 
616   // Delete the old global, now that it is dead.
617   Globals.erase(GV);
618   ++NumSRA;
619 
620   assert(NewGlobals.size() > 0);
621   return NewGlobals.begin()->second;
622 }
623 
624 /// Return true if all users of the specified value will trap if the value is
625 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
626 /// reprocessing them.
627 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
628                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
629   for (const User *U : V->users()) {
630     if (const Instruction *I = dyn_cast<Instruction>(U)) {
631       // If null pointer is considered valid, then all uses are non-trapping.
632       // Non address-space 0 globals have already been pruned by the caller.
633       if (NullPointerIsDefined(I->getFunction()))
634         return false;
635     }
636     if (isa<LoadInst>(U)) {
637       // Will trap.
638     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
639       if (SI->getOperand(0) == V) {
640         //cerr << "NONTRAPPING USE: " << *U;
641         return false;  // Storing the value.
642       }
643     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
644       if (CI->getCalledValue() != V) {
645         //cerr << "NONTRAPPING USE: " << *U;
646         return false;  // Not calling the ptr
647       }
648     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
649       if (II->getCalledValue() != V) {
650         //cerr << "NONTRAPPING USE: " << *U;
651         return false;  // Not calling the ptr
652       }
653     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
654       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
655     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
656       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
657     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
658       // If we've already seen this phi node, ignore it, it has already been
659       // checked.
660       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
661         return false;
662     } else {
663       //cerr << "NONTRAPPING USE: " << *U;
664       return false;
665     }
666   }
667   return true;
668 }
669 
670 /// Return true if all uses of any loads from GV will trap if the loaded value
671 /// is null.  Note that this also permits comparisons of the loaded value
672 /// against null, as a special case.
673 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
674   for (const User *U : GV->users())
675     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
676       SmallPtrSet<const PHINode*, 8> PHIs;
677       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
678         return false;
679     } else if (isa<StoreInst>(U)) {
680       // Ignore stores to the global.
681     } else {
682       // We don't know or understand this user, bail out.
683       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
684       return false;
685     }
686   return true;
687 }
688 
689 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
690   bool Changed = false;
691   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
692     Instruction *I = cast<Instruction>(*UI++);
693     // Uses are non-trapping if null pointer is considered valid.
694     // Non address-space 0 globals are already pruned by the caller.
695     if (NullPointerIsDefined(I->getFunction()))
696       return false;
697     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
698       LI->setOperand(0, NewV);
699       Changed = true;
700     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
701       if (SI->getOperand(1) == V) {
702         SI->setOperand(1, NewV);
703         Changed = true;
704       }
705     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
706       CallSite CS(I);
707       if (CS.getCalledValue() == V) {
708         // Calling through the pointer!  Turn into a direct call, but be careful
709         // that the pointer is not also being passed as an argument.
710         CS.setCalledFunction(NewV);
711         Changed = true;
712         bool PassedAsArg = false;
713         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
714           if (CS.getArgument(i) == V) {
715             PassedAsArg = true;
716             CS.setArgument(i, NewV);
717           }
718 
719         if (PassedAsArg) {
720           // Being passed as an argument also.  Be careful to not invalidate UI!
721           UI = V->user_begin();
722         }
723       }
724     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
725       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
726                                 ConstantExpr::getCast(CI->getOpcode(),
727                                                       NewV, CI->getType()));
728       if (CI->use_empty()) {
729         Changed = true;
730         CI->eraseFromParent();
731       }
732     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
733       // Should handle GEP here.
734       SmallVector<Constant*, 8> Idxs;
735       Idxs.reserve(GEPI->getNumOperands()-1);
736       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
737            i != e; ++i)
738         if (Constant *C = dyn_cast<Constant>(*i))
739           Idxs.push_back(C);
740         else
741           break;
742       if (Idxs.size() == GEPI->getNumOperands()-1)
743         Changed |= OptimizeAwayTrappingUsesOfValue(
744             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
745                                                  NewV, Idxs));
746       if (GEPI->use_empty()) {
747         Changed = true;
748         GEPI->eraseFromParent();
749       }
750     }
751   }
752 
753   return Changed;
754 }
755 
756 /// The specified global has only one non-null value stored into it.  If there
757 /// are uses of the loaded value that would trap if the loaded value is
758 /// dynamically null, then we know that they cannot be reachable with a null
759 /// optimize away the load.
760 static bool OptimizeAwayTrappingUsesOfLoads(
761     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
762     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
763   bool Changed = false;
764 
765   // Keep track of whether we are able to remove all the uses of the global
766   // other than the store that defines it.
767   bool AllNonStoreUsesGone = true;
768 
769   // Replace all uses of loads with uses of uses of the stored value.
770   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
771     User *GlobalUser = *GUI++;
772     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
773       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
774       // If we were able to delete all uses of the loads
775       if (LI->use_empty()) {
776         LI->eraseFromParent();
777         Changed = true;
778       } else {
779         AllNonStoreUsesGone = false;
780       }
781     } else if (isa<StoreInst>(GlobalUser)) {
782       // Ignore the store that stores "LV" to the global.
783       assert(GlobalUser->getOperand(1) == GV &&
784              "Must be storing *to* the global");
785     } else {
786       AllNonStoreUsesGone = false;
787 
788       // If we get here we could have other crazy uses that are transitively
789       // loaded.
790       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
791               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
792               isa<BitCastInst>(GlobalUser) ||
793               isa<GetElementPtrInst>(GlobalUser)) &&
794              "Only expect load and stores!");
795     }
796   }
797 
798   if (Changed) {
799     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
800                       << "\n");
801     ++NumGlobUses;
802   }
803 
804   // If we nuked all of the loads, then none of the stores are needed either,
805   // nor is the global.
806   if (AllNonStoreUsesGone) {
807     if (isLeakCheckerRoot(GV)) {
808       Changed |= CleanupPointerRootUsers(GV, GetTLI);
809     } else {
810       Changed = true;
811       CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
812     }
813     if (GV->use_empty()) {
814       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
815       Changed = true;
816       GV->eraseFromParent();
817       ++NumDeleted;
818     }
819   }
820   return Changed;
821 }
822 
823 /// Walk the use list of V, constant folding all of the instructions that are
824 /// foldable.
825 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
826                                 TargetLibraryInfo *TLI) {
827   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
828     if (Instruction *I = dyn_cast<Instruction>(*UI++))
829       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
830         I->replaceAllUsesWith(NewC);
831 
832         // Advance UI to the next non-I use to avoid invalidating it!
833         // Instructions could multiply use V.
834         while (UI != E && *UI == I)
835           ++UI;
836         if (isInstructionTriviallyDead(I, TLI))
837           I->eraseFromParent();
838       }
839 }
840 
841 /// This function takes the specified global variable, and transforms the
842 /// program as if it always contained the result of the specified malloc.
843 /// Because it is always the result of the specified malloc, there is no reason
844 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
845 /// loads of GV as uses of the new global.
846 static GlobalVariable *
847 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
848                               ConstantInt *NElements, const DataLayout &DL,
849                               TargetLibraryInfo *TLI) {
850   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
851                     << '\n');
852 
853   Type *GlobalType;
854   if (NElements->getZExtValue() == 1)
855     GlobalType = AllocTy;
856   else
857     // If we have an array allocation, the global variable is of an array.
858     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
859 
860   // Create the new global variable.  The contents of the malloc'd memory is
861   // undefined, so initialize with an undef value.
862   GlobalVariable *NewGV = new GlobalVariable(
863       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
864       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
865       GV->getThreadLocalMode());
866 
867   // If there are bitcast users of the malloc (which is typical, usually we have
868   // a malloc + bitcast) then replace them with uses of the new global.  Update
869   // other users to use the global as well.
870   BitCastInst *TheBC = nullptr;
871   while (!CI->use_empty()) {
872     Instruction *User = cast<Instruction>(CI->user_back());
873     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
874       if (BCI->getType() == NewGV->getType()) {
875         BCI->replaceAllUsesWith(NewGV);
876         BCI->eraseFromParent();
877       } else {
878         BCI->setOperand(0, NewGV);
879       }
880     } else {
881       if (!TheBC)
882         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
883       User->replaceUsesOfWith(CI, TheBC);
884     }
885   }
886 
887   Constant *RepValue = NewGV;
888   if (NewGV->getType() != GV->getValueType())
889     RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
890 
891   // If there is a comparison against null, we will insert a global bool to
892   // keep track of whether the global was initialized yet or not.
893   GlobalVariable *InitBool =
894     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
895                        GlobalValue::InternalLinkage,
896                        ConstantInt::getFalse(GV->getContext()),
897                        GV->getName()+".init", GV->getThreadLocalMode());
898   bool InitBoolUsed = false;
899 
900   // Loop over all uses of GV, processing them in turn.
901   while (!GV->use_empty()) {
902     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
903       // The global is initialized when the store to it occurs.
904       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false,
905                     None, SI->getOrdering(), SI->getSyncScopeID(), SI);
906       SI->eraseFromParent();
907       continue;
908     }
909 
910     LoadInst *LI = cast<LoadInst>(GV->user_back());
911     while (!LI->use_empty()) {
912       Use &LoadUse = *LI->use_begin();
913       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
914       if (!ICI) {
915         LoadUse = RepValue;
916         continue;
917       }
918 
919       // Replace the cmp X, 0 with a use of the bool value.
920       // Sink the load to where the compare was, if atomic rules allow us to.
