1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This specialises functions with constant parameters (e.g. functions,
10 // globals). Constant parameters like function pointers and constant globals
11 // are propagated to the callee by specializing the function.
12 //
13 // Current limitations:
14 // - It does not handle specialization of recursive functions,
15 // - It does not yet handle integer constants, and integer ranges,
16 // - Only 1 argument per function is specialised,
17 // - The cost-model could be further looked into,
18 // - We are not yet caching analysis results.
19 //
20 // Ideas:
21 // - With a function specialization attribute for arguments, we could have
22 //   a direct way to steer function specialization, avoiding the cost-model,
23 //   and thus control compile-times / code-size.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/CodeMetrics.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/InlineCost.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Transforms/Scalar/SCCP.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 #include "llvm/Transforms/Utils/SizeOpts.h"
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "function-specialization"
42 
43 STATISTIC(NumFuncSpecialized, "Number of Functions Specialized");
44 
45 static cl::opt<bool> ForceFunctionSpecialization(
46     "force-function-specialization", cl::init(false), cl::Hidden,
47     cl::desc("Force function specialization for every call site with a "
48              "constant argument"));
49 
50 static cl::opt<unsigned> FuncSpecializationMaxIters(
51     "func-specialization-max-iters", cl::Hidden,
52     cl::desc("The maximum number of iterations function specialization is run"),
53     cl::init(1));
54 
55 static cl::opt<unsigned> MaxConstantsThreshold(
56     "func-specialization-max-constants", cl::Hidden,
57     cl::desc("The maximum number of clones allowed for a single function "
58              "specialization"),
59     cl::init(3));
60 
61 static cl::opt<unsigned>
62     AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
63                           cl::desc("Average loop iteration count cost"),
64                           cl::init(10));
65 
66 // Helper to check if \p LV is either overdefined or a constant int.
67 static bool isOverdefined(const ValueLatticeElement &LV) {
68   return !LV.isUnknownOrUndef() && !LV.isConstant();
69 }
70 
71 class FunctionSpecializer {
72 
73   /// The IPSCCP Solver.
74   SCCPSolver &Solver;
75 
76   /// Analyses used to help determine if a function should be specialized.
77   std::function<AssumptionCache &(Function &)> GetAC;
78   std::function<TargetTransformInfo &(Function &)> GetTTI;
79   std::function<TargetLibraryInfo &(Function &)> GetTLI;
80 
81   SmallPtrSet<Function *, 2> SpecializedFuncs;
82 
83 public:
84   FunctionSpecializer(SCCPSolver &Solver,
85                       std::function<AssumptionCache &(Function &)> GetAC,
86                       std::function<TargetTransformInfo &(Function &)> GetTTI,
87                       std::function<TargetLibraryInfo &(Function &)> GetTLI)
88       : Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {}
89 
90   /// Attempt to specialize functions in the module to enable constant
91   /// propagation across function boundaries.
92   ///
93   /// \returns true if at least one function is specialized.
94   bool
95   specializeFunctions(SmallVectorImpl<Function *> &FuncDecls,
96                       SmallVectorImpl<Function *> &CurrentSpecializations) {
97 
98     // Attempt to specialize the argument-tracked functions.
99     bool Changed = false;
100     for (auto *F : FuncDecls) {
101       if (specializeFunction(F, CurrentSpecializations)) {
102         Changed = true;
103         LLVM_DEBUG(dbgs() << "FnSpecialization: Can specialize this func.\n");
104       } else {
105         LLVM_DEBUG(
106             dbgs() << "FnSpecialization: Cannot specialize this func.\n");
107       }
108     }
109 
110     for (auto *SpecializedFunc : CurrentSpecializations) {
111       SpecializedFuncs.insert(SpecializedFunc);
112 
113       // TODO: If we want to support specializing specialized functions,
114       // initialize here the state of the newly created functions, marking
115       // them argument-tracked and executable.
