1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This specialises functions with constant parameters (e.g. functions,
10 // globals). Constant parameters like function pointers and constant globals
11 // are propagated to the callee by specializing the function.
12 //
13 // Current limitations:
14 // - It does not yet handle integer ranges.
15 // - Only 1 argument per function is specialised,
16 // - The cost-model could be further looked into,
17 // - We are not yet caching analysis results.
18 //
19 // Ideas:
20 // - With a function specialization attribute for arguments, we could have
21 //   a direct way to steer function specialization, avoiding the cost-model,
22 //   and thus control compile-times / code-size.
23 //
24 // Todos:
25 // - Limit the times a recursive function get specialized when
26 // `func-specialization-max-iters`
27 //   increases linearly. See discussion in https://reviews.llvm.org/D106426 for
28 //   details.
29 // - Don't transform the function if there is no function specialization
30 // happens.
31 //
32 //===----------------------------------------------------------------------===//
33 
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/CodeMetrics.h"
37 #include "llvm/Analysis/DomTreeUpdater.h"
38 #include "llvm/Analysis/InlineCost.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/Transforms/Scalar/SCCP.h"
43 #include "llvm/Transforms/Utils/Cloning.h"
44 #include "llvm/Transforms/Utils/SizeOpts.h"
45 #include <cmath>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "function-specialization"
50 
51 STATISTIC(NumFuncSpecialized, "Number of functions specialized");
52 
53 static cl::opt<bool> ForceFunctionSpecialization(
54     "force-function-specialization", cl::init(false), cl::Hidden,
55     cl::desc("Force function specialization for every call site with a "
56              "constant argument"));
57 
58 static cl::opt<unsigned> FuncSpecializationMaxIters(
59     "func-specialization-max-iters", cl::Hidden,
60     cl::desc("The maximum number of iterations function specialization is run"),
61     cl::init(1));
62 
63 static cl::opt<unsigned> MaxConstantsThreshold(
64     "func-specialization-max-constants", cl::Hidden,
65     cl::desc("The maximum number of clones allowed for a single function "
66              "specialization"),
67     cl::init(3));
68 
69 static cl::opt<unsigned> SmallFunctionThreshold(
70     "func-specialization-size-threshold", cl::Hidden,
71     cl::desc("For functions whose IR instruction count below this threshold, "
72              " they wouldn't be specialized to avoid useless sepcializations."),
73     cl::init(100));
74 
75 static cl::opt<unsigned>
76     AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
77                           cl::desc("Average loop iteration count cost"),
78                           cl::init(10));
79 
80 static cl::opt<bool> EnableSpecializationForLiteralConstant(
81     "function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
82     cl::desc("Make function specialization available for literal constant."));
83 
84 // Helper to check if \p LV is either a constant or a constant
85 // range with a single element. This should cover exactly the same cases as the
86 // old ValueLatticeElement::isConstant() and is intended to be used in the
87 // transition to ValueLatticeElement.
88 static bool isConstant(const ValueLatticeElement &LV) {
89   return LV.isConstant() ||
90          (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
91 }
92 
93 // Helper to check if \p LV is either overdefined or a constant int.
94 static bool isOverdefined(const ValueLatticeElement &LV) {
95   return !LV.isUnknownOrUndef() && !isConstant(LV);
96 }
97 
98 static Constant *getPromotableAlloca(AllocaInst *Alloca, CallInst *Call) {
99   Value *StoreValue = nullptr;
100   for (auto *User : Alloca->users()) {
101     // We can't use llvm::isAllocaPromotable() as that would fail because of
102     // the usage in the CallInst, which is what we check here.
103     if (User == Call)
104       continue;
105     if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
106       if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
107         return nullptr;
108       continue;
109     }
110 
111     if (auto *Store = dyn_cast<StoreInst>(User)) {
112       // This is a duplicate store, bail out.
113       if (StoreValue || Store->isVolatile())
114         return nullptr;
115       StoreValue = Store->getValueOperand();
116       continue;
117     }
118     // Bail if there is any other unknown usage.
119     return nullptr;
120   }
121   return dyn_cast_or_null<Constant>(StoreValue);
122 }
123 
124 // A constant stack value is an AllocaInst that has a single constant
125 // value stored to it. Return this constant if such an alloca stack value
126 // is a function argument.
