1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This specialises functions with constant parameters. Constant parameters 10 // like function pointers and constant globals are propagated to the callee by 11 // specializing the function. The main benefit of this pass at the moment is 12 // that indirect calls are transformed into direct calls, which provides inline 13 // opportunities that the inliner would not have been able to achieve. That's 14 // why function specialisation is run before the inliner in the optimisation 15 // pipeline; that is by design. Otherwise, we would only benefit from constant 16 // passing, which is a valid use-case too, but hasn't been explored much in 17 // terms of performance uplifts, cost-model and compile-time impact. 18 // 19 // Current limitations: 20 // - It does not yet handle integer ranges. We do support "literal constants", 21 // but that's off by default under an option. 22 // - Only 1 argument per function is specialised, 23 // - The cost-model could be further looked into (it mainly focuses on inlining 24 // benefits), 25 // - We are not yet caching analysis results, but profiling and checking where 26 // extra compile time is spent didn't suggest this to be a problem. 27 // 28 // Ideas: 29 // - With a function specialization attribute for arguments, we could have 30 // a direct way to steer function specialization, avoiding the cost-model, 31 // and thus control compile-times / code-size. 32 // 33 // Todos: 34 // - Specializing recursive functions relies on running the transformation a 35 // number of times, which is controlled by option 36 // `func-specialization-max-iters`. Thus, increasing this value and the 37 // number of iterations, will linearly increase the number of times recursive 38 // functions get specialized, see also the discussion in 39 // https://reviews.llvm.org/D106426 for details. Perhaps there is a 40 // compile-time friendlier way to control/limit the number of specialisations 41 // for recursive functions. 42 // - Don't transform the function if function specialization does not trigger; 43 // the SCCPSolver may make IR changes. 44 // 45 // References: 46 // - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable 47 // it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q 48 // 49 //===----------------------------------------------------------------------===// 50 51 #include "llvm/ADT/Statistic.h" 52 #include "llvm/Analysis/AssumptionCache.h" 53 #include "llvm/Analysis/CodeMetrics.h" 54 #include "llvm/Analysis/DomTreeUpdater.h" 55 #include "llvm/Analysis/InlineCost.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/TargetLibraryInfo.h" 58 #include "llvm/Analysis/TargetTransformInfo.h" 59 #include "llvm/Transforms/Scalar/SCCP.h" 60 #include "llvm/Transforms/Utils/Cloning.h" 61 #include "llvm/Transforms/Utils/SizeOpts.h" 62 #include <cmath> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "function-specialization" 67 68 STATISTIC(NumFuncSpecialized, "Number of functions specialized"); 69 70 static cl::opt<bool> ForceFunctionSpecialization( 71 "force-function-specialization", cl::init(false), cl::Hidden, 72 cl::desc("Force function specialization for every call site with a " 73 "constant argument")); 74 75 static cl::opt<unsigned> FuncSpecializationMaxIters( 76 "func-specialization-max-iters", cl::Hidden, 77 cl::desc("The maximum number of iterations function specialization is run"), 78 cl::init(1)); 79 80 static cl::opt<unsigned> MaxClonesThreshold( 81 "func-specialization-max-clones", cl::Hidden, 82 cl::desc("The maximum number of clones allowed for a single function " 83 "specialization"), 84 cl::init(3)); 85 86 static cl::opt<unsigned> SmallFunctionThreshold( 87 "func-specialization-size-threshold", cl::Hidden, 88 cl::desc("Don't specialize functions that have less than this theshold " 89 "number of instructions"), 90 cl::init(100)); 91 92 static cl::opt<unsigned> 93 AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden, 94 cl::desc("Average loop iteration count cost"), 95 cl::init(10)); 96 97 static cl::opt<bool> SpecializeOnAddresses( 98 "func-specialization-on-address", cl::init(false), cl::Hidden, 99 cl::desc("Enable function specialization on the address of global values")); 100 101 // TODO: This needs checking to see the impact on compile-times, which is why 102 // this is off by default for now. 103 static cl::opt<bool> EnableSpecializationForLiteralConstant( 104 "function-specialization-for-literal-constant", cl::init(false), cl::Hidden, 105 cl::desc("Enable specialization of functions that take a literal constant " 106 "as an argument.")); 107 108 namespace { 109 // Bookkeeping struct to pass data from the analysis and profitability phase 110 // to the actual transform helper functions. 