116 
117       // Replace the function arguments for the specialized functions.
118       for (Argument &Arg : SpecializedFunc->args())
119         if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg))
120           LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: "
121                             << Arg.getName() << "\n");
122     }
123     return Changed;
124   }
125 
126   bool tryToReplaceWithConstant(Value *V) {
127     if (!V->getType()->isSingleValueType() || isa<CallBase>(V) ||
128         V->user_empty())
129       return false;
130 
131     const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
132     if (isOverdefined(IV))
133       return false;
134     auto *Const = IV.isConstant() ? Solver.getConstant(IV)
135                                   : UndefValue::get(V->getType());
136     V->replaceAllUsesWith(Const);
137 
138     // TODO: Update the solver here if we want to specialize specialized
139     // functions.
140     return true;
141   }
142 
143 private:
144   /// This function decides whether to specialize function \p F based on the
145   /// known constant values its arguments can take on. Specialization is
146   /// performed on the first interesting argument. Specializations based on
147   /// additional arguments will be evaluated on following iterations of the
148   /// main IPSCCP solve loop. \returns true if the function is specialized and
149   /// false otherwise.
150   bool specializeFunction(Function *F,
151                           SmallVectorImpl<Function *> &Specializations) {
152 
153     // Do not specialize the cloned function again.
154     if (SpecializedFuncs.contains(F)) {
155       return false;
156     }
157 
158     // If we're optimizing the function for size, we shouldn't specialize it.
159     if (F->hasOptSize() ||
160         shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
161       return false;
162 
163     // Exit if the function is not executable. There's no point in specializing
164     // a dead function.
165     if (!Solver.isBlockExecutable(&F->getEntryBlock()))
166       return false;
167 
168     LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
169                       << "\n");
170     // Determine if we should specialize the function based on the values the
171     // argument can take on. If specialization is not profitable, we continue
172     // on to the next argument.
173     for (Argument &A : F->args()) {
174       LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: " << A.getName()
175                         << "\n");
176       // True if this will be a partial specialization. We will need to keep
177       // the original function around in addition to the added specializations.
178       bool IsPartial = true;
179 
180       // Determine if this argument is interesting. If we know the argument can
181       // take on any constant values, they are collected in Constants. If the
182       // argument can only ever equal a constant value in Constants, the
183       // function will be completely specialized, and the IsPartial flag will
184       // be set to false by isArgumentInteresting (that function only adds
185       // values to the Constants list that are deemed profitable).
186       SmallVector<Constant *, 4> Constants;
187       if (!isArgumentInteresting(&A, Constants, IsPartial)) {
188         LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n");
189         continue;
190       }
191 
192       assert(!Constants.empty() && "No constants on which to specialize");
193       LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is interesting!\n"
194                         << "FnSpecialization: Specializing '" << F->getName()
195                         << "' on argument: " << A << "\n"
196                         << "FnSpecialization: Constants are:\n\n";
197                  for (unsigned I = 0; I < Constants.size(); ++I) dbgs()
198                  << *Constants[I] << "\n";
199                  dbgs() << "FnSpecialization: End of constants\n\n");
200 
201       // Create a version of the function in which the argument is marked
202       // constant with the given value.
203       for (auto *C : Constants) {
204         // Clone the function. We leave the ValueToValueMap empty to allow
205         // IPSCCP to propagate the constant arguments.
206         ValueToValueMapTy EmptyMap;
207         Function *Clone = CloneFunction(F, EmptyMap);
208         Argument *ClonedArg = Clone->arg_begin() + A.getArgNo();
209 
210         // Rewrite calls to the function so that they call the clone instead.
211         rewriteCallSites(F, Clone, *ClonedArg, C);
212 
213         // Initialize the lattice state of the arguments of the function clone,
214         // marking the argument on which we specialized the function constant
215         // with the given value.
