1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken.  If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/BinaryFormat/Dwarf.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Use.h"
53 #include "llvm/IR/User.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueHandle.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/IPO.h"
66 #include "llvm/Transforms/Utils/CtorUtils.h"
67 #include "llvm/Transforms/Utils/Evaluator.h"
68 #include "llvm/Transforms/Utils/GlobalStatus.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include <cassert>
71 #include <cstdint>
72 #include <utility>
73 #include <vector>
74 
75 using namespace llvm;
76 
77 #define DEBUG_TYPE "globalopt"
78 
79 STATISTIC(NumMarked    , "Number of globals marked constant");
80 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
81 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
82 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83 STATISTIC(NumDeleted   , "Number of globals deleted");
84 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
85 STATISTIC(NumLocalized , "Number of globals localized");
86 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
87 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
88 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
90 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93 STATISTIC(NumInternalFunc, "Number of internal functions");
94 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 
96 static cl::opt<bool>
97     EnableColdCCStressTest("enable-coldcc-stress-test",
98                            cl::desc("Enable stress test of coldcc by adding "
99                                     "calling conv to all internal functions."),
100                            cl::init(false), cl::Hidden);
101 
102 static cl::opt<int> ColdCCRelFreq(
103     "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
104     cl::desc(
105         "Maximum block frequency, expressed as a percentage of caller's "
106         "entry frequency, for a call site to be considered cold for enabling"
107         "coldcc"));
108 
109 /// Is this global variable possibly used by a leak checker as a root?  If so,
110 /// we might not really want to eliminate the stores to it.
111 static bool isLeakCheckerRoot(GlobalVariable *GV) {
112   // A global variable is a root if it is a pointer, or could plausibly contain
113   // a pointer.  There are two challenges; one is that we could have a struct
114   // the has an inner member which is a pointer.  We recurse through the type to
115   // detect these (up to a point).  The other is that we may actually be a union
116   // of a pointer and another type, and so our LLVM type is an integer which
117   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118   // potentially contained here.
119 
120   if (GV->hasPrivateLinkage())
121     return false;
122 
123   SmallVector<Type *, 4> Types;
124   Types.push_back(GV->getValueType());
125 
126   unsigned Limit = 20;
127   do {
128     Type *Ty = Types.pop_back_val();
129     switch (Ty->getTypeID()) {
130       default: break;
131       case Type::PointerTyID:
132         return true;
133       case Type::FixedVectorTyID:
134       case Type::ScalableVectorTyID:
135         if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
136           return true;
137         break;
138       case Type::ArrayTyID:
139         Types.push_back(cast<ArrayType>(Ty)->getElementType());
140         break;
141       case Type::StructTyID: {
142         StructType *STy = cast<StructType>(Ty);
143         if (STy->isOpaque()) return true;
144         for (StructType::element_iterator I = STy->element_begin(),
145                  E = STy->element_end(); I != E; ++I) {
146           Type *InnerTy = *I;
147           if (isa<PointerType>(InnerTy)) return true;
148           if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
149               isa<VectorType>(InnerTy))
150             Types.push_back(InnerTy);
151         }
152         break;
153       }
154     }
155     if (--Limit == 0) return true;
156   } while (!Types.empty());
157   return false;
158 }
159 
160 /// Given a value that is stored to a global but never read, determine whether
161 /// it's safe to remove the store and the chain of computation that feeds the
162 /// store.
163 static bool IsSafeComputationToRemove(
164     Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
165   do {
166     if (isa<Constant>(V))
167       return true;
168     if (!V->hasOneUse())
169       return false;
170     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
171         isa<GlobalValue>(V))
172       return false;
173     if (isAllocationFn(V, GetTLI))
174       return true;
175 
176     Instruction *I = cast<Instruction>(V);
177     if (I->mayHaveSideEffects())
178       return false;
179     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
180       if (!GEP->hasAllConstantIndices())
181         return false;
182     } else if (I->getNumOperands() != 1) {
183       return false;
184     }
185 
186     V = I->getOperand(0);
187   } while (true);
188 }
189 
190 /// This GV is a pointer root.  Loop over all users of the global and clean up
191 /// any that obviously don't assign the global a value that isn't dynamically
192 /// allocated.
193 static bool
194 CleanupPointerRootUsers(GlobalVariable *GV,
195                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
196   // A brief explanation of leak checkers.  The goal is to find bugs where
197   // pointers are forgotten, causing an accumulating growth in memory
198   // usage over time.  The common strategy for leak checkers is to explicitly
199   // allow the memory pointed to by globals at exit.  This is popular because it
200   // also solves another problem where the main thread of a C++ program may shut
201   // down before other threads that are still expecting to use those globals. To
202   // handle that case, we expect the program may create a singleton and never
203   // destroy it.
204 
205   bool Changed = false;
206 
207   // If Dead[n].first is the only use of a malloc result, we can delete its
208   // chain of computation and the store to the global in Dead[n].second.
209   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
210 
211   // Constants can't be pointers to dynamically allocated memory.
212   for (User *U : llvm::make_early_inc_range(GV->users())) {
213     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
214       Value *V = SI->getValueOperand();
215       if (isa<Constant>(V)) {
216         Changed = true;
217         SI->eraseFromParent();
218       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
219         if (I->hasOneUse())
220           Dead.push_back(std::make_pair(I, SI));
221       }
222     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
223       if (isa<Constant>(MSI->getValue())) {
224         Changed = true;
225         MSI->eraseFromParent();
226       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
227         if (I->hasOneUse())
228           Dead.push_back(std::make_pair(I, MSI));
229       }
230     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
231       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
232       if (MemSrc && MemSrc->isConstant()) {
233         Changed = true;
234         MTI->eraseFromParent();
235       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
236         if (I->hasOneUse())
237           Dead.push_back(std::make_pair(I, MTI));
238       }
239     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
240       if (CE->use_empty()) {
241         CE->destroyConstant();
242         Changed = true;
243       }
244     } else if (Constant *C = dyn_cast<Constant>(U)) {
245       if (isSafeToDestroyConstant(C)) {
246         C->destroyConstant();
247         // This could have invalidated UI, start over from scratch.
248         Dead.clear();
249         CleanupPointerRootUsers(GV, GetTLI);
250         return true;
251       }
252     }
253   }
254 
255   for (int i = 0, e = Dead.size(); i != e; ++i) {
256     if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
257       Dead[i].second->eraseFromParent();
258       Instruction *I = Dead[i].first;
259       do {
260         if (isAllocationFn(I, GetTLI))
261           break;
262         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
263         if (!J)
264           break;
265         I->eraseFromParent();
266         I = J;
267       } while (true);
268       I->eraseFromParent();
269       Changed = true;
270     }
271   }
272 
273   return Changed;
274 }
275 
276 /// We just marked GV constant.  Loop over all users of the global, cleaning up
277 /// the obvious ones.  This is largely just a quick scan over the use list to
278 /// clean up the easy and obvious cruft.  This returns true if it made a change.
279 static bool CleanupConstantGlobalUsers(GlobalVariable *GV,
280                                        const DataLayout &DL) {
281   Constant *Init = GV->getInitializer();
282   SmallVector<User *, 8> WorkList(GV->users());
283   SmallPtrSet<User *, 8> Visited;
284   bool Changed = false;
285 
286   SmallVector<WeakTrackingVH> MaybeDeadInsts;
287   auto EraseFromParent = [&](Instruction *I) {
288     for (Value *Op : I->operands())
289       if (auto *OpI = dyn_cast<Instruction>(Op))
290         MaybeDeadInsts.push_back(OpI);
291     I->eraseFromParent();
292     Changed = true;
293   };
294   while (!WorkList.empty()) {
295     User *U = WorkList.pop_back_val();
296     if (!Visited.insert(U).second)
297       continue;
298 
299     if (auto *BO = dyn_cast<BitCastOperator>(U))
300       append_range(WorkList, BO->users());
301     if (auto *ASC = dyn_cast<AddrSpaceCastOperator>(U))
302       append_range(WorkList, ASC->users());
303     else if (auto *GEP = dyn_cast<GEPOperator>(U))
304       append_range(WorkList, GEP->users());
305     else if (auto *LI = dyn_cast<LoadInst>(U)) {
306       // A load from a uniform value is always the same, regardless of any
307       // applied offset.
308       Type *Ty = LI->getType();
309       if (Constant *Res = ConstantFoldLoadFromUniformValue(Init, Ty)) {
310         LI->replaceAllUsesWith(Res);
311         EraseFromParent(LI);
312         continue;
313       }
314 
315       Value *PtrOp = LI->getPointerOperand();
316       APInt Offset(DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
317       PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
318           DL, Offset, /* AllowNonInbounds */ true);
319       if (PtrOp == GV) {
320         if (auto *Value = ConstantFoldLoadFromConst(Init, Ty, Offset, DL)) {
321           LI->replaceAllUsesWith(Value);
322           EraseFromParent(LI);
323         }
324       }
325     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
326       // Store must be unreachable or storing Init into the global.
327       EraseFromParent(SI);
328     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
329       if (getUnderlyingObject(MI->getRawDest()) == GV)
330         EraseFromParent(MI);
331     }
332   }
333 
334   Changed |=
335       RecursivelyDeleteTriviallyDeadInstructionsPermissive(MaybeDeadInsts);
336   GV->removeDeadConstantUsers();
337   return Changed;
338 }
339 
340 /// Look at all uses of the global and determine which (offset, type) pairs it
341 /// can be split into.
342 static bool collectSRATypes(DenseMap<uint64_t, Type *> &Types, GlobalValue *GV,
343                             const DataLayout &DL) {
344   SmallVector<Use *, 16> Worklist;
345   SmallPtrSet<Use *, 16> Visited;
346   auto AppendUses = [&](Value *V) {
347     for (Use &U : V->uses())
348       if (Visited.insert(&U).second)
349         Worklist.push_back(&U);
350   };
351   AppendUses(GV);
352   while (!Worklist.empty()) {
353     Use *U = Worklist.pop_back_val();
354     User *V = U->getUser();
355     if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V)) {
356       AppendUses(V);
357       continue;
358     }
359 
360     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
361       if (!GEP->hasAllConstantIndices())
362         return false;
363       AppendUses(V);
364       continue;
365     }
366 
367     if (Value *Ptr = getLoadStorePointerOperand(V)) {
368       // This is storing the global address into somewhere, not storing into
369       // the global.
370       if (isa<StoreInst>(V) && U->getOperandNo() == 0)
371         return false;
372 
373       APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
374       Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
375                                                    /* AllowNonInbounds */ true);
376       if (Ptr != GV || Offset.getActiveBits() >= 64)
377         return false;
378 
379       // TODO: We currently require that all accesses at a given offset must
380       // use the same type. This could be relaxed.