127 static Constant *getConstantStackValue(CallInst *Call, Value *Val,
128                                        SCCPSolver &Solver) {
129   if (!Val)
130     return nullptr;
131   Val = Val->stripPointerCasts();
132   if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
133     return ConstVal;
134   auto *Alloca = dyn_cast<AllocaInst>(Val);
135   if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
136     return nullptr;
137   return getPromotableAlloca(Alloca, Call);
138 }
139 
140 // To support specializing recursive functions, it is important to propagate
141 // constant arguments because after a first iteration of specialisation, a
142 // reduced example may look like this:
143 //
144 //     define internal void @RecursiveFn(i32* arg1) {
145 //       %temp = alloca i32, align 4
146 //       store i32 2 i32* %temp, align 4
147 //       call void @RecursiveFn.1(i32* nonnull %temp)
148 //       ret void
149 //     }
150 //
151 // Before a next iteration, we need to propagate the constant like so
152 // which allows further specialization in next iterations.
153 //
154 //     @funcspec.arg = internal constant i32 2
155 //
156 //     define internal void @someFunc(i32* arg1) {
157 //       call void @otherFunc(i32* nonnull @funcspec.arg)
158 //       ret void
159 //     }
160 //
161 static void constantArgPropagation(SmallVectorImpl<Function *> &WorkList,
162                                    Module &M, SCCPSolver &Solver) {
163   // Iterate over the argument tracked functions see if there
164   // are any new constant values for the call instruction via
165   // stack variables.
166   for (auto *F : WorkList) {
167     // TODO: Generalize for any read only arguments.
168     if (F->arg_size() != 1)
169       continue;
170 
171     auto &Arg = *F->arg_begin();
172     if (!Arg.onlyReadsMemory() || !Arg.getType()->isPointerTy())
173       continue;
174 
175     for (auto *User : F->users()) {
176       auto *Call = dyn_cast<CallInst>(User);
177       if (!Call)
178         break;
179       auto *ArgOp = Call->getArgOperand(0);
180       auto *ArgOpType = ArgOp->getType();
181       auto *ConstVal = getConstantStackValue(Call, ArgOp, Solver);
182       if (!ConstVal)
183         break;
184 
185       Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
186                                      GlobalValue::InternalLinkage, ConstVal,
187                                      "funcspec.arg");
188 
189       if (ArgOpType != ConstVal->getType())
190         GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOp->getType());
191 
192       Call->setArgOperand(0, GV);
193 
194       // Add the changed CallInst to Solver Worklist
195       Solver.visitCall(*Call);
196     }
197   }
198 }
199 
200 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
201 // interfere with the constantArgPropagation optimization.
202 static void removeSSACopy(Function &F) {
203   for (BasicBlock &BB : F) {
204     for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
205       Instruction *Inst = &*BI++;
206       auto *II = dyn_cast<IntrinsicInst>(Inst);
207       if (!II)
208         continue;
209       if (II->getIntrinsicID() != Intrinsic::ssa_copy)
210         continue;
211       Inst->replaceAllUsesWith(II->getOperand(0));
212       Inst->eraseFromParent();
213     }
214   }
215 }
216 
217 static void removeSSACopy(Module &M) {
218   for (Function &F : M)
219     removeSSACopy(F);
220 }
221 
222 class FunctionSpecializer {
223 
224   /// The IPSCCP Solver.
225   SCCPSolver &Solver;
226 
227   /// Analyses used to help determine if a function should be specialized.
228   std::function<AssumptionCache &(Function &)> GetAC;
229   std::function<TargetTransformInfo &(Function &)> GetTTI;
230   std::function<TargetLibraryInfo &(Function &)> GetTLI;
231 
232   SmallPtrSet<Function *, 2> SpecializedFuncs;
233 
234 public:
235   FunctionSpecializer(SCCPSolver &Solver,
236                       std::function<AssumptionCache &(Function &)> GetAC,
237                       std::function<TargetTransformInfo &(Function &)> GetTTI,
238                       std::function<TargetLibraryInfo &(Function &)> GetTLI)
239       : Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {}
240 
241   /// Attempt to specialize functions in the module to enable constant
242   /// propagation across function boundaries.
243   ///
244   /// \returns true if at least one function is specialized.