921       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
922                                InitBool->getName() + ".val", false, None,
923                                LI->getOrdering(), LI->getSyncScopeID(),
924                                LI->isUnordered() ? (Instruction *)ICI : LI);
925       InitBoolUsed = true;
926       switch (ICI->getPredicate()) {
927       default: llvm_unreachable("Unknown ICmp Predicate!");
928       case ICmpInst::ICMP_ULT:
929       case ICmpInst::ICMP_SLT:   // X < null -> always false
930         LV = ConstantInt::getFalse(GV->getContext());
931         break;
932       case ICmpInst::ICMP_ULE:
933       case ICmpInst::ICMP_SLE:
934       case ICmpInst::ICMP_EQ:
935         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
936         break;
937       case ICmpInst::ICMP_NE:
938       case ICmpInst::ICMP_UGE:
939       case ICmpInst::ICMP_SGE:
940       case ICmpInst::ICMP_UGT:
941       case ICmpInst::ICMP_SGT:
942         break;  // no change.
943       }
944       ICI->replaceAllUsesWith(LV);
945       ICI->eraseFromParent();
946     }
947     LI->eraseFromParent();
948   }
949 
950   // If the initialization boolean was used, insert it, otherwise delete it.
951   if (!InitBoolUsed) {
952     while (!InitBool->use_empty())  // Delete initializations
953       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
954     delete InitBool;
955   } else
956     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
957 
958   // Now the GV is dead, nuke it and the malloc..
959   GV->eraseFromParent();
960   CI->eraseFromParent();
961 
962   // To further other optimizations, loop over all users of NewGV and try to
963   // constant prop them.  This will promote GEP instructions with constant
964   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
965   ConstantPropUsersOf(NewGV, DL, TLI);
966   if (RepValue != NewGV)
967     ConstantPropUsersOf(RepValue, DL, TLI);
968 
969   return NewGV;
970 }
971 
972 /// Scan the use-list of V checking to make sure that there are no complex uses
973 /// of V.  We permit simple things like dereferencing the pointer, but not
974 /// storing through the address, unless it is to the specified global.
975 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
976                                                       const GlobalVariable *GV,
977                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
978   for (const User *U : V->users()) {
979     const Instruction *Inst = cast<Instruction>(U);
980 
981     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
982       continue; // Fine, ignore.
983     }
984 
985     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
986       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
987         return false;  // Storing the pointer itself... bad.
988       continue; // Otherwise, storing through it, or storing into GV... fine.
989     }
990 
991     // Must index into the array and into the struct.
992     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
993       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
994         return false;
995       continue;
996     }
997 
998     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
999       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1000       // cycles.
1001       if (PHIs.insert(PN).second)
1002         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1003           return false;
1004       continue;
1005     }
1006 
1007     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1008       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1009         return false;
1010       continue;
1011     }
1012 
1013     return false;
1014   }
1015   return true;
1016 }
1017 
1018 /// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1019 /// allocation into loads from the global and uses of the resultant pointer.
1020 /// Further, delete the store into GV.  This assumes that these value pass the
1021 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1022 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1023                                           GlobalVariable *GV) {
1024   while (!Alloc->use_empty()) {
1025     Instruction *U = cast<Instruction>(*Alloc->user_begin());
1026     Instruction *InsertPt = U;
1027     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1028       // If this is the store of the allocation into the global, remove it.
1029       if (SI->getOperand(1) == GV) {
1030         SI->eraseFromParent();
1031         continue;
1032       }
1033     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1034       // Insert the load in the corresponding predecessor, not right before the
1035       // PHI.
1036       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1037     } else if (isa<BitCastInst>(U)) {
1038       // Must be bitcast between the malloc and store to initialize the global.
1039       ReplaceUsesOfMallocWithGlobal(U, GV);
1040       U->eraseFromParent();
1041       continue;
1042     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1043       // If this is a "GEP bitcast" and the user is a store to the global, then
1044       // just process it as a bitcast.
1045       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1046         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1047           if (SI->getOperand(1) == GV) {
1048             // Must be bitcast GEP between the malloc and store to initialize
1049             // the global.
1050             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1051             GEPI->eraseFromParent();
1052             continue;
1053           }
1054     }
1055 
1056     // Insert a load from the global, and use it instead of the malloc.
1057     Value *NL =
1058         new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt);
1059     U->replaceUsesOfWith(Alloc, NL);
1060   }
1061 }
1062 
1063 /// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1064 /// perform heap SRA on.  This permits GEP's that index through the array and
1065 /// struct field, icmps of null, and PHIs.
1066 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1067                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1068                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1069   // We permit two users of the load: setcc comparing against the null
1070   // pointer, and a getelementptr of a specific form.
1071   for (const User *U : V->users()) {
1072     const Instruction *UI = cast<Instruction>(U);
1073 
1074     // Comparison against null is ok.
1075     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1076       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1077         return false;
1078       continue;
1079     }
1080 
1081     // getelementptr is also ok, but only a simple form.
1082     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1083       // Must index into the array and into the struct.
1084       if (GEPI->getNumOperands() < 3)
1085         return false;
1086 
1087       // Otherwise the GEP is ok.
1088       continue;
1089     }
1090 
1091     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1092       if (!LoadUsingPHIsPerLoad.insert(PN).second)
1093         // This means some phi nodes are dependent on each other.
1094         // Avoid infinite looping!
1095         return false;
1096       if (!LoadUsingPHIs.insert(PN).second)
1097         // If we have already analyzed this PHI, then it is safe.
1098         continue;
1099 
1100       // Make sure all uses of the PHI are simple enough to transform.
1101       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1102                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
1103         return false;
1104 
1105       continue;
1106     }
1107 
1108     // Otherwise we don't know what this is, not ok.
1109     return false;
1110   }
1111 
1112   return true;
1113 }
1114 
1115 /// If all users of values loaded from GV are simple enough to perform HeapSRA,
1116 /// return true.
1117 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1118                                                     Instruction *StoredVal) {
1119   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1120   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1121   for (const User *U : GV->users())
1122     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1123       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1124                                           LoadUsingPHIsPerLoad))
1125         return false;
1126       LoadUsingPHIsPerLoad.clear();
1127     }
1128 
1129   // If we reach here, we know that all uses of the loads and transitive uses
1130   // (through PHI nodes) are simple enough to transform.  However, we don't know
1131   // that all inputs the to the PHI nodes are in the same equivalence sets.
1132   // Check to verify that all operands of the PHIs are either PHIS that can be
1133   // transformed, loads from GV, or MI itself.
1134   for (const PHINode *PN : LoadUsingPHIs) {
1135     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1136       Value *InVal = PN->getIncomingValue(op);
1137 
1138       // PHI of the stored value itself is ok.
1139       if (InVal == StoredVal) continue;
1140 
1141       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1142         // One of the PHIs in our set is (optimistically) ok.
1143         if (LoadUsingPHIs.count(InPN))
1144           continue;
1145         return false;
1146       }
1147 
1148       // Load from GV is ok.
1149       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1150         if (LI->getOperand(0) == GV)
1151           continue;
1152 
1153       // UNDEF? NULL?
1154 
1155       // Anything else is rejected.
1156       return false;
1157     }
1158   }
1159 
1160   return true;
1161 }
1162 
1163 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1164               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1165                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1166   std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1167 
1168   if (FieldNo >= FieldVals.size())
1169     FieldVals.resize(FieldNo+1);
1170 
1171   // If we already have this value, just reuse the previously scalarized
1172   // version.
1173   if (Value *FieldVal = FieldVals[FieldNo])
1174     return FieldVal;
1175 
1176   // Depending on what instruction this is, we have several cases.
1177   Value *Result;
1178   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1179     // This is a scalarized version of the load from the global.  Just create
1180     // a new Load of the scalarized global.
1181     Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo,
1182                                 InsertedScalarizedValues, PHIsToRewrite);
1183     Result = new LoadInst(V->getType()->getPointerElementType(), V,
1184                           LI->getName() + ".f" + Twine(FieldNo), LI);
1185   } else {
1186     PHINode *PN = cast<PHINode>(V);
1187     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1188     // field.
1189 
1190     PointerType *PTy = cast<PointerType>(PN->getType());
1191     StructType *ST = cast<StructType>(PTy->getElementType());
1192 
1193     unsigned AS = PTy->getAddressSpace();
1194     PHINode *NewPN =
1195       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1196                      PN->getNumIncomingValues(),
1197                      PN->getName()+".f"+Twine(FieldNo), PN);
1198     Result = NewPN;
1199     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1200   }
1201 
1202   return FieldVals[FieldNo] = Result;
1203 }
1204 
1205 /// Given a load instruction and a value derived from the load, rewrite the
1206 /// derived value to use the HeapSRoA'd load.
1207 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1208               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1209                    std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1210   // If this is a comparison against null, handle it.
1211   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1212     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1213     // If we have a setcc of the loaded pointer, we can use a setcc of any
1214     // field.
1215     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1216                                    InsertedScalarizedValues, PHIsToRewrite);
1217 
1218     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1219                               Constant::getNullValue(NPtr->getType()),
1220                               SCI->getName());
1221     SCI->replaceAllUsesWith(New);
1222     SCI->eraseFromParent();
1223     return;
1224   }
1225 
1226   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1227   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1228     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1229            && "Unexpected GEPI!");
1230 
1231     // Load the pointer for this field.
1232     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1233     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1234                                      InsertedScalarizedValues, PHIsToRewrite);
1235 
1236     // Create the new GEP idx vector.
1237     SmallVector<Value*, 8> GEPIdx;
1238     GEPIdx.push_back(GEPI->getOperand(1));
1239     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1240 
1241     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1242                                              GEPI->getName(), GEPI);
1243     GEPI->replaceAllUsesWith(NGEPI);
1244     GEPI->eraseFromParent();
1245     return;
1246   }
1247 
1248   // Recursively transform the users of PHI nodes.  This will lazily create the
1249   // PHIs that are needed for individual elements.  Keep track of what PHIs we
1250   // see in InsertedScalarizedValues so that we don't get infinite loops (very
1251   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1252   // already been seen first by another load, so its uses have already been
1253   // processed.