111 struct ArgInfo { 112 Function *Fn; // The function to perform specialisation on. 113 Argument *Arg; // The Formal argument being analysed. 114 Constant *Const; // A corresponding actual constant argument. 115 InstructionCost Gain; // Profitability: Gain = Bonus - Cost. 116 117 // Flag if this will be a partial specialization, in which case we will need 118 // to keep the original function around in addition to the added 119 // specializations. 120 bool Partial = false; 121 122 ArgInfo(Function *F, Argument *A, Constant *C, InstructionCost G) 123 : Fn(F), Arg(A), Const(C), Gain(G){}; 124 }; 125 } // Anonymous namespace 126 127 using FuncList = SmallVectorImpl<Function *>; 128 using ConstList = SmallVectorImpl<Constant *>; 129 130 // Helper to check if \p LV is either a constant or a constant 131 // range with a single element. This should cover exactly the same cases as the 132 // old ValueLatticeElement::isConstant() and is intended to be used in the 133 // transition to ValueLatticeElement. 134 static bool isConstant(const ValueLatticeElement &LV) { 135 return LV.isConstant() || 136 (LV.isConstantRange() && LV.getConstantRange().isSingleElement()); 137 } 138 139 // Helper to check if \p LV is either overdefined or a constant int. 140 static bool isOverdefined(const ValueLatticeElement &LV) { 141 return !LV.isUnknownOrUndef() && !isConstant(LV); 142 } 143 144 static Constant *getPromotableAlloca(AllocaInst *Alloca, CallInst *Call) { 145 Value *StoreValue = nullptr; 146 for (auto *User : Alloca->users()) { 147 // We can't use llvm::isAllocaPromotable() as that would fail because of 148 // the usage in the CallInst, which is what we check here. 149 if (User == Call) 150 continue; 151 if (auto *Bitcast = dyn_cast<BitCastInst>(User)) { 152 if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call) 153 return nullptr; 154 continue; 155 } 156 157 if (auto *Store = dyn_cast<StoreInst>(User)) { 158 // This is a duplicate store, bail out. 159 if (StoreValue || Store->isVolatile()) 160 return nullptr; 161 StoreValue = Store->getValueOperand(); 162 continue; 163 } 164 // Bail if there is any other unknown usage. 165 return nullptr; 166 } 167 return dyn_cast_or_null<Constant>(StoreValue); 168 } 169 170 // A constant stack value is an AllocaInst that has a single constant 171 // value stored to it. Return this constant if such an alloca stack value 172 // is a function argument. 173 static Constant *getConstantStackValue(CallInst *Call, Value *Val, 174 SCCPSolver &Solver) { 175 if (!Val) 176 return nullptr; 177 Val = Val->stripPointerCasts(); 178 if (auto *ConstVal = dyn_cast<ConstantInt>(Val)) 179 return ConstVal; 180 auto *Alloca = dyn_cast<AllocaInst>(Val); 181 if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy()) 182 return nullptr; 183 return getPromotableAlloca(Alloca, Call); 184 } 185 186 // To support specializing recursive functions, it is important to propagate 187 // constant arguments because after a first iteration of specialisation, a 188 // reduced example may look like this: 189 // 190 // define internal void @RecursiveFn(i32* arg1) { 191 // %temp = alloca i32, align 4 192 // store i32 2 i32* %temp, align 4 193 // call void @RecursiveFn.1(i32* nonnull %temp) 194 // ret void 195 // } 196 // 197 // Before a next iteration, we need to propagate the constant like so 198 // which allows further specialization in next iterations. 199 // 200 // @funcspec.arg = internal constant i32 2 201 // 202 // define internal void @someFunc(i32* arg1) { 203 // call void @otherFunc(i32* nonnull @funcspec.arg) 204 // ret void 205 // } 206 // 207 static void constantArgPropagation(FuncList &WorkList, 208 Module &M, SCCPSolver &Solver) { 209 // Iterate over the argument tracked functions see if there 210 // are any new constant values for the call instruction via 211 // stack variables. 