245   bool
246   specializeFunctions(SmallVectorImpl<Function *> &FuncDecls,
247                       SmallVectorImpl<Function *> &CurrentSpecializations) {
248 
249     // Attempt to specialize the argument-tracked functions.
250     bool Changed = false;
251     for (auto *F : FuncDecls) {
252       if (specializeFunction(F, CurrentSpecializations)) {
253         Changed = true;
254         LLVM_DEBUG(dbgs() << "FnSpecialization: Can specialize this func.\n");
255       } else {
256         LLVM_DEBUG(
257             dbgs() << "FnSpecialization: Cannot specialize this func.\n");
258       }
259     }
260 
261     for (auto *SpecializedFunc : CurrentSpecializations) {
262       SpecializedFuncs.insert(SpecializedFunc);
263 
264       // Initialize the state of the newly created functions, marking them
265       // argument-tracked and executable.
266       if (SpecializedFunc->hasExactDefinition() &&
267           !SpecializedFunc->hasFnAttribute(Attribute::Naked))
268         Solver.addTrackedFunction(SpecializedFunc);
269       Solver.addArgumentTrackedFunction(SpecializedFunc);
270       FuncDecls.push_back(SpecializedFunc);
271       Solver.markBlockExecutable(&SpecializedFunc->front());
272 
273       // Replace the function arguments for the specialized functions.
274       for (Argument &Arg : SpecializedFunc->args())
275         if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg))
276           LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: "
277                             << Arg.getName() << "\n");
278     }
279 
280     NumFuncSpecialized += NbFunctionsSpecialized;
281     return Changed;
282   }
283 
284   bool tryToReplaceWithConstant(Value *V) {
285     if (!V->getType()->isSingleValueType() || isa<CallBase>(V) ||
286         V->user_empty())
287       return false;
288 
289     const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
290     if (isOverdefined(IV))
291       return false;
292     auto *Const =
293         isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
294     V->replaceAllUsesWith(Const);
295 
296     for (auto *U : Const->users())
297       if (auto *I = dyn_cast<Instruction>(U))
298         if (Solver.isBlockExecutable(I->getParent()))
299           Solver.visit(I);
300 
301     // Remove the instruction from Block and Solver.
302     if (auto *I = dyn_cast<Instruction>(V)) {
303       if (I->isSafeToRemove()) {
304         I->eraseFromParent();
305         Solver.removeLatticeValueFor(I);
306       }
307     }
308     return true;
309   }
310 
311 private:
312   // The number of functions specialised, used for collecting statistics and
313   // also in the cost model.
314   unsigned NbFunctionsSpecialized = 0;
315 
316   /// Clone the function \p F and remove the ssa_copy intrinsics added by
317   /// the SCCPSolver in the cloned version.
318   Function *cloneCandidateFunction(Function *F) {
319     ValueToValueMapTy EmptyMap;
320     Function *Clone = CloneFunction(F, EmptyMap);
321     removeSSACopy(*Clone);
322     return Clone;
323   }
324 
325   /// This function decides whether to specialize function \p F based on the
326   /// known constant values its arguments can take on. Specialization is
327   /// performed on the first interesting argument. Specializations based on
328   /// additional arguments will be evaluated on following iterations of the
329   /// main IPSCCP solve loop. \returns true if the function is specialized and
330   /// false otherwise.
331   bool specializeFunction(Function *F,
332                           SmallVectorImpl<Function *> &Specializations) {
333 
334     // Do not specialize the cloned function again.
335     if (SpecializedFuncs.contains(F)) {
336       return false;
337     }
338 
339     // If we're optimizing the function for size, we shouldn't specialize it.
340     if (F->hasOptSize() ||
341         shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
342       return false;
343 
344     // Exit if the function is not executable. There's no point in specializing
345     // a dead function.
346     if (!Solver.isBlockExecutable(&F->getEntryBlock()))
347       return false;
348 
349     // It wastes time to specialize a function which would get inlined finally.
350     if (F->hasFnAttribute(Attribute::AlwaysInline))
351       return false;
352 
353     LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
354                       << "\n");
355 
356     // Determine if it would be profitable to create a specialization of the
357     // function where the argument takes on the given constant value. If so,
358     // add the constant to Constants.