1254   PHINode *PN = cast<PHINode>(LoadUser);
1255   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1256                                               std::vector<Value *>())).second)
1257     return;
1258 
1259   // If this is the first time we've seen this PHI, recursively process all
1260   // users.
1261   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1262     Instruction *User = cast<Instruction>(*UI++);
1263     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1264   }
1265 }
1266 
1267 /// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1268 /// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1269 /// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1270 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1271               DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1272                   std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1273   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1274     Instruction *User = cast<Instruction>(*UI++);
1275     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1276   }
1277 
1278   if (Load->use_empty()) {
1279     Load->eraseFromParent();
1280     InsertedScalarizedValues.erase(Load);
1281   }
1282 }
1283 
1284 /// CI is an allocation of an array of structures.  Break it up into multiple
1285 /// allocations of arrays of the fields.
1286 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1287                                             Value *NElems, const DataLayout &DL,
1288                                             const TargetLibraryInfo *TLI) {
1289   LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
1290                     << '\n');
1291   Type *MAT = getMallocAllocatedType(CI, TLI);
1292   StructType *STy = cast<StructType>(MAT);
1293 
1294   // There is guaranteed to be at least one use of the malloc (storing
1295   // it into GV).  If there are other uses, change them to be uses of
1296   // the global to simplify later code.  This also deletes the store
1297   // into GV.
1298   ReplaceUsesOfMallocWithGlobal(CI, GV);
1299 
1300   // Okay, at this point, there are no users of the malloc.  Insert N
1301   // new mallocs at the same place as CI, and N globals.
1302   std::vector<Value *> FieldGlobals;
1303   std::vector<Value *> FieldMallocs;
1304 
1305   SmallVector<OperandBundleDef, 1> OpBundles;
1306   CI->getOperandBundlesAsDefs(OpBundles);
1307 
1308   unsigned AS = GV->getType()->getPointerAddressSpace();
1309   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1310     Type *FieldTy = STy->getElementType(FieldNo);
1311     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1312 
1313     GlobalVariable *NGV = new GlobalVariable(
1314         *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1315         Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1316         nullptr, GV->getThreadLocalMode());
1317     NGV->copyAttributesFrom(GV);
1318     FieldGlobals.push_back(NGV);
1319 
1320     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1321     if (StructType *ST = dyn_cast<StructType>(FieldTy))
1322       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1323     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1324     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1325                                         ConstantInt::get(IntPtrTy, TypeSize),
1326                                         NElems, OpBundles, nullptr,
1327                                         CI->getName() + ".f" + Twine(FieldNo));
1328     FieldMallocs.push_back(NMI);
1329     new StoreInst(NMI, NGV, CI);
1330   }
1331 
1332   // The tricky aspect of this transformation is handling the case when malloc
1333   // fails.  In the original code, malloc failing would set the result pointer
1334   // of malloc to null.  In this case, some mallocs could succeed and others
1335   // could fail.  As such, we emit code that looks like this:
1336   //    F0 = malloc(field0)
1337   //    F1 = malloc(field1)
1338   //    F2 = malloc(field2)
1339   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1340   //      if (F0) { free(F0); F0 = 0; }
1341   //      if (F1) { free(F1); F1 = 0; }
1342   //      if (F2) { free(F2); F2 = 0; }
1343   //    }
1344   // The malloc can also fail if its argument is too large.
1345   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1346   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1347                                   ConstantZero, "isneg");
1348   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1349     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1350                              Constant::getNullValue(FieldMallocs[i]->getType()),
1351                                "isnull");
1352     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1353   }
1354 
1355   // Split the basic block at the old malloc.
1356   BasicBlock *OrigBB = CI->getParent();
1357   BasicBlock *ContBB =
1358       OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1359 
1360   // Create the block to check the first condition.  Put all these blocks at the
1361   // end of the function as they are unlikely to be executed.
1362   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1363                                                 "malloc_ret_null",
1364                                                 OrigBB->getParent());
1365 
1366   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1367   // branch on RunningOr.
1368   OrigBB->getTerminator()->eraseFromParent();
1369   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1370 
1371   // Within the NullPtrBlock, we need to emit a comparison and branch for each
1372   // pointer, because some may be null while others are not.
1373   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1374     Value *GVVal =
1375         new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(),
1376                      FieldGlobals[i], "tmp", NullPtrBlock);
1377     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1378                               Constant::getNullValue(GVVal->getType()));
1379     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1380                                                OrigBB->getParent());
1381     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1382                                                OrigBB->getParent());
1383     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1384                                          Cmp, NullPtrBlock);
1385 
1386     // Fill in FreeBlock.
1387     CallInst::CreateFree(GVVal, OpBundles, BI);
1388     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1389                   FreeBlock);
1390     BranchInst::Create(NextBlock, FreeBlock);
1391 
1392     NullPtrBlock = NextBlock;
1393   }
1394 
1395   BranchInst::Create(ContBB, NullPtrBlock);
1396 
1397   // CI is no longer needed, remove it.
1398   CI->eraseFromParent();
1399 
1400   /// As we process loads, if we can't immediately update all uses of the load,
1401   /// keep track of what scalarized loads are inserted for a given load.
1402   DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1403   InsertedScalarizedValues[GV] = FieldGlobals;
1404 
1405   std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1406 
1407   // Okay, the malloc site is completely handled.  All of the uses of GV are now
1408   // loads, and all uses of those loads are simple.  Rewrite them to use loads
1409   // of the per-field globals instead.
1410   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1411     Instruction *User = cast<Instruction>(*UI++);
1412 
1413     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1414       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1415       continue;
1416     }
1417 
1418     // Must be a store of null.
1419     StoreInst *SI = cast<StoreInst>(User);
1420     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1421            "Unexpected heap-sra user!");
1422 
1423     // Insert a store of null into each global.
1424     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1425       Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1426       Constant *Null = Constant::getNullValue(ValTy);
1427       new StoreInst(Null, FieldGlobals[i], SI);
1428     }
1429     // Erase the original store.
1430     SI->eraseFromParent();
1431   }
1432 
1433   // While we have PHIs that are interesting to rewrite, do it.
1434   while (!PHIsToRewrite.empty()) {
1435     PHINode *PN = PHIsToRewrite.back().first;
1436     unsigned FieldNo = PHIsToRewrite.back().second;
1437     PHIsToRewrite.pop_back();
1438     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1439     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1440 
1441     // Add all the incoming values.  This can materialize more phis.
1442     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1443       Value *InVal = PN->getIncomingValue(i);
1444       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1445                                PHIsToRewrite);
1446       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1447     }
1448   }
1449 
1450   // Drop all inter-phi links and any loads that made it this far.
1451   for (DenseMap<Value *, std::vector<Value *>>::iterator
1452        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1453        I != E; ++I) {
1454     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1455       PN->dropAllReferences();
1456     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1457       LI->dropAllReferences();
1458   }
1459 
1460   // Delete all the phis and loads now that inter-references are dead.
1461   for (DenseMap<Value *, std::vector<Value *>>::iterator
1462        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1463        I != E; ++I) {
1464     if (PHINode *PN = dyn_cast<PHINode>(I->first))
1465       PN->eraseFromParent();
1466     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1467       LI->eraseFromParent();
1468   }
1469 
1470   // The old global is now dead, remove it.
1471   GV->eraseFromParent();
1472 
1473   ++NumHeapSRA;
1474   return cast<GlobalVariable>(FieldGlobals[0]);
1475 }
1476 
1477 /// This function is called when we see a pointer global variable with a single
1478 /// value stored it that is a malloc or cast of malloc.
1479 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1480                                                Type *AllocTy,
1481                                                AtomicOrdering Ordering,
1482                                                const DataLayout &DL,
1483                                                TargetLibraryInfo *TLI) {
1484   // If this is a malloc of an abstract type, don't touch it.
1485   if (!AllocTy->isSized())
1486     return false;
1487 
1488   // We can't optimize this global unless all uses of it are *known* to be
1489   // of the malloc value, not of the null initializer value (consider a use
1490   // that compares the global's value against zero to see if the malloc has
1491   // been reached).  To do this, we check to see if all uses of the global
1492   // would trap if the global were null: this proves that they must all
1493   // happen after the malloc.
1494   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1495     return false;
1496 
1497   // We can't optimize this if the malloc itself is used in a complex way,
1498   // for example, being stored into multiple globals.  This allows the
1499   // malloc to be stored into the specified global, loaded icmp'd, and
1500   // GEP'd.  These are all things we could transform to using the global
1501   // for.
1502   SmallPtrSet<const PHINode*, 8> PHIs;
1503   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1504     return false;
1505 
1506   // If we have a global that is only initialized with a fixed size malloc,
1507   // transform the program to use global memory instead of malloc'd memory.
1508   // This eliminates dynamic allocation, avoids an indirection accessing the
1509   // data, and exposes the resultant global to further GlobalOpt.
1510   // We cannot optimize the malloc if we cannot determine malloc array size.
1511   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1512   if (!NElems)
1513     return false;
1514 
1515   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1516     // Restrict this transformation to only working on small allocations
1517     // (2048 bytes currently), as we don't want to introduce a 16M global or
1518     // something.
1519     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1520       OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1521       return true;
1522     }
1523 
1524   // If the allocation is an array of structures, consider transforming this
1525   // into multiple malloc'd arrays, one for each field.  This is basically
1526   // SRoA for malloc'd memory.
1527 
1528   if (Ordering != AtomicOrdering::NotAtomic)
1529     return false;
1530 
1531   // If this is an allocation of a fixed size array of structs, analyze as a
1532   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1533   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1534     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1535       AllocTy = AT->getElementType();
1536 
1537   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1538   if (!AllocSTy)
1539     return false;
1540 
1541   // This the structure has an unreasonable number of fields, leave it
1542   // alone.