212 for (auto *F : WorkList) { 213 // TODO: Generalize for any read only arguments. 214 if (F->arg_size() != 1) 215 continue; 216 217 auto &Arg = *F->arg_begin(); 218 if (!Arg.onlyReadsMemory() || !Arg.getType()->isPointerTy()) 219 continue; 220 221 for (auto *User : F->users()) { 222 auto *Call = dyn_cast<CallInst>(User); 223 if (!Call) 224 break; 225 auto *ArgOp = Call->getArgOperand(0); 226 auto *ArgOpType = ArgOp->getType(); 227 auto *ConstVal = getConstantStackValue(Call, ArgOp, Solver); 228 if (!ConstVal) 229 break; 230 231 Value *GV = new GlobalVariable(M, ConstVal->getType(), true, 232 GlobalValue::InternalLinkage, ConstVal, 233 "funcspec.arg"); 234 235 if (ArgOpType != ConstVal->getType()) 236 GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOp->getType()); 237 238 Call->setArgOperand(0, GV); 239 240 // Add the changed CallInst to Solver Worklist 241 Solver.visitCall(*Call); 242 } 243 } 244 } 245 246 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics 247 // interfere with the constantArgPropagation optimization. 248 static void removeSSACopy(Function &F) { 249 for (BasicBlock &BB : F) { 250 for (Instruction &Inst : llvm::make_early_inc_range(BB)) { 251 auto *II = dyn_cast<IntrinsicInst>(&Inst); 252 if (!II) 253 continue; 254 if (II->getIntrinsicID() != Intrinsic::ssa_copy) 255 continue; 256 Inst.replaceAllUsesWith(II->getOperand(0)); 257 Inst.eraseFromParent(); 258 } 259 } 260 } 261 262 static void removeSSACopy(Module &M) { 263 for (Function &F : M) 264 removeSSACopy(F); 265 } 266 267 namespace { 268 class FunctionSpecializer { 269 270 /// The IPSCCP Solver. 271 SCCPSolver &Solver; 272 273 /// Analyses used to help determine if a function should be specialized. 274 std::function<AssumptionCache &(Function &)> GetAC; 275 std::function<TargetTransformInfo &(Function &)> GetTTI; 276 std::function<TargetLibraryInfo &(Function &)> GetTLI; 277 278 SmallPtrSet<Function *, 2> SpecializedFuncs; 279 SmallVector<Instruction *> ReplacedWithConstant; 280 281 public: 282 FunctionSpecializer(SCCPSolver &Solver, 283 std::function<AssumptionCache &(Function &)> GetAC, 284 std::function<TargetTransformInfo &(Function &)> GetTTI, 285 std::function<TargetLibraryInfo &(Function &)> GetTLI) 286 : Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {} 287 288 /// Attempt to specialize functions in the module to enable constant 289 /// propagation across function boundaries. 290 /// 291 /// \returns true if at least one function is specialized. 292 bool 293 specializeFunctions(FuncList &FuncDecls, 294 FuncList &CurrentSpecializations) { 295 bool Changed = false; 296 for (auto *F : FuncDecls) { 297 if (!isCandidateFunction(F, CurrentSpecializations)) 298 continue; 299 300 auto Cost = getSpecializationCost(F); 301 if (!Cost.isValid()) { 302 LLVM_DEBUG( 303 dbgs() << "FnSpecialization: Invalid specialisation cost.\n"); 304 continue; 305 } 306 307 auto ConstArgs = calculateGains(F, Cost); 308 if (ConstArgs.empty()) { 309 LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n"); 310 continue; 311 } 312 313 for (auto &CA : ConstArgs) { 314 specializeFunction(CA, CurrentSpecializations); 315 Changed = true; 316 } 317 } 318 319 updateSpecializedFuncs(FuncDecls, CurrentSpecializations); 320 NumFuncSpecialized += NbFunctionsSpecialized; 321 return Changed; 322 } 323 324 void removeDeadInstructions() { 325 for (auto *I : ReplacedWithConstant) { 326 LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead instruction " 327 << *I << "\n"); 328 I->eraseFromParent(); 329 } 330 ReplacedWithConstant.clear(); 331 } 332 333 bool tryToReplaceWithConstant(Value *V) { 334 if (!V->getType()->isSingleValueType() || isa<CallBase>(V) || 335 V->user_empty()) 336 return false; 337 338 const ValueLatticeElement &IV = Solver.getLatticeValueFor(V); 339 if (isOverdefined(IV)) 340 return false; 341 auto *Const = 342 isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType()); 343 344 LLVM_DEBUG(dbgs() << "FnSpecialization: Replacing " << *V 345 << "\nFnSpecialization: with " << *Const << "\n"); 346 347 V->replaceAllUsesWith(Const); 348 349 for (auto *U : Const->users()) 350 if (auto *I = dyn_cast<Instruction>(U)) 351 if (Solver.isBlockExecutable(I->getParent())) 352 Solver.visit(I); 353 354 // Remove the instruction from Block and Solver. 