359     auto FnSpecCost = getSpecializationCost(F);
360     if (!FnSpecCost.isValid()) {
361       LLVM_DEBUG(dbgs() << "FnSpecialization: Invalid specialisation cost.\n");
362       return false;
363     }
364 
365     LLVM_DEBUG(dbgs() << "FnSpecialization: func specialisation cost: ";
366                FnSpecCost.print(dbgs()); dbgs() << "\n");
367 
368     // Determine if we should specialize the function based on the values the
369     // argument can take on. If specialization is not profitable, we continue
370     // on to the next argument.
371     for (Argument &A : F->args()) {
372       LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: " << A.getName()
373                         << "\n");
374       // True if this will be a partial specialization. We will need to keep
375       // the original function around in addition to the added specializations.
376       bool IsPartial = true;
377 
378       // Determine if this argument is interesting. If we know the argument can
379       // take on any constant values, they are collected in Constants. If the
380       // argument can only ever equal a constant value in Constants, the
381       // function will be completely specialized, and the IsPartial flag will
382       // be set to false by isArgumentInteresting (that function only adds
383       // values to the Constants list that are deemed profitable).
384       SmallVector<Constant *, 4> Constants;
385       if (!isArgumentInteresting(&A, Constants, FnSpecCost, IsPartial)) {
386         LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n");
387         continue;
388       }
389 
390       assert(!Constants.empty() && "No constants on which to specialize");
391       LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is interesting!\n"
392                         << "FnSpecialization: Specializing '" << F->getName()
393                         << "' on argument: " << A << "\n"
394                         << "FnSpecialization: Constants are:\n\n";
395                  for (unsigned I = 0; I < Constants.size(); ++I) dbgs()
396                  << *Constants[I] << "\n";
397                  dbgs() << "FnSpecialization: End of constants\n\n");
398 
399       // Create a version of the function in which the argument is marked
400       // constant with the given value.
401       for (auto *C : Constants) {
402         // Clone the function. We leave the ValueToValueMap empty to allow
403         // IPSCCP to propagate the constant arguments.
404         Function *Clone = cloneCandidateFunction(F);
405         Argument *ClonedArg = Clone->arg_begin() + A.getArgNo();
406 
407         // Rewrite calls to the function so that they call the clone instead.
408         rewriteCallSites(F, Clone, *ClonedArg, C);
409 
410         // Initialize the lattice state of the arguments of the function clone,
411         // marking the argument on which we specialized the function constant
412         // with the given value.
413         Solver.markArgInFuncSpecialization(F, ClonedArg, C);
414 
415         // Mark all the specialized functions
416         Specializations.push_back(Clone);
417         NbFunctionsSpecialized++;
418       }
419 
420       // If the function has been completely specialized, the original function
421       // is no longer needed. Mark it unreachable.
422       if (!IsPartial)
423         Solver.markFunctionUnreachable(F);
424 
425       // FIXME: Only one argument per function.
426       return true;
427     }
428 
429     return false;
430   }
431 
432   /// Compute the cost of specializing function \p F.
433   InstructionCost getSpecializationCost(Function *F) {
434     // Compute the code metrics for the function.
435     SmallPtrSet<const Value *, 32> EphValues;
436     CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
437     CodeMetrics Metrics;
438     for (BasicBlock &BB : *F)
439       Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
440 
441     // If the code metrics reveal that we shouldn't duplicate the function, we
442     // shouldn't specialize it. Set the specialization cost to Invalid.
443     // Or if the lines of codes implies that this function is easy to get
444     // inlined so that we shouldn't specialize it.
445     if (Metrics.notDuplicatable ||
446         (!ForceFunctionSpecialization &&
447          Metrics.NumInsts < SmallFunctionThreshold)) {
448       InstructionCost C{};
449       C.setInvalid();
450       return C;
451     }
452 
453     // Otherwise, set the specialization cost to be the cost of all the
454     // instructions in the function and penalty for specializing more functions.
455     unsigned Penalty = NbFunctionsSpecialized + 1;
456     return Metrics.NumInsts * InlineConstants::InstrCost * Penalty;
457   }
458 
459   InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
460                                LoopInfo &LI) {
461     auto *I = dyn_cast_or_null<Instruction>(U);
462     // If not an instruction we do not know how to evaluate.
463     // Keep minimum possible cost for now so that it doesnt affect
464     // specialization.
465     if (!I)
466       return std::numeric_limits<unsigned>::min();
467 
468     auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency);
469 
470     // Traverse recursively if there are more uses.