381       Type *Ty = getLoadStoreType(V);
382       auto It = Types.try_emplace(Offset.getZExtValue(), Ty).first;
383       if (Ty != It->second)
384         return false;
385       continue;
386     }
387 
388     // Ignore dead constant users.
389     if (auto *C = dyn_cast<Constant>(V)) {
390       if (!isSafeToDestroyConstant(C))
391         return false;
392       continue;
393     }
394 
395     // Unknown user.
396     return false;
397   }
398 
399   return true;
400 }
401 
402 /// Copy over the debug info for a variable to its SRA replacements.
403 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
404                                  uint64_t FragmentOffsetInBits,
405                                  uint64_t FragmentSizeInBits,
406                                  uint64_t VarSize) {
407   SmallVector<DIGlobalVariableExpression *, 1> GVs;
408   GV->getDebugInfo(GVs);
409   for (auto *GVE : GVs) {
410     DIVariable *Var = GVE->getVariable();
411     DIExpression *Expr = GVE->getExpression();
412     // If the FragmentSize is smaller than the variable,
413     // emit a fragment expression.
414     if (FragmentSizeInBits < VarSize) {
415       if (auto E = DIExpression::createFragmentExpression(
416               Expr, FragmentOffsetInBits, FragmentSizeInBits))
417         Expr = *E;
418       else
419         return;
420     }
421     auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
422     NGV->addDebugInfo(NGVE);
423   }
424 }
425 
426 /// Perform scalar replacement of aggregates on the specified global variable.
427 /// This opens the door for other optimizations by exposing the behavior of the
428 /// program in a more fine-grained way.  We have determined that this
429 /// transformation is safe already.  We return the first global variable we
430 /// insert so that the caller can reprocess it.
431 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
432   assert(GV->hasLocalLinkage());
433 
434   // Collect types to split into.
435   DenseMap<uint64_t, Type *> Types;
436   if (!collectSRATypes(Types, GV, DL) || Types.empty())
437     return nullptr;
438 
439   // Make sure we don't SRA back to the same type.
440   if (Types.size() == 1 && Types.begin()->second == GV->getValueType())
441     return nullptr;
442 
443   // Don't perform SRA if we would have to split into many globals.
444   if (Types.size() > 16)
445     return nullptr;
446 
447   // Sort by offset.
448   SmallVector<std::pair<uint64_t, Type *>, 16> TypesVector;
449   append_range(TypesVector, Types);
450   sort(TypesVector,
451        [](const auto &A, const auto &B) { return A.first < B.first; });
452 
453   // Check that the types are non-overlapping.
454   uint64_t Offset = 0;
455   for (const auto &Pair : TypesVector) {
456     // Overlaps with previous type.
457     if (Pair.first < Offset)
458       return nullptr;
459 
460     Offset = Pair.first + DL.getTypeAllocSize(Pair.second);
461   }
462 
463   // Some accesses go beyond the end of the global, don't bother.
464   if (Offset > DL.getTypeAllocSize(GV->getValueType()))
465     return nullptr;
466 
467   // Collect initializers for new globals.
468   Constant *OrigInit = GV->getInitializer();
469   DenseMap<uint64_t, Constant *> Initializers;
470   for (const auto &Pair : Types) {
471     Constant *NewInit = ConstantFoldLoadFromConst(OrigInit, Pair.second,
472                                                   APInt(64, Pair.first), DL);
473     if (!NewInit) {
474       LLVM_DEBUG(dbgs() << "Global SRA: Failed to evaluate initializer of "
475                         << *GV << " with type " << *Pair.second << " at offset "
476                         << Pair.first << "\n");
477       return nullptr;
478     }
479     Initializers.insert({Pair.first, NewInit});
480   }
481 
482   LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
483 
484   // Get the alignment of the global, either explicit or target-specific.
485   Align StartAlignment =
486       DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType());
487   uint64_t VarSize = DL.getTypeSizeInBits(GV->getValueType());
488 
489   // Create replacement globals.
490   DenseMap<uint64_t, GlobalVariable *> NewGlobals;
491   unsigned NameSuffix = 0;
492   for (auto &Pair : TypesVector) {
493     uint64_t Offset = Pair.first;
494     Type *Ty = Pair.second;
495     GlobalVariable *NGV = new GlobalVariable(
496         *GV->getParent(), Ty, false, GlobalVariable::InternalLinkage,
497         Initializers[Offset], GV->getName() + "." + Twine(NameSuffix++), GV,
498         GV->getThreadLocalMode(), GV->getAddressSpace());
499     NGV->copyAttributesFrom(GV);
500     NewGlobals.insert({Offset, NGV});
501 
502     // Calculate the known alignment of the field.  If the original aggregate
503     // had 256 byte alignment for example, something might depend on that:
504     // propagate info to each field.
505     Align NewAlign = commonAlignment(StartAlignment, Offset);
506     if (NewAlign > DL.getABITypeAlign(Ty))
507       NGV->setAlignment(NewAlign);
508 
509     // Copy over the debug info for the variable.
510     transferSRADebugInfo(GV, NGV, Offset * 8, DL.getTypeAllocSizeInBits(Ty),
511                          VarSize);
512   }
513 
514   // Replace uses of the original global with uses of the new global.
515   SmallVector<Value *, 16> Worklist;
516   SmallPtrSet<Value *, 16> Visited;
517   SmallVector<WeakTrackingVH, 16> DeadInsts;
518   auto AppendUsers = [&](Value *V) {
519     for (User *U : V->users())
520       if (Visited.insert(U).second)
521         Worklist.push_back(U);
522   };
523   AppendUsers(GV);
524   while (!Worklist.empty()) {
525     Value *V = Worklist.pop_back_val();
526     if (isa<BitCastOperator>(V) || isa<AddrSpaceCastOperator>(V) ||
527         isa<GEPOperator>(V)) {
528       AppendUsers(V);
529       if (isa<Instruction>(V))
530         DeadInsts.push_back(V);
531       continue;
532     }
533 
534     if (Value *Ptr = getLoadStorePointerOperand(V)) {
535       APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
536       Ptr = Ptr->stripAndAccumulateConstantOffsets(DL, Offset,
537                                                    /* AllowNonInbounds */ true);
538       assert(Ptr == GV && "Load/store must be from/to global");
539       GlobalVariable *NGV = NewGlobals[Offset.getZExtValue()];
540       assert(NGV && "Must have replacement global for this offset");
541 
542       // Update the pointer operand and recalculate alignment.
543       Align PrefAlign = DL.getPrefTypeAlign(getLoadStoreType(V));
544       Align NewAlign =
545           getOrEnforceKnownAlignment(NGV, PrefAlign, DL, cast<Instruction>(V));
546 
547       if (auto *LI = dyn_cast<LoadInst>(V)) {
548         LI->setOperand(0, NGV);
549         LI->setAlignment(NewAlign);
550       } else {
551         auto *SI = cast<StoreInst>(V);
552         SI->setOperand(1, NGV);
553         SI->setAlignment(NewAlign);
554       }
555       continue;
556     }
557 
558     assert(isa<Constant>(V) && isSafeToDestroyConstant(cast<Constant>(V)) &&
559            "Other users can only be dead constants");
560   }
561 
562   // Delete old instructions and global.
563   RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
564   GV->removeDeadConstantUsers();
565   GV->eraseFromParent();
566   ++NumSRA;
567 
568   assert(NewGlobals.size() > 0);
569   return NewGlobals.begin()->second;
570 }
571 
572 /// Return true if all users of the specified value will trap if the value is
573 /// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
574 /// reprocessing them.
575 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
576                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
577   for (const User *U : V->users()) {
578     if (const Instruction *I = dyn_cast<Instruction>(U)) {
579       // If null pointer is considered valid, then all uses are non-trapping.
580       // Non address-space 0 globals have already been pruned by the caller.
581       if (NullPointerIsDefined(I->getFunction()))
582         return false;
583     }
584     if (isa<LoadInst>(U)) {
585       // Will trap.
586     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
587       if (SI->getOperand(0) == V) {
588         //cerr << "NONTRAPPING USE: " << *U;
589         return false;  // Storing the value.
590       }
591     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
592       if (CI->getCalledOperand() != V) {
593         //cerr << "NONTRAPPING USE: " << *U;
594         return false;  // Not calling the ptr
595       }
596     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
597       if (II->getCalledOperand() != V) {
598         //cerr << "NONTRAPPING USE: " << *U;
599         return false;  // Not calling the ptr
600       }
601     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
602       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
603     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
604       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
605     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
606       // If we've already seen this phi node, ignore it, it has already been
607       // checked.
608       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
609         return false;
610     } else if (isa<ICmpInst>(U) &&
611                !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) &&
612                isa<LoadInst>(U->getOperand(0)) &&
613                isa<ConstantPointerNull>(U->getOperand(1))) {
614       assert(isa<GlobalValue>(cast<LoadInst>(U->getOperand(0))
615                                   ->getPointerOperand()
616                                   ->stripPointerCasts()) &&
617              "Should be GlobalVariable");
618       // This and only this kind of non-signed ICmpInst is to be replaced with
619       // the comparing of the value of the created global init bool later in
620       // optimizeGlobalAddressOfMalloc for the global variable.
621     } else {
622       //cerr << "NONTRAPPING USE: " << *U;
623       return false;
624     }
625   }
626   return true;
627 }
628 
629 /// Return true if all uses of any loads from GV will trap if the loaded value
630 /// is null.  Note that this also permits comparisons of the loaded value
631 /// against null, as a special case.
632 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
633   SmallVector<const Value *, 4> Worklist;
634   Worklist.push_back(GV);
635   while (!Worklist.empty()) {
636     const Value *P = Worklist.pop_back_val();
637     for (auto *U : P->users()) {
638       if (auto *LI = dyn_cast<LoadInst>(U)) {
639         SmallPtrSet<const PHINode *, 8> PHIs;
640         if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
641           return false;
642       } else if (auto *SI = dyn_cast<StoreInst>(U)) {
643         // Ignore stores to the global.
644         if (SI->getPointerOperand() != P)
645           return false;
646       } else if (auto *CE = dyn_cast<ConstantExpr>(U)) {
647         if (CE->stripPointerCasts() != GV)
648           return false;
649         // Check further the ConstantExpr.
650         Worklist.push_back(CE);
651       } else {
652         // We don't know or understand this user, bail out.
653         return false;
654       }
655     }
656   }
657 
658   return true;
659 }
660 
661 /// Get all the loads/store uses for global variable \p GV.