1543   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1544       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1545 
1546     // If this is a fixed size array, transform the Malloc to be an alloc of
1547     // structs.  malloc [100 x struct],1 -> malloc struct, 100
1548     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1549       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1550       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1551       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1552       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1553       SmallVector<OperandBundleDef, 1> OpBundles;
1554       CI->getOperandBundlesAsDefs(OpBundles);
1555       Instruction *Malloc =
1556           CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1557                                  OpBundles, nullptr, CI->getName());
1558       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1559       CI->replaceAllUsesWith(Cast);
1560       CI->eraseFromParent();
1561       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1562         CI = cast<CallInst>(BCI->getOperand(0));
1563       else
1564         CI = cast<CallInst>(Malloc);
1565     }
1566 
1567     PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1568                          TLI);
1569     return true;
1570   }
1571 
1572   return false;
1573 }
1574 
1575 // Try to optimize globals based on the knowledge that only one value (besides
1576 // its initializer) is ever stored to the global.
1577 static bool
1578 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1579                          AtomicOrdering Ordering, const DataLayout &DL,
1580                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1581   // Ignore no-op GEPs and bitcasts.
1582   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1583 
1584   // If we are dealing with a pointer global that is initialized to null and
1585   // only has one (non-null) value stored into it, then we can optimize any
1586   // users of the loaded value (often calls and loads) that would trap if the
1587   // value was null.
1588   if (GV->getInitializer()->getType()->isPointerTy() &&
1589       GV->getInitializer()->isNullValue() &&
1590       !NullPointerIsDefined(
1591           nullptr /* F */,
1592           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1593     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1594       if (GV->getInitializer()->getType() != SOVC->getType())
1595         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1596 
1597       // Optimize away any trapping uses of the loaded value.
1598       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1599         return true;
1600     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1601       auto *TLI = &GetTLI(*CI->getFunction());
1602       Type *MallocType = getMallocAllocatedType(CI, TLI);
1603       if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1604                                                            Ordering, DL, TLI))
1605         return true;
1606     }
1607   }
1608 
1609   return false;
1610 }
1611 
1612 /// At this point, we have learned that the only two values ever stored into GV
1613 /// are its initializer and OtherVal.  See if we can shrink the global into a
1614 /// boolean and select between the two values whenever it is used.  This exposes
1615 /// the values to other scalar optimizations.
1616 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1617   Type *GVElType = GV->getValueType();
1618 
1619   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1620   // an FP value, pointer or vector, don't do this optimization because a select
1621   // between them is very expensive and unlikely to lead to later
1622   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1623   // where v1 and v2 both require constant pool loads, a big loss.
1624   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1625       GVElType->isFloatingPointTy() ||
1626       GVElType->isPointerTy() || GVElType->isVectorTy())
1627     return false;
1628 
1629   // Walk the use list of the global seeing if all the uses are load or store.
1630   // If there is anything else, bail out.
1631   for (User *U : GV->users())
1632     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1633       return false;
1634 
1635   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1636 
1637   // Create the new global, initializing it to false.
1638   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1639                                              false,
1640                                              GlobalValue::InternalLinkage,
1641                                         ConstantInt::getFalse(GV->getContext()),
1642                                              GV->getName()+".b",
1643                                              GV->getThreadLocalMode(),
1644                                              GV->getType()->getAddressSpace());
1645   NewGV->copyAttributesFrom(GV);
1646   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1647 
1648   Constant *InitVal = GV->getInitializer();
1649   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1650          "No reason to shrink to bool!");
1651 
1652   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1653   GV->getDebugInfo(GVs);
1654 
1655   // If initialized to zero and storing one into the global, we can use a cast
1656   // instead of a select to synthesize the desired value.
1657   bool IsOneZero = false;
1658   bool EmitOneOrZero = true;
1659   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1660   if (CI && CI->getValue().getActiveBits() <= 64) {
1661     IsOneZero = InitVal->isNullValue() && CI->isOne();
1662 
1663     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1664     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1665       uint64_t ValInit = CIInit->getZExtValue();
1666       uint64_t ValOther = CI->getZExtValue();
1667       uint64_t ValMinus = ValOther - ValInit;
1668 
1669       for(auto *GVe : GVs){
1670         DIGlobalVariable *DGV = GVe->getVariable();
1671         DIExpression *E = GVe->getExpression();
1672         const DataLayout &DL = GV->getParent()->getDataLayout();
1673         unsigned SizeInOctets =
1674           DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8;
1675 
1676         // It is expected that the address of global optimized variable is on
1677         // top of the stack. After optimization, value of that variable will
1678         // be ether 0 for initial value or 1 for other value. The following
1679         // expression should return constant integer value depending on the
1680         // value at global object address:
1681         // val * (ValOther - ValInit) + ValInit:
1682         // DW_OP_deref DW_OP_constu <ValMinus>
1683         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1684         SmallVector<uint64_t, 12> Ops = {
1685             dwarf::DW_OP_deref_size, SizeInOctets,
1686             dwarf::DW_OP_constu, ValMinus,
1687             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1688             dwarf::DW_OP_plus};
1689         bool WithStackValue = true;
1690         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1691         DIGlobalVariableExpression *DGVE =
1692           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1693         NewGV->addDebugInfo(DGVE);
1694      }
1695      EmitOneOrZero = false;
1696     }
1697   }
1698 
1699   if (EmitOneOrZero) {
1700      // FIXME: This will only emit address for debugger on which will
1701      // be written only 0 or 1.
1702      for(auto *GV : GVs)
1703        NewGV->addDebugInfo(GV);
1704    }
1705 
1706   while (!GV->use_empty()) {
1707     Instruction *UI = cast<Instruction>(GV->user_back());
1708     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1709       // Change the store into a boolean store.
1710       bool StoringOther = SI->getOperand(0) == OtherVal;
1711       // Only do this if we weren't storing a loaded value.
1712       Value *StoreVal;
1713       if (StoringOther || SI->getOperand(0) == InitVal) {
1714         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1715                                     StoringOther);
1716       } else {
1717         // Otherwise, we are storing a previously loaded copy.  To do this,
1718         // change the copy from copying the original value to just copying the
1719         // bool.
1720         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1721 
1722         // If we've already replaced the input, StoredVal will be a cast or
1723         // select instruction.  If not, it will be a load of the original
1724         // global.
1725         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1726           assert(LI->getOperand(0) == GV && "Not a copy!");
1727           // Insert a new load, to preserve the saved value.
1728           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1729                                   LI->getName() + ".b", false, None,
1730                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1731         } else {
1732           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1733                  "This is not a form that we understand!");
1734           StoreVal = StoredVal->getOperand(0);
1735           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1736         }
1737       }
1738       StoreInst *NSI =
1739           new StoreInst(StoreVal, NewGV, false, None, SI->getOrdering(),
1740                         SI->getSyncScopeID(), SI);
1741       NSI->setDebugLoc(SI->getDebugLoc());
1742     } else {
1743       // Change the load into a load of bool then a select.
1744       LoadInst *LI = cast<LoadInst>(UI);
1745       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1746                                    LI->getName() + ".b", false, None,
1747                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1748       Instruction *NSI;
1749       if (IsOneZero)
1750         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1751       else
1752         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1753       NSI->takeName(LI);
1754       // Since LI is split into two instructions, NLI and NSI both inherit the
1755       // same DebugLoc
1756       NLI->setDebugLoc(LI->getDebugLoc());
1757       NSI->setDebugLoc(LI->getDebugLoc());
1758       LI->replaceAllUsesWith(NSI);
1759     }
1760     UI->eraseFromParent();
1761   }
1762 
1763   // Retain the name of the old global variable. People who are debugging their
1764   // programs may expect these variables to be named the same.
1765   NewGV->takeName(GV);
1766   GV->eraseFromParent();
1767   return true;
1768 }
1769 
1770 static bool deleteIfDead(
1771     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1772   GV.removeDeadConstantUsers();
1773 
1774   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1775     return false;
1776 
1777   if (const Comdat *C = GV.getComdat())
1778     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1779       return false;
1780 
1781   bool Dead;
1782   if (auto *F = dyn_cast<Function>(&GV))
1783     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1784   else
1785     Dead = GV.use_empty();
1786   if (!Dead)
1787     return false;
1788 
1789   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1790   GV.eraseFromParent();
1791   ++NumDeleted;
1792   return true;
1793 }
1794 
1795 static bool isPointerValueDeadOnEntryToFunction(
1796     const Function *F, GlobalValue *GV,
1797     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1798   // Find all uses of GV. We expect them all to be in F, and if we can't
1799   // identify any of the uses we bail out.
1800   //
1801   // On each of these uses, identify if the memory that GV points to is
1802   // used/required/live at the start of the function. If it is not, for example
1803   // if the first thing the function does is store to the GV, the GV can
1804   // possibly be demoted.
1805   //
1806   // We don't do an exhaustive search for memory operations - simply look
1807   // through bitcasts as they're quite common and benign.
1808   const DataLayout &DL = GV->getParent()->getDataLayout();
1809   SmallVector<LoadInst *, 4> Loads;
1810   SmallVector<StoreInst *, 4> Stores;
1811   for (auto *U : GV->users()) {
1812     if (Operator::getOpcode(U) == Instruction::BitCast) {
1813       for (auto *UU : U->users()) {
1814         if (auto *LI = dyn_cast<LoadInst>(UU))
1815           Loads.push_back(LI);
1816         else if (auto *SI = dyn_cast<StoreInst>(UU))
1817           Stores.push_back(SI);
1818         else
1819           return false;
1820       }
1821       continue;
1822     }
1823 
1824     Instruction *I = dyn_cast<Instruction>(U);
1825     if (!I)
1826       return false;
1827     assert(I->getParent()->getParent() == F);
1828 
1829     if (auto *LI = dyn_cast<LoadInst>(I))
1830       Loads.push_back(LI);
1831     else if (auto *SI = dyn_cast<StoreInst>(I))
1832       Stores.push_back(SI);
1833     else
1834       return false;
1835   }
1836 
1837   // We have identified all uses of GV into loads and stores. Now check if all
1838   // of them are known not to depend on the value of the global at the function
1839   // entry point. We do this by ensuring that every load is dominated by at
1840   // least one store.