216         Solver.markArgInFuncSpecialization(F, ClonedArg, C);
217 
218         // Mark all the specialized functions
219         Specializations.push_back(Clone);
220         NumFuncSpecialized++;
221       }
222 
223       // TODO: if we want to support specialize specialized functions, and if
224       // the function has been completely specialized, the original function is
225       // no longer needed, so we would need to mark it unreachable here.
226 
227       // FIXME: Only one argument per function.
228       return true;
229     }
230 
231     return false;
232   }
233 
234   /// Compute the cost of specializing function \p F.
235   InstructionCost getSpecializationCost(Function *F) {
236     // Compute the code metrics for the function.
237     SmallPtrSet<const Value *, 32> EphValues;
238     CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
239     CodeMetrics Metrics;
240     for (BasicBlock &BB : *F)
241       Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
242 
243     // If the code metrics reveal that we shouldn't duplicate the function, we
244     // shouldn't specialize it. Set the specialization cost to the maximum.
245     if (Metrics.notDuplicatable)
246       return std::numeric_limits<unsigned>::max();
247 
248     // Otherwise, set the specialization cost to be the cost of all the
249     // instructions in the function and penalty for specializing more functions.
250     unsigned Penalty = NumFuncSpecialized + 1;
251     return Metrics.NumInsts * InlineConstants::InstrCost * Penalty;
252   }
253 
254   InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
255                                LoopInfo &LI) {
256     auto *I = dyn_cast_or_null<Instruction>(U);
257     // If not an instruction we do not know how to evaluate.
258     // Keep minimum possible cost for now so that it doesnt affect
259     // specialization.
260     if (!I)
261       return std::numeric_limits<unsigned>::min();
262 
263     auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency);
264 
265     // Traverse recursively if there are more uses.
266     // TODO: Any other instructions to be added here?
267     if (I->mayReadFromMemory() || I->isCast())
268       for (auto *User : I->users())
269         Cost += getUserBonus(User, TTI, LI);
270 
271     // Increase the cost if it is inside the loop.
272     auto LoopDepth = LI.getLoopDepth(I->getParent()) + 1;
273     Cost *= (AvgLoopIterationCount ^ LoopDepth);
274     return Cost;
275   }
276 
277   /// Compute a bonus for replacing argument \p A with constant \p C.
278   InstructionCost getSpecializationBonus(Argument *A, Constant *C) {
279     Function *F = A->getParent();
280     DominatorTree DT(*F);
281     LoopInfo LI(DT);
282     auto &TTI = (GetTTI)(*F);
283     LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A
284                       << "\n");
285 
286     InstructionCost TotalCost = 0;
287     for (auto *U : A->users()) {
288       TotalCost += getUserBonus(U, TTI, LI);
289       LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
290                  TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
291     }
292 
293     // The below heuristic is only concerned with exposing inlining
294     // opportunities via indirect call promotion. If the argument is not a
295     // function pointer, give up.
296     if (!isa<PointerType>(A->getType()) ||
297         !isa<FunctionType>(A->getType()->getPointerElementType()))
298       return TotalCost;
299 
300     // Since the argument is a function pointer, its incoming constant values
301     // should be functions or constant expressions. The code below attempts to
302     // look through cast expressions to find the function that will be called.
303     Value *CalledValue = C;
304     while (isa<ConstantExpr>(CalledValue) &&
305            cast<ConstantExpr>(CalledValue)->isCast())
306       CalledValue = cast<User>(CalledValue)->getOperand(0);
307     Function *CalledFunction = dyn_cast<Function>(CalledValue);
308     if (!CalledFunction)
309       return TotalCost;
310 
311     // Get TTI for the called function (used for the inline cost).
312     auto &CalleeTTI = (GetTTI)(*CalledFunction);
313 
314     // Look at all the call sites whose called value is the argument.