662 static void allUsesOfLoadAndStores(GlobalVariable *GV,
663                                    SmallVector<Value *, 4> &Uses) {
664   SmallVector<Value *, 4> Worklist;
665   Worklist.push_back(GV);
666   while (!Worklist.empty()) {
667     auto *P = Worklist.pop_back_val();
668     for (auto *U : P->users()) {
669       if (auto *CE = dyn_cast<ConstantExpr>(U)) {
670         Worklist.push_back(CE);
671         continue;
672       }
673 
674       assert((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
675              "Expect only load or store instructions");
676       Uses.push_back(U);
677     }
678   }
679 }
680 
681 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
682   bool Changed = false;
683   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
684     Instruction *I = cast<Instruction>(*UI++);
685     // Uses are non-trapping if null pointer is considered valid.
686     // Non address-space 0 globals are already pruned by the caller.
687     if (NullPointerIsDefined(I->getFunction()))
688       return false;
689     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
690       LI->setOperand(0, NewV);
691       Changed = true;
692     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
693       if (SI->getOperand(1) == V) {
694         SI->setOperand(1, NewV);
695         Changed = true;
696       }
697     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
698       CallBase *CB = cast<CallBase>(I);
699       if (CB->getCalledOperand() == V) {
700         // Calling through the pointer!  Turn into a direct call, but be careful
701         // that the pointer is not also being passed as an argument.
702         CB->setCalledOperand(NewV);
703         Changed = true;
704         bool PassedAsArg = false;
705         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
706           if (CB->getArgOperand(i) == V) {
707             PassedAsArg = true;
708             CB->setArgOperand(i, NewV);
709           }
710 
711         if (PassedAsArg) {
712           // Being passed as an argument also.  Be careful to not invalidate UI!
713           UI = V->user_begin();
714         }
715       }
716     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
717       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
718                                 ConstantExpr::getCast(CI->getOpcode(),
719                                                       NewV, CI->getType()));
720       if (CI->use_empty()) {
721         Changed = true;
722         CI->eraseFromParent();
723       }
724     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
725       // Should handle GEP here.
726       SmallVector<Constant*, 8> Idxs;
727       Idxs.reserve(GEPI->getNumOperands()-1);
728       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
729            i != e; ++i)
730         if (Constant *C = dyn_cast<Constant>(*i))
731           Idxs.push_back(C);
732         else
733           break;
734       if (Idxs.size() == GEPI->getNumOperands()-1)
735         Changed |= OptimizeAwayTrappingUsesOfValue(
736             GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
737                                                  NewV, Idxs));
738       if (GEPI->use_empty()) {
739         Changed = true;
740         GEPI->eraseFromParent();
741       }
742     }
743   }
744 
745   return Changed;
746 }
747 
748 /// The specified global has only one non-null value stored into it.  If there
749 /// are uses of the loaded value that would trap if the loaded value is
750 /// dynamically null, then we know that they cannot be reachable with a null
751 /// optimize away the load.
752 static bool OptimizeAwayTrappingUsesOfLoads(
753     GlobalVariable *GV, Constant *LV, const DataLayout &DL,
754     function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
755   bool Changed = false;
756 
757   // Keep track of whether we are able to remove all the uses of the global
758   // other than the store that defines it.
759   bool AllNonStoreUsesGone = true;
760 
761   // Replace all uses of loads with uses of uses of the stored value.
762   for (User *GlobalUser : llvm::make_early_inc_range(GV->users())) {
763     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
764       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
765       // If we were able to delete all uses of the loads
766       if (LI->use_empty()) {
767         LI->eraseFromParent();
768         Changed = true;
769       } else {
770         AllNonStoreUsesGone = false;
771       }
772     } else if (isa<StoreInst>(GlobalUser)) {
773       // Ignore the store that stores "LV" to the global.
774       assert(GlobalUser->getOperand(1) == GV &&
775              "Must be storing *to* the global");
776     } else {
777       AllNonStoreUsesGone = false;
778 
779       // If we get here we could have other crazy uses that are transitively
780       // loaded.
781       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
782               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
783               isa<BitCastInst>(GlobalUser) ||
784               isa<GetElementPtrInst>(GlobalUser)) &&
785              "Only expect load and stores!");
786     }
787   }
788 
789   if (Changed) {
790     LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
791                       << "\n");
792     ++NumGlobUses;
793   }
794 
795   // If we nuked all of the loads, then none of the stores are needed either,
796   // nor is the global.
797   if (AllNonStoreUsesGone) {
798     if (isLeakCheckerRoot(GV)) {
799       Changed |= CleanupPointerRootUsers(GV, GetTLI);
800     } else {
801       Changed = true;
802       CleanupConstantGlobalUsers(GV, DL);
803     }
804     if (GV->use_empty()) {
805       LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
806       Changed = true;
807       GV->eraseFromParent();
808       ++NumDeleted;
809     }
810   }
811   return Changed;
812 }
813 
814 /// Walk the use list of V, constant folding all of the instructions that are
815 /// foldable.
816 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
817                                 TargetLibraryInfo *TLI) {
818   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
819     if (Instruction *I = dyn_cast<Instruction>(*UI++))
820       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
821         I->replaceAllUsesWith(NewC);
822 
823         // Advance UI to the next non-I use to avoid invalidating it!
824         // Instructions could multiply use V.
825         while (UI != E && *UI == I)
826           ++UI;
827         if (isInstructionTriviallyDead(I, TLI))
828           I->eraseFromParent();
829       }
830 }
831 
832 /// This function takes the specified global variable, and transforms the
833 /// program as if it always contained the result of the specified malloc.
834 /// Because it is always the result of the specified malloc, there is no reason
835 /// to actually DO the malloc.  Instead, turn the malloc into a global, and any
836 /// loads of GV as uses of the new global.
837 static GlobalVariable *
838 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI,
839                               uint64_t AllocSize, const DataLayout &DL,
840                               TargetLibraryInfo *TLI) {
841   LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
842                     << '\n');
843 
844   // Create global of type [AllocSize x i8].
845   Type *GlobalType = ArrayType::get(Type::getInt8Ty(GV->getContext()),
846                                     AllocSize);
847 
848   // Create the new global variable.  The contents of the malloc'd memory is
849   // undefined, so initialize with an undef value.
850   GlobalVariable *NewGV = new GlobalVariable(
851       *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
852       UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
853       GV->getThreadLocalMode());
854 
855   // If there are bitcast users of the malloc (which is typical, usually we have
856   // a malloc + bitcast) then replace them with uses of the new global.  Update
857   // other users to use the global as well.
858   BitCastInst *TheBC = nullptr;
859   while (!CI->use_empty()) {
860     Instruction *User = cast<Instruction>(CI->user_back());
861     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
862       if (BCI->getType() == NewGV->getType()) {
863         BCI->replaceAllUsesWith(NewGV);
864         BCI->eraseFromParent();
865       } else {
866         BCI->setOperand(0, NewGV);
867       }
868     } else {
869       if (!TheBC)
870         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
871       User->replaceUsesOfWith(CI, TheBC);
872     }
873   }
874 
875   SmallPtrSet<Constant *, 1> RepValues;
876   RepValues.insert(NewGV);
877 
878   // If there is a comparison against null, we will insert a global bool to
879   // keep track of whether the global was initialized yet or not.
880   GlobalVariable *InitBool =
881     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
882                        GlobalValue::InternalLinkage,
883                        ConstantInt::getFalse(GV->getContext()),
884                        GV->getName()+".init", GV->getThreadLocalMode());
885   bool InitBoolUsed = false;
886 
887   // Loop over all instruction uses of GV, processing them in turn.
888   SmallVector<Value *, 4> Guses;
889   allUsesOfLoadAndStores(GV, Guses);
890   for (auto *U : Guses) {
891     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
892       // The global is initialized when the store to it occurs. If the stored
893       // value is null value, the global bool is set to false, otherwise true.
894       new StoreInst(ConstantInt::getBool(
895                         GV->getContext(),
896                         !isa<ConstantPointerNull>(SI->getValueOperand())),
897                     InitBool, false, Align(1), SI->getOrdering(),
898                     SI->getSyncScopeID(), SI);
899       SI->eraseFromParent();
900       continue;
901     }
902 
903     LoadInst *LI = cast<LoadInst>(U);
904     while (!LI->use_empty()) {
905       Use &LoadUse = *LI->use_begin();
906       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
907       if (!ICI) {
908         auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType());
909         RepValues.insert(CE);
910         LoadUse.set(CE);
911         continue;
912       }
913 
914       // Replace the cmp X, 0 with a use of the bool value.
915       Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
916                                InitBool->getName() + ".val", false, Align(1),
917                                LI->getOrdering(), LI->getSyncScopeID(), LI);
918       InitBoolUsed = true;
919       switch (ICI->getPredicate()) {
920       default: llvm_unreachable("Unknown ICmp Predicate!");
921       case ICmpInst::ICMP_ULT: // X < null -> always false
922         LV = ConstantInt::getFalse(GV->getContext());
923         break;
924       case ICmpInst::ICMP_UGE: // X >= null -> always true
925         LV = ConstantInt::getTrue(GV->getContext());
926         break;
927       case ICmpInst::ICMP_ULE:
928       case ICmpInst::ICMP_EQ:
929         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
930         break;
931       case ICmpInst::ICMP_NE:
932       case ICmpInst::ICMP_UGT:
933         break;  // no change.
934       }
935       ICI->replaceAllUsesWith(LV);
936       ICI->eraseFromParent();
937     }
938     LI->eraseFromParent();
939   }
940 
941   // If the initialization boolean was used, insert it, otherwise delete it.
942   if (!InitBoolUsed) {
943     while (!InitBool->use_empty())  // Delete initializations
944       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
945     delete InitBool;
946   } else
947     GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
948 
949   // Now the GV is dead, nuke it and the malloc..
950   GV->eraseFromParent();
951   CI->eraseFromParent();
952 
953   // To further other optimizations, loop over all users of NewGV and try to
954   // constant prop them.  This will promote GEP instructions with constant
955   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
956   for (auto *CE : RepValues)
957     ConstantPropUsersOf(CE, DL, TLI);
958 
959   return NewGV;
960 }
961 
962 /// Scan the use-list of GV checking to make sure that there are no complex uses
963 /// of GV.  We permit simple things like dereferencing the pointer, but not
964 /// storing through the address, unless it is to the specified global.
965 static bool
966 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI,
967                                           const GlobalVariable *GV) {
968   SmallPtrSet<const Value *, 4> Visited;
969   SmallVector<const Value *, 4> Worklist;
970   Worklist.push_back(CI);
971 
972   while (!Worklist.empty()) {
973     const Value *V = Worklist.pop_back_val();
974     if (!Visited.insert(V).second)
975       continue;
976 
977     for (const Use &VUse : V->uses()) {
978       const User *U = VUse.getUser();
979       if (isa<LoadInst>(U) || isa<CmpInst>(U))
980         continue; // Fine, ignore.
981 
982       if (auto *SI = dyn_cast<StoreInst>(U)) {
983         if (SI->getValueOperand() == V &&
984             SI->getPointerOperand()->stripPointerCasts() != GV)
985           return false; // Storing the pointer not into GV... bad.