355 if (auto *I = dyn_cast<Instruction>(V)) { 356 if (I->isSafeToRemove()) { 357 ReplacedWithConstant.push_back(I); 358 Solver.removeLatticeValueFor(I); 359 } 360 } 361 return true; 362 } 363 364 private: 365 // The number of functions specialised, used for collecting statistics and 366 // also in the cost model. 367 unsigned NbFunctionsSpecialized = 0; 368 369 /// Clone the function \p F and remove the ssa_copy intrinsics added by 370 /// the SCCPSolver in the cloned version. 371 Function *cloneCandidateFunction(Function *F) { 372 ValueToValueMapTy EmptyMap; 373 Function *Clone = CloneFunction(F, EmptyMap); 374 removeSSACopy(*Clone); 375 return Clone; 376 } 377 378 /// This function decides whether it's worthwhile to specialize function \p F 379 /// based on the known constant values its arguments can take on, i.e. it 380 /// calculates a gain and returns a list of actual arguments that are deemed 381 /// profitable to specialize. Specialization is performed on the first 382 /// interesting argument. Specializations based on additional arguments will 383 /// be evaluated on following iterations of the main IPSCCP solve loop. 384 SmallVector<ArgInfo> calculateGains(Function *F, InstructionCost Cost) { 385 SmallVector<ArgInfo> Worklist; 386 // Determine if we should specialize the function based on the values the 387 // argument can take on. If specialization is not profitable, we continue 388 // on to the next argument. 389 for (Argument &FormalArg : F->args()) { 390 LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: " 391 << FormalArg.getName() << "\n"); 392 // Determine if this argument is interesting. If we know the argument can 393 // take on any constant values, they are collected in Constants. If the 394 // argument can only ever equal a constant value in Constants, the 395 // function will be completely specialized, and the IsPartial flag will 396 // be set to false by isArgumentInteresting (that function only adds 397 // values to the Constants list that are deemed profitable). 398 bool IsPartial = true; 399 SmallVector<Constant *> ActualConstArg; 400 if (!isArgumentInteresting(&FormalArg, ActualConstArg, IsPartial)) { 401 LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n"); 402 continue; 403 } 404 405 for (auto *ActualArg : ActualConstArg) { 406 InstructionCost Gain = 407 ForceFunctionSpecialization 408 ? 1 409 : getSpecializationBonus(&FormalArg, ActualArg) - Cost; 410 411 if (Gain <= 0) 412 continue; 413 Worklist.push_back({F, &FormalArg, ActualArg, Gain}); 414 } 415 416 if (Worklist.empty()) 417 continue; 418 419 // Sort the candidates in descending order. 420 llvm::stable_sort(Worklist, [](const ArgInfo &L, const ArgInfo &R) { 421 return L.Gain > R.Gain; 422 }); 423 424 // Truncate the worklist to 'MaxClonesThreshold' candidates if 425 // necessary. 426 if (Worklist.size() > MaxClonesThreshold) { 427 LLVM_DEBUG(dbgs() << "FnSpecialization: number of candidates exceed " 428 << "the maximum number of clones threshold.\n" 429 << "Truncating worklist to " << MaxClonesThreshold 430 << " candidates.\n"); 431 Worklist.erase(Worklist.begin() + MaxClonesThreshold, 432 Worklist.end()); 433 } 434 435 if (IsPartial || Worklist.size() < ActualConstArg.size()) 436 for (auto &ActualArg : Worklist) 437 ActualArg.Partial = true; 438 439 LLVM_DEBUG(dbgs() << "Sorted list of candidates by gain:\n"; 440 for (auto &C 441 : Worklist) { 442 dbgs() << "- Function = " << C.Fn->getName() << ", "; 443 dbgs() << "FormalArg = " << C.Arg->getName() << ", "; 444 dbgs() << "ActualArg = " << C.Const->getName() << ", "; 445 dbgs() << "Gain = " << C.Gain << "\n"; 446 }); 447 448 // FIXME: Only one argument per function. 449 break; 450 } 451 return Worklist; 452 } 453 454 bool isCandidateFunction(Function *F, FuncList &Specializations) { 455 // Do not specialize the cloned function again. 456 if (SpecializedFuncs.contains(F)) 457 return false; 458 459 // If we're optimizing the function for size, we shouldn't specialize it. 460 if (F->hasOptSize() || 461 shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass)) 462 return false; 463 464 // Exit if the function is not executable. There's no point in specializing 465 // a dead function. 