1841   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1842 
1843   // The below check is quadratic. Check we're not going to do too many tests.
1844   // FIXME: Even though this will always have worst-case quadratic time, we
1845   // could put effort into minimizing the average time by putting stores that
1846   // have been shown to dominate at least one load at the beginning of the
1847   // Stores array, making subsequent dominance checks more likely to succeed
1848   // early.
1849   //
1850   // The threshold here is fairly large because global->local demotion is a
1851   // very powerful optimization should it fire.
1852   const unsigned Threshold = 100;
1853   if (Loads.size() * Stores.size() > Threshold)
1854     return false;
1855 
1856   for (auto *L : Loads) {
1857     auto *LTy = L->getType();
1858     if (none_of(Stores, [&](const StoreInst *S) {
1859           auto *STy = S->getValueOperand()->getType();
1860           // The load is only dominated by the store if DomTree says so
1861           // and the number of bits loaded in L is less than or equal to
1862           // the number of bits stored in S.
1863           return DT.dominates(S, L) &&
1864                  DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1865         }))
1866       return false;
1867   }
1868   // All loads have known dependences inside F, so the global can be localized.
1869   return true;
1870 }
1871 
1872 /// C may have non-instruction users. Can all of those users be turned into
1873 /// instructions?
1874 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1875   // We don't do this exhaustively. The most common pattern that we really need
1876   // to care about is a constant GEP or constant bitcast - so just looking
1877   // through one single ConstantExpr.
1878   //
1879   // The set of constants that this function returns true for must be able to be
1880   // handled by makeAllConstantUsesInstructions.
1881   for (auto *U : C->users()) {
1882     if (isa<Instruction>(U))
1883       continue;
1884     if (!isa<ConstantExpr>(U))
1885       // Non instruction, non-constantexpr user; cannot convert this.
1886       return false;
1887     for (auto *UU : U->users())
1888       if (!isa<Instruction>(UU))
1889         // A constantexpr used by another constant. We don't try and recurse any
1890         // further but just bail out at this point.
1891         return false;
1892   }
1893 
1894   return true;
1895 }
1896 
1897 /// C may have non-instruction users, and
1898 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1899 /// non-instruction users to instructions.
1900 static void makeAllConstantUsesInstructions(Constant *C) {
1901   SmallVector<ConstantExpr*,4> Users;
1902   for (auto *U : C->users()) {
1903     if (isa<ConstantExpr>(U))
1904       Users.push_back(cast<ConstantExpr>(U));
1905     else
1906       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1907       // should not have returned true for C.
1908       assert(
1909           isa<Instruction>(U) &&
1910           "Can't transform non-constantexpr non-instruction to instruction!");
1911   }
1912 
1913   SmallVector<Value*,4> UUsers;
1914   for (auto *U : Users) {
1915     UUsers.clear();
1916     for (auto *UU : U->users())
1917       UUsers.push_back(UU);
1918     for (auto *UU : UUsers) {
1919       Instruction *UI = cast<Instruction>(UU);
1920       Instruction *NewU = U->getAsInstruction();
1921       NewU->insertBefore(UI);
1922       UI->replaceUsesOfWith(U, NewU);
1923     }
1924     // We've replaced all the uses, so destroy the constant. (destroyConstant
1925     // will update value handles and metadata.)
1926     U->destroyConstant();
1927   }
1928 }
1929 
1930 /// Analyze the specified global variable and optimize
1931 /// it if possible.  If we make a change, return true.
1932 static bool
1933 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1934                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1935                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1936   auto &DL = GV->getParent()->getDataLayout();
1937   // If this is a first class global and has only one accessing function and
1938   // this function is non-recursive, we replace the global with a local alloca
1939   // in this function.
1940   //
1941   // NOTE: It doesn't make sense to promote non-single-value types since we
1942   // are just replacing static memory to stack memory.
1943   //
1944   // If the global is in different address space, don't bring it to stack.
1945   if (!GS.HasMultipleAccessingFunctions &&
1946       GS.AccessingFunction &&
1947       GV->getValueType()->isSingleValueType() &&
1948       GV->getType()->getAddressSpace() == 0 &&
1949       !GV->isExternallyInitialized() &&
1950       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1951       GS.AccessingFunction->doesNotRecurse() &&
1952       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1953                                           LookupDomTree)) {
1954     const DataLayout &DL = GV->getParent()->getDataLayout();
1955 
1956     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1957     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1958                                                    ->getEntryBlock().begin());
1959     Type *ElemTy = GV->getValueType();
1960     // FIXME: Pass Global's alignment when globals have alignment
1961     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1962                                         GV->getName(), &FirstI);
1963     if (!isa<UndefValue>(GV->getInitializer()))
1964       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1965 
1966     makeAllConstantUsesInstructions(GV);
1967 
1968     GV->replaceAllUsesWith(Alloca);
1969     GV->eraseFromParent();
1970     ++NumLocalized;
1971     return true;
1972   }
1973 
1974   // If the global is never loaded (but may be stored to), it is dead.
1975   // Delete it now.
1976   if (!GS.IsLoaded) {
1977     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1978 
1979     bool Changed;
1980     if (isLeakCheckerRoot(GV)) {
1981       // Delete any constant stores to the global.
1982       Changed = CleanupPointerRootUsers(GV, GetTLI);
1983     } else {
1984       // Delete any stores we can find to the global.  We may not be able to
1985       // make it completely dead though.
1986       Changed =
1987           CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1988     }
1989 
1990     // If the global is dead now, delete it.
1991     if (GV->use_empty()) {
1992       GV->eraseFromParent();
1993       ++NumDeleted;
1994       Changed = true;
1995     }
1996     return Changed;
1997 
1998   }
1999   if (GS.StoredType <= GlobalStatus::InitializerStored) {
2000     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
2001 
2002     // Don't actually mark a global constant if it's atomic because atomic loads
2003     // are implemented by a trivial cmpxchg in some edge-cases and that usually
2004     // requires write access to the variable even if it's not actually changed.
2005     if (GS.Ordering == AtomicOrdering::NotAtomic)
2006       GV->setConstant(true);
2007 
2008     // Clean up any obviously simplifiable users now.
2009     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2010 
2011     // If the global is dead now, just nuke it.
2012     if (GV->use_empty()) {
2013       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
2014                         << "all users and delete global!\n");
2015       GV->eraseFromParent();
2016       ++NumDeleted;
2017       return true;
2018     }
2019 
2020     // Fall through to the next check; see if we can optimize further.
2021     ++NumMarked;
2022   }
2023   if (!GV->getInitializer()->getType()->isSingleValueType()) {
2024     const DataLayout &DL = GV->getParent()->getDataLayout();
2025     if (SRAGlobal(GV, DL))
2026       return true;
2027   }
2028   if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
2029     // If the initial value for the global was an undef value, and if only
2030     // one other value was stored into it, we can just change the
2031     // initializer to be the stored value, then delete all stores to the
2032     // global.  This allows us to mark it constant.
2033     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2034       if (isa<UndefValue>(GV->getInitializer())) {
2035         // Change the initial value here.
2036         GV->setInitializer(SOVConstant);
2037 
2038         // Clean up any obviously simplifiable users now.
2039         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2040 
2041         if (GV->use_empty()) {
2042           LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2043                             << "simplify all users and delete global!\n");
2044           GV->eraseFromParent();
2045           ++NumDeleted;
2046         }
2047         ++NumSubstitute;
2048         return true;
2049       }
2050 
2051     // Try to optimize globals based on the knowledge that only one value
2052     // (besides its initializer) is ever stored to the global.
2053     if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
2054                                  GetTLI))
2055       return true;
2056 
2057     // Otherwise, if the global was not a boolean, we can shrink it to be a
2058     // boolean.
2059     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2060       if (GS.Ordering == AtomicOrdering::NotAtomic) {
2061         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2062           ++NumShrunkToBool;
2063           return true;
2064         }
2065       }
2066     }
2067   }
2068 
2069   return false;
2070 }
2071 
2072 /// Analyze the specified global variable and optimize it if possible.  If we
2073 /// make a change, return true.
2074 static bool
2075 processGlobal(GlobalValue &GV,
2076               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2077               function_ref<DominatorTree &(Function &)> LookupDomTree) {
2078   if (GV.getName().startswith("llvm."))
2079     return false;
2080 
2081   GlobalStatus GS;
2082 
2083   if (GlobalStatus::analyzeGlobal(&GV, GS))
2084     return false;
2085 
2086   bool Changed = false;
2087   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2088     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2089                                                : GlobalValue::UnnamedAddr::Local;
2090     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2091       GV.setUnnamedAddr(NewUnnamedAddr);
2092       NumUnnamed++;
2093       Changed = true;
2094     }
2095   }
2096 
2097   // Do more involved optimizations if the global is internal.
2098   if (!GV.hasLocalLinkage())
2099     return Changed;
2100 
2101   auto *GVar = dyn_cast<GlobalVariable>(&GV);
2102   if (!GVar)
2103     return Changed;
2104 
2105   if (GVar->isConstant() || !GVar->hasInitializer())
2106     return Changed;
2107 
2108   return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
2109 }
2110 
2111 /// Walk all of the direct calls of the specified function, changing them to
2112 /// FastCC.