986         continue; // Otherwise, storing through it, or storing into GV... fine.
987       }
988 
989       if (auto *BCI = dyn_cast<BitCastInst>(U)) {
990         Worklist.push_back(BCI);
991         continue;
992       }
993 
994       if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) {
995         Worklist.push_back(GEPI);
996         continue;
997       }
998 
999       return false;
1000     }
1001   }
1002 
1003   return true;
1004 }
1005 
1006 /// If we have a global that is only initialized with a fixed size malloc,
1007 /// transform the program to use global memory instead of malloc'd memory.
1008 /// This eliminates dynamic allocation, avoids an indirection accessing the
1009 /// data, and exposes the resultant global to further GlobalOpt.
1010 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1011                                                AtomicOrdering Ordering,
1012                                                const DataLayout &DL,
1013                                                TargetLibraryInfo *TLI) {
1014   // TODO: This can be generalized to calloc-like functions by using
1015   // getInitialValueOfAllocation() for the global initialization.
1016   assert(isMallocLikeFn(CI, TLI) && "Must be malloc-like call");
1017 
1018   uint64_t AllocSize;
1019   if (!getObjectSize(CI, AllocSize, DL, TLI, ObjectSizeOpts()))
1020     return false;
1021 
1022   // Restrict this transformation to only working on small allocations
1023   // (2048 bytes currently), as we don't want to introduce a 16M global or
1024   // something.
1025   if (AllocSize >= 2048)
1026     return false;
1027 
1028   // We can't optimize this global unless all uses of it are *known* to be
1029   // of the malloc value, not of the null initializer value (consider a use
1030   // that compares the global's value against zero to see if the malloc has
1031   // been reached).  To do this, we check to see if all uses of the global
1032   // would trap if the global were null: this proves that they must all
1033   // happen after the malloc.
1034   if (!allUsesOfLoadedValueWillTrapIfNull(GV))
1035     return false;
1036 
1037   // We can't optimize this if the malloc itself is used in a complex way,
1038   // for example, being stored into multiple globals.  This allows the
1039   // malloc to be stored into the specified global, loaded, gep, icmp'd.
1040   // These are all things we could transform to using the global for.
1041   if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV))
1042     return false;
1043 
1044   OptimizeGlobalAddressOfMalloc(GV, CI, AllocSize, DL, TLI);
1045   return true;
1046 }
1047 
1048 // Try to optimize globals based on the knowledge that only one value (besides
1049 // its initializer) is ever stored to the global.
1050 static bool
1051 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1052                          AtomicOrdering Ordering, const DataLayout &DL,
1053                          function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1054   // Ignore no-op GEPs and bitcasts.
1055   StoredOnceVal = StoredOnceVal->stripPointerCasts();
1056 
1057   // If we are dealing with a pointer global that is initialized to null and
1058   // only has one (non-null) value stored into it, then we can optimize any
1059   // users of the loaded value (often calls and loads) that would trap if the
1060   // value was null.
1061   if (GV->getInitializer()->getType()->isPointerTy() &&
1062       GV->getInitializer()->isNullValue() &&
1063       StoredOnceVal->getType()->isPointerTy() &&
1064       !NullPointerIsDefined(
1065           nullptr /* F */,
1066           GV->getInitializer()->getType()->getPointerAddressSpace())) {
1067     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1068       if (GV->getInitializer()->getType() != SOVC->getType())
1069         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1070 
1071       // Optimize away any trapping uses of the loaded value.
1072       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1073         return true;
1074     } else if (isMallocLikeFn(StoredOnceVal, GetTLI)) {
1075       if (auto *CI = dyn_cast<CallInst>(StoredOnceVal)) {
1076         auto *TLI = &GetTLI(*CI->getFunction());
1077         if (tryToOptimizeStoreOfMallocToGlobal(GV, CI, Ordering, DL, TLI))
1078           return true;
1079       }
1080     }
1081   }
1082 
1083   return false;
1084 }
1085 
1086 /// At this point, we have learned that the only two values ever stored into GV
1087 /// are its initializer and OtherVal.  See if we can shrink the global into a
1088 /// boolean and select between the two values whenever it is used.  This exposes
1089 /// the values to other scalar optimizations.
1090 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1091   Type *GVElType = GV->getValueType();
1092 
1093   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1094   // an FP value, pointer or vector, don't do this optimization because a select
1095   // between them is very expensive and unlikely to lead to later
1096   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1097   // where v1 and v2 both require constant pool loads, a big loss.
1098   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1099       GVElType->isFloatingPointTy() ||
1100       GVElType->isPointerTy() || GVElType->isVectorTy())
1101     return false;
1102 
1103   // Walk the use list of the global seeing if all the uses are load or store.
1104   // If there is anything else, bail out.
1105   for (User *U : GV->users()) {
1106     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1107       return false;
1108     if (getLoadStoreType(U) != GVElType)
1109       return false;
1110   }
1111 
1112   LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1113 
1114   // Create the new global, initializing it to false.
1115   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1116                                              false,
1117                                              GlobalValue::InternalLinkage,
1118                                         ConstantInt::getFalse(GV->getContext()),
1119                                              GV->getName()+".b",
1120                                              GV->getThreadLocalMode(),
1121                                              GV->getType()->getAddressSpace());
1122   NewGV->copyAttributesFrom(GV);
1123   GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1124 
1125   Constant *InitVal = GV->getInitializer();
1126   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1127          "No reason to shrink to bool!");
1128 
1129   SmallVector<DIGlobalVariableExpression *, 1> GVs;
1130   GV->getDebugInfo(GVs);
1131 
1132   // If initialized to zero and storing one into the global, we can use a cast
1133   // instead of a select to synthesize the desired value.
1134   bool IsOneZero = false;
1135   bool EmitOneOrZero = true;
1136   auto *CI = dyn_cast<ConstantInt>(OtherVal);
1137   if (CI && CI->getValue().getActiveBits() <= 64) {
1138     IsOneZero = InitVal->isNullValue() && CI->isOne();
1139 
1140     auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1141     if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1142       uint64_t ValInit = CIInit->getZExtValue();
1143       uint64_t ValOther = CI->getZExtValue();
1144       uint64_t ValMinus = ValOther - ValInit;
1145 
1146       for(auto *GVe : GVs){
1147         DIGlobalVariable *DGV = GVe->getVariable();
1148         DIExpression *E = GVe->getExpression();
1149         const DataLayout &DL = GV->getParent()->getDataLayout();
1150         unsigned SizeInOctets =
1151             DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8;
1152 
1153         // It is expected that the address of global optimized variable is on
1154         // top of the stack. After optimization, value of that variable will
1155         // be ether 0 for initial value or 1 for other value. The following
1156         // expression should return constant integer value depending on the
1157         // value at global object address:
1158         // val * (ValOther - ValInit) + ValInit:
1159         // DW_OP_deref DW_OP_constu <ValMinus>
1160         // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1161         SmallVector<uint64_t, 12> Ops = {
1162             dwarf::DW_OP_deref_size, SizeInOctets,
1163             dwarf::DW_OP_constu, ValMinus,
1164             dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1165             dwarf::DW_OP_plus};
1166         bool WithStackValue = true;
1167         E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1168         DIGlobalVariableExpression *DGVE =
1169           DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1170         NewGV->addDebugInfo(DGVE);
1171      }
1172      EmitOneOrZero = false;
1173     }
1174   }
1175 
1176   if (EmitOneOrZero) {
1177      // FIXME: This will only emit address for debugger on which will
1178      // be written only 0 or 1.
1179      for(auto *GV : GVs)
1180        NewGV->addDebugInfo(GV);
1181    }
1182 
1183   while (!GV->use_empty()) {
1184     Instruction *UI = cast<Instruction>(GV->user_back());
1185     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1186       // Change the store into a boolean store.
1187       bool StoringOther = SI->getOperand(0) == OtherVal;
1188       // Only do this if we weren't storing a loaded value.
1189       Value *StoreVal;
1190       if (StoringOther || SI->getOperand(0) == InitVal) {
1191         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1192                                     StoringOther);
1193       } else {
1194         // Otherwise, we are storing a previously loaded copy.  To do this,
1195         // change the copy from copying the original value to just copying the
1196         // bool.
1197         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1198 
1199         // If we've already replaced the input, StoredVal will be a cast or
1200         // select instruction.  If not, it will be a load of the original
1201         // global.
1202         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1203           assert(LI->getOperand(0) == GV && "Not a copy!");
1204           // Insert a new load, to preserve the saved value.
1205           StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1206                                   LI->getName() + ".b", false, Align(1),
1207                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1208         } else {
1209           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1210                  "This is not a form that we understand!");
1211           StoreVal = StoredVal->getOperand(0);
1212           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1213         }
1214       }
1215       StoreInst *NSI =
1216           new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1217                         SI->getSyncScopeID(), SI);
1218       NSI->setDebugLoc(SI->getDebugLoc());
1219     } else {
1220       // Change the load into a load of bool then a select.
1221       LoadInst *LI = cast<LoadInst>(UI);
1222       LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1223                                    LI->getName() + ".b", false, Align(1),
1224                                    LI->getOrdering(), LI->getSyncScopeID(), LI);
1225       Instruction *NSI;
1226       if (IsOneZero)
1227         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1228       else
1229         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1230       NSI->takeName(LI);
1231       // Since LI is split into two instructions, NLI and NSI both inherit the
1232       // same DebugLoc
1233       NLI->setDebugLoc(LI->getDebugLoc());
1234       NSI->setDebugLoc(LI->getDebugLoc());
1235       LI->replaceAllUsesWith(NSI);
1236     }
1237     UI->eraseFromParent();
1238   }
1239 
1240   // Retain the name of the old global variable. People who are debugging their
1241   // programs may expect these variables to be named the same.
1242   NewGV->takeName(GV);
1243   GV->eraseFromParent();
1244   return true;
1245 }
1246 
1247 static bool deleteIfDead(
1248     GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1249   GV.removeDeadConstantUsers();
1250 
1251   if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1252     return false;
1253 
1254   if (const Comdat *C = GV.getComdat())
1255     if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1256       return false;
1257 
1258   bool Dead;
1259   if (auto *F = dyn_cast<Function>(&GV))
1260     Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1261   else
1262     Dead = GV.use_empty();
1263   if (!Dead)
1264     return false;
1265 
1266   LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1267   GV.eraseFromParent();
1268   ++NumDeleted;
1269   return true;
1270 }
1271 
1272 static bool isPointerValueDeadOnEntryToFunction(
1273     const Function *F, GlobalValue *GV,
1274     function_ref<DominatorTree &(Function &)> LookupDomTree) {
1275   // Find all uses of GV. We expect them all to be in F, and if we can't
1276   // identify any of the uses we bail out.