466 if (!Solver.isBlockExecutable(&F->getEntryBlock())) 467 return false; 468 469 // It wastes time to specialize a function which would get inlined finally. 470 if (F->hasFnAttribute(Attribute::AlwaysInline)) 471 return false; 472 473 LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName() 474 << "\n"); 475 return true; 476 } 477 478 void specializeFunction(ArgInfo &AI, FuncList &Specializations) { 479 Function *Clone = cloneCandidateFunction(AI.Fn); 480 Argument *ClonedArg = Clone->getArg(AI.Arg->getArgNo()); 481 482 // Rewrite calls to the function so that they call the clone instead. 483 rewriteCallSites(AI.Fn, Clone, *ClonedArg, AI.Const); 484 485 // Initialize the lattice state of the arguments of the function clone, 486 // marking the argument on which we specialized the function constant 487 // with the given value. 488 Solver.markArgInFuncSpecialization(AI.Fn, ClonedArg, AI.Const); 489 490 // Mark all the specialized functions 491 Specializations.push_back(Clone); 492 NbFunctionsSpecialized++; 493 494 // If the function has been completely specialized, the original function 495 // is no longer needed. Mark it unreachable. 496 if (!AI.Partial) 497 Solver.markFunctionUnreachable(AI.Fn); 498 } 499 500 /// Compute and return the cost of specializing function \p F. 501 InstructionCost getSpecializationCost(Function *F) { 502 // Compute the code metrics for the function. 503 SmallPtrSet<const Value *, 32> EphValues; 504 CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues); 505 CodeMetrics Metrics; 506 for (BasicBlock &BB : *F) 507 Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues); 508 509 // If the code metrics reveal that we shouldn't duplicate the function, we 510 // shouldn't specialize it. Set the specialization cost to Invalid. 511 // Or if the lines of codes implies that this function is easy to get 512 // inlined so that we shouldn't specialize it. 513 if (Metrics.notDuplicatable || 514 (!ForceFunctionSpecialization && 515 Metrics.NumInsts < SmallFunctionThreshold)) { 516 InstructionCost C{}; 517 C.setInvalid(); 518 return C; 519 } 520 521 // Otherwise, set the specialization cost to be the cost of all the 522 // instructions in the function and penalty for specializing more functions. 523 unsigned Penalty = NbFunctionsSpecialized + 1; 524 return Metrics.NumInsts * InlineConstants::InstrCost * Penalty; 525 } 526 527 InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI, 528 LoopInfo &LI) { 529 auto *I = dyn_cast_or_null<Instruction>(U); 530 // If not an instruction we do not know how to evaluate. 531 // Keep minimum possible cost for now so that it doesnt affect 532 // specialization. 533 if (!I) 534 return std::numeric_limits<unsigned>::min(); 535 536 auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency); 537 538 // Traverse recursively if there are more uses. 539 // TODO: Any other instructions to be added here? 540 if (I->mayReadFromMemory() || I->isCast()) 541 for (auto *User : I->users()) 542 Cost += getUserBonus(User, TTI, LI); 543 544 // Increase the cost if it is inside the loop. 545 auto LoopDepth = LI.getLoopDepth(I->getParent()); 546 Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth); 547 return Cost; 548 } 549 550 /// Compute a bonus for replacing argument \p A with constant \p C. 551 InstructionCost getSpecializationBonus(Argument *A, Constant *C) { 552 Function *F = A->getParent(); 553 DominatorTree DT(*F); 554 LoopInfo LI(DT); 555 auto &TTI = (GetTTI)(*F); 556 LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A 557 << "\n"); 558 559 InstructionCost TotalCost = 0; 560 for (auto *U : A->users()) { 561 TotalCost += getUserBonus(U, TTI, LI); 562 LLVM_DEBUG(dbgs() << "FnSpecialization: User cost "; 563 TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n"); 564 } 565 566 // The below heuristic is only concerned with exposing inlining 567 // opportunities via indirect call promotion. If the argument is not a 568 // function pointer, give up. 569 if (!isa<PointerType>(A->getType()) || 570 !isa<FunctionType>(A->getType()->getPointerElementType())) 571 return TotalCost; 572 573 // Since the argument is a function pointer, its incoming constant values 574 // should be functions or constant expressions. The code below attempts to 575 // look through cast expressions to find the function that will be called. 