315     // Specializing the function on the argument would allow these indirect
316     // calls to be promoted to direct calls. If the indirect call promotion
317     // would likely enable the called function to be inlined, specializing is a
318     // good idea.
319     int Bonus = 0;
320     for (User *U : A->users()) {
321       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
322         continue;
323       auto *CS = cast<CallBase>(U);
324       if (CS->getCalledOperand() != A)
325         continue;
326 
327       // Get the cost of inlining the called function at this call site. Note
328       // that this is only an estimate. The called function may eventually
329       // change in a way that leads to it not being inlined here, even though
330       // inlining looks profitable now. For example, one of its called
331       // functions may be inlined into it, making the called function too large
332       // to be inlined into this call site.
333       //
334       // We apply a boost for performing indirect call promotion by increasing
335       // the default threshold by the threshold for indirect calls.
336       auto Params = getInlineParams();
337       Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
338       InlineCost IC =
339           getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
340 
341       // We clamp the bonus for this call to be between zero and the default
342       // threshold.
343       if (IC.isAlways())
344         Bonus += Params.DefaultThreshold;
345       else if (IC.isVariable() && IC.getCostDelta() > 0)
346         Bonus += IC.getCostDelta();
347     }
348 
349     return TotalCost + Bonus;
350   }
351 
352   /// Determine if we should specialize a function based on the incoming values
353   /// of the given argument.
354   ///
355   /// This function implements the goal-directed heuristic. It determines if
356   /// specializing the function based on the incoming values of argument \p A
357   /// would result in any significant optimization opportunities. If
358   /// optimization opportunities exist, the constant values of \p A on which to
359   /// specialize the function are collected in \p Constants. If the values in
360   /// \p Constants represent the complete set of values that \p A can take on,
361   /// the function will be completely specialized, and the \p IsPartial flag is
362   /// set to false.
363   ///
364   /// \returns true if the function should be specialized on the given
365   /// argument.
366   bool isArgumentInteresting(Argument *A,
367                              SmallVectorImpl<Constant *> &Constants,
368                              bool &IsPartial) {
369     Function *F = A->getParent();
370 
371     // For now, don't attempt to specialize functions based on the values of
372     // composite types.
373     if (!A->getType()->isSingleValueType() || A->user_empty())
374       return false;
375 
376     // If the argument isn't overdefined, there's nothing to do. It should
377     // already be constant.
378     if (!Solver.getLatticeValueFor(A).isOverdefined()) {
379       LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already "
380                         << "constant?\n");
381       return false;
382     }
383 
384     // Collect the constant values that the argument can take on. If the
385     // argument can't take on any constant values, we aren't going to
386     // specialize the function. While it's possible to specialize the function
387     // based on non-constant arguments, there's likely not much benefit to
388     // constant propagation in doing so.
389     //
390     // TODO 1: currently it won't specialize if there are over the threshold of
391     // calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it
392     // might be beneficial to take the occurrences into account in the cost
393     // model, so we would need to find the unique constants.
394     //
395     // TODO 2: this currently does not support constants, i.e. integer ranges.
396     //
397     SmallVector<Constant *, 4> PossibleConstants;
398     bool AllConstant = getPossibleConstants(A, PossibleConstants);
399     if (PossibleConstants.empty()) {
400       LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n");
401       return false;
402     }
403     if (PossibleConstants.size() > MaxConstantsThreshold) {
404       LLVM_DEBUG(dbgs() << "FnSpecialization: number of constants found exceed "
405                         << "the maximum number of constants threshold.\n");
406       return false;
407     }
408 
409     // Determine if it would be profitable to create a specialization of the
410     // function where the argument takes on the given constant value. If so,
411     // add the constant to Constants.