471     // TODO: Any other instructions to be added here?
472     if (I->mayReadFromMemory() || I->isCast())
473       for (auto *User : I->users())
474         Cost += getUserBonus(User, TTI, LI);
475 
476     // Increase the cost if it is inside the loop.
477     auto LoopDepth = LI.getLoopDepth(I->getParent());
478     Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
479     return Cost;
480   }
481 
482   /// Compute a bonus for replacing argument \p A with constant \p C.
483   InstructionCost getSpecializationBonus(Argument *A, Constant *C) {
484     Function *F = A->getParent();
485     DominatorTree DT(*F);
486     LoopInfo LI(DT);
487     auto &TTI = (GetTTI)(*F);
488     LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A
489                       << "\n");
490 
491     InstructionCost TotalCost = 0;
492     for (auto *U : A->users()) {
493       TotalCost += getUserBonus(U, TTI, LI);
494       LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
495                  TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
496     }
497 
498     // The below heuristic is only concerned with exposing inlining
499     // opportunities via indirect call promotion. If the argument is not a
500     // function pointer, give up.
501     if (!isa<PointerType>(A->getType()) ||
502         !isa<FunctionType>(A->getType()->getPointerElementType()))
503       return TotalCost;
504 
505     // Since the argument is a function pointer, its incoming constant values
506     // should be functions or constant expressions. The code below attempts to
507     // look through cast expressions to find the function that will be called.
508     Value *CalledValue = C;
509     while (isa<ConstantExpr>(CalledValue) &&
510            cast<ConstantExpr>(CalledValue)->isCast())
511       CalledValue = cast<User>(CalledValue)->getOperand(0);
512     Function *CalledFunction = dyn_cast<Function>(CalledValue);
513     if (!CalledFunction)
514       return TotalCost;
515 
516     // Get TTI for the called function (used for the inline cost).
517     auto &CalleeTTI = (GetTTI)(*CalledFunction);
518 
519     // Look at all the call sites whose called value is the argument.
520     // Specializing the function on the argument would allow these indirect
521     // calls to be promoted to direct calls. If the indirect call promotion
522     // would likely enable the called function to be inlined, specializing is a
523     // good idea.
524     int Bonus = 0;
525     for (User *U : A->users()) {
526       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
527         continue;
528       auto *CS = cast<CallBase>(U);
529       if (CS->getCalledOperand() != A)
530         continue;
531 
532       // Get the cost of inlining the called function at this call site. Note
533       // that this is only an estimate. The called function may eventually
534       // change in a way that leads to it not being inlined here, even though
535       // inlining looks profitable now. For example, one of its called
536       // functions may be inlined into it, making the called function too large
537       // to be inlined into this call site.
538       //
539       // We apply a boost for performing indirect call promotion by increasing
540       // the default threshold by the threshold for indirect calls.
541       auto Params = getInlineParams();
542       Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
543       InlineCost IC =
544           getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
545 
546       // We clamp the bonus for this call to be between zero and the default
547       // threshold.
548       if (IC.isAlways())
549         Bonus += Params.DefaultThreshold;
550       else if (IC.isVariable() && IC.getCostDelta() > 0)
551         Bonus += IC.getCostDelta();
552     }
553 
554     return TotalCost + Bonus;
555   }
556 
557   /// Determine if we should specialize a function based on the incoming values
558   /// of the given argument.
559   ///
560   /// This function implements the goal-directed heuristic. It determines if
561   /// specializing the function based on the incoming values of argument \p A
562   /// would result in any significant optimization opportunities. If
563   /// optimization opportunities exist, the constant values of \p A on which to
564   /// specialize the function are collected in \p Constants. If the values in
565   /// \p Constants represent the complete set of values that \p A can take on,
566   /// the function will be completely specialized, and the \p IsPartial flag is
567   /// set to false.
568   ///
569   /// \returns true if the function should be specialized on the given
570   /// argument.
571   bool isArgumentInteresting(Argument *A,
572                              SmallVectorImpl<Constant *> &Constants,
573                              const InstructionCost &FnSpecCost,
574                              bool &IsPartial) {
575     // For now, don't attempt to specialize functions based on the values of
576     // composite types.