576 Value *CalledValue = C; 577 while (isa<ConstantExpr>(CalledValue) && 578 cast<ConstantExpr>(CalledValue)->isCast()) 579 CalledValue = cast<User>(CalledValue)->getOperand(0); 580 Function *CalledFunction = dyn_cast<Function>(CalledValue); 581 if (!CalledFunction) 582 return TotalCost; 583 584 // Get TTI for the called function (used for the inline cost). 585 auto &CalleeTTI = (GetTTI)(*CalledFunction); 586 587 // Look at all the call sites whose called value is the argument. 588 // Specializing the function on the argument would allow these indirect 589 // calls to be promoted to direct calls. If the indirect call promotion 590 // would likely enable the called function to be inlined, specializing is a 591 // good idea. 592 int Bonus = 0; 593 for (User *U : A->users()) { 594 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 595 continue; 596 auto *CS = cast<CallBase>(U); 597 if (CS->getCalledOperand() != A) 598 continue; 599 600 // Get the cost of inlining the called function at this call site. Note 601 // that this is only an estimate. The called function may eventually 602 // change in a way that leads to it not being inlined here, even though 603 // inlining looks profitable now. For example, one of its called 604 // functions may be inlined into it, making the called function too large 605 // to be inlined into this call site. 606 // 607 // We apply a boost for performing indirect call promotion by increasing 608 // the default threshold by the threshold for indirect calls. 609 auto Params = getInlineParams(); 610 Params.DefaultThreshold += InlineConstants::IndirectCallThreshold; 611 InlineCost IC = 612 getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI); 613 614 // We clamp the bonus for this call to be between zero and the default 615 // threshold. 616 if (IC.isAlways()) 617 Bonus += Params.DefaultThreshold; 618 else if (IC.isVariable() && IC.getCostDelta() > 0) 619 Bonus += IC.getCostDelta(); 620 } 621 622 return TotalCost + Bonus; 623 } 624 625 /// Determine if we should specialize a function based on the incoming values 626 /// of the given argument. 627 /// 628 /// This function implements the goal-directed heuristic. It determines if 629 /// specializing the function based on the incoming values of argument \p A 630 /// would result in any significant optimization opportunities. If 631 /// optimization opportunities exist, the constant values of \p A on which to 632 /// specialize the function are collected in \p Constants. If the values in 633 /// \p Constants represent the complete set of values that \p A can take on, 634 /// the function will be completely specialized, and the \p IsPartial flag is 635 /// set to false. 636 /// 637 /// \returns true if the function should be specialized on the given 638 /// argument. 639 bool isArgumentInteresting(Argument *A, ConstList &Constants, 640 bool &IsPartial) { 641 // For now, don't attempt to specialize functions based on the values of 642 // composite types. 643 if (!A->getType()->isSingleValueType() || A->user_empty()) 644 return false; 645 646 // If the argument isn't overdefined, there's nothing to do. It should 647 // already be constant. 648 if (!Solver.getLatticeValueFor(A).isOverdefined()) { 649 LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already " 650 << "constant?\n"); 651 return false; 652 } 653 654 // Collect the constant values that the argument can take on. If the 655 // argument can't take on any constant values, we aren't going to 656 // specialize the function. While it's possible to specialize the function 657 // based on non-constant arguments, there's likely not much benefit to 658 // constant propagation in doing so. 659 // 660 // TODO 1: currently it won't specialize if there are over the threshold of 661 // calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it 662 // might be beneficial to take the occurrences into account in the cost 663 // model, so we would need to find the unique constants. 