2113 static void ChangeCalleesToFastCall(Function *F) {
2114   for (User *U : F->users()) {
2115     if (isa<BlockAddress>(U))
2116       continue;
2117     CallSite CS(cast<Instruction>(U));
2118     CS.setCallingConv(CallingConv::Fast);
2119   }
2120 }
2121 
2122 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
2123                                Attribute::AttrKind A) {
2124   unsigned AttrIndex;
2125   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
2126     return Attrs.removeAttribute(C, AttrIndex, A);
2127   return Attrs;
2128 }
2129 
2130 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
2131   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
2132   for (User *U : F->users()) {
2133     if (isa<BlockAddress>(U))
2134       continue;
2135     CallSite CS(cast<Instruction>(U));
2136     CS.setAttributes(StripAttr(F->getContext(), CS.getAttributes(), A));
2137   }
2138 }
2139 
2140 /// Return true if this is a calling convention that we'd like to change.  The
2141 /// idea here is that we don't want to mess with the convention if the user
2142 /// explicitly requested something with performance implications like coldcc,
2143 /// GHC, or anyregcc.
2144 static bool hasChangeableCC(Function *F) {
2145   CallingConv::ID CC = F->getCallingConv();
2146 
2147   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2148   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2149     return false;
2150 
2151   // FIXME: Change CC for the whole chain of musttail calls when possible.
2152   //
2153   // Can't change CC of the function that either has musttail calls, or is a
2154   // musttail callee itself
2155   for (User *U : F->users()) {
2156     if (isa<BlockAddress>(U))
2157       continue;
2158     CallInst* CI = dyn_cast<CallInst>(U);
2159     if (!CI)
2160       continue;
2161 
2162     if (CI->isMustTailCall())
2163       return false;
2164   }
2165 
2166   for (BasicBlock &BB : *F)
2167     if (BB.getTerminatingMustTailCall())
2168       return false;
2169 
2170   return true;
2171 }
2172 
2173 /// Return true if the block containing the call site has a BlockFrequency of
2174 /// less than ColdCCRelFreq% of the entry block.
2175 static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
2176   const BranchProbability ColdProb(ColdCCRelFreq, 100);
2177   auto CallSiteBB = CS.getInstruction()->getParent();
2178   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2179   auto CallerEntryFreq =
2180       CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
2181   return CallSiteFreq < CallerEntryFreq * ColdProb;
2182 }
2183 
2184 // This function checks if the input function F is cold at all call sites. It
2185 // also looks each call site's containing function, returning false if the
2186 // caller function contains other non cold calls. The input vector AllCallsCold
2187 // contains a list of functions that only have call sites in cold blocks.
2188 static bool
2189 isValidCandidateForColdCC(Function &F,
2190                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2191                           const std::vector<Function *> &AllCallsCold) {
2192 
2193   if (F.user_empty())
2194     return false;
2195 
2196   for (User *U : F.users()) {
2197     if (isa<BlockAddress>(U))
2198       continue;
2199 
2200     CallSite CS(cast<Instruction>(U));
2201     Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
2202     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2203     if (!isColdCallSite(CS, CallerBFI))
2204       return false;
2205     auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2206     if (It == AllCallsCold.end())
2207       return false;
2208   }
2209   return true;
2210 }
2211 
2212 static void changeCallSitesToColdCC(Function *F) {
2213   for (User *U : F->users()) {
2214     if (isa<BlockAddress>(U))
2215       continue;
2216     CallSite CS(cast<Instruction>(U));
2217     CS.setCallingConv(CallingConv::Cold);
2218   }
2219 }
2220 
2221 // This function iterates over all the call instructions in the input Function
2222 // and checks that all call sites are in cold blocks and are allowed to use the
2223 // coldcc calling convention.
2224 static bool
2225 hasOnlyColdCalls(Function &F,
2226                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2227   for (BasicBlock &BB : F) {
2228     for (Instruction &I : BB) {
2229       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2230         CallSite CS(cast<Instruction>(CI));
2231         // Skip over isline asm instructions since they aren't function calls.
2232         if (CI->isInlineAsm())
2233           continue;
2234         Function *CalledFn = CI->getCalledFunction();
2235         if (!CalledFn)
2236           return false;
2237         if (!CalledFn->hasLocalLinkage())
2238           return false;
2239         // Skip over instrinsics since they won't remain as function calls.
2240         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2241           continue;
2242         // Check if it's valid to use coldcc calling convention.
2243         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2244             CalledFn->hasAddressTaken())
2245           return false;
2246         BlockFrequencyInfo &CallerBFI = GetBFI(F);
2247         if (!isColdCallSite(CS, CallerBFI))
2248           return false;
2249       }
2250     }
2251   }
2252   return true;
2253 }
2254 
2255 static bool
2256 OptimizeFunctions(Module &M,
2257                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2258                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
2259                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2260                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2261                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2262 
2263   bool Changed = false;
2264 
2265   std::vector<Function *> AllCallsCold;
2266   for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2267     Function *F = &*FI++;
2268     if (hasOnlyColdCalls(*F, GetBFI))
2269       AllCallsCold.push_back(F);
2270   }
2271 
2272   // Optimize functions.
2273   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2274     Function *F = &*FI++;
2275 
2276     // Don't perform global opt pass on naked functions; we don't want fast
2277     // calling conventions for naked functions.
2278     if (F->hasFnAttribute(Attribute::Naked))
2279       continue;
2280 
2281     // Functions without names cannot be referenced outside this module.
2282     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2283       F->setLinkage(GlobalValue::InternalLinkage);
2284 
2285     if (deleteIfDead(*F, NotDiscardableComdats)) {
2286       Changed = true;
2287       continue;
2288     }
2289 
2290     // LLVM's definition of dominance allows instructions that are cyclic
2291     // in unreachable blocks, e.g.:
2292     // %pat = select i1 %condition, @global, i16* %pat
2293     // because any instruction dominates an instruction in a block that's
2294     // not reachable from entry.
2295     // So, remove unreachable blocks from the function, because a) there's
2296     // no point in analyzing them and b) GlobalOpt should otherwise grow
2297     // some more complicated logic to break these cycles.
2298     // Removing unreachable blocks might invalidate the dominator so we
2299     // recalculate it.
2300     if (!F->isDeclaration()) {
2301       if (removeUnreachableBlocks(*F)) {
2302         auto &DT = LookupDomTree(*F);
2303         DT.recalculate(*F);
2304         Changed = true;
2305       }
2306     }
2307 
2308     Changed |= processGlobal(*F, GetTLI, LookupDomTree);
2309 
2310     if (!F->hasLocalLinkage())
2311       continue;
2312 
2313     // If we have an inalloca parameter that we can safely remove the
2314     // inalloca attribute from, do so. This unlocks optimizations that
2315     // wouldn't be safe in the presence of inalloca.
2316     // FIXME: We should also hoist alloca affected by this to the entry
2317     // block if possible.
2318     if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2319         !F->hasAddressTaken()) {
2320       RemoveAttribute(F, Attribute::InAlloca);
2321       Changed = true;
2322     }
2323 
2324     if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2325       NumInternalFunc++;
2326       TargetTransformInfo &TTI = GetTTI(*F);
2327       // Change the calling convention to coldcc if either stress testing is
2328       // enabled or the target would like to use coldcc on functions which are
2329       // cold at all call sites and the callers contain no other non coldcc
2330       // calls.
2331       if (EnableColdCCStressTest ||
2332           (TTI.useColdCCForColdCall(*F) &&
2333            isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
2334         F->setCallingConv(CallingConv::Cold);
2335         changeCallSitesToColdCC(F);
2336         Changed = true;
2337         NumColdCC++;
2338       }
2339     }
2340 
2341     if (hasChangeableCC(F) && !F->isVarArg() &&
2342         !F->hasAddressTaken()) {
2343       // If this function has a calling convention worth changing, is not a
2344       // varargs function, and is only called directly, promote it to use the
2345       // Fast calling convention.
2346       F->setCallingConv(CallingConv::Fast);
2347       ChangeCalleesToFastCall(F);
2348       ++NumFastCallFns;
2349       Changed = true;
2350     }
2351 
2352     if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2353         !F->hasAddressTaken()) {
2354       // The function is not used by a trampoline intrinsic, so it is safe
2355       // to remove the 'nest' attribute.
2356       RemoveAttribute(F, Attribute::Nest);
2357       ++NumNestRemoved;
2358       Changed = true;
2359     }
2360   }
2361   return Changed;
2362 }
2363 
2364 static bool
2365 OptimizeGlobalVars(Module &M,
2366                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2367                    function_ref<DominatorTree &(Function &)> LookupDomTree,
2368                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2369   bool Changed = false;
2370 
2371   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2372        GVI != E; ) {
2373     GlobalVariable *GV = &*GVI++;
2374     // Global variables without names cannot be referenced outside this module.
2375     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2376       GV->setLinkage(GlobalValue::InternalLinkage);
2377     // Simplify the initializer.
2378     if (GV->hasInitializer())
2379       if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2380         auto &DL = M.getDataLayout();
2381         // TLI is not used in the case of a Constant, so use default nullptr
2382         // for that optional parameter, since we don't have a Function to
2383         // provide GetTLI anyway.
2384         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2385         if (New != C)
2386           GV->setInitializer(New);
2387       }
2388 
2389     if (deleteIfDead(*GV, NotDiscardableComdats)) {
2390       Changed = true;
2391       continue;
2392     }
2393 
2394     Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
2395   }
2396   return Changed;
2397 }
2398 
2399 /// Evaluate a piece of a constantexpr store into a global initializer.  This
2400 /// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2401 /// GEP operands of Addr [0, OpNo) have been stepped into.
2402 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2403                                    ConstantExpr *Addr, unsigned OpNo) {
2404   // Base case of the recursion.
2405   if (OpNo == Addr->getNumOperands()) {
2406     assert(Val->getType() == Init->getType() && "Type mismatch!");
2407     return Val;
2408   }
2409 
2410   SmallVector<Constant*, 32> Elts;
2411   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2412     // Break up the constant into its elements.
2413     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2414       Elts.push_back(Init->getAggregateElement(i));
2415 
2416     // Replace the element that we are supposed to.