1277   //
1278   // On each of these uses, identify if the memory that GV points to is
1279   // used/required/live at the start of the function. If it is not, for example
1280   // if the first thing the function does is store to the GV, the GV can
1281   // possibly be demoted.
1282   //
1283   // We don't do an exhaustive search for memory operations - simply look
1284   // through bitcasts as they're quite common and benign.
1285   const DataLayout &DL = GV->getParent()->getDataLayout();
1286   SmallVector<LoadInst *, 4> Loads;
1287   SmallVector<StoreInst *, 4> Stores;
1288   for (auto *U : GV->users()) {
1289     if (Operator::getOpcode(U) == Instruction::BitCast) {
1290       for (auto *UU : U->users()) {
1291         if (auto *LI = dyn_cast<LoadInst>(UU))
1292           Loads.push_back(LI);
1293         else if (auto *SI = dyn_cast<StoreInst>(UU))
1294           Stores.push_back(SI);
1295         else
1296           return false;
1297       }
1298       continue;
1299     }
1300 
1301     Instruction *I = dyn_cast<Instruction>(U);
1302     if (!I)
1303       return false;
1304     assert(I->getParent()->getParent() == F);
1305 
1306     if (auto *LI = dyn_cast<LoadInst>(I))
1307       Loads.push_back(LI);
1308     else if (auto *SI = dyn_cast<StoreInst>(I))
1309       Stores.push_back(SI);
1310     else
1311       return false;
1312   }
1313 
1314   // We have identified all uses of GV into loads and stores. Now check if all
1315   // of them are known not to depend on the value of the global at the function
1316   // entry point. We do this by ensuring that every load is dominated by at
1317   // least one store.
1318   auto &DT = LookupDomTree(*const_cast<Function *>(F));
1319 
1320   // The below check is quadratic. Check we're not going to do too many tests.
1321   // FIXME: Even though this will always have worst-case quadratic time, we
1322   // could put effort into minimizing the average time by putting stores that
1323   // have been shown to dominate at least one load at the beginning of the
1324   // Stores array, making subsequent dominance checks more likely to succeed
1325   // early.
1326   //
1327   // The threshold here is fairly large because global->local demotion is a
1328   // very powerful optimization should it fire.
1329   const unsigned Threshold = 100;
1330   if (Loads.size() * Stores.size() > Threshold)
1331     return false;
1332 
1333   for (auto *L : Loads) {
1334     auto *LTy = L->getType();
1335     if (none_of(Stores, [&](const StoreInst *S) {
1336           auto *STy = S->getValueOperand()->getType();
1337           // The load is only dominated by the store if DomTree says so
1338           // and the number of bits loaded in L is less than or equal to
1339           // the number of bits stored in S.
1340           return DT.dominates(S, L) &&
1341                  DL.getTypeStoreSize(LTy).getFixedSize() <=
1342                      DL.getTypeStoreSize(STy).getFixedSize();
1343         }))
1344       return false;
1345   }
1346   // All loads have known dependences inside F, so the global can be localized.
1347   return true;
1348 }
1349 
1350 /// C may have non-instruction users. Can all of those users be turned into
1351 /// instructions?
1352 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1353   // We don't do this exhaustively. The most common pattern that we really need
1354   // to care about is a constant GEP or constant bitcast - so just looking
1355   // through one single ConstantExpr.
1356   //
1357   // The set of constants that this function returns true for must be able to be
1358   // handled by makeAllConstantUsesInstructions.
1359   for (auto *U : C->users()) {
1360     if (isa<Instruction>(U))
1361       continue;
1362     if (!isa<ConstantExpr>(U))
1363       // Non instruction, non-constantexpr user; cannot convert this.
1364       return false;
1365     for (auto *UU : U->users())
1366       if (!isa<Instruction>(UU))
1367         // A constantexpr used by another constant. We don't try and recurse any
1368         // further but just bail out at this point.
1369         return false;
1370   }
1371 
1372   return true;
1373 }
1374 
1375 /// C may have non-instruction users, and
1376 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1377 /// non-instruction users to instructions.
1378 static void makeAllConstantUsesInstructions(Constant *C) {
1379   SmallVector<ConstantExpr*,4> Users;
1380   for (auto *U : C->users()) {
1381     if (isa<ConstantExpr>(U))
1382       Users.push_back(cast<ConstantExpr>(U));
1383     else
1384       // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1385       // should not have returned true for C.
1386       assert(
1387           isa<Instruction>(U) &&
1388           "Can't transform non-constantexpr non-instruction to instruction!");
1389   }
1390 
1391   SmallVector<Value*,4> UUsers;
1392   for (auto *U : Users) {
1393     UUsers.clear();
1394     append_range(UUsers, U->users());
1395     for (auto *UU : UUsers) {
1396       Instruction *UI = cast<Instruction>(UU);
1397       Instruction *NewU = U->getAsInstruction(UI);
1398       UI->replaceUsesOfWith(U, NewU);
1399     }
1400     // We've replaced all the uses, so destroy the constant. (destroyConstant
1401     // will update value handles and metadata.)
1402     U->destroyConstant();
1403   }
1404 }
1405 
1406 /// Analyze the specified global variable and optimize
1407 /// it if possible.  If we make a change, return true.
1408 static bool
1409 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1410                       function_ref<TargetTransformInfo &(Function &)> GetTTI,
1411                       function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1412                       function_ref<DominatorTree &(Function &)> LookupDomTree) {
1413   auto &DL = GV->getParent()->getDataLayout();
1414   // If this is a first class global and has only one accessing function and
1415   // this function is non-recursive, we replace the global with a local alloca
1416   // in this function.
1417   //
1418   // NOTE: It doesn't make sense to promote non-single-value types since we
1419   // are just replacing static memory to stack memory.
1420   //
1421   // If the global is in different address space, don't bring it to stack.
1422   if (!GS.HasMultipleAccessingFunctions &&
1423       GS.AccessingFunction &&
1424       GV->getValueType()->isSingleValueType() &&
1425       GV->getType()->getAddressSpace() == 0 &&
1426       !GV->isExternallyInitialized() &&
1427       allNonInstructionUsersCanBeMadeInstructions(GV) &&
1428       GS.AccessingFunction->doesNotRecurse() &&
1429       isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1430                                           LookupDomTree)) {
1431     const DataLayout &DL = GV->getParent()->getDataLayout();
1432 
1433     LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1434     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1435                                                    ->getEntryBlock().begin());
1436     Type *ElemTy = GV->getValueType();
1437     // FIXME: Pass Global's alignment when globals have alignment
1438     AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1439                                         GV->getName(), &FirstI);
1440     if (!isa<UndefValue>(GV->getInitializer()))
1441       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1442 
1443     makeAllConstantUsesInstructions(GV);
1444 
1445     GV->replaceAllUsesWith(Alloca);
1446     GV->eraseFromParent();
1447     ++NumLocalized;
1448     return true;
1449   }
1450 
1451   bool Changed = false;
1452 
1453   // If the global is never loaded (but may be stored to), it is dead.
1454   // Delete it now.
1455   if (!GS.IsLoaded) {
1456     LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1457 
1458     if (isLeakCheckerRoot(GV)) {
1459       // Delete any constant stores to the global.
1460       Changed = CleanupPointerRootUsers(GV, GetTLI);
1461     } else {
1462       // Delete any stores we can find to the global.  We may not be able to
1463       // make it completely dead though.
1464       Changed = CleanupConstantGlobalUsers(GV, DL);
1465     }
1466 
1467     // If the global is dead now, delete it.
1468     if (GV->use_empty()) {
1469       GV->eraseFromParent();
1470       ++NumDeleted;
1471       Changed = true;
1472     }
1473     return Changed;
1474 
1475   }
1476   if (GS.StoredType <= GlobalStatus::InitializerStored) {
1477     LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1478 
1479     // Don't actually mark a global constant if it's atomic because atomic loads
1480     // are implemented by a trivial cmpxchg in some edge-cases and that usually
1481     // requires write access to the variable even if it's not actually changed.
1482     if (GS.Ordering == AtomicOrdering::NotAtomic) {
1483       assert(!GV->isConstant() && "Expected a non-constant global");
1484       GV->setConstant(true);
1485       Changed = true;
1486     }
1487 
1488     // Clean up any obviously simplifiable users now.
1489     Changed |= CleanupConstantGlobalUsers(GV, DL);
1490 
1491     // If the global is dead now, just nuke it.
1492     if (GV->use_empty()) {
1493       LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1494                         << "all users and delete global!\n");
1495       GV->eraseFromParent();
1496       ++NumDeleted;
1497       return true;
1498     }
1499 
1500     // Fall through to the next check; see if we can optimize further.
1501     ++NumMarked;
1502   }
1503   if (!GV->getInitializer()->getType()->isSingleValueType()) {
1504     const DataLayout &DL = GV->getParent()->getDataLayout();
1505     if (SRAGlobal(GV, DL))
1506       return true;
1507   }
1508   Value *StoredOnceValue = GS.getStoredOnceValue();
1509   if (GS.StoredType == GlobalStatus::StoredOnce && StoredOnceValue) {
1510     // Avoid speculating constant expressions that might trap (div/rem).
1511     auto *SOVConstant = dyn_cast<Constant>(StoredOnceValue);
1512     if (SOVConstant && SOVConstant->canTrap())
1513       return Changed;
1514 
1515     Function &StoreFn =
1516         const_cast<Function &>(*GS.StoredOnceStore->getFunction());
1517     bool CanHaveNonUndefGlobalInitializer =
1518         GetTTI(StoreFn).canHaveNonUndefGlobalInitializerInAddressSpace(
1519             GV->getType()->getAddressSpace());
1520     // If the initial value for the global was an undef value, and if only
1521     // one other value was stored into it, we can just change the
1522     // initializer to be the stored value, then delete all stores to the
1523     // global.  This allows us to mark it constant.
1524     // This is restricted to address spaces that allow globals to have
1525     // initializers. NVPTX, for example, does not support initializers for
1526     // shared memory (AS 3).
1527     if (SOVConstant && isa<UndefValue>(GV->getInitializer()) &&
1528         DL.getTypeAllocSize(SOVConstant->getType()) ==
1529             DL.getTypeAllocSize(GV->getValueType()) &&
1530         CanHaveNonUndefGlobalInitializer) {
1531       if (SOVConstant->getType() == GV->getValueType()) {
1532         // Change the initializer in place.
1533         GV->setInitializer(SOVConstant);
1534       } else {
1535         // Create a new global with adjusted type.
1536         auto *NGV = new GlobalVariable(
1537             *GV->getParent(), SOVConstant->getType(), GV->isConstant(),
1538             GV->getLinkage(), SOVConstant, "", GV, GV->getThreadLocalMode(),
1539             GV->getAddressSpace());
1540         NGV->takeName(GV);
1541         NGV->copyAttributesFrom(GV);
1542         GV->replaceAllUsesWith(ConstantExpr::getBitCast(NGV, GV->getType()));
1543         GV->eraseFromParent();
1544         GV = NGV;
1545       }
1546 
1547       // Clean up any obviously simplifiable users now.