664 // 665 // TODO 2: this currently does not support constants, i.e. integer ranges. 666 // 667 IsPartial = !getPossibleConstants(A, Constants); 668 LLVM_DEBUG(dbgs() << "FnSpecialization: interesting arg: " << *A << "\n"); 669 return true; 670 } 671 672 /// Collect in \p Constants all the constant values that argument \p A can 673 /// take on. 674 /// 675 /// \returns true if all of the values the argument can take on are constant 676 /// (e.g., the argument's parent function cannot be called with an 677 /// overdefined value). 678 bool getPossibleConstants(Argument *A, ConstList &Constants) { 679 Function *F = A->getParent(); 680 bool AllConstant = true; 681 682 // Iterate over all the call sites of the argument's parent function. 683 for (User *U : F->users()) { 684 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 685 continue; 686 auto &CS = *cast<CallBase>(U); 687 // If the call site has attribute minsize set, that callsite won't be 688 // specialized. 689 if (CS.hasFnAttr(Attribute::MinSize)) { 690 AllConstant = false; 691 continue; 692 } 693 694 // If the parent of the call site will never be executed, we don't need 695 // to worry about the passed value. 696 if (!Solver.isBlockExecutable(CS.getParent())) 697 continue; 698 699 auto *V = CS.getArgOperand(A->getArgNo()); 700 if (isa<PoisonValue>(V)) 701 return false; 702 703 // For now, constant expressions are fine but only if they are function 704 // calls. 705 if (auto *CE = dyn_cast<ConstantExpr>(V)) 706 if (!isa<Function>(CE->getOperand(0))) 707 return false; 708 709 // TrackValueOfGlobalVariable only tracks scalar global variables. 710 if (auto *GV = dyn_cast<GlobalVariable>(V)) { 711 // Check if we want to specialize on the address of non-constant 712 // global values. 713 if (!GV->isConstant()) 714 if (!SpecializeOnAddresses) 715 return false; 716 717 if (!GV->getValueType()->isSingleValueType()) 718 return false; 719 } 720 721 if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() || 722 EnableSpecializationForLiteralConstant)) 723 Constants.push_back(cast<Constant>(V)); 724 else 725 AllConstant = false; 726 } 727 728 // If the argument can only take on constant values, AllConstant will be 729 // true. 730 return AllConstant; 731 } 732 733 /// Rewrite calls to function \p F to call function \p Clone instead. 734 /// 735 /// This function modifies calls to function \p F whose argument at index \p 736 /// ArgNo is equal to constant \p C. The calls are rewritten to call function 737 /// \p Clone instead. 738 /// 739 /// Callsites that have been marked with the MinSize function attribute won't 740 /// be specialized and rewritten. 741 void rewriteCallSites(Function *F, Function *Clone, Argument &Arg, 742 Constant *C) { 743 unsigned ArgNo = Arg.getArgNo(); 744 SmallVector<CallBase *, 4> CallSitesToRewrite; 745 for (auto *U : F->users()) { 746 if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) 747 continue; 748 auto &CS = *cast<CallBase>(U); 749 if (!CS.getCalledFunction() || CS.getCalledFunction() != F) 750 continue; 751 CallSitesToRewrite.push_back(&CS); 752 } 753 for (auto *CS : CallSitesToRewrite) { 754 if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) || 755 CS->getArgOperand(ArgNo) == C) { 756 CS->setCalledFunction(Clone); 757 Solver.markOverdefined(CS); 758 } 759 } 760 } 761 762 void updateSpecializedFuncs(FuncList &FuncDecls, 763 FuncList &CurrentSpecializations) { 764 for (auto *SpecializedFunc : CurrentSpecializations) { 765 SpecializedFuncs.insert(SpecializedFunc); 766 767 // Initialize the state of the newly created functions, marking them 768 // argument-tracked and executable. 769 if (SpecializedFunc->hasExactDefinition() && 770 !SpecializedFunc->hasFnAttribute(Attribute::Naked)) 771 Solver.addTrackedFunction(SpecializedFunc); 772 773 Solver.addArgumentTrackedFunction(SpecializedFunc); 774 FuncDecls.push_back(SpecializedFunc); 775 Solver.markBlockExecutable(&SpecializedFunc->front()); 776 777 // Replace the function arguments for the specialized functions. 