577     if (!A->getType()->isSingleValueType() || A->user_empty())
578       return false;
579 
580     // If the argument isn't overdefined, there's nothing to do. It should
581     // already be constant.
582     if (!Solver.getLatticeValueFor(A).isOverdefined()) {
583       LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already "
584                         << "constant?\n");
585       return false;
586     }
587 
588     // Collect the constant values that the argument can take on. If the
589     // argument can't take on any constant values, we aren't going to
590     // specialize the function. While it's possible to specialize the function
591     // based on non-constant arguments, there's likely not much benefit to
592     // constant propagation in doing so.
593     //
594     // TODO 1: currently it won't specialize if there are over the threshold of
595     // calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it
596     // might be beneficial to take the occurrences into account in the cost
597     // model, so we would need to find the unique constants.
598     //
599     // TODO 2: this currently does not support constants, i.e. integer ranges.
600     //
601     SmallVector<Constant *, 4> PossibleConstants;
602     bool AllConstant = getPossibleConstants(A, PossibleConstants);
603     if (PossibleConstants.empty()) {
604       LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n");
605       return false;
606     }
607     if (PossibleConstants.size() > MaxConstantsThreshold) {
608       LLVM_DEBUG(dbgs() << "FnSpecialization: number of constants found exceed "
609                         << "the maximum number of constants threshold.\n");
610       return false;
611     }
612 
613     for (auto *C : PossibleConstants) {
614       LLVM_DEBUG(dbgs() << "FnSpecialization: Constant: " << *C << "\n");
615       if (ForceFunctionSpecialization) {
616         LLVM_DEBUG(dbgs() << "FnSpecialization: Forced!\n");
617         Constants.push_back(C);
618         continue;
619       }
620       if (getSpecializationBonus(A, C) > FnSpecCost) {
621         LLVM_DEBUG(dbgs() << "FnSpecialization: profitable!\n");
622         Constants.push_back(C);
623       } else {
624         LLVM_DEBUG(dbgs() << "FnSpecialization: not profitable\n");
625       }
626     }
627 
628     // None of the constant values the argument can take on were deemed good
629     // candidates on which to specialize the function.
630     if (Constants.empty())
631       return false;
632 
633     // This will be a partial specialization if some of the constants were
634     // rejected due to their profitability.
635     IsPartial = !AllConstant || PossibleConstants.size() != Constants.size();
636 
637     return true;
638   }
639 
640   /// Collect in \p Constants all the constant values that argument \p A can
641   /// take on.
642   ///
643   /// \returns true if all of the values the argument can take on are constant
644   /// (e.g., the argument's parent function cannot be called with an
645   /// overdefined value).
646   bool getPossibleConstants(Argument *A,
647                             SmallVectorImpl<Constant *> &Constants) {
648     Function *F = A->getParent();
649     bool AllConstant = true;
650 
651     // Iterate over all the call sites of the argument's parent function.
652     for (User *U : F->users()) {
653       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
654         continue;
655       auto &CS = *cast<CallBase>(U);
656 
657       // If the parent of the call site will never be executed, we don't need
658       // to worry about the passed value.
659       if (!Solver.isBlockExecutable(CS.getParent()))
660         continue;
661 
662       auto *V = CS.getArgOperand(A->getArgNo());
663       // TrackValueOfGlobalVariable only tracks scalar global variables.
664       if (auto *GV = dyn_cast<GlobalVariable>(V)) {
665         if (!GV->getValueType()->isSingleValueType()) {
666           return false;
667         }
668       }
669 
670       if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() ||
671                                EnableSpecializationForLiteralConstant))
672         Constants.push_back(cast<Constant>(V));
673       else
674         AllConstant = false;
675     }
676 
677     // If the argument can only take on constant values, AllConstant will be
678     // true.
679     return AllConstant;
680   }
681 
682   /// Rewrite calls to function \p F to call function \p Clone instead.
683   ///
684   /// This function modifies calls to function \p F whose argument at index \p
685   /// ArgNo is equal to constant \p C. The calls are rewritten to call function
686   /// \p Clone instead.