1548       CleanupConstantGlobalUsers(GV, DL);
1549 
1550       if (GV->use_empty()) {
1551         LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1552                           << "simplify all users and delete global!\n");
1553         GV->eraseFromParent();
1554         ++NumDeleted;
1555       }
1556       ++NumSubstitute;
1557       return true;
1558     }
1559 
1560     // Try to optimize globals based on the knowledge that only one value
1561     // (besides its initializer) is ever stored to the global.
1562     if (optimizeOnceStoredGlobal(GV, StoredOnceValue, GS.Ordering, DL, GetTLI))
1563       return true;
1564 
1565     // Otherwise, if the global was not a boolean, we can shrink it to be a
1566     // boolean. Skip this optimization for AS that doesn't allow an initializer.
1567     if (SOVConstant && GS.Ordering == AtomicOrdering::NotAtomic &&
1568         (!isa<UndefValue>(GV->getInitializer()) ||
1569          CanHaveNonUndefGlobalInitializer)) {
1570       if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1571         ++NumShrunkToBool;
1572         return true;
1573       }
1574     }
1575   }
1576 
1577   return Changed;
1578 }
1579 
1580 /// Analyze the specified global variable and optimize it if possible.  If we
1581 /// make a change, return true.
1582 static bool
1583 processGlobal(GlobalValue &GV,
1584               function_ref<TargetTransformInfo &(Function &)> GetTTI,
1585               function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1586               function_ref<DominatorTree &(Function &)> LookupDomTree) {
1587   if (GV.getName().startswith("llvm."))
1588     return false;
1589 
1590   GlobalStatus GS;
1591 
1592   if (GlobalStatus::analyzeGlobal(&GV, GS))
1593     return false;
1594 
1595   bool Changed = false;
1596   if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1597     auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1598                                                : GlobalValue::UnnamedAddr::Local;
1599     if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1600       GV.setUnnamedAddr(NewUnnamedAddr);
1601       NumUnnamed++;
1602       Changed = true;
1603     }
1604   }
1605 
1606   // Do more involved optimizations if the global is internal.
1607   if (!GV.hasLocalLinkage())
1608     return Changed;
1609 
1610   auto *GVar = dyn_cast<GlobalVariable>(&GV);
1611   if (!GVar)
1612     return Changed;
1613 
1614   if (GVar->isConstant() || !GVar->hasInitializer())
1615     return Changed;
1616 
1617   return processInternalGlobal(GVar, GS, GetTTI, GetTLI, LookupDomTree) ||
1618          Changed;
1619 }
1620 
1621 /// Walk all of the direct calls of the specified function, changing them to
1622 /// FastCC.
1623 static void ChangeCalleesToFastCall(Function *F) {
1624   for (User *U : F->users()) {
1625     if (isa<BlockAddress>(U))
1626       continue;
1627     cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
1628   }
1629 }
1630 
1631 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
1632                                Attribute::AttrKind A) {
1633   unsigned AttrIndex;
1634   if (Attrs.hasAttrSomewhere(A, &AttrIndex))
1635     return Attrs.removeAttributeAtIndex(C, AttrIndex, A);
1636   return Attrs;
1637 }
1638 
1639 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
1640   F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
1641   for (User *U : F->users()) {
1642     if (isa<BlockAddress>(U))
1643       continue;
1644     CallBase *CB = cast<CallBase>(U);
1645     CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
1646   }
1647 }
1648 
1649 /// Return true if this is a calling convention that we'd like to change.  The
1650 /// idea here is that we don't want to mess with the convention if the user
1651 /// explicitly requested something with performance implications like coldcc,
1652 /// GHC, or anyregcc.
1653 static bool hasChangeableCC(Function *F) {
1654   CallingConv::ID CC = F->getCallingConv();
1655 
1656   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1657   if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
1658     return false;
1659 
1660   // FIXME: Change CC for the whole chain of musttail calls when possible.
1661   //
1662   // Can't change CC of the function that either has musttail calls, or is a
1663   // musttail callee itself
1664   for (User *U : F->users()) {
1665     if (isa<BlockAddress>(U))
1666       continue;
1667     CallInst* CI = dyn_cast<CallInst>(U);
1668     if (!CI)
1669       continue;
1670 
1671     if (CI->isMustTailCall())
1672       return false;
1673   }
1674 
1675   for (BasicBlock &BB : *F)
1676     if (BB.getTerminatingMustTailCall())
1677       return false;
1678 
1679   return true;
1680 }
1681 
1682 /// Return true if the block containing the call site has a BlockFrequency of
1683 /// less than ColdCCRelFreq% of the entry block.
1684 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
1685   const BranchProbability ColdProb(ColdCCRelFreq, 100);
1686   auto *CallSiteBB = CB.getParent();
1687   auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
1688   auto CallerEntryFreq =
1689       CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
1690   return CallSiteFreq < CallerEntryFreq * ColdProb;
1691 }
1692 
1693 // This function checks if the input function F is cold at all call sites. It
1694 // also looks each call site's containing function, returning false if the
1695 // caller function contains other non cold calls. The input vector AllCallsCold
1696 // contains a list of functions that only have call sites in cold blocks.
1697 static bool
1698 isValidCandidateForColdCC(Function &F,
1699                           function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1700                           const std::vector<Function *> &AllCallsCold) {
1701 
1702   if (F.user_empty())
1703     return false;
1704 
1705   for (User *U : F.users()) {
1706     if (isa<BlockAddress>(U))
1707       continue;
1708 
1709     CallBase &CB = cast<CallBase>(*U);
1710     Function *CallerFunc = CB.getParent()->getParent();
1711     BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
1712     if (!isColdCallSite(CB, CallerBFI))
1713       return false;
1714     if (!llvm::is_contained(AllCallsCold, CallerFunc))
1715       return false;
1716   }
1717   return true;
1718 }
1719 
1720 static void changeCallSitesToColdCC(Function *F) {
1721   for (User *U : F->users()) {
1722     if (isa<BlockAddress>(U))
1723       continue;
1724     cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
1725   }
1726 }
1727 
1728 // This function iterates over all the call instructions in the input Function
1729 // and checks that all call sites are in cold blocks and are allowed to use the
1730 // coldcc calling convention.
1731 static bool
1732 hasOnlyColdCalls(Function &F,
1733                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
1734   for (BasicBlock &BB : F) {
1735     for (Instruction &I : BB) {
1736       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1737         // Skip over isline asm instructions since they aren't function calls.
1738         if (CI->isInlineAsm())
1739           continue;
1740         Function *CalledFn = CI->getCalledFunction();
1741         if (!CalledFn)
1742           return false;
1743         if (!CalledFn->hasLocalLinkage())
1744           return false;
1745         // Skip over instrinsics since they won't remain as function calls.
1746         if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
1747           continue;
1748         // Check if it's valid to use coldcc calling convention.
1749         if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
1750             CalledFn->hasAddressTaken())
1751           return false;
1752         BlockFrequencyInfo &CallerBFI = GetBFI(F);
1753         if (!isColdCallSite(*CI, CallerBFI))
1754           return false;
1755       }
1756     }
1757   }
1758   return true;
1759 }
1760 
1761 static bool hasMustTailCallers(Function *F) {
1762   for (User *U : F->users()) {
1763     CallBase *CB = dyn_cast<CallBase>(U);
1764     if (!CB) {
1765       assert(isa<BlockAddress>(U) &&
1766              "Expected either CallBase or BlockAddress");
1767       continue;
1768     }
1769     if (CB->isMustTailCall())
1770       return true;
1771   }
1772   return false;
1773 }
1774 
1775 static bool hasInvokeCallers(Function *F) {
1776   for (User *U : F->users())
1777     if (isa<InvokeInst>(U))
1778       return true;
1779   return false;
1780 }
1781 
1782 static void RemovePreallocated(Function *F) {
1783   RemoveAttribute(F, Attribute::Preallocated);
1784 
1785   auto *M = F->getParent();
1786 
1787   IRBuilder<> Builder(M->getContext());
1788 
1789   // Cannot modify users() while iterating over it, so make a copy.
1790   SmallVector<User *, 4> PreallocatedCalls(F->users());
1791   for (User *U : PreallocatedCalls) {
1792     CallBase *CB = dyn_cast<CallBase>(U);
1793     if (!CB)
1794       continue;
1795 
1796     assert(
1797         !CB->isMustTailCall() &&
1798         "Shouldn't call RemotePreallocated() on a musttail preallocated call");
1799     // Create copy of call without "preallocated" operand bundle.
1800     SmallVector<OperandBundleDef, 1> OpBundles;
1801     CB->getOperandBundlesAsDefs(OpBundles);
1802     CallBase *PreallocatedSetup = nullptr;
1803     for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
1804       if (It->getTag() == "preallocated") {
1805         PreallocatedSetup = cast<CallBase>(*It->input_begin());
1806         OpBundles.erase(It);
1807         break;
1808       }
1809     }
1810     assert(PreallocatedSetup && "Did not find preallocated bundle");
1811     uint64_t ArgCount =
1812         cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
1813 
1814     assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
1815            "Unknown indirect call type");
1816     CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
1817     CB->replaceAllUsesWith(NewCB);
1818     NewCB->takeName(CB);
1819     CB->eraseFromParent();
1820 
1821     Builder.SetInsertPoint(PreallocatedSetup);
1822     auto *StackSave =
1823         Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
1824 
1825     Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
1826     Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
1827                        StackSave);
1828 
1829     // Replace @llvm.call.preallocated.arg() with alloca.
1830     // Cannot modify users() while iterating over it, so make a copy.
1831     // @llvm.call.preallocated.arg() can be called with the same index multiple
1832     // times. So for each @llvm.call.preallocated.arg(), we see if we have
1833     // already created a Value* for the index, and if not, create an alloca and
1834     // bitcast right after the @llvm.call.preallocated.setup() so that it
1835     // dominates all uses.
1836     SmallVector<Value *, 2> ArgAllocas(ArgCount);
1837     SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
1838     for (auto *User : PreallocatedArgs) {
1839       auto *UseCall = cast<CallBase>(User);
1840       assert(UseCall->getCalledFunction()->getIntrinsicID() ==
1841                  Intrinsic::call_preallocated_arg &&
1842              "preallocated token use was not a llvm.call.preallocated.arg");
1843       uint64_t AllocArgIndex =
1844           cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
1845       Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
1846       if (!AllocaReplacement) {
1847         auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
1848         auto *ArgType =
1849             UseCall->getFnAttr(Attribute::Preallocated).getValueAsType();
1850         auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
1851         Builder.SetInsertPoint(InsertBefore);
1852         auto *Alloca =
1853             Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
1854         auto *BitCast = Builder.CreateBitCast(
1855             Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
1856         ArgAllocas[AllocArgIndex] = BitCast;
1857         AllocaReplacement = BitCast;
1858       }
1859 
1860       UseCall->replaceAllUsesWith(AllocaReplacement);
1861       UseCall->eraseFromParent();
1862     }
1863     // Remove @llvm.call.preallocated.setup().