2417     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2418     unsigned Idx = CU->getZExtValue();
2419     assert(Idx < STy->getNumElements() && "Struct index out of range!");
2420     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2421 
2422     // Return the modified struct.
2423     return ConstantStruct::get(STy, Elts);
2424   }
2425 
2426   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2427   SequentialType *InitTy = cast<SequentialType>(Init->getType());
2428   uint64_t NumElts = InitTy->getNumElements();
2429 
2430   // Break up the array into elements.
2431   for (uint64_t i = 0, e = NumElts; i != e; ++i)
2432     Elts.push_back(Init->getAggregateElement(i));
2433 
2434   assert(CI->getZExtValue() < NumElts);
2435   Elts[CI->getZExtValue()] =
2436     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2437 
2438   if (Init->getType()->isArrayTy())
2439     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2440   return ConstantVector::get(Elts);
2441 }
2442 
2443 /// We have decided that Addr (which satisfies the predicate
2444 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2445 static void CommitValueTo(Constant *Val, Constant *Addr) {
2446   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2447     assert(GV->hasInitializer());
2448     GV->setInitializer(Val);
2449     return;
2450   }
2451 
2452   ConstantExpr *CE = cast<ConstantExpr>(Addr);
2453   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2454   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2455 }
2456 
2457 /// Given a map of address -> value, where addresses are expected to be some form
2458 /// of either a global or a constant GEP, set the initializer for the address to
2459 /// be the value. This performs mostly the same function as CommitValueTo()
2460 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2461 /// case where the set of addresses are GEPs sharing the same underlying global,
2462 /// processing the GEPs in batches rather than individually.
2463 ///
2464 /// To give an example, consider the following C++ code adapted from the clang
2465 /// regression tests:
2466 /// struct S {
2467 ///  int n = 10;
2468 ///  int m = 2 * n;
2469 ///  S(int a) : n(a) {}
2470 /// };
2471 ///
2472 /// template<typename T>
2473 /// struct U {
2474 ///  T *r = &q;
2475 ///  T q = 42;
2476 ///  U *p = this;
2477 /// };
2478 ///
2479 /// U<S> e;
2480 ///
2481 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2482 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2483 /// members. This batch algorithm will simply use general CommitValueTo() method
2484 /// to handle the complex nested S struct initialization of 'q', before
2485 /// processing the outermost members in a single batch. Using CommitValueTo() to
2486 /// handle member in the outer struct is inefficient when the struct/array is
2487 /// very large as we end up creating and destroy constant arrays for each
2488 /// initialization.
2489 /// For the above case, we expect the following IR to be generated:
2490 ///
2491 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2492 /// %struct.S = type { i32, i32 }
2493 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2494 ///                                                  i64 0, i32 1),
2495 ///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2496 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2497 /// constant expression, while the other two elements of @e are "simple".
2498 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2499   SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2500   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2501   SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2502   SimpleCEs.reserve(Mem.size());
2503 
2504   for (const auto &I : Mem) {
2505     if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2506       GVs.push_back(std::make_pair(GV, I.second));
2507     } else {
2508       ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2509       // We don't handle the deeply recursive case using the batch method.
2510       if (GEP->getNumOperands() > 3)
2511         ComplexCEs.push_back(std::make_pair(GEP, I.second));
2512       else
2513         SimpleCEs.push_back(std::make_pair(GEP, I.second));
2514     }
2515   }
2516 
2517   // The algorithm below doesn't handle cases like nested structs, so use the
2518   // slower fully general method if we have to.
2519   for (auto ComplexCE : ComplexCEs)
2520     CommitValueTo(ComplexCE.second, ComplexCE.first);
2521 
2522   for (auto GVPair : GVs) {
2523     assert(GVPair.first->hasInitializer());
2524     GVPair.first->setInitializer(GVPair.second);
2525   }
2526 
2527   if (SimpleCEs.empty())
2528     return;
2529 
2530   // We cache a single global's initializer elements in the case where the
2531   // subsequent address/val pair uses the same one. This avoids throwing away and
2532   // rebuilding the constant struct/vector/array just because one element is
2533   // modified at a time.
2534   SmallVector<Constant *, 32> Elts;
2535   Elts.reserve(SimpleCEs.size());
2536   GlobalVariable *CurrentGV = nullptr;
2537 
2538   auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2539     Constant *Init = GV->getInitializer();
2540     Type *Ty = Init->getType();
2541     if (Update) {
2542       if (CurrentGV) {
2543         assert(CurrentGV && "Expected a GV to commit to!");
2544         Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2545         // We have a valid cache that needs to be committed.
2546         if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2547           CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2548         else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2549           CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2550         else
2551           CurrentGV->setInitializer(ConstantVector::get(Elts));
2552       }
2553       if (CurrentGV == GV)
2554         return;
2555       // Need to clear and set up cache for new initializer.
2556       CurrentGV = GV;
2557       Elts.clear();
2558       unsigned NumElts;
2559       if (auto *STy = dyn_cast<StructType>(Ty))
2560         NumElts = STy->getNumElements();
2561       else
2562         NumElts = cast<SequentialType>(Ty)->getNumElements();
2563       for (unsigned i = 0, e = NumElts; i != e; ++i)
2564         Elts.push_back(Init->getAggregateElement(i));
2565     }
2566   };
2567 
2568   for (auto CEPair : SimpleCEs) {
2569     ConstantExpr *GEP = CEPair.first;
2570     Constant *Val = CEPair.second;
2571 
2572     GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2573     commitAndSetupCache(GV, GV != CurrentGV);
2574     ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2575     Elts[CI->getZExtValue()] = Val;
2576   }
2577   // The last initializer in the list needs to be committed, others
2578   // will be committed on a new initializer being processed.
2579   commitAndSetupCache(CurrentGV, true);
2580 }
2581 
2582 /// Evaluate static constructors in the function, if we can.  Return true if we
2583 /// can, false otherwise.
2584 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2585                                       TargetLibraryInfo *TLI) {
2586   // Call the function.
2587   Evaluator Eval(DL, TLI);
2588   Constant *RetValDummy;
2589   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2590                                            SmallVector<Constant*, 0>());
2591 
2592   if (EvalSuccess) {
2593     ++NumCtorsEvaluated;
2594 
2595     // We succeeded at evaluation: commit the result.
2596     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2597                       << F->getName() << "' to "
2598                       << Eval.getMutatedMemory().size() << " stores.\n");
2599     BatchCommitValueTo(Eval.getMutatedMemory());
2600     for (GlobalVariable *GV : Eval.getInvariants())
2601       GV->setConstant(true);
2602   }
2603 
2604   return EvalSuccess;
2605 }
2606 
2607 static int compareNames(Constant *const *A, Constant *const *B) {
2608   Value *AStripped = (*A)->stripPointerCasts();
2609   Value *BStripped = (*B)->stripPointerCasts();
2610   return AStripped->getName().compare(BStripped->getName());
2611 }
2612 
2613 static void setUsedInitializer(GlobalVariable &V,
2614                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2615   if (Init.empty()) {
2616     V.eraseFromParent();
2617     return;
2618   }
2619 
2620   // Type of pointer to the array of pointers.
2621   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2622 
2623   SmallVector<Constant *, 8> UsedArray;
2624   for (GlobalValue *GV : Init) {
2625     Constant *Cast
2626       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2627     UsedArray.push_back(Cast);
2628   }
2629   // Sort to get deterministic order.
2630   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2631   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2632 
2633   Module *M = V.getParent();
2634   V.removeFromParent();
2635   GlobalVariable *NV =
2636       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2637                          ConstantArray::get(ATy, UsedArray), "");
2638   NV->takeName(&V);
2639   NV->setSection("llvm.metadata");
2640   delete &V;
2641 }
2642 
2643 namespace {
2644 
2645 /// An easy to access representation of llvm.used and llvm.compiler.used.
2646 class LLVMUsed {
2647   SmallPtrSet<GlobalValue *, 8> Used;
2648   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2649   GlobalVariable *UsedV;
2650   GlobalVariable *CompilerUsedV;
2651 
2652 public:
2653   LLVMUsed(Module &M) {
2654     UsedV = collectUsedGlobalVariables(M, Used, false);
2655     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2656   }
2657 
2658   using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2659   using used_iterator_range = iterator_range<iterator>;
2660 
2661   iterator usedBegin() { return Used.begin(); }
2662   iterator usedEnd() { return Used.end(); }
2663 
2664   used_iterator_range used() {
2665     return used_iterator_range(usedBegin(), usedEnd());
2666   }
2667 
2668   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2669   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2670 
2671   used_iterator_range compilerUsed() {
2672     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2673   }
2674 
2675   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2676 
2677   bool compilerUsedCount(GlobalValue *GV) const {
2678     return CompilerUsed.count(GV);
2679   }
2680 
2681   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2682   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2683   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2684 
2685   bool compilerUsedInsert(GlobalValue *GV) {
2686     return CompilerUsed.insert(GV).second;
2687   }
2688 
2689   void syncVariablesAndSets() {
2690     if (UsedV)
2691       setUsedInitializer(*UsedV, Used);
2692     if (CompilerUsedV)
2693       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2694   }
2695 };
2696 
2697 } // end anonymous namespace
2698 
2699 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2700   if (GA.use_empty()) // No use at all.
2701     return false;
2702 
2703   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2704          "We should have removed the duplicated "
2705          "element from llvm.compiler.used");
2706   if (!GA.hasOneUse())
2707     // Strictly more than one use. So at least one is not in llvm.used and
2708     // llvm.compiler.used.