687   void rewriteCallSites(Function *F, Function *Clone, Argument &Arg,
688                         Constant *C) {
689     unsigned ArgNo = Arg.getArgNo();
690     SmallVector<CallBase *, 4> CallSitesToRewrite;
691     for (auto *U : F->users()) {
692       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
693         continue;
694       auto &CS = *cast<CallBase>(U);
695       if (!CS.getCalledFunction() || CS.getCalledFunction() != F)
696         continue;
697       CallSitesToRewrite.push_back(&CS);
698     }
699     for (auto *CS : CallSitesToRewrite) {
700       if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) ||
701           CS->getArgOperand(ArgNo) == C) {
702         CS->setCalledFunction(Clone);
703         Solver.markOverdefined(CS);
704       }
705     }
706   }
707 };
708 
709 bool llvm::runFunctionSpecialization(
710     Module &M, const DataLayout &DL,
711     std::function<TargetLibraryInfo &(Function &)> GetTLI,
712     std::function<TargetTransformInfo &(Function &)> GetTTI,
713     std::function<AssumptionCache &(Function &)> GetAC,
714     function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) {
715   SCCPSolver Solver(DL, GetTLI, M.getContext());
716   FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI);
717   bool Changed = false;
718 
719   // Loop over all functions, marking arguments to those with their addresses
720   // taken or that are external as overdefined.
721   for (Function &F : M) {
722     if (F.isDeclaration())
723       continue;
724     if (F.hasFnAttribute(Attribute::NoDuplicate))
725       continue;
726 
727     LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName()
728                       << "\n");
729     Solver.addAnalysis(F, GetAnalysis(F));
730 
731     // Determine if we can track the function's arguments. If so, add the
732     // function to the solver's set of argument-tracked functions.
733     if (canTrackArgumentsInterprocedurally(&F)) {
734       LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n");
735       Solver.addArgumentTrackedFunction(&F);
736       continue;
737     } else {
738       LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n"
739                         << "FnSpecialization: Doesn't have local linkage, or "
740                         << "has its address taken\n");
741     }
742 
743     // Assume the function is called.
744     Solver.markBlockExecutable(&F.front());
745 
746     // Assume nothing about the incoming arguments.
747     for (Argument &AI : F.args())
748       Solver.markOverdefined(&AI);
749   }
750 
751   // Determine if we can track any of the module's global variables. If so, add
752   // the global variables we can track to the solver's set of tracked global
753   // variables.
754   for (GlobalVariable &G : M.globals()) {
755     G.removeDeadConstantUsers();
756     if (canTrackGlobalVariableInterprocedurally(&G))
757       Solver.trackValueOfGlobalVariable(&G);
758   }
759 
760   // Solve for constants.
761   auto RunSCCPSolver = [&](auto &WorkList) {
762     bool ResolvedUndefs = true;
763 
764     while (ResolvedUndefs) {
765       LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n");
766       Solver.solve();
767       LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n");
768       ResolvedUndefs = false;
769       for (Function *F : WorkList)
770         if (Solver.resolvedUndefsIn(*F))
771           ResolvedUndefs = true;
772     }
773 
774     for (auto *F : WorkList) {
775       for (BasicBlock &BB : *F) {
776         if (!Solver.isBlockExecutable(&BB))
777           continue;
778         for (auto &I : make_early_inc_range(BB))
779           // FIXME: The solver may make changes to the function here, so set Changed, even if later
780           // function specialization does not trigger.
781           Changed |= FS.tryToReplaceWithConstant(&I);
782       }
783     }
784   };
785 
786   auto &TrackedFuncs = Solver.getArgumentTrackedFunctions();
787   SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(),
788                                         TrackedFuncs.end());
789 #ifndef NDEBUG
790   LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n");
791   for (auto *F : FuncDecls)
792     LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n");
793 #endif
794 
795   // Initially resolve the constants in all the argument tracked functions.
796   RunSCCPSolver(FuncDecls);
797 
798   SmallVector<Function *, 2> CurrentSpecializations;
799   unsigned I = 0;
800   while (FuncSpecializationMaxIters != I++ &&
801          FS.specializeFunctions(FuncDecls, CurrentSpecializations)) {
802 
803     // Run the solver for the specialized functions.
804     RunSCCPSolver(CurrentSpecializations);
805 
806     // Replace some unresolved constant arguments
807     constantArgPropagation(FuncDecls, M, Solver);
808 
809     CurrentSpecializations.clear();
810     Changed = true;
811   }
812 
813   // Clean up the IR by removing ssa_copy intrinsics.
814   removeSSACopy(M);
815   return Changed;
816 }
817