1864     cast<Instruction>(PreallocatedSetup)->eraseFromParent();
1865   }
1866 }
1867 
1868 static bool
1869 OptimizeFunctions(Module &M,
1870                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1871                   function_ref<TargetTransformInfo &(Function &)> GetTTI,
1872                   function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1873                   function_ref<DominatorTree &(Function &)> LookupDomTree,
1874                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1875 
1876   bool Changed = false;
1877 
1878   std::vector<Function *> AllCallsCold;
1879   for (Function &F : llvm::make_early_inc_range(M))
1880     if (hasOnlyColdCalls(F, GetBFI))
1881       AllCallsCold.push_back(&F);
1882 
1883   // Optimize functions.
1884   for (Function &F : llvm::make_early_inc_range(M)) {
1885     // Don't perform global opt pass on naked functions; we don't want fast
1886     // calling conventions for naked functions.
1887     if (F.hasFnAttribute(Attribute::Naked))
1888       continue;
1889 
1890     // Functions without names cannot be referenced outside this module.
1891     if (!F.hasName() && !F.isDeclaration() && !F.hasLocalLinkage())
1892       F.setLinkage(GlobalValue::InternalLinkage);
1893 
1894     if (deleteIfDead(F, NotDiscardableComdats)) {
1895       Changed = true;
1896       continue;
1897     }
1898 
1899     // LLVM's definition of dominance allows instructions that are cyclic
1900     // in unreachable blocks, e.g.:
1901     // %pat = select i1 %condition, @global, i16* %pat
1902     // because any instruction dominates an instruction in a block that's
1903     // not reachable from entry.
1904     // So, remove unreachable blocks from the function, because a) there's
1905     // no point in analyzing them and b) GlobalOpt should otherwise grow
1906     // some more complicated logic to break these cycles.
1907     // Removing unreachable blocks might invalidate the dominator so we
1908     // recalculate it.
1909     if (!F.isDeclaration()) {
1910       if (removeUnreachableBlocks(F)) {
1911         auto &DT = LookupDomTree(F);
1912         DT.recalculate(F);
1913         Changed = true;
1914       }
1915     }
1916 
1917     Changed |= processGlobal(F, GetTTI, GetTLI, LookupDomTree);
1918 
1919     if (!F.hasLocalLinkage())
1920       continue;
1921 
1922     // If we have an inalloca parameter that we can safely remove the
1923     // inalloca attribute from, do so. This unlocks optimizations that
1924     // wouldn't be safe in the presence of inalloca.
1925     // FIXME: We should also hoist alloca affected by this to the entry
1926     // block if possible.
1927     if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
1928         !F.hasAddressTaken() && !hasMustTailCallers(&F)) {
1929       RemoveAttribute(&F, Attribute::InAlloca);
1930       Changed = true;
1931     }
1932 
1933     // FIXME: handle invokes
1934     // FIXME: handle musttail
1935     if (F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
1936       if (!F.hasAddressTaken() && !hasMustTailCallers(&F) &&
1937           !hasInvokeCallers(&F)) {
1938         RemovePreallocated(&F);
1939         Changed = true;
1940       }
1941       continue;
1942     }
1943 
1944     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
1945       NumInternalFunc++;
1946       TargetTransformInfo &TTI = GetTTI(F);
1947       // Change the calling convention to coldcc if either stress testing is
1948       // enabled or the target would like to use coldcc on functions which are
1949       // cold at all call sites and the callers contain no other non coldcc
1950       // calls.
1951       if (EnableColdCCStressTest ||
1952           (TTI.useColdCCForColdCall(F) &&
1953            isValidCandidateForColdCC(F, GetBFI, AllCallsCold))) {
1954         F.setCallingConv(CallingConv::Cold);
1955         changeCallSitesToColdCC(&F);
1956         Changed = true;
1957         NumColdCC++;
1958       }
1959     }
1960 
1961     if (hasChangeableCC(&F) && !F.isVarArg() && !F.hasAddressTaken()) {
1962       // If this function has a calling convention worth changing, is not a
1963       // varargs function, and is only called directly, promote it to use the
1964       // Fast calling convention.
1965       F.setCallingConv(CallingConv::Fast);
1966       ChangeCalleesToFastCall(&F);
1967       ++NumFastCallFns;
1968       Changed = true;
1969     }
1970 
1971     if (F.getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1972         !F.hasAddressTaken()) {
1973       // The function is not used by a trampoline intrinsic, so it is safe
1974       // to remove the 'nest' attribute.
1975       RemoveAttribute(&F, Attribute::Nest);
1976       ++NumNestRemoved;
1977       Changed = true;
1978     }
1979   }
1980   return Changed;
1981 }
1982 
1983 static bool
1984 OptimizeGlobalVars(Module &M,
1985                    function_ref<TargetTransformInfo &(Function &)> GetTTI,
1986                    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1987                    function_ref<DominatorTree &(Function &)> LookupDomTree,
1988                    SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1989   bool Changed = false;
1990 
1991   for (GlobalVariable &GV : llvm::make_early_inc_range(M.globals())) {
1992     // Global variables without names cannot be referenced outside this module.
1993     if (!GV.hasName() && !GV.isDeclaration() && !GV.hasLocalLinkage())
1994       GV.setLinkage(GlobalValue::InternalLinkage);
1995     // Simplify the initializer.
1996     if (GV.hasInitializer())
1997       if (auto *C = dyn_cast<Constant>(GV.getInitializer())) {
1998         auto &DL = M.getDataLayout();
1999         // TLI is not used in the case of a Constant, so use default nullptr
2000         // for that optional parameter, since we don't have a Function to
2001         // provide GetTLI anyway.
2002         Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2003         if (New != C)
2004           GV.setInitializer(New);
2005       }
2006 
2007     if (deleteIfDead(GV, NotDiscardableComdats)) {
2008       Changed = true;
2009       continue;
2010     }
2011 
2012     Changed |= processGlobal(GV, GetTTI, GetTLI, LookupDomTree);
2013   }
2014   return Changed;
2015 }
2016 
2017 /// Evaluate static constructors in the function, if we can.  Return true if we
2018 /// can, false otherwise.
2019 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2020                                       TargetLibraryInfo *TLI) {
2021   // Call the function.
2022   Evaluator Eval(DL, TLI);
2023   Constant *RetValDummy;
2024   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2025                                            SmallVector<Constant*, 0>());
2026 
2027   if (EvalSuccess) {
2028     ++NumCtorsEvaluated;
2029 
2030     // We succeeded at evaluation: commit the result.
2031     auto NewInitializers = Eval.getMutatedInitializers();
2032     LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2033                       << F->getName() << "' to " << NewInitializers.size()
2034                       << " stores.\n");
2035     for (const auto &Pair : NewInitializers)
2036       Pair.first->setInitializer(Pair.second);
2037     for (GlobalVariable *GV : Eval.getInvariants())
2038       GV->setConstant(true);
2039   }
2040 
2041   return EvalSuccess;
2042 }
2043 
2044 static int compareNames(Constant *const *A, Constant *const *B) {
2045   Value *AStripped = (*A)->stripPointerCasts();
2046   Value *BStripped = (*B)->stripPointerCasts();
2047   return AStripped->getName().compare(BStripped->getName());
2048 }
2049 
2050 static void setUsedInitializer(GlobalVariable &V,
2051                                const SmallPtrSetImpl<GlobalValue *> &Init) {
2052   if (Init.empty()) {
2053     V.eraseFromParent();
2054     return;
2055   }
2056 
2057   // Type of pointer to the array of pointers.
2058   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2059 
2060   SmallVector<Constant *, 8> UsedArray;
2061   for (GlobalValue *GV : Init) {
2062     Constant *Cast
2063       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2064     UsedArray.push_back(Cast);
2065   }
2066   // Sort to get deterministic order.
2067   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2068   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2069 
2070   Module *M = V.getParent();
2071   V.removeFromParent();
2072   GlobalVariable *NV =
2073       new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2074                          ConstantArray::get(ATy, UsedArray), "");
2075   NV->takeName(&V);
2076   NV->setSection("llvm.metadata");
2077   delete &V;
2078 }
2079 
2080 namespace {
2081 
2082 /// An easy to access representation of llvm.used and llvm.compiler.used.
2083 class LLVMUsed {
2084   SmallPtrSet<GlobalValue *, 4> Used;
2085   SmallPtrSet<GlobalValue *, 4> CompilerUsed;
2086   GlobalVariable *UsedV;
2087   GlobalVariable *CompilerUsedV;
2088 
2089 public:
2090   LLVMUsed(Module &M) {
2091     SmallVector<GlobalValue *, 4> Vec;
2092     UsedV = collectUsedGlobalVariables(M, Vec, false);
2093     Used = {Vec.begin(), Vec.end()};
2094     Vec.clear();
2095     CompilerUsedV = collectUsedGlobalVariables(M, Vec, true);
2096     CompilerUsed = {Vec.begin(), Vec.end()};
2097   }
2098 
2099   using iterator = SmallPtrSet<GlobalValue *, 4>::iterator;
2100   using used_iterator_range = iterator_range<iterator>;
2101 
2102   iterator usedBegin() { return Used.begin(); }
2103   iterator usedEnd() { return Used.end(); }
2104 
2105   used_iterator_range used() {
2106     return used_iterator_range(usedBegin(), usedEnd());
2107   }
2108 
2109   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2110   iterator compilerUsedEnd() { return CompilerUsed.end(); }
2111 
2112   used_iterator_range compilerUsed() {
2113     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2114   }
2115 
2116   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2117 
2118   bool compilerUsedCount(GlobalValue *GV) const {
2119     return CompilerUsed.count(GV);
2120   }
2121 
2122   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2123   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2124   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2125 
2126   bool compilerUsedInsert(GlobalValue *GV) {
2127     return CompilerUsed.insert(GV).second;
2128   }
2129 
2130   void syncVariablesAndSets() {
2131     if (UsedV)
2132       setUsedInitializer(*UsedV, Used);
2133     if (CompilerUsedV)
2134       setUsedInitializer(*CompilerUsedV, CompilerUsed);
2135   }
2136 };
2137 
2138 } // end anonymous namespace
2139 
2140 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2141   if (GA.use_empty()) // No use at all.
2142     return false;
2143 
2144   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2145          "We should have removed the duplicated "
2146          "element from llvm.compiler.used");
2147   if (!GA.hasOneUse())
2148     // Strictly more than one use. So at least one is not in llvm.used and
2149     // llvm.compiler.used.