778 for (Argument &Arg : SpecializedFunc->args()) 779 if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg)) 780 LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: " 781 << Arg.getName() << "\n"); 782 } 783 } 784 }; 785 } // namespace 786 787 bool llvm::runFunctionSpecialization( 788 Module &M, const DataLayout &DL, 789 std::function<TargetLibraryInfo &(Function &)> GetTLI, 790 std::function<TargetTransformInfo &(Function &)> GetTTI, 791 std::function<AssumptionCache &(Function &)> GetAC, 792 function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) { 793 SCCPSolver Solver(DL, GetTLI, M.getContext()); 794 FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI); 795 bool Changed = false; 796 797 // Loop over all functions, marking arguments to those with their addresses 798 // taken or that are external as overdefined. 799 for (Function &F : M) { 800 if (F.isDeclaration()) 801 continue; 802 if (F.hasFnAttribute(Attribute::NoDuplicate)) 803 continue; 804 805 LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName() 806 << "\n"); 807 Solver.addAnalysis(F, GetAnalysis(F)); 808 809 // Determine if we can track the function's arguments. If so, add the 810 // function to the solver's set of argument-tracked functions. 811 if (canTrackArgumentsInterprocedurally(&F)) { 812 LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n"); 813 Solver.addArgumentTrackedFunction(&F); 814 continue; 815 } else { 816 LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n" 817 << "FnSpecialization: Doesn't have local linkage, or " 818 << "has its address taken\n"); 819 } 820 821 // Assume the function is called. 822 Solver.markBlockExecutable(&F.front()); 823 824 // Assume nothing about the incoming arguments. 825 for (Argument &AI : F.args()) 826 Solver.markOverdefined(&AI); 827 } 828 829 // Determine if we can track any of the module's global variables. If so, add 830 // the global variables we can track to the solver's set of tracked global 831 // variables. 832 for (GlobalVariable &G : M.globals()) { 833 G.removeDeadConstantUsers(); 834 if (canTrackGlobalVariableInterprocedurally(&G)) 835 Solver.trackValueOfGlobalVariable(&G); 836 } 837 838 auto &TrackedFuncs = Solver.getArgumentTrackedFunctions(); 839 SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(), 840 TrackedFuncs.end()); 841 842 // No tracked functions, so nothing to do: don't run the solver and remove 843 // the ssa_copy intrinsics that may have been introduced. 844 if (TrackedFuncs.empty()) { 845 removeSSACopy(M); 846 return false; 847 } 848 849 // Solve for constants. 850 auto RunSCCPSolver = [&](auto &WorkList) { 851 bool ResolvedUndefs = true; 852 853 while (ResolvedUndefs) { 854 // Not running the solver unnecessary is checked in regression test 855 // nothing-to-do.ll, so if this debug message is changed, this regression 856 // test needs updating too. 857 LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n"); 858 859 Solver.solve(); 860 LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n"); 861 ResolvedUndefs = false; 862 for (Function *F : WorkList) 863 if (Solver.resolvedUndefsIn(*F)) 864 ResolvedUndefs = true; 865 } 866 867 for (auto *F : WorkList) { 868 for (BasicBlock &BB : *F) { 869 if (!Solver.isBlockExecutable(&BB)) 870 continue; 871 // FIXME: The solver may make changes to the function here, so set 872 // Changed, even if later function specialization does not trigger. 873 for (auto &I : make_early_inc_range(BB)) 874 Changed |= FS.tryToReplaceWithConstant(&I); 875 } 876 } 877 }; 878 879 #ifndef NDEBUG 880 LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n"); 881 for (auto *F : FuncDecls) 882 LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n"); 883 #endif 884 885 // Initially resolve the constants in all the argument tracked functions. 886 RunSCCPSolver(FuncDecls); 887 888 SmallVector<Function *, 2> CurrentSpecializations; 889 unsigned I = 0; 890 while (FuncSpecializationMaxIters != I++ && 891 FS.specializeFunctions(FuncDecls, CurrentSpecializations)) { 892 893 // Run the solver for the specialized functions. 894 RunSCCPSolver(CurrentSpecializations); 895 896 // Replace some unresolved constant arguments. 897 constantArgPropagation(FuncDecls, M, Solver); 898 899 CurrentSpecializations.clear(); 900 Changed = true; 901 } 902 903 // Clean up the IR by removing dead instructions and ssa_copy intrinsics. 904 FS.removeDeadInstructions(); 905 removeSSACopy(M); 906 return Changed; 907 } 908