412     auto FnSpecCost = getSpecializationCost(F);
413     LLVM_DEBUG(dbgs() << "FnSpecialization: func specialisation cost: ";
414                FnSpecCost.print(dbgs()); dbgs() << "\n");
415 
416     for (auto *C : PossibleConstants) {
417       LLVM_DEBUG(dbgs() << "FnSpecialization: Constant: " << *C << "\n");
418       if (ForceFunctionSpecialization) {
419         LLVM_DEBUG(dbgs() << "FnSpecialization: Forced!\n");
420         Constants.push_back(C);
421         continue;
422       }
423       if (getSpecializationBonus(A, C) > FnSpecCost) {
424         LLVM_DEBUG(dbgs() << "FnSpecialization: profitable!\n");
425         Constants.push_back(C);
426       } else {
427         LLVM_DEBUG(dbgs() << "FnSpecialization: not profitable\n");
428       }
429     }
430 
431     // None of the constant values the argument can take on were deemed good
432     // candidates on which to specialize the function.
433     if (Constants.empty())
434       return false;
435 
436     // This will be a partial specialization if some of the constants were
437     // rejected due to their profitability.
438     IsPartial = !AllConstant || PossibleConstants.size() != Constants.size();
439 
440     return true;
441   }
442 
443   /// Collect in \p Constants all the constant values that argument \p A can
444   /// take on.
445   ///
446   /// \returns true if all of the values the argument can take on are constant
447   /// (e.g., the argument's parent function cannot be called with an
448   /// overdefined value).
449   bool getPossibleConstants(Argument *A,
450                             SmallVectorImpl<Constant *> &Constants) {
451     Function *F = A->getParent();
452     bool AllConstant = true;
453 
454     // Iterate over all the call sites of the argument's parent function.
455     for (User *U : F->users()) {
456       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
457         continue;
458       auto &CS = *cast<CallBase>(U);
459 
460       // If the parent of the call site will never be executed, we don't need
461       // to worry about the passed value.
462       if (!Solver.isBlockExecutable(CS.getParent()))
463         continue;
464 
465       auto *V = CS.getArgOperand(A->getArgNo());
466       // TrackValueOfGlobalVariable only tracks scalar global variables.
467       if (auto *GV = dyn_cast<GlobalVariable>(V)) {
468         if (!GV->getValueType()->isSingleValueType()) {
469           return false;
470         }
471       }
472 
473       // Get the lattice value for the value the call site passes to the
474       // argument. If this value is not constant, move on to the next call
475       // site. Additionally, set the AllConstant flag to false.
476       if (V != A && !Solver.getLatticeValueFor(V).isConstant()) {
477         AllConstant = false;
478         continue;
479       }
480 
481       // Add the constant to the set.
482       if (auto *C = dyn_cast<Constant>(CS.getArgOperand(A->getArgNo())))
483         Constants.push_back(C);
484     }
485 
486     // If the argument can only take on constant values, AllConstant will be
487     // true.
488     return AllConstant;
489   }
490 
491   /// Rewrite calls to function \p F to call function \p Clone instead.
492   ///
493   /// This function modifies calls to function \p F whose argument at index \p
494   /// ArgNo is equal to constant \p C. The calls are rewritten to call function
495   /// \p Clone instead.
496   void rewriteCallSites(Function *F, Function *Clone, Argument &Arg,
497                         Constant *C) {
498     unsigned ArgNo = Arg.getArgNo();
499     SmallVector<CallBase *, 4> CallSitesToRewrite;
500     for (auto *U : F->users()) {
501       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
502         continue;
503       auto &CS = *cast<CallBase>(U);
504       if (!CS.getCalledFunction() || CS.getCalledFunction() != F)
505         continue;
506       CallSitesToRewrite.push_back(&CS);
507     }
508     for (auto *CS : CallSitesToRewrite) {
509       if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) ||
510           CS->getArgOperand(ArgNo) == C) {
511         CS->setCalledFunction(Clone);
512         Solver.markOverdefined(CS);
513       }
514     }
515   }
516 };
517 
518 /// Function to clean up the left over intrinsics from SCCP util.