2150     return true;
2151 
2152   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2153   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2154 }
2155 
2156 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2157                                                const LLVMUsed &U) {
2158   unsigned N = 2;
2159   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2160          "We should have removed the duplicated "
2161          "element from llvm.compiler.used");
2162   if (U.usedCount(&V) || U.compilerUsedCount(&V))
2163     ++N;
2164   return V.hasNUsesOrMore(N);
2165 }
2166 
2167 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2168   if (!GA.hasLocalLinkage())
2169     return true;
2170 
2171   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2172 }
2173 
2174 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2175                              bool &RenameTarget) {
2176   RenameTarget = false;
2177   bool Ret = false;
2178   if (hasUseOtherThanLLVMUsed(GA, U))
2179     Ret = true;
2180 
2181   // If the alias is externally visible, we may still be able to simplify it.
2182   if (!mayHaveOtherReferences(GA, U))
2183     return Ret;
2184 
2185   // If the aliasee has internal linkage, give it the name and linkage
2186   // of the alias, and delete the alias.  This turns:
2187   //   define internal ... @f(...)
2188   //   @a = alias ... @f
2189   // into:
2190   //   define ... @a(...)
2191   Constant *Aliasee = GA.getAliasee();
2192   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2193   if (!Target->hasLocalLinkage())
2194     return Ret;
2195 
2196   // Do not perform the transform if multiple aliases potentially target the
2197   // aliasee. This check also ensures that it is safe to replace the section
2198   // and other attributes of the aliasee with those of the alias.
2199   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2200     return Ret;
2201 
2202   RenameTarget = true;
2203   return true;
2204 }
2205 
2206 static bool
2207 OptimizeGlobalAliases(Module &M,
2208                       SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2209   bool Changed = false;
2210   LLVMUsed Used(M);
2211 
2212   for (GlobalValue *GV : Used.used())
2213     Used.compilerUsedErase(GV);
2214 
2215   for (GlobalAlias &J : llvm::make_early_inc_range(M.aliases())) {
2216     // Aliases without names cannot be referenced outside this module.
2217     if (!J.hasName() && !J.isDeclaration() && !J.hasLocalLinkage())
2218       J.setLinkage(GlobalValue::InternalLinkage);
2219 
2220     if (deleteIfDead(J, NotDiscardableComdats)) {
2221       Changed = true;
2222       continue;
2223     }
2224 
2225     // If the alias can change at link time, nothing can be done - bail out.
2226     if (J.isInterposable())
2227       continue;
2228 
2229     Constant *Aliasee = J.getAliasee();
2230     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2231     // We can't trivially replace the alias with the aliasee if the aliasee is
2232     // non-trivial in some way. We also can't replace the alias with the aliasee
2233     // if the aliasee is interposable because aliases point to the local
2234     // definition.
2235     // TODO: Try to handle non-zero GEPs of local aliasees.
2236     if (!Target || Target->isInterposable())
2237       continue;
2238     Target->removeDeadConstantUsers();
2239 
2240     // Make all users of the alias use the aliasee instead.
2241     bool RenameTarget;
2242     if (!hasUsesToReplace(J, Used, RenameTarget))
2243       continue;
2244 
2245     J.replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J.getType()));
2246     ++NumAliasesResolved;
2247     Changed = true;
2248 
2249     if (RenameTarget) {
2250       // Give the aliasee the name, linkage and other attributes of the alias.
2251       Target->takeName(&J);
2252       Target->setLinkage(J.getLinkage());
2253       Target->setDSOLocal(J.isDSOLocal());
2254       Target->setVisibility(J.getVisibility());
2255       Target->setDLLStorageClass(J.getDLLStorageClass());
2256 
2257       if (Used.usedErase(&J))
2258         Used.usedInsert(Target);
2259 
2260       if (Used.compilerUsedErase(&J))
2261         Used.compilerUsedInsert(Target);
2262     } else if (mayHaveOtherReferences(J, Used))
2263       continue;
2264 
2265     // Delete the alias.
2266     M.getAliasList().erase(&J);
2267     ++NumAliasesRemoved;
2268     Changed = true;
2269   }
2270 
2271   Used.syncVariablesAndSets();
2272 
2273   return Changed;
2274 }
2275 
2276 static Function *
2277 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2278   // Hack to get a default TLI before we have actual Function.
2279   auto FuncIter = M.begin();
2280   if (FuncIter == M.end())
2281     return nullptr;
2282   auto *TLI = &GetTLI(*FuncIter);
2283 
2284   LibFunc F = LibFunc_cxa_atexit;
2285   if (!TLI->has(F))
2286     return nullptr;
2287 
2288   Function *Fn = M.getFunction(TLI->getName(F));
2289   if (!Fn)
2290     return nullptr;
2291 
2292   // Now get the actual TLI for Fn.
2293   TLI = &GetTLI(*Fn);
2294 
2295   // Make sure that the function has the correct prototype.
2296   if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2297     return nullptr;
2298 
2299   return Fn;
2300 }
2301 
2302 /// Returns whether the given function is an empty C++ destructor and can
2303 /// therefore be eliminated.
2304 /// Note that we assume that other optimization passes have already simplified
2305 /// the code so we simply check for 'ret'.
2306 static bool cxxDtorIsEmpty(const Function &Fn) {
2307   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2308   // nounwind, but that doesn't seem worth doing.
2309   if (Fn.isDeclaration())
2310     return false;
2311 
2312   for (auto &I : Fn.getEntryBlock()) {
2313     if (I.isDebugOrPseudoInst())
2314       continue;
2315     if (isa<ReturnInst>(I))
2316       return true;
2317     break;
2318   }
2319   return false;
2320 }
2321 
2322 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2323   /// Itanium C++ ABI p3.3.5:
2324   ///
2325   ///   After constructing a global (or local static) object, that will require
2326   ///   destruction on exit, a termination function is registered as follows:
2327   ///
2328   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2329   ///
2330   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2331   ///   call f(p) when DSO d is unloaded, before all such termination calls
2332   ///   registered before this one. It returns zero if registration is
2333   ///   successful, nonzero on failure.
2334 
2335   // This pass will look for calls to __cxa_atexit where the function is trivial
2336   // and remove them.
2337   bool Changed = false;
2338 
2339   for (User *U : llvm::make_early_inc_range(CXAAtExitFn->users())) {
2340     // We're only interested in calls. Theoretically, we could handle invoke
2341     // instructions as well, but neither llvm-gcc nor clang generate invokes
2342     // to __cxa_atexit.
2343     CallInst *CI = dyn_cast<CallInst>(U);
2344     if (!CI)
2345       continue;
2346 
2347     Function *DtorFn =
2348       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2349     if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2350       continue;
2351 
2352     // Just remove the call.
2353     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2354     CI->eraseFromParent();
2355 
2356     ++NumCXXDtorsRemoved;
2357 
2358     Changed |= true;
2359   }
2360 
2361   return Changed;
2362 }
2363 
2364 static bool optimizeGlobalsInModule(
2365     Module &M, const DataLayout &DL,
2366     function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2367     function_ref<TargetTransformInfo &(Function &)> GetTTI,
2368     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2369     function_ref<DominatorTree &(Function &)> LookupDomTree) {
2370   SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2371   bool Changed = false;
2372   bool LocalChange = true;
2373   while (LocalChange) {
2374     LocalChange = false;
2375 
2376     NotDiscardableComdats.clear();
2377     for (const GlobalVariable &GV : M.globals())
2378       if (const Comdat *C = GV.getComdat())
2379         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2380           NotDiscardableComdats.insert(C);
2381     for (Function &F : M)
2382       if (const Comdat *C = F.getComdat())
2383         if (!F.isDefTriviallyDead())
2384           NotDiscardableComdats.insert(C);
2385     for (GlobalAlias &GA : M.aliases())
2386       if (const Comdat *C = GA.getComdat())
2387         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2388           NotDiscardableComdats.insert(C);
2389 
2390     // Delete functions that are trivially dead, ccc -> fastcc
2391     LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2392                                      NotDiscardableComdats);
2393 
2394     // Optimize global_ctors list.
2395     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2396       return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2397     });
2398 
2399     // Optimize non-address-taken globals.
2400     LocalChange |= OptimizeGlobalVars(M, GetTTI, GetTLI, LookupDomTree,
2401                                       NotDiscardableComdats);
2402 
2403     // Resolve aliases, when possible.
2404     LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2405 
2406     // Try to remove trivial global destructors if they are not removed
2407     // already.
2408     Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2409     if (CXAAtExitFn)
2410       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2411 
2412     Changed |= LocalChange;
2413   }
2414 
2415   // TODO: Move all global ctors functions to the end of the module for code
2416   // layout.
2417 
2418   return Changed;
2419 }
2420 
2421 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2422     auto &DL = M.getDataLayout();
2423     auto &FAM =
2424         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2425     auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2426       return FAM.getResult<DominatorTreeAnalysis>(F);
2427     };
2428     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2429       return FAM.getResult<TargetLibraryAnalysis>(F);
2430     };
2431     auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2432       return FAM.getResult<TargetIRAnalysis>(F);
2433     };
2434 
2435     auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2436       return FAM.getResult<BlockFrequencyAnalysis>(F);
2437     };
2438 
2439     if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
2440       return PreservedAnalyses::all();
2441     return PreservedAnalyses::none();
2442 }
2443 
2444 namespace {
2445 
2446 struct GlobalOptLegacyPass : public ModulePass {
2447   static char ID; // Pass identification, replacement for typeid
2448 
2449   GlobalOptLegacyPass() : ModulePass(ID) {
2450     initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2451   }
2452 
2453   bool runOnModule(Module &M) override {
2454     if (skipModule(M))
2455       return false;
2456 
2457     auto &DL = M.getDataLayout();
2458     auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2459       return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2460     };
2461     auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
2462       return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2463     };
2464     auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2465       return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2466     };
2467 
2468     auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
2469       return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
2470     };
2471 
2472     return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
2473                                    LookupDomTree);
2474   }
2475 
2476   void getAnalysisUsage(AnalysisUsage &AU) const override {
2477     AU.addRequired<TargetLibraryInfoWrapperPass>();
2478     AU.addRequired<TargetTransformInfoWrapperPass>();
2479     AU.addRequired<DominatorTreeWrapperPass>();
2480     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2481   }
2482 };
2483 
2484 } // end anonymous namespace
2485 
2486 char GlobalOptLegacyPass::ID = 0;
2487 
2488 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2489                       "Global Variable Optimizer", false, false)
2490 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2491 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2492 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
2493 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2494 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2495                     "Global Variable Optimizer", false, false)
2496 
2497 ModulePass *llvm::createGlobalOptimizerPass() {
2498   return new GlobalOptLegacyPass();
2499 }
2500