2709     return true;
2710 
2711   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2712   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2713 }
2714 
2715 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2716                                                const LLVMUsed &U) {
2717   unsigned N = 2;
2718   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2719          "We should have removed the duplicated "
2720          "element from llvm.compiler.used");
2721   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2722     ++N;
2723   return V.hasNUsesOrMore(N);
2724 }
2725 
2726 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2727   if (!GA.hasLocalLinkage())
2728     return true;
2729 
2730   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2731 }
2732 
2733 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2734                              bool &RenameTarget) {
2735   RenameTarget = false;
2736   bool Ret = false;
2737   if (hasUseOtherThanLLVMUsed(GA, U))
2738     Ret = true;
2739 
2740   // If the alias is externally visible, we may still be able to simplify it.
2741   if (!mayHaveOtherReferences(GA, U))
2742     return Ret;
2743 
2744   // If the aliasee has internal linkage, give it the name and linkage
2745   // of the alias, and delete the alias.  This turns:
2746   //   define internal ... @f(...)
2747   //   @a = alias ... @f
2748   // into:
2749   //   define ... @a(...)
2750   Constant *Aliasee = GA.getAliasee();
2751   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2752   if (!Target->hasLocalLinkage())
2753     return Ret;
2754 
2755   // Do not perform the transform if multiple aliases potentially target the
2756   // aliasee. This check also ensures that it is safe to replace the section
2757   // and other attributes of the aliasee with those of the alias.
2758   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2759     return Ret;
2760 
2761   RenameTarget = true;
2762   return true;
2763 }
2764 
2765 static bool
2766 OptimizeGlobalAliases(Module &M,
2767                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2768   bool Changed = false;
2769   LLVMUsed Used(M);
2770 
2771   for (GlobalValue *GV : Used.used())
2772     Used.compilerUsedErase(GV);
2773 
2774   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2775        I != E;) {
2776     GlobalAlias *J = &*I++;
2777 
2778     // Aliases without names cannot be referenced outside this module.
2779     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2780       J->setLinkage(GlobalValue::InternalLinkage);
2781 
2782     if (deleteIfDead(*J, NotDiscardableComdats)) {
2783       Changed = true;
2784       continue;
2785     }
2786 
2787     // If the alias can change at link time, nothing can be done - bail out.
2788     if (J->isInterposable())
2789       continue;
2790 
2791     Constant *Aliasee = J->getAliasee();
2792     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2793     // We can't trivially replace the alias with the aliasee if the aliasee is
2794     // non-trivial in some way.
2795     // TODO: Try to handle non-zero GEPs of local aliasees.
2796     if (!Target)
2797       continue;
2798     Target->removeDeadConstantUsers();
2799 
2800     // Make all users of the alias use the aliasee instead.
2801     bool RenameTarget;
2802     if (!hasUsesToReplace(*J, Used, RenameTarget))
2803       continue;
2804 
2805     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2806     ++NumAliasesResolved;
2807     Changed = true;
2808 
2809     if (RenameTarget) {
2810       // Give the aliasee the name, linkage and other attributes of the alias.
2811       Target->takeName(&*J);
2812       Target->setLinkage(J->getLinkage());
2813       Target->setDSOLocal(J->isDSOLocal());
2814       Target->setVisibility(J->getVisibility());
2815       Target->setDLLStorageClass(J->getDLLStorageClass());
2816 
2817       if (Used.usedErase(&*J))
2818         Used.usedInsert(Target);
2819 
2820       if (Used.compilerUsedErase(&*J))
2821         Used.compilerUsedInsert(Target);
2822     } else if (mayHaveOtherReferences(*J, Used))
2823       continue;
2824 
2825     // Delete the alias.
2826     M.getAliasList().erase(J);
2827     ++NumAliasesRemoved;
2828     Changed = true;
2829   }
2830 
2831   Used.syncVariablesAndSets();
2832 
2833   return Changed;
2834 }
2835 
2836 static Function *
2837 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2838   // Hack to get a default TLI before we have actual Function.
2839   auto FuncIter = M.begin();
2840   if (FuncIter == M.end())
2841     return nullptr;
2842   auto *TLI = &GetTLI(*FuncIter);
2843 
2844   LibFunc F = LibFunc_cxa_atexit;
2845   if (!TLI->has(F))
2846     return nullptr;
2847 
2848   Function *Fn = M.getFunction(TLI->getName(F));
2849   if (!Fn)
2850     return nullptr;
2851 
2852   // Now get the actual TLI for Fn.
2853   TLI = &GetTLI(*Fn);
2854 
2855   // Make sure that the function has the correct prototype.
2856   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2857     return nullptr;
2858 
2859   return Fn;
2860 }
2861 
2862 /// Returns whether the given function is an empty C++ destructor and can
2863 /// therefore be eliminated.
2864 /// Note that we assume that other optimization passes have already simplified
2865 /// the code so we simply check for 'ret'.
2866 static bool cxxDtorIsEmpty(const Function &Fn) {
2867   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2868   // nounwind, but that doesn't seem worth doing.
2869   if (Fn.isDeclaration())
2870     return false;
2871 
2872   for (auto &I : Fn.getEntryBlock()) {
2873     if (isa<DbgInfoIntrinsic>(I))
2874       continue;
2875     if (isa<ReturnInst>(I))
2876       return true;
2877     break;
2878   }
2879   return false;
2880 }
2881 
2882 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2883   /// Itanium C++ ABI p3.3.5:
2884   ///
2885   ///   After constructing a global (or local static) object, that will require
2886   ///   destruction on exit, a termination function is registered as follows:
2887   ///
2888   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2889   ///
2890   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2891   ///   call f(p) when DSO d is unloaded, before all such termination calls
2892   ///   registered before this one. It returns zero if registration is
2893   ///   successful, nonzero on failure.
2894 
2895   // This pass will look for calls to __cxa_atexit where the function is trivial
2896   // and remove them.
2897   bool Changed = false;
2898 
2899   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2900        I != E;) {
2901     // We're only interested in calls. Theoretically, we could handle invoke
2902     // instructions as well, but neither llvm-gcc nor clang generate invokes
2903     // to __cxa_atexit.
2904     CallInst *CI = dyn_cast<CallInst>(*I++);
2905     if (!CI)
2906       continue;
2907 
2908     Function *DtorFn =
2909       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2910     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2911       continue;
2912 
2913     // Just remove the call.
2914     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2915     CI->eraseFromParent();
2916 
2917     ++NumCXXDtorsRemoved;
2918 
2919     Changed |= true;
2920   }
2921 
2922   return Changed;
2923 }
2924 
2925 static bool optimizeGlobalsInModule(
2926     Module &M, const DataLayout &DL,
2927     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2928     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2929     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2930     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2931   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2932   bool Changed = false;
2933   bool LocalChange = true;
2934   while (LocalChange) {
2935     LocalChange = false;
2936 
2937     NotDiscardableComdats.clear();
2938     for (const GlobalVariable &GV : M.globals())
2939       if (const Comdat *C = GV.getComdat())
2940         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2941           NotDiscardableComdats.insert(C);
2942     for (Function &F : M)
2943       if (const Comdat *C = F.getComdat())
2944         if (!F.isDefTriviallyDead())
2945           NotDiscardableComdats.insert(C);
2946     for (GlobalAlias &GA : M.aliases())
2947       if (const Comdat *C = GA.getComdat())
2948         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2949           NotDiscardableComdats.insert(C);
2950 
2951     // Delete functions that are trivially dead, ccc -> fastcc
2952     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2953                                      NotDiscardableComdats);
2954 
2955     // Optimize global_ctors list.
2956     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2957       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2958     });
2959 
2960     // Optimize non-address-taken globals.
2961     LocalChange |=
2962         OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);
2963 
2964     // Resolve aliases, when possible.
2965     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2966 
2967     // Try to remove trivial global destructors if they are not removed
2968     // already.
2969     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2970     if (CXAAtExitFn)
2971       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2972 
2973     Changed |= LocalChange;
2974   }
2975 
2976   // TODO: Move all global ctors functions to the end of the module for code
2977   // layout.
2978 
2979   return Changed;
2980 }
2981 
2982 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2983     auto &DL = M.getDataLayout();
2984     auto &FAM =
2985         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2986     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2987       return FAM.getResult<DominatorTreeAnalysis>(F);
2988     };
2989     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2990       return FAM.getResult<TargetLibraryAnalysis>(F);
2991     };
2992     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2993       return FAM.getResult<TargetIRAnalysis>(F);
2994     };
2995 
2996     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2997       return FAM.getResult<BlockFrequencyAnalysis>(F);
2998     };
2999 
3000     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
3001       return PreservedAnalyses::all();
3002     return PreservedAnalyses::none();
3003 }
3004 
3005 namespace {
3006 
3007 struct GlobalOptLegacyPass : public ModulePass {
3008   static char ID; // Pass identification, replacement for typeid
3009 
3010   GlobalOptLegacyPass() : ModulePass(ID) {
3011     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
3012   }
3013 
3014   bool runOnModule(Module &M) override {
3015     if (skipModule(M))
3016       return false;
3017 
3018     auto &DL = M.getDataLayout();
3019     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
3020       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
3021     };
3022     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
3023       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3024     };
3025     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
3026       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3027     };
3028 
3029     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3030       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3031     };
3032 
3033     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
3034                                    LookupDomTree);
3035   }
3036 
3037   void getAnalysisUsage(AnalysisUsage &AU) const override {
3038     AU.addRequired<TargetLibraryInfoWrapperPass>();
3039     AU.addRequired<TargetTransformInfoWrapperPass>();
3040     AU.addRequired<DominatorTreeWrapperPass>();
3041     AU.addRequired<BlockFrequencyInfoWrapperPass>();
3042   }
3043 };
3044 
3045 } // end anonymous namespace
3046 
3047 char GlobalOptLegacyPass::ID = 0;
3048 
3049 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3050                       "Global Variable Optimizer", false, false)
3051 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3052 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3053 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3054 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3055 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3056                     "Global Variable Optimizer", false, false)
3057 
3058 ModulePass *llvm::createGlobalOptimizerPass() {
3059   return new GlobalOptLegacyPass();
3060 }
3061