519 static void cleanup(Module &M) {
520   for (Function &F : M) {
521     for (BasicBlock &BB : F) {
522       for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
523         Instruction *Inst = &*BI++;
524         if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
525           if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
526             Value *Op = II->getOperand(0);
527             Inst->replaceAllUsesWith(Op);
528             Inst->eraseFromParent();
529           }
530         }
531       }
532     }
533   }
534 }
535 
536 bool llvm::runFunctionSpecialization(
537     Module &M, const DataLayout &DL,
538     std::function<TargetLibraryInfo &(Function &)> GetTLI,
539     std::function<TargetTransformInfo &(Function &)> GetTTI,
540     std::function<AssumptionCache &(Function &)> GetAC,
541     function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) {
542   SCCPSolver Solver(DL, GetTLI, M.getContext());
543   FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI);
544   bool Changed = false;
545 
546   // Loop over all functions, marking arguments to those with their addresses
547   // taken or that are external as overdefined.
548   for (Function &F : M) {
549     if (F.isDeclaration())
550       continue;
551 
552     LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName()
553                       << "\n");
554     Solver.addAnalysis(F, GetAnalysis(F));
555 
556     // Determine if we can track the function's arguments. If so, add the
557     // function to the solver's set of argument-tracked functions.
558     if (canTrackArgumentsInterprocedurally(&F)) {
559       LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n");
560       Solver.addArgumentTrackedFunction(&F);
561       continue;
562     } else {
563       LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n"
564                         << "FnSpecialization: Doesn't have local linkage, or "
565                         << "has its address taken\n");
566     }
567 
568     // Assume the function is called.
569     Solver.markBlockExecutable(&F.front());
570 
571     // Assume nothing about the incoming arguments.
572     for (Argument &AI : F.args())
573       Solver.markOverdefined(&AI);
574   }
575 
576   // Determine if we can track any of the module's global variables. If so, add
577   // the global variables we can track to the solver's set of tracked global
578   // variables.
579   for (GlobalVariable &G : M.globals()) {
580     G.removeDeadConstantUsers();
581     if (canTrackGlobalVariableInterprocedurally(&G))
582       Solver.trackValueOfGlobalVariable(&G);
583   }
584 
585   // Solve for constants.
586   auto RunSCCPSolver = [&](auto &WorkList) {
587     bool ResolvedUndefs = true;
588 
589     while (ResolvedUndefs) {
590       LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n");
591       Solver.solve();
592       LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n");
593       ResolvedUndefs = false;
594       for (Function *F : WorkList)
595         if (Solver.resolvedUndefsIn(*F))
596           ResolvedUndefs = true;
597     }
598 
599     for (auto *F : WorkList) {
600       for (BasicBlock &BB : *F) {
601         if (!Solver.isBlockExecutable(&BB))
602           continue;
603         for (auto &I : make_early_inc_range(BB))
604           FS.tryToReplaceWithConstant(&I);
605       }
606     }
607   };
608 
609   auto &TrackedFuncs = Solver.getArgumentTrackedFunctions();
610   SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(),
611                                         TrackedFuncs.end());
612 #ifndef NDEBUG
613   LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n");
614   for (auto *F : FuncDecls)
615     LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n");
616 #endif
617 
618   // Initially resolve the constants in all the argument tracked functions.
619   RunSCCPSolver(FuncDecls);
620 
621   SmallVector<Function *, 2> CurrentSpecializations;
622   unsigned I = 0;
623   while (FuncSpecializationMaxIters != I++ &&
624          FS.specializeFunctions(FuncDecls, CurrentSpecializations)) {
625     // TODO: run the solver here for the specialized functions only if we want
626     // to specialize recursively.
627 
628     CurrentSpecializations.clear();
629     Changed = true;
630   }
631 
632   // Clean up the IR by removing ssa_copy intrinsics.
633   cleanup(M);
634 
635   